Home | History | Annotate | Download | only in Geometry
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier (at) cea.fr>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_QUATERNION_H
     12 #define EIGEN_QUATERNION_H
     13 namespace Eigen {
     14 
     15 
     16 /***************************************************************************
     17 * Definition of QuaternionBase<Derived>
     18 * The implementation is at the end of the file
     19 ***************************************************************************/
     20 
     21 namespace internal {
     22 template<typename Other,
     23          int OtherRows=Other::RowsAtCompileTime,
     24          int OtherCols=Other::ColsAtCompileTime>
     25 struct quaternionbase_assign_impl;
     26 }
     27 
     28 /** \geometry_module \ingroup Geometry_Module
     29   * \class QuaternionBase
     30   * \brief Base class for quaternion expressions
     31   * \tparam Derived derived type (CRTP)
     32   * \sa class Quaternion
     33   */
     34 template<class Derived>
     35 class QuaternionBase : public RotationBase<Derived, 3>
     36 {
     37  public:
     38   typedef RotationBase<Derived, 3> Base;
     39 
     40   using Base::operator*;
     41   using Base::derived;
     42 
     43   typedef typename internal::traits<Derived>::Scalar Scalar;
     44   typedef typename NumTraits<Scalar>::Real RealScalar;
     45   typedef typename internal::traits<Derived>::Coefficients Coefficients;
     46   enum {
     47     Flags = Eigen::internal::traits<Derived>::Flags
     48   };
     49 
     50  // typedef typename Matrix<Scalar,4,1> Coefficients;
     51   /** the type of a 3D vector */
     52   typedef Matrix<Scalar,3,1> Vector3;
     53   /** the equivalent rotation matrix type */
     54   typedef Matrix<Scalar,3,3> Matrix3;
     55   /** the equivalent angle-axis type */
     56   typedef AngleAxis<Scalar> AngleAxisType;
     57 
     58 
     59 
     60   /** \returns the \c x coefficient */
     61   EIGEN_DEVICE_FUNC inline Scalar x() const { return this->derived().coeffs().coeff(0); }
     62   /** \returns the \c y coefficient */
     63   EIGEN_DEVICE_FUNC inline Scalar y() const { return this->derived().coeffs().coeff(1); }
     64   /** \returns the \c z coefficient */
     65   EIGEN_DEVICE_FUNC inline Scalar z() const { return this->derived().coeffs().coeff(2); }
     66   /** \returns the \c w coefficient */
     67   EIGEN_DEVICE_FUNC inline Scalar w() const { return this->derived().coeffs().coeff(3); }
     68 
     69   /** \returns a reference to the \c x coefficient */
     70   EIGEN_DEVICE_FUNC inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
     71   /** \returns a reference to the \c y coefficient */
     72   EIGEN_DEVICE_FUNC inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
     73   /** \returns a reference to the \c z coefficient */
     74   EIGEN_DEVICE_FUNC inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
     75   /** \returns a reference to the \c w coefficient */
     76   EIGEN_DEVICE_FUNC inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
     77 
     78   /** \returns a read-only vector expression of the imaginary part (x,y,z) */
     79   EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
     80 
     81   /** \returns a vector expression of the imaginary part (x,y,z) */
     82   EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
     83 
     84   /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
     85   EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
     86 
     87   /** \returns a vector expression of the coefficients (x,y,z,w) */
     88   EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
     89 
     90   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
     91   template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
     92 
     93 // disabled this copy operator as it is giving very strange compilation errors when compiling
     94 // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
     95 // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
     96 // we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
     97 //  Derived& operator=(const QuaternionBase& other)
     98 //  { return operator=<Derived>(other); }
     99 
    100   EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa);
    101   template<class OtherDerived> EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m);
    102 
    103   /** \returns a quaternion representing an identity rotation
    104     * \sa MatrixBase::Identity()
    105     */
    106   EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); }
    107 
    108   /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
    109     */
    110   EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; }
    111 
    112   /** \returns the squared norm of the quaternion's coefficients
    113     * \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
    114     */
    115   EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
    116 
    117   /** \returns the norm of the quaternion's coefficients
    118     * \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
    119     */
    120   EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); }
    121 
    122   /** Normalizes the quaternion \c *this
    123     * \sa normalized(), MatrixBase::normalize() */
    124   EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); }
    125   /** \returns a normalized copy of \c *this
    126     * \sa normalize(), MatrixBase::normalized() */
    127   EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
    128 
    129     /** \returns the dot product of \c *this and \a other
    130     * Geometrically speaking, the dot product of two unit quaternions
    131     * corresponds to the cosine of half the angle between the two rotations.
    132     * \sa angularDistance()
    133     */
    134   template<class OtherDerived> EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
    135 
    136   template<class OtherDerived> EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
    137 
    138   /** \returns an equivalent 3x3 rotation matrix */
    139   EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix() const;
    140 
    141   /** \returns the quaternion which transform \a a into \a b through a rotation */
    142   template<typename Derived1, typename Derived2>
    143   EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
    144 
    145   template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
    146   template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
    147 
    148   /** \returns the quaternion describing the inverse rotation */
    149   EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const;
    150 
    151   /** \returns the conjugated quaternion */
    152   EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const;
    153 
    154   template<class OtherDerived> EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
    155 
    156   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    157     * determined by \a prec.
    158     *
    159     * \sa MatrixBase::isApprox() */
    160   template<class OtherDerived>
    161   EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
    162   { return coeffs().isApprox(other.coeffs(), prec); }
    163 
    164   /** return the result vector of \a v through the rotation*/
    165   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
    166 
    167   /** \returns \c *this with scalar type casted to \a NewScalarType
    168     *
    169     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    170     * then this function smartly returns a const reference to \c *this.
    171     */
    172   template<typename NewScalarType>
    173   EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
    174   {
    175     return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
    176   }
    177 
    178 #ifdef EIGEN_QUATERNIONBASE_PLUGIN
    179 # include EIGEN_QUATERNIONBASE_PLUGIN
    180 #endif
    181 };
    182 
    183 /***************************************************************************
    184 * Definition/implementation of Quaternion<Scalar>
    185 ***************************************************************************/
    186 
    187 /** \geometry_module \ingroup Geometry_Module
    188   *
    189   * \class Quaternion
    190   *
    191   * \brief The quaternion class used to represent 3D orientations and rotations
    192   *
    193   * \tparam _Scalar the scalar type, i.e., the type of the coefficients
    194   * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
    195   *
    196   * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
    197   * orientations and rotations of objects in three dimensions. Compared to other representations
    198   * like Euler angles or 3x3 matrices, quaternions offer the following advantages:
    199   * \li \b compact storage (4 scalars)
    200   * \li \b efficient to compose (28 flops),
    201   * \li \b stable spherical interpolation
    202   *
    203   * The following two typedefs are provided for convenience:
    204   * \li \c Quaternionf for \c float
    205   * \li \c Quaterniond for \c double
    206   *
    207   * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
    208   *
    209   * \sa  class AngleAxis, class Transform
    210   */
    211 
    212 namespace internal {
    213 template<typename _Scalar,int _Options>
    214 struct traits<Quaternion<_Scalar,_Options> >
    215 {
    216   typedef Quaternion<_Scalar,_Options> PlainObject;
    217   typedef _Scalar Scalar;
    218   typedef Matrix<_Scalar,4,1,_Options> Coefficients;
    219   enum{
    220     Alignment = internal::traits<Coefficients>::Alignment,
    221     Flags = LvalueBit
    222   };
    223 };
    224 }
    225 
    226 template<typename _Scalar, int _Options>
    227 class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
    228 {
    229 public:
    230   typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
    231   enum { NeedsAlignment = internal::traits<Quaternion>::Alignment>0 };
    232 
    233   typedef _Scalar Scalar;
    234 
    235   EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
    236   using Base::operator*=;
    237 
    238   typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
    239   typedef typename Base::AngleAxisType AngleAxisType;
    240 
    241   /** Default constructor leaving the quaternion uninitialized. */
    242   EIGEN_DEVICE_FUNC inline Quaternion() {}
    243 
    244   /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
    245     * its four coefficients \a w, \a x, \a y and \a z.
    246     *
    247     * \warning Note the order of the arguments: the real \a w coefficient first,
    248     * while internally the coefficients are stored in the following order:
    249     * [\c x, \c y, \c z, \c w]
    250     */
    251   EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
    252 
    253   /** Constructs and initialize a quaternion from the array data */
    254   EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {}
    255 
    256   /** Copy constructor */
    257   template<class Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
    258 
    259   /** Constructs and initializes a quaternion from the angle-axis \a aa */
    260   EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
    261 
    262   /** Constructs and initializes a quaternion from either:
    263     *  - a rotation matrix expression,
    264     *  - a 4D vector expression representing quaternion coefficients.
    265     */
    266   template<typename Derived>
    267   EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
    268 
    269   /** Explicit copy constructor with scalar conversion */
    270   template<typename OtherScalar, int OtherOptions>
    271   EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
    272   { m_coeffs = other.coeffs().template cast<Scalar>(); }
    273 
    274   EIGEN_DEVICE_FUNC static Quaternion UnitRandom();
    275 
    276   template<typename Derived1, typename Derived2>
    277   EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
    278 
    279   EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;}
    280   EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
    281 
    282   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment))
    283 
    284 #ifdef EIGEN_QUATERNION_PLUGIN
    285 # include EIGEN_QUATERNION_PLUGIN
    286 #endif
    287 
    288 protected:
    289   Coefficients m_coeffs;
    290 
    291 #ifndef EIGEN_PARSED_BY_DOXYGEN
    292     static EIGEN_STRONG_INLINE void _check_template_params()
    293     {
    294       EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
    295         INVALID_MATRIX_TEMPLATE_PARAMETERS)
    296     }
    297 #endif
    298 };
    299 
    300 /** \ingroup Geometry_Module
    301   * single precision quaternion type */
    302 typedef Quaternion<float> Quaternionf;
    303 /** \ingroup Geometry_Module
    304   * double precision quaternion type */
    305 typedef Quaternion<double> Quaterniond;
    306 
    307 /***************************************************************************
    308 * Specialization of Map<Quaternion<Scalar>>
    309 ***************************************************************************/
    310 
    311 namespace internal {
    312   template<typename _Scalar, int _Options>
    313   struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
    314   {
    315     typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
    316   };
    317 }
    318 
    319 namespace internal {
    320   template<typename _Scalar, int _Options>
    321   struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
    322   {
    323     typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
    324     typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
    325     enum {
    326       Flags = TraitsBase::Flags & ~LvalueBit
    327     };
    328   };
    329 }
    330 
    331 /** \ingroup Geometry_Module
    332   * \brief Quaternion expression mapping a constant memory buffer
    333   *
    334   * \tparam _Scalar the type of the Quaternion coefficients
    335   * \tparam _Options see class Map
    336   *
    337   * This is a specialization of class Map for Quaternion. This class allows to view
    338   * a 4 scalar memory buffer as an Eigen's Quaternion object.
    339   *
    340   * \sa class Map, class Quaternion, class QuaternionBase
    341   */
    342 template<typename _Scalar, int _Options>
    343 class Map<const Quaternion<_Scalar>, _Options >
    344   : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
    345 {
    346   public:
    347     typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
    348 
    349     typedef _Scalar Scalar;
    350     typedef typename internal::traits<Map>::Coefficients Coefficients;
    351     EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
    352     using Base::operator*=;
    353 
    354     /** Constructs a Mapped Quaternion object from the pointer \a coeffs
    355       *
    356       * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
    357       * \code *coeffs == {x, y, z, w} \endcode
    358       *
    359       * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
    360     EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
    361 
    362     EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
    363 
    364   protected:
    365     const Coefficients m_coeffs;
    366 };
    367 
    368 /** \ingroup Geometry_Module
    369   * \brief Expression of a quaternion from a memory buffer
    370   *
    371   * \tparam _Scalar the type of the Quaternion coefficients
    372   * \tparam _Options see class Map
    373   *
    374   * This is a specialization of class Map for Quaternion. This class allows to view
    375   * a 4 scalar memory buffer as an Eigen's  Quaternion object.
    376   *
    377   * \sa class Map, class Quaternion, class QuaternionBase
    378   */
    379 template<typename _Scalar, int _Options>
    380 class Map<Quaternion<_Scalar>, _Options >
    381   : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
    382 {
    383   public:
    384     typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
    385 
    386     typedef _Scalar Scalar;
    387     typedef typename internal::traits<Map>::Coefficients Coefficients;
    388     EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
    389     using Base::operator*=;
    390 
    391     /** Constructs a Mapped Quaternion object from the pointer \a coeffs
    392       *
    393       * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
    394       * \code *coeffs == {x, y, z, w} \endcode
    395       *
    396       * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
    397     EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
    398 
    399     EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
    400     EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
    401 
    402   protected:
    403     Coefficients m_coeffs;
    404 };
    405 
    406 /** \ingroup Geometry_Module
    407   * Map an unaligned array of single precision scalars as a quaternion */
    408 typedef Map<Quaternion<float>, 0>         QuaternionMapf;
    409 /** \ingroup Geometry_Module
    410   * Map an unaligned array of double precision scalars as a quaternion */
    411 typedef Map<Quaternion<double>, 0>        QuaternionMapd;
    412 /** \ingroup Geometry_Module
    413   * Map a 16-byte aligned array of single precision scalars as a quaternion */
    414 typedef Map<Quaternion<float>, Aligned>   QuaternionMapAlignedf;
    415 /** \ingroup Geometry_Module
    416   * Map a 16-byte aligned array of double precision scalars as a quaternion */
    417 typedef Map<Quaternion<double>, Aligned>  QuaternionMapAlignedd;
    418 
    419 /***************************************************************************
    420 * Implementation of QuaternionBase methods
    421 ***************************************************************************/
    422 
    423 // Generic Quaternion * Quaternion product
    424 // This product can be specialized for a given architecture via the Arch template argument.
    425 namespace internal {
    426 template<int Arch, class Derived1, class Derived2, typename Scalar> struct quat_product
    427 {
    428   EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
    429     return Quaternion<Scalar>
    430     (
    431       a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
    432       a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
    433       a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
    434       a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
    435     );
    436   }
    437 };
    438 }
    439 
    440 /** \returns the concatenation of two rotations as a quaternion-quaternion product */
    441 template <class Derived>
    442 template <class OtherDerived>
    443 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
    444 QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
    445 {
    446   EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
    447    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
    448   return internal::quat_product<Architecture::Target, Derived, OtherDerived,
    449                          typename internal::traits<Derived>::Scalar>::run(*this, other);
    450 }
    451 
    452 /** \sa operator*(Quaternion) */
    453 template <class Derived>
    454 template <class OtherDerived>
    455 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
    456 {
    457   derived() = derived() * other.derived();
    458   return derived();
    459 }
    460 
    461 /** Rotation of a vector by a quaternion.
    462   * \remarks If the quaternion is used to rotate several points (>1)
    463   * then it is much more efficient to first convert it to a 3x3 Matrix.
    464   * Comparison of the operation cost for n transformations:
    465   *   - Quaternion2:    30n
    466   *   - Via a Matrix3: 24 + 15n
    467   */
    468 template <class Derived>
    469 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
    470 QuaternionBase<Derived>::_transformVector(const Vector3& v) const
    471 {
    472     // Note that this algorithm comes from the optimization by hand
    473     // of the conversion to a Matrix followed by a Matrix/Vector product.
    474     // It appears to be much faster than the common algorithm found
    475     // in the literature (30 versus 39 flops). It also requires two
    476     // Vector3 as temporaries.
    477     Vector3 uv = this->vec().cross(v);
    478     uv += uv;
    479     return v + this->w() * uv + this->vec().cross(uv);
    480 }
    481 
    482 template<class Derived>
    483 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
    484 {
    485   coeffs() = other.coeffs();
    486   return derived();
    487 }
    488 
    489 template<class Derived>
    490 template<class OtherDerived>
    491 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
    492 {
    493   coeffs() = other.coeffs();
    494   return derived();
    495 }
    496 
    497 /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
    498   */
    499 template<class Derived>
    500 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
    501 {
    502   EIGEN_USING_STD_MATH(cos)
    503   EIGEN_USING_STD_MATH(sin)
    504   Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
    505   this->w() = cos(ha);
    506   this->vec() = sin(ha) * aa.axis();
    507   return derived();
    508 }
    509 
    510 /** Set \c *this from the expression \a xpr:
    511   *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
    512   *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
    513   *     and \a xpr is converted to a quaternion
    514   */
    515 
    516 template<class Derived>
    517 template<class MatrixDerived>
    518 EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
    519 {
    520   EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
    521    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
    522   internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
    523   return derived();
    524 }
    525 
    526 /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
    527   * be normalized, otherwise the result is undefined.
    528   */
    529 template<class Derived>
    530 EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3
    531 QuaternionBase<Derived>::toRotationMatrix(void) const
    532 {
    533   // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
    534   // if not inlined then the cost of the return by value is huge ~ +35%,
    535   // however, not inlining this function is an order of magnitude slower, so
    536   // it has to be inlined, and so the return by value is not an issue
    537   Matrix3 res;
    538 
    539   const Scalar tx  = Scalar(2)*this->x();
    540   const Scalar ty  = Scalar(2)*this->y();
    541   const Scalar tz  = Scalar(2)*this->z();
    542   const Scalar twx = tx*this->w();
    543   const Scalar twy = ty*this->w();
    544   const Scalar twz = tz*this->w();
    545   const Scalar txx = tx*this->x();
    546   const Scalar txy = ty*this->x();
    547   const Scalar txz = tz*this->x();
    548   const Scalar tyy = ty*this->y();
    549   const Scalar tyz = tz*this->y();
    550   const Scalar tzz = tz*this->z();
    551 
    552   res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
    553   res.coeffRef(0,1) = txy-twz;
    554   res.coeffRef(0,2) = txz+twy;
    555   res.coeffRef(1,0) = txy+twz;
    556   res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
    557   res.coeffRef(1,2) = tyz-twx;
    558   res.coeffRef(2,0) = txz-twy;
    559   res.coeffRef(2,1) = tyz+twx;
    560   res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
    561 
    562   return res;
    563 }
    564 
    565 /** Sets \c *this to be a quaternion representing a rotation between
    566   * the two arbitrary vectors \a a and \a b. In other words, the built
    567   * rotation represent a rotation sending the line of direction \a a
    568   * to the line of direction \a b, both lines passing through the origin.
    569   *
    570   * \returns a reference to \c *this.
    571   *
    572   * Note that the two input vectors do \b not have to be normalized, and
    573   * do not need to have the same norm.
    574   */
    575 template<class Derived>
    576 template<typename Derived1, typename Derived2>
    577 EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
    578 {
    579   EIGEN_USING_STD_MATH(sqrt)
    580   Vector3 v0 = a.normalized();
    581   Vector3 v1 = b.normalized();
    582   Scalar c = v1.dot(v0);
    583 
    584   // if dot == -1, vectors are nearly opposites
    585   // => accurately compute the rotation axis by computing the
    586   //    intersection of the two planes. This is done by solving:
    587   //       x^T v0 = 0
    588   //       x^T v1 = 0
    589   //    under the constraint:
    590   //       ||x|| = 1
    591   //    which yields a singular value problem
    592   if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
    593   {
    594     c = numext::maxi(c,Scalar(-1));
    595     Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
    596     JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
    597     Vector3 axis = svd.matrixV().col(2);
    598 
    599     Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
    600     this->w() = sqrt(w2);
    601     this->vec() = axis * sqrt(Scalar(1) - w2);
    602     return derived();
    603   }
    604   Vector3 axis = v0.cross(v1);
    605   Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
    606   Scalar invs = Scalar(1)/s;
    607   this->vec() = axis * invs;
    608   this->w() = s * Scalar(0.5);
    609 
    610   return derived();
    611 }
    612 
    613 /** \returns a random unit quaternion following a uniform distribution law on SO(3)
    614   *
    615   * \note The implementation is based on http://planning.cs.uiuc.edu/node198.html
    616   */
    617 template<typename Scalar, int Options>
    618 EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::UnitRandom()
    619 {
    620   EIGEN_USING_STD_MATH(sqrt)
    621   EIGEN_USING_STD_MATH(sin)
    622   EIGEN_USING_STD_MATH(cos)
    623   const Scalar u1 = internal::random<Scalar>(0, 1),
    624                u2 = internal::random<Scalar>(0, 2*EIGEN_PI),
    625                u3 = internal::random<Scalar>(0, 2*EIGEN_PI);
    626   const Scalar a = sqrt(1 - u1),
    627                b = sqrt(u1);
    628   return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3));
    629 }
    630 
    631 
    632 /** Returns a quaternion representing a rotation between
    633   * the two arbitrary vectors \a a and \a b. In other words, the built
    634   * rotation represent a rotation sending the line of direction \a a
    635   * to the line of direction \a b, both lines passing through the origin.
    636   *
    637   * \returns resulting quaternion
    638   *
    639   * Note that the two input vectors do \b not have to be normalized, and
    640   * do not need to have the same norm.
    641   */
    642 template<typename Scalar, int Options>
    643 template<typename Derived1, typename Derived2>
    644 EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
    645 {
    646     Quaternion quat;
    647     quat.setFromTwoVectors(a, b);
    648     return quat;
    649 }
    650 
    651 
    652 /** \returns the multiplicative inverse of \c *this
    653   * Note that in most cases, i.e., if you simply want the opposite rotation,
    654   * and/or the quaternion is normalized, then it is enough to use the conjugate.
    655   *
    656   * \sa QuaternionBase::conjugate()
    657   */
    658 template <class Derived>
    659 EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
    660 {
    661   // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ??
    662   Scalar n2 = this->squaredNorm();
    663   if (n2 > Scalar(0))
    664     return Quaternion<Scalar>(conjugate().coeffs() / n2);
    665   else
    666   {
    667     // return an invalid result to flag the error
    668     return Quaternion<Scalar>(Coefficients::Zero());
    669   }
    670 }
    671 
    672 // Generic conjugate of a Quaternion
    673 namespace internal {
    674 template<int Arch, class Derived, typename Scalar> struct quat_conj
    675 {
    676   EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q){
    677     return Quaternion<Scalar>(q.w(),-q.x(),-q.y(),-q.z());
    678   }
    679 };
    680 }
    681 
    682 /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
    683   * if the quaternion is normalized.
    684   * The conjugate of a quaternion represents the opposite rotation.
    685   *
    686   * \sa Quaternion2::inverse()
    687   */
    688 template <class Derived>
    689 EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar>
    690 QuaternionBase<Derived>::conjugate() const
    691 {
    692   return internal::quat_conj<Architecture::Target, Derived,
    693                          typename internal::traits<Derived>::Scalar>::run(*this);
    694 
    695 }
    696 
    697 /** \returns the angle (in radian) between two rotations
    698   * \sa dot()
    699   */
    700 template <class Derived>
    701 template <class OtherDerived>
    702 EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar
    703 QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
    704 {
    705   EIGEN_USING_STD_MATH(atan2)
    706   Quaternion<Scalar> d = (*this) * other.conjugate();
    707   return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) );
    708 }
    709 
    710 
    711 
    712 /** \returns the spherical linear interpolation between the two quaternions
    713   * \c *this and \a other at the parameter \a t in [0;1].
    714   *
    715   * This represents an interpolation for a constant motion between \c *this and \a other,
    716   * see also http://en.wikipedia.org/wiki/Slerp.
    717   */
    718 template <class Derived>
    719 template <class OtherDerived>
    720 EIGEN_DEVICE_FUNC Quaternion<typename internal::traits<Derived>::Scalar>
    721 QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const
    722 {
    723   EIGEN_USING_STD_MATH(acos)
    724   EIGEN_USING_STD_MATH(sin)
    725   const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
    726   Scalar d = this->dot(other);
    727   Scalar absD = numext::abs(d);
    728 
    729   Scalar scale0;
    730   Scalar scale1;
    731 
    732   if(absD>=one)
    733   {
    734     scale0 = Scalar(1) - t;
    735     scale1 = t;
    736   }
    737   else
    738   {
    739     // theta is the angle between the 2 quaternions
    740     Scalar theta = acos(absD);
    741     Scalar sinTheta = sin(theta);
    742 
    743     scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
    744     scale1 = sin( ( t * theta) ) / sinTheta;
    745   }
    746   if(d<Scalar(0)) scale1 = -scale1;
    747 
    748   return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
    749 }
    750 
    751 namespace internal {
    752 
    753 // set from a rotation matrix
    754 template<typename Other>
    755 struct quaternionbase_assign_impl<Other,3,3>
    756 {
    757   typedef typename Other::Scalar Scalar;
    758   template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat)
    759   {
    760     const typename internal::nested_eval<Other,2>::type mat(a_mat);
    761     EIGEN_USING_STD_MATH(sqrt)
    762     // This algorithm comes from  "Quaternion Calculus and Fast Animation",
    763     // Ken Shoemake, 1987 SIGGRAPH course notes
    764     Scalar t = mat.trace();
    765     if (t > Scalar(0))
    766     {
    767       t = sqrt(t + Scalar(1.0));
    768       q.w() = Scalar(0.5)*t;
    769       t = Scalar(0.5)/t;
    770       q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
    771       q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
    772       q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
    773     }
    774     else
    775     {
    776       Index i = 0;
    777       if (mat.coeff(1,1) > mat.coeff(0,0))
    778         i = 1;
    779       if (mat.coeff(2,2) > mat.coeff(i,i))
    780         i = 2;
    781       Index j = (i+1)%3;
    782       Index k = (j+1)%3;
    783 
    784       t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
    785       q.coeffs().coeffRef(i) = Scalar(0.5) * t;
    786       t = Scalar(0.5)/t;
    787       q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
    788       q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
    789       q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
    790     }
    791   }
    792 };
    793 
    794 // set from a vector of coefficients assumed to be a quaternion
    795 template<typename Other>
    796 struct quaternionbase_assign_impl<Other,4,1>
    797 {
    798   typedef typename Other::Scalar Scalar;
    799   template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec)
    800   {
    801     q.coeffs() = vec;
    802   }
    803 };
    804 
    805 } // end namespace internal
    806 
    807 } // end namespace Eigen
    808 
    809 #endif // EIGEN_QUATERNION_H
    810