Home | History | Annotate | Download | only in Geometry
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_ROTATION2D_H
     11 #define EIGEN_ROTATION2D_H
     12 
     13 namespace Eigen {
     14 
     15 /** \geometry_module \ingroup Geometry_Module
     16   *
     17   * \class Rotation2D
     18   *
     19   * \brief Represents a rotation/orientation in a 2 dimensional space.
     20   *
     21   * \tparam _Scalar the scalar type, i.e., the type of the coefficients
     22   *
     23   * This class is equivalent to a single scalar representing a counter clock wise rotation
     24   * as a single angle in radian. It provides some additional features such as the automatic
     25   * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
     26   * interface to Quaternion in order to facilitate the writing of generic algorithms
     27   * dealing with rotations.
     28   *
     29   * \sa class Quaternion, class Transform
     30   */
     31 
     32 namespace internal {
     33 
     34 template<typename _Scalar> struct traits<Rotation2D<_Scalar> >
     35 {
     36   typedef _Scalar Scalar;
     37 };
     38 } // end namespace internal
     39 
     40 template<typename _Scalar>
     41 class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
     42 {
     43   typedef RotationBase<Rotation2D<_Scalar>,2> Base;
     44 
     45 public:
     46 
     47   using Base::operator*;
     48 
     49   enum { Dim = 2 };
     50   /** the scalar type of the coefficients */
     51   typedef _Scalar Scalar;
     52   typedef Matrix<Scalar,2,1> Vector2;
     53   typedef Matrix<Scalar,2,2> Matrix2;
     54 
     55 protected:
     56 
     57   Scalar m_angle;
     58 
     59 public:
     60 
     61   /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
     62   EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {}
     63 
     64   /** Default constructor wihtout initialization. The represented rotation is undefined. */
     65   EIGEN_DEVICE_FUNC Rotation2D() {}
     66 
     67   /** Construct a 2D rotation from a 2x2 rotation matrix \a mat.
     68     *
     69     * \sa fromRotationMatrix()
     70     */
     71   template<typename Derived>
     72   EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m)
     73   {
     74     fromRotationMatrix(m.derived());
     75   }
     76 
     77   /** \returns the rotation angle */
     78   EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; }
     79 
     80   /** \returns a read-write reference to the rotation angle */
     81   EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; }
     82 
     83   /** \returns the rotation angle in [0,2pi] */
     84   EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const {
     85     Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
     86     return tmp<Scalar(0) ? tmp + Scalar(2*EIGEN_PI) : tmp;
     87   }
     88 
     89   /** \returns the rotation angle in [-pi,pi] */
     90   EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const {
     91     Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
     92     if(tmp>Scalar(EIGEN_PI))       tmp -= Scalar(2*EIGEN_PI);
     93     else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI);
     94     return tmp;
     95   }
     96 
     97   /** \returns the inverse rotation */
     98   EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); }
     99 
    100   /** Concatenates two rotations */
    101   EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const
    102   { return Rotation2D(m_angle + other.m_angle); }
    103 
    104   /** Concatenates two rotations */
    105   EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other)
    106   { m_angle += other.m_angle; return *this; }
    107 
    108   /** Applies the rotation to a 2D vector */
    109   EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const
    110   { return toRotationMatrix() * vec; }
    111 
    112   template<typename Derived>
    113   EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
    114   EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const;
    115 
    116   /** Set \c *this from a 2x2 rotation matrix \a mat.
    117     * In other words, this function extract the rotation angle from the rotation matrix.
    118     *
    119     * This method is an alias for fromRotationMatrix()
    120     *
    121     * \sa fromRotationMatrix()
    122     */
    123   template<typename Derived>
    124   EIGEN_DEVICE_FUNC Rotation2D& operator=(const  MatrixBase<Derived>& m)
    125   { return fromRotationMatrix(m.derived()); }
    126 
    127   /** \returns the spherical interpolation between \c *this and \a other using
    128     * parameter \a t. It is in fact equivalent to a linear interpolation.
    129     */
    130   EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
    131   {
    132     Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle();
    133     return Rotation2D(m_angle + dist*t);
    134   }
    135 
    136   /** \returns \c *this with scalar type casted to \a NewScalarType
    137     *
    138     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    139     * then this function smartly returns a const reference to \c *this.
    140     */
    141   template<typename NewScalarType>
    142   EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
    143   { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
    144 
    145   /** Copy constructor with scalar type conversion */
    146   template<typename OtherScalarType>
    147   EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
    148   {
    149     m_angle = Scalar(other.angle());
    150   }
    151 
    152   EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); }
    153 
    154   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    155     * determined by \a prec.
    156     *
    157     * \sa MatrixBase::isApprox() */
    158   EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
    159   { return internal::isApprox(m_angle,other.m_angle, prec); }
    160 
    161 };
    162 
    163 /** \ingroup Geometry_Module
    164   * single precision 2D rotation type */
    165 typedef Rotation2D<float> Rotation2Df;
    166 /** \ingroup Geometry_Module
    167   * double precision 2D rotation type */
    168 typedef Rotation2D<double> Rotation2Dd;
    169 
    170 /** Set \c *this from a 2x2 rotation matrix \a mat.
    171   * In other words, this function extract the rotation angle
    172   * from the rotation matrix.
    173   */
    174 template<typename Scalar>
    175 template<typename Derived>
    176 EIGEN_DEVICE_FUNC Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
    177 {
    178   EIGEN_USING_STD_MATH(atan2)
    179   EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
    180   m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0));
    181   return *this;
    182 }
    183 
    184 /** Constructs and \returns an equivalent 2x2 rotation matrix.
    185   */
    186 template<typename Scalar>
    187 typename Rotation2D<Scalar>::Matrix2
    188 EIGEN_DEVICE_FUNC Rotation2D<Scalar>::toRotationMatrix(void) const
    189 {
    190   EIGEN_USING_STD_MATH(sin)
    191   EIGEN_USING_STD_MATH(cos)
    192   Scalar sinA = sin(m_angle);
    193   Scalar cosA = cos(m_angle);
    194   return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
    195 }
    196 
    197 } // end namespace Eigen
    198 
    199 #endif // EIGEN_ROTATION2D_H
    200