Home | History | Annotate | Download | only in Analysis
      1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines routines for folding instructions into constants.
     11 //
     12 // Also, to supplement the basic IR ConstantExpr simplifications,
     13 // this file defines some additional folding routines that can make use of
     14 // DataLayout information. These functions cannot go in IR due to library
     15 // dependency issues.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/Analysis/ConstantFolding.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/SmallPtrSet.h"
     22 #include "llvm/ADT/SmallVector.h"
     23 #include "llvm/ADT/StringMap.h"
     24 #include "llvm/Analysis/TargetLibraryInfo.h"
     25 #include "llvm/Analysis/ValueTracking.h"
     26 #include "llvm/Config/config.h"
     27 #include "llvm/IR/Constants.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/DerivedTypes.h"
     30 #include "llvm/IR/Function.h"
     31 #include "llvm/IR/GetElementPtrTypeIterator.h"
     32 #include "llvm/IR/GlobalVariable.h"
     33 #include "llvm/IR/Instructions.h"
     34 #include "llvm/IR/Intrinsics.h"
     35 #include "llvm/IR/Operator.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/MathExtras.h"
     38 #include <cassert>
     39 #include <cerrno>
     40 #include <cfenv>
     41 #include <cmath>
     42 #include <limits>
     43 
     44 using namespace llvm;
     45 
     46 namespace {
     47 
     48 //===----------------------------------------------------------------------===//
     49 // Constant Folding internal helper functions
     50 //===----------------------------------------------------------------------===//
     51 
     52 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
     53 /// This always returns a non-null constant, but it may be a
     54 /// ConstantExpr if unfoldable.
     55 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
     56   // Catch the obvious splat cases.
     57   if (C->isNullValue() && !DestTy->isX86_MMXTy())
     58     return Constant::getNullValue(DestTy);
     59   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
     60       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
     61     return Constant::getAllOnesValue(DestTy);
     62 
     63   // Handle a vector->integer cast.
     64   if (auto *IT = dyn_cast<IntegerType>(DestTy)) {
     65     auto *VTy = dyn_cast<VectorType>(C->getType());
     66     if (!VTy)
     67       return ConstantExpr::getBitCast(C, DestTy);
     68 
     69     unsigned NumSrcElts = VTy->getNumElements();
     70     Type *SrcEltTy = VTy->getElementType();
     71 
     72     // If the vector is a vector of floating point, convert it to vector of int
     73     // to simplify things.
     74     if (SrcEltTy->isFloatingPointTy()) {
     75       unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
     76       Type *SrcIVTy =
     77         VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
     78       // Ask IR to do the conversion now that #elts line up.
     79       C = ConstantExpr::getBitCast(C, SrcIVTy);
     80     }
     81 
     82     // Now that we know that the input value is a vector of integers, just shift
     83     // and insert them into our result.
     84     unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
     85     APInt Result(IT->getBitWidth(), 0);
     86     for (unsigned i = 0; i != NumSrcElts; ++i) {
     87       Constant *Element;
     88       if (DL.isLittleEndian())
     89         Element = C->getAggregateElement(NumSrcElts-i-1);
     90       else
     91         Element = C->getAggregateElement(i);
     92 
     93       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
     94       if (!ElementCI)
     95         return ConstantExpr::getBitCast(C, DestTy);
     96 
     97       Result <<= BitShift;
     98       Result |= ElementCI->getValue().zextOrSelf(IT->getBitWidth());
     99     }
    100 
    101     return ConstantInt::get(IT, Result);
    102   }
    103 
    104   // The code below only handles casts to vectors currently.
    105   auto *DestVTy = dyn_cast<VectorType>(DestTy);
    106   if (!DestVTy)
    107     return ConstantExpr::getBitCast(C, DestTy);
    108 
    109   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
    110   // vector so the code below can handle it uniformly.
    111   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
    112     Constant *Ops = C; // don't take the address of C!
    113     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
    114   }
    115 
    116   // If this is a bitcast from constant vector -> vector, fold it.
    117   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
    118     return ConstantExpr::getBitCast(C, DestTy);
    119 
    120   // If the element types match, IR can fold it.
    121   unsigned NumDstElt = DestVTy->getNumElements();
    122   unsigned NumSrcElt = C->getType()->getVectorNumElements();
    123   if (NumDstElt == NumSrcElt)
    124     return ConstantExpr::getBitCast(C, DestTy);
    125 
    126   Type *SrcEltTy = C->getType()->getVectorElementType();
    127   Type *DstEltTy = DestVTy->getElementType();
    128 
    129   // Otherwise, we're changing the number of elements in a vector, which
    130   // requires endianness information to do the right thing.  For example,
    131   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    132   // folds to (little endian):
    133   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
    134   // and to (big endian):
    135   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
    136 
    137   // First thing is first.  We only want to think about integer here, so if
    138   // we have something in FP form, recast it as integer.
    139   if (DstEltTy->isFloatingPointTy()) {
    140     // Fold to an vector of integers with same size as our FP type.
    141     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
    142     Type *DestIVTy =
    143       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
    144     // Recursively handle this integer conversion, if possible.
    145     C = FoldBitCast(C, DestIVTy, DL);
    146 
    147     // Finally, IR can handle this now that #elts line up.
    148     return ConstantExpr::getBitCast(C, DestTy);
    149   }
    150 
    151   // Okay, we know the destination is integer, if the input is FP, convert
    152   // it to integer first.
    153   if (SrcEltTy->isFloatingPointTy()) {
    154     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
    155     Type *SrcIVTy =
    156       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
    157     // Ask IR to do the conversion now that #elts line up.
    158     C = ConstantExpr::getBitCast(C, SrcIVTy);
    159     // If IR wasn't able to fold it, bail out.
    160     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
    161         !isa<ConstantDataVector>(C))
    162       return C;
    163   }
    164 
    165   // Now we know that the input and output vectors are both integer vectors
    166   // of the same size, and that their #elements is not the same.  Do the
    167   // conversion here, which depends on whether the input or output has
    168   // more elements.
    169   bool isLittleEndian = DL.isLittleEndian();
    170 
    171   SmallVector<Constant*, 32> Result;
    172   if (NumDstElt < NumSrcElt) {
    173     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
    174     Constant *Zero = Constant::getNullValue(DstEltTy);
    175     unsigned Ratio = NumSrcElt/NumDstElt;
    176     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
    177     unsigned SrcElt = 0;
    178     for (unsigned i = 0; i != NumDstElt; ++i) {
    179       // Build each element of the result.
    180       Constant *Elt = Zero;
    181       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
    182       for (unsigned j = 0; j != Ratio; ++j) {
    183         Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
    184         if (!Src)  // Reject constantexpr elements.
    185           return ConstantExpr::getBitCast(C, DestTy);
    186 
    187         // Zero extend the element to the right size.
    188         Src = ConstantExpr::getZExt(Src, Elt->getType());
    189 
    190         // Shift it to the right place, depending on endianness.
    191         Src = ConstantExpr::getShl(Src,
    192                                    ConstantInt::get(Src->getType(), ShiftAmt));
    193         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
    194 
    195         // Mix it in.
    196         Elt = ConstantExpr::getOr(Elt, Src);
    197       }
    198       Result.push_back(Elt);
    199     }
    200     return ConstantVector::get(Result);
    201   }
    202 
    203   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    204   unsigned Ratio = NumDstElt/NumSrcElt;
    205   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
    206 
    207   // Loop over each source value, expanding into multiple results.
    208   for (unsigned i = 0; i != NumSrcElt; ++i) {
    209     auto *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
    210     if (!Src)  // Reject constantexpr elements.
    211       return ConstantExpr::getBitCast(C, DestTy);
    212 
    213     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
    214     for (unsigned j = 0; j != Ratio; ++j) {
    215       // Shift the piece of the value into the right place, depending on
    216       // endianness.
    217       Constant *Elt = ConstantExpr::getLShr(Src,
    218                                   ConstantInt::get(Src->getType(), ShiftAmt));
    219       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
    220 
    221       // Truncate the element to an integer with the same pointer size and
    222       // convert the element back to a pointer using a inttoptr.
    223       if (DstEltTy->isPointerTy()) {
    224         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
    225         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
    226         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
    227         continue;
    228       }
    229 
    230       // Truncate and remember this piece.
    231       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
    232     }
    233   }
    234 
    235   return ConstantVector::get(Result);
    236 }
    237 
    238 } // end anonymous namespace
    239 
    240 /// If this constant is a constant offset from a global, return the global and
    241 /// the constant. Because of constantexprs, this function is recursive.
    242 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
    243                                       APInt &Offset, const DataLayout &DL) {
    244   // Trivial case, constant is the global.
    245   if ((GV = dyn_cast<GlobalValue>(C))) {
    246     unsigned BitWidth = DL.getPointerTypeSizeInBits(GV->getType());
    247     Offset = APInt(BitWidth, 0);
    248     return true;
    249   }
    250 
    251   // Otherwise, if this isn't a constant expr, bail out.
    252   auto *CE = dyn_cast<ConstantExpr>(C);
    253   if (!CE) return false;
    254 
    255   // Look through ptr->int and ptr->ptr casts.
    256   if (CE->getOpcode() == Instruction::PtrToInt ||
    257       CE->getOpcode() == Instruction::BitCast)
    258     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
    259 
    260   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
    261   auto *GEP = dyn_cast<GEPOperator>(CE);
    262   if (!GEP)
    263     return false;
    264 
    265   unsigned BitWidth = DL.getPointerTypeSizeInBits(GEP->getType());
    266   APInt TmpOffset(BitWidth, 0);
    267 
    268   // If the base isn't a global+constant, we aren't either.
    269   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
    270     return false;
    271 
    272   // Otherwise, add any offset that our operands provide.
    273   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
    274     return false;
    275 
    276   Offset = TmpOffset;
    277   return true;
    278 }
    279 
    280 namespace {
    281 
    282 /// Recursive helper to read bits out of global. C is the constant being copied
    283 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
    284 /// results into and BytesLeft is the number of bytes left in
    285 /// the CurPtr buffer. DL is the DataLayout.
    286 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
    287                         unsigned BytesLeft, const DataLayout &DL) {
    288   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
    289          "Out of range access");
    290 
    291   // If this element is zero or undefined, we can just return since *CurPtr is
    292   // zero initialized.
    293   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
    294     return true;
    295 
    296   if (auto *CI = dyn_cast<ConstantInt>(C)) {
    297     if (CI->getBitWidth() > 64 ||
    298         (CI->getBitWidth() & 7) != 0)
    299       return false;
    300 
    301     uint64_t Val = CI->getZExtValue();
    302     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
    303 
    304     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
    305       int n = ByteOffset;
    306       if (!DL.isLittleEndian())
    307         n = IntBytes - n - 1;
    308       CurPtr[i] = (unsigned char)(Val >> (n * 8));
    309       ++ByteOffset;
    310     }
    311     return true;
    312   }
    313 
    314   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
    315     if (CFP->getType()->isDoubleTy()) {
    316       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
    317       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
    318     }
    319     if (CFP->getType()->isFloatTy()){
    320       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
    321       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
    322     }
    323     if (CFP->getType()->isHalfTy()){
    324       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
    325       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
    326     }
    327     return false;
    328   }
    329 
    330   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
    331     const StructLayout *SL = DL.getStructLayout(CS->getType());
    332     unsigned Index = SL->getElementContainingOffset(ByteOffset);
    333     uint64_t CurEltOffset = SL->getElementOffset(Index);
    334     ByteOffset -= CurEltOffset;
    335 
    336     while (1) {
    337       // If the element access is to the element itself and not to tail padding,
    338       // read the bytes from the element.
    339       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
    340 
    341       if (ByteOffset < EltSize &&
    342           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
    343                               BytesLeft, DL))
    344         return false;
    345 
    346       ++Index;
    347 
    348       // Check to see if we read from the last struct element, if so we're done.
    349       if (Index == CS->getType()->getNumElements())
    350         return true;
    351 
    352       // If we read all of the bytes we needed from this element we're done.
    353       uint64_t NextEltOffset = SL->getElementOffset(Index);
    354 
    355       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
    356         return true;
    357 
    358       // Move to the next element of the struct.
    359       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
    360       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
    361       ByteOffset = 0;
    362       CurEltOffset = NextEltOffset;
    363     }
    364     // not reached.
    365   }
    366 
    367   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
    368       isa<ConstantDataSequential>(C)) {
    369     Type *EltTy = C->getType()->getSequentialElementType();
    370     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
    371     uint64_t Index = ByteOffset / EltSize;
    372     uint64_t Offset = ByteOffset - Index * EltSize;
    373     uint64_t NumElts;
    374     if (auto *AT = dyn_cast<ArrayType>(C->getType()))
    375       NumElts = AT->getNumElements();
    376     else
    377       NumElts = C->getType()->getVectorNumElements();
    378 
    379     for (; Index != NumElts; ++Index) {
    380       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
    381                               BytesLeft, DL))
    382         return false;
    383 
    384       uint64_t BytesWritten = EltSize - Offset;
    385       assert(BytesWritten <= EltSize && "Not indexing into this element?");
    386       if (BytesWritten >= BytesLeft)
    387         return true;
    388 
    389       Offset = 0;
    390       BytesLeft -= BytesWritten;
    391       CurPtr += BytesWritten;
    392     }
    393     return true;
    394   }
    395 
    396   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
    397     if (CE->getOpcode() == Instruction::IntToPtr &&
    398         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
    399       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
    400                                 BytesLeft, DL);
    401     }
    402   }
    403 
    404   // Otherwise, unknown initializer type.
    405   return false;
    406 }
    407 
    408 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
    409                                           const DataLayout &DL) {
    410   auto *PTy = cast<PointerType>(C->getType());
    411   auto *IntType = dyn_cast<IntegerType>(LoadTy);
    412 
    413   // If this isn't an integer load we can't fold it directly.
    414   if (!IntType) {
    415     unsigned AS = PTy->getAddressSpace();
    416 
    417     // If this is a float/double load, we can try folding it as an int32/64 load
    418     // and then bitcast the result.  This can be useful for union cases.  Note
    419     // that address spaces don't matter here since we're not going to result in
    420     // an actual new load.
    421     Type *MapTy;
    422     if (LoadTy->isHalfTy())
    423       MapTy = Type::getInt16Ty(C->getContext());
    424     else if (LoadTy->isFloatTy())
    425       MapTy = Type::getInt32Ty(C->getContext());
    426     else if (LoadTy->isDoubleTy())
    427       MapTy = Type::getInt64Ty(C->getContext());
    428     else if (LoadTy->isVectorTy()) {
    429       MapTy = PointerType::getIntNTy(C->getContext(),
    430                                      DL.getTypeAllocSizeInBits(LoadTy));
    431     } else
    432       return nullptr;
    433 
    434     C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
    435     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL))
    436       return FoldBitCast(Res, LoadTy, DL);
    437     return nullptr;
    438   }
    439 
    440   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
    441   if (BytesLoaded > 32 || BytesLoaded == 0)
    442     return nullptr;
    443 
    444   GlobalValue *GVal;
    445   APInt OffsetAI;
    446   if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
    447     return nullptr;
    448 
    449   auto *GV = dyn_cast<GlobalVariable>(GVal);
    450   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
    451       !GV->getInitializer()->getType()->isSized())
    452     return nullptr;
    453 
    454   int64_t Offset = OffsetAI.getSExtValue();
    455   int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType());
    456 
    457   // If we're not accessing anything in this constant, the result is undefined.
    458   if (Offset + BytesLoaded <= 0)
    459     return UndefValue::get(IntType);
    460 
    461   // If we're not accessing anything in this constant, the result is undefined.
    462   if (Offset >= InitializerSize)
    463     return UndefValue::get(IntType);
    464 
    465   unsigned char RawBytes[32] = {0};
    466   unsigned char *CurPtr = RawBytes;
    467   unsigned BytesLeft = BytesLoaded;
    468 
    469   // If we're loading off the beginning of the global, some bytes may be valid.
    470   if (Offset < 0) {
    471     CurPtr += -Offset;
    472     BytesLeft += Offset;
    473     Offset = 0;
    474   }
    475 
    476   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
    477     return nullptr;
    478 
    479   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
    480   if (DL.isLittleEndian()) {
    481     ResultVal = RawBytes[BytesLoaded - 1];
    482     for (unsigned i = 1; i != BytesLoaded; ++i) {
    483       ResultVal <<= 8;
    484       ResultVal |= RawBytes[BytesLoaded - 1 - i];
    485     }
    486   } else {
    487     ResultVal = RawBytes[0];
    488     for (unsigned i = 1; i != BytesLoaded; ++i) {
    489       ResultVal <<= 8;
    490       ResultVal |= RawBytes[i];
    491     }
    492   }
    493 
    494   return ConstantInt::get(IntType->getContext(), ResultVal);
    495 }
    496 
    497 Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE, Type *DestTy,
    498                                          const DataLayout &DL) {
    499   auto *SrcPtr = CE->getOperand(0);
    500   auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
    501   if (!SrcPtrTy)
    502     return nullptr;
    503   Type *SrcTy = SrcPtrTy->getPointerElementType();
    504 
    505   Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
    506   if (!C)
    507     return nullptr;
    508 
    509   do {
    510     Type *SrcTy = C->getType();
    511 
    512     // If the type sizes are the same and a cast is legal, just directly
    513     // cast the constant.
    514     if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
    515       Instruction::CastOps Cast = Instruction::BitCast;
    516       // If we are going from a pointer to int or vice versa, we spell the cast
    517       // differently.
    518       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
    519         Cast = Instruction::IntToPtr;
    520       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
    521         Cast = Instruction::PtrToInt;
    522 
    523       if (CastInst::castIsValid(Cast, C, DestTy))
    524         return ConstantExpr::getCast(Cast, C, DestTy);
    525     }
    526 
    527     // If this isn't an aggregate type, there is nothing we can do to drill down
    528     // and find a bitcastable constant.
    529     if (!SrcTy->isAggregateType())
    530       return nullptr;
    531 
    532     // We're simulating a load through a pointer that was bitcast to point to
    533     // a different type, so we can try to walk down through the initial
    534     // elements of an aggregate to see if some part of th e aggregate is
    535     // castable to implement the "load" semantic model.
    536     C = C->getAggregateElement(0u);
    537   } while (C);
    538 
    539   return nullptr;
    540 }
    541 
    542 } // end anonymous namespace
    543 
    544 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
    545                                              const DataLayout &DL) {
    546   // First, try the easy cases:
    547   if (auto *GV = dyn_cast<GlobalVariable>(C))
    548     if (GV->isConstant() && GV->hasDefinitiveInitializer())
    549       return GV->getInitializer();
    550 
    551   if (auto *GA = dyn_cast<GlobalAlias>(C))
    552     if (GA->getAliasee() && !GA->isInterposable())
    553       return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
    554 
    555   // If the loaded value isn't a constant expr, we can't handle it.
    556   auto *CE = dyn_cast<ConstantExpr>(C);
    557   if (!CE)
    558     return nullptr;
    559 
    560   if (CE->getOpcode() == Instruction::GetElementPtr) {
    561     if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
    562       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
    563         if (Constant *V =
    564              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
    565           return V;
    566       }
    567     }
    568   }
    569 
    570   if (CE->getOpcode() == Instruction::BitCast)
    571     if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, Ty, DL))
    572       return LoadedC;
    573 
    574   // Instead of loading constant c string, use corresponding integer value
    575   // directly if string length is small enough.
    576   StringRef Str;
    577   if (getConstantStringInfo(CE, Str) && !Str.empty()) {
    578     size_t StrLen = Str.size();
    579     unsigned NumBits = Ty->getPrimitiveSizeInBits();
    580     // Replace load with immediate integer if the result is an integer or fp
    581     // value.
    582     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
    583         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
    584       APInt StrVal(NumBits, 0);
    585       APInt SingleChar(NumBits, 0);
    586       if (DL.isLittleEndian()) {
    587         for (unsigned char C : reverse(Str.bytes())) {
    588           SingleChar = static_cast<uint64_t>(C);
    589           StrVal = (StrVal << 8) | SingleChar;
    590         }
    591       } else {
    592         for (unsigned char C : Str.bytes()) {
    593           SingleChar = static_cast<uint64_t>(C);
    594           StrVal = (StrVal << 8) | SingleChar;
    595         }
    596         // Append NULL at the end.
    597         SingleChar = 0;
    598         StrVal = (StrVal << 8) | SingleChar;
    599       }
    600 
    601       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
    602       if (Ty->isFloatingPointTy())
    603         Res = ConstantExpr::getBitCast(Res, Ty);
    604       return Res;
    605     }
    606   }
    607 
    608   // If this load comes from anywhere in a constant global, and if the global
    609   // is all undef or zero, we know what it loads.
    610   if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
    611     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
    612       if (GV->getInitializer()->isNullValue())
    613         return Constant::getNullValue(Ty);
    614       if (isa<UndefValue>(GV->getInitializer()))
    615         return UndefValue::get(Ty);
    616     }
    617   }
    618 
    619   // Try hard to fold loads from bitcasted strange and non-type-safe things.
    620   return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
    621 }
    622 
    623 namespace {
    624 
    625 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
    626   if (LI->isVolatile()) return nullptr;
    627 
    628   if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
    629     return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);
    630 
    631   return nullptr;
    632 }
    633 
    634 /// One of Op0/Op1 is a constant expression.
    635 /// Attempt to symbolically evaluate the result of a binary operator merging
    636 /// these together.  If target data info is available, it is provided as DL,
    637 /// otherwise DL is null.
    638 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
    639                                     const DataLayout &DL) {
    640   // SROA
    641 
    642   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
    643   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
    644   // bits.
    645 
    646   if (Opc == Instruction::And) {
    647     unsigned BitWidth = DL.getTypeSizeInBits(Op0->getType()->getScalarType());
    648     APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
    649     APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
    650     computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
    651     computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
    652     if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
    653       // All the bits of Op0 that the 'and' could be masking are already zero.
    654       return Op0;
    655     }
    656     if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
    657       // All the bits of Op1 that the 'and' could be masking are already zero.
    658       return Op1;
    659     }
    660 
    661     APInt KnownZero = KnownZero0 | KnownZero1;
    662     APInt KnownOne = KnownOne0 & KnownOne1;
    663     if ((KnownZero | KnownOne).isAllOnesValue()) {
    664       return ConstantInt::get(Op0->getType(), KnownOne);
    665     }
    666   }
    667 
    668   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
    669   // constant.  This happens frequently when iterating over a global array.
    670   if (Opc == Instruction::Sub) {
    671     GlobalValue *GV1, *GV2;
    672     APInt Offs1, Offs2;
    673 
    674     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
    675       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
    676         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
    677 
    678         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
    679         // PtrToInt may change the bitwidth so we have convert to the right size
    680         // first.
    681         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
    682                                                 Offs2.zextOrTrunc(OpSize));
    683       }
    684   }
    685 
    686   return nullptr;
    687 }
    688 
    689 /// If array indices are not pointer-sized integers, explicitly cast them so
    690 /// that they aren't implicitly casted by the getelementptr.
    691 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
    692                          Type *ResultTy, const DataLayout &DL,
    693                          const TargetLibraryInfo *TLI) {
    694   Type *IntPtrTy = DL.getIntPtrType(ResultTy);
    695 
    696   bool Any = false;
    697   SmallVector<Constant*, 32> NewIdxs;
    698   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
    699     if ((i == 1 ||
    700          !isa<StructType>(GetElementPtrInst::getIndexedType(SrcElemTy,
    701              Ops.slice(1, i - 1)))) &&
    702         Ops[i]->getType() != IntPtrTy) {
    703       Any = true;
    704       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
    705                                                                       true,
    706                                                                       IntPtrTy,
    707                                                                       true),
    708                                               Ops[i], IntPtrTy));
    709     } else
    710       NewIdxs.push_back(Ops[i]);
    711   }
    712 
    713   if (!Any)
    714     return nullptr;
    715 
    716   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs);
    717   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
    718     if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
    719       C = Folded;
    720   }
    721 
    722   return C;
    723 }
    724 
    725 /// Strip the pointer casts, but preserve the address space information.
    726 Constant* StripPtrCastKeepAS(Constant* Ptr, Type *&ElemTy) {
    727   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
    728   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
    729   Ptr = Ptr->stripPointerCasts();
    730   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
    731 
    732   ElemTy = NewPtrTy->getPointerElementType();
    733 
    734   // Preserve the address space number of the pointer.
    735   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
    736     NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
    737     Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
    738   }
    739   return Ptr;
    740 }
    741 
    742 /// If we can symbolically evaluate the GEP constant expression, do so.
    743 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
    744                                   ArrayRef<Constant *> Ops,
    745                                   const DataLayout &DL,
    746                                   const TargetLibraryInfo *TLI) {
    747   Type *SrcElemTy = GEP->getSourceElementType();
    748   Type *ResElemTy = GEP->getResultElementType();
    749   Type *ResTy = GEP->getType();
    750   if (!SrcElemTy->isSized())
    751     return nullptr;
    752 
    753   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, DL, TLI))
    754     return C;
    755 
    756   Constant *Ptr = Ops[0];
    757   if (!Ptr->getType()->isPointerTy())
    758     return nullptr;
    759 
    760   Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
    761 
    762   // If this is a constant expr gep that is effectively computing an
    763   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
    764   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
    765     if (!isa<ConstantInt>(Ops[i])) {
    766 
    767       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
    768       // "inttoptr (sub (ptrtoint Ptr), V)"
    769       if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
    770         auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
    771         assert((!CE || CE->getType() == IntPtrTy) &&
    772                "CastGEPIndices didn't canonicalize index types!");
    773         if (CE && CE->getOpcode() == Instruction::Sub &&
    774             CE->getOperand(0)->isNullValue()) {
    775           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
    776           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
    777           Res = ConstantExpr::getIntToPtr(Res, ResTy);
    778           if (auto *ResCE = dyn_cast<ConstantExpr>(Res))
    779             Res = ConstantFoldConstantExpression(ResCE, DL, TLI);
    780           return Res;
    781         }
    782       }
    783       return nullptr;
    784     }
    785 
    786   unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
    787   APInt Offset =
    788       APInt(BitWidth,
    789             DL.getIndexedOffsetInType(
    790                 SrcElemTy,
    791                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
    792   Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
    793 
    794   // If this is a GEP of a GEP, fold it all into a single GEP.
    795   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
    796     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
    797 
    798     // Do not try the incorporate the sub-GEP if some index is not a number.
    799     bool AllConstantInt = true;
    800     for (Value *NestedOp : NestedOps)
    801       if (!isa<ConstantInt>(NestedOp)) {
    802         AllConstantInt = false;
    803         break;
    804       }
    805     if (!AllConstantInt)
    806       break;
    807 
    808     Ptr = cast<Constant>(GEP->getOperand(0));
    809     SrcElemTy = GEP->getSourceElementType();
    810     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
    811     Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
    812   }
    813 
    814   // If the base value for this address is a literal integer value, fold the
    815   // getelementptr to the resulting integer value casted to the pointer type.
    816   APInt BasePtr(BitWidth, 0);
    817   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
    818     if (CE->getOpcode() == Instruction::IntToPtr) {
    819       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
    820         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
    821     }
    822   }
    823 
    824   if (Ptr->isNullValue() || BasePtr != 0) {
    825     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
    826     return ConstantExpr::getIntToPtr(C, ResTy);
    827   }
    828 
    829   // Otherwise form a regular getelementptr. Recompute the indices so that
    830   // we eliminate over-indexing of the notional static type array bounds.
    831   // This makes it easy to determine if the getelementptr is "inbounds".
    832   // Also, this helps GlobalOpt do SROA on GlobalVariables.
    833   Type *Ty = Ptr->getType();
    834   assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
    835   SmallVector<Constant *, 32> NewIdxs;
    836 
    837   do {
    838     if (!Ty->isStructTy()) {
    839       if (Ty->isPointerTy()) {
    840         // The only pointer indexing we'll do is on the first index of the GEP.
    841         if (!NewIdxs.empty())
    842           break;
    843 
    844         Ty = SrcElemTy;
    845 
    846         // Only handle pointers to sized types, not pointers to functions.
    847         if (!Ty->isSized())
    848           return nullptr;
    849       } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) {
    850         Ty = ATy->getElementType();
    851       } else {
    852         // We've reached some non-indexable type.
    853         break;
    854       }
    855 
    856       // Determine which element of the array the offset points into.
    857       APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
    858       if (ElemSize == 0) {
    859         // The element size is 0. This may be [0 x Ty]*, so just use a zero
    860         // index for this level and proceed to the next level to see if it can
    861         // accommodate the offset.
    862         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
    863       } else {
    864         // The element size is non-zero divide the offset by the element
    865         // size (rounding down), to compute the index at this level.
    866         bool Overflow;
    867         APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
    868         if (Overflow)
    869           break;
    870         Offset -= NewIdx * ElemSize;
    871         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
    872       }
    873     } else {
    874       auto *STy = cast<StructType>(Ty);
    875       // If we end up with an offset that isn't valid for this struct type, we
    876       // can't re-form this GEP in a regular form, so bail out. The pointer
    877       // operand likely went through casts that are necessary to make the GEP
    878       // sensible.
    879       const StructLayout &SL = *DL.getStructLayout(STy);
    880       if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
    881         break;
    882 
    883       // Determine which field of the struct the offset points into. The
    884       // getZExtValue is fine as we've already ensured that the offset is
    885       // within the range representable by the StructLayout API.
    886       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
    887       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
    888                                          ElIdx));
    889       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
    890       Ty = STy->getTypeAtIndex(ElIdx);
    891     }
    892   } while (Ty != ResElemTy);
    893 
    894   // If we haven't used up the entire offset by descending the static
    895   // type, then the offset is pointing into the middle of an indivisible
    896   // member, so we can't simplify it.
    897   if (Offset != 0)
    898     return nullptr;
    899 
    900   // Create a GEP.
    901   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs);
    902   assert(C->getType()->getPointerElementType() == Ty &&
    903          "Computed GetElementPtr has unexpected type!");
    904 
    905   // If we ended up indexing a member with a type that doesn't match
    906   // the type of what the original indices indexed, add a cast.
    907   if (Ty != ResElemTy)
    908     C = FoldBitCast(C, ResTy, DL);
    909 
    910   return C;
    911 }
    912 
    913 /// Attempt to constant fold an instruction with the
    914 /// specified opcode and operands.  If successful, the constant result is
    915 /// returned, if not, null is returned.  Note that this function can fail when
    916 /// attempting to fold instructions like loads and stores, which have no
    917 /// constant expression form.
    918 ///
    919 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
    920 /// information, due to only being passed an opcode and operands. Constant
    921 /// folding using this function strips this information.
    922 ///
    923 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, Type *DestTy,
    924                                        unsigned Opcode,
    925                                        ArrayRef<Constant *> Ops,
    926                                        const DataLayout &DL,
    927                                        const TargetLibraryInfo *TLI) {
    928   // Handle easy binops first.
    929   if (Instruction::isBinaryOp(Opcode))
    930     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
    931 
    932   if (Instruction::isCast(Opcode))
    933     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
    934 
    935   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
    936     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
    937       return C;
    938 
    939     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(),
    940                                           Ops[0], Ops.slice(1));
    941   }
    942 
    943   switch (Opcode) {
    944   default: return nullptr;
    945   case Instruction::ICmp:
    946   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
    947   case Instruction::Call:
    948     if (auto *F = dyn_cast<Function>(Ops.back()))
    949       if (canConstantFoldCallTo(F))
    950         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
    951     return nullptr;
    952   case Instruction::Select:
    953     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
    954   case Instruction::ExtractElement:
    955     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
    956   case Instruction::InsertElement:
    957     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
    958   case Instruction::ShuffleVector:
    959     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
    960   }
    961 }
    962 
    963 } // end anonymous namespace
    964 
    965 //===----------------------------------------------------------------------===//
    966 // Constant Folding public APIs
    967 //===----------------------------------------------------------------------===//
    968 
    969 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
    970                                         const TargetLibraryInfo *TLI) {
    971   // Handle PHI nodes quickly here...
    972   if (auto *PN = dyn_cast<PHINode>(I)) {
    973     Constant *CommonValue = nullptr;
    974 
    975     for (Value *Incoming : PN->incoming_values()) {
    976       // If the incoming value is undef then skip it.  Note that while we could
    977       // skip the value if it is equal to the phi node itself we choose not to
    978       // because that would break the rule that constant folding only applies if
    979       // all operands are constants.
    980       if (isa<UndefValue>(Incoming))
    981         continue;
    982       // If the incoming value is not a constant, then give up.
    983       auto *C = dyn_cast<Constant>(Incoming);
    984       if (!C)
    985         return nullptr;
    986       // Fold the PHI's operands.
    987       if (auto *NewC = dyn_cast<ConstantExpr>(C))
    988         C = ConstantFoldConstantExpression(NewC, DL, TLI);
    989       // If the incoming value is a different constant to
    990       // the one we saw previously, then give up.
    991       if (CommonValue && C != CommonValue)
    992         return nullptr;
    993       CommonValue = C;
    994     }
    995 
    996 
    997     // If we reach here, all incoming values are the same constant or undef.
    998     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
    999   }
   1000 
   1001   // Scan the operand list, checking to see if they are all constants, if so,
   1002   // hand off to ConstantFoldInstOperandsImpl.
   1003   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
   1004     return nullptr;
   1005 
   1006   SmallVector<Constant *, 8> Ops;
   1007   for (const Use &OpU : I->operands()) {
   1008     auto *Op = cast<Constant>(&OpU);
   1009     // Fold the Instruction's operands.
   1010     if (auto *NewCE = dyn_cast<ConstantExpr>(Op))
   1011       Op = ConstantFoldConstantExpression(NewCE, DL, TLI);
   1012 
   1013     Ops.push_back(Op);
   1014   }
   1015 
   1016   if (const auto *CI = dyn_cast<CmpInst>(I))
   1017     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
   1018                                            DL, TLI);
   1019 
   1020   if (const auto *LI = dyn_cast<LoadInst>(I))
   1021     return ConstantFoldLoadInst(LI, DL);
   1022 
   1023   if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
   1024     return ConstantExpr::getInsertValue(
   1025                                 cast<Constant>(IVI->getAggregateOperand()),
   1026                                 cast<Constant>(IVI->getInsertedValueOperand()),
   1027                                 IVI->getIndices());
   1028   }
   1029 
   1030   if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
   1031     return ConstantExpr::getExtractValue(
   1032                                     cast<Constant>(EVI->getAggregateOperand()),
   1033                                     EVI->getIndices());
   1034   }
   1035 
   1036   return ConstantFoldInstOperands(I, Ops, DL, TLI);
   1037 }
   1038 
   1039 namespace {
   1040 
   1041 Constant *
   1042 ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout &DL,
   1043                                    const TargetLibraryInfo *TLI,
   1044                                    SmallPtrSetImpl<ConstantExpr *> &FoldedOps) {
   1045   SmallVector<Constant *, 8> Ops;
   1046   for (const Use &NewU : CE->operands()) {
   1047     auto *NewC = cast<Constant>(&NewU);
   1048     // Recursively fold the ConstantExpr's operands. If we have already folded
   1049     // a ConstantExpr, we don't have to process it again.
   1050     if (auto *NewCE = dyn_cast<ConstantExpr>(NewC)) {
   1051       if (FoldedOps.insert(NewCE).second)
   1052         NewC = ConstantFoldConstantExpressionImpl(NewCE, DL, TLI, FoldedOps);
   1053     }
   1054     Ops.push_back(NewC);
   1055   }
   1056 
   1057   if (CE->isCompare())
   1058     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
   1059                                            DL, TLI);
   1060 
   1061   return ConstantFoldInstOperandsImpl(CE, CE->getType(), CE->getOpcode(), Ops,
   1062                                       DL, TLI);
   1063 }
   1064 
   1065 } // end anonymous namespace
   1066 
   1067 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
   1068                                                const DataLayout &DL,
   1069                                                const TargetLibraryInfo *TLI) {
   1070   SmallPtrSet<ConstantExpr *, 4> FoldedOps;
   1071   return ConstantFoldConstantExpressionImpl(CE, DL, TLI, FoldedOps);
   1072 }
   1073 
   1074 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
   1075                                          ArrayRef<Constant *> Ops,
   1076                                          const DataLayout &DL,
   1077                                          const TargetLibraryInfo *TLI) {
   1078   return ConstantFoldInstOperandsImpl(I, I->getType(), I->getOpcode(), Ops, DL,
   1079                                       TLI);
   1080 }
   1081 
   1082 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
   1083                                          ArrayRef<Constant *> Ops,
   1084                                          const DataLayout &DL,
   1085                                          const TargetLibraryInfo *TLI) {
   1086   assert(Opcode != Instruction::GetElementPtr && "Invalid for GEPs");
   1087   return ConstantFoldInstOperandsImpl(nullptr, DestTy, Opcode, Ops, DL, TLI);
   1088 }
   1089 
   1090 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
   1091                                                 Constant *Ops0, Constant *Ops1,
   1092                                                 const DataLayout &DL,
   1093                                                 const TargetLibraryInfo *TLI) {
   1094   // fold: icmp (inttoptr x), null         -> icmp x, 0
   1095   // fold: icmp (ptrtoint x), 0            -> icmp x, null
   1096   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
   1097   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
   1098   //
   1099   // FIXME: The following comment is out of data and the DataLayout is here now.
   1100   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
   1101   // around to know if bit truncation is happening.
   1102   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
   1103     if (Ops1->isNullValue()) {
   1104       if (CE0->getOpcode() == Instruction::IntToPtr) {
   1105         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
   1106         // Convert the integer value to the right size to ensure we get the
   1107         // proper extension or truncation.
   1108         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
   1109                                                    IntPtrTy, false);
   1110         Constant *Null = Constant::getNullValue(C->getType());
   1111         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
   1112       }
   1113 
   1114       // Only do this transformation if the int is intptrty in size, otherwise
   1115       // there is a truncation or extension that we aren't modeling.
   1116       if (CE0->getOpcode() == Instruction::PtrToInt) {
   1117         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
   1118         if (CE0->getType() == IntPtrTy) {
   1119           Constant *C = CE0->getOperand(0);
   1120           Constant *Null = Constant::getNullValue(C->getType());
   1121           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
   1122         }
   1123       }
   1124     }
   1125 
   1126     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
   1127       if (CE0->getOpcode() == CE1->getOpcode()) {
   1128         if (CE0->getOpcode() == Instruction::IntToPtr) {
   1129           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
   1130 
   1131           // Convert the integer value to the right size to ensure we get the
   1132           // proper extension or truncation.
   1133           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
   1134                                                       IntPtrTy, false);
   1135           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
   1136                                                       IntPtrTy, false);
   1137           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
   1138         }
   1139 
   1140         // Only do this transformation if the int is intptrty in size, otherwise
   1141         // there is a truncation or extension that we aren't modeling.
   1142         if (CE0->getOpcode() == Instruction::PtrToInt) {
   1143           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
   1144           if (CE0->getType() == IntPtrTy &&
   1145               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
   1146             return ConstantFoldCompareInstOperands(
   1147                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
   1148           }
   1149         }
   1150       }
   1151     }
   1152 
   1153     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
   1154     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
   1155     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
   1156         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
   1157       Constant *LHS = ConstantFoldCompareInstOperands(
   1158           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
   1159       Constant *RHS = ConstantFoldCompareInstOperands(
   1160           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
   1161       unsigned OpC =
   1162         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
   1163       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
   1164     }
   1165   }
   1166 
   1167   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
   1168 }
   1169 
   1170 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
   1171                                              Constant *RHS,
   1172                                              const DataLayout &DL) {
   1173   assert(Instruction::isBinaryOp(Opcode));
   1174   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
   1175     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
   1176       return C;
   1177 
   1178   return ConstantExpr::get(Opcode, LHS, RHS);
   1179 }
   1180 
   1181 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
   1182                                         Type *DestTy, const DataLayout &DL) {
   1183   assert(Instruction::isCast(Opcode));
   1184   switch (Opcode) {
   1185   default:
   1186     llvm_unreachable("Missing case");
   1187   case Instruction::PtrToInt:
   1188     // If the input is a inttoptr, eliminate the pair.  This requires knowing
   1189     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
   1190     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
   1191       if (CE->getOpcode() == Instruction::IntToPtr) {
   1192         Constant *Input = CE->getOperand(0);
   1193         unsigned InWidth = Input->getType()->getScalarSizeInBits();
   1194         unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
   1195         if (PtrWidth < InWidth) {
   1196           Constant *Mask =
   1197             ConstantInt::get(CE->getContext(),
   1198                              APInt::getLowBitsSet(InWidth, PtrWidth));
   1199           Input = ConstantExpr::getAnd(Input, Mask);
   1200         }
   1201         // Do a zext or trunc to get to the dest size.
   1202         return ConstantExpr::getIntegerCast(Input, DestTy, false);
   1203       }
   1204     }
   1205     return ConstantExpr::getCast(Opcode, C, DestTy);
   1206   case Instruction::IntToPtr:
   1207     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
   1208     // the int size is >= the ptr size and the address spaces are the same.
   1209     // This requires knowing the width of a pointer, so it can't be done in
   1210     // ConstantExpr::getCast.
   1211     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
   1212       if (CE->getOpcode() == Instruction::PtrToInt) {
   1213         Constant *SrcPtr = CE->getOperand(0);
   1214         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
   1215         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
   1216 
   1217         if (MidIntSize >= SrcPtrSize) {
   1218           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
   1219           if (SrcAS == DestTy->getPointerAddressSpace())
   1220             return FoldBitCast(CE->getOperand(0), DestTy, DL);
   1221         }
   1222       }
   1223     }
   1224 
   1225     return ConstantExpr::getCast(Opcode, C, DestTy);
   1226   case Instruction::Trunc:
   1227   case Instruction::ZExt:
   1228   case Instruction::SExt:
   1229   case Instruction::FPTrunc:
   1230   case Instruction::FPExt:
   1231   case Instruction::UIToFP:
   1232   case Instruction::SIToFP:
   1233   case Instruction::FPToUI:
   1234   case Instruction::FPToSI:
   1235   case Instruction::AddrSpaceCast:
   1236       return ConstantExpr::getCast(Opcode, C, DestTy);
   1237   case Instruction::BitCast:
   1238     return FoldBitCast(C, DestTy, DL);
   1239   }
   1240 }
   1241 
   1242 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
   1243                                                        ConstantExpr *CE) {
   1244   if (!CE->getOperand(1)->isNullValue())
   1245     return nullptr;  // Do not allow stepping over the value!
   1246 
   1247   // Loop over all of the operands, tracking down which value we are
   1248   // addressing.
   1249   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
   1250     C = C->getAggregateElement(CE->getOperand(i));
   1251     if (!C)
   1252       return nullptr;
   1253   }
   1254   return C;
   1255 }
   1256 
   1257 Constant *
   1258 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
   1259                                         ArrayRef<Constant *> Indices) {
   1260   // Loop over all of the operands, tracking down which value we are
   1261   // addressing.
   1262   for (Constant *Index : Indices) {
   1263     C = C->getAggregateElement(Index);
   1264     if (!C)
   1265       return nullptr;
   1266   }
   1267   return C;
   1268 }
   1269 
   1270 //===----------------------------------------------------------------------===//
   1271 //  Constant Folding for Calls
   1272 //
   1273 
   1274 bool llvm::canConstantFoldCallTo(const Function *F) {
   1275   switch (F->getIntrinsicID()) {
   1276   case Intrinsic::fabs:
   1277   case Intrinsic::minnum:
   1278   case Intrinsic::maxnum:
   1279   case Intrinsic::log:
   1280   case Intrinsic::log2:
   1281   case Intrinsic::log10:
   1282   case Intrinsic::exp:
   1283   case Intrinsic::exp2:
   1284   case Intrinsic::floor:
   1285   case Intrinsic::ceil:
   1286   case Intrinsic::sqrt:
   1287   case Intrinsic::sin:
   1288   case Intrinsic::cos:
   1289   case Intrinsic::trunc:
   1290   case Intrinsic::rint:
   1291   case Intrinsic::nearbyint:
   1292   case Intrinsic::pow:
   1293   case Intrinsic::powi:
   1294   case Intrinsic::bswap:
   1295   case Intrinsic::ctpop:
   1296   case Intrinsic::ctlz:
   1297   case Intrinsic::cttz:
   1298   case Intrinsic::fma:
   1299   case Intrinsic::fmuladd:
   1300   case Intrinsic::copysign:
   1301   case Intrinsic::round:
   1302   case Intrinsic::masked_load:
   1303   case Intrinsic::sadd_with_overflow:
   1304   case Intrinsic::uadd_with_overflow:
   1305   case Intrinsic::ssub_with_overflow:
   1306   case Intrinsic::usub_with_overflow:
   1307   case Intrinsic::smul_with_overflow:
   1308   case Intrinsic::umul_with_overflow:
   1309   case Intrinsic::convert_from_fp16:
   1310   case Intrinsic::convert_to_fp16:
   1311   case Intrinsic::bitreverse:
   1312   case Intrinsic::x86_sse_cvtss2si:
   1313   case Intrinsic::x86_sse_cvtss2si64:
   1314   case Intrinsic::x86_sse_cvttss2si:
   1315   case Intrinsic::x86_sse_cvttss2si64:
   1316   case Intrinsic::x86_sse2_cvtsd2si:
   1317   case Intrinsic::x86_sse2_cvtsd2si64:
   1318   case Intrinsic::x86_sse2_cvttsd2si:
   1319   case Intrinsic::x86_sse2_cvttsd2si64:
   1320     return true;
   1321   default:
   1322     return false;
   1323   case 0: break;
   1324   }
   1325 
   1326   if (!F->hasName())
   1327     return false;
   1328   StringRef Name = F->getName();
   1329 
   1330   // In these cases, the check of the length is required.  We don't want to
   1331   // return true for a name like "cos\0blah" which strcmp would return equal to
   1332   // "cos", but has length 8.
   1333   switch (Name[0]) {
   1334   default:
   1335     return false;
   1336   case 'a':
   1337     return Name == "acos" || Name == "asin" || Name == "atan" ||
   1338            Name == "atan2" || Name == "acosf" || Name == "asinf" ||
   1339            Name == "atanf" || Name == "atan2f";
   1340   case 'c':
   1341     return Name == "ceil" || Name == "cos" || Name == "cosh" ||
   1342            Name == "ceilf" || Name == "cosf" || Name == "coshf";
   1343   case 'e':
   1344     return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f";
   1345   case 'f':
   1346     return Name == "fabs" || Name == "floor" || Name == "fmod" ||
   1347            Name == "fabsf" || Name == "floorf" || Name == "fmodf";
   1348   case 'l':
   1349     return Name == "log" || Name == "log10" || Name == "logf" ||
   1350            Name == "log10f";
   1351   case 'p':
   1352     return Name == "pow" || Name == "powf";
   1353   case 's':
   1354     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
   1355            Name == "sinf" || Name == "sinhf" || Name == "sqrtf";
   1356   case 't':
   1357     return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf";
   1358   }
   1359 }
   1360 
   1361 namespace {
   1362 
   1363 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
   1364   if (Ty->isHalfTy()) {
   1365     APFloat APF(V);
   1366     bool unused;
   1367     APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
   1368     return ConstantFP::get(Ty->getContext(), APF);
   1369   }
   1370   if (Ty->isFloatTy())
   1371     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   1372   if (Ty->isDoubleTy())
   1373     return ConstantFP::get(Ty->getContext(), APFloat(V));
   1374   llvm_unreachable("Can only constant fold half/float/double");
   1375 }
   1376 
   1377 /// Clear the floating-point exception state.
   1378 inline void llvm_fenv_clearexcept() {
   1379 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
   1380   feclearexcept(FE_ALL_EXCEPT);
   1381 #endif
   1382   errno = 0;
   1383 }
   1384 
   1385 /// Test if a floating-point exception was raised.
   1386 inline bool llvm_fenv_testexcept() {
   1387   int errno_val = errno;
   1388   if (errno_val == ERANGE || errno_val == EDOM)
   1389     return true;
   1390 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
   1391   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
   1392     return true;
   1393 #endif
   1394   return false;
   1395 }
   1396 
   1397 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
   1398   llvm_fenv_clearexcept();
   1399   V = NativeFP(V);
   1400   if (llvm_fenv_testexcept()) {
   1401     llvm_fenv_clearexcept();
   1402     return nullptr;
   1403   }
   1404 
   1405   return GetConstantFoldFPValue(V, Ty);
   1406 }
   1407 
   1408 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
   1409                                double W, Type *Ty) {
   1410   llvm_fenv_clearexcept();
   1411   V = NativeFP(V, W);
   1412   if (llvm_fenv_testexcept()) {
   1413     llvm_fenv_clearexcept();
   1414     return nullptr;
   1415   }
   1416 
   1417   return GetConstantFoldFPValue(V, Ty);
   1418 }
   1419 
   1420 /// Attempt to fold an SSE floating point to integer conversion of a constant
   1421 /// floating point. If roundTowardZero is false, the default IEEE rounding is
   1422 /// used (toward nearest, ties to even). This matches the behavior of the
   1423 /// non-truncating SSE instructions in the default rounding mode. The desired
   1424 /// integer type Ty is used to select how many bits are available for the
   1425 /// result. Returns null if the conversion cannot be performed, otherwise
   1426 /// returns the Constant value resulting from the conversion.
   1427 Constant *ConstantFoldConvertToInt(const APFloat &Val, bool roundTowardZero,
   1428                                    Type *Ty) {
   1429   // All of these conversion intrinsics form an integer of at most 64bits.
   1430   unsigned ResultWidth = Ty->getIntegerBitWidth();
   1431   assert(ResultWidth <= 64 &&
   1432          "Can only constant fold conversions to 64 and 32 bit ints");
   1433 
   1434   uint64_t UIntVal;
   1435   bool isExact = false;
   1436   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
   1437                                               : APFloat::rmNearestTiesToEven;
   1438   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
   1439                                                   /*isSigned=*/true, mode,
   1440                                                   &isExact);
   1441   if (status != APFloat::opOK && status != APFloat::opInexact)
   1442     return nullptr;
   1443   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
   1444 }
   1445 
   1446 double getValueAsDouble(ConstantFP *Op) {
   1447   Type *Ty = Op->getType();
   1448 
   1449   if (Ty->isFloatTy())
   1450     return Op->getValueAPF().convertToFloat();
   1451 
   1452   if (Ty->isDoubleTy())
   1453     return Op->getValueAPF().convertToDouble();
   1454 
   1455   bool unused;
   1456   APFloat APF = Op->getValueAPF();
   1457   APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
   1458   return APF.convertToDouble();
   1459 }
   1460 
   1461 Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, Type *Ty,
   1462                                  ArrayRef<Constant *> Operands,
   1463                                  const TargetLibraryInfo *TLI) {
   1464   if (Operands.size() == 1) {
   1465     if (isa<UndefValue>(Operands[0])) {
   1466       // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN
   1467       if (IntrinsicID == Intrinsic::cos)
   1468         return Constant::getNullValue(Ty);
   1469     }
   1470     if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
   1471       if (IntrinsicID == Intrinsic::convert_to_fp16) {
   1472         APFloat Val(Op->getValueAPF());
   1473 
   1474         bool lost = false;
   1475         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
   1476 
   1477         return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
   1478       }
   1479 
   1480       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
   1481         return nullptr;
   1482 
   1483       if (IntrinsicID == Intrinsic::round) {
   1484         APFloat V = Op->getValueAPF();
   1485         V.roundToIntegral(APFloat::rmNearestTiesToAway);
   1486         return ConstantFP::get(Ty->getContext(), V);
   1487       }
   1488 
   1489       if (IntrinsicID == Intrinsic::floor) {
   1490         APFloat V = Op->getValueAPF();
   1491         V.roundToIntegral(APFloat::rmTowardNegative);
   1492         return ConstantFP::get(Ty->getContext(), V);
   1493       }
   1494 
   1495       if (IntrinsicID == Intrinsic::ceil) {
   1496         APFloat V = Op->getValueAPF();
   1497         V.roundToIntegral(APFloat::rmTowardPositive);
   1498         return ConstantFP::get(Ty->getContext(), V);
   1499       }
   1500 
   1501       if (IntrinsicID == Intrinsic::trunc) {
   1502         APFloat V = Op->getValueAPF();
   1503         V.roundToIntegral(APFloat::rmTowardZero);
   1504         return ConstantFP::get(Ty->getContext(), V);
   1505       }
   1506 
   1507       if (IntrinsicID == Intrinsic::rint) {
   1508         APFloat V = Op->getValueAPF();
   1509         V.roundToIntegral(APFloat::rmNearestTiesToEven);
   1510         return ConstantFP::get(Ty->getContext(), V);
   1511       }
   1512 
   1513       if (IntrinsicID == Intrinsic::nearbyint) {
   1514         APFloat V = Op->getValueAPF();
   1515         V.roundToIntegral(APFloat::rmNearestTiesToEven);
   1516         return ConstantFP::get(Ty->getContext(), V);
   1517       }
   1518 
   1519       /// We only fold functions with finite arguments. Folding NaN and inf is
   1520       /// likely to be aborted with an exception anyway, and some host libms
   1521       /// have known errors raising exceptions.
   1522       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
   1523         return nullptr;
   1524 
   1525       /// Currently APFloat versions of these functions do not exist, so we use
   1526       /// the host native double versions.  Float versions are not called
   1527       /// directly but for all these it is true (float)(f((double)arg)) ==
   1528       /// f(arg).  Long double not supported yet.
   1529       double V = getValueAsDouble(Op);
   1530 
   1531       switch (IntrinsicID) {
   1532         default: break;
   1533         case Intrinsic::fabs:
   1534           return ConstantFoldFP(fabs, V, Ty);
   1535         case Intrinsic::log2:
   1536           return ConstantFoldFP(Log2, V, Ty);
   1537         case Intrinsic::log:
   1538           return ConstantFoldFP(log, V, Ty);
   1539         case Intrinsic::log10:
   1540           return ConstantFoldFP(log10, V, Ty);
   1541         case Intrinsic::exp:
   1542           return ConstantFoldFP(exp, V, Ty);
   1543         case Intrinsic::exp2:
   1544           return ConstantFoldFP(exp2, V, Ty);
   1545         case Intrinsic::sin:
   1546           return ConstantFoldFP(sin, V, Ty);
   1547         case Intrinsic::cos:
   1548           return ConstantFoldFP(cos, V, Ty);
   1549       }
   1550 
   1551       if (!TLI)
   1552         return nullptr;
   1553 
   1554       switch (Name[0]) {
   1555       case 'a':
   1556         if ((Name == "acos" && TLI->has(LibFunc::acos)) ||
   1557             (Name == "acosf" && TLI->has(LibFunc::acosf)))
   1558           return ConstantFoldFP(acos, V, Ty);
   1559         else if ((Name == "asin" && TLI->has(LibFunc::asin)) ||
   1560                  (Name == "asinf" && TLI->has(LibFunc::asinf)))
   1561           return ConstantFoldFP(asin, V, Ty);
   1562         else if ((Name == "atan" && TLI->has(LibFunc::atan)) ||
   1563                  (Name == "atanf" && TLI->has(LibFunc::atanf)))
   1564           return ConstantFoldFP(atan, V, Ty);
   1565         break;
   1566       case 'c':
   1567         if ((Name == "ceil" && TLI->has(LibFunc::ceil)) ||
   1568             (Name == "ceilf" && TLI->has(LibFunc::ceilf)))
   1569           return ConstantFoldFP(ceil, V, Ty);
   1570         else if ((Name == "cos" && TLI->has(LibFunc::cos)) ||
   1571                  (Name == "cosf" && TLI->has(LibFunc::cosf)))
   1572           return ConstantFoldFP(cos, V, Ty);
   1573         else if ((Name == "cosh" && TLI->has(LibFunc::cosh)) ||
   1574                  (Name == "coshf" && TLI->has(LibFunc::coshf)))
   1575           return ConstantFoldFP(cosh, V, Ty);
   1576         break;
   1577       case 'e':
   1578         if ((Name == "exp" && TLI->has(LibFunc::exp)) ||
   1579             (Name == "expf" && TLI->has(LibFunc::expf)))
   1580           return ConstantFoldFP(exp, V, Ty);
   1581         if ((Name == "exp2" && TLI->has(LibFunc::exp2)) ||
   1582             (Name == "exp2f" && TLI->has(LibFunc::exp2f)))
   1583           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
   1584           // C99 library.
   1585           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
   1586         break;
   1587       case 'f':
   1588         if ((Name == "fabs" && TLI->has(LibFunc::fabs)) ||
   1589             (Name == "fabsf" && TLI->has(LibFunc::fabsf)))
   1590           return ConstantFoldFP(fabs, V, Ty);
   1591         else if ((Name == "floor" && TLI->has(LibFunc::floor)) ||
   1592                  (Name == "floorf" && TLI->has(LibFunc::floorf)))
   1593           return ConstantFoldFP(floor, V, Ty);
   1594         break;
   1595       case 'l':
   1596         if ((Name == "log" && V > 0 && TLI->has(LibFunc::log)) ||
   1597             (Name == "logf" && V > 0 && TLI->has(LibFunc::logf)))
   1598           return ConstantFoldFP(log, V, Ty);
   1599         else if ((Name == "log10" && V > 0 && TLI->has(LibFunc::log10)) ||
   1600                  (Name == "log10f" && V > 0 && TLI->has(LibFunc::log10f)))
   1601           return ConstantFoldFP(log10, V, Ty);
   1602         else if (IntrinsicID == Intrinsic::sqrt &&
   1603                  (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
   1604           if (V >= -0.0)
   1605             return ConstantFoldFP(sqrt, V, Ty);
   1606           else {
   1607             // Unlike the sqrt definitions in C/C++, POSIX, and IEEE-754 - which
   1608             // all guarantee or favor returning NaN - the square root of a
   1609             // negative number is not defined for the LLVM sqrt intrinsic.
   1610             // This is because the intrinsic should only be emitted in place of
   1611             // libm's sqrt function when using "no-nans-fp-math".
   1612             return UndefValue::get(Ty);
   1613           }
   1614         }
   1615         break;
   1616       case 's':
   1617         if ((Name == "sin" && TLI->has(LibFunc::sin)) ||
   1618             (Name == "sinf" && TLI->has(LibFunc::sinf)))
   1619           return ConstantFoldFP(sin, V, Ty);
   1620         else if ((Name == "sinh" && TLI->has(LibFunc::sinh)) ||
   1621                  (Name == "sinhf" && TLI->has(LibFunc::sinhf)))
   1622           return ConstantFoldFP(sinh, V, Ty);
   1623         else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt)) ||
   1624                  (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf)))
   1625           return ConstantFoldFP(sqrt, V, Ty);
   1626         break;
   1627       case 't':
   1628         if ((Name == "tan" && TLI->has(LibFunc::tan)) ||
   1629             (Name == "tanf" && TLI->has(LibFunc::tanf)))
   1630           return ConstantFoldFP(tan, V, Ty);
   1631         else if ((Name == "tanh" && TLI->has(LibFunc::tanh)) ||
   1632                  (Name == "tanhf" && TLI->has(LibFunc::tanhf)))
   1633           return ConstantFoldFP(tanh, V, Ty);
   1634         break;
   1635       default:
   1636         break;
   1637       }
   1638       return nullptr;
   1639     }
   1640 
   1641     if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
   1642       switch (IntrinsicID) {
   1643       case Intrinsic::bswap:
   1644         return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
   1645       case Intrinsic::ctpop:
   1646         return ConstantInt::get(Ty, Op->getValue().countPopulation());
   1647       case Intrinsic::bitreverse:
   1648         return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
   1649       case Intrinsic::convert_from_fp16: {
   1650         APFloat Val(APFloat::IEEEhalf, Op->getValue());
   1651 
   1652         bool lost = false;
   1653         APFloat::opStatus status = Val.convert(
   1654             Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
   1655 
   1656         // Conversion is always precise.
   1657         (void)status;
   1658         assert(status == APFloat::opOK && !lost &&
   1659                "Precision lost during fp16 constfolding");
   1660 
   1661         return ConstantFP::get(Ty->getContext(), Val);
   1662       }
   1663       default:
   1664         return nullptr;
   1665       }
   1666     }
   1667 
   1668     // Support ConstantVector in case we have an Undef in the top.
   1669     if (isa<ConstantVector>(Operands[0]) ||
   1670         isa<ConstantDataVector>(Operands[0])) {
   1671       auto *Op = cast<Constant>(Operands[0]);
   1672       switch (IntrinsicID) {
   1673       default: break;
   1674       case Intrinsic::x86_sse_cvtss2si:
   1675       case Intrinsic::x86_sse_cvtss2si64:
   1676       case Intrinsic::x86_sse2_cvtsd2si:
   1677       case Intrinsic::x86_sse2_cvtsd2si64:
   1678         if (ConstantFP *FPOp =
   1679               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
   1680           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
   1681                                           /*roundTowardZero=*/false, Ty);
   1682       case Intrinsic::x86_sse_cvttss2si:
   1683       case Intrinsic::x86_sse_cvttss2si64:
   1684       case Intrinsic::x86_sse2_cvttsd2si:
   1685       case Intrinsic::x86_sse2_cvttsd2si64:
   1686         if (ConstantFP *FPOp =
   1687               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
   1688           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
   1689                                           /*roundTowardZero=*/true, Ty);
   1690       }
   1691     }
   1692 
   1693     if (isa<UndefValue>(Operands[0])) {
   1694       if (IntrinsicID == Intrinsic::bswap)
   1695         return Operands[0];
   1696       return nullptr;
   1697     }
   1698 
   1699     return nullptr;
   1700   }
   1701 
   1702   if (Operands.size() == 2) {
   1703     if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
   1704       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
   1705         return nullptr;
   1706       double Op1V = getValueAsDouble(Op1);
   1707 
   1708       if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
   1709         if (Op2->getType() != Op1->getType())
   1710           return nullptr;
   1711 
   1712         double Op2V = getValueAsDouble(Op2);
   1713         if (IntrinsicID == Intrinsic::pow) {
   1714           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1715         }
   1716         if (IntrinsicID == Intrinsic::copysign) {
   1717           APFloat V1 = Op1->getValueAPF();
   1718           const APFloat &V2 = Op2->getValueAPF();
   1719           V1.copySign(V2);
   1720           return ConstantFP::get(Ty->getContext(), V1);
   1721         }
   1722 
   1723         if (IntrinsicID == Intrinsic::minnum) {
   1724           const APFloat &C1 = Op1->getValueAPF();
   1725           const APFloat &C2 = Op2->getValueAPF();
   1726           return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
   1727         }
   1728 
   1729         if (IntrinsicID == Intrinsic::maxnum) {
   1730           const APFloat &C1 = Op1->getValueAPF();
   1731           const APFloat &C2 = Op2->getValueAPF();
   1732           return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
   1733         }
   1734 
   1735         if (!TLI)
   1736           return nullptr;
   1737         if ((Name == "pow" && TLI->has(LibFunc::pow)) ||
   1738             (Name == "powf" && TLI->has(LibFunc::powf)))
   1739           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1740         if ((Name == "fmod" && TLI->has(LibFunc::fmod)) ||
   1741             (Name == "fmodf" && TLI->has(LibFunc::fmodf)))
   1742           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
   1743         if ((Name == "atan2" && TLI->has(LibFunc::atan2)) ||
   1744             (Name == "atan2f" && TLI->has(LibFunc::atan2f)))
   1745           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
   1746       } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
   1747         if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
   1748           return ConstantFP::get(Ty->getContext(),
   1749                                  APFloat((float)std::pow((float)Op1V,
   1750                                                  (int)Op2C->getZExtValue())));
   1751         if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
   1752           return ConstantFP::get(Ty->getContext(),
   1753                                  APFloat((float)std::pow((float)Op1V,
   1754                                                  (int)Op2C->getZExtValue())));
   1755         if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
   1756           return ConstantFP::get(Ty->getContext(),
   1757                                  APFloat((double)std::pow((double)Op1V,
   1758                                                    (int)Op2C->getZExtValue())));
   1759       }
   1760       return nullptr;
   1761     }
   1762 
   1763     if (auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
   1764       if (auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
   1765         switch (IntrinsicID) {
   1766         default: break;
   1767         case Intrinsic::sadd_with_overflow:
   1768         case Intrinsic::uadd_with_overflow:
   1769         case Intrinsic::ssub_with_overflow:
   1770         case Intrinsic::usub_with_overflow:
   1771         case Intrinsic::smul_with_overflow:
   1772         case Intrinsic::umul_with_overflow: {
   1773           APInt Res;
   1774           bool Overflow;
   1775           switch (IntrinsicID) {
   1776           default: llvm_unreachable("Invalid case");
   1777           case Intrinsic::sadd_with_overflow:
   1778             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
   1779             break;
   1780           case Intrinsic::uadd_with_overflow:
   1781             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
   1782             break;
   1783           case Intrinsic::ssub_with_overflow:
   1784             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
   1785             break;
   1786           case Intrinsic::usub_with_overflow:
   1787             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
   1788             break;
   1789           case Intrinsic::smul_with_overflow:
   1790             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
   1791             break;
   1792           case Intrinsic::umul_with_overflow:
   1793             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
   1794             break;
   1795           }
   1796           Constant *Ops[] = {
   1797             ConstantInt::get(Ty->getContext(), Res),
   1798             ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
   1799           };
   1800           return ConstantStruct::get(cast<StructType>(Ty), Ops);
   1801         }
   1802         case Intrinsic::cttz:
   1803           if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
   1804             return UndefValue::get(Ty);
   1805           return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
   1806         case Intrinsic::ctlz:
   1807           if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
   1808             return UndefValue::get(Ty);
   1809           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
   1810         }
   1811       }
   1812 
   1813       return nullptr;
   1814     }
   1815     return nullptr;
   1816   }
   1817 
   1818   if (Operands.size() != 3)
   1819     return nullptr;
   1820 
   1821   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
   1822     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
   1823       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
   1824         switch (IntrinsicID) {
   1825         default: break;
   1826         case Intrinsic::fma:
   1827         case Intrinsic::fmuladd: {
   1828           APFloat V = Op1->getValueAPF();
   1829           APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
   1830                                                    Op3->getValueAPF(),
   1831                                                    APFloat::rmNearestTiesToEven);
   1832           if (s != APFloat::opInvalidOp)
   1833             return ConstantFP::get(Ty->getContext(), V);
   1834 
   1835           return nullptr;
   1836         }
   1837         }
   1838       }
   1839     }
   1840   }
   1841 
   1842   return nullptr;
   1843 }
   1844 
   1845 Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
   1846                                  VectorType *VTy, ArrayRef<Constant *> Operands,
   1847                                  const DataLayout &DL,
   1848                                  const TargetLibraryInfo *TLI) {
   1849   SmallVector<Constant *, 4> Result(VTy->getNumElements());
   1850   SmallVector<Constant *, 4> Lane(Operands.size());
   1851   Type *Ty = VTy->getElementType();
   1852 
   1853   if (IntrinsicID == Intrinsic::masked_load) {
   1854     auto *SrcPtr = Operands[0];
   1855     auto *Mask = Operands[2];
   1856     auto *Passthru = Operands[3];
   1857 
   1858     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL);
   1859 
   1860     SmallVector<Constant *, 32> NewElements;
   1861     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
   1862       auto *MaskElt = Mask->getAggregateElement(I);
   1863       if (!MaskElt)
   1864         break;
   1865       auto *PassthruElt = Passthru->getAggregateElement(I);
   1866       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
   1867       if (isa<UndefValue>(MaskElt)) {
   1868         if (PassthruElt)
   1869           NewElements.push_back(PassthruElt);
   1870         else if (VecElt)
   1871           NewElements.push_back(VecElt);
   1872         else
   1873           return nullptr;
   1874       }
   1875       if (MaskElt->isNullValue()) {
   1876         if (!PassthruElt)
   1877           return nullptr;
   1878         NewElements.push_back(PassthruElt);
   1879       } else if (MaskElt->isOneValue()) {
   1880         if (!VecElt)
   1881           return nullptr;
   1882         NewElements.push_back(VecElt);
   1883       } else {
   1884         return nullptr;
   1885       }
   1886     }
   1887     if (NewElements.size() != VTy->getNumElements())
   1888       return nullptr;
   1889     return ConstantVector::get(NewElements);
   1890   }
   1891 
   1892   for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
   1893     // Gather a column of constants.
   1894     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
   1895       Constant *Agg = Operands[J]->getAggregateElement(I);
   1896       if (!Agg)
   1897         return nullptr;
   1898 
   1899       Lane[J] = Agg;
   1900     }
   1901 
   1902     // Use the regular scalar folding to simplify this column.
   1903     Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
   1904     if (!Folded)
   1905       return nullptr;
   1906     Result[I] = Folded;
   1907   }
   1908 
   1909   return ConstantVector::get(Result);
   1910 }
   1911 
   1912 } // end anonymous namespace
   1913 
   1914 Constant *
   1915 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
   1916                        const TargetLibraryInfo *TLI) {
   1917   if (!F->hasName())
   1918     return nullptr;
   1919   StringRef Name = F->getName();
   1920 
   1921   Type *Ty = F->getReturnType();
   1922 
   1923   if (auto *VTy = dyn_cast<VectorType>(Ty))
   1924     return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
   1925                                   F->getParent()->getDataLayout(), TLI);
   1926 
   1927   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
   1928 }
   1929