Home | History | Annotate | Download | only in Writer
      1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Bitcode writer implementation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ValueEnumerator.h"
     15 #include "llvm/ADT/StringExtras.h"
     16 #include "llvm/ADT/Triple.h"
     17 #include "llvm/Bitcode/BitstreamWriter.h"
     18 #include "llvm/Bitcode/LLVMBitCodes.h"
     19 #include "llvm/Bitcode/ReaderWriter.h"
     20 #include "llvm/IR/CallSite.h"
     21 #include "llvm/IR/Constants.h"
     22 #include "llvm/IR/DebugInfoMetadata.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/InlineAsm.h"
     25 #include "llvm/IR/Instructions.h"
     26 #include "llvm/IR/LLVMContext.h"
     27 #include "llvm/IR/Module.h"
     28 #include "llvm/IR/Operator.h"
     29 #include "llvm/IR/UseListOrder.h"
     30 #include "llvm/IR/ValueSymbolTable.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/MathExtras.h"
     33 #include "llvm/Support/Program.h"
     34 #include "llvm/Support/SHA1.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include <cctype>
     37 #include <map>
     38 using namespace llvm;
     39 
     40 namespace {
     41 /// These are manifest constants used by the bitcode writer. They do not need to
     42 /// be kept in sync with the reader, but need to be consistent within this file.
     43 enum {
     44   // VALUE_SYMTAB_BLOCK abbrev id's.
     45   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     46   VST_ENTRY_7_ABBREV,
     47   VST_ENTRY_6_ABBREV,
     48   VST_BBENTRY_6_ABBREV,
     49 
     50   // CONSTANTS_BLOCK abbrev id's.
     51   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     52   CONSTANTS_INTEGER_ABBREV,
     53   CONSTANTS_CE_CAST_Abbrev,
     54   CONSTANTS_NULL_Abbrev,
     55 
     56   // FUNCTION_BLOCK abbrev id's.
     57   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     58   FUNCTION_INST_BINOP_ABBREV,
     59   FUNCTION_INST_BINOP_FLAGS_ABBREV,
     60   FUNCTION_INST_CAST_ABBREV,
     61   FUNCTION_INST_RET_VOID_ABBREV,
     62   FUNCTION_INST_RET_VAL_ABBREV,
     63   FUNCTION_INST_UNREACHABLE_ABBREV,
     64   FUNCTION_INST_GEP_ABBREV,
     65 };
     66 
     67 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
     68 /// file type. Owns the BitstreamWriter, and includes the main entry point for
     69 /// writing.
     70 class BitcodeWriter {
     71 protected:
     72   /// Pointer to the buffer allocated by caller for bitcode writing.
     73   const SmallVectorImpl<char> &Buffer;
     74 
     75   /// The stream created and owned by the BitodeWriter.
     76   BitstreamWriter Stream;
     77 
     78   /// Saves the offset of the VSTOffset record that must eventually be
     79   /// backpatched with the offset of the actual VST.
     80   uint64_t VSTOffsetPlaceholder = 0;
     81 
     82 public:
     83   /// Constructs a BitcodeWriter object, and initializes a BitstreamRecord,
     84   /// writing to the provided \p Buffer.
     85   BitcodeWriter(SmallVectorImpl<char> &Buffer)
     86       : Buffer(Buffer), Stream(Buffer) {}
     87 
     88   virtual ~BitcodeWriter() = default;
     89 
     90   /// Main entry point to write the bitcode file, which writes the bitcode
     91   /// header and will then invoke the virtual writeBlocks() method.
     92   void write();
     93 
     94 private:
     95   /// Derived classes must implement this to write the corresponding blocks for
     96   /// that bitcode file type.
     97   virtual void writeBlocks() = 0;
     98 
     99 protected:
    100   bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; }
    101   void writeValueSymbolTableForwardDecl();
    102   void writeBitcodeHeader();
    103 };
    104 
    105 /// Class to manage the bitcode writing for a module.
    106 class ModuleBitcodeWriter : public BitcodeWriter {
    107   /// The Module to write to bitcode.
    108   const Module &M;
    109 
    110   /// Enumerates ids for all values in the module.
    111   ValueEnumerator VE;
    112 
    113   /// Optional per-module index to write for ThinLTO.
    114   const ModuleSummaryIndex *Index;
    115 
    116   /// True if a module hash record should be written.
    117   bool GenerateHash;
    118 
    119   /// The start bit of the module block, for use in generating a module hash
    120   uint64_t BitcodeStartBit = 0;
    121 
    122 public:
    123   /// Constructs a ModuleBitcodeWriter object for the given Module,
    124   /// writing to the provided \p Buffer.
    125   ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer,
    126                       bool ShouldPreserveUseListOrder,
    127                       const ModuleSummaryIndex *Index, bool GenerateHash)
    128       : BitcodeWriter(Buffer), M(*M), VE(*M, ShouldPreserveUseListOrder),
    129         Index(Index), GenerateHash(GenerateHash) {
    130     // Save the start bit of the actual bitcode, in case there is space
    131     // saved at the start for the darwin header above. The reader stream
    132     // will start at the bitcode, and we need the offset of the VST
    133     // to line up.
    134     BitcodeStartBit = Stream.GetCurrentBitNo();
    135   }
    136 
    137 private:
    138   /// Main entry point for writing a module to bitcode, invoked by
    139   /// BitcodeWriter::write() after it writes the header.
    140   void writeBlocks() override;
    141 
    142   /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
    143   /// current llvm version, and a record for the epoch number.
    144   void writeIdentificationBlock();
    145 
    146   /// Emit the current module to the bitstream.
    147   void writeModule();
    148 
    149   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
    150 
    151   void writeStringRecord(unsigned Code, StringRef Str, unsigned AbbrevToUse);
    152   void writeAttributeGroupTable();
    153   void writeAttributeTable();
    154   void writeTypeTable();
    155   void writeComdats();
    156   void writeModuleInfo();
    157   void writeValueAsMetadata(const ValueAsMetadata *MD,
    158                             SmallVectorImpl<uint64_t> &Record);
    159   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
    160                     unsigned Abbrev);
    161   unsigned createDILocationAbbrev();
    162   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
    163                        unsigned &Abbrev);
    164   unsigned createGenericDINodeAbbrev();
    165   void writeGenericDINode(const GenericDINode *N,
    166                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
    167   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
    168                        unsigned Abbrev);
    169   void writeDIEnumerator(const DIEnumerator *N,
    170                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    171   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
    172                         unsigned Abbrev);
    173   void writeDIDerivedType(const DIDerivedType *N,
    174                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    175   void writeDICompositeType(const DICompositeType *N,
    176                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    177   void writeDISubroutineType(const DISubroutineType *N,
    178                              SmallVectorImpl<uint64_t> &Record,
    179                              unsigned Abbrev);
    180   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
    181                    unsigned Abbrev);
    182   void writeDICompileUnit(const DICompileUnit *N,
    183                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    184   void writeDISubprogram(const DISubprogram *N,
    185                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    186   void writeDILexicalBlock(const DILexicalBlock *N,
    187                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    188   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
    189                                SmallVectorImpl<uint64_t> &Record,
    190                                unsigned Abbrev);
    191   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
    192                         unsigned Abbrev);
    193   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
    194                     unsigned Abbrev);
    195   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
    196                         unsigned Abbrev);
    197   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
    198                      unsigned Abbrev);
    199   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
    200                                     SmallVectorImpl<uint64_t> &Record,
    201                                     unsigned Abbrev);
    202   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
    203                                      SmallVectorImpl<uint64_t> &Record,
    204                                      unsigned Abbrev);
    205   void writeDIGlobalVariable(const DIGlobalVariable *N,
    206                              SmallVectorImpl<uint64_t> &Record,
    207                              unsigned Abbrev);
    208   void writeDILocalVariable(const DILocalVariable *N,
    209                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    210   void writeDIExpression(const DIExpression *N,
    211                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    212   void writeDIObjCProperty(const DIObjCProperty *N,
    213                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    214   void writeDIImportedEntity(const DIImportedEntity *N,
    215                              SmallVectorImpl<uint64_t> &Record,
    216                              unsigned Abbrev);
    217   unsigned createNamedMetadataAbbrev();
    218   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
    219   unsigned createMetadataStringsAbbrev();
    220   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
    221                             SmallVectorImpl<uint64_t> &Record);
    222   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
    223                             SmallVectorImpl<uint64_t> &Record);
    224   void writeModuleMetadata();
    225   void writeFunctionMetadata(const Function &F);
    226   void writeFunctionMetadataAttachment(const Function &F);
    227   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
    228   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
    229                                     const GlobalObject &GO);
    230   void writeModuleMetadataKinds();
    231   void writeOperandBundleTags();
    232   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
    233   void writeModuleConstants();
    234   bool pushValueAndType(const Value *V, unsigned InstID,
    235                         SmallVectorImpl<unsigned> &Vals);
    236   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
    237   void pushValue(const Value *V, unsigned InstID,
    238                  SmallVectorImpl<unsigned> &Vals);
    239   void pushValueSigned(const Value *V, unsigned InstID,
    240                        SmallVectorImpl<uint64_t> &Vals);
    241   void writeInstruction(const Instruction &I, unsigned InstID,
    242                         SmallVectorImpl<unsigned> &Vals);
    243   void writeValueSymbolTable(
    244       const ValueSymbolTable &VST, bool IsModuleLevel = false,
    245       DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr);
    246   void writeUseList(UseListOrder &&Order);
    247   void writeUseListBlock(const Function *F);
    248   void
    249   writeFunction(const Function &F,
    250                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
    251   void writeBlockInfo();
    252   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
    253                                            GlobalValueSummary *Summary,
    254                                            unsigned ValueID,
    255                                            unsigned FSCallsAbbrev,
    256                                            unsigned FSCallsProfileAbbrev,
    257                                            const Function &F);
    258   void writeModuleLevelReferences(const GlobalVariable &V,
    259                                   SmallVector<uint64_t, 64> &NameVals,
    260                                   unsigned FSModRefsAbbrev);
    261   void writePerModuleGlobalValueSummary();
    262   void writeModuleHash(size_t BlockStartPos);
    263 };
    264 
    265 /// Class to manage the bitcode writing for a combined index.
    266 class IndexBitcodeWriter : public BitcodeWriter {
    267   /// The combined index to write to bitcode.
    268   const ModuleSummaryIndex &Index;
    269 
    270   /// When writing a subset of the index for distributed backends, client
    271   /// provides a map of modules to the corresponding GUIDs/summaries to write.
    272   std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
    273 
    274   /// Map that holds the correspondence between the GUID used in the combined
    275   /// index and a value id generated by this class to use in references.
    276   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
    277 
    278   /// Tracks the last value id recorded in the GUIDToValueMap.
    279   unsigned GlobalValueId = 0;
    280 
    281 public:
    282   /// Constructs a IndexBitcodeWriter object for the given combined index,
    283   /// writing to the provided \p Buffer. When writing a subset of the index
    284   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
    285   IndexBitcodeWriter(SmallVectorImpl<char> &Buffer,
    286                      const ModuleSummaryIndex &Index,
    287                      std::map<std::string, GVSummaryMapTy>
    288                          *ModuleToSummariesForIndex = nullptr)
    289       : BitcodeWriter(Buffer), Index(Index),
    290         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
    291     // Assign unique value ids to all summaries to be written, for use
    292     // in writing out the call graph edges. Save the mapping from GUID
    293     // to the new global value id to use when writing those edges, which
    294     // are currently saved in the index in terms of GUID.
    295     for (const auto &I : *this)
    296       GUIDToValueIdMap[I.first] = ++GlobalValueId;
    297   }
    298 
    299   /// The below iterator returns the GUID and associated summary.
    300   typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo;
    301 
    302   /// Iterator over the value GUID and summaries to be written to bitcode,
    303   /// hides the details of whether they are being pulled from the entire
    304   /// index or just those in a provided ModuleToSummariesForIndex map.
    305   class iterator
    306       : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag,
    307                                           GVInfo> {
    308     /// Enables access to parent class.
    309     const IndexBitcodeWriter &Writer;
    310 
    311     // Iterators used when writing only those summaries in a provided
    312     // ModuleToSummariesForIndex map:
    313 
    314     /// Points to the last element in outer ModuleToSummariesForIndex map.
    315     std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesBack;
    316     /// Iterator on outer ModuleToSummariesForIndex map.
    317     std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesIter;
    318     /// Iterator on an inner global variable summary map.
    319     GVSummaryMapTy::iterator ModuleGVSummariesIter;
    320 
    321     // Iterators used when writing all summaries in the index:
    322 
    323     /// Points to the last element in the Index outer GlobalValueMap.
    324     const_gvsummary_iterator IndexSummariesBack;
    325     /// Iterator on outer GlobalValueMap.
    326     const_gvsummary_iterator IndexSummariesIter;
    327     /// Iterator on an inner GlobalValueSummaryList.
    328     GlobalValueSummaryList::const_iterator IndexGVSummariesIter;
    329 
    330   public:
    331     /// Construct iterator from parent \p Writer and indicate if we are
    332     /// constructing the end iterator.
    333     iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) {
    334       // Set up the appropriate set of iterators given whether we are writing
    335       // the full index or just a subset.
    336       // Can't setup the Back or inner iterators if the corresponding map
    337       // is empty. This will be handled specially in operator== as well.
    338       if (Writer.ModuleToSummariesForIndex &&
    339           !Writer.ModuleToSummariesForIndex->empty()) {
    340         for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin();
    341              std::next(ModuleSummariesBack) !=
    342              Writer.ModuleToSummariesForIndex->end();
    343              ModuleSummariesBack++)
    344           ;
    345         ModuleSummariesIter = !IsAtEnd
    346                                   ? Writer.ModuleToSummariesForIndex->begin()
    347                                   : ModuleSummariesBack;
    348         ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin()
    349                                          : ModuleSummariesBack->second.end();
    350       } else if (!Writer.ModuleToSummariesForIndex &&
    351                  Writer.Index.begin() != Writer.Index.end()) {
    352         for (IndexSummariesBack = Writer.Index.begin();
    353              std::next(IndexSummariesBack) != Writer.Index.end();
    354              IndexSummariesBack++)
    355           ;
    356         IndexSummariesIter =
    357             !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack;
    358         IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin()
    359                                         : IndexSummariesBack->second.end();
    360       }
    361     }
    362 
    363     /// Increment the appropriate set of iterators.
    364     iterator &operator++() {
    365       // First the inner iterator is incremented, then if it is at the end
    366       // and there are more outer iterations to go, the inner is reset to
    367       // the start of the next inner list.
    368       if (Writer.ModuleToSummariesForIndex) {
    369         ++ModuleGVSummariesIter;
    370         if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() &&
    371             ModuleSummariesIter != ModuleSummariesBack) {
    372           ++ModuleSummariesIter;
    373           ModuleGVSummariesIter = ModuleSummariesIter->second.begin();
    374         }
    375       } else {
    376         ++IndexGVSummariesIter;
    377         if (IndexGVSummariesIter == IndexSummariesIter->second.end() &&
    378             IndexSummariesIter != IndexSummariesBack) {
    379           ++IndexSummariesIter;
    380           IndexGVSummariesIter = IndexSummariesIter->second.begin();
    381         }
    382       }
    383       return *this;
    384     }
    385 
    386     /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current
    387     /// outer and inner iterator positions.
    388     GVInfo operator*() {
    389       if (Writer.ModuleToSummariesForIndex)
    390         return std::make_pair(ModuleGVSummariesIter->first,
    391                               ModuleGVSummariesIter->second);
    392       return std::make_pair(IndexSummariesIter->first,
    393                             IndexGVSummariesIter->get());
    394     }
    395 
    396     /// Checks if the iterators are equal, with special handling for empty
    397     /// indexes.
    398     bool operator==(const iterator &RHS) const {
    399       if (Writer.ModuleToSummariesForIndex) {
    400         // First ensure that both are writing the same subset.
    401         if (Writer.ModuleToSummariesForIndex !=
    402             RHS.Writer.ModuleToSummariesForIndex)
    403           return false;
    404         // Already determined above that maps are the same, so if one is
    405         // empty, they both are.
    406         if (Writer.ModuleToSummariesForIndex->empty())
    407           return true;
    408         // Ensure the ModuleGVSummariesIter are iterating over the same
    409         // container before checking them below.
    410         if (ModuleSummariesIter != RHS.ModuleSummariesIter)
    411           return false;
    412         return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter;
    413       }
    414       // First ensure RHS also writing the full index, and that both are
    415       // writing the same full index.
    416       if (RHS.Writer.ModuleToSummariesForIndex ||
    417           &Writer.Index != &RHS.Writer.Index)
    418         return false;
    419       // Already determined above that maps are the same, so if one is
    420       // empty, they both are.
    421       if (Writer.Index.begin() == Writer.Index.end())
    422         return true;
    423       // Ensure the IndexGVSummariesIter are iterating over the same
    424       // container before checking them below.
    425       if (IndexSummariesIter != RHS.IndexSummariesIter)
    426         return false;
    427       return IndexGVSummariesIter == RHS.IndexGVSummariesIter;
    428     }
    429   };
    430 
    431   /// Obtain the start iterator over the summaries to be written.
    432   iterator begin() { return iterator(*this, /*IsAtEnd=*/false); }
    433   /// Obtain the end iterator over the summaries to be written.
    434   iterator end() { return iterator(*this, /*IsAtEnd=*/true); }
    435 
    436 private:
    437   /// Main entry point for writing a combined index to bitcode, invoked by
    438   /// BitcodeWriter::write() after it writes the header.
    439   void writeBlocks() override;
    440 
    441   void writeIndex();
    442   void writeModStrings();
    443   void writeCombinedValueSymbolTable();
    444   void writeCombinedGlobalValueSummary();
    445 
    446   /// Indicates whether the provided \p ModulePath should be written into
    447   /// the module string table, e.g. if full index written or if it is in
    448   /// the provided subset.
    449   bool doIncludeModule(StringRef ModulePath) {
    450     return !ModuleToSummariesForIndex ||
    451            ModuleToSummariesForIndex->count(ModulePath);
    452   }
    453 
    454   bool hasValueId(GlobalValue::GUID ValGUID) {
    455     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
    456     return VMI != GUIDToValueIdMap.end();
    457   }
    458   unsigned getValueId(GlobalValue::GUID ValGUID) {
    459     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
    460     // If this GUID doesn't have an entry, assign one.
    461     if (VMI == GUIDToValueIdMap.end()) {
    462       GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
    463       return GlobalValueId;
    464     } else {
    465       return VMI->second;
    466     }
    467   }
    468   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
    469 };
    470 } // end anonymous namespace
    471 
    472 static unsigned getEncodedCastOpcode(unsigned Opcode) {
    473   switch (Opcode) {
    474   default: llvm_unreachable("Unknown cast instruction!");
    475   case Instruction::Trunc   : return bitc::CAST_TRUNC;
    476   case Instruction::ZExt    : return bitc::CAST_ZEXT;
    477   case Instruction::SExt    : return bitc::CAST_SEXT;
    478   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
    479   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
    480   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
    481   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
    482   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
    483   case Instruction::FPExt   : return bitc::CAST_FPEXT;
    484   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
    485   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
    486   case Instruction::BitCast : return bitc::CAST_BITCAST;
    487   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
    488   }
    489 }
    490 
    491 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
    492   switch (Opcode) {
    493   default: llvm_unreachable("Unknown binary instruction!");
    494   case Instruction::Add:
    495   case Instruction::FAdd: return bitc::BINOP_ADD;
    496   case Instruction::Sub:
    497   case Instruction::FSub: return bitc::BINOP_SUB;
    498   case Instruction::Mul:
    499   case Instruction::FMul: return bitc::BINOP_MUL;
    500   case Instruction::UDiv: return bitc::BINOP_UDIV;
    501   case Instruction::FDiv:
    502   case Instruction::SDiv: return bitc::BINOP_SDIV;
    503   case Instruction::URem: return bitc::BINOP_UREM;
    504   case Instruction::FRem:
    505   case Instruction::SRem: return bitc::BINOP_SREM;
    506   case Instruction::Shl:  return bitc::BINOP_SHL;
    507   case Instruction::LShr: return bitc::BINOP_LSHR;
    508   case Instruction::AShr: return bitc::BINOP_ASHR;
    509   case Instruction::And:  return bitc::BINOP_AND;
    510   case Instruction::Or:   return bitc::BINOP_OR;
    511   case Instruction::Xor:  return bitc::BINOP_XOR;
    512   }
    513 }
    514 
    515 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
    516   switch (Op) {
    517   default: llvm_unreachable("Unknown RMW operation!");
    518   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
    519   case AtomicRMWInst::Add: return bitc::RMW_ADD;
    520   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
    521   case AtomicRMWInst::And: return bitc::RMW_AND;
    522   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
    523   case AtomicRMWInst::Or: return bitc::RMW_OR;
    524   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
    525   case AtomicRMWInst::Max: return bitc::RMW_MAX;
    526   case AtomicRMWInst::Min: return bitc::RMW_MIN;
    527   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
    528   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
    529   }
    530 }
    531 
    532 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
    533   switch (Ordering) {
    534   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
    535   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
    536   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
    537   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
    538   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
    539   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
    540   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
    541   }
    542   llvm_unreachable("Invalid ordering");
    543 }
    544 
    545 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) {
    546   switch (SynchScope) {
    547   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
    548   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
    549   }
    550   llvm_unreachable("Invalid synch scope");
    551 }
    552 
    553 void ModuleBitcodeWriter::writeStringRecord(unsigned Code, StringRef Str,
    554                                             unsigned AbbrevToUse) {
    555   SmallVector<unsigned, 64> Vals;
    556 
    557   // Code: [strchar x N]
    558   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    559     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
    560       AbbrevToUse = 0;
    561     Vals.push_back(Str[i]);
    562   }
    563 
    564   // Emit the finished record.
    565   Stream.EmitRecord(Code, Vals, AbbrevToUse);
    566 }
    567 
    568 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
    569   switch (Kind) {
    570   case Attribute::Alignment:
    571     return bitc::ATTR_KIND_ALIGNMENT;
    572   case Attribute::AllocSize:
    573     return bitc::ATTR_KIND_ALLOC_SIZE;
    574   case Attribute::AlwaysInline:
    575     return bitc::ATTR_KIND_ALWAYS_INLINE;
    576   case Attribute::ArgMemOnly:
    577     return bitc::ATTR_KIND_ARGMEMONLY;
    578   case Attribute::Builtin:
    579     return bitc::ATTR_KIND_BUILTIN;
    580   case Attribute::ByVal:
    581     return bitc::ATTR_KIND_BY_VAL;
    582   case Attribute::Convergent:
    583     return bitc::ATTR_KIND_CONVERGENT;
    584   case Attribute::InAlloca:
    585     return bitc::ATTR_KIND_IN_ALLOCA;
    586   case Attribute::Cold:
    587     return bitc::ATTR_KIND_COLD;
    588   case Attribute::InaccessibleMemOnly:
    589     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
    590   case Attribute::InaccessibleMemOrArgMemOnly:
    591     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
    592   case Attribute::InlineHint:
    593     return bitc::ATTR_KIND_INLINE_HINT;
    594   case Attribute::InReg:
    595     return bitc::ATTR_KIND_IN_REG;
    596   case Attribute::JumpTable:
    597     return bitc::ATTR_KIND_JUMP_TABLE;
    598   case Attribute::MinSize:
    599     return bitc::ATTR_KIND_MIN_SIZE;
    600   case Attribute::Naked:
    601     return bitc::ATTR_KIND_NAKED;
    602   case Attribute::Nest:
    603     return bitc::ATTR_KIND_NEST;
    604   case Attribute::NoAlias:
    605     return bitc::ATTR_KIND_NO_ALIAS;
    606   case Attribute::NoBuiltin:
    607     return bitc::ATTR_KIND_NO_BUILTIN;
    608   case Attribute::NoCapture:
    609     return bitc::ATTR_KIND_NO_CAPTURE;
    610   case Attribute::NoDuplicate:
    611     return bitc::ATTR_KIND_NO_DUPLICATE;
    612   case Attribute::NoImplicitFloat:
    613     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
    614   case Attribute::NoInline:
    615     return bitc::ATTR_KIND_NO_INLINE;
    616   case Attribute::NoRecurse:
    617     return bitc::ATTR_KIND_NO_RECURSE;
    618   case Attribute::NonLazyBind:
    619     return bitc::ATTR_KIND_NON_LAZY_BIND;
    620   case Attribute::NonNull:
    621     return bitc::ATTR_KIND_NON_NULL;
    622   case Attribute::Dereferenceable:
    623     return bitc::ATTR_KIND_DEREFERENCEABLE;
    624   case Attribute::DereferenceableOrNull:
    625     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
    626   case Attribute::NoRedZone:
    627     return bitc::ATTR_KIND_NO_RED_ZONE;
    628   case Attribute::NoReturn:
    629     return bitc::ATTR_KIND_NO_RETURN;
    630   case Attribute::NoUnwind:
    631     return bitc::ATTR_KIND_NO_UNWIND;
    632   case Attribute::OptimizeForSize:
    633     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
    634   case Attribute::OptimizeNone:
    635     return bitc::ATTR_KIND_OPTIMIZE_NONE;
    636   case Attribute::ReadNone:
    637     return bitc::ATTR_KIND_READ_NONE;
    638   case Attribute::ReadOnly:
    639     return bitc::ATTR_KIND_READ_ONLY;
    640   case Attribute::Returned:
    641     return bitc::ATTR_KIND_RETURNED;
    642   case Attribute::ReturnsTwice:
    643     return bitc::ATTR_KIND_RETURNS_TWICE;
    644   case Attribute::SExt:
    645     return bitc::ATTR_KIND_S_EXT;
    646   case Attribute::StackAlignment:
    647     return bitc::ATTR_KIND_STACK_ALIGNMENT;
    648   case Attribute::StackProtect:
    649     return bitc::ATTR_KIND_STACK_PROTECT;
    650   case Attribute::StackProtectReq:
    651     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
    652   case Attribute::StackProtectStrong:
    653     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
    654   case Attribute::SafeStack:
    655     return bitc::ATTR_KIND_SAFESTACK;
    656   case Attribute::StructRet:
    657     return bitc::ATTR_KIND_STRUCT_RET;
    658   case Attribute::SanitizeAddress:
    659     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
    660   case Attribute::SanitizeThread:
    661     return bitc::ATTR_KIND_SANITIZE_THREAD;
    662   case Attribute::SanitizeMemory:
    663     return bitc::ATTR_KIND_SANITIZE_MEMORY;
    664   case Attribute::SwiftError:
    665     return bitc::ATTR_KIND_SWIFT_ERROR;
    666   case Attribute::SwiftSelf:
    667     return bitc::ATTR_KIND_SWIFT_SELF;
    668   case Attribute::UWTable:
    669     return bitc::ATTR_KIND_UW_TABLE;
    670   case Attribute::WriteOnly:
    671     return bitc::ATTR_KIND_WRITEONLY;
    672   case Attribute::ZExt:
    673     return bitc::ATTR_KIND_Z_EXT;
    674   case Attribute::EndAttrKinds:
    675     llvm_unreachable("Can not encode end-attribute kinds marker.");
    676   case Attribute::None:
    677     llvm_unreachable("Can not encode none-attribute.");
    678   }
    679 
    680   llvm_unreachable("Trying to encode unknown attribute");
    681 }
    682 
    683 void ModuleBitcodeWriter::writeAttributeGroupTable() {
    684   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
    685   if (AttrGrps.empty()) return;
    686 
    687   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
    688 
    689   SmallVector<uint64_t, 64> Record;
    690   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
    691     AttributeSet AS = AttrGrps[i];
    692     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
    693       AttributeSet A = AS.getSlotAttributes(i);
    694 
    695       Record.push_back(VE.getAttributeGroupID(A));
    696       Record.push_back(AS.getSlotIndex(i));
    697 
    698       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
    699            I != E; ++I) {
    700         Attribute Attr = *I;
    701         if (Attr.isEnumAttribute()) {
    702           Record.push_back(0);
    703           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
    704         } else if (Attr.isIntAttribute()) {
    705           Record.push_back(1);
    706           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
    707           Record.push_back(Attr.getValueAsInt());
    708         } else {
    709           StringRef Kind = Attr.getKindAsString();
    710           StringRef Val = Attr.getValueAsString();
    711 
    712           Record.push_back(Val.empty() ? 3 : 4);
    713           Record.append(Kind.begin(), Kind.end());
    714           Record.push_back(0);
    715           if (!Val.empty()) {
    716             Record.append(Val.begin(), Val.end());
    717             Record.push_back(0);
    718           }
    719         }
    720       }
    721 
    722       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
    723       Record.clear();
    724     }
    725   }
    726 
    727   Stream.ExitBlock();
    728 }
    729 
    730 void ModuleBitcodeWriter::writeAttributeTable() {
    731   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
    732   if (Attrs.empty()) return;
    733 
    734   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
    735 
    736   SmallVector<uint64_t, 64> Record;
    737   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
    738     const AttributeSet &A = Attrs[i];
    739     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
    740       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
    741 
    742     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
    743     Record.clear();
    744   }
    745 
    746   Stream.ExitBlock();
    747 }
    748 
    749 /// WriteTypeTable - Write out the type table for a module.
    750 void ModuleBitcodeWriter::writeTypeTable() {
    751   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
    752 
    753   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
    754   SmallVector<uint64_t, 64> TypeVals;
    755 
    756   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
    757 
    758   // Abbrev for TYPE_CODE_POINTER.
    759   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    760   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
    761   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    762   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
    763   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
    764 
    765   // Abbrev for TYPE_CODE_FUNCTION.
    766   Abbv = new BitCodeAbbrev();
    767   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
    768   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
    769   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    770   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    771 
    772   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
    773 
    774   // Abbrev for TYPE_CODE_STRUCT_ANON.
    775   Abbv = new BitCodeAbbrev();
    776   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
    777   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    778   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    779   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    780 
    781   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
    782 
    783   // Abbrev for TYPE_CODE_STRUCT_NAME.
    784   Abbv = new BitCodeAbbrev();
    785   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
    786   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    787   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    788   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
    789 
    790   // Abbrev for TYPE_CODE_STRUCT_NAMED.
    791   Abbv = new BitCodeAbbrev();
    792   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
    793   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    794   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    795   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    796 
    797   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
    798 
    799   // Abbrev for TYPE_CODE_ARRAY.
    800   Abbv = new BitCodeAbbrev();
    801   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
    802   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
    803   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    804 
    805   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
    806 
    807   // Emit an entry count so the reader can reserve space.
    808   TypeVals.push_back(TypeList.size());
    809   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
    810   TypeVals.clear();
    811 
    812   // Loop over all of the types, emitting each in turn.
    813   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    814     Type *T = TypeList[i];
    815     int AbbrevToUse = 0;
    816     unsigned Code = 0;
    817 
    818     switch (T->getTypeID()) {
    819     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
    820     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
    821     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
    822     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
    823     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
    824     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
    825     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
    826     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
    827     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
    828     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
    829     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
    830     case Type::IntegerTyID:
    831       // INTEGER: [width]
    832       Code = bitc::TYPE_CODE_INTEGER;
    833       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
    834       break;
    835     case Type::PointerTyID: {
    836       PointerType *PTy = cast<PointerType>(T);
    837       // POINTER: [pointee type, address space]
    838       Code = bitc::TYPE_CODE_POINTER;
    839       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
    840       unsigned AddressSpace = PTy->getAddressSpace();
    841       TypeVals.push_back(AddressSpace);
    842       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
    843       break;
    844     }
    845     case Type::FunctionTyID: {
    846       FunctionType *FT = cast<FunctionType>(T);
    847       // FUNCTION: [isvararg, retty, paramty x N]
    848       Code = bitc::TYPE_CODE_FUNCTION;
    849       TypeVals.push_back(FT->isVarArg());
    850       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
    851       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
    852         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
    853       AbbrevToUse = FunctionAbbrev;
    854       break;
    855     }
    856     case Type::StructTyID: {
    857       StructType *ST = cast<StructType>(T);
    858       // STRUCT: [ispacked, eltty x N]
    859       TypeVals.push_back(ST->isPacked());
    860       // Output all of the element types.
    861       for (StructType::element_iterator I = ST->element_begin(),
    862            E = ST->element_end(); I != E; ++I)
    863         TypeVals.push_back(VE.getTypeID(*I));
    864 
    865       if (ST->isLiteral()) {
    866         Code = bitc::TYPE_CODE_STRUCT_ANON;
    867         AbbrevToUse = StructAnonAbbrev;
    868       } else {
    869         if (ST->isOpaque()) {
    870           Code = bitc::TYPE_CODE_OPAQUE;
    871         } else {
    872           Code = bitc::TYPE_CODE_STRUCT_NAMED;
    873           AbbrevToUse = StructNamedAbbrev;
    874         }
    875 
    876         // Emit the name if it is present.
    877         if (!ST->getName().empty())
    878           writeStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
    879                             StructNameAbbrev);
    880       }
    881       break;
    882     }
    883     case Type::ArrayTyID: {
    884       ArrayType *AT = cast<ArrayType>(T);
    885       // ARRAY: [numelts, eltty]
    886       Code = bitc::TYPE_CODE_ARRAY;
    887       TypeVals.push_back(AT->getNumElements());
    888       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
    889       AbbrevToUse = ArrayAbbrev;
    890       break;
    891     }
    892     case Type::VectorTyID: {
    893       VectorType *VT = cast<VectorType>(T);
    894       // VECTOR [numelts, eltty]
    895       Code = bitc::TYPE_CODE_VECTOR;
    896       TypeVals.push_back(VT->getNumElements());
    897       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
    898       break;
    899     }
    900     }
    901 
    902     // Emit the finished record.
    903     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
    904     TypeVals.clear();
    905   }
    906 
    907   Stream.ExitBlock();
    908 }
    909 
    910 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
    911   switch (Linkage) {
    912   case GlobalValue::ExternalLinkage:
    913     return 0;
    914   case GlobalValue::WeakAnyLinkage:
    915     return 16;
    916   case GlobalValue::AppendingLinkage:
    917     return 2;
    918   case GlobalValue::InternalLinkage:
    919     return 3;
    920   case GlobalValue::LinkOnceAnyLinkage:
    921     return 18;
    922   case GlobalValue::ExternalWeakLinkage:
    923     return 7;
    924   case GlobalValue::CommonLinkage:
    925     return 8;
    926   case GlobalValue::PrivateLinkage:
    927     return 9;
    928   case GlobalValue::WeakODRLinkage:
    929     return 17;
    930   case GlobalValue::LinkOnceODRLinkage:
    931     return 19;
    932   case GlobalValue::AvailableExternallyLinkage:
    933     return 12;
    934   }
    935   llvm_unreachable("Invalid linkage");
    936 }
    937 
    938 static unsigned getEncodedLinkage(const GlobalValue &GV) {
    939   return getEncodedLinkage(GV.getLinkage());
    940 }
    941 
    942 // Decode the flags for GlobalValue in the summary
    943 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
    944   uint64_t RawFlags = 0;
    945 
    946   RawFlags |= Flags.HasSection; // bool
    947 
    948   // Linkage don't need to be remapped at that time for the summary. Any future
    949   // change to the getEncodedLinkage() function will need to be taken into
    950   // account here as well.
    951   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
    952 
    953   return RawFlags;
    954 }
    955 
    956 static unsigned getEncodedVisibility(const GlobalValue &GV) {
    957   switch (GV.getVisibility()) {
    958   case GlobalValue::DefaultVisibility:   return 0;
    959   case GlobalValue::HiddenVisibility:    return 1;
    960   case GlobalValue::ProtectedVisibility: return 2;
    961   }
    962   llvm_unreachable("Invalid visibility");
    963 }
    964 
    965 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
    966   switch (GV.getDLLStorageClass()) {
    967   case GlobalValue::DefaultStorageClass:   return 0;
    968   case GlobalValue::DLLImportStorageClass: return 1;
    969   case GlobalValue::DLLExportStorageClass: return 2;
    970   }
    971   llvm_unreachable("Invalid DLL storage class");
    972 }
    973 
    974 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
    975   switch (GV.getThreadLocalMode()) {
    976     case GlobalVariable::NotThreadLocal:         return 0;
    977     case GlobalVariable::GeneralDynamicTLSModel: return 1;
    978     case GlobalVariable::LocalDynamicTLSModel:   return 2;
    979     case GlobalVariable::InitialExecTLSModel:    return 3;
    980     case GlobalVariable::LocalExecTLSModel:      return 4;
    981   }
    982   llvm_unreachable("Invalid TLS model");
    983 }
    984 
    985 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
    986   switch (C.getSelectionKind()) {
    987   case Comdat::Any:
    988     return bitc::COMDAT_SELECTION_KIND_ANY;
    989   case Comdat::ExactMatch:
    990     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
    991   case Comdat::Largest:
    992     return bitc::COMDAT_SELECTION_KIND_LARGEST;
    993   case Comdat::NoDuplicates:
    994     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
    995   case Comdat::SameSize:
    996     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
    997   }
    998   llvm_unreachable("Invalid selection kind");
    999 }
   1000 
   1001 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
   1002   switch (GV.getUnnamedAddr()) {
   1003   case GlobalValue::UnnamedAddr::None:   return 0;
   1004   case GlobalValue::UnnamedAddr::Local:  return 2;
   1005   case GlobalValue::UnnamedAddr::Global: return 1;
   1006   }
   1007   llvm_unreachable("Invalid unnamed_addr");
   1008 }
   1009 
   1010 void ModuleBitcodeWriter::writeComdats() {
   1011   SmallVector<unsigned, 64> Vals;
   1012   for (const Comdat *C : VE.getComdats()) {
   1013     // COMDAT: [selection_kind, name]
   1014     Vals.push_back(getEncodedComdatSelectionKind(*C));
   1015     size_t Size = C->getName().size();
   1016     assert(isUInt<32>(Size));
   1017     Vals.push_back(Size);
   1018     for (char Chr : C->getName())
   1019       Vals.push_back((unsigned char)Chr);
   1020     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
   1021     Vals.clear();
   1022   }
   1023 }
   1024 
   1025 /// Write a record that will eventually hold the word offset of the
   1026 /// module-level VST. For now the offset is 0, which will be backpatched
   1027 /// after the real VST is written. Saves the bit offset to backpatch.
   1028 void BitcodeWriter::writeValueSymbolTableForwardDecl() {
   1029   // Write a placeholder value in for the offset of the real VST,
   1030   // which is written after the function blocks so that it can include
   1031   // the offset of each function. The placeholder offset will be
   1032   // updated when the real VST is written.
   1033   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1034   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
   1035   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
   1036   // hold the real VST offset. Must use fixed instead of VBR as we don't
   1037   // know how many VBR chunks to reserve ahead of time.
   1038   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
   1039   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv);
   1040 
   1041   // Emit the placeholder
   1042   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
   1043   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
   1044 
   1045   // Compute and save the bit offset to the placeholder, which will be
   1046   // patched when the real VST is written. We can simply subtract the 32-bit
   1047   // fixed size from the current bit number to get the location to backpatch.
   1048   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
   1049 }
   1050 
   1051 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
   1052 
   1053 /// Determine the encoding to use for the given string name and length.
   1054 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
   1055   bool isChar6 = true;
   1056   for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
   1057     if (isChar6)
   1058       isChar6 = BitCodeAbbrevOp::isChar6(*C);
   1059     if ((unsigned char)*C & 128)
   1060       // don't bother scanning the rest.
   1061       return SE_Fixed8;
   1062   }
   1063   if (isChar6)
   1064     return SE_Char6;
   1065   else
   1066     return SE_Fixed7;
   1067 }
   1068 
   1069 /// Emit top-level description of module, including target triple, inline asm,
   1070 /// descriptors for global variables, and function prototype info.
   1071 /// Returns the bit offset to backpatch with the location of the real VST.
   1072 void ModuleBitcodeWriter::writeModuleInfo() {
   1073   // Emit various pieces of data attached to a module.
   1074   if (!M.getTargetTriple().empty())
   1075     writeStringRecord(bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
   1076                       0 /*TODO*/);
   1077   const std::string &DL = M.getDataLayoutStr();
   1078   if (!DL.empty())
   1079     writeStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
   1080   if (!M.getModuleInlineAsm().empty())
   1081     writeStringRecord(bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
   1082                       0 /*TODO*/);
   1083 
   1084   // Emit information about sections and GC, computing how many there are. Also
   1085   // compute the maximum alignment value.
   1086   std::map<std::string, unsigned> SectionMap;
   1087   std::map<std::string, unsigned> GCMap;
   1088   unsigned MaxAlignment = 0;
   1089   unsigned MaxGlobalType = 0;
   1090   for (const GlobalValue &GV : M.globals()) {
   1091     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
   1092     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
   1093     if (GV.hasSection()) {
   1094       // Give section names unique ID's.
   1095       unsigned &Entry = SectionMap[GV.getSection()];
   1096       if (!Entry) {
   1097         writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
   1098                           0 /*TODO*/);
   1099         Entry = SectionMap.size();
   1100       }
   1101     }
   1102   }
   1103   for (const Function &F : M) {
   1104     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
   1105     if (F.hasSection()) {
   1106       // Give section names unique ID's.
   1107       unsigned &Entry = SectionMap[F.getSection()];
   1108       if (!Entry) {
   1109         writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
   1110                           0 /*TODO*/);
   1111         Entry = SectionMap.size();
   1112       }
   1113     }
   1114     if (F.hasGC()) {
   1115       // Same for GC names.
   1116       unsigned &Entry = GCMap[F.getGC()];
   1117       if (!Entry) {
   1118         writeStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 0 /*TODO*/);
   1119         Entry = GCMap.size();
   1120       }
   1121     }
   1122   }
   1123 
   1124   // Emit abbrev for globals, now that we know # sections and max alignment.
   1125   unsigned SimpleGVarAbbrev = 0;
   1126   if (!M.global_empty()) {
   1127     // Add an abbrev for common globals with no visibility or thread localness.
   1128     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1129     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
   1130     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   1131                               Log2_32_Ceil(MaxGlobalType+1)));
   1132     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
   1133                                                            //| explicitType << 1
   1134                                                            //| constant
   1135     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
   1136     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
   1137     if (MaxAlignment == 0)                                 // Alignment.
   1138       Abbv->Add(BitCodeAbbrevOp(0));
   1139     else {
   1140       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
   1141       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   1142                                Log2_32_Ceil(MaxEncAlignment+1)));
   1143     }
   1144     if (SectionMap.empty())                                    // Section.
   1145       Abbv->Add(BitCodeAbbrevOp(0));
   1146     else
   1147       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   1148                                Log2_32_Ceil(SectionMap.size()+1)));
   1149     // Don't bother emitting vis + thread local.
   1150     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
   1151   }
   1152 
   1153   // Emit the global variable information.
   1154   SmallVector<unsigned, 64> Vals;
   1155   for (const GlobalVariable &GV : M.globals()) {
   1156     unsigned AbbrevToUse = 0;
   1157 
   1158     // GLOBALVAR: [type, isconst, initid,
   1159     //             linkage, alignment, section, visibility, threadlocal,
   1160     //             unnamed_addr, externally_initialized, dllstorageclass,
   1161     //             comdat]
   1162     Vals.push_back(VE.getTypeID(GV.getValueType()));
   1163     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
   1164     Vals.push_back(GV.isDeclaration() ? 0 :
   1165                    (VE.getValueID(GV.getInitializer()) + 1));
   1166     Vals.push_back(getEncodedLinkage(GV));
   1167     Vals.push_back(Log2_32(GV.getAlignment())+1);
   1168     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
   1169     if (GV.isThreadLocal() ||
   1170         GV.getVisibility() != GlobalValue::DefaultVisibility ||
   1171         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
   1172         GV.isExternallyInitialized() ||
   1173         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
   1174         GV.hasComdat()) {
   1175       Vals.push_back(getEncodedVisibility(GV));
   1176       Vals.push_back(getEncodedThreadLocalMode(GV));
   1177       Vals.push_back(getEncodedUnnamedAddr(GV));
   1178       Vals.push_back(GV.isExternallyInitialized());
   1179       Vals.push_back(getEncodedDLLStorageClass(GV));
   1180       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
   1181     } else {
   1182       AbbrevToUse = SimpleGVarAbbrev;
   1183     }
   1184 
   1185     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
   1186     Vals.clear();
   1187   }
   1188 
   1189   // Emit the function proto information.
   1190   for (const Function &F : M) {
   1191     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
   1192     //             section, visibility, gc, unnamed_addr, prologuedata,
   1193     //             dllstorageclass, comdat, prefixdata, personalityfn]
   1194     Vals.push_back(VE.getTypeID(F.getFunctionType()));
   1195     Vals.push_back(F.getCallingConv());
   1196     Vals.push_back(F.isDeclaration());
   1197     Vals.push_back(getEncodedLinkage(F));
   1198     Vals.push_back(VE.getAttributeID(F.getAttributes()));
   1199     Vals.push_back(Log2_32(F.getAlignment())+1);
   1200     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
   1201     Vals.push_back(getEncodedVisibility(F));
   1202     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
   1203     Vals.push_back(getEncodedUnnamedAddr(F));
   1204     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
   1205                                        : 0);
   1206     Vals.push_back(getEncodedDLLStorageClass(F));
   1207     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
   1208     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
   1209                                      : 0);
   1210     Vals.push_back(
   1211         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
   1212 
   1213     unsigned AbbrevToUse = 0;
   1214     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
   1215     Vals.clear();
   1216   }
   1217 
   1218   // Emit the alias information.
   1219   for (const GlobalAlias &A : M.aliases()) {
   1220     // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass,
   1221     //         threadlocal, unnamed_addr]
   1222     Vals.push_back(VE.getTypeID(A.getValueType()));
   1223     Vals.push_back(A.getType()->getAddressSpace());
   1224     Vals.push_back(VE.getValueID(A.getAliasee()));
   1225     Vals.push_back(getEncodedLinkage(A));
   1226     Vals.push_back(getEncodedVisibility(A));
   1227     Vals.push_back(getEncodedDLLStorageClass(A));
   1228     Vals.push_back(getEncodedThreadLocalMode(A));
   1229     Vals.push_back(getEncodedUnnamedAddr(A));
   1230     unsigned AbbrevToUse = 0;
   1231     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
   1232     Vals.clear();
   1233   }
   1234 
   1235   // Emit the ifunc information.
   1236   for (const GlobalIFunc &I : M.ifuncs()) {
   1237     // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility]
   1238     Vals.push_back(VE.getTypeID(I.getValueType()));
   1239     Vals.push_back(I.getType()->getAddressSpace());
   1240     Vals.push_back(VE.getValueID(I.getResolver()));
   1241     Vals.push_back(getEncodedLinkage(I));
   1242     Vals.push_back(getEncodedVisibility(I));
   1243     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
   1244     Vals.clear();
   1245   }
   1246 
   1247   // Emit the module's source file name.
   1248   {
   1249     StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(),
   1250                                             M.getSourceFileName().size());
   1251     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
   1252     if (Bits == SE_Char6)
   1253       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
   1254     else if (Bits == SE_Fixed7)
   1255       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
   1256 
   1257     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
   1258     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1259     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
   1260     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1261     Abbv->Add(AbbrevOpToUse);
   1262     unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv);
   1263 
   1264     for (const auto P : M.getSourceFileName())
   1265       Vals.push_back((unsigned char)P);
   1266 
   1267     // Emit the finished record.
   1268     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
   1269     Vals.clear();
   1270   }
   1271 
   1272   // If we have a VST, write the VSTOFFSET record placeholder.
   1273   if (M.getValueSymbolTable().empty())
   1274     return;
   1275   writeValueSymbolTableForwardDecl();
   1276 }
   1277 
   1278 static uint64_t getOptimizationFlags(const Value *V) {
   1279   uint64_t Flags = 0;
   1280 
   1281   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
   1282     if (OBO->hasNoSignedWrap())
   1283       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
   1284     if (OBO->hasNoUnsignedWrap())
   1285       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
   1286   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
   1287     if (PEO->isExact())
   1288       Flags |= 1 << bitc::PEO_EXACT;
   1289   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
   1290     if (FPMO->hasUnsafeAlgebra())
   1291       Flags |= FastMathFlags::UnsafeAlgebra;
   1292     if (FPMO->hasNoNaNs())
   1293       Flags |= FastMathFlags::NoNaNs;
   1294     if (FPMO->hasNoInfs())
   1295       Flags |= FastMathFlags::NoInfs;
   1296     if (FPMO->hasNoSignedZeros())
   1297       Flags |= FastMathFlags::NoSignedZeros;
   1298     if (FPMO->hasAllowReciprocal())
   1299       Flags |= FastMathFlags::AllowReciprocal;
   1300   }
   1301 
   1302   return Flags;
   1303 }
   1304 
   1305 void ModuleBitcodeWriter::writeValueAsMetadata(
   1306     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
   1307   // Mimic an MDNode with a value as one operand.
   1308   Value *V = MD->getValue();
   1309   Record.push_back(VE.getTypeID(V->getType()));
   1310   Record.push_back(VE.getValueID(V));
   1311   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
   1312   Record.clear();
   1313 }
   1314 
   1315 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
   1316                                        SmallVectorImpl<uint64_t> &Record,
   1317                                        unsigned Abbrev) {
   1318   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   1319     Metadata *MD = N->getOperand(i);
   1320     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
   1321            "Unexpected function-local metadata");
   1322     Record.push_back(VE.getMetadataOrNullID(MD));
   1323   }
   1324   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
   1325                                     : bitc::METADATA_NODE,
   1326                     Record, Abbrev);
   1327   Record.clear();
   1328 }
   1329 
   1330 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
   1331   // Assume the column is usually under 128, and always output the inlined-at
   1332   // location (it's never more expensive than building an array size 1).
   1333   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1334   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
   1335   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
   1336   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   1337   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   1339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   1340   return Stream.EmitAbbrev(Abbv);
   1341 }
   1342 
   1343 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
   1344                                           SmallVectorImpl<uint64_t> &Record,
   1345                                           unsigned &Abbrev) {
   1346   if (!Abbrev)
   1347     Abbrev = createDILocationAbbrev();
   1348 
   1349   Record.push_back(N->isDistinct());
   1350   Record.push_back(N->getLine());
   1351   Record.push_back(N->getColumn());
   1352   Record.push_back(VE.getMetadataID(N->getScope()));
   1353   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
   1354 
   1355   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
   1356   Record.clear();
   1357 }
   1358 
   1359 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
   1360   // Assume the column is usually under 128, and always output the inlined-at
   1361   // location (it's never more expensive than building an array size 1).
   1362   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1363   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
   1364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
   1365   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   1366   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
   1367   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   1368   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1369   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   1370   return Stream.EmitAbbrev(Abbv);
   1371 }
   1372 
   1373 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
   1374                                              SmallVectorImpl<uint64_t> &Record,
   1375                                              unsigned &Abbrev) {
   1376   if (!Abbrev)
   1377     Abbrev = createGenericDINodeAbbrev();
   1378 
   1379   Record.push_back(N->isDistinct());
   1380   Record.push_back(N->getTag());
   1381   Record.push_back(0); // Per-tag version field; unused for now.
   1382 
   1383   for (auto &I : N->operands())
   1384     Record.push_back(VE.getMetadataOrNullID(I));
   1385 
   1386   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
   1387   Record.clear();
   1388 }
   1389 
   1390 static uint64_t rotateSign(int64_t I) {
   1391   uint64_t U = I;
   1392   return I < 0 ? ~(U << 1) : U << 1;
   1393 }
   1394 
   1395 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
   1396                                           SmallVectorImpl<uint64_t> &Record,
   1397                                           unsigned Abbrev) {
   1398   Record.push_back(N->isDistinct());
   1399   Record.push_back(N->getCount());
   1400   Record.push_back(rotateSign(N->getLowerBound()));
   1401 
   1402   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
   1403   Record.clear();
   1404 }
   1405 
   1406 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
   1407                                             SmallVectorImpl<uint64_t> &Record,
   1408                                             unsigned Abbrev) {
   1409   Record.push_back(N->isDistinct());
   1410   Record.push_back(rotateSign(N->getValue()));
   1411   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1412 
   1413   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
   1414   Record.clear();
   1415 }
   1416 
   1417 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
   1418                                            SmallVectorImpl<uint64_t> &Record,
   1419                                            unsigned Abbrev) {
   1420   Record.push_back(N->isDistinct());
   1421   Record.push_back(N->getTag());
   1422   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1423   Record.push_back(N->getSizeInBits());
   1424   Record.push_back(N->getAlignInBits());
   1425   Record.push_back(N->getEncoding());
   1426 
   1427   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
   1428   Record.clear();
   1429 }
   1430 
   1431 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
   1432                                              SmallVectorImpl<uint64_t> &Record,
   1433                                              unsigned Abbrev) {
   1434   Record.push_back(N->isDistinct());
   1435   Record.push_back(N->getTag());
   1436   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1437   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1438   Record.push_back(N->getLine());
   1439   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1440   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
   1441   Record.push_back(N->getSizeInBits());
   1442   Record.push_back(N->getAlignInBits());
   1443   Record.push_back(N->getOffsetInBits());
   1444   Record.push_back(N->getFlags());
   1445   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
   1446 
   1447   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
   1448   Record.clear();
   1449 }
   1450 
   1451 void ModuleBitcodeWriter::writeDICompositeType(
   1452     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
   1453     unsigned Abbrev) {
   1454   const unsigned IsNotUsedInOldTypeRef = 0x2;
   1455   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
   1456   Record.push_back(N->getTag());
   1457   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1458   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1459   Record.push_back(N->getLine());
   1460   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1461   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
   1462   Record.push_back(N->getSizeInBits());
   1463   Record.push_back(N->getAlignInBits());
   1464   Record.push_back(N->getOffsetInBits());
   1465   Record.push_back(N->getFlags());
   1466   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
   1467   Record.push_back(N->getRuntimeLang());
   1468   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
   1469   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
   1470   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
   1471 
   1472   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
   1473   Record.clear();
   1474 }
   1475 
   1476 void ModuleBitcodeWriter::writeDISubroutineType(
   1477     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
   1478     unsigned Abbrev) {
   1479   const unsigned HasNoOldTypeRefs = 0x2;
   1480   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
   1481   Record.push_back(N->getFlags());
   1482   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
   1483   Record.push_back(N->getCC());
   1484 
   1485   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
   1486   Record.clear();
   1487 }
   1488 
   1489 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
   1490                                       SmallVectorImpl<uint64_t> &Record,
   1491                                       unsigned Abbrev) {
   1492   Record.push_back(N->isDistinct());
   1493   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
   1494   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
   1495 
   1496   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
   1497   Record.clear();
   1498 }
   1499 
   1500 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
   1501                                              SmallVectorImpl<uint64_t> &Record,
   1502                                              unsigned Abbrev) {
   1503   assert(N->isDistinct() && "Expected distinct compile units");
   1504   Record.push_back(/* IsDistinct */ true);
   1505   Record.push_back(N->getSourceLanguage());
   1506   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1507   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
   1508   Record.push_back(N->isOptimized());
   1509   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
   1510   Record.push_back(N->getRuntimeVersion());
   1511   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
   1512   Record.push_back(N->getEmissionKind());
   1513   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
   1514   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
   1515   Record.push_back(/* subprograms */ 0);
   1516   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
   1517   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
   1518   Record.push_back(N->getDWOId());
   1519   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
   1520 
   1521   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
   1522   Record.clear();
   1523 }
   1524 
   1525 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
   1526                                             SmallVectorImpl<uint64_t> &Record,
   1527                                             unsigned Abbrev) {
   1528   uint64_t HasUnitFlag = 1 << 1;
   1529   Record.push_back(N->isDistinct() | HasUnitFlag);
   1530   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1531   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1532   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
   1533   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1534   Record.push_back(N->getLine());
   1535   Record.push_back(VE.getMetadataOrNullID(N->getType()));
   1536   Record.push_back(N->isLocalToUnit());
   1537   Record.push_back(N->isDefinition());
   1538   Record.push_back(N->getScopeLine());
   1539   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
   1540   Record.push_back(N->getVirtuality());
   1541   Record.push_back(N->getVirtualIndex());
   1542   Record.push_back(N->getFlags());
   1543   Record.push_back(N->isOptimized());
   1544   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
   1545   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
   1546   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
   1547   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
   1548   Record.push_back(N->getThisAdjustment());
   1549 
   1550   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
   1551   Record.clear();
   1552 }
   1553 
   1554 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
   1555                                               SmallVectorImpl<uint64_t> &Record,
   1556                                               unsigned Abbrev) {
   1557   Record.push_back(N->isDistinct());
   1558   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1559   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1560   Record.push_back(N->getLine());
   1561   Record.push_back(N->getColumn());
   1562 
   1563   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
   1564   Record.clear();
   1565 }
   1566 
   1567 void ModuleBitcodeWriter::writeDILexicalBlockFile(
   1568     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
   1569     unsigned Abbrev) {
   1570   Record.push_back(N->isDistinct());
   1571   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1572   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1573   Record.push_back(N->getDiscriminator());
   1574 
   1575   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
   1576   Record.clear();
   1577 }
   1578 
   1579 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
   1580                                            SmallVectorImpl<uint64_t> &Record,
   1581                                            unsigned Abbrev) {
   1582   Record.push_back(N->isDistinct());
   1583   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1584   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1585   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1586   Record.push_back(N->getLine());
   1587 
   1588   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
   1589   Record.clear();
   1590 }
   1591 
   1592 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
   1593                                        SmallVectorImpl<uint64_t> &Record,
   1594                                        unsigned Abbrev) {
   1595   Record.push_back(N->isDistinct());
   1596   Record.push_back(N->getMacinfoType());
   1597   Record.push_back(N->getLine());
   1598   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1599   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
   1600 
   1601   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
   1602   Record.clear();
   1603 }
   1604 
   1605 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
   1606                                            SmallVectorImpl<uint64_t> &Record,
   1607                                            unsigned Abbrev) {
   1608   Record.push_back(N->isDistinct());
   1609   Record.push_back(N->getMacinfoType());
   1610   Record.push_back(N->getLine());
   1611   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1612   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
   1613 
   1614   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
   1615   Record.clear();
   1616 }
   1617 
   1618 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
   1619                                         SmallVectorImpl<uint64_t> &Record,
   1620                                         unsigned Abbrev) {
   1621   Record.push_back(N->isDistinct());
   1622   for (auto &I : N->operands())
   1623     Record.push_back(VE.getMetadataOrNullID(I));
   1624 
   1625   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
   1626   Record.clear();
   1627 }
   1628 
   1629 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
   1630     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
   1631     unsigned Abbrev) {
   1632   Record.push_back(N->isDistinct());
   1633   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1634   Record.push_back(VE.getMetadataOrNullID(N->getType()));
   1635 
   1636   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
   1637   Record.clear();
   1638 }
   1639 
   1640 void ModuleBitcodeWriter::writeDITemplateValueParameter(
   1641     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
   1642     unsigned Abbrev) {
   1643   Record.push_back(N->isDistinct());
   1644   Record.push_back(N->getTag());
   1645   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1646   Record.push_back(VE.getMetadataOrNullID(N->getType()));
   1647   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
   1648 
   1649   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
   1650   Record.clear();
   1651 }
   1652 
   1653 void ModuleBitcodeWriter::writeDIGlobalVariable(
   1654     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
   1655     unsigned Abbrev) {
   1656   Record.push_back(N->isDistinct());
   1657   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1658   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1659   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
   1660   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1661   Record.push_back(N->getLine());
   1662   Record.push_back(VE.getMetadataOrNullID(N->getType()));
   1663   Record.push_back(N->isLocalToUnit());
   1664   Record.push_back(N->isDefinition());
   1665   Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
   1666   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
   1667 
   1668   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
   1669   Record.clear();
   1670 }
   1671 
   1672 void ModuleBitcodeWriter::writeDILocalVariable(
   1673     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
   1674     unsigned Abbrev) {
   1675   Record.push_back(N->isDistinct());
   1676   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1677   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1678   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1679   Record.push_back(N->getLine());
   1680   Record.push_back(VE.getMetadataOrNullID(N->getType()));
   1681   Record.push_back(N->getArg());
   1682   Record.push_back(N->getFlags());
   1683 
   1684   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
   1685   Record.clear();
   1686 }
   1687 
   1688 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
   1689                                             SmallVectorImpl<uint64_t> &Record,
   1690                                             unsigned Abbrev) {
   1691   Record.reserve(N->getElements().size() + 1);
   1692 
   1693   Record.push_back(N->isDistinct());
   1694   Record.append(N->elements_begin(), N->elements_end());
   1695 
   1696   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
   1697   Record.clear();
   1698 }
   1699 
   1700 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
   1701                                               SmallVectorImpl<uint64_t> &Record,
   1702                                               unsigned Abbrev) {
   1703   Record.push_back(N->isDistinct());
   1704   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1705   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1706   Record.push_back(N->getLine());
   1707   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
   1708   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
   1709   Record.push_back(N->getAttributes());
   1710   Record.push_back(VE.getMetadataOrNullID(N->getType()));
   1711 
   1712   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
   1713   Record.clear();
   1714 }
   1715 
   1716 void ModuleBitcodeWriter::writeDIImportedEntity(
   1717     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
   1718     unsigned Abbrev) {
   1719   Record.push_back(N->isDistinct());
   1720   Record.push_back(N->getTag());
   1721   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1722   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
   1723   Record.push_back(N->getLine());
   1724   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1725 
   1726   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
   1727   Record.clear();
   1728 }
   1729 
   1730 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
   1731   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1732   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
   1733   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1734   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   1735   return Stream.EmitAbbrev(Abbv);
   1736 }
   1737 
   1738 void ModuleBitcodeWriter::writeNamedMetadata(
   1739     SmallVectorImpl<uint64_t> &Record) {
   1740   if (M.named_metadata_empty())
   1741     return;
   1742 
   1743   unsigned Abbrev = createNamedMetadataAbbrev();
   1744   for (const NamedMDNode &NMD : M.named_metadata()) {
   1745     // Write name.
   1746     StringRef Str = NMD.getName();
   1747     Record.append(Str.bytes_begin(), Str.bytes_end());
   1748     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
   1749     Record.clear();
   1750 
   1751     // Write named metadata operands.
   1752     for (const MDNode *N : NMD.operands())
   1753       Record.push_back(VE.getMetadataID(N));
   1754     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
   1755     Record.clear();
   1756   }
   1757 }
   1758 
   1759 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
   1760   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1761   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
   1762   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
   1763   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
   1764   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
   1765   return Stream.EmitAbbrev(Abbv);
   1766 }
   1767 
   1768 /// Write out a record for MDString.
   1769 ///
   1770 /// All the metadata strings in a metadata block are emitted in a single
   1771 /// record.  The sizes and strings themselves are shoved into a blob.
   1772 void ModuleBitcodeWriter::writeMetadataStrings(
   1773     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
   1774   if (Strings.empty())
   1775     return;
   1776 
   1777   // Start the record with the number of strings.
   1778   Record.push_back(bitc::METADATA_STRINGS);
   1779   Record.push_back(Strings.size());
   1780 
   1781   // Emit the sizes of the strings in the blob.
   1782   SmallString<256> Blob;
   1783   {
   1784     BitstreamWriter W(Blob);
   1785     for (const Metadata *MD : Strings)
   1786       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
   1787     W.FlushToWord();
   1788   }
   1789 
   1790   // Add the offset to the strings to the record.
   1791   Record.push_back(Blob.size());
   1792 
   1793   // Add the strings to the blob.
   1794   for (const Metadata *MD : Strings)
   1795     Blob.append(cast<MDString>(MD)->getString());
   1796 
   1797   // Emit the final record.
   1798   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
   1799   Record.clear();
   1800 }
   1801 
   1802 void ModuleBitcodeWriter::writeMetadataRecords(
   1803     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record) {
   1804   if (MDs.empty())
   1805     return;
   1806 
   1807   // Initialize MDNode abbreviations.
   1808 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
   1809 #include "llvm/IR/Metadata.def"
   1810 
   1811   for (const Metadata *MD : MDs) {
   1812     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
   1813       assert(N->isResolved() && "Expected forward references to be resolved");
   1814 
   1815       switch (N->getMetadataID()) {
   1816       default:
   1817         llvm_unreachable("Invalid MDNode subclass");
   1818 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
   1819   case Metadata::CLASS##Kind:                                                  \
   1820     write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                       \
   1821     continue;
   1822 #include "llvm/IR/Metadata.def"
   1823       }
   1824     }
   1825     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
   1826   }
   1827 }
   1828 
   1829 void ModuleBitcodeWriter::writeModuleMetadata() {
   1830   if (!VE.hasMDs() && M.named_metadata_empty())
   1831     return;
   1832 
   1833   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
   1834   SmallVector<uint64_t, 64> Record;
   1835   writeMetadataStrings(VE.getMDStrings(), Record);
   1836   writeMetadataRecords(VE.getNonMDStrings(), Record);
   1837   writeNamedMetadata(Record);
   1838 
   1839   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
   1840     SmallVector<uint64_t, 4> Record;
   1841     Record.push_back(VE.getValueID(&GO));
   1842     pushGlobalMetadataAttachment(Record, GO);
   1843     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
   1844   };
   1845   for (const Function &F : M)
   1846     if (F.isDeclaration() && F.hasMetadata())
   1847       AddDeclAttachedMetadata(F);
   1848   // FIXME: Only store metadata for declarations here, and move data for global
   1849   // variable definitions to a separate block (PR28134).
   1850   for (const GlobalVariable &GV : M.globals())
   1851     if (GV.hasMetadata())
   1852       AddDeclAttachedMetadata(GV);
   1853 
   1854   Stream.ExitBlock();
   1855 }
   1856 
   1857 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
   1858   if (!VE.hasMDs())
   1859     return;
   1860 
   1861   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
   1862   SmallVector<uint64_t, 64> Record;
   1863   writeMetadataStrings(VE.getMDStrings(), Record);
   1864   writeMetadataRecords(VE.getNonMDStrings(), Record);
   1865   Stream.ExitBlock();
   1866 }
   1867 
   1868 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
   1869     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
   1870   // [n x [id, mdnode]]
   1871   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
   1872   GO.getAllMetadata(MDs);
   1873   for (const auto &I : MDs) {
   1874     Record.push_back(I.first);
   1875     Record.push_back(VE.getMetadataID(I.second));
   1876   }
   1877 }
   1878 
   1879 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
   1880   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
   1881 
   1882   SmallVector<uint64_t, 64> Record;
   1883 
   1884   if (F.hasMetadata()) {
   1885     pushGlobalMetadataAttachment(Record, F);
   1886     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
   1887     Record.clear();
   1888   }
   1889 
   1890   // Write metadata attachments
   1891   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
   1892   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
   1893   for (const BasicBlock &BB : F)
   1894     for (const Instruction &I : BB) {
   1895       MDs.clear();
   1896       I.getAllMetadataOtherThanDebugLoc(MDs);
   1897 
   1898       // If no metadata, ignore instruction.
   1899       if (MDs.empty()) continue;
   1900 
   1901       Record.push_back(VE.getInstructionID(&I));
   1902 
   1903       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
   1904         Record.push_back(MDs[i].first);
   1905         Record.push_back(VE.getMetadataID(MDs[i].second));
   1906       }
   1907       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
   1908       Record.clear();
   1909     }
   1910 
   1911   Stream.ExitBlock();
   1912 }
   1913 
   1914 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
   1915   SmallVector<uint64_t, 64> Record;
   1916 
   1917   // Write metadata kinds
   1918   // METADATA_KIND - [n x [id, name]]
   1919   SmallVector<StringRef, 8> Names;
   1920   M.getMDKindNames(Names);
   1921 
   1922   if (Names.empty()) return;
   1923 
   1924   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
   1925 
   1926   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
   1927     Record.push_back(MDKindID);
   1928     StringRef KName = Names[MDKindID];
   1929     Record.append(KName.begin(), KName.end());
   1930 
   1931     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
   1932     Record.clear();
   1933   }
   1934 
   1935   Stream.ExitBlock();
   1936 }
   1937 
   1938 void ModuleBitcodeWriter::writeOperandBundleTags() {
   1939   // Write metadata kinds
   1940   //
   1941   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
   1942   //
   1943   // OPERAND_BUNDLE_TAG - [strchr x N]
   1944 
   1945   SmallVector<StringRef, 8> Tags;
   1946   M.getOperandBundleTags(Tags);
   1947 
   1948   if (Tags.empty())
   1949     return;
   1950 
   1951   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
   1952 
   1953   SmallVector<uint64_t, 64> Record;
   1954 
   1955   for (auto Tag : Tags) {
   1956     Record.append(Tag.begin(), Tag.end());
   1957 
   1958     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
   1959     Record.clear();
   1960   }
   1961 
   1962   Stream.ExitBlock();
   1963 }
   1964 
   1965 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
   1966   if ((int64_t)V >= 0)
   1967     Vals.push_back(V << 1);
   1968   else
   1969     Vals.push_back((-V << 1) | 1);
   1970 }
   1971 
   1972 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
   1973                                          bool isGlobal) {
   1974   if (FirstVal == LastVal) return;
   1975 
   1976   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
   1977 
   1978   unsigned AggregateAbbrev = 0;
   1979   unsigned String8Abbrev = 0;
   1980   unsigned CString7Abbrev = 0;
   1981   unsigned CString6Abbrev = 0;
   1982   // If this is a constant pool for the module, emit module-specific abbrevs.
   1983   if (isGlobal) {
   1984     // Abbrev for CST_CODE_AGGREGATE.
   1985     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1986     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
   1987     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1988     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
   1989     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
   1990 
   1991     // Abbrev for CST_CODE_STRING.
   1992     Abbv = new BitCodeAbbrev();
   1993     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
   1994     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1995     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   1996     String8Abbrev = Stream.EmitAbbrev(Abbv);
   1997     // Abbrev for CST_CODE_CSTRING.
   1998     Abbv = new BitCodeAbbrev();
   1999     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
   2000     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   2001     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   2002     CString7Abbrev = Stream.EmitAbbrev(Abbv);
   2003     // Abbrev for CST_CODE_CSTRING.
   2004     Abbv = new BitCodeAbbrev();
   2005     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
   2006     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   2007     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   2008     CString6Abbrev = Stream.EmitAbbrev(Abbv);
   2009   }
   2010 
   2011   SmallVector<uint64_t, 64> Record;
   2012 
   2013   const ValueEnumerator::ValueList &Vals = VE.getValues();
   2014   Type *LastTy = nullptr;
   2015   for (unsigned i = FirstVal; i != LastVal; ++i) {
   2016     const Value *V = Vals[i].first;
   2017     // If we need to switch types, do so now.
   2018     if (V->getType() != LastTy) {
   2019       LastTy = V->getType();
   2020       Record.push_back(VE.getTypeID(LastTy));
   2021       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
   2022                         CONSTANTS_SETTYPE_ABBREV);
   2023       Record.clear();
   2024     }
   2025 
   2026     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
   2027       Record.push_back(unsigned(IA->hasSideEffects()) |
   2028                        unsigned(IA->isAlignStack()) << 1 |
   2029                        unsigned(IA->getDialect()&1) << 2);
   2030 
   2031       // Add the asm string.
   2032       const std::string &AsmStr = IA->getAsmString();
   2033       Record.push_back(AsmStr.size());
   2034       Record.append(AsmStr.begin(), AsmStr.end());
   2035 
   2036       // Add the constraint string.
   2037       const std::string &ConstraintStr = IA->getConstraintString();
   2038       Record.push_back(ConstraintStr.size());
   2039       Record.append(ConstraintStr.begin(), ConstraintStr.end());
   2040       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
   2041       Record.clear();
   2042       continue;
   2043     }
   2044     const Constant *C = cast<Constant>(V);
   2045     unsigned Code = -1U;
   2046     unsigned AbbrevToUse = 0;
   2047     if (C->isNullValue()) {
   2048       Code = bitc::CST_CODE_NULL;
   2049     } else if (isa<UndefValue>(C)) {
   2050       Code = bitc::CST_CODE_UNDEF;
   2051     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
   2052       if (IV->getBitWidth() <= 64) {
   2053         uint64_t V = IV->getSExtValue();
   2054         emitSignedInt64(Record, V);
   2055         Code = bitc::CST_CODE_INTEGER;
   2056         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
   2057       } else {                             // Wide integers, > 64 bits in size.
   2058         // We have an arbitrary precision integer value to write whose
   2059         // bit width is > 64. However, in canonical unsigned integer
   2060         // format it is likely that the high bits are going to be zero.
   2061         // So, we only write the number of active words.
   2062         unsigned NWords = IV->getValue().getActiveWords();
   2063         const uint64_t *RawWords = IV->getValue().getRawData();
   2064         for (unsigned i = 0; i != NWords; ++i) {
   2065           emitSignedInt64(Record, RawWords[i]);
   2066         }
   2067         Code = bitc::CST_CODE_WIDE_INTEGER;
   2068       }
   2069     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
   2070       Code = bitc::CST_CODE_FLOAT;
   2071       Type *Ty = CFP->getType();
   2072       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
   2073         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
   2074       } else if (Ty->isX86_FP80Ty()) {
   2075         // api needed to prevent premature destruction
   2076         // bits are not in the same order as a normal i80 APInt, compensate.
   2077         APInt api = CFP->getValueAPF().bitcastToAPInt();
   2078         const uint64_t *p = api.getRawData();
   2079         Record.push_back((p[1] << 48) | (p[0] >> 16));
   2080         Record.push_back(p[0] & 0xffffLL);
   2081       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
   2082         APInt api = CFP->getValueAPF().bitcastToAPInt();
   2083         const uint64_t *p = api.getRawData();
   2084         Record.push_back(p[0]);
   2085         Record.push_back(p[1]);
   2086       } else {
   2087         assert (0 && "Unknown FP type!");
   2088       }
   2089     } else if (isa<ConstantDataSequential>(C) &&
   2090                cast<ConstantDataSequential>(C)->isString()) {
   2091       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
   2092       // Emit constant strings specially.
   2093       unsigned NumElts = Str->getNumElements();
   2094       // If this is a null-terminated string, use the denser CSTRING encoding.
   2095       if (Str->isCString()) {
   2096         Code = bitc::CST_CODE_CSTRING;
   2097         --NumElts;  // Don't encode the null, which isn't allowed by char6.
   2098       } else {
   2099         Code = bitc::CST_CODE_STRING;
   2100         AbbrevToUse = String8Abbrev;
   2101       }
   2102       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
   2103       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
   2104       for (unsigned i = 0; i != NumElts; ++i) {
   2105         unsigned char V = Str->getElementAsInteger(i);
   2106         Record.push_back(V);
   2107         isCStr7 &= (V & 128) == 0;
   2108         if (isCStrChar6)
   2109           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
   2110       }
   2111 
   2112       if (isCStrChar6)
   2113         AbbrevToUse = CString6Abbrev;
   2114       else if (isCStr7)
   2115         AbbrevToUse = CString7Abbrev;
   2116     } else if (const ConstantDataSequential *CDS =
   2117                   dyn_cast<ConstantDataSequential>(C)) {
   2118       Code = bitc::CST_CODE_DATA;
   2119       Type *EltTy = CDS->getType()->getElementType();
   2120       if (isa<IntegerType>(EltTy)) {
   2121         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
   2122           Record.push_back(CDS->getElementAsInteger(i));
   2123       } else {
   2124         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
   2125           Record.push_back(
   2126               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
   2127       }
   2128     } else if (isa<ConstantAggregate>(C)) {
   2129       Code = bitc::CST_CODE_AGGREGATE;
   2130       for (const Value *Op : C->operands())
   2131         Record.push_back(VE.getValueID(Op));
   2132       AbbrevToUse = AggregateAbbrev;
   2133     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   2134       switch (CE->getOpcode()) {
   2135       default:
   2136         if (Instruction::isCast(CE->getOpcode())) {
   2137           Code = bitc::CST_CODE_CE_CAST;
   2138           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
   2139           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
   2140           Record.push_back(VE.getValueID(C->getOperand(0)));
   2141           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
   2142         } else {
   2143           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
   2144           Code = bitc::CST_CODE_CE_BINOP;
   2145           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
   2146           Record.push_back(VE.getValueID(C->getOperand(0)));
   2147           Record.push_back(VE.getValueID(C->getOperand(1)));
   2148           uint64_t Flags = getOptimizationFlags(CE);
   2149           if (Flags != 0)
   2150             Record.push_back(Flags);
   2151         }
   2152         break;
   2153       case Instruction::GetElementPtr: {
   2154         Code = bitc::CST_CODE_CE_GEP;
   2155         const auto *GO = cast<GEPOperator>(C);
   2156         if (GO->isInBounds())
   2157           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
   2158         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
   2159         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
   2160           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
   2161           Record.push_back(VE.getValueID(C->getOperand(i)));
   2162         }
   2163         break;
   2164       }
   2165       case Instruction::Select:
   2166         Code = bitc::CST_CODE_CE_SELECT;
   2167         Record.push_back(VE.getValueID(C->getOperand(0)));
   2168         Record.push_back(VE.getValueID(C->getOperand(1)));
   2169         Record.push_back(VE.getValueID(C->getOperand(2)));
   2170         break;
   2171       case Instruction::ExtractElement:
   2172         Code = bitc::CST_CODE_CE_EXTRACTELT;
   2173         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
   2174         Record.push_back(VE.getValueID(C->getOperand(0)));
   2175         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
   2176         Record.push_back(VE.getValueID(C->getOperand(1)));
   2177         break;
   2178       case Instruction::InsertElement:
   2179         Code = bitc::CST_CODE_CE_INSERTELT;
   2180         Record.push_back(VE.getValueID(C->getOperand(0)));
   2181         Record.push_back(VE.getValueID(C->getOperand(1)));
   2182         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
   2183         Record.push_back(VE.getValueID(C->getOperand(2)));
   2184         break;
   2185       case Instruction::ShuffleVector:
   2186         // If the return type and argument types are the same, this is a
   2187         // standard shufflevector instruction.  If the types are different,
   2188         // then the shuffle is widening or truncating the input vectors, and
   2189         // the argument type must also be encoded.
   2190         if (C->getType() == C->getOperand(0)->getType()) {
   2191           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
   2192         } else {
   2193           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
   2194           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
   2195         }
   2196         Record.push_back(VE.getValueID(C->getOperand(0)));
   2197         Record.push_back(VE.getValueID(C->getOperand(1)));
   2198         Record.push_back(VE.getValueID(C->getOperand(2)));
   2199         break;
   2200       case Instruction::ICmp:
   2201       case Instruction::FCmp:
   2202         Code = bitc::CST_CODE_CE_CMP;
   2203         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
   2204         Record.push_back(VE.getValueID(C->getOperand(0)));
   2205         Record.push_back(VE.getValueID(C->getOperand(1)));
   2206         Record.push_back(CE->getPredicate());
   2207         break;
   2208       }
   2209     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
   2210       Code = bitc::CST_CODE_BLOCKADDRESS;
   2211       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
   2212       Record.push_back(VE.getValueID(BA->getFunction()));
   2213       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
   2214     } else {
   2215 #ifndef NDEBUG
   2216       C->dump();
   2217 #endif
   2218       llvm_unreachable("Unknown constant!");
   2219     }
   2220     Stream.EmitRecord(Code, Record, AbbrevToUse);
   2221     Record.clear();
   2222   }
   2223 
   2224   Stream.ExitBlock();
   2225 }
   2226 
   2227 void ModuleBitcodeWriter::writeModuleConstants() {
   2228   const ValueEnumerator::ValueList &Vals = VE.getValues();
   2229 
   2230   // Find the first constant to emit, which is the first non-globalvalue value.
   2231   // We know globalvalues have been emitted by WriteModuleInfo.
   2232   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
   2233     if (!isa<GlobalValue>(Vals[i].first)) {
   2234       writeConstants(i, Vals.size(), true);
   2235       return;
   2236     }
   2237   }
   2238 }
   2239 
   2240 /// pushValueAndType - The file has to encode both the value and type id for
   2241 /// many values, because we need to know what type to create for forward
   2242 /// references.  However, most operands are not forward references, so this type
   2243 /// field is not needed.
   2244 ///
   2245 /// This function adds V's value ID to Vals.  If the value ID is higher than the
   2246 /// instruction ID, then it is a forward reference, and it also includes the
   2247 /// type ID.  The value ID that is written is encoded relative to the InstID.
   2248 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
   2249                                            SmallVectorImpl<unsigned> &Vals) {
   2250   unsigned ValID = VE.getValueID(V);
   2251   // Make encoding relative to the InstID.
   2252   Vals.push_back(InstID - ValID);
   2253   if (ValID >= InstID) {
   2254     Vals.push_back(VE.getTypeID(V->getType()));
   2255     return true;
   2256   }
   2257   return false;
   2258 }
   2259 
   2260 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
   2261                                               unsigned InstID) {
   2262   SmallVector<unsigned, 64> Record;
   2263   LLVMContext &C = CS.getInstruction()->getContext();
   2264 
   2265   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
   2266     const auto &Bundle = CS.getOperandBundleAt(i);
   2267     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
   2268 
   2269     for (auto &Input : Bundle.Inputs)
   2270       pushValueAndType(Input, InstID, Record);
   2271 
   2272     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
   2273     Record.clear();
   2274   }
   2275 }
   2276 
   2277 /// pushValue - Like pushValueAndType, but where the type of the value is
   2278 /// omitted (perhaps it was already encoded in an earlier operand).
   2279 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
   2280                                     SmallVectorImpl<unsigned> &Vals) {
   2281   unsigned ValID = VE.getValueID(V);
   2282   Vals.push_back(InstID - ValID);
   2283 }
   2284 
   2285 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
   2286                                           SmallVectorImpl<uint64_t> &Vals) {
   2287   unsigned ValID = VE.getValueID(V);
   2288   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
   2289   emitSignedInt64(Vals, diff);
   2290 }
   2291 
   2292 /// WriteInstruction - Emit an instruction to the specified stream.
   2293 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
   2294                                            unsigned InstID,
   2295                                            SmallVectorImpl<unsigned> &Vals) {
   2296   unsigned Code = 0;
   2297   unsigned AbbrevToUse = 0;
   2298   VE.setInstructionID(&I);
   2299   switch (I.getOpcode()) {
   2300   default:
   2301     if (Instruction::isCast(I.getOpcode())) {
   2302       Code = bitc::FUNC_CODE_INST_CAST;
   2303       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
   2304         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
   2305       Vals.push_back(VE.getTypeID(I.getType()));
   2306       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
   2307     } else {
   2308       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
   2309       Code = bitc::FUNC_CODE_INST_BINOP;
   2310       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
   2311         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
   2312       pushValue(I.getOperand(1), InstID, Vals);
   2313       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
   2314       uint64_t Flags = getOptimizationFlags(&I);
   2315       if (Flags != 0) {
   2316         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
   2317           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
   2318         Vals.push_back(Flags);
   2319       }
   2320     }
   2321     break;
   2322 
   2323   case Instruction::GetElementPtr: {
   2324     Code = bitc::FUNC_CODE_INST_GEP;
   2325     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
   2326     auto &GEPInst = cast<GetElementPtrInst>(I);
   2327     Vals.push_back(GEPInst.isInBounds());
   2328     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
   2329     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   2330       pushValueAndType(I.getOperand(i), InstID, Vals);
   2331     break;
   2332   }
   2333   case Instruction::ExtractValue: {
   2334     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
   2335     pushValueAndType(I.getOperand(0), InstID, Vals);
   2336     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
   2337     Vals.append(EVI->idx_begin(), EVI->idx_end());
   2338     break;
   2339   }
   2340   case Instruction::InsertValue: {
   2341     Code = bitc::FUNC_CODE_INST_INSERTVAL;
   2342     pushValueAndType(I.getOperand(0), InstID, Vals);
   2343     pushValueAndType(I.getOperand(1), InstID, Vals);
   2344     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
   2345     Vals.append(IVI->idx_begin(), IVI->idx_end());
   2346     break;
   2347   }
   2348   case Instruction::Select:
   2349     Code = bitc::FUNC_CODE_INST_VSELECT;
   2350     pushValueAndType(I.getOperand(1), InstID, Vals);
   2351     pushValue(I.getOperand(2), InstID, Vals);
   2352     pushValueAndType(I.getOperand(0), InstID, Vals);
   2353     break;
   2354   case Instruction::ExtractElement:
   2355     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
   2356     pushValueAndType(I.getOperand(0), InstID, Vals);
   2357     pushValueAndType(I.getOperand(1), InstID, Vals);
   2358     break;
   2359   case Instruction::InsertElement:
   2360     Code = bitc::FUNC_CODE_INST_INSERTELT;
   2361     pushValueAndType(I.getOperand(0), InstID, Vals);
   2362     pushValue(I.getOperand(1), InstID, Vals);
   2363     pushValueAndType(I.getOperand(2), InstID, Vals);
   2364     break;
   2365   case Instruction::ShuffleVector:
   2366     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
   2367     pushValueAndType(I.getOperand(0), InstID, Vals);
   2368     pushValue(I.getOperand(1), InstID, Vals);
   2369     pushValue(I.getOperand(2), InstID, Vals);
   2370     break;
   2371   case Instruction::ICmp:
   2372   case Instruction::FCmp: {
   2373     // compare returning Int1Ty or vector of Int1Ty
   2374     Code = bitc::FUNC_CODE_INST_CMP2;
   2375     pushValueAndType(I.getOperand(0), InstID, Vals);
   2376     pushValue(I.getOperand(1), InstID, Vals);
   2377     Vals.push_back(cast<CmpInst>(I).getPredicate());
   2378     uint64_t Flags = getOptimizationFlags(&I);
   2379     if (Flags != 0)
   2380       Vals.push_back(Flags);
   2381     break;
   2382   }
   2383 
   2384   case Instruction::Ret:
   2385     {
   2386       Code = bitc::FUNC_CODE_INST_RET;
   2387       unsigned NumOperands = I.getNumOperands();
   2388       if (NumOperands == 0)
   2389         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
   2390       else if (NumOperands == 1) {
   2391         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
   2392           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
   2393       } else {
   2394         for (unsigned i = 0, e = NumOperands; i != e; ++i)
   2395           pushValueAndType(I.getOperand(i), InstID, Vals);
   2396       }
   2397     }
   2398     break;
   2399   case Instruction::Br:
   2400     {
   2401       Code = bitc::FUNC_CODE_INST_BR;
   2402       const BranchInst &II = cast<BranchInst>(I);
   2403       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
   2404       if (II.isConditional()) {
   2405         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
   2406         pushValue(II.getCondition(), InstID, Vals);
   2407       }
   2408     }
   2409     break;
   2410   case Instruction::Switch:
   2411     {
   2412       Code = bitc::FUNC_CODE_INST_SWITCH;
   2413       const SwitchInst &SI = cast<SwitchInst>(I);
   2414       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
   2415       pushValue(SI.getCondition(), InstID, Vals);
   2416       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
   2417       for (SwitchInst::ConstCaseIt Case : SI.cases()) {
   2418         Vals.push_back(VE.getValueID(Case.getCaseValue()));
   2419         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
   2420       }
   2421     }
   2422     break;
   2423   case Instruction::IndirectBr:
   2424     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
   2425     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   2426     // Encode the address operand as relative, but not the basic blocks.
   2427     pushValue(I.getOperand(0), InstID, Vals);
   2428     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
   2429       Vals.push_back(VE.getValueID(I.getOperand(i)));
   2430     break;
   2431 
   2432   case Instruction::Invoke: {
   2433     const InvokeInst *II = cast<InvokeInst>(&I);
   2434     const Value *Callee = II->getCalledValue();
   2435     FunctionType *FTy = II->getFunctionType();
   2436 
   2437     if (II->hasOperandBundles())
   2438       writeOperandBundles(II, InstID);
   2439 
   2440     Code = bitc::FUNC_CODE_INST_INVOKE;
   2441 
   2442     Vals.push_back(VE.getAttributeID(II->getAttributes()));
   2443     Vals.push_back(II->getCallingConv() | 1 << 13);
   2444     Vals.push_back(VE.getValueID(II->getNormalDest()));
   2445     Vals.push_back(VE.getValueID(II->getUnwindDest()));
   2446     Vals.push_back(VE.getTypeID(FTy));
   2447     pushValueAndType(Callee, InstID, Vals);
   2448 
   2449     // Emit value #'s for the fixed parameters.
   2450     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   2451       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
   2452 
   2453     // Emit type/value pairs for varargs params.
   2454     if (FTy->isVarArg()) {
   2455       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
   2456            i != e; ++i)
   2457         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
   2458     }
   2459     break;
   2460   }
   2461   case Instruction::Resume:
   2462     Code = bitc::FUNC_CODE_INST_RESUME;
   2463     pushValueAndType(I.getOperand(0), InstID, Vals);
   2464     break;
   2465   case Instruction::CleanupRet: {
   2466     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
   2467     const auto &CRI = cast<CleanupReturnInst>(I);
   2468     pushValue(CRI.getCleanupPad(), InstID, Vals);
   2469     if (CRI.hasUnwindDest())
   2470       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
   2471     break;
   2472   }
   2473   case Instruction::CatchRet: {
   2474     Code = bitc::FUNC_CODE_INST_CATCHRET;
   2475     const auto &CRI = cast<CatchReturnInst>(I);
   2476     pushValue(CRI.getCatchPad(), InstID, Vals);
   2477     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
   2478     break;
   2479   }
   2480   case Instruction::CleanupPad:
   2481   case Instruction::CatchPad: {
   2482     const auto &FuncletPad = cast<FuncletPadInst>(I);
   2483     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
   2484                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
   2485     pushValue(FuncletPad.getParentPad(), InstID, Vals);
   2486 
   2487     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
   2488     Vals.push_back(NumArgOperands);
   2489     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
   2490       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
   2491     break;
   2492   }
   2493   case Instruction::CatchSwitch: {
   2494     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
   2495     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
   2496 
   2497     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
   2498 
   2499     unsigned NumHandlers = CatchSwitch.getNumHandlers();
   2500     Vals.push_back(NumHandlers);
   2501     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
   2502       Vals.push_back(VE.getValueID(CatchPadBB));
   2503 
   2504     if (CatchSwitch.hasUnwindDest())
   2505       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
   2506     break;
   2507   }
   2508   case Instruction::Unreachable:
   2509     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
   2510     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
   2511     break;
   2512 
   2513   case Instruction::PHI: {
   2514     const PHINode &PN = cast<PHINode>(I);
   2515     Code = bitc::FUNC_CODE_INST_PHI;
   2516     // With the newer instruction encoding, forward references could give
   2517     // negative valued IDs.  This is most common for PHIs, so we use
   2518     // signed VBRs.
   2519     SmallVector<uint64_t, 128> Vals64;
   2520     Vals64.push_back(VE.getTypeID(PN.getType()));
   2521     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   2522       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
   2523       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
   2524     }
   2525     // Emit a Vals64 vector and exit.
   2526     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
   2527     Vals64.clear();
   2528     return;
   2529   }
   2530 
   2531   case Instruction::LandingPad: {
   2532     const LandingPadInst &LP = cast<LandingPadInst>(I);
   2533     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
   2534     Vals.push_back(VE.getTypeID(LP.getType()));
   2535     Vals.push_back(LP.isCleanup());
   2536     Vals.push_back(LP.getNumClauses());
   2537     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
   2538       if (LP.isCatch(I))
   2539         Vals.push_back(LandingPadInst::Catch);
   2540       else
   2541         Vals.push_back(LandingPadInst::Filter);
   2542       pushValueAndType(LP.getClause(I), InstID, Vals);
   2543     }
   2544     break;
   2545   }
   2546 
   2547   case Instruction::Alloca: {
   2548     Code = bitc::FUNC_CODE_INST_ALLOCA;
   2549     const AllocaInst &AI = cast<AllocaInst>(I);
   2550     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
   2551     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   2552     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
   2553     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
   2554     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
   2555            "not enough bits for maximum alignment");
   2556     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
   2557     AlignRecord |= AI.isUsedWithInAlloca() << 5;
   2558     AlignRecord |= 1 << 6;
   2559     AlignRecord |= AI.isSwiftError() << 7;
   2560     Vals.push_back(AlignRecord);
   2561     break;
   2562   }
   2563 
   2564   case Instruction::Load:
   2565     if (cast<LoadInst>(I).isAtomic()) {
   2566       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
   2567       pushValueAndType(I.getOperand(0), InstID, Vals);
   2568     } else {
   2569       Code = bitc::FUNC_CODE_INST_LOAD;
   2570       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
   2571         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
   2572     }
   2573     Vals.push_back(VE.getTypeID(I.getType()));
   2574     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
   2575     Vals.push_back(cast<LoadInst>(I).isVolatile());
   2576     if (cast<LoadInst>(I).isAtomic()) {
   2577       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
   2578       Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
   2579     }
   2580     break;
   2581   case Instruction::Store:
   2582     if (cast<StoreInst>(I).isAtomic())
   2583       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
   2584     else
   2585       Code = bitc::FUNC_CODE_INST_STORE;
   2586     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
   2587     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
   2588     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
   2589     Vals.push_back(cast<StoreInst>(I).isVolatile());
   2590     if (cast<StoreInst>(I).isAtomic()) {
   2591       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
   2592       Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
   2593     }
   2594     break;
   2595   case Instruction::AtomicCmpXchg:
   2596     Code = bitc::FUNC_CODE_INST_CMPXCHG;
   2597     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
   2598     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
   2599     pushValue(I.getOperand(2), InstID, Vals);        // newval.
   2600     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
   2601     Vals.push_back(
   2602         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
   2603     Vals.push_back(
   2604         getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope()));
   2605     Vals.push_back(
   2606         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
   2607     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
   2608     break;
   2609   case Instruction::AtomicRMW:
   2610     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
   2611     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
   2612     pushValue(I.getOperand(1), InstID, Vals);        // val.
   2613     Vals.push_back(
   2614         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
   2615     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
   2616     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
   2617     Vals.push_back(
   2618         getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope()));
   2619     break;
   2620   case Instruction::Fence:
   2621     Code = bitc::FUNC_CODE_INST_FENCE;
   2622     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
   2623     Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
   2624     break;
   2625   case Instruction::Call: {
   2626     const CallInst &CI = cast<CallInst>(I);
   2627     FunctionType *FTy = CI.getFunctionType();
   2628 
   2629     if (CI.hasOperandBundles())
   2630       writeOperandBundles(&CI, InstID);
   2631 
   2632     Code = bitc::FUNC_CODE_INST_CALL;
   2633 
   2634     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
   2635 
   2636     unsigned Flags = getOptimizationFlags(&I);
   2637     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
   2638                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
   2639                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
   2640                    1 << bitc::CALL_EXPLICIT_TYPE |
   2641                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
   2642                    unsigned(Flags != 0) << bitc::CALL_FMF);
   2643     if (Flags != 0)
   2644       Vals.push_back(Flags);
   2645 
   2646     Vals.push_back(VE.getTypeID(FTy));
   2647     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
   2648 
   2649     // Emit value #'s for the fixed parameters.
   2650     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
   2651       // Check for labels (can happen with asm labels).
   2652       if (FTy->getParamType(i)->isLabelTy())
   2653         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
   2654       else
   2655         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
   2656     }
   2657 
   2658     // Emit type/value pairs for varargs params.
   2659     if (FTy->isVarArg()) {
   2660       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
   2661            i != e; ++i)
   2662         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
   2663     }
   2664     break;
   2665   }
   2666   case Instruction::VAArg:
   2667     Code = bitc::FUNC_CODE_INST_VAARG;
   2668     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
   2669     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
   2670     Vals.push_back(VE.getTypeID(I.getType())); // restype.
   2671     break;
   2672   }
   2673 
   2674   Stream.EmitRecord(Code, Vals, AbbrevToUse);
   2675   Vals.clear();
   2676 }
   2677 
   2678 /// Emit names for globals/functions etc. \p IsModuleLevel is true when
   2679 /// we are writing the module-level VST, where we are including a function
   2680 /// bitcode index and need to backpatch the VST forward declaration record.
   2681 void ModuleBitcodeWriter::writeValueSymbolTable(
   2682     const ValueSymbolTable &VST, bool IsModuleLevel,
   2683     DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) {
   2684   if (VST.empty()) {
   2685     // writeValueSymbolTableForwardDecl should have returned early as
   2686     // well. Ensure this handling remains in sync by asserting that
   2687     // the placeholder offset is not set.
   2688     assert(!IsModuleLevel || !hasVSTOffsetPlaceholder());
   2689     return;
   2690   }
   2691 
   2692   if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
   2693     // Get the offset of the VST we are writing, and backpatch it into
   2694     // the VST forward declaration record.
   2695     uint64_t VSTOffset = Stream.GetCurrentBitNo();
   2696     // The BitcodeStartBit was the stream offset of the actual bitcode
   2697     // (e.g. excluding any initial darwin header).
   2698     VSTOffset -= bitcodeStartBit();
   2699     assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
   2700     Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
   2701   }
   2702 
   2703   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
   2704 
   2705   // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
   2706   // records, which are not used in the per-function VSTs.
   2707   unsigned FnEntry8BitAbbrev;
   2708   unsigned FnEntry7BitAbbrev;
   2709   unsigned FnEntry6BitAbbrev;
   2710   if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
   2711     // 8-bit fixed-width VST_CODE_FNENTRY function strings.
   2712     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   2713     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
   2714     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
   2715     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
   2716     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   2717     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   2718     FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
   2719 
   2720     // 7-bit fixed width VST_CODE_FNENTRY function strings.
   2721     Abbv = new BitCodeAbbrev();
   2722     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
   2723     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
   2724     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
   2725     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   2726     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   2727     FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
   2728 
   2729     // 6-bit char6 VST_CODE_FNENTRY function strings.
   2730     Abbv = new BitCodeAbbrev();
   2731     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
   2732     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
   2733     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
   2734     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   2735     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   2736     FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
   2737   }
   2738 
   2739   // FIXME: Set up the abbrev, we know how many values there are!
   2740   // FIXME: We know if the type names can use 7-bit ascii.
   2741   SmallVector<unsigned, 64> NameVals;
   2742 
   2743   for (const ValueName &Name : VST) {
   2744     // Figure out the encoding to use for the name.
   2745     StringEncoding Bits =
   2746         getStringEncoding(Name.getKeyData(), Name.getKeyLength());
   2747 
   2748     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
   2749     NameVals.push_back(VE.getValueID(Name.getValue()));
   2750 
   2751     Function *F = dyn_cast<Function>(Name.getValue());
   2752     if (!F) {
   2753       // If value is an alias, need to get the aliased base object to
   2754       // see if it is a function.
   2755       auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
   2756       if (GA && GA->getBaseObject())
   2757         F = dyn_cast<Function>(GA->getBaseObject());
   2758     }
   2759 
   2760     // VST_CODE_ENTRY:   [valueid, namechar x N]
   2761     // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N]
   2762     // VST_CODE_BBENTRY: [bbid, namechar x N]
   2763     unsigned Code;
   2764     if (isa<BasicBlock>(Name.getValue())) {
   2765       Code = bitc::VST_CODE_BBENTRY;
   2766       if (Bits == SE_Char6)
   2767         AbbrevToUse = VST_BBENTRY_6_ABBREV;
   2768     } else if (F && !F->isDeclaration()) {
   2769       // Must be the module-level VST, where we pass in the Index and
   2770       // have a VSTOffsetPlaceholder. The function-level VST should not
   2771       // contain any Function symbols.
   2772       assert(FunctionToBitcodeIndex);
   2773       assert(hasVSTOffsetPlaceholder());
   2774 
   2775       // Save the word offset of the function (from the start of the
   2776       // actual bitcode written to the stream).
   2777       uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit();
   2778       assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
   2779       NameVals.push_back(BitcodeIndex / 32);
   2780 
   2781       Code = bitc::VST_CODE_FNENTRY;
   2782       AbbrevToUse = FnEntry8BitAbbrev;
   2783       if (Bits == SE_Char6)
   2784         AbbrevToUse = FnEntry6BitAbbrev;
   2785       else if (Bits == SE_Fixed7)
   2786         AbbrevToUse = FnEntry7BitAbbrev;
   2787     } else {
   2788       Code = bitc::VST_CODE_ENTRY;
   2789       if (Bits == SE_Char6)
   2790         AbbrevToUse = VST_ENTRY_6_ABBREV;
   2791       else if (Bits == SE_Fixed7)
   2792         AbbrevToUse = VST_ENTRY_7_ABBREV;
   2793     }
   2794 
   2795     for (const auto P : Name.getKey())
   2796       NameVals.push_back((unsigned char)P);
   2797 
   2798     // Emit the finished record.
   2799     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
   2800     NameVals.clear();
   2801   }
   2802   Stream.ExitBlock();
   2803 }
   2804 
   2805 /// Emit function names and summary offsets for the combined index
   2806 /// used by ThinLTO.
   2807 void IndexBitcodeWriter::writeCombinedValueSymbolTable() {
   2808   assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder");
   2809   // Get the offset of the VST we are writing, and backpatch it into
   2810   // the VST forward declaration record.
   2811   uint64_t VSTOffset = Stream.GetCurrentBitNo();
   2812   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
   2813   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
   2814 
   2815   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
   2816 
   2817   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   2818   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
   2819   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
   2820   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
   2821   unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv);
   2822 
   2823   SmallVector<uint64_t, 64> NameVals;
   2824   for (const auto &GVI : valueIds()) {
   2825     // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
   2826     NameVals.push_back(GVI.second);
   2827     NameVals.push_back(GVI.first);
   2828 
   2829     // Emit the finished record.
   2830     Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev);
   2831     NameVals.clear();
   2832   }
   2833   Stream.ExitBlock();
   2834 }
   2835 
   2836 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
   2837   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
   2838   unsigned Code;
   2839   if (isa<BasicBlock>(Order.V))
   2840     Code = bitc::USELIST_CODE_BB;
   2841   else
   2842     Code = bitc::USELIST_CODE_DEFAULT;
   2843 
   2844   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
   2845   Record.push_back(VE.getValueID(Order.V));
   2846   Stream.EmitRecord(Code, Record);
   2847 }
   2848 
   2849 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
   2850   assert(VE.shouldPreserveUseListOrder() &&
   2851          "Expected to be preserving use-list order");
   2852 
   2853   auto hasMore = [&]() {
   2854     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
   2855   };
   2856   if (!hasMore())
   2857     // Nothing to do.
   2858     return;
   2859 
   2860   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
   2861   while (hasMore()) {
   2862     writeUseList(std::move(VE.UseListOrders.back()));
   2863     VE.UseListOrders.pop_back();
   2864   }
   2865   Stream.ExitBlock();
   2866 }
   2867 
   2868 /// Emit a function body to the module stream.
   2869 void ModuleBitcodeWriter::writeFunction(
   2870     const Function &F,
   2871     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
   2872   // Save the bitcode index of the start of this function block for recording
   2873   // in the VST.
   2874   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
   2875 
   2876   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
   2877   VE.incorporateFunction(F);
   2878 
   2879   SmallVector<unsigned, 64> Vals;
   2880 
   2881   // Emit the number of basic blocks, so the reader can create them ahead of
   2882   // time.
   2883   Vals.push_back(VE.getBasicBlocks().size());
   2884   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
   2885   Vals.clear();
   2886 
   2887   // If there are function-local constants, emit them now.
   2888   unsigned CstStart, CstEnd;
   2889   VE.getFunctionConstantRange(CstStart, CstEnd);
   2890   writeConstants(CstStart, CstEnd, false);
   2891 
   2892   // If there is function-local metadata, emit it now.
   2893   writeFunctionMetadata(F);
   2894 
   2895   // Keep a running idea of what the instruction ID is.
   2896   unsigned InstID = CstEnd;
   2897 
   2898   bool NeedsMetadataAttachment = F.hasMetadata();
   2899 
   2900   DILocation *LastDL = nullptr;
   2901   // Finally, emit all the instructions, in order.
   2902   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
   2903     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
   2904          I != E; ++I) {
   2905       writeInstruction(*I, InstID, Vals);
   2906 
   2907       if (!I->getType()->isVoidTy())
   2908         ++InstID;
   2909 
   2910       // If the instruction has metadata, write a metadata attachment later.
   2911       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
   2912 
   2913       // If the instruction has a debug location, emit it.
   2914       DILocation *DL = I->getDebugLoc();
   2915       if (!DL)
   2916         continue;
   2917 
   2918       if (DL == LastDL) {
   2919         // Just repeat the same debug loc as last time.
   2920         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
   2921         continue;
   2922       }
   2923 
   2924       Vals.push_back(DL->getLine());
   2925       Vals.push_back(DL->getColumn());
   2926       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
   2927       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
   2928       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
   2929       Vals.clear();
   2930 
   2931       LastDL = DL;
   2932     }
   2933 
   2934   // Emit names for all the instructions etc.
   2935   writeValueSymbolTable(F.getValueSymbolTable());
   2936 
   2937   if (NeedsMetadataAttachment)
   2938     writeFunctionMetadataAttachment(F);
   2939   if (VE.shouldPreserveUseListOrder())
   2940     writeUseListBlock(&F);
   2941   VE.purgeFunction();
   2942   Stream.ExitBlock();
   2943 }
   2944 
   2945 // Emit blockinfo, which defines the standard abbreviations etc.
   2946 void ModuleBitcodeWriter::writeBlockInfo() {
   2947   // We only want to emit block info records for blocks that have multiple
   2948   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
   2949   // Other blocks can define their abbrevs inline.
   2950   Stream.EnterBlockInfoBlock(2);
   2951 
   2952   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
   2953     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   2954     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
   2955     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   2956     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   2957     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   2958     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
   2959         VST_ENTRY_8_ABBREV)
   2960       llvm_unreachable("Unexpected abbrev ordering!");
   2961   }
   2962 
   2963   { // 7-bit fixed width VST_CODE_ENTRY strings.
   2964     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   2965     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   2966     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   2967     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   2968     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   2969     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
   2970         VST_ENTRY_7_ABBREV)
   2971       llvm_unreachable("Unexpected abbrev ordering!");
   2972   }
   2973   { // 6-bit char6 VST_CODE_ENTRY strings.
   2974     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   2975     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   2976     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   2977     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   2978     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   2979     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
   2980         VST_ENTRY_6_ABBREV)
   2981       llvm_unreachable("Unexpected abbrev ordering!");
   2982   }
   2983   { // 6-bit char6 VST_CODE_BBENTRY strings.
   2984     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   2985     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
   2986     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   2987     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   2988     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   2989     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
   2990         VST_BBENTRY_6_ABBREV)
   2991       llvm_unreachable("Unexpected abbrev ordering!");
   2992   }
   2993 
   2994 
   2995 
   2996   { // SETTYPE abbrev for CONSTANTS_BLOCK.
   2997     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   2998     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
   2999     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   3000                               VE.computeBitsRequiredForTypeIndicies()));
   3001     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
   3002         CONSTANTS_SETTYPE_ABBREV)
   3003       llvm_unreachable("Unexpected abbrev ordering!");
   3004   }
   3005 
   3006   { // INTEGER abbrev for CONSTANTS_BLOCK.
   3007     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   3008     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
   3009     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3010     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
   3011         CONSTANTS_INTEGER_ABBREV)
   3012       llvm_unreachable("Unexpected abbrev ordering!");
   3013   }
   3014 
   3015   { // CE_CAST abbrev for CONSTANTS_BLOCK.
   3016     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   3017     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
   3018     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
   3019     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
   3020                               VE.computeBitsRequiredForTypeIndicies()));
   3021     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
   3022 
   3023     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
   3024         CONSTANTS_CE_CAST_Abbrev)
   3025       llvm_unreachable("Unexpected abbrev ordering!");
   3026   }
   3027   { // NULL abbrev for CONSTANTS_BLOCK.
   3028     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   3029     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
   3030     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
   3031         CONSTANTS_NULL_Abbrev)
   3032       llvm_unreachable("Unexpected abbrev ordering!");
   3033   }
   3034 
   3035   // FIXME: This should only use space for first class types!
   3036 
   3037   { // INST_LOAD abbrev for FUNCTION_BLOCK.
   3038     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   3039     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
   3040     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
   3041     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
   3042                               VE.computeBitsRequiredForTypeIndicies()));
   3043     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
   3044     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
   3045     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3046         FUNCTION_INST_LOAD_ABBREV)
   3047       llvm_unreachable("Unexpected abbrev ordering!");
   3048   }
   3049   { // INST_BINOP abbrev for FUNCTION_BLOCK.
   3050     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   3051     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   3052     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   3053     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   3054     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   3055     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3056         FUNCTION_INST_BINOP_ABBREV)
   3057       llvm_unreachable("Unexpected abbrev ordering!");
   3058   }
   3059   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
   3060     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   3061     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   3062     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   3063     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   3064     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   3065     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
   3066     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3067         FUNCTION_INST_BINOP_FLAGS_ABBREV)
   3068       llvm_unreachable("Unexpected abbrev ordering!");
   3069   }
   3070   { // INST_CAST abbrev for FUNCTION_BLOCK.
   3071     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   3072     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
   3073     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
   3074     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
   3075                               VE.computeBitsRequiredForTypeIndicies()));
   3076     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
   3077     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3078         FUNCTION_INST_CAST_ABBREV)
   3079       llvm_unreachable("Unexpected abbrev ordering!");
   3080   }
   3081 
   3082   { // INST_RET abbrev for FUNCTION_BLOCK.
   3083     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   3084     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   3085     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3086         FUNCTION_INST_RET_VOID_ABBREV)
   3087       llvm_unreachable("Unexpected abbrev ordering!");
   3088   }
   3089   { // INST_RET abbrev for FUNCTION_BLOCK.
   3090     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   3091     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   3092     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
   3093     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3094         FUNCTION_INST_RET_VAL_ABBREV)
   3095       llvm_unreachable("Unexpected abbrev ordering!");
   3096   }
   3097   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
   3098     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   3099     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
   3100     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3101         FUNCTION_INST_UNREACHABLE_ABBREV)
   3102       llvm_unreachable("Unexpected abbrev ordering!");
   3103   }
   3104   {
   3105     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   3106     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
   3107     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
   3108     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
   3109                               Log2_32_Ceil(VE.getTypes().size() + 1)));
   3110     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3111     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   3112     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3113         FUNCTION_INST_GEP_ABBREV)
   3114       llvm_unreachable("Unexpected abbrev ordering!");
   3115   }
   3116 
   3117   Stream.ExitBlock();
   3118 }
   3119 
   3120 /// Write the module path strings, currently only used when generating
   3121 /// a combined index file.
   3122 void IndexBitcodeWriter::writeModStrings() {
   3123   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
   3124 
   3125   // TODO: See which abbrev sizes we actually need to emit
   3126 
   3127   // 8-bit fixed-width MST_ENTRY strings.
   3128   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   3129   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
   3130   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3131   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3132   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   3133   unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv);
   3134 
   3135   // 7-bit fixed width MST_ENTRY strings.
   3136   Abbv = new BitCodeAbbrev();
   3137   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
   3138   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3139   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3140   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   3141   unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv);
   3142 
   3143   // 6-bit char6 MST_ENTRY strings.
   3144   Abbv = new BitCodeAbbrev();
   3145   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
   3146   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3147   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3148   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   3149   unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv);
   3150 
   3151   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
   3152   Abbv = new BitCodeAbbrev();
   3153   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
   3154   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
   3155   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
   3156   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
   3157   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
   3158   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
   3159   unsigned AbbrevHash = Stream.EmitAbbrev(Abbv);
   3160 
   3161   SmallVector<unsigned, 64> Vals;
   3162   for (const auto &MPSE : Index.modulePaths()) {
   3163     if (!doIncludeModule(MPSE.getKey()))
   3164       continue;
   3165     StringEncoding Bits =
   3166         getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
   3167     unsigned AbbrevToUse = Abbrev8Bit;
   3168     if (Bits == SE_Char6)
   3169       AbbrevToUse = Abbrev6Bit;
   3170     else if (Bits == SE_Fixed7)
   3171       AbbrevToUse = Abbrev7Bit;
   3172 
   3173     Vals.push_back(MPSE.getValue().first);
   3174 
   3175     for (const auto P : MPSE.getKey())
   3176       Vals.push_back((unsigned char)P);
   3177 
   3178     // Emit the finished record.
   3179     Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
   3180 
   3181     Vals.clear();
   3182     // Emit an optional hash for the module now
   3183     auto &Hash = MPSE.getValue().second;
   3184     bool AllZero = true; // Detect if the hash is empty, and do not generate it
   3185     for (auto Val : Hash) {
   3186       if (Val)
   3187         AllZero = false;
   3188       Vals.push_back(Val);
   3189     }
   3190     if (!AllZero) {
   3191       // Emit the hash record.
   3192       Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
   3193     }
   3194 
   3195     Vals.clear();
   3196   }
   3197   Stream.ExitBlock();
   3198 }
   3199 
   3200 // Helper to emit a single function summary record.
   3201 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord(
   3202     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
   3203     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
   3204     const Function &F) {
   3205   NameVals.push_back(ValueID);
   3206 
   3207   FunctionSummary *FS = cast<FunctionSummary>(Summary);
   3208   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
   3209   NameVals.push_back(FS->instCount());
   3210   NameVals.push_back(FS->refs().size());
   3211 
   3212   unsigned SizeBeforeRefs = NameVals.size();
   3213   for (auto &RI : FS->refs())
   3214     NameVals.push_back(VE.getValueID(RI.getValue()));
   3215   // Sort the refs for determinism output, the vector returned by FS->refs() has
   3216   // been initialized from a DenseSet.
   3217   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
   3218 
   3219   std::vector<FunctionSummary::EdgeTy> Calls = FS->calls();
   3220   std::sort(Calls.begin(), Calls.end(),
   3221             [this](const FunctionSummary::EdgeTy &L,
   3222                    const FunctionSummary::EdgeTy &R) {
   3223               return VE.getValueID(L.first.getValue()) <
   3224                      VE.getValueID(R.first.getValue());
   3225             });
   3226   bool HasProfileData = F.getEntryCount().hasValue();
   3227   for (auto &ECI : Calls) {
   3228     NameVals.push_back(VE.getValueID(ECI.first.getValue()));
   3229     assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite");
   3230     NameVals.push_back(ECI.second.CallsiteCount);
   3231     if (HasProfileData)
   3232       NameVals.push_back(ECI.second.ProfileCount);
   3233   }
   3234 
   3235   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
   3236   unsigned Code =
   3237       (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
   3238 
   3239   // Emit the finished record.
   3240   Stream.EmitRecord(Code, NameVals, FSAbbrev);
   3241   NameVals.clear();
   3242 }
   3243 
   3244 // Collect the global value references in the given variable's initializer,
   3245 // and emit them in a summary record.
   3246 void ModuleBitcodeWriter::writeModuleLevelReferences(
   3247     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
   3248     unsigned FSModRefsAbbrev) {
   3249   // Only interested in recording variable defs in the summary.
   3250   if (V.isDeclaration())
   3251     return;
   3252   NameVals.push_back(VE.getValueID(&V));
   3253   NameVals.push_back(getEncodedGVSummaryFlags(V));
   3254   auto *Summary = Index->getGlobalValueSummary(V);
   3255   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
   3256 
   3257   unsigned SizeBeforeRefs = NameVals.size();
   3258   for (auto &RI : VS->refs())
   3259     NameVals.push_back(VE.getValueID(RI.getValue()));
   3260   // Sort the refs for determinism output, the vector returned by FS->refs() has
   3261   // been initialized from a DenseSet.
   3262   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
   3263 
   3264   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
   3265                     FSModRefsAbbrev);
   3266   NameVals.clear();
   3267 }
   3268 
   3269 // Current version for the summary.
   3270 // This is bumped whenever we introduce changes in the way some record are
   3271 // interpreted, like flags for instance.
   3272 static const uint64_t INDEX_VERSION = 1;
   3273 
   3274 /// Emit the per-module summary section alongside the rest of
   3275 /// the module's bitcode.
   3276 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() {
   3277   if (Index->begin() == Index->end())
   3278     return;
   3279 
   3280   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
   3281 
   3282   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
   3283 
   3284   // Abbrev for FS_PERMODULE.
   3285   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   3286   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
   3287   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3288   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
   3289   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
   3290   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
   3291   // numrefs x valueid, n x (valueid, callsitecount)
   3292   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3293   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3294   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
   3295 
   3296   // Abbrev for FS_PERMODULE_PROFILE.
   3297   Abbv = new BitCodeAbbrev();
   3298   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
   3299   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3300   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
   3301   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
   3302   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
   3303   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
   3304   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3305   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3306   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
   3307 
   3308   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
   3309   Abbv = new BitCodeAbbrev();
   3310   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
   3311   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
   3312   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
   3313   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
   3314   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3315   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
   3316 
   3317   // Abbrev for FS_ALIAS.
   3318   Abbv = new BitCodeAbbrev();
   3319   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
   3320   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3321   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
   3322   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3323   unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
   3324 
   3325   SmallVector<uint64_t, 64> NameVals;
   3326   // Iterate over the list of functions instead of the Index to
   3327   // ensure the ordering is stable.
   3328   for (const Function &F : M) {
   3329     if (F.isDeclaration())
   3330       continue;
   3331     // Summary emission does not support anonymous functions, they have to
   3332     // renamed using the anonymous function renaming pass.
   3333     if (!F.hasName())
   3334       report_fatal_error("Unexpected anonymous function when writing summary");
   3335 
   3336     auto *Summary = Index->getGlobalValueSummary(F);
   3337     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
   3338                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
   3339   }
   3340 
   3341   // Capture references from GlobalVariable initializers, which are outside
   3342   // of a function scope.
   3343   for (const GlobalVariable &G : M.globals())
   3344     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
   3345 
   3346   for (const GlobalAlias &A : M.aliases()) {
   3347     auto *Aliasee = A.getBaseObject();
   3348     if (!Aliasee->hasName())
   3349       // Nameless function don't have an entry in the summary, skip it.
   3350       continue;
   3351     auto AliasId = VE.getValueID(&A);
   3352     auto AliaseeId = VE.getValueID(Aliasee);
   3353     NameVals.push_back(AliasId);
   3354     NameVals.push_back(getEncodedGVSummaryFlags(A));
   3355     NameVals.push_back(AliaseeId);
   3356     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
   3357     NameVals.clear();
   3358   }
   3359 
   3360   Stream.ExitBlock();
   3361 }
   3362 
   3363 /// Emit the combined summary section into the combined index file.
   3364 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
   3365   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
   3366   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
   3367 
   3368   // Abbrev for FS_COMBINED.
   3369   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   3370   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
   3371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
   3373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
   3374   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
   3375   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
   3376   // numrefs x valueid, n x (valueid, callsitecount)
   3377   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3378   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3379   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
   3380 
   3381   // Abbrev for FS_COMBINED_PROFILE.
   3382   Abbv = new BitCodeAbbrev();
   3383   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
   3384   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3385   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
   3386   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
   3387   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
   3388   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
   3389   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
   3390   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3391   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3392   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
   3393 
   3394   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
   3395   Abbv = new BitCodeAbbrev();
   3396   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
   3397   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3398   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
   3399   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
   3400   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
   3401   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3402   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
   3403 
   3404   // Abbrev for FS_COMBINED_ALIAS.
   3405   Abbv = new BitCodeAbbrev();
   3406   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
   3407   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3408   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
   3409   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
   3410   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3411   unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
   3412 
   3413   // The aliases are emitted as a post-pass, and will point to the value
   3414   // id of the aliasee. Save them in a vector for post-processing.
   3415   SmallVector<AliasSummary *, 64> Aliases;
   3416 
   3417   // Save the value id for each summary for alias emission.
   3418   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
   3419 
   3420   SmallVector<uint64_t, 64> NameVals;
   3421 
   3422   // For local linkage, we also emit the original name separately
   3423   // immediately after the record.
   3424   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
   3425     if (!GlobalValue::isLocalLinkage(S.linkage()))
   3426       return;
   3427     NameVals.push_back(S.getOriginalName());
   3428     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
   3429     NameVals.clear();
   3430   };
   3431 
   3432   for (const auto &I : *this) {
   3433     GlobalValueSummary *S = I.second;
   3434     assert(S);
   3435 
   3436     assert(hasValueId(I.first));
   3437     unsigned ValueId = getValueId(I.first);
   3438     SummaryToValueIdMap[S] = ValueId;
   3439 
   3440     if (auto *AS = dyn_cast<AliasSummary>(S)) {
   3441       // Will process aliases as a post-pass because the reader wants all
   3442       // global to be loaded first.
   3443       Aliases.push_back(AS);
   3444       continue;
   3445     }
   3446 
   3447     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
   3448       NameVals.push_back(ValueId);
   3449       NameVals.push_back(Index.getModuleId(VS->modulePath()));
   3450       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
   3451       for (auto &RI : VS->refs()) {
   3452         NameVals.push_back(getValueId(RI.getGUID()));
   3453       }
   3454 
   3455       // Emit the finished record.
   3456       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
   3457                         FSModRefsAbbrev);
   3458       NameVals.clear();
   3459       MaybeEmitOriginalName(*S);
   3460       continue;
   3461     }
   3462 
   3463     auto *FS = cast<FunctionSummary>(S);
   3464     NameVals.push_back(ValueId);
   3465     NameVals.push_back(Index.getModuleId(FS->modulePath()));
   3466     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
   3467     NameVals.push_back(FS->instCount());
   3468     NameVals.push_back(FS->refs().size());
   3469 
   3470     for (auto &RI : FS->refs()) {
   3471       NameVals.push_back(getValueId(RI.getGUID()));
   3472     }
   3473 
   3474     bool HasProfileData = false;
   3475     for (auto &EI : FS->calls()) {
   3476       HasProfileData |= EI.second.ProfileCount != 0;
   3477       if (HasProfileData)
   3478         break;
   3479     }
   3480 
   3481     for (auto &EI : FS->calls()) {
   3482       // If this GUID doesn't have a value id, it doesn't have a function
   3483       // summary and we don't need to record any calls to it.
   3484       if (!hasValueId(EI.first.getGUID()))
   3485         continue;
   3486       NameVals.push_back(getValueId(EI.first.getGUID()));
   3487       assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite");
   3488       NameVals.push_back(EI.second.CallsiteCount);
   3489       if (HasProfileData)
   3490         NameVals.push_back(EI.second.ProfileCount);
   3491     }
   3492 
   3493     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
   3494     unsigned Code =
   3495         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
   3496 
   3497     // Emit the finished record.
   3498     Stream.EmitRecord(Code, NameVals, FSAbbrev);
   3499     NameVals.clear();
   3500     MaybeEmitOriginalName(*S);
   3501   }
   3502 
   3503   for (auto *AS : Aliases) {
   3504     auto AliasValueId = SummaryToValueIdMap[AS];
   3505     assert(AliasValueId);
   3506     NameVals.push_back(AliasValueId);
   3507     NameVals.push_back(Index.getModuleId(AS->modulePath()));
   3508     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
   3509     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
   3510     assert(AliaseeValueId);
   3511     NameVals.push_back(AliaseeValueId);
   3512 
   3513     // Emit the finished record.
   3514     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
   3515     NameVals.clear();
   3516     MaybeEmitOriginalName(*AS);
   3517   }
   3518 
   3519   Stream.ExitBlock();
   3520 }
   3521 
   3522 void ModuleBitcodeWriter::writeIdentificationBlock() {
   3523   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
   3524 
   3525   // Write the "user readable" string identifying the bitcode producer
   3526   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   3527   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
   3528   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3529   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   3530   auto StringAbbrev = Stream.EmitAbbrev(Abbv);
   3531   writeStringRecord(bitc::IDENTIFICATION_CODE_STRING,
   3532                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
   3533 
   3534   // Write the epoch version
   3535   Abbv = new BitCodeAbbrev();
   3536   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
   3537   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   3538   auto EpochAbbrev = Stream.EmitAbbrev(Abbv);
   3539   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
   3540   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
   3541   Stream.ExitBlock();
   3542 }
   3543 
   3544 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
   3545   // Emit the module's hash.
   3546   // MODULE_CODE_HASH: [5*i32]
   3547   SHA1 Hasher;
   3548   Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
   3549                                   Buffer.size() - BlockStartPos));
   3550   auto Hash = Hasher.result();
   3551   SmallVector<uint64_t, 20> Vals;
   3552   auto LShift = [&](unsigned char Val, unsigned Amount)
   3553                     -> uint64_t { return ((uint64_t)Val) << Amount; };
   3554   for (int Pos = 0; Pos < 20; Pos += 4) {
   3555     uint32_t SubHash = LShift(Hash[Pos + 0], 24);
   3556     SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) |
   3557                (unsigned)(unsigned char)Hash[Pos + 3];
   3558     Vals.push_back(SubHash);
   3559   }
   3560 
   3561   // Emit the finished record.
   3562   Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
   3563 }
   3564 
   3565 void BitcodeWriter::write() {
   3566   // Emit the file header first.
   3567   writeBitcodeHeader();
   3568 
   3569   writeBlocks();
   3570 }
   3571 
   3572 void ModuleBitcodeWriter::writeBlocks() {
   3573   writeIdentificationBlock();
   3574   writeModule();
   3575 }
   3576 
   3577 void IndexBitcodeWriter::writeBlocks() {
   3578   // Index contains only a single outer (module) block.
   3579   writeIndex();
   3580 }
   3581 
   3582 void ModuleBitcodeWriter::writeModule() {
   3583   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
   3584   size_t BlockStartPos = Buffer.size();
   3585 
   3586   SmallVector<unsigned, 1> Vals;
   3587   unsigned CurVersion = 1;
   3588   Vals.push_back(CurVersion);
   3589   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
   3590 
   3591   // Emit blockinfo, which defines the standard abbreviations etc.
   3592   writeBlockInfo();
   3593 
   3594   // Emit information about attribute groups.
   3595   writeAttributeGroupTable();
   3596 
   3597   // Emit information about parameter attributes.
   3598   writeAttributeTable();
   3599 
   3600   // Emit information describing all of the types in the module.
   3601   writeTypeTable();
   3602 
   3603   writeComdats();
   3604 
   3605   // Emit top-level description of module, including target triple, inline asm,
   3606   // descriptors for global variables, and function prototype info.
   3607   writeModuleInfo();
   3608 
   3609   // Emit constants.
   3610   writeModuleConstants();
   3611 
   3612   // Emit metadata kind names.
   3613   writeModuleMetadataKinds();
   3614 
   3615   // Emit metadata.
   3616   writeModuleMetadata();
   3617 
   3618   // Emit module-level use-lists.
   3619   if (VE.shouldPreserveUseListOrder())
   3620     writeUseListBlock(nullptr);
   3621 
   3622   writeOperandBundleTags();
   3623 
   3624   // Emit function bodies.
   3625   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
   3626   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
   3627     if (!F->isDeclaration())
   3628       writeFunction(*F, FunctionToBitcodeIndex);
   3629 
   3630   // Need to write after the above call to WriteFunction which populates
   3631   // the summary information in the index.
   3632   if (Index)
   3633     writePerModuleGlobalValueSummary();
   3634 
   3635   writeValueSymbolTable(M.getValueSymbolTable(),
   3636                         /* IsModuleLevel */ true, &FunctionToBitcodeIndex);
   3637 
   3638   if (GenerateHash) {
   3639     writeModuleHash(BlockStartPos);
   3640   }
   3641 
   3642   Stream.ExitBlock();
   3643 }
   3644 
   3645 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
   3646                                uint32_t &Position) {
   3647   support::endian::write32le(&Buffer[Position], Value);
   3648   Position += 4;
   3649 }
   3650 
   3651 /// If generating a bc file on darwin, we have to emit a
   3652 /// header and trailer to make it compatible with the system archiver.  To do
   3653 /// this we emit the following header, and then emit a trailer that pads the
   3654 /// file out to be a multiple of 16 bytes.
   3655 ///
   3656 /// struct bc_header {
   3657 ///   uint32_t Magic;         // 0x0B17C0DE
   3658 ///   uint32_t Version;       // Version, currently always 0.
   3659 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
   3660 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
   3661 ///   uint32_t CPUType;       // CPU specifier.
   3662 ///   ... potentially more later ...
   3663 /// };
   3664 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
   3665                                          const Triple &TT) {
   3666   unsigned CPUType = ~0U;
   3667 
   3668   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
   3669   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
   3670   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
   3671   // specific constants here because they are implicitly part of the Darwin ABI.
   3672   enum {
   3673     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
   3674     DARWIN_CPU_TYPE_X86        = 7,
   3675     DARWIN_CPU_TYPE_ARM        = 12,
   3676     DARWIN_CPU_TYPE_POWERPC    = 18
   3677   };
   3678 
   3679   Triple::ArchType Arch = TT.getArch();
   3680   if (Arch == Triple::x86_64)
   3681     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
   3682   else if (Arch == Triple::x86)
   3683     CPUType = DARWIN_CPU_TYPE_X86;
   3684   else if (Arch == Triple::ppc)
   3685     CPUType = DARWIN_CPU_TYPE_POWERPC;
   3686   else if (Arch == Triple::ppc64)
   3687     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
   3688   else if (Arch == Triple::arm || Arch == Triple::thumb)
   3689     CPUType = DARWIN_CPU_TYPE_ARM;
   3690 
   3691   // Traditional Bitcode starts after header.
   3692   assert(Buffer.size() >= BWH_HeaderSize &&
   3693          "Expected header size to be reserved");
   3694   unsigned BCOffset = BWH_HeaderSize;
   3695   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
   3696 
   3697   // Write the magic and version.
   3698   unsigned Position = 0;
   3699   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
   3700   writeInt32ToBuffer(0, Buffer, Position); // Version.
   3701   writeInt32ToBuffer(BCOffset, Buffer, Position);
   3702   writeInt32ToBuffer(BCSize, Buffer, Position);
   3703   writeInt32ToBuffer(CPUType, Buffer, Position);
   3704 
   3705   // If the file is not a multiple of 16 bytes, insert dummy padding.
   3706   while (Buffer.size() & 15)
   3707     Buffer.push_back(0);
   3708 }
   3709 
   3710 /// Helper to write the header common to all bitcode files.
   3711 void BitcodeWriter::writeBitcodeHeader() {
   3712   // Emit the file header.
   3713   Stream.Emit((unsigned)'B', 8);
   3714   Stream.Emit((unsigned)'C', 8);
   3715   Stream.Emit(0x0, 4);
   3716   Stream.Emit(0xC, 4);
   3717   Stream.Emit(0xE, 4);
   3718   Stream.Emit(0xD, 4);
   3719 }
   3720 
   3721 /// WriteBitcodeToFile - Write the specified module to the specified output
   3722 /// stream.
   3723 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
   3724                               bool ShouldPreserveUseListOrder,
   3725                               const ModuleSummaryIndex *Index,
   3726                               bool GenerateHash) {
   3727   SmallVector<char, 0> Buffer;
   3728   Buffer.reserve(256*1024);
   3729 
   3730   // If this is darwin or another generic macho target, reserve space for the
   3731   // header.
   3732   Triple TT(M->getTargetTriple());
   3733   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
   3734     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
   3735 
   3736   // Emit the module into the buffer.
   3737   ModuleBitcodeWriter ModuleWriter(M, Buffer, ShouldPreserveUseListOrder, Index,
   3738                                    GenerateHash);
   3739   ModuleWriter.write();
   3740 
   3741   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
   3742     emitDarwinBCHeaderAndTrailer(Buffer, TT);
   3743 
   3744   // Write the generated bitstream to "Out".
   3745   Out.write((char*)&Buffer.front(), Buffer.size());
   3746 }
   3747 
   3748 void IndexBitcodeWriter::writeIndex() {
   3749   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
   3750 
   3751   SmallVector<unsigned, 1> Vals;
   3752   unsigned CurVersion = 1;
   3753   Vals.push_back(CurVersion);
   3754   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
   3755 
   3756   // If we have a VST, write the VSTOFFSET record placeholder.
   3757   writeValueSymbolTableForwardDecl();
   3758 
   3759   // Write the module paths in the combined index.
   3760   writeModStrings();
   3761 
   3762   // Write the summary combined index records.
   3763   writeCombinedGlobalValueSummary();
   3764 
   3765   // Need a special VST writer for the combined index (we don't have a
   3766   // real VST and real values when this is invoked).
   3767   writeCombinedValueSymbolTable();
   3768 
   3769   Stream.ExitBlock();
   3770 }
   3771 
   3772 // Write the specified module summary index to the given raw output stream,
   3773 // where it will be written in a new bitcode block. This is used when
   3774 // writing the combined index file for ThinLTO. When writing a subset of the
   3775 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
   3776 void llvm::WriteIndexToFile(
   3777     const ModuleSummaryIndex &Index, raw_ostream &Out,
   3778     std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
   3779   SmallVector<char, 0> Buffer;
   3780   Buffer.reserve(256 * 1024);
   3781 
   3782   IndexBitcodeWriter IndexWriter(Buffer, Index, ModuleToSummariesForIndex);
   3783   IndexWriter.write();
   3784 
   3785   Out.write((char *)&Buffer.front(), Buffer.size());
   3786 }
   3787