Home | History | Annotate | Download | only in CodeGen
      1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the CriticalAntiDepBreaker class, which
     11 // implements register anti-dependence breaking along a blocks
     12 // critical path during post-RA scheduler.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "CriticalAntiDepBreaker.h"
     17 #include "llvm/CodeGen/MachineBasicBlock.h"
     18 #include "llvm/CodeGen/MachineFrameInfo.h"
     19 #include "llvm/Support/Debug.h"
     20 #include "llvm/Support/ErrorHandling.h"
     21 #include "llvm/Support/raw_ostream.h"
     22 #include "llvm/Target/TargetInstrInfo.h"
     23 #include "llvm/Target/TargetRegisterInfo.h"
     24 #include "llvm/Target/TargetSubtargetInfo.h"
     25 
     26 using namespace llvm;
     27 
     28 #define DEBUG_TYPE "post-RA-sched"
     29 
     30 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
     31                                                const RegisterClassInfo &RCI)
     32     : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
     33       TII(MF.getSubtarget().getInstrInfo()),
     34       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
     35       Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
     36       DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
     37 
     38 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
     39 }
     40 
     41 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
     42   const unsigned BBSize = BB->size();
     43   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
     44     // Clear out the register class data.
     45     Classes[i] = nullptr;
     46 
     47     // Initialize the indices to indicate that no registers are live.
     48     KillIndices[i] = ~0u;
     49     DefIndices[i] = BBSize;
     50   }
     51 
     52   // Clear "do not change" set.
     53   KeepRegs.reset();
     54 
     55   bool IsReturnBlock = BB->isReturnBlock();
     56 
     57   // Examine the live-in regs of all successors.
     58   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
     59          SE = BB->succ_end(); SI != SE; ++SI)
     60     for (const auto &LI : (*SI)->liveins()) {
     61       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
     62         unsigned Reg = *AI;
     63         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
     64         KillIndices[Reg] = BBSize;
     65         DefIndices[Reg] = ~0u;
     66       }
     67     }
     68 
     69   // Mark live-out callee-saved registers. In a return block this is
     70   // all callee-saved registers. In non-return this is any
     71   // callee-saved register that is not saved in the prolog.
     72   const MachineFrameInfo *MFI = MF.getFrameInfo();
     73   BitVector Pristine = MFI->getPristineRegs(MF);
     74   for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
     75     if (!IsReturnBlock && !Pristine.test(*I)) continue;
     76     for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
     77       unsigned Reg = *AI;
     78       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
     79       KillIndices[Reg] = BBSize;
     80       DefIndices[Reg] = ~0u;
     81     }
     82   }
     83 }
     84 
     85 void CriticalAntiDepBreaker::FinishBlock() {
     86   RegRefs.clear();
     87   KeepRegs.reset();
     88 }
     89 
     90 void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
     91                                      unsigned InsertPosIndex) {
     92   // Kill instructions can define registers but are really nops, and there might
     93   // be a real definition earlier that needs to be paired with uses dominated by
     94   // this kill.
     95 
     96   // FIXME: It may be possible to remove the isKill() restriction once PR18663
     97   // has been properly fixed. There can be value in processing kills as seen in
     98   // the AggressiveAntiDepBreaker class.
     99   if (MI.isDebugValue() || MI.isKill())
    100     return;
    101   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
    102 
    103   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
    104     if (KillIndices[Reg] != ~0u) {
    105       // If Reg is currently live, then mark that it can't be renamed as
    106       // we don't know the extent of its live-range anymore (now that it
    107       // has been scheduled).
    108       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    109       KillIndices[Reg] = Count;
    110     } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
    111       // Any register which was defined within the previous scheduling region
    112       // may have been rescheduled and its lifetime may overlap with registers
    113       // in ways not reflected in our current liveness state. For each such
    114       // register, adjust the liveness state to be conservatively correct.
    115       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    116 
    117       // Move the def index to the end of the previous region, to reflect
    118       // that the def could theoretically have been scheduled at the end.
    119       DefIndices[Reg] = InsertPosIndex;
    120     }
    121   }
    122 
    123   PrescanInstruction(MI);
    124   ScanInstruction(MI, Count);
    125 }
    126 
    127 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
    128 /// critical path.
    129 static const SDep *CriticalPathStep(const SUnit *SU) {
    130   const SDep *Next = nullptr;
    131   unsigned NextDepth = 0;
    132   // Find the predecessor edge with the greatest depth.
    133   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
    134        P != PE; ++P) {
    135     const SUnit *PredSU = P->getSUnit();
    136     unsigned PredLatency = P->getLatency();
    137     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
    138     // In the case of a latency tie, prefer an anti-dependency edge over
    139     // other types of edges.
    140     if (NextDepth < PredTotalLatency ||
    141         (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
    142       NextDepth = PredTotalLatency;
    143       Next = &*P;
    144     }
    145   }
    146   return Next;
    147 }
    148 
    149 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) {
    150   // It's not safe to change register allocation for source operands of
    151   // instructions that have special allocation requirements. Also assume all
    152   // registers used in a call must not be changed (ABI).
    153   // FIXME: The issue with predicated instruction is more complex. We are being
    154   // conservative here because the kill markers cannot be trusted after
    155   // if-conversion:
    156   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
    157   // ...
    158   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
    159   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
    160   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
    161   //
    162   // The first R6 kill is not really a kill since it's killed by a predicated
    163   // instruction which may not be executed. The second R6 def may or may not
    164   // re-define R6 so it's not safe to change it since the last R6 use cannot be
    165   // changed.
    166   bool Special =
    167       MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI);
    168 
    169   // Scan the register operands for this instruction and update
    170   // Classes and RegRefs.
    171   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    172     MachineOperand &MO = MI.getOperand(i);
    173     if (!MO.isReg()) continue;
    174     unsigned Reg = MO.getReg();
    175     if (Reg == 0) continue;
    176     const TargetRegisterClass *NewRC = nullptr;
    177 
    178     if (i < MI.getDesc().getNumOperands())
    179       NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
    180 
    181     // For now, only allow the register to be changed if its register
    182     // class is consistent across all uses.
    183     if (!Classes[Reg] && NewRC)
    184       Classes[Reg] = NewRC;
    185     else if (!NewRC || Classes[Reg] != NewRC)
    186       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    187 
    188     // Now check for aliases.
    189     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
    190       // If an alias of the reg is used during the live range, give up.
    191       // Note that this allows us to skip checking if AntiDepReg
    192       // overlaps with any of the aliases, among other things.
    193       unsigned AliasReg = *AI;
    194       if (Classes[AliasReg]) {
    195         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
    196         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    197       }
    198     }
    199 
    200     // If we're still willing to consider this register, note the reference.
    201     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
    202       RegRefs.insert(std::make_pair(Reg, &MO));
    203 
    204     // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
    205     // it or any of its sub or super regs. We need to use KeepRegs to mark the
    206     // reg because not all uses of the same reg within an instruction are
    207     // necessarily tagged as tied.
    208     // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
    209     // def register but not the second (see PR20020 for details).
    210     // FIXME: can this check be relaxed to account for undef uses
    211     // of a register? In the above 'xor' example, the uses of %eax are undef, so
    212     // earlier instructions could still replace %eax even though the 'xor'
    213     // itself can't be changed.
    214     if (MI.isRegTiedToUseOperand(i) &&
    215         Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
    216       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
    217            SubRegs.isValid(); ++SubRegs) {
    218         KeepRegs.set(*SubRegs);
    219       }
    220       for (MCSuperRegIterator SuperRegs(Reg, TRI);
    221            SuperRegs.isValid(); ++SuperRegs) {
    222         KeepRegs.set(*SuperRegs);
    223       }
    224     }
    225 
    226     if (MO.isUse() && Special) {
    227       if (!KeepRegs.test(Reg)) {
    228         for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
    229              SubRegs.isValid(); ++SubRegs)
    230           KeepRegs.set(*SubRegs);
    231       }
    232     }
    233   }
    234 }
    235 
    236 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) {
    237   // Update liveness.
    238   // Proceeding upwards, registers that are defed but not used in this
    239   // instruction are now dead.
    240   assert(!MI.isKill() && "Attempting to scan a kill instruction");
    241 
    242   if (!TII->isPredicated(MI)) {
    243     // Predicated defs are modeled as read + write, i.e. similar to two
    244     // address updates.
    245     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    246       MachineOperand &MO = MI.getOperand(i);
    247 
    248       if (MO.isRegMask())
    249         for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
    250           if (MO.clobbersPhysReg(i)) {
    251             DefIndices[i] = Count;
    252             KillIndices[i] = ~0u;
    253             KeepRegs.reset(i);
    254             Classes[i] = nullptr;
    255             RegRefs.erase(i);
    256           }
    257 
    258       if (!MO.isReg()) continue;
    259       unsigned Reg = MO.getReg();
    260       if (Reg == 0) continue;
    261       if (!MO.isDef()) continue;
    262 
    263       // Ignore two-addr defs.
    264       if (MI.isRegTiedToUseOperand(i))
    265         continue;
    266 
    267       // If we've already marked this reg as unchangeable, don't remove
    268       // it or any of its subregs from KeepRegs.
    269       bool Keep = KeepRegs.test(Reg);
    270 
    271       // For the reg itself and all subregs: update the def to current;
    272       // reset the kill state, any restrictions, and references.
    273       for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
    274         unsigned SubregReg = *SRI;
    275         DefIndices[SubregReg] = Count;
    276         KillIndices[SubregReg] = ~0u;
    277         Classes[SubregReg] = nullptr;
    278         RegRefs.erase(SubregReg);
    279         if (!Keep)
    280           KeepRegs.reset(SubregReg);
    281       }
    282       // Conservatively mark super-registers as unusable.
    283       for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
    284         Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
    285     }
    286   }
    287   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    288     MachineOperand &MO = MI.getOperand(i);
    289     if (!MO.isReg()) continue;
    290     unsigned Reg = MO.getReg();
    291     if (Reg == 0) continue;
    292     if (!MO.isUse()) continue;
    293 
    294     const TargetRegisterClass *NewRC = nullptr;
    295     if (i < MI.getDesc().getNumOperands())
    296       NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
    297 
    298     // For now, only allow the register to be changed if its register
    299     // class is consistent across all uses.
    300     if (!Classes[Reg] && NewRC)
    301       Classes[Reg] = NewRC;
    302     else if (!NewRC || Classes[Reg] != NewRC)
    303       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    304 
    305     RegRefs.insert(std::make_pair(Reg, &MO));
    306 
    307     // It wasn't previously live but now it is, this is a kill.
    308     // Repeat for all aliases.
    309     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
    310       unsigned AliasReg = *AI;
    311       if (KillIndices[AliasReg] == ~0u) {
    312         KillIndices[AliasReg] = Count;
    313         DefIndices[AliasReg] = ~0u;
    314       }
    315     }
    316   }
    317 }
    318 
    319 // Check all machine operands that reference the antidependent register and must
    320 // be replaced by NewReg. Return true if any of their parent instructions may
    321 // clobber the new register.
    322 //
    323 // Note: AntiDepReg may be referenced by a two-address instruction such that
    324 // it's use operand is tied to a def operand. We guard against the case in which
    325 // the two-address instruction also defines NewReg, as may happen with
    326 // pre/postincrement loads. In this case, both the use and def operands are in
    327 // RegRefs because the def is inserted by PrescanInstruction and not erased
    328 // during ScanInstruction. So checking for an instruction with definitions of
    329 // both NewReg and AntiDepReg covers it.
    330 bool
    331 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
    332                                                 RegRefIter RegRefEnd,
    333                                                 unsigned NewReg)
    334 {
    335   for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
    336     MachineOperand *RefOper = I->second;
    337 
    338     // Don't allow the instruction defining AntiDepReg to earlyclobber its
    339     // operands, in case they may be assigned to NewReg. In this case antidep
    340     // breaking must fail, but it's too rare to bother optimizing.
    341     if (RefOper->isDef() && RefOper->isEarlyClobber())
    342       return true;
    343 
    344     // Handle cases in which this instruction defines NewReg.
    345     MachineInstr *MI = RefOper->getParent();
    346     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    347       const MachineOperand &CheckOper = MI->getOperand(i);
    348 
    349       if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
    350         return true;
    351 
    352       if (!CheckOper.isReg() || !CheckOper.isDef() ||
    353           CheckOper.getReg() != NewReg)
    354         continue;
    355 
    356       // Don't allow the instruction to define NewReg and AntiDepReg.
    357       // When AntiDepReg is renamed it will be an illegal op.
    358       if (RefOper->isDef())
    359         return true;
    360 
    361       // Don't allow an instruction using AntiDepReg to be earlyclobbered by
    362       // NewReg.
    363       if (CheckOper.isEarlyClobber())
    364         return true;
    365 
    366       // Don't allow inline asm to define NewReg at all. Who knows what it's
    367       // doing with it.
    368       if (MI->isInlineAsm())
    369         return true;
    370     }
    371   }
    372   return false;
    373 }
    374 
    375 unsigned CriticalAntiDepBreaker::
    376 findSuitableFreeRegister(RegRefIter RegRefBegin,
    377                          RegRefIter RegRefEnd,
    378                          unsigned AntiDepReg,
    379                          unsigned LastNewReg,
    380                          const TargetRegisterClass *RC,
    381                          SmallVectorImpl<unsigned> &Forbid)
    382 {
    383   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
    384   for (unsigned i = 0; i != Order.size(); ++i) {
    385     unsigned NewReg = Order[i];
    386     // Don't replace a register with itself.
    387     if (NewReg == AntiDepReg) continue;
    388     // Don't replace a register with one that was recently used to repair
    389     // an anti-dependence with this AntiDepReg, because that would
    390     // re-introduce that anti-dependence.
    391     if (NewReg == LastNewReg) continue;
    392     // If any instructions that define AntiDepReg also define the NewReg, it's
    393     // not suitable.  For example, Instruction with multiple definitions can
    394     // result in this condition.
    395     if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
    396     // If NewReg is dead and NewReg's most recent def is not before
    397     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
    398     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
    399            && "Kill and Def maps aren't consistent for AntiDepReg!");
    400     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
    401            && "Kill and Def maps aren't consistent for NewReg!");
    402     if (KillIndices[NewReg] != ~0u ||
    403         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
    404         KillIndices[AntiDepReg] > DefIndices[NewReg])
    405       continue;
    406     // If NewReg overlaps any of the forbidden registers, we can't use it.
    407     bool Forbidden = false;
    408     for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
    409            ite = Forbid.end(); it != ite; ++it)
    410       if (TRI->regsOverlap(NewReg, *it)) {
    411         Forbidden = true;
    412         break;
    413       }
    414     if (Forbidden) continue;
    415     return NewReg;
    416   }
    417 
    418   // No registers are free and available!
    419   return 0;
    420 }
    421 
    422 unsigned CriticalAntiDepBreaker::
    423 BreakAntiDependencies(const std::vector<SUnit>& SUnits,
    424                       MachineBasicBlock::iterator Begin,
    425                       MachineBasicBlock::iterator End,
    426                       unsigned InsertPosIndex,
    427                       DbgValueVector &DbgValues) {
    428   // The code below assumes that there is at least one instruction,
    429   // so just duck out immediately if the block is empty.
    430   if (SUnits.empty()) return 0;
    431 
    432   // Keep a map of the MachineInstr*'s back to the SUnit representing them.
    433   // This is used for updating debug information.
    434   //
    435   // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
    436   DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
    437 
    438   // Find the node at the bottom of the critical path.
    439   const SUnit *Max = nullptr;
    440   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    441     const SUnit *SU = &SUnits[i];
    442     MISUnitMap[SU->getInstr()] = SU;
    443     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
    444       Max = SU;
    445   }
    446 
    447 #ifndef NDEBUG
    448   {
    449     DEBUG(dbgs() << "Critical path has total latency "
    450           << (Max->getDepth() + Max->Latency) << "\n");
    451     DEBUG(dbgs() << "Available regs:");
    452     for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
    453       if (KillIndices[Reg] == ~0u)
    454         DEBUG(dbgs() << " " << TRI->getName(Reg));
    455     }
    456     DEBUG(dbgs() << '\n');
    457   }
    458 #endif
    459 
    460   // Track progress along the critical path through the SUnit graph as we walk
    461   // the instructions.
    462   const SUnit *CriticalPathSU = Max;
    463   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
    464 
    465   // Consider this pattern:
    466   //   A = ...
    467   //   ... = A
    468   //   A = ...
    469   //   ... = A
    470   //   A = ...
    471   //   ... = A
    472   //   A = ...
    473   //   ... = A
    474   // There are three anti-dependencies here, and without special care,
    475   // we'd break all of them using the same register:
    476   //   A = ...
    477   //   ... = A
    478   //   B = ...
    479   //   ... = B
    480   //   B = ...
    481   //   ... = B
    482   //   B = ...
    483   //   ... = B
    484   // because at each anti-dependence, B is the first register that
    485   // isn't A which is free.  This re-introduces anti-dependencies
    486   // at all but one of the original anti-dependencies that we were
    487   // trying to break.  To avoid this, keep track of the most recent
    488   // register that each register was replaced with, avoid
    489   // using it to repair an anti-dependence on the same register.
    490   // This lets us produce this:
    491   //   A = ...
    492   //   ... = A
    493   //   B = ...
    494   //   ... = B
    495   //   C = ...
    496   //   ... = C
    497   //   B = ...
    498   //   ... = B
    499   // This still has an anti-dependence on B, but at least it isn't on the
    500   // original critical path.
    501   //
    502   // TODO: If we tracked more than one register here, we could potentially
    503   // fix that remaining critical edge too. This is a little more involved,
    504   // because unlike the most recent register, less recent registers should
    505   // still be considered, though only if no other registers are available.
    506   std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
    507 
    508   // Attempt to break anti-dependence edges on the critical path. Walk the
    509   // instructions from the bottom up, tracking information about liveness
    510   // as we go to help determine which registers are available.
    511   unsigned Broken = 0;
    512   unsigned Count = InsertPosIndex - 1;
    513   for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
    514     MachineInstr &MI = *--I;
    515     // Kill instructions can define registers but are really nops, and there
    516     // might be a real definition earlier that needs to be paired with uses
    517     // dominated by this kill.
    518 
    519     // FIXME: It may be possible to remove the isKill() restriction once PR18663
    520     // has been properly fixed. There can be value in processing kills as seen
    521     // in the AggressiveAntiDepBreaker class.
    522     if (MI.isDebugValue() || MI.isKill())
    523       continue;
    524 
    525     // Check if this instruction has a dependence on the critical path that
    526     // is an anti-dependence that we may be able to break. If it is, set
    527     // AntiDepReg to the non-zero register associated with the anti-dependence.
    528     //
    529     // We limit our attention to the critical path as a heuristic to avoid
    530     // breaking anti-dependence edges that aren't going to significantly
    531     // impact the overall schedule. There are a limited number of registers
    532     // and we want to save them for the important edges.
    533     //
    534     // TODO: Instructions with multiple defs could have multiple
    535     // anti-dependencies. The current code here only knows how to break one
    536     // edge per instruction. Note that we'd have to be able to break all of
    537     // the anti-dependencies in an instruction in order to be effective.
    538     unsigned AntiDepReg = 0;
    539     if (&MI == CriticalPathMI) {
    540       if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
    541         const SUnit *NextSU = Edge->getSUnit();
    542 
    543         // Only consider anti-dependence edges.
    544         if (Edge->getKind() == SDep::Anti) {
    545           AntiDepReg = Edge->getReg();
    546           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
    547           if (!MRI.isAllocatable(AntiDepReg))
    548             // Don't break anti-dependencies on non-allocatable registers.
    549             AntiDepReg = 0;
    550           else if (KeepRegs.test(AntiDepReg))
    551             // Don't break anti-dependencies if a use down below requires
    552             // this exact register.
    553             AntiDepReg = 0;
    554           else {
    555             // If the SUnit has other dependencies on the SUnit that it
    556             // anti-depends on, don't bother breaking the anti-dependency
    557             // since those edges would prevent such units from being
    558             // scheduled past each other regardless.
    559             //
    560             // Also, if there are dependencies on other SUnits with the
    561             // same register as the anti-dependency, don't attempt to
    562             // break it.
    563             for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
    564                  PE = CriticalPathSU->Preds.end(); P != PE; ++P)
    565               if (P->getSUnit() == NextSU ?
    566                     (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
    567                     (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
    568                 AntiDepReg = 0;
    569                 break;
    570               }
    571           }
    572         }
    573         CriticalPathSU = NextSU;
    574         CriticalPathMI = CriticalPathSU->getInstr();
    575       } else {
    576         // We've reached the end of the critical path.
    577         CriticalPathSU = nullptr;
    578         CriticalPathMI = nullptr;
    579       }
    580     }
    581 
    582     PrescanInstruction(MI);
    583 
    584     SmallVector<unsigned, 2> ForbidRegs;
    585 
    586     // If MI's defs have a special allocation requirement, don't allow
    587     // any def registers to be changed. Also assume all registers
    588     // defined in a call must not be changed (ABI).
    589     if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI))
    590       // If this instruction's defs have special allocation requirement, don't
    591       // break this anti-dependency.
    592       AntiDepReg = 0;
    593     else if (AntiDepReg) {
    594       // If this instruction has a use of AntiDepReg, breaking it
    595       // is invalid.  If the instruction defines other registers,
    596       // save a list of them so that we don't pick a new register
    597       // that overlaps any of them.
    598       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    599         MachineOperand &MO = MI.getOperand(i);
    600         if (!MO.isReg()) continue;
    601         unsigned Reg = MO.getReg();
    602         if (Reg == 0) continue;
    603         if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
    604           AntiDepReg = 0;
    605           break;
    606         }
    607         if (MO.isDef() && Reg != AntiDepReg)
    608           ForbidRegs.push_back(Reg);
    609       }
    610     }
    611 
    612     // Determine AntiDepReg's register class, if it is live and is
    613     // consistently used within a single class.
    614     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
    615                                                     : nullptr;
    616     assert((AntiDepReg == 0 || RC != nullptr) &&
    617            "Register should be live if it's causing an anti-dependence!");
    618     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
    619       AntiDepReg = 0;
    620 
    621     // Look for a suitable register to use to break the anti-dependence.
    622     //
    623     // TODO: Instead of picking the first free register, consider which might
    624     // be the best.
    625     if (AntiDepReg != 0) {
    626       std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
    627                 std::multimap<unsigned, MachineOperand *>::iterator>
    628         Range = RegRefs.equal_range(AntiDepReg);
    629       if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
    630                                                      AntiDepReg,
    631                                                      LastNewReg[AntiDepReg],
    632                                                      RC, ForbidRegs)) {
    633         DEBUG(dbgs() << "Breaking anti-dependence edge on "
    634               << TRI->getName(AntiDepReg)
    635               << " with " << RegRefs.count(AntiDepReg) << " references"
    636               << " using " << TRI->getName(NewReg) << "!\n");
    637 
    638         // Update the references to the old register to refer to the new
    639         // register.
    640         for (std::multimap<unsigned, MachineOperand *>::iterator
    641              Q = Range.first, QE = Range.second; Q != QE; ++Q) {
    642           Q->second->setReg(NewReg);
    643           // If the SU for the instruction being updated has debug information
    644           // related to the anti-dependency register, make sure to update that
    645           // as well.
    646           const SUnit *SU = MISUnitMap[Q->second->getParent()];
    647           if (!SU) continue;
    648           for (DbgValueVector::iterator DVI = DbgValues.begin(),
    649                  DVE = DbgValues.end(); DVI != DVE; ++DVI)
    650             if (DVI->second == Q->second->getParent())
    651               UpdateDbgValue(*DVI->first, AntiDepReg, NewReg);
    652         }
    653 
    654         // We just went back in time and modified history; the
    655         // liveness information for the anti-dependence reg is now
    656         // inconsistent. Set the state as if it were dead.
    657         Classes[NewReg] = Classes[AntiDepReg];
    658         DefIndices[NewReg] = DefIndices[AntiDepReg];
    659         KillIndices[NewReg] = KillIndices[AntiDepReg];
    660         assert(((KillIndices[NewReg] == ~0u) !=
    661                 (DefIndices[NewReg] == ~0u)) &&
    662              "Kill and Def maps aren't consistent for NewReg!");
    663 
    664         Classes[AntiDepReg] = nullptr;
    665         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
    666         KillIndices[AntiDepReg] = ~0u;
    667         assert(((KillIndices[AntiDepReg] == ~0u) !=
    668                 (DefIndices[AntiDepReg] == ~0u)) &&
    669              "Kill and Def maps aren't consistent for AntiDepReg!");
    670 
    671         RegRefs.erase(AntiDepReg);
    672         LastNewReg[AntiDepReg] = NewReg;
    673         ++Broken;
    674       }
    675     }
    676 
    677     ScanInstruction(MI, Count);
    678   }
    679 
    680   return Broken;
    681 }
    682