Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs global common subexpression elimination on machine
     11 // instructions using a scoped hash table based value numbering scheme. It
     12 // must be run while the machine function is still in SSA form.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/CodeGen/Passes.h"
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/ScopedHashTable.h"
     19 #include "llvm/ADT/SmallSet.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/Analysis/AliasAnalysis.h"
     22 #include "llvm/CodeGen/MachineDominators.h"
     23 #include "llvm/CodeGen/MachineInstr.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/RecyclingAllocator.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include "llvm/Target/TargetInstrInfo.h"
     29 #include "llvm/Target/TargetSubtargetInfo.h"
     30 using namespace llvm;
     31 
     32 #define DEBUG_TYPE "machine-cse"
     33 
     34 STATISTIC(NumCoalesces, "Number of copies coalesced");
     35 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
     36 STATISTIC(NumPhysCSEs,
     37           "Number of physreg referencing common subexpr eliminated");
     38 STATISTIC(NumCrossBBCSEs,
     39           "Number of cross-MBB physreg referencing CS eliminated");
     40 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
     41 
     42 namespace {
     43   class MachineCSE : public MachineFunctionPass {
     44     const TargetInstrInfo *TII;
     45     const TargetRegisterInfo *TRI;
     46     AliasAnalysis *AA;
     47     MachineDominatorTree *DT;
     48     MachineRegisterInfo *MRI;
     49   public:
     50     static char ID; // Pass identification
     51     MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(0), CurrVN(0) {
     52       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
     53     }
     54 
     55     bool runOnMachineFunction(MachineFunction &MF) override;
     56 
     57     void getAnalysisUsage(AnalysisUsage &AU) const override {
     58       AU.setPreservesCFG();
     59       MachineFunctionPass::getAnalysisUsage(AU);
     60       AU.addRequired<AAResultsWrapperPass>();
     61       AU.addPreservedID(MachineLoopInfoID);
     62       AU.addRequired<MachineDominatorTree>();
     63       AU.addPreserved<MachineDominatorTree>();
     64     }
     65 
     66     void releaseMemory() override {
     67       ScopeMap.clear();
     68       Exps.clear();
     69     }
     70 
     71   private:
     72     unsigned LookAheadLimit;
     73     typedef RecyclingAllocator<BumpPtrAllocator,
     74         ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
     75     typedef ScopedHashTable<MachineInstr*, unsigned,
     76         MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
     77     typedef ScopedHTType::ScopeTy ScopeType;
     78     DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
     79     ScopedHTType VNT;
     80     SmallVector<MachineInstr*, 64> Exps;
     81     unsigned CurrVN;
     82 
     83     bool PerformTrivialCopyPropagation(MachineInstr *MI,
     84                                        MachineBasicBlock *MBB);
     85     bool isPhysDefTriviallyDead(unsigned Reg,
     86                                 MachineBasicBlock::const_iterator I,
     87                                 MachineBasicBlock::const_iterator E) const;
     88     bool hasLivePhysRegDefUses(const MachineInstr *MI,
     89                                const MachineBasicBlock *MBB,
     90                                SmallSet<unsigned,8> &PhysRefs,
     91                                SmallVectorImpl<unsigned> &PhysDefs,
     92                                bool &PhysUseDef) const;
     93     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
     94                           SmallSet<unsigned,8> &PhysRefs,
     95                           SmallVectorImpl<unsigned> &PhysDefs,
     96                           bool &NonLocal) const;
     97     bool isCSECandidate(MachineInstr *MI);
     98     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
     99                            MachineInstr *CSMI, MachineInstr *MI);
    100     void EnterScope(MachineBasicBlock *MBB);
    101     void ExitScope(MachineBasicBlock *MBB);
    102     bool ProcessBlock(MachineBasicBlock *MBB);
    103     void ExitScopeIfDone(MachineDomTreeNode *Node,
    104                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
    105     bool PerformCSE(MachineDomTreeNode *Node);
    106   };
    107 } // end anonymous namespace
    108 
    109 char MachineCSE::ID = 0;
    110 char &llvm::MachineCSEID = MachineCSE::ID;
    111 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
    112                 "Machine Common Subexpression Elimination", false, false)
    113 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    114 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    115 INITIALIZE_PASS_END(MachineCSE, "machine-cse",
    116                 "Machine Common Subexpression Elimination", false, false)
    117 
    118 /// The source register of a COPY machine instruction can be propagated to all
    119 /// its users, and this propagation could increase the probability of finding
    120 /// common subexpressions. If the COPY has only one user, the COPY itself can
    121 /// be removed.
    122 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
    123                                                MachineBasicBlock *MBB) {
    124   bool Changed = false;
    125   for (MachineOperand &MO : MI->operands()) {
    126     if (!MO.isReg() || !MO.isUse())
    127       continue;
    128     unsigned Reg = MO.getReg();
    129     if (!TargetRegisterInfo::isVirtualRegister(Reg))
    130       continue;
    131     bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
    132     MachineInstr *DefMI = MRI->getVRegDef(Reg);
    133     if (!DefMI->isCopy())
    134       continue;
    135     unsigned SrcReg = DefMI->getOperand(1).getReg();
    136     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
    137       continue;
    138     if (DefMI->getOperand(0).getSubReg())
    139       continue;
    140     // FIXME: We should trivially coalesce subregister copies to expose CSE
    141     // opportunities on instructions with truncated operands (see
    142     // cse-add-with-overflow.ll). This can be done here as follows:
    143     // if (SrcSubReg)
    144     //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
    145     //                                     SrcSubReg);
    146     // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
    147     //
    148     // The 2-addr pass has been updated to handle coalesced subregs. However,
    149     // some machine-specific code still can't handle it.
    150     // To handle it properly we also need a way find a constrained subregister
    151     // class given a super-reg class and subreg index.
    152     if (DefMI->getOperand(1).getSubReg())
    153       continue;
    154     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
    155     if (!MRI->constrainRegClass(SrcReg, RC))
    156       continue;
    157     DEBUG(dbgs() << "Coalescing: " << *DefMI);
    158     DEBUG(dbgs() << "***     to: " << *MI);
    159     // Propagate SrcReg of copies to MI.
    160     MO.setReg(SrcReg);
    161     MRI->clearKillFlags(SrcReg);
    162     // Coalesce single use copies.
    163     if (OnlyOneUse) {
    164       DefMI->eraseFromParent();
    165       ++NumCoalesces;
    166     }
    167     Changed = true;
    168   }
    169 
    170   return Changed;
    171 }
    172 
    173 bool
    174 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
    175                                    MachineBasicBlock::const_iterator I,
    176                                    MachineBasicBlock::const_iterator E) const {
    177   unsigned LookAheadLeft = LookAheadLimit;
    178   while (LookAheadLeft) {
    179     // Skip over dbg_value's.
    180     while (I != E && I->isDebugValue())
    181       ++I;
    182 
    183     if (I == E)
    184       // Reached end of block, register is obviously dead.
    185       return true;
    186 
    187     bool SeenDef = false;
    188     for (const MachineOperand &MO : I->operands()) {
    189       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
    190         SeenDef = true;
    191       if (!MO.isReg() || !MO.getReg())
    192         continue;
    193       if (!TRI->regsOverlap(MO.getReg(), Reg))
    194         continue;
    195       if (MO.isUse())
    196         // Found a use!
    197         return false;
    198       SeenDef = true;
    199     }
    200     if (SeenDef)
    201       // See a def of Reg (or an alias) before encountering any use, it's
    202       // trivially dead.
    203       return true;
    204 
    205     --LookAheadLeft;
    206     ++I;
    207   }
    208   return false;
    209 }
    210 
    211 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
    212 /// physical registers (except for dead defs of physical registers). It also
    213 /// returns the physical register def by reference if it's the only one and the
    214 /// instruction does not uses a physical register.
    215 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
    216                                        const MachineBasicBlock *MBB,
    217                                        SmallSet<unsigned,8> &PhysRefs,
    218                                        SmallVectorImpl<unsigned> &PhysDefs,
    219                                        bool &PhysUseDef) const{
    220   // First, add all uses to PhysRefs.
    221   for (const MachineOperand &MO : MI->operands()) {
    222     if (!MO.isReg() || MO.isDef())
    223       continue;
    224     unsigned Reg = MO.getReg();
    225     if (!Reg)
    226       continue;
    227     if (TargetRegisterInfo::isVirtualRegister(Reg))
    228       continue;
    229     // Reading constant physregs is ok.
    230     if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
    231       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
    232         PhysRefs.insert(*AI);
    233   }
    234 
    235   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
    236   // (which currently contains only uses), set the PhysUseDef flag.
    237   PhysUseDef = false;
    238   MachineBasicBlock::const_iterator I = MI; I = std::next(I);
    239   for (const MachineOperand &MO : MI->operands()) {
    240     if (!MO.isReg() || !MO.isDef())
    241       continue;
    242     unsigned Reg = MO.getReg();
    243     if (!Reg)
    244       continue;
    245     if (TargetRegisterInfo::isVirtualRegister(Reg))
    246       continue;
    247     // Check against PhysRefs even if the def is "dead".
    248     if (PhysRefs.count(Reg))
    249       PhysUseDef = true;
    250     // If the def is dead, it's ok. But the def may not marked "dead". That's
    251     // common since this pass is run before livevariables. We can scan
    252     // forward a few instructions and check if it is obviously dead.
    253     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
    254       PhysDefs.push_back(Reg);
    255   }
    256 
    257   // Finally, add all defs to PhysRefs as well.
    258   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
    259     for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
    260       PhysRefs.insert(*AI);
    261 
    262   return !PhysRefs.empty();
    263 }
    264 
    265 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
    266                                   SmallSet<unsigned,8> &PhysRefs,
    267                                   SmallVectorImpl<unsigned> &PhysDefs,
    268                                   bool &NonLocal) const {
    269   // For now conservatively returns false if the common subexpression is
    270   // not in the same basic block as the given instruction. The only exception
    271   // is if the common subexpression is in the sole predecessor block.
    272   const MachineBasicBlock *MBB = MI->getParent();
    273   const MachineBasicBlock *CSMBB = CSMI->getParent();
    274 
    275   bool CrossMBB = false;
    276   if (CSMBB != MBB) {
    277     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
    278       return false;
    279 
    280     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
    281       if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
    282         // Avoid extending live range of physical registers if they are
    283         //allocatable or reserved.
    284         return false;
    285     }
    286     CrossMBB = true;
    287   }
    288   MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
    289   MachineBasicBlock::const_iterator E = MI;
    290   MachineBasicBlock::const_iterator EE = CSMBB->end();
    291   unsigned LookAheadLeft = LookAheadLimit;
    292   while (LookAheadLeft) {
    293     // Skip over dbg_value's.
    294     while (I != E && I != EE && I->isDebugValue())
    295       ++I;
    296 
    297     if (I == EE) {
    298       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
    299       (void)CrossMBB;
    300       CrossMBB = false;
    301       NonLocal = true;
    302       I = MBB->begin();
    303       EE = MBB->end();
    304       continue;
    305     }
    306 
    307     if (I == E)
    308       return true;
    309 
    310     for (const MachineOperand &MO : I->operands()) {
    311       // RegMasks go on instructions like calls that clobber lots of physregs.
    312       // Don't attempt to CSE across such an instruction.
    313       if (MO.isRegMask())
    314         return false;
    315       if (!MO.isReg() || !MO.isDef())
    316         continue;
    317       unsigned MOReg = MO.getReg();
    318       if (TargetRegisterInfo::isVirtualRegister(MOReg))
    319         continue;
    320       if (PhysRefs.count(MOReg))
    321         return false;
    322     }
    323 
    324     --LookAheadLeft;
    325     ++I;
    326   }
    327 
    328   return false;
    329 }
    330 
    331 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
    332   if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
    333       MI->isInlineAsm() || MI->isDebugValue())
    334     return false;
    335 
    336   // Ignore copies.
    337   if (MI->isCopyLike())
    338     return false;
    339 
    340   // Ignore stuff that we obviously can't move.
    341   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
    342       MI->hasUnmodeledSideEffects())
    343     return false;
    344 
    345   if (MI->mayLoad()) {
    346     // Okay, this instruction does a load. As a refinement, we allow the target
    347     // to decide whether the loaded value is actually a constant. If so, we can
    348     // actually use it as a load.
    349     if (!MI->isInvariantLoad(AA))
    350       // FIXME: we should be able to hoist loads with no other side effects if
    351       // there are no other instructions which can change memory in this loop.
    352       // This is a trivial form of alias analysis.
    353       return false;
    354   }
    355 
    356   // Ignore stack guard loads, otherwise the register that holds CSEed value may
    357   // be spilled and get loaded back with corrupted data.
    358   if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
    359     return false;
    360 
    361   return true;
    362 }
    363 
    364 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
    365 /// common expression that defines Reg.
    366 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
    367                                    MachineInstr *CSMI, MachineInstr *MI) {
    368   // FIXME: Heuristics that works around the lack the live range splitting.
    369 
    370   // If CSReg is used at all uses of Reg, CSE should not increase register
    371   // pressure of CSReg.
    372   bool MayIncreasePressure = true;
    373   if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
    374       TargetRegisterInfo::isVirtualRegister(Reg)) {
    375     MayIncreasePressure = false;
    376     SmallPtrSet<MachineInstr*, 8> CSUses;
    377     for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
    378       CSUses.insert(&MI);
    379     }
    380     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
    381       if (!CSUses.count(&MI)) {
    382         MayIncreasePressure = true;
    383         break;
    384       }
    385     }
    386   }
    387   if (!MayIncreasePressure) return true;
    388 
    389   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
    390   // an immediate predecessor. We don't want to increase register pressure and
    391   // end up causing other computation to be spilled.
    392   if (TII->isAsCheapAsAMove(*MI)) {
    393     MachineBasicBlock *CSBB = CSMI->getParent();
    394     MachineBasicBlock *BB = MI->getParent();
    395     if (CSBB != BB && !CSBB->isSuccessor(BB))
    396       return false;
    397   }
    398 
    399   // Heuristics #2: If the expression doesn't not use a vr and the only use
    400   // of the redundant computation are copies, do not cse.
    401   bool HasVRegUse = false;
    402   for (const MachineOperand &MO : MI->operands()) {
    403     if (MO.isReg() && MO.isUse() &&
    404         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
    405       HasVRegUse = true;
    406       break;
    407     }
    408   }
    409   if (!HasVRegUse) {
    410     bool HasNonCopyUse = false;
    411     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
    412       // Ignore copies.
    413       if (!MI.isCopyLike()) {
    414         HasNonCopyUse = true;
    415         break;
    416       }
    417     }
    418     if (!HasNonCopyUse)
    419       return false;
    420   }
    421 
    422   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
    423   // it unless the defined value is already used in the BB of the new use.
    424   bool HasPHI = false;
    425   SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
    426   for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
    427     HasPHI |= MI.isPHI();
    428     CSBBs.insert(MI.getParent());
    429   }
    430 
    431   if (!HasPHI)
    432     return true;
    433   return CSBBs.count(MI->getParent());
    434 }
    435 
    436 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
    437   DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
    438   ScopeType *Scope = new ScopeType(VNT);
    439   ScopeMap[MBB] = Scope;
    440 }
    441 
    442 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
    443   DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
    444   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
    445   assert(SI != ScopeMap.end());
    446   delete SI->second;
    447   ScopeMap.erase(SI);
    448 }
    449 
    450 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
    451   bool Changed = false;
    452 
    453   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
    454   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
    455   SmallVector<unsigned, 2> ImplicitDefs;
    456   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
    457     MachineInstr *MI = &*I;
    458     ++I;
    459 
    460     if (!isCSECandidate(MI))
    461       continue;
    462 
    463     bool FoundCSE = VNT.count(MI);
    464     if (!FoundCSE) {
    465       // Using trivial copy propagation to find more CSE opportunities.
    466       if (PerformTrivialCopyPropagation(MI, MBB)) {
    467         Changed = true;
    468 
    469         // After coalescing MI itself may become a copy.
    470         if (MI->isCopyLike())
    471           continue;
    472 
    473         // Try again to see if CSE is possible.
    474         FoundCSE = VNT.count(MI);
    475       }
    476     }
    477 
    478     // Commute commutable instructions.
    479     bool Commuted = false;
    480     if (!FoundCSE && MI->isCommutable()) {
    481       if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
    482         Commuted = true;
    483         FoundCSE = VNT.count(NewMI);
    484         if (NewMI != MI) {
    485           // New instruction. It doesn't need to be kept.
    486           NewMI->eraseFromParent();
    487           Changed = true;
    488         } else if (!FoundCSE)
    489           // MI was changed but it didn't help, commute it back!
    490           (void)TII->commuteInstruction(*MI);
    491       }
    492     }
    493 
    494     // If the instruction defines physical registers and the values *may* be
    495     // used, then it's not safe to replace it with a common subexpression.
    496     // It's also not safe if the instruction uses physical registers.
    497     bool CrossMBBPhysDef = false;
    498     SmallSet<unsigned, 8> PhysRefs;
    499     SmallVector<unsigned, 2> PhysDefs;
    500     bool PhysUseDef = false;
    501     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
    502                                           PhysDefs, PhysUseDef)) {
    503       FoundCSE = false;
    504 
    505       // ... Unless the CS is local or is in the sole predecessor block
    506       // and it also defines the physical register which is not clobbered
    507       // in between and the physical register uses were not clobbered.
    508       // This can never be the case if the instruction both uses and
    509       // defines the same physical register, which was detected above.
    510       if (!PhysUseDef) {
    511         unsigned CSVN = VNT.lookup(MI);
    512         MachineInstr *CSMI = Exps[CSVN];
    513         if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
    514           FoundCSE = true;
    515       }
    516     }
    517 
    518     if (!FoundCSE) {
    519       VNT.insert(MI, CurrVN++);
    520       Exps.push_back(MI);
    521       continue;
    522     }
    523 
    524     // Found a common subexpression, eliminate it.
    525     unsigned CSVN = VNT.lookup(MI);
    526     MachineInstr *CSMI = Exps[CSVN];
    527     DEBUG(dbgs() << "Examining: " << *MI);
    528     DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
    529 
    530     // Check if it's profitable to perform this CSE.
    531     bool DoCSE = true;
    532     unsigned NumDefs = MI->getDesc().getNumDefs() +
    533                        MI->getDesc().getNumImplicitDefs();
    534 
    535     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
    536       MachineOperand &MO = MI->getOperand(i);
    537       if (!MO.isReg() || !MO.isDef())
    538         continue;
    539       unsigned OldReg = MO.getReg();
    540       unsigned NewReg = CSMI->getOperand(i).getReg();
    541 
    542       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
    543       // we should make sure it is not dead at CSMI.
    544       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
    545         ImplicitDefsToUpdate.push_back(i);
    546 
    547       // Keep track of implicit defs of CSMI and MI, to clear possibly
    548       // made-redundant kill flags.
    549       if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
    550         ImplicitDefs.push_back(OldReg);
    551 
    552       if (OldReg == NewReg) {
    553         --NumDefs;
    554         continue;
    555       }
    556 
    557       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
    558              TargetRegisterInfo::isVirtualRegister(NewReg) &&
    559              "Do not CSE physical register defs!");
    560 
    561       if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
    562         DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
    563         DoCSE = false;
    564         break;
    565       }
    566 
    567       // Don't perform CSE if the result of the old instruction cannot exist
    568       // within the register class of the new instruction.
    569       const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
    570       if (!MRI->constrainRegClass(NewReg, OldRC)) {
    571         DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
    572         DoCSE = false;
    573         break;
    574       }
    575 
    576       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
    577       --NumDefs;
    578     }
    579 
    580     // Actually perform the elimination.
    581     if (DoCSE) {
    582       for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
    583         unsigned OldReg = CSEPair.first;
    584         unsigned NewReg = CSEPair.second;
    585         // OldReg may have been unused but is used now, clear the Dead flag
    586         MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
    587         assert(Def != nullptr && "CSEd register has no unique definition?");
    588         Def->clearRegisterDeads(NewReg);
    589         // Replace with NewReg and clear kill flags which may be wrong now.
    590         MRI->replaceRegWith(OldReg, NewReg);
    591         MRI->clearKillFlags(NewReg);
    592       }
    593 
    594       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
    595       // we should make sure it is not dead at CSMI.
    596       for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
    597         CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
    598 
    599       // Go through implicit defs of CSMI and MI, and clear the kill flags on
    600       // their uses in all the instructions between CSMI and MI.
    601       // We might have made some of the kill flags redundant, consider:
    602       //   subs  ... %NZCV<imp-def>        <- CSMI
    603       //   csinc ... %NZCV<imp-use,kill>   <- this kill flag isn't valid anymore
    604       //   subs  ... %NZCV<imp-def>        <- MI, to be eliminated
    605       //   csinc ... %NZCV<imp-use,kill>
    606       // Since we eliminated MI, and reused a register imp-def'd by CSMI
    607       // (here %NZCV), that register, if it was killed before MI, should have
    608       // that kill flag removed, because it's lifetime was extended.
    609       if (CSMI->getParent() == MI->getParent()) {
    610         for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
    611           for (auto ImplicitDef : ImplicitDefs)
    612             if (MachineOperand *MO = II->findRegisterUseOperand(
    613                     ImplicitDef, /*isKill=*/true, TRI))
    614               MO->setIsKill(false);
    615       } else {
    616         // If the instructions aren't in the same BB, bail out and clear the
    617         // kill flag on all uses of the imp-def'd register.
    618         for (auto ImplicitDef : ImplicitDefs)
    619           MRI->clearKillFlags(ImplicitDef);
    620       }
    621 
    622       if (CrossMBBPhysDef) {
    623         // Add physical register defs now coming in from a predecessor to MBB
    624         // livein list.
    625         while (!PhysDefs.empty()) {
    626           unsigned LiveIn = PhysDefs.pop_back_val();
    627           if (!MBB->isLiveIn(LiveIn))
    628             MBB->addLiveIn(LiveIn);
    629         }
    630         ++NumCrossBBCSEs;
    631       }
    632 
    633       MI->eraseFromParent();
    634       ++NumCSEs;
    635       if (!PhysRefs.empty())
    636         ++NumPhysCSEs;
    637       if (Commuted)
    638         ++NumCommutes;
    639       Changed = true;
    640     } else {
    641       VNT.insert(MI, CurrVN++);
    642       Exps.push_back(MI);
    643     }
    644     CSEPairs.clear();
    645     ImplicitDefsToUpdate.clear();
    646     ImplicitDefs.clear();
    647   }
    648 
    649   return Changed;
    650 }
    651 
    652 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
    653 /// dominator tree node if its a leaf or all of its children are done. Walk
    654 /// up the dominator tree to destroy ancestors which are now done.
    655 void
    656 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
    657                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
    658   if (OpenChildren[Node])
    659     return;
    660 
    661   // Pop scope.
    662   ExitScope(Node->getBlock());
    663 
    664   // Now traverse upwards to pop ancestors whose offsprings are all done.
    665   while (MachineDomTreeNode *Parent = Node->getIDom()) {
    666     unsigned Left = --OpenChildren[Parent];
    667     if (Left != 0)
    668       break;
    669     ExitScope(Parent->getBlock());
    670     Node = Parent;
    671   }
    672 }
    673 
    674 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
    675   SmallVector<MachineDomTreeNode*, 32> Scopes;
    676   SmallVector<MachineDomTreeNode*, 8> WorkList;
    677   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
    678 
    679   CurrVN = 0;
    680 
    681   // Perform a DFS walk to determine the order of visit.
    682   WorkList.push_back(Node);
    683   do {
    684     Node = WorkList.pop_back_val();
    685     Scopes.push_back(Node);
    686     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
    687     OpenChildren[Node] = Children.size();
    688     for (MachineDomTreeNode *Child : Children)
    689       WorkList.push_back(Child);
    690   } while (!WorkList.empty());
    691 
    692   // Now perform CSE.
    693   bool Changed = false;
    694   for (MachineDomTreeNode *Node : Scopes) {
    695     MachineBasicBlock *MBB = Node->getBlock();
    696     EnterScope(MBB);
    697     Changed |= ProcessBlock(MBB);
    698     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
    699     ExitScopeIfDone(Node, OpenChildren);
    700   }
    701 
    702   return Changed;
    703 }
    704 
    705 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
    706   if (skipFunction(*MF.getFunction()))
    707     return false;
    708 
    709   TII = MF.getSubtarget().getInstrInfo();
    710   TRI = MF.getSubtarget().getRegisterInfo();
    711   MRI = &MF.getRegInfo();
    712   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    713   DT = &getAnalysis<MachineDominatorTree>();
    714   LookAheadLimit = TII->getMachineCSELookAheadLimit();
    715   return PerformCSE(DT->getRootNode());
    716 }
    717