Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass moves instructions into successor blocks when possible, so that
     11 // they aren't executed on paths where their results aren't needed.
     12 //
     13 // This pass is not intended to be a replacement or a complete alternative
     14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
     15 // constructs that are not exposed before lowering and instruction selection.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/CodeGen/Passes.h"
     20 #include "llvm/ADT/SetVector.h"
     21 #include "llvm/ADT/SmallSet.h"
     22 #include "llvm/ADT/SparseBitVector.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/Analysis/AliasAnalysis.h"
     25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     26 #include "llvm/CodeGen/MachineDominators.h"
     27 #include "llvm/CodeGen/MachineLoopInfo.h"
     28 #include "llvm/CodeGen/MachinePostDominators.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/IR/LLVMContext.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include "llvm/Target/TargetInstrInfo.h"
     35 #include "llvm/Target/TargetRegisterInfo.h"
     36 #include "llvm/Target/TargetSubtargetInfo.h"
     37 using namespace llvm;
     38 
     39 #define DEBUG_TYPE "machine-sink"
     40 
     41 static cl::opt<bool>
     42 SplitEdges("machine-sink-split",
     43            cl::desc("Split critical edges during machine sinking"),
     44            cl::init(true), cl::Hidden);
     45 
     46 static cl::opt<bool>
     47 UseBlockFreqInfo("machine-sink-bfi",
     48            cl::desc("Use block frequency info to find successors to sink"),
     49            cl::init(true), cl::Hidden);
     50 
     51 
     52 STATISTIC(NumSunk,      "Number of machine instructions sunk");
     53 STATISTIC(NumSplit,     "Number of critical edges split");
     54 STATISTIC(NumCoalesces, "Number of copies coalesced");
     55 
     56 namespace {
     57   class MachineSinking : public MachineFunctionPass {
     58     const TargetInstrInfo *TII;
     59     const TargetRegisterInfo *TRI;
     60     MachineRegisterInfo  *MRI;     // Machine register information
     61     MachineDominatorTree *DT;      // Machine dominator tree
     62     MachinePostDominatorTree *PDT; // Machine post dominator tree
     63     MachineLoopInfo *LI;
     64     const MachineBlockFrequencyInfo *MBFI;
     65     AliasAnalysis *AA;
     66 
     67     // Remember which edges have been considered for breaking.
     68     SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
     69     CEBCandidates;
     70     // Remember which edges we are about to split.
     71     // This is different from CEBCandidates since those edges
     72     // will be split.
     73     SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
     74 
     75     SparseBitVector<> RegsToClearKillFlags;
     76 
     77     typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>
     78         AllSuccsCache;
     79 
     80   public:
     81     static char ID; // Pass identification
     82     MachineSinking() : MachineFunctionPass(ID) {
     83       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
     84     }
     85 
     86     bool runOnMachineFunction(MachineFunction &MF) override;
     87 
     88     void getAnalysisUsage(AnalysisUsage &AU) const override {
     89       AU.setPreservesCFG();
     90       MachineFunctionPass::getAnalysisUsage(AU);
     91       AU.addRequired<AAResultsWrapperPass>();
     92       AU.addRequired<MachineDominatorTree>();
     93       AU.addRequired<MachinePostDominatorTree>();
     94       AU.addRequired<MachineLoopInfo>();
     95       AU.addPreserved<MachineDominatorTree>();
     96       AU.addPreserved<MachinePostDominatorTree>();
     97       AU.addPreserved<MachineLoopInfo>();
     98       if (UseBlockFreqInfo)
     99         AU.addRequired<MachineBlockFrequencyInfo>();
    100     }
    101 
    102     void releaseMemory() override {
    103       CEBCandidates.clear();
    104     }
    105 
    106   private:
    107     bool ProcessBlock(MachineBasicBlock &MBB);
    108     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
    109                                      MachineBasicBlock *From,
    110                                      MachineBasicBlock *To);
    111     /// \brief Postpone the splitting of the given critical
    112     /// edge (\p From, \p To).
    113     ///
    114     /// We do not split the edges on the fly. Indeed, this invalidates
    115     /// the dominance information and thus triggers a lot of updates
    116     /// of that information underneath.
    117     /// Instead, we postpone all the splits after each iteration of
    118     /// the main loop. That way, the information is at least valid
    119     /// for the lifetime of an iteration.
    120     ///
    121     /// \return True if the edge is marked as toSplit, false otherwise.
    122     /// False can be returned if, for instance, this is not profitable.
    123     bool PostponeSplitCriticalEdge(MachineInstr &MI,
    124                                    MachineBasicBlock *From,
    125                                    MachineBasicBlock *To,
    126                                    bool BreakPHIEdge);
    127     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
    128                          AllSuccsCache &AllSuccessors);
    129     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
    130                                  MachineBasicBlock *DefMBB,
    131                                  bool &BreakPHIEdge, bool &LocalUse) const;
    132     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
    133                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
    134     bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
    135                               MachineBasicBlock *MBB,
    136                               MachineBasicBlock *SuccToSinkTo,
    137                               AllSuccsCache &AllSuccessors);
    138 
    139     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
    140                                          MachineBasicBlock *MBB);
    141 
    142     SmallVector<MachineBasicBlock *, 4> &
    143     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
    144                            AllSuccsCache &AllSuccessors) const;
    145   };
    146 } // end anonymous namespace
    147 
    148 char MachineSinking::ID = 0;
    149 char &llvm::MachineSinkingID = MachineSinking::ID;
    150 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
    151                 "Machine code sinking", false, false)
    152 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    153 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    155 INITIALIZE_PASS_END(MachineSinking, "machine-sink",
    156                 "Machine code sinking", false, false)
    157 
    158 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
    159                                                      MachineBasicBlock *MBB) {
    160   if (!MI.isCopy())
    161     return false;
    162 
    163   unsigned SrcReg = MI.getOperand(1).getReg();
    164   unsigned DstReg = MI.getOperand(0).getReg();
    165   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
    166       !TargetRegisterInfo::isVirtualRegister(DstReg) ||
    167       !MRI->hasOneNonDBGUse(SrcReg))
    168     return false;
    169 
    170   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
    171   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
    172   if (SRC != DRC)
    173     return false;
    174 
    175   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
    176   if (DefMI->isCopyLike())
    177     return false;
    178   DEBUG(dbgs() << "Coalescing: " << *DefMI);
    179   DEBUG(dbgs() << "*** to: " << MI);
    180   MRI->replaceRegWith(DstReg, SrcReg);
    181   MI.eraseFromParent();
    182 
    183   // Conservatively, clear any kill flags, since it's possible that they are no
    184   // longer correct.
    185   MRI->clearKillFlags(SrcReg);
    186 
    187   ++NumCoalesces;
    188   return true;
    189 }
    190 
    191 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
    192 /// occur in blocks dominated by the specified block. If any use is in the
    193 /// definition block, then return false since it is never legal to move def
    194 /// after uses.
    195 bool
    196 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
    197                                         MachineBasicBlock *MBB,
    198                                         MachineBasicBlock *DefMBB,
    199                                         bool &BreakPHIEdge,
    200                                         bool &LocalUse) const {
    201   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
    202          "Only makes sense for vregs");
    203 
    204   // Ignore debug uses because debug info doesn't affect the code.
    205   if (MRI->use_nodbg_empty(Reg))
    206     return true;
    207 
    208   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
    209   // into and they are all PHI nodes. In this case, machine-sink must break
    210   // the critical edge first. e.g.
    211   //
    212   // BB#1: derived from LLVM BB %bb4.preheader
    213   //   Predecessors according to CFG: BB#0
    214   //     ...
    215   //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
    216   //     ...
    217   //     JE_4 <BB#37>, %EFLAGS<imp-use>
    218   //   Successors according to CFG: BB#37 BB#2
    219   //
    220   // BB#2: derived from LLVM BB %bb.nph
    221   //   Predecessors according to CFG: BB#0 BB#1
    222   //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
    223   BreakPHIEdge = true;
    224   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
    225     MachineInstr *UseInst = MO.getParent();
    226     unsigned OpNo = &MO - &UseInst->getOperand(0);
    227     MachineBasicBlock *UseBlock = UseInst->getParent();
    228     if (!(UseBlock == MBB && UseInst->isPHI() &&
    229           UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
    230       BreakPHIEdge = false;
    231       break;
    232     }
    233   }
    234   if (BreakPHIEdge)
    235     return true;
    236 
    237   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
    238     // Determine the block of the use.
    239     MachineInstr *UseInst = MO.getParent();
    240     unsigned OpNo = &MO - &UseInst->getOperand(0);
    241     MachineBasicBlock *UseBlock = UseInst->getParent();
    242     if (UseInst->isPHI()) {
    243       // PHI nodes use the operand in the predecessor block, not the block with
    244       // the PHI.
    245       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
    246     } else if (UseBlock == DefMBB) {
    247       LocalUse = true;
    248       return false;
    249     }
    250 
    251     // Check that it dominates.
    252     if (!DT->dominates(MBB, UseBlock))
    253       return false;
    254   }
    255 
    256   return true;
    257 }
    258 
    259 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
    260   if (skipFunction(*MF.getFunction()))
    261     return false;
    262 
    263   DEBUG(dbgs() << "******** Machine Sinking ********\n");
    264 
    265   TII = MF.getSubtarget().getInstrInfo();
    266   TRI = MF.getSubtarget().getRegisterInfo();
    267   MRI = &MF.getRegInfo();
    268   DT = &getAnalysis<MachineDominatorTree>();
    269   PDT = &getAnalysis<MachinePostDominatorTree>();
    270   LI = &getAnalysis<MachineLoopInfo>();
    271   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
    272   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    273 
    274   bool EverMadeChange = false;
    275 
    276   while (1) {
    277     bool MadeChange = false;
    278 
    279     // Process all basic blocks.
    280     CEBCandidates.clear();
    281     ToSplit.clear();
    282     for (auto &MBB: MF)
    283       MadeChange |= ProcessBlock(MBB);
    284 
    285     // If we have anything we marked as toSplit, split it now.
    286     for (auto &Pair : ToSplit) {
    287       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
    288       if (NewSucc != nullptr) {
    289         DEBUG(dbgs() << " *** Splitting critical edge:"
    290               " BB#" << Pair.first->getNumber()
    291               << " -- BB#" << NewSucc->getNumber()
    292               << " -- BB#" << Pair.second->getNumber() << '\n');
    293         MadeChange = true;
    294         ++NumSplit;
    295       } else
    296         DEBUG(dbgs() << " *** Not legal to break critical edge\n");
    297     }
    298     // If this iteration over the code changed anything, keep iterating.
    299     if (!MadeChange) break;
    300     EverMadeChange = true;
    301   }
    302 
    303   // Now clear any kill flags for recorded registers.
    304   for (auto I : RegsToClearKillFlags)
    305     MRI->clearKillFlags(I);
    306   RegsToClearKillFlags.clear();
    307 
    308   return EverMadeChange;
    309 }
    310 
    311 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
    312   // Can't sink anything out of a block that has less than two successors.
    313   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
    314 
    315   // Don't bother sinking code out of unreachable blocks. In addition to being
    316   // unprofitable, it can also lead to infinite looping, because in an
    317   // unreachable loop there may be nowhere to stop.
    318   if (!DT->isReachableFromEntry(&MBB)) return false;
    319 
    320   bool MadeChange = false;
    321 
    322   // Cache all successors, sorted by frequency info and loop depth.
    323   AllSuccsCache AllSuccessors;
    324 
    325   // Walk the basic block bottom-up.  Remember if we saw a store.
    326   MachineBasicBlock::iterator I = MBB.end();
    327   --I;
    328   bool ProcessedBegin, SawStore = false;
    329   do {
    330     MachineInstr &MI = *I;  // The instruction to sink.
    331 
    332     // Predecrement I (if it's not begin) so that it isn't invalidated by
    333     // sinking.
    334     ProcessedBegin = I == MBB.begin();
    335     if (!ProcessedBegin)
    336       --I;
    337 
    338     if (MI.isDebugValue())
    339       continue;
    340 
    341     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
    342     if (Joined) {
    343       MadeChange = true;
    344       continue;
    345     }
    346 
    347     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
    348       ++NumSunk;
    349       MadeChange = true;
    350     }
    351 
    352     // If we just processed the first instruction in the block, we're done.
    353   } while (!ProcessedBegin);
    354 
    355   return MadeChange;
    356 }
    357 
    358 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
    359                                                  MachineBasicBlock *From,
    360                                                  MachineBasicBlock *To) {
    361   // FIXME: Need much better heuristics.
    362 
    363   // If the pass has already considered breaking this edge (during this pass
    364   // through the function), then let's go ahead and break it. This means
    365   // sinking multiple "cheap" instructions into the same block.
    366   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
    367     return true;
    368 
    369   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
    370     return true;
    371 
    372   // MI is cheap, we probably don't want to break the critical edge for it.
    373   // However, if this would allow some definitions of its source operands
    374   // to be sunk then it's probably worth it.
    375   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    376     const MachineOperand &MO = MI.getOperand(i);
    377     if (!MO.isReg() || !MO.isUse())
    378       continue;
    379     unsigned Reg = MO.getReg();
    380     if (Reg == 0)
    381       continue;
    382 
    383     // We don't move live definitions of physical registers,
    384     // so sinking their uses won't enable any opportunities.
    385     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    386       continue;
    387 
    388     // If this instruction is the only user of a virtual register,
    389     // check if breaking the edge will enable sinking
    390     // both this instruction and the defining instruction.
    391     if (MRI->hasOneNonDBGUse(Reg)) {
    392       // If the definition resides in same MBB,
    393       // claim it's likely we can sink these together.
    394       // If definition resides elsewhere, we aren't
    395       // blocking it from being sunk so don't break the edge.
    396       MachineInstr *DefMI = MRI->getVRegDef(Reg);
    397       if (DefMI->getParent() == MI.getParent())
    398         return true;
    399     }
    400   }
    401 
    402   return false;
    403 }
    404 
    405 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
    406                                                MachineBasicBlock *FromBB,
    407                                                MachineBasicBlock *ToBB,
    408                                                bool BreakPHIEdge) {
    409   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
    410     return false;
    411 
    412   // Avoid breaking back edge. From == To means backedge for single BB loop.
    413   if (!SplitEdges || FromBB == ToBB)
    414     return false;
    415 
    416   // Check for backedges of more "complex" loops.
    417   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
    418       LI->isLoopHeader(ToBB))
    419     return false;
    420 
    421   // It's not always legal to break critical edges and sink the computation
    422   // to the edge.
    423   //
    424   // BB#1:
    425   // v1024
    426   // Beq BB#3
    427   // <fallthrough>
    428   // BB#2:
    429   // ... no uses of v1024
    430   // <fallthrough>
    431   // BB#3:
    432   // ...
    433   //       = v1024
    434   //
    435   // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
    436   //
    437   // BB#1:
    438   // ...
    439   // Bne BB#2
    440   // BB#4:
    441   // v1024 =
    442   // B BB#3
    443   // BB#2:
    444   // ... no uses of v1024
    445   // <fallthrough>
    446   // BB#3:
    447   // ...
    448   //       = v1024
    449   //
    450   // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
    451   // flow. We need to ensure the new basic block where the computation is
    452   // sunk to dominates all the uses.
    453   // It's only legal to break critical edge and sink the computation to the
    454   // new block if all the predecessors of "To", except for "From", are
    455   // not dominated by "From". Given SSA property, this means these
    456   // predecessors are dominated by "To".
    457   //
    458   // There is no need to do this check if all the uses are PHI nodes. PHI
    459   // sources are only defined on the specific predecessor edges.
    460   if (!BreakPHIEdge) {
    461     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
    462            E = ToBB->pred_end(); PI != E; ++PI) {
    463       if (*PI == FromBB)
    464         continue;
    465       if (!DT->dominates(ToBB, *PI))
    466         return false;
    467     }
    468   }
    469 
    470   ToSplit.insert(std::make_pair(FromBB, ToBB));
    471 
    472   return true;
    473 }
    474 
    475 /// collectDebgValues - Scan instructions following MI and collect any
    476 /// matching DBG_VALUEs.
    477 static void collectDebugValues(MachineInstr &MI,
    478                                SmallVectorImpl<MachineInstr *> &DbgValues) {
    479   DbgValues.clear();
    480   if (!MI.getOperand(0).isReg())
    481     return;
    482 
    483   MachineBasicBlock::iterator DI = MI; ++DI;
    484   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
    485        DI != DE; ++DI) {
    486     if (!DI->isDebugValue())
    487       return;
    488     if (DI->getOperand(0).isReg() &&
    489         DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
    490       DbgValues.push_back(&*DI);
    491   }
    492 }
    493 
    494 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
    495 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
    496                                           MachineBasicBlock *MBB,
    497                                           MachineBasicBlock *SuccToSinkTo,
    498                                           AllSuccsCache &AllSuccessors) {
    499   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
    500 
    501   if (MBB == SuccToSinkTo)
    502     return false;
    503 
    504   // It is profitable if SuccToSinkTo does not post dominate current block.
    505   if (!PDT->dominates(SuccToSinkTo, MBB))
    506     return true;
    507 
    508   // It is profitable to sink an instruction from a deeper loop to a shallower
    509   // loop, even if the latter post-dominates the former (PR21115).
    510   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
    511     return true;
    512 
    513   // Check if only use in post dominated block is PHI instruction.
    514   bool NonPHIUse = false;
    515   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
    516     MachineBasicBlock *UseBlock = UseInst.getParent();
    517     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
    518       NonPHIUse = true;
    519   }
    520   if (!NonPHIUse)
    521     return true;
    522 
    523   // If SuccToSinkTo post dominates then also it may be profitable if MI
    524   // can further profitably sinked into another block in next round.
    525   bool BreakPHIEdge = false;
    526   // FIXME - If finding successor is compile time expensive then cache results.
    527   if (MachineBasicBlock *MBB2 =
    528           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
    529     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
    530 
    531   // If SuccToSinkTo is final destination and it is a post dominator of current
    532   // block then it is not profitable to sink MI into SuccToSinkTo block.
    533   return false;
    534 }
    535 
    536 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
    537 /// computing it if it was not already cached.
    538 SmallVector<MachineBasicBlock *, 4> &
    539 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
    540                                        AllSuccsCache &AllSuccessors) const {
    541 
    542   // Do we have the sorted successors in cache ?
    543   auto Succs = AllSuccessors.find(MBB);
    544   if (Succs != AllSuccessors.end())
    545     return Succs->second;
    546 
    547   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
    548                                                MBB->succ_end());
    549 
    550   // Handle cases where sinking can happen but where the sink point isn't a
    551   // successor. For example:
    552   //
    553   //   x = computation
    554   //   if () {} else {}
    555   //   use x
    556   //
    557   const std::vector<MachineDomTreeNode *> &Children =
    558     DT->getNode(MBB)->getChildren();
    559   for (const auto &DTChild : Children)
    560     // DomTree children of MBB that have MBB as immediate dominator are added.
    561     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
    562         // Skip MBBs already added to the AllSuccs vector above.
    563         !MBB->isSuccessor(DTChild->getBlock()))
    564       AllSuccs.push_back(DTChild->getBlock());
    565 
    566   // Sort Successors according to their loop depth or block frequency info.
    567   std::stable_sort(
    568       AllSuccs.begin(), AllSuccs.end(),
    569       [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
    570         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
    571         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
    572         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
    573         return HasBlockFreq ? LHSFreq < RHSFreq
    574                             : LI->getLoopDepth(L) < LI->getLoopDepth(R);
    575       });
    576 
    577   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
    578 
    579   return it.first->second;
    580 }
    581 
    582 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
    583 MachineBasicBlock *
    584 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
    585                                  bool &BreakPHIEdge,
    586                                  AllSuccsCache &AllSuccessors) {
    587   assert (MBB && "Invalid MachineBasicBlock!");
    588 
    589   // Loop over all the operands of the specified instruction.  If there is
    590   // anything we can't handle, bail out.
    591 
    592   // SuccToSinkTo - This is the successor to sink this instruction to, once we
    593   // decide.
    594   MachineBasicBlock *SuccToSinkTo = nullptr;
    595   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    596     const MachineOperand &MO = MI.getOperand(i);
    597     if (!MO.isReg()) continue;  // Ignore non-register operands.
    598 
    599     unsigned Reg = MO.getReg();
    600     if (Reg == 0) continue;
    601 
    602     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    603       if (MO.isUse()) {
    604         // If the physreg has no defs anywhere, it's just an ambient register
    605         // and we can freely move its uses. Alternatively, if it's allocatable,
    606         // it could get allocated to something with a def during allocation.
    607         if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
    608           return nullptr;
    609       } else if (!MO.isDead()) {
    610         // A def that isn't dead. We can't move it.
    611         return nullptr;
    612       }
    613     } else {
    614       // Virtual register uses are always safe to sink.
    615       if (MO.isUse()) continue;
    616 
    617       // If it's not safe to move defs of the register class, then abort.
    618       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
    619         return nullptr;
    620 
    621       // Virtual register defs can only be sunk if all their uses are in blocks
    622       // dominated by one of the successors.
    623       if (SuccToSinkTo) {
    624         // If a previous operand picked a block to sink to, then this operand
    625         // must be sinkable to the same block.
    626         bool LocalUse = false;
    627         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
    628                                      BreakPHIEdge, LocalUse))
    629           return nullptr;
    630 
    631         continue;
    632       }
    633 
    634       // Otherwise, we should look at all the successors and decide which one
    635       // we should sink to. If we have reliable block frequency information
    636       // (frequency != 0) available, give successors with smaller frequencies
    637       // higher priority, otherwise prioritize smaller loop depths.
    638       for (MachineBasicBlock *SuccBlock :
    639            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
    640         bool LocalUse = false;
    641         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
    642                                     BreakPHIEdge, LocalUse)) {
    643           SuccToSinkTo = SuccBlock;
    644           break;
    645         }
    646         if (LocalUse)
    647           // Def is used locally, it's never safe to move this def.
    648           return nullptr;
    649       }
    650 
    651       // If we couldn't find a block to sink to, ignore this instruction.
    652       if (!SuccToSinkTo)
    653         return nullptr;
    654       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
    655         return nullptr;
    656     }
    657   }
    658 
    659   // It is not possible to sink an instruction into its own block.  This can
    660   // happen with loops.
    661   if (MBB == SuccToSinkTo)
    662     return nullptr;
    663 
    664   // It's not safe to sink instructions to EH landing pad. Control flow into
    665   // landing pad is implicitly defined.
    666   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
    667     return nullptr;
    668 
    669   return SuccToSinkTo;
    670 }
    671 
    672 /// \brief Return true if MI is likely to be usable as a memory operation by the
    673 /// implicit null check optimization.
    674 ///
    675 /// This is a "best effort" heuristic, and should not be relied upon for
    676 /// correctness.  This returning true does not guarantee that the implicit null
    677 /// check optimization is legal over MI, and this returning false does not
    678 /// guarantee MI cannot possibly be used to do a null check.
    679 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
    680                                              const TargetInstrInfo *TII,
    681                                              const TargetRegisterInfo *TRI) {
    682   typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate;
    683 
    684   auto *MBB = MI.getParent();
    685   if (MBB->pred_size() != 1)
    686     return false;
    687 
    688   auto *PredMBB = *MBB->pred_begin();
    689   auto *PredBB = PredMBB->getBasicBlock();
    690 
    691   // Frontends that don't use implicit null checks have no reason to emit
    692   // branches with make.implicit metadata, and this function should always
    693   // return false for them.
    694   if (!PredBB ||
    695       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
    696     return false;
    697 
    698   unsigned BaseReg;
    699   int64_t Offset;
    700   if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
    701     return false;
    702 
    703   if (!(MI.mayLoad() && !MI.isPredicable()))
    704     return false;
    705 
    706   MachineBranchPredicate MBP;
    707   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
    708     return false;
    709 
    710   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
    711          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
    712           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
    713          MBP.LHS.getReg() == BaseReg;
    714 }
    715 
    716 /// SinkInstruction - Determine whether it is safe to sink the specified machine
    717 /// instruction out of its current block into a successor.
    718 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
    719                                      AllSuccsCache &AllSuccessors) {
    720   // Don't sink instructions that the target prefers not to sink.
    721   if (!TII->shouldSink(MI))
    722     return false;
    723 
    724   // Check if it's safe to move the instruction.
    725   if (!MI.isSafeToMove(AA, SawStore))
    726     return false;
    727 
    728   // Convergent operations may not be made control-dependent on additional
    729   // values.
    730   if (MI.isConvergent())
    731     return false;
    732 
    733   // Don't break implicit null checks.  This is a performance heuristic, and not
    734   // required for correctness.
    735   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
    736     return false;
    737 
    738   // FIXME: This should include support for sinking instructions within the
    739   // block they are currently in to shorten the live ranges.  We often get
    740   // instructions sunk into the top of a large block, but it would be better to
    741   // also sink them down before their first use in the block.  This xform has to
    742   // be careful not to *increase* register pressure though, e.g. sinking
    743   // "x = y + z" down if it kills y and z would increase the live ranges of y
    744   // and z and only shrink the live range of x.
    745 
    746   bool BreakPHIEdge = false;
    747   MachineBasicBlock *ParentBlock = MI.getParent();
    748   MachineBasicBlock *SuccToSinkTo =
    749       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
    750 
    751   // If there are no outputs, it must have side-effects.
    752   if (!SuccToSinkTo)
    753     return false;
    754 
    755 
    756   // If the instruction to move defines a dead physical register which is live
    757   // when leaving the basic block, don't move it because it could turn into a
    758   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
    759   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
    760     const MachineOperand &MO = MI.getOperand(I);
    761     if (!MO.isReg()) continue;
    762     unsigned Reg = MO.getReg();
    763     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
    764     if (SuccToSinkTo->isLiveIn(Reg))
    765       return false;
    766   }
    767 
    768   DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
    769 
    770   // If the block has multiple predecessors, this is a critical edge.
    771   // Decide if we can sink along it or need to break the edge.
    772   if (SuccToSinkTo->pred_size() > 1) {
    773     // We cannot sink a load across a critical edge - there may be stores in
    774     // other code paths.
    775     bool TryBreak = false;
    776     bool store = true;
    777     if (!MI.isSafeToMove(AA, store)) {
    778       DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
    779       TryBreak = true;
    780     }
    781 
    782     // We don't want to sink across a critical edge if we don't dominate the
    783     // successor. We could be introducing calculations to new code paths.
    784     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
    785       DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
    786       TryBreak = true;
    787     }
    788 
    789     // Don't sink instructions into a loop.
    790     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
    791       DEBUG(dbgs() << " *** NOTE: Loop header found\n");
    792       TryBreak = true;
    793     }
    794 
    795     // Otherwise we are OK with sinking along a critical edge.
    796     if (!TryBreak)
    797       DEBUG(dbgs() << "Sinking along critical edge.\n");
    798     else {
    799       // Mark this edge as to be split.
    800       // If the edge can actually be split, the next iteration of the main loop
    801       // will sink MI in the newly created block.
    802       bool Status =
    803         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
    804       if (!Status)
    805         DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
    806               "break critical edge\n");
    807       // The instruction will not be sunk this time.
    808       return false;
    809     }
    810   }
    811 
    812   if (BreakPHIEdge) {
    813     // BreakPHIEdge is true if all the uses are in the successor MBB being
    814     // sunken into and they are all PHI nodes. In this case, machine-sink must
    815     // break the critical edge first.
    816     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
    817                                             SuccToSinkTo, BreakPHIEdge);
    818     if (!Status)
    819       DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
    820             "break critical edge\n");
    821     // The instruction will not be sunk this time.
    822     return false;
    823   }
    824 
    825   // Determine where to insert into. Skip phi nodes.
    826   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
    827   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
    828     ++InsertPos;
    829 
    830   // collect matching debug values.
    831   SmallVector<MachineInstr *, 2> DbgValuesToSink;
    832   collectDebugValues(MI, DbgValuesToSink);
    833 
    834   // Move the instruction.
    835   SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
    836                        ++MachineBasicBlock::iterator(MI));
    837 
    838   // Move debug values.
    839   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
    840          DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
    841     MachineInstr *DbgMI = *DBI;
    842     SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI,
    843                          ++MachineBasicBlock::iterator(DbgMI));
    844   }
    845 
    846   // Conservatively, clear any kill flags, since it's possible that they are no
    847   // longer correct.
    848   // Note that we have to clear the kill flags for any register this instruction
    849   // uses as we may sink over another instruction which currently kills the
    850   // used registers.
    851   for (MachineOperand &MO : MI.operands()) {
    852     if (MO.isReg() && MO.isUse())
    853       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
    854   }
    855 
    856   return true;
    857 }
    858