Home | History | Annotate | Download | only in SelectionDAG
      1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements a fast scheduler.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/SchedulerRegistry.h"
     15 #include "InstrEmitter.h"
     16 #include "ScheduleDAGSDNodes.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/CodeGen/SelectionDAGISel.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/InlineAsm.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 #include "llvm/Target/TargetInstrInfo.h"
     27 #include "llvm/Target/TargetRegisterInfo.h"
     28 using namespace llvm;
     29 
     30 #define DEBUG_TYPE "pre-RA-sched"
     31 
     32 STATISTIC(NumUnfolds,    "Number of nodes unfolded");
     33 STATISTIC(NumDups,       "Number of duplicated nodes");
     34 STATISTIC(NumPRCopies,   "Number of physical copies");
     35 
     36 static RegisterScheduler
     37   fastDAGScheduler("fast", "Fast suboptimal list scheduling",
     38                    createFastDAGScheduler);
     39 static RegisterScheduler
     40   linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
     41                         createDAGLinearizer);
     42 
     43 
     44 namespace {
     45   /// FastPriorityQueue - A degenerate priority queue that considers
     46   /// all nodes to have the same priority.
     47   ///
     48   struct FastPriorityQueue {
     49     SmallVector<SUnit *, 16> Queue;
     50 
     51     bool empty() const { return Queue.empty(); }
     52 
     53     void push(SUnit *U) {
     54       Queue.push_back(U);
     55     }
     56 
     57     SUnit *pop() {
     58       if (empty()) return nullptr;
     59       SUnit *V = Queue.back();
     60       Queue.pop_back();
     61       return V;
     62     }
     63   };
     64 
     65 //===----------------------------------------------------------------------===//
     66 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
     67 ///
     68 class ScheduleDAGFast : public ScheduleDAGSDNodes {
     69 private:
     70   /// AvailableQueue - The priority queue to use for the available SUnits.
     71   FastPriorityQueue AvailableQueue;
     72 
     73   /// LiveRegDefs - A set of physical registers and their definition
     74   /// that are "live". These nodes must be scheduled before any other nodes that
     75   /// modifies the registers can be scheduled.
     76   unsigned NumLiveRegs;
     77   std::vector<SUnit*> LiveRegDefs;
     78   std::vector<unsigned> LiveRegCycles;
     79 
     80 public:
     81   ScheduleDAGFast(MachineFunction &mf)
     82     : ScheduleDAGSDNodes(mf) {}
     83 
     84   void Schedule() override;
     85 
     86   /// AddPred - adds a predecessor edge to SUnit SU.
     87   /// This returns true if this is a new predecessor.
     88   void AddPred(SUnit *SU, const SDep &D) {
     89     SU->addPred(D);
     90   }
     91 
     92   /// RemovePred - removes a predecessor edge from SUnit SU.
     93   /// This returns true if an edge was removed.
     94   void RemovePred(SUnit *SU, const SDep &D) {
     95     SU->removePred(D);
     96   }
     97 
     98 private:
     99   void ReleasePred(SUnit *SU, SDep *PredEdge);
    100   void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
    101   void ScheduleNodeBottomUp(SUnit*, unsigned);
    102   SUnit *CopyAndMoveSuccessors(SUnit*);
    103   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
    104                                 const TargetRegisterClass*,
    105                                 const TargetRegisterClass*,
    106                                 SmallVectorImpl<SUnit*>&);
    107   bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
    108   void ListScheduleBottomUp();
    109 
    110   /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
    111   bool forceUnitLatencies() const override { return true; }
    112 };
    113 }  // end anonymous namespace
    114 
    115 
    116 /// Schedule - Schedule the DAG using list scheduling.
    117 void ScheduleDAGFast::Schedule() {
    118   DEBUG(dbgs() << "********** List Scheduling **********\n");
    119 
    120   NumLiveRegs = 0;
    121   LiveRegDefs.resize(TRI->getNumRegs(), nullptr);
    122   LiveRegCycles.resize(TRI->getNumRegs(), 0);
    123 
    124   // Build the scheduling graph.
    125   BuildSchedGraph(nullptr);
    126 
    127   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    128           SUnits[su].dumpAll(this));
    129 
    130   // Execute the actual scheduling loop.
    131   ListScheduleBottomUp();
    132 }
    133 
    134 //===----------------------------------------------------------------------===//
    135 //  Bottom-Up Scheduling
    136 //===----------------------------------------------------------------------===//
    137 
    138 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
    139 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
    140 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
    141   SUnit *PredSU = PredEdge->getSUnit();
    142 
    143 #ifndef NDEBUG
    144   if (PredSU->NumSuccsLeft == 0) {
    145     dbgs() << "*** Scheduling failed! ***\n";
    146     PredSU->dump(this);
    147     dbgs() << " has been released too many times!\n";
    148     llvm_unreachable(nullptr);
    149   }
    150 #endif
    151   --PredSU->NumSuccsLeft;
    152 
    153   // If all the node's successors are scheduled, this node is ready
    154   // to be scheduled. Ignore the special EntrySU node.
    155   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
    156     PredSU->isAvailable = true;
    157     AvailableQueue.push(PredSU);
    158   }
    159 }
    160 
    161 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
    162   // Bottom up: release predecessors
    163   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    164        I != E; ++I) {
    165     ReleasePred(SU, &*I);
    166     if (I->isAssignedRegDep()) {
    167       // This is a physical register dependency and it's impossible or
    168       // expensive to copy the register. Make sure nothing that can
    169       // clobber the register is scheduled between the predecessor and
    170       // this node.
    171       if (!LiveRegDefs[I->getReg()]) {
    172         ++NumLiveRegs;
    173         LiveRegDefs[I->getReg()] = I->getSUnit();
    174         LiveRegCycles[I->getReg()] = CurCycle;
    175       }
    176     }
    177   }
    178 }
    179 
    180 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
    181 /// count of its predecessors. If a predecessor pending count is zero, add it to
    182 /// the Available queue.
    183 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
    184   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
    185   DEBUG(SU->dump(this));
    186 
    187   assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
    188   SU->setHeightToAtLeast(CurCycle);
    189   Sequence.push_back(SU);
    190 
    191   ReleasePredecessors(SU, CurCycle);
    192 
    193   // Release all the implicit physical register defs that are live.
    194   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    195        I != E; ++I) {
    196     if (I->isAssignedRegDep()) {
    197       if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
    198         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    199         assert(LiveRegDefs[I->getReg()] == SU &&
    200                "Physical register dependency violated?");
    201         --NumLiveRegs;
    202         LiveRegDefs[I->getReg()] = nullptr;
    203         LiveRegCycles[I->getReg()] = 0;
    204       }
    205     }
    206   }
    207 
    208   SU->isScheduled = true;
    209 }
    210 
    211 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
    212 /// successors to the newly created node.
    213 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
    214   if (SU->getNode()->getGluedNode())
    215     return nullptr;
    216 
    217   SDNode *N = SU->getNode();
    218   if (!N)
    219     return nullptr;
    220 
    221   SUnit *NewSU;
    222   bool TryUnfold = false;
    223   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    224     MVT VT = N->getSimpleValueType(i);
    225     if (VT == MVT::Glue)
    226       return nullptr;
    227     else if (VT == MVT::Other)
    228       TryUnfold = true;
    229   }
    230   for (const SDValue &Op : N->op_values()) {
    231     MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
    232     if (VT == MVT::Glue)
    233       return nullptr;
    234   }
    235 
    236   if (TryUnfold) {
    237     SmallVector<SDNode*, 2> NewNodes;
    238     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
    239       return nullptr;
    240 
    241     DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
    242     assert(NewNodes.size() == 2 && "Expected a load folding node!");
    243 
    244     N = NewNodes[1];
    245     SDNode *LoadNode = NewNodes[0];
    246     unsigned NumVals = N->getNumValues();
    247     unsigned OldNumVals = SU->getNode()->getNumValues();
    248     for (unsigned i = 0; i != NumVals; ++i)
    249       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
    250     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
    251                                    SDValue(LoadNode, 1));
    252 
    253     SUnit *NewSU = newSUnit(N);
    254     assert(N->getNodeId() == -1 && "Node already inserted!");
    255     N->setNodeId(NewSU->NodeNum);
    256 
    257     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    258     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
    259       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
    260         NewSU->isTwoAddress = true;
    261         break;
    262       }
    263     }
    264     if (MCID.isCommutable())
    265       NewSU->isCommutable = true;
    266 
    267     // LoadNode may already exist. This can happen when there is another
    268     // load from the same location and producing the same type of value
    269     // but it has different alignment or volatileness.
    270     bool isNewLoad = true;
    271     SUnit *LoadSU;
    272     if (LoadNode->getNodeId() != -1) {
    273       LoadSU = &SUnits[LoadNode->getNodeId()];
    274       isNewLoad = false;
    275     } else {
    276       LoadSU = newSUnit(LoadNode);
    277       LoadNode->setNodeId(LoadSU->NodeNum);
    278     }
    279 
    280     SDep ChainPred;
    281     SmallVector<SDep, 4> ChainSuccs;
    282     SmallVector<SDep, 4> LoadPreds;
    283     SmallVector<SDep, 4> NodePreds;
    284     SmallVector<SDep, 4> NodeSuccs;
    285     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    286          I != E; ++I) {
    287       if (I->isCtrl())
    288         ChainPred = *I;
    289       else if (I->getSUnit()->getNode() &&
    290                I->getSUnit()->getNode()->isOperandOf(LoadNode))
    291         LoadPreds.push_back(*I);
    292       else
    293         NodePreds.push_back(*I);
    294     }
    295     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    296          I != E; ++I) {
    297       if (I->isCtrl())
    298         ChainSuccs.push_back(*I);
    299       else
    300         NodeSuccs.push_back(*I);
    301     }
    302 
    303     if (ChainPred.getSUnit()) {
    304       RemovePred(SU, ChainPred);
    305       if (isNewLoad)
    306         AddPred(LoadSU, ChainPred);
    307     }
    308     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
    309       const SDep &Pred = LoadPreds[i];
    310       RemovePred(SU, Pred);
    311       if (isNewLoad) {
    312         AddPred(LoadSU, Pred);
    313       }
    314     }
    315     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
    316       const SDep &Pred = NodePreds[i];
    317       RemovePred(SU, Pred);
    318       AddPred(NewSU, Pred);
    319     }
    320     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
    321       SDep D = NodeSuccs[i];
    322       SUnit *SuccDep = D.getSUnit();
    323       D.setSUnit(SU);
    324       RemovePred(SuccDep, D);
    325       D.setSUnit(NewSU);
    326       AddPred(SuccDep, D);
    327     }
    328     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
    329       SDep D = ChainSuccs[i];
    330       SUnit *SuccDep = D.getSUnit();
    331       D.setSUnit(SU);
    332       RemovePred(SuccDep, D);
    333       if (isNewLoad) {
    334         D.setSUnit(LoadSU);
    335         AddPred(SuccDep, D);
    336       }
    337     }
    338     if (isNewLoad) {
    339       SDep D(LoadSU, SDep::Barrier);
    340       D.setLatency(LoadSU->Latency);
    341       AddPred(NewSU, D);
    342     }
    343 
    344     ++NumUnfolds;
    345 
    346     if (NewSU->NumSuccsLeft == 0) {
    347       NewSU->isAvailable = true;
    348       return NewSU;
    349     }
    350     SU = NewSU;
    351   }
    352 
    353   DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
    354   NewSU = Clone(SU);
    355 
    356   // New SUnit has the exact same predecessors.
    357   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    358        I != E; ++I)
    359     if (!I->isArtificial())
    360       AddPred(NewSU, *I);
    361 
    362   // Only copy scheduled successors. Cut them from old node's successor
    363   // list and move them over.
    364   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
    365   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    366        I != E; ++I) {
    367     if (I->isArtificial())
    368       continue;
    369     SUnit *SuccSU = I->getSUnit();
    370     if (SuccSU->isScheduled) {
    371       SDep D = *I;
    372       D.setSUnit(NewSU);
    373       AddPred(SuccSU, D);
    374       D.setSUnit(SU);
    375       DelDeps.push_back(std::make_pair(SuccSU, D));
    376     }
    377   }
    378   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
    379     RemovePred(DelDeps[i].first, DelDeps[i].second);
    380 
    381   ++NumDups;
    382   return NewSU;
    383 }
    384 
    385 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
    386 /// scheduled successors of the given SUnit to the last copy.
    387 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
    388                                               const TargetRegisterClass *DestRC,
    389                                               const TargetRegisterClass *SrcRC,
    390                                               SmallVectorImpl<SUnit*> &Copies) {
    391   SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(nullptr));
    392   CopyFromSU->CopySrcRC = SrcRC;
    393   CopyFromSU->CopyDstRC = DestRC;
    394 
    395   SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(nullptr));
    396   CopyToSU->CopySrcRC = DestRC;
    397   CopyToSU->CopyDstRC = SrcRC;
    398 
    399   // Only copy scheduled successors. Cut them from old node's successor
    400   // list and move them over.
    401   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
    402   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    403        I != E; ++I) {
    404     if (I->isArtificial())
    405       continue;
    406     SUnit *SuccSU = I->getSUnit();
    407     if (SuccSU->isScheduled) {
    408       SDep D = *I;
    409       D.setSUnit(CopyToSU);
    410       AddPred(SuccSU, D);
    411       DelDeps.push_back(std::make_pair(SuccSU, *I));
    412     }
    413   }
    414   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
    415     RemovePred(DelDeps[i].first, DelDeps[i].second);
    416   }
    417   SDep FromDep(SU, SDep::Data, Reg);
    418   FromDep.setLatency(SU->Latency);
    419   AddPred(CopyFromSU, FromDep);
    420   SDep ToDep(CopyFromSU, SDep::Data, 0);
    421   ToDep.setLatency(CopyFromSU->Latency);
    422   AddPred(CopyToSU, ToDep);
    423 
    424   Copies.push_back(CopyFromSU);
    425   Copies.push_back(CopyToSU);
    426 
    427   ++NumPRCopies;
    428 }
    429 
    430 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
    431 /// definition of the specified node.
    432 /// FIXME: Move to SelectionDAG?
    433 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
    434                                  const TargetInstrInfo *TII) {
    435   unsigned NumRes;
    436   if (N->getOpcode() == ISD::CopyFromReg) {
    437     // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
    438     NumRes = 1;
    439   } else {
    440     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    441     assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
    442     NumRes = MCID.getNumDefs();
    443     for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
    444       if (Reg == *ImpDef)
    445         break;
    446       ++NumRes;
    447     }
    448   }
    449   return N->getSimpleValueType(NumRes);
    450 }
    451 
    452 /// CheckForLiveRegDef - Return true and update live register vector if the
    453 /// specified register def of the specified SUnit clobbers any "live" registers.
    454 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
    455                                std::vector<SUnit*> &LiveRegDefs,
    456                                SmallSet<unsigned, 4> &RegAdded,
    457                                SmallVectorImpl<unsigned> &LRegs,
    458                                const TargetRegisterInfo *TRI) {
    459   bool Added = false;
    460   for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
    461     if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) {
    462       if (RegAdded.insert(*AI).second) {
    463         LRegs.push_back(*AI);
    464         Added = true;
    465       }
    466     }
    467   }
    468   return Added;
    469 }
    470 
    471 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
    472 /// scheduling of the given node to satisfy live physical register dependencies.
    473 /// If the specific node is the last one that's available to schedule, do
    474 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
    475 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
    476                                               SmallVectorImpl<unsigned> &LRegs){
    477   if (NumLiveRegs == 0)
    478     return false;
    479 
    480   SmallSet<unsigned, 4> RegAdded;
    481   // If this node would clobber any "live" register, then it's not ready.
    482   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    483        I != E; ++I) {
    484     if (I->isAssignedRegDep()) {
    485       CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
    486                          RegAdded, LRegs, TRI);
    487     }
    488   }
    489 
    490   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
    491     if (Node->getOpcode() == ISD::INLINEASM) {
    492       // Inline asm can clobber physical defs.
    493       unsigned NumOps = Node->getNumOperands();
    494       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
    495         --NumOps;  // Ignore the glue operand.
    496 
    497       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
    498         unsigned Flags =
    499           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
    500         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
    501 
    502         ++i; // Skip the ID value.
    503         if (InlineAsm::isRegDefKind(Flags) ||
    504             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
    505             InlineAsm::isClobberKind(Flags)) {
    506           // Check for def of register or earlyclobber register.
    507           for (; NumVals; --NumVals, ++i) {
    508             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
    509             if (TargetRegisterInfo::isPhysicalRegister(Reg))
    510               CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
    511           }
    512         } else
    513           i += NumVals;
    514       }
    515       continue;
    516     }
    517     if (!Node->isMachineOpcode())
    518       continue;
    519     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
    520     if (!MCID.ImplicitDefs)
    521       continue;
    522     for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) {
    523       CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
    524     }
    525   }
    526   return !LRegs.empty();
    527 }
    528 
    529 
    530 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
    531 /// schedulers.
    532 void ScheduleDAGFast::ListScheduleBottomUp() {
    533   unsigned CurCycle = 0;
    534 
    535   // Release any predecessors of the special Exit node.
    536   ReleasePredecessors(&ExitSU, CurCycle);
    537 
    538   // Add root to Available queue.
    539   if (!SUnits.empty()) {
    540     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
    541     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
    542     RootSU->isAvailable = true;
    543     AvailableQueue.push(RootSU);
    544   }
    545 
    546   // While Available queue is not empty, grab the node with the highest
    547   // priority. If it is not ready put it back.  Schedule the node.
    548   SmallVector<SUnit*, 4> NotReady;
    549   DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
    550   Sequence.reserve(SUnits.size());
    551   while (!AvailableQueue.empty()) {
    552     bool Delayed = false;
    553     LRegsMap.clear();
    554     SUnit *CurSU = AvailableQueue.pop();
    555     while (CurSU) {
    556       SmallVector<unsigned, 4> LRegs;
    557       if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
    558         break;
    559       Delayed = true;
    560       LRegsMap.insert(std::make_pair(CurSU, LRegs));
    561 
    562       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
    563       NotReady.push_back(CurSU);
    564       CurSU = AvailableQueue.pop();
    565     }
    566 
    567     // All candidates are delayed due to live physical reg dependencies.
    568     // Try code duplication or inserting cross class copies
    569     // to resolve it.
    570     if (Delayed && !CurSU) {
    571       if (!CurSU) {
    572         // Try duplicating the nodes that produces these
    573         // "expensive to copy" values to break the dependency. In case even
    574         // that doesn't work, insert cross class copies.
    575         SUnit *TrySU = NotReady[0];
    576         SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
    577         assert(LRegs.size() == 1 && "Can't handle this yet!");
    578         unsigned Reg = LRegs[0];
    579         SUnit *LRDef = LiveRegDefs[Reg];
    580         MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
    581         const TargetRegisterClass *RC =
    582           TRI->getMinimalPhysRegClass(Reg, VT);
    583         const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
    584 
    585         // If cross copy register class is the same as RC, then it must be
    586         // possible copy the value directly. Do not try duplicate the def.
    587         // If cross copy register class is not the same as RC, then it's
    588         // possible to copy the value but it require cross register class copies
    589         // and it is expensive.
    590         // If cross copy register class is null, then it's not possible to copy
    591         // the value at all.
    592         SUnit *NewDef = nullptr;
    593         if (DestRC != RC) {
    594           NewDef = CopyAndMoveSuccessors(LRDef);
    595           if (!DestRC && !NewDef)
    596             report_fatal_error("Can't handle live physical "
    597                                "register dependency!");
    598         }
    599         if (!NewDef) {
    600           // Issue copies, these can be expensive cross register class copies.
    601           SmallVector<SUnit*, 2> Copies;
    602           InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
    603           DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
    604                        << " to SU #" << Copies.front()->NodeNum << "\n");
    605           AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
    606           NewDef = Copies.back();
    607         }
    608 
    609         DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
    610                      << " to SU #" << TrySU->NodeNum << "\n");
    611         LiveRegDefs[Reg] = NewDef;
    612         AddPred(NewDef, SDep(TrySU, SDep::Artificial));
    613         TrySU->isAvailable = false;
    614         CurSU = NewDef;
    615       }
    616 
    617       if (!CurSU) {
    618         llvm_unreachable("Unable to resolve live physical register dependencies!");
    619       }
    620     }
    621 
    622     // Add the nodes that aren't ready back onto the available list.
    623     for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
    624       NotReady[i]->isPending = false;
    625       // May no longer be available due to backtracking.
    626       if (NotReady[i]->isAvailable)
    627         AvailableQueue.push(NotReady[i]);
    628     }
    629     NotReady.clear();
    630 
    631     if (CurSU)
    632       ScheduleNodeBottomUp(CurSU, CurCycle);
    633     ++CurCycle;
    634   }
    635 
    636   // Reverse the order since it is bottom up.
    637   std::reverse(Sequence.begin(), Sequence.end());
    638 
    639 #ifndef NDEBUG
    640   VerifyScheduledSequence(/*isBottomUp=*/true);
    641 #endif
    642 }
    643 
    644 
    645 namespace {
    646 //===----------------------------------------------------------------------===//
    647 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
    648 // DAG in topological order.
    649 // IMPORTANT: this may not work for targets with phyreg dependency.
    650 //
    651 class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
    652 public:
    653   ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}
    654 
    655   void Schedule() override;
    656 
    657   MachineBasicBlock *
    658     EmitSchedule(MachineBasicBlock::iterator &InsertPos) override;
    659 
    660 private:
    661   std::vector<SDNode*> Sequence;
    662   DenseMap<SDNode*, SDNode*> GluedMap;  // Cache glue to its user
    663 
    664   void ScheduleNode(SDNode *N);
    665 };
    666 } // end anonymous namespace
    667 
    668 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
    669   if (N->getNodeId() != 0)
    670     llvm_unreachable(nullptr);
    671 
    672   if (!N->isMachineOpcode() &&
    673       (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
    674     // These nodes do not need to be translated into MIs.
    675     return;
    676 
    677   DEBUG(dbgs() << "\n*** Scheduling: ");
    678   DEBUG(N->dump(DAG));
    679   Sequence.push_back(N);
    680 
    681   unsigned NumOps = N->getNumOperands();
    682   if (unsigned NumLeft = NumOps) {
    683     SDNode *GluedOpN = nullptr;
    684     do {
    685       const SDValue &Op = N->getOperand(NumLeft-1);
    686       SDNode *OpN = Op.getNode();
    687 
    688       if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
    689         // Schedule glue operand right above N.
    690         GluedOpN = OpN;
    691         assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
    692         OpN->setNodeId(0);
    693         ScheduleNode(OpN);
    694         continue;
    695       }
    696 
    697       if (OpN == GluedOpN)
    698         // Glue operand is already scheduled.
    699         continue;
    700 
    701       DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
    702       if (DI != GluedMap.end() && DI->second != N)
    703         // Users of glues are counted against the glued users.
    704         OpN = DI->second;
    705 
    706       unsigned Degree = OpN->getNodeId();
    707       assert(Degree > 0 && "Predecessor over-released!");
    708       OpN->setNodeId(--Degree);
    709       if (Degree == 0)
    710         ScheduleNode(OpN);
    711     } while (--NumLeft);
    712   }
    713 }
    714 
    715 /// findGluedUser - Find the representative use of a glue value by walking
    716 /// the use chain.
    717 static SDNode *findGluedUser(SDNode *N) {
    718   while (SDNode *Glued = N->getGluedUser())
    719     N = Glued;
    720   return N;
    721 }
    722 
    723 void ScheduleDAGLinearize::Schedule() {
    724   DEBUG(dbgs() << "********** DAG Linearization **********\n");
    725 
    726   SmallVector<SDNode*, 8> Glues;
    727   unsigned DAGSize = 0;
    728   for (SDNode &Node : DAG->allnodes()) {
    729     SDNode *N = &Node;
    730 
    731     // Use node id to record degree.
    732     unsigned Degree = N->use_size();
    733     N->setNodeId(Degree);
    734     unsigned NumVals = N->getNumValues();
    735     if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
    736         N->hasAnyUseOfValue(NumVals-1)) {
    737       SDNode *User = findGluedUser(N);
    738       if (User) {
    739         Glues.push_back(N);
    740         GluedMap.insert(std::make_pair(N, User));
    741       }
    742     }
    743 
    744     if (N->isMachineOpcode() ||
    745         (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
    746       ++DAGSize;
    747   }
    748 
    749   for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
    750     SDNode *Glue = Glues[i];
    751     SDNode *GUser = GluedMap[Glue];
    752     unsigned Degree = Glue->getNodeId();
    753     unsigned UDegree = GUser->getNodeId();
    754 
    755     // Glue user must be scheduled together with the glue operand. So other
    756     // users of the glue operand must be treated as its users.
    757     SDNode *ImmGUser = Glue->getGluedUser();
    758     for (SDNode::use_iterator ui = Glue->use_begin(), ue = Glue->use_end();
    759          ui != ue; ++ui)
    760       if (*ui == ImmGUser)
    761         --Degree;
    762     GUser->setNodeId(UDegree + Degree);
    763     Glue->setNodeId(1);
    764   }
    765 
    766   Sequence.reserve(DAGSize);
    767   ScheduleNode(DAG->getRoot().getNode());
    768 }
    769 
    770 MachineBasicBlock*
    771 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
    772   InstrEmitter Emitter(BB, InsertPos);
    773   DenseMap<SDValue, unsigned> VRBaseMap;
    774 
    775   DEBUG({
    776       dbgs() << "\n*** Final schedule ***\n";
    777     });
    778 
    779   // FIXME: Handle dbg_values.
    780   unsigned NumNodes = Sequence.size();
    781   for (unsigned i = 0; i != NumNodes; ++i) {
    782     SDNode *N = Sequence[NumNodes-i-1];
    783     DEBUG(N->dump(DAG));
    784     Emitter.EmitNode(N, false, false, VRBaseMap);
    785   }
    786 
    787   DEBUG(dbgs() << '\n');
    788 
    789   InsertPos = Emitter.getInsertPos();
    790   return Emitter.getBlock();
    791 }
    792 
    793 //===----------------------------------------------------------------------===//
    794 //                         Public Constructor Functions
    795 //===----------------------------------------------------------------------===//
    796 
    797 llvm::ScheduleDAGSDNodes *
    798 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
    799   return new ScheduleDAGFast(*IS->MF);
    800 }
    801 
    802 llvm::ScheduleDAGSDNodes *
    803 llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) {
    804   return new ScheduleDAGLinearize(*IS->MF);
    805 }
    806