Home | History | Annotate | Download | only in IR
      1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements folding of constants for LLVM.  This implements the
     11 // (internal) ConstantFold.h interface, which is used by the
     12 // ConstantExpr::get* methods to automatically fold constants when possible.
     13 //
     14 // The current constant folding implementation is implemented in two pieces: the
     15 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
     16 // a dependence in IR on Target.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "ConstantFold.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/IR/Constants.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/Function.h"
     25 #include "llvm/IR/GetElementPtrTypeIterator.h"
     26 #include "llvm/IR/GlobalAlias.h"
     27 #include "llvm/IR/GlobalVariable.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/IR/Operator.h"
     30 #include "llvm/IR/PatternMatch.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/ManagedStatic.h"
     33 #include "llvm/Support/MathExtras.h"
     34 using namespace llvm;
     35 using namespace llvm::PatternMatch;
     36 
     37 //===----------------------------------------------------------------------===//
     38 //                ConstantFold*Instruction Implementations
     39 //===----------------------------------------------------------------------===//
     40 
     41 /// Convert the specified vector Constant node to the specified vector type.
     42 /// At this point, we know that the elements of the input vector constant are
     43 /// all simple integer or FP values.
     44 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
     45 
     46   if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
     47   if (CV->isNullValue()) return Constant::getNullValue(DstTy);
     48 
     49   // If this cast changes element count then we can't handle it here:
     50   // doing so requires endianness information.  This should be handled by
     51   // Analysis/ConstantFolding.cpp
     52   unsigned NumElts = DstTy->getNumElements();
     53   if (NumElts != CV->getType()->getVectorNumElements())
     54     return nullptr;
     55 
     56   Type *DstEltTy = DstTy->getElementType();
     57 
     58   SmallVector<Constant*, 16> Result;
     59   Type *Ty = IntegerType::get(CV->getContext(), 32);
     60   for (unsigned i = 0; i != NumElts; ++i) {
     61     Constant *C =
     62       ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
     63     C = ConstantExpr::getBitCast(C, DstEltTy);
     64     Result.push_back(C);
     65   }
     66 
     67   return ConstantVector::get(Result);
     68 }
     69 
     70 /// This function determines which opcode to use to fold two constant cast
     71 /// expressions together. It uses CastInst::isEliminableCastPair to determine
     72 /// the opcode. Consequently its just a wrapper around that function.
     73 /// @brief Determine if it is valid to fold a cast of a cast
     74 static unsigned
     75 foldConstantCastPair(
     76   unsigned opc,          ///< opcode of the second cast constant expression
     77   ConstantExpr *Op,      ///< the first cast constant expression
     78   Type *DstTy            ///< destination type of the first cast
     79 ) {
     80   assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
     81   assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
     82   assert(CastInst::isCast(opc) && "Invalid cast opcode");
     83 
     84   // The types and opcodes for the two Cast constant expressions
     85   Type *SrcTy = Op->getOperand(0)->getType();
     86   Type *MidTy = Op->getType();
     87   Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
     88   Instruction::CastOps secondOp = Instruction::CastOps(opc);
     89 
     90   // Assume that pointers are never more than 64 bits wide, and only use this
     91   // for the middle type. Otherwise we could end up folding away illegal
     92   // bitcasts between address spaces with different sizes.
     93   IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
     94 
     95   // Let CastInst::isEliminableCastPair do the heavy lifting.
     96   return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
     97                                         nullptr, FakeIntPtrTy, nullptr);
     98 }
     99 
    100 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
    101   Type *SrcTy = V->getType();
    102   if (SrcTy == DestTy)
    103     return V; // no-op cast
    104 
    105   // Check to see if we are casting a pointer to an aggregate to a pointer to
    106   // the first element.  If so, return the appropriate GEP instruction.
    107   if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
    108     if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
    109       if (PTy->getAddressSpace() == DPTy->getAddressSpace()
    110           && PTy->getElementType()->isSized()) {
    111         SmallVector<Value*, 8> IdxList;
    112         Value *Zero =
    113           Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
    114         IdxList.push_back(Zero);
    115         Type *ElTy = PTy->getElementType();
    116         while (ElTy != DPTy->getElementType()) {
    117           if (StructType *STy = dyn_cast<StructType>(ElTy)) {
    118             if (STy->getNumElements() == 0) break;
    119             ElTy = STy->getElementType(0);
    120             IdxList.push_back(Zero);
    121           } else if (SequentialType *STy =
    122                      dyn_cast<SequentialType>(ElTy)) {
    123             if (ElTy->isPointerTy()) break;  // Can't index into pointers!
    124             ElTy = STy->getElementType();
    125             IdxList.push_back(Zero);
    126           } else {
    127             break;
    128           }
    129         }
    130 
    131         if (ElTy == DPTy->getElementType())
    132           // This GEP is inbounds because all indices are zero.
    133           return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
    134                                                         V, IdxList);
    135       }
    136 
    137   // Handle casts from one vector constant to another.  We know that the src
    138   // and dest type have the same size (otherwise its an illegal cast).
    139   if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
    140     if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
    141       assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
    142              "Not cast between same sized vectors!");
    143       SrcTy = nullptr;
    144       // First, check for null.  Undef is already handled.
    145       if (isa<ConstantAggregateZero>(V))
    146         return Constant::getNullValue(DestTy);
    147 
    148       // Handle ConstantVector and ConstantAggregateVector.
    149       return BitCastConstantVector(V, DestPTy);
    150     }
    151 
    152     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
    153     // This allows for other simplifications (although some of them
    154     // can only be handled by Analysis/ConstantFolding.cpp).
    155     if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
    156       return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
    157   }
    158 
    159   // Finally, implement bitcast folding now.   The code below doesn't handle
    160   // bitcast right.
    161   if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
    162     return ConstantPointerNull::get(cast<PointerType>(DestTy));
    163 
    164   // Handle integral constant input.
    165   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    166     if (DestTy->isIntegerTy())
    167       // Integral -> Integral. This is a no-op because the bit widths must
    168       // be the same. Consequently, we just fold to V.
    169       return V;
    170 
    171     // See note below regarding the PPC_FP128 restriction.
    172     if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
    173       return ConstantFP::get(DestTy->getContext(),
    174                              APFloat(DestTy->getFltSemantics(),
    175                                      CI->getValue()));
    176 
    177     // Otherwise, can't fold this (vector?)
    178     return nullptr;
    179   }
    180 
    181   // Handle ConstantFP input: FP -> Integral.
    182   if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
    183     // PPC_FP128 is really the sum of two consecutive doubles, where the first
    184     // double is always stored first in memory, regardless of the target
    185     // endianness. The memory layout of i128, however, depends on the target
    186     // endianness, and so we can't fold this without target endianness
    187     // information. This should instead be handled by
    188     // Analysis/ConstantFolding.cpp
    189     if (FP->getType()->isPPC_FP128Ty())
    190       return nullptr;
    191 
    192     // Make sure dest type is compatible with the folded integer constant.
    193     if (!DestTy->isIntegerTy())
    194       return nullptr;
    195 
    196     return ConstantInt::get(FP->getContext(),
    197                             FP->getValueAPF().bitcastToAPInt());
    198   }
    199 
    200   return nullptr;
    201 }
    202 
    203 
    204 /// V is an integer constant which only has a subset of its bytes used.
    205 /// The bytes used are indicated by ByteStart (which is the first byte used,
    206 /// counting from the least significant byte) and ByteSize, which is the number
    207 /// of bytes used.
    208 ///
    209 /// This function analyzes the specified constant to see if the specified byte
    210 /// range can be returned as a simplified constant.  If so, the constant is
    211 /// returned, otherwise null is returned.
    212 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
    213                                       unsigned ByteSize) {
    214   assert(C->getType()->isIntegerTy() &&
    215          (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
    216          "Non-byte sized integer input");
    217   unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
    218   assert(ByteSize && "Must be accessing some piece");
    219   assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
    220   assert(ByteSize != CSize && "Should not extract everything");
    221 
    222   // Constant Integers are simple.
    223   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    224     APInt V = CI->getValue();
    225     if (ByteStart)
    226       V = V.lshr(ByteStart*8);
    227     V = V.trunc(ByteSize*8);
    228     return ConstantInt::get(CI->getContext(), V);
    229   }
    230 
    231   // In the input is a constant expr, we might be able to recursively simplify.
    232   // If not, we definitely can't do anything.
    233   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    234   if (!CE) return nullptr;
    235 
    236   switch (CE->getOpcode()) {
    237   default: return nullptr;
    238   case Instruction::Or: {
    239     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
    240     if (!RHS)
    241       return nullptr;
    242 
    243     // X | -1 -> -1.
    244     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
    245       if (RHSC->isAllOnesValue())
    246         return RHSC;
    247 
    248     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
    249     if (!LHS)
    250       return nullptr;
    251     return ConstantExpr::getOr(LHS, RHS);
    252   }
    253   case Instruction::And: {
    254     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
    255     if (!RHS)
    256       return nullptr;
    257 
    258     // X & 0 -> 0.
    259     if (RHS->isNullValue())
    260       return RHS;
    261 
    262     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
    263     if (!LHS)
    264       return nullptr;
    265     return ConstantExpr::getAnd(LHS, RHS);
    266   }
    267   case Instruction::LShr: {
    268     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
    269     if (!Amt)
    270       return nullptr;
    271     unsigned ShAmt = Amt->getZExtValue();
    272     // Cannot analyze non-byte shifts.
    273     if ((ShAmt & 7) != 0)
    274       return nullptr;
    275     ShAmt >>= 3;
    276 
    277     // If the extract is known to be all zeros, return zero.
    278     if (ByteStart >= CSize-ShAmt)
    279       return Constant::getNullValue(IntegerType::get(CE->getContext(),
    280                                                      ByteSize*8));
    281     // If the extract is known to be fully in the input, extract it.
    282     if (ByteStart+ByteSize+ShAmt <= CSize)
    283       return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
    284 
    285     // TODO: Handle the 'partially zero' case.
    286     return nullptr;
    287   }
    288 
    289   case Instruction::Shl: {
    290     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
    291     if (!Amt)
    292       return nullptr;
    293     unsigned ShAmt = Amt->getZExtValue();
    294     // Cannot analyze non-byte shifts.
    295     if ((ShAmt & 7) != 0)
    296       return nullptr;
    297     ShAmt >>= 3;
    298 
    299     // If the extract is known to be all zeros, return zero.
    300     if (ByteStart+ByteSize <= ShAmt)
    301       return Constant::getNullValue(IntegerType::get(CE->getContext(),
    302                                                      ByteSize*8));
    303     // If the extract is known to be fully in the input, extract it.
    304     if (ByteStart >= ShAmt)
    305       return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
    306 
    307     // TODO: Handle the 'partially zero' case.
    308     return nullptr;
    309   }
    310 
    311   case Instruction::ZExt: {
    312     unsigned SrcBitSize =
    313       cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
    314 
    315     // If extracting something that is completely zero, return 0.
    316     if (ByteStart*8 >= SrcBitSize)
    317       return Constant::getNullValue(IntegerType::get(CE->getContext(),
    318                                                      ByteSize*8));
    319 
    320     // If exactly extracting the input, return it.
    321     if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
    322       return CE->getOperand(0);
    323 
    324     // If extracting something completely in the input, if if the input is a
    325     // multiple of 8 bits, recurse.
    326     if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
    327       return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
    328 
    329     // Otherwise, if extracting a subset of the input, which is not multiple of
    330     // 8 bits, do a shift and trunc to get the bits.
    331     if ((ByteStart+ByteSize)*8 < SrcBitSize) {
    332       assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
    333       Constant *Res = CE->getOperand(0);
    334       if (ByteStart)
    335         Res = ConstantExpr::getLShr(Res,
    336                                  ConstantInt::get(Res->getType(), ByteStart*8));
    337       return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
    338                                                           ByteSize*8));
    339     }
    340 
    341     // TODO: Handle the 'partially zero' case.
    342     return nullptr;
    343   }
    344   }
    345 }
    346 
    347 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
    348 /// factors factored out. If Folded is false, return null if no factoring was
    349 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
    350 /// top-level folder.
    351 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
    352                                  bool Folded) {
    353   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    354     Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
    355     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
    356     return ConstantExpr::getNUWMul(E, N);
    357   }
    358 
    359   if (StructType *STy = dyn_cast<StructType>(Ty))
    360     if (!STy->isPacked()) {
    361       unsigned NumElems = STy->getNumElements();
    362       // An empty struct has size zero.
    363       if (NumElems == 0)
    364         return ConstantExpr::getNullValue(DestTy);
    365       // Check for a struct with all members having the same size.
    366       Constant *MemberSize =
    367         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
    368       bool AllSame = true;
    369       for (unsigned i = 1; i != NumElems; ++i)
    370         if (MemberSize !=
    371             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
    372           AllSame = false;
    373           break;
    374         }
    375       if (AllSame) {
    376         Constant *N = ConstantInt::get(DestTy, NumElems);
    377         return ConstantExpr::getNUWMul(MemberSize, N);
    378       }
    379     }
    380 
    381   // Pointer size doesn't depend on the pointee type, so canonicalize them
    382   // to an arbitrary pointee.
    383   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    384     if (!PTy->getElementType()->isIntegerTy(1))
    385       return
    386         getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
    387                                          PTy->getAddressSpace()),
    388                         DestTy, true);
    389 
    390   // If there's no interesting folding happening, bail so that we don't create
    391   // a constant that looks like it needs folding but really doesn't.
    392   if (!Folded)
    393     return nullptr;
    394 
    395   // Base case: Get a regular sizeof expression.
    396   Constant *C = ConstantExpr::getSizeOf(Ty);
    397   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    398                                                     DestTy, false),
    399                             C, DestTy);
    400   return C;
    401 }
    402 
    403 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
    404 /// factors factored out. If Folded is false, return null if no factoring was
    405 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
    406 /// top-level folder.
    407 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
    408                                   bool Folded) {
    409   // The alignment of an array is equal to the alignment of the
    410   // array element. Note that this is not always true for vectors.
    411   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    412     Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
    413     C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    414                                                       DestTy,
    415                                                       false),
    416                               C, DestTy);
    417     return C;
    418   }
    419 
    420   if (StructType *STy = dyn_cast<StructType>(Ty)) {
    421     // Packed structs always have an alignment of 1.
    422     if (STy->isPacked())
    423       return ConstantInt::get(DestTy, 1);
    424 
    425     // Otherwise, struct alignment is the maximum alignment of any member.
    426     // Without target data, we can't compare much, but we can check to see
    427     // if all the members have the same alignment.
    428     unsigned NumElems = STy->getNumElements();
    429     // An empty struct has minimal alignment.
    430     if (NumElems == 0)
    431       return ConstantInt::get(DestTy, 1);
    432     // Check for a struct with all members having the same alignment.
    433     Constant *MemberAlign =
    434       getFoldedAlignOf(STy->getElementType(0), DestTy, true);
    435     bool AllSame = true;
    436     for (unsigned i = 1; i != NumElems; ++i)
    437       if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
    438         AllSame = false;
    439         break;
    440       }
    441     if (AllSame)
    442       return MemberAlign;
    443   }
    444 
    445   // Pointer alignment doesn't depend on the pointee type, so canonicalize them
    446   // to an arbitrary pointee.
    447   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    448     if (!PTy->getElementType()->isIntegerTy(1))
    449       return
    450         getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
    451                                                            1),
    452                                           PTy->getAddressSpace()),
    453                          DestTy, true);
    454 
    455   // If there's no interesting folding happening, bail so that we don't create
    456   // a constant that looks like it needs folding but really doesn't.
    457   if (!Folded)
    458     return nullptr;
    459 
    460   // Base case: Get a regular alignof expression.
    461   Constant *C = ConstantExpr::getAlignOf(Ty);
    462   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    463                                                     DestTy, false),
    464                             C, DestTy);
    465   return C;
    466 }
    467 
    468 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
    469 /// any known factors factored out. If Folded is false, return null if no
    470 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
    471 /// back into the top-level folder.
    472 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
    473                                    Type *DestTy,
    474                                    bool Folded) {
    475   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    476     Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
    477                                                                 DestTy, false),
    478                                         FieldNo, DestTy);
    479     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
    480     return ConstantExpr::getNUWMul(E, N);
    481   }
    482 
    483   if (StructType *STy = dyn_cast<StructType>(Ty))
    484     if (!STy->isPacked()) {
    485       unsigned NumElems = STy->getNumElements();
    486       // An empty struct has no members.
    487       if (NumElems == 0)
    488         return nullptr;
    489       // Check for a struct with all members having the same size.
    490       Constant *MemberSize =
    491         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
    492       bool AllSame = true;
    493       for (unsigned i = 1; i != NumElems; ++i)
    494         if (MemberSize !=
    495             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
    496           AllSame = false;
    497           break;
    498         }
    499       if (AllSame) {
    500         Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
    501                                                                     false,
    502                                                                     DestTy,
    503                                                                     false),
    504                                             FieldNo, DestTy);
    505         return ConstantExpr::getNUWMul(MemberSize, N);
    506       }
    507     }
    508 
    509   // If there's no interesting folding happening, bail so that we don't create
    510   // a constant that looks like it needs folding but really doesn't.
    511   if (!Folded)
    512     return nullptr;
    513 
    514   // Base case: Get a regular offsetof expression.
    515   Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
    516   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    517                                                     DestTy, false),
    518                             C, DestTy);
    519   return C;
    520 }
    521 
    522 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
    523                                             Type *DestTy) {
    524   if (isa<UndefValue>(V)) {
    525     // zext(undef) = 0, because the top bits will be zero.
    526     // sext(undef) = 0, because the top bits will all be the same.
    527     // [us]itofp(undef) = 0, because the result value is bounded.
    528     if (opc == Instruction::ZExt || opc == Instruction::SExt ||
    529         opc == Instruction::UIToFP || opc == Instruction::SIToFP)
    530       return Constant::getNullValue(DestTy);
    531     return UndefValue::get(DestTy);
    532   }
    533 
    534   if (V->isNullValue() && !DestTy->isX86_MMXTy() &&
    535       opc != Instruction::AddrSpaceCast)
    536     return Constant::getNullValue(DestTy);
    537 
    538   // If the cast operand is a constant expression, there's a few things we can
    539   // do to try to simplify it.
    540   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    541     if (CE->isCast()) {
    542       // Try hard to fold cast of cast because they are often eliminable.
    543       if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
    544         return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
    545     } else if (CE->getOpcode() == Instruction::GetElementPtr &&
    546                // Do not fold addrspacecast (gep 0, .., 0). It might make the
    547                // addrspacecast uncanonicalized.
    548                opc != Instruction::AddrSpaceCast) {
    549       // If all of the indexes in the GEP are null values, there is no pointer
    550       // adjustment going on.  We might as well cast the source pointer.
    551       bool isAllNull = true;
    552       for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
    553         if (!CE->getOperand(i)->isNullValue()) {
    554           isAllNull = false;
    555           break;
    556         }
    557       if (isAllNull)
    558         // This is casting one pointer type to another, always BitCast
    559         return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
    560     }
    561   }
    562 
    563   // If the cast operand is a constant vector, perform the cast by
    564   // operating on each element. In the cast of bitcasts, the element
    565   // count may be mismatched; don't attempt to handle that here.
    566   if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
    567       DestTy->isVectorTy() &&
    568       DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
    569     SmallVector<Constant*, 16> res;
    570     VectorType *DestVecTy = cast<VectorType>(DestTy);
    571     Type *DstEltTy = DestVecTy->getElementType();
    572     Type *Ty = IntegerType::get(V->getContext(), 32);
    573     for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
    574       Constant *C =
    575         ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
    576       res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
    577     }
    578     return ConstantVector::get(res);
    579   }
    580 
    581   // We actually have to do a cast now. Perform the cast according to the
    582   // opcode specified.
    583   switch (opc) {
    584   default:
    585     llvm_unreachable("Failed to cast constant expression");
    586   case Instruction::FPTrunc:
    587   case Instruction::FPExt:
    588     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
    589       bool ignored;
    590       APFloat Val = FPC->getValueAPF();
    591       Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
    592                   DestTy->isFloatTy() ? APFloat::IEEEsingle :
    593                   DestTy->isDoubleTy() ? APFloat::IEEEdouble :
    594                   DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
    595                   DestTy->isFP128Ty() ? APFloat::IEEEquad :
    596                   DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble :
    597                   APFloat::Bogus,
    598                   APFloat::rmNearestTiesToEven, &ignored);
    599       return ConstantFP::get(V->getContext(), Val);
    600     }
    601     return nullptr; // Can't fold.
    602   case Instruction::FPToUI:
    603   case Instruction::FPToSI:
    604     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
    605       const APFloat &V = FPC->getValueAPF();
    606       bool ignored;
    607       uint64_t x[2];
    608       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    609       if (APFloat::opInvalidOp ==
    610           V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
    611                              APFloat::rmTowardZero, &ignored)) {
    612         // Undefined behavior invoked - the destination type can't represent
    613         // the input constant.
    614         return UndefValue::get(DestTy);
    615       }
    616       APInt Val(DestBitWidth, x);
    617       return ConstantInt::get(FPC->getContext(), Val);
    618     }
    619     return nullptr; // Can't fold.
    620   case Instruction::IntToPtr:   //always treated as unsigned
    621     if (V->isNullValue())       // Is it an integral null value?
    622       return ConstantPointerNull::get(cast<PointerType>(DestTy));
    623     return nullptr;                   // Other pointer types cannot be casted
    624   case Instruction::PtrToInt:   // always treated as unsigned
    625     // Is it a null pointer value?
    626     if (V->isNullValue())
    627       return ConstantInt::get(DestTy, 0);
    628     // If this is a sizeof-like expression, pull out multiplications by
    629     // known factors to expose them to subsequent folding. If it's an
    630     // alignof-like expression, factor out known factors.
    631     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    632       if (CE->getOpcode() == Instruction::GetElementPtr &&
    633           CE->getOperand(0)->isNullValue()) {
    634         GEPOperator *GEPO = cast<GEPOperator>(CE);
    635         Type *Ty = GEPO->getSourceElementType();
    636         if (CE->getNumOperands() == 2) {
    637           // Handle a sizeof-like expression.
    638           Constant *Idx = CE->getOperand(1);
    639           bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
    640           if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
    641             Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
    642                                                                 DestTy, false),
    643                                         Idx, DestTy);
    644             return ConstantExpr::getMul(C, Idx);
    645           }
    646         } else if (CE->getNumOperands() == 3 &&
    647                    CE->getOperand(1)->isNullValue()) {
    648           // Handle an alignof-like expression.
    649           if (StructType *STy = dyn_cast<StructType>(Ty))
    650             if (!STy->isPacked()) {
    651               ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
    652               if (CI->isOne() &&
    653                   STy->getNumElements() == 2 &&
    654                   STy->getElementType(0)->isIntegerTy(1)) {
    655                 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
    656               }
    657             }
    658           // Handle an offsetof-like expression.
    659           if (Ty->isStructTy() || Ty->isArrayTy()) {
    660             if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
    661                                                 DestTy, false))
    662               return C;
    663           }
    664         }
    665       }
    666     // Other pointer types cannot be casted
    667     return nullptr;
    668   case Instruction::UIToFP:
    669   case Instruction::SIToFP:
    670     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    671       const APInt &api = CI->getValue();
    672       APFloat apf(DestTy->getFltSemantics(),
    673                   APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
    674       if (APFloat::opOverflow &
    675           apf.convertFromAPInt(api, opc==Instruction::SIToFP,
    676                               APFloat::rmNearestTiesToEven)) {
    677         // Undefined behavior invoked - the destination type can't represent
    678         // the input constant.
    679         return UndefValue::get(DestTy);
    680       }
    681       return ConstantFP::get(V->getContext(), apf);
    682     }
    683     return nullptr;
    684   case Instruction::ZExt:
    685     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    686       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    687       return ConstantInt::get(V->getContext(),
    688                               CI->getValue().zext(BitWidth));
    689     }
    690     return nullptr;
    691   case Instruction::SExt:
    692     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    693       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    694       return ConstantInt::get(V->getContext(),
    695                               CI->getValue().sext(BitWidth));
    696     }
    697     return nullptr;
    698   case Instruction::Trunc: {
    699     if (V->getType()->isVectorTy())
    700       return nullptr;
    701 
    702     uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    703     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    704       return ConstantInt::get(V->getContext(),
    705                               CI->getValue().trunc(DestBitWidth));
    706     }
    707 
    708     // The input must be a constantexpr.  See if we can simplify this based on
    709     // the bytes we are demanding.  Only do this if the source and dest are an
    710     // even multiple of a byte.
    711     if ((DestBitWidth & 7) == 0 &&
    712         (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
    713       if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
    714         return Res;
    715 
    716     return nullptr;
    717   }
    718   case Instruction::BitCast:
    719     return FoldBitCast(V, DestTy);
    720   case Instruction::AddrSpaceCast:
    721     return nullptr;
    722   }
    723 }
    724 
    725 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
    726                                               Constant *V1, Constant *V2) {
    727   // Check for i1 and vector true/false conditions.
    728   if (Cond->isNullValue()) return V2;
    729   if (Cond->isAllOnesValue()) return V1;
    730 
    731   // If the condition is a vector constant, fold the result elementwise.
    732   if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
    733     SmallVector<Constant*, 16> Result;
    734     Type *Ty = IntegerType::get(CondV->getContext(), 32);
    735     for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
    736       Constant *V;
    737       Constant *V1Element = ConstantExpr::getExtractElement(V1,
    738                                                     ConstantInt::get(Ty, i));
    739       Constant *V2Element = ConstantExpr::getExtractElement(V2,
    740                                                     ConstantInt::get(Ty, i));
    741       Constant *Cond = dyn_cast<Constant>(CondV->getOperand(i));
    742       if (V1Element == V2Element) {
    743         V = V1Element;
    744       } else if (isa<UndefValue>(Cond)) {
    745         V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
    746       } else {
    747         if (!isa<ConstantInt>(Cond)) break;
    748         V = Cond->isNullValue() ? V2Element : V1Element;
    749       }
    750       Result.push_back(V);
    751     }
    752 
    753     // If we were able to build the vector, return it.
    754     if (Result.size() == V1->getType()->getVectorNumElements())
    755       return ConstantVector::get(Result);
    756   }
    757 
    758   if (isa<UndefValue>(Cond)) {
    759     if (isa<UndefValue>(V1)) return V1;
    760     return V2;
    761   }
    762   if (isa<UndefValue>(V1)) return V2;
    763   if (isa<UndefValue>(V2)) return V1;
    764   if (V1 == V2) return V1;
    765 
    766   if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
    767     if (TrueVal->getOpcode() == Instruction::Select)
    768       if (TrueVal->getOperand(0) == Cond)
    769         return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
    770   }
    771   if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
    772     if (FalseVal->getOpcode() == Instruction::Select)
    773       if (FalseVal->getOperand(0) == Cond)
    774         return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
    775   }
    776 
    777   return nullptr;
    778 }
    779 
    780 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
    781                                                       Constant *Idx) {
    782   if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
    783     return UndefValue::get(Val->getType()->getVectorElementType());
    784   if (Val->isNullValue())  // ee(zero, x) -> zero
    785     return Constant::getNullValue(Val->getType()->getVectorElementType());
    786   // ee({w,x,y,z}, undef) -> undef
    787   if (isa<UndefValue>(Idx))
    788     return UndefValue::get(Val->getType()->getVectorElementType());
    789 
    790   if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
    791     // ee({w,x,y,z}, wrong_value) -> undef
    792     if (CIdx->uge(Val->getType()->getVectorNumElements()))
    793       return UndefValue::get(Val->getType()->getVectorElementType());
    794     return Val->getAggregateElement(CIdx->getZExtValue());
    795   }
    796   return nullptr;
    797 }
    798 
    799 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
    800                                                      Constant *Elt,
    801                                                      Constant *Idx) {
    802   if (isa<UndefValue>(Idx))
    803     return UndefValue::get(Val->getType());
    804 
    805   ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
    806   if (!CIdx) return nullptr;
    807 
    808   unsigned NumElts = Val->getType()->getVectorNumElements();
    809   if (CIdx->uge(NumElts))
    810     return UndefValue::get(Val->getType());
    811 
    812   SmallVector<Constant*, 16> Result;
    813   Result.reserve(NumElts);
    814   auto *Ty = Type::getInt32Ty(Val->getContext());
    815   uint64_t IdxVal = CIdx->getZExtValue();
    816   for (unsigned i = 0; i != NumElts; ++i) {
    817     if (i == IdxVal) {
    818       Result.push_back(Elt);
    819       continue;
    820     }
    821 
    822     Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
    823     Result.push_back(C);
    824   }
    825 
    826   return ConstantVector::get(Result);
    827 }
    828 
    829 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
    830                                                      Constant *V2,
    831                                                      Constant *Mask) {
    832   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
    833   Type *EltTy = V1->getType()->getVectorElementType();
    834 
    835   // Undefined shuffle mask -> undefined value.
    836   if (isa<UndefValue>(Mask))
    837     return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
    838 
    839   // Don't break the bitcode reader hack.
    840   if (isa<ConstantExpr>(Mask)) return nullptr;
    841 
    842   unsigned SrcNumElts = V1->getType()->getVectorNumElements();
    843 
    844   // Loop over the shuffle mask, evaluating each element.
    845   SmallVector<Constant*, 32> Result;
    846   for (unsigned i = 0; i != MaskNumElts; ++i) {
    847     int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
    848     if (Elt == -1) {
    849       Result.push_back(UndefValue::get(EltTy));
    850       continue;
    851     }
    852     Constant *InElt;
    853     if (unsigned(Elt) >= SrcNumElts*2)
    854       InElt = UndefValue::get(EltTy);
    855     else if (unsigned(Elt) >= SrcNumElts) {
    856       Type *Ty = IntegerType::get(V2->getContext(), 32);
    857       InElt =
    858         ConstantExpr::getExtractElement(V2,
    859                                         ConstantInt::get(Ty, Elt - SrcNumElts));
    860     } else {
    861       Type *Ty = IntegerType::get(V1->getContext(), 32);
    862       InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
    863     }
    864     Result.push_back(InElt);
    865   }
    866 
    867   return ConstantVector::get(Result);
    868 }
    869 
    870 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
    871                                                     ArrayRef<unsigned> Idxs) {
    872   // Base case: no indices, so return the entire value.
    873   if (Idxs.empty())
    874     return Agg;
    875 
    876   if (Constant *C = Agg->getAggregateElement(Idxs[0]))
    877     return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
    878 
    879   return nullptr;
    880 }
    881 
    882 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
    883                                                    Constant *Val,
    884                                                    ArrayRef<unsigned> Idxs) {
    885   // Base case: no indices, so replace the entire value.
    886   if (Idxs.empty())
    887     return Val;
    888 
    889   unsigned NumElts;
    890   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
    891     NumElts = ST->getNumElements();
    892   else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
    893     NumElts = AT->getNumElements();
    894   else
    895     NumElts = Agg->getType()->getVectorNumElements();
    896 
    897   SmallVector<Constant*, 32> Result;
    898   for (unsigned i = 0; i != NumElts; ++i) {
    899     Constant *C = Agg->getAggregateElement(i);
    900     if (!C) return nullptr;
    901 
    902     if (Idxs[0] == i)
    903       C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
    904 
    905     Result.push_back(C);
    906   }
    907 
    908   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
    909     return ConstantStruct::get(ST, Result);
    910   if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
    911     return ConstantArray::get(AT, Result);
    912   return ConstantVector::get(Result);
    913 }
    914 
    915 
    916 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
    917                                               Constant *C1, Constant *C2) {
    918   assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
    919 
    920   // Handle UndefValue up front.
    921   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
    922     switch (static_cast<Instruction::BinaryOps>(Opcode)) {
    923     case Instruction::Xor:
    924       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
    925         // Handle undef ^ undef -> 0 special case. This is a common
    926         // idiom (misuse).
    927         return Constant::getNullValue(C1->getType());
    928       // Fallthrough
    929     case Instruction::Add:
    930     case Instruction::Sub:
    931       return UndefValue::get(C1->getType());
    932     case Instruction::And:
    933       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
    934         return C1;
    935       return Constant::getNullValue(C1->getType());   // undef & X -> 0
    936     case Instruction::Mul: {
    937       // undef * undef -> undef
    938       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
    939         return C1;
    940       const APInt *CV;
    941       // X * undef -> undef   if X is odd
    942       if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
    943         if ((*CV)[0])
    944           return UndefValue::get(C1->getType());
    945 
    946       // X * undef -> 0       otherwise
    947       return Constant::getNullValue(C1->getType());
    948     }
    949     case Instruction::SDiv:
    950     case Instruction::UDiv:
    951       // X / undef -> undef
    952       if (isa<UndefValue>(C2))
    953         return C2;
    954       // undef / 0 -> undef
    955       // undef / 1 -> undef
    956       if (match(C2, m_Zero()) || match(C2, m_One()))
    957         return C1;
    958       // undef / X -> 0       otherwise
    959       return Constant::getNullValue(C1->getType());
    960     case Instruction::URem:
    961     case Instruction::SRem:
    962       // X % undef -> undef
    963       if (match(C2, m_Undef()))
    964         return C2;
    965       // undef % 0 -> undef
    966       if (match(C2, m_Zero()))
    967         return C1;
    968       // undef % X -> 0       otherwise
    969       return Constant::getNullValue(C1->getType());
    970     case Instruction::Or:                          // X | undef -> -1
    971       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
    972         return C1;
    973       return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
    974     case Instruction::LShr:
    975       // X >>l undef -> undef
    976       if (isa<UndefValue>(C2))
    977         return C2;
    978       // undef >>l 0 -> undef
    979       if (match(C2, m_Zero()))
    980         return C1;
    981       // undef >>l X -> 0
    982       return Constant::getNullValue(C1->getType());
    983     case Instruction::AShr:
    984       // X >>a undef -> undef
    985       if (isa<UndefValue>(C2))
    986         return C2;
    987       // undef >>a 0 -> undef
    988       if (match(C2, m_Zero()))
    989         return C1;
    990       // TODO: undef >>a X -> undef if the shift is exact
    991       // undef >>a X -> 0
    992       return Constant::getNullValue(C1->getType());
    993     case Instruction::Shl:
    994       // X << undef -> undef
    995       if (isa<UndefValue>(C2))
    996         return C2;
    997       // undef << 0 -> undef
    998       if (match(C2, m_Zero()))
    999         return C1;
   1000       // undef << X -> 0
   1001       return Constant::getNullValue(C1->getType());
   1002     case Instruction::FAdd:
   1003     case Instruction::FSub:
   1004     case Instruction::FMul:
   1005     case Instruction::FDiv:
   1006     case Instruction::FRem:
   1007       // TODO: UNDEF handling for binary float instructions.
   1008       return nullptr;
   1009     case Instruction::BinaryOpsEnd:
   1010       llvm_unreachable("Invalid BinaryOp");
   1011     }
   1012   }
   1013 
   1014   // At this point neither constant should be an UndefValue.
   1015   assert(!isa<UndefValue>(C1) && !isa<UndefValue>(C2) &&
   1016          "Unexpected UndefValue");
   1017 
   1018   // Handle simplifications when the RHS is a constant int.
   1019   if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
   1020     switch (Opcode) {
   1021     case Instruction::Add:
   1022       if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
   1023       break;
   1024     case Instruction::Sub:
   1025       if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
   1026       break;
   1027     case Instruction::Mul:
   1028       if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
   1029       if (CI2->equalsInt(1))
   1030         return C1;                                              // X * 1 == X
   1031       break;
   1032     case Instruction::UDiv:
   1033     case Instruction::SDiv:
   1034       if (CI2->equalsInt(1))
   1035         return C1;                                            // X / 1 == X
   1036       if (CI2->equalsInt(0))
   1037         return UndefValue::get(CI2->getType());               // X / 0 == undef
   1038       break;
   1039     case Instruction::URem:
   1040     case Instruction::SRem:
   1041       if (CI2->equalsInt(1))
   1042         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
   1043       if (CI2->equalsInt(0))
   1044         return UndefValue::get(CI2->getType());               // X % 0 == undef
   1045       break;
   1046     case Instruction::And:
   1047       if (CI2->isZero()) return C2;                           // X & 0 == 0
   1048       if (CI2->isAllOnesValue())
   1049         return C1;                                            // X & -1 == X
   1050 
   1051       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
   1052         // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
   1053         if (CE1->getOpcode() == Instruction::ZExt) {
   1054           unsigned DstWidth = CI2->getType()->getBitWidth();
   1055           unsigned SrcWidth =
   1056             CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
   1057           APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
   1058           if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
   1059             return C1;
   1060         }
   1061 
   1062         // If and'ing the address of a global with a constant, fold it.
   1063         if (CE1->getOpcode() == Instruction::PtrToInt &&
   1064             isa<GlobalValue>(CE1->getOperand(0))) {
   1065           GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
   1066 
   1067           // Functions are at least 4-byte aligned.
   1068           unsigned GVAlign = GV->getAlignment();
   1069           if (isa<Function>(GV))
   1070             GVAlign = std::max(GVAlign, 4U);
   1071 
   1072           if (GVAlign > 1) {
   1073             unsigned DstWidth = CI2->getType()->getBitWidth();
   1074             unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
   1075             APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
   1076 
   1077             // If checking bits we know are clear, return zero.
   1078             if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
   1079               return Constant::getNullValue(CI2->getType());
   1080           }
   1081         }
   1082       }
   1083       break;
   1084     case Instruction::Or:
   1085       if (CI2->equalsInt(0)) return C1;    // X | 0 == X
   1086       if (CI2->isAllOnesValue())
   1087         return C2;                         // X | -1 == -1
   1088       break;
   1089     case Instruction::Xor:
   1090       if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
   1091 
   1092       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
   1093         switch (CE1->getOpcode()) {
   1094         default: break;
   1095         case Instruction::ICmp:
   1096         case Instruction::FCmp:
   1097           // cmp pred ^ true -> cmp !pred
   1098           assert(CI2->equalsInt(1));
   1099           CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
   1100           pred = CmpInst::getInversePredicate(pred);
   1101           return ConstantExpr::getCompare(pred, CE1->getOperand(0),
   1102                                           CE1->getOperand(1));
   1103         }
   1104       }
   1105       break;
   1106     case Instruction::AShr:
   1107       // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
   1108       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
   1109         if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
   1110           return ConstantExpr::getLShr(C1, C2);
   1111       break;
   1112     }
   1113   } else if (isa<ConstantInt>(C1)) {
   1114     // If C1 is a ConstantInt and C2 is not, swap the operands.
   1115     if (Instruction::isCommutative(Opcode))
   1116       return ConstantExpr::get(Opcode, C2, C1);
   1117   }
   1118 
   1119   if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
   1120     if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
   1121       const APInt &C1V = CI1->getValue();
   1122       const APInt &C2V = CI2->getValue();
   1123       switch (Opcode) {
   1124       default:
   1125         break;
   1126       case Instruction::Add:
   1127         return ConstantInt::get(CI1->getContext(), C1V + C2V);
   1128       case Instruction::Sub:
   1129         return ConstantInt::get(CI1->getContext(), C1V - C2V);
   1130       case Instruction::Mul:
   1131         return ConstantInt::get(CI1->getContext(), C1V * C2V);
   1132       case Instruction::UDiv:
   1133         assert(!CI2->isNullValue() && "Div by zero handled above");
   1134         return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
   1135       case Instruction::SDiv:
   1136         assert(!CI2->isNullValue() && "Div by zero handled above");
   1137         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
   1138           return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
   1139         return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
   1140       case Instruction::URem:
   1141         assert(!CI2->isNullValue() && "Div by zero handled above");
   1142         return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
   1143       case Instruction::SRem:
   1144         assert(!CI2->isNullValue() && "Div by zero handled above");
   1145         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
   1146           return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
   1147         return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
   1148       case Instruction::And:
   1149         return ConstantInt::get(CI1->getContext(), C1V & C2V);
   1150       case Instruction::Or:
   1151         return ConstantInt::get(CI1->getContext(), C1V | C2V);
   1152       case Instruction::Xor:
   1153         return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
   1154       case Instruction::Shl:
   1155         if (C2V.ult(C1V.getBitWidth()))
   1156           return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
   1157         return UndefValue::get(C1->getType()); // too big shift is undef
   1158       case Instruction::LShr:
   1159         if (C2V.ult(C1V.getBitWidth()))
   1160           return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
   1161         return UndefValue::get(C1->getType()); // too big shift is undef
   1162       case Instruction::AShr:
   1163         if (C2V.ult(C1V.getBitWidth()))
   1164           return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
   1165         return UndefValue::get(C1->getType()); // too big shift is undef
   1166       }
   1167     }
   1168 
   1169     switch (Opcode) {
   1170     case Instruction::SDiv:
   1171     case Instruction::UDiv:
   1172     case Instruction::URem:
   1173     case Instruction::SRem:
   1174     case Instruction::LShr:
   1175     case Instruction::AShr:
   1176     case Instruction::Shl:
   1177       if (CI1->equalsInt(0)) return C1;
   1178       break;
   1179     default:
   1180       break;
   1181     }
   1182   } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
   1183     if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
   1184       const APFloat &C1V = CFP1->getValueAPF();
   1185       const APFloat &C2V = CFP2->getValueAPF();
   1186       APFloat C3V = C1V;  // copy for modification
   1187       switch (Opcode) {
   1188       default:
   1189         break;
   1190       case Instruction::FAdd:
   1191         (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
   1192         return ConstantFP::get(C1->getContext(), C3V);
   1193       case Instruction::FSub:
   1194         (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
   1195         return ConstantFP::get(C1->getContext(), C3V);
   1196       case Instruction::FMul:
   1197         (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
   1198         return ConstantFP::get(C1->getContext(), C3V);
   1199       case Instruction::FDiv:
   1200         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
   1201         return ConstantFP::get(C1->getContext(), C3V);
   1202       case Instruction::FRem:
   1203         (void)C3V.mod(C2V);
   1204         return ConstantFP::get(C1->getContext(), C3V);
   1205       }
   1206     }
   1207   } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
   1208     // Perform elementwise folding.
   1209     SmallVector<Constant*, 16> Result;
   1210     Type *Ty = IntegerType::get(VTy->getContext(), 32);
   1211     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
   1212       Constant *LHS =
   1213         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
   1214       Constant *RHS =
   1215         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
   1216 
   1217       Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
   1218     }
   1219 
   1220     return ConstantVector::get(Result);
   1221   }
   1222 
   1223   if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
   1224     // There are many possible foldings we could do here.  We should probably
   1225     // at least fold add of a pointer with an integer into the appropriate
   1226     // getelementptr.  This will improve alias analysis a bit.
   1227 
   1228     // Given ((a + b) + c), if (b + c) folds to something interesting, return
   1229     // (a + (b + c)).
   1230     if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
   1231       Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
   1232       if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
   1233         return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
   1234     }
   1235   } else if (isa<ConstantExpr>(C2)) {
   1236     // If C2 is a constant expr and C1 isn't, flop them around and fold the
   1237     // other way if possible.
   1238     if (Instruction::isCommutative(Opcode))
   1239       return ConstantFoldBinaryInstruction(Opcode, C2, C1);
   1240   }
   1241 
   1242   // i1 can be simplified in many cases.
   1243   if (C1->getType()->isIntegerTy(1)) {
   1244     switch (Opcode) {
   1245     case Instruction::Add:
   1246     case Instruction::Sub:
   1247       return ConstantExpr::getXor(C1, C2);
   1248     case Instruction::Mul:
   1249       return ConstantExpr::getAnd(C1, C2);
   1250     case Instruction::Shl:
   1251     case Instruction::LShr:
   1252     case Instruction::AShr:
   1253       // We can assume that C2 == 0.  If it were one the result would be
   1254       // undefined because the shift value is as large as the bitwidth.
   1255       return C1;
   1256     case Instruction::SDiv:
   1257     case Instruction::UDiv:
   1258       // We can assume that C2 == 1.  If it were zero the result would be
   1259       // undefined through division by zero.
   1260       return C1;
   1261     case Instruction::URem:
   1262     case Instruction::SRem:
   1263       // We can assume that C2 == 1.  If it were zero the result would be
   1264       // undefined through division by zero.
   1265       return ConstantInt::getFalse(C1->getContext());
   1266     default:
   1267       break;
   1268     }
   1269   }
   1270 
   1271   // We don't know how to fold this.
   1272   return nullptr;
   1273 }
   1274 
   1275 /// This type is zero-sized if it's an array or structure of zero-sized types.
   1276 /// The only leaf zero-sized type is an empty structure.
   1277 static bool isMaybeZeroSizedType(Type *Ty) {
   1278   if (StructType *STy = dyn_cast<StructType>(Ty)) {
   1279     if (STy->isOpaque()) return true;  // Can't say.
   1280 
   1281     // If all of elements have zero size, this does too.
   1282     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   1283       if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
   1284     return true;
   1285 
   1286   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
   1287     return isMaybeZeroSizedType(ATy->getElementType());
   1288   }
   1289   return false;
   1290 }
   1291 
   1292 /// Compare the two constants as though they were getelementptr indices.
   1293 /// This allows coercion of the types to be the same thing.
   1294 ///
   1295 /// If the two constants are the "same" (after coercion), return 0.  If the
   1296 /// first is less than the second, return -1, if the second is less than the
   1297 /// first, return 1.  If the constants are not integral, return -2.
   1298 ///
   1299 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
   1300   if (C1 == C2) return 0;
   1301 
   1302   // Ok, we found a different index.  If they are not ConstantInt, we can't do
   1303   // anything with them.
   1304   if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
   1305     return -2; // don't know!
   1306 
   1307   // We cannot compare the indices if they don't fit in an int64_t.
   1308   if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
   1309       cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
   1310     return -2; // don't know!
   1311 
   1312   // Ok, we have two differing integer indices.  Sign extend them to be the same
   1313   // type.
   1314   int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
   1315   int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();
   1316 
   1317   if (C1Val == C2Val) return 0;  // They are equal
   1318 
   1319   // If the type being indexed over is really just a zero sized type, there is
   1320   // no pointer difference being made here.
   1321   if (isMaybeZeroSizedType(ElTy))
   1322     return -2; // dunno.
   1323 
   1324   // If they are really different, now that they are the same type, then we
   1325   // found a difference!
   1326   if (C1Val < C2Val)
   1327     return -1;
   1328   else
   1329     return 1;
   1330 }
   1331 
   1332 /// This function determines if there is anything we can decide about the two
   1333 /// constants provided. This doesn't need to handle simple things like
   1334 /// ConstantFP comparisons, but should instead handle ConstantExprs.
   1335 /// If we can determine that the two constants have a particular relation to
   1336 /// each other, we should return the corresponding FCmpInst predicate,
   1337 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
   1338 /// ConstantFoldCompareInstruction.
   1339 ///
   1340 /// To simplify this code we canonicalize the relation so that the first
   1341 /// operand is always the most "complex" of the two.  We consider ConstantFP
   1342 /// to be the simplest, and ConstantExprs to be the most complex.
   1343 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
   1344   assert(V1->getType() == V2->getType() &&
   1345          "Cannot compare values of different types!");
   1346 
   1347   // Handle degenerate case quickly
   1348   if (V1 == V2) return FCmpInst::FCMP_OEQ;
   1349 
   1350   if (!isa<ConstantExpr>(V1)) {
   1351     if (!isa<ConstantExpr>(V2)) {
   1352       // Simple case, use the standard constant folder.
   1353       ConstantInt *R = nullptr;
   1354       R = dyn_cast<ConstantInt>(
   1355                       ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
   1356       if (R && !R->isZero())
   1357         return FCmpInst::FCMP_OEQ;
   1358       R = dyn_cast<ConstantInt>(
   1359                       ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
   1360       if (R && !R->isZero())
   1361         return FCmpInst::FCMP_OLT;
   1362       R = dyn_cast<ConstantInt>(
   1363                       ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
   1364       if (R && !R->isZero())
   1365         return FCmpInst::FCMP_OGT;
   1366 
   1367       // Nothing more we can do
   1368       return FCmpInst::BAD_FCMP_PREDICATE;
   1369     }
   1370 
   1371     // If the first operand is simple and second is ConstantExpr, swap operands.
   1372     FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
   1373     if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
   1374       return FCmpInst::getSwappedPredicate(SwappedRelation);
   1375   } else {
   1376     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
   1377     // constantexpr or a simple constant.
   1378     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
   1379     switch (CE1->getOpcode()) {
   1380     case Instruction::FPTrunc:
   1381     case Instruction::FPExt:
   1382     case Instruction::UIToFP:
   1383     case Instruction::SIToFP:
   1384       // We might be able to do something with these but we don't right now.
   1385       break;
   1386     default:
   1387       break;
   1388     }
   1389   }
   1390   // There are MANY other foldings that we could perform here.  They will
   1391   // probably be added on demand, as they seem needed.
   1392   return FCmpInst::BAD_FCMP_PREDICATE;
   1393 }
   1394 
   1395 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
   1396                                                       const GlobalValue *GV2) {
   1397   auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
   1398     if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage())
   1399       return true;
   1400     if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
   1401       Type *Ty = GVar->getValueType();
   1402       // A global with opaque type might end up being zero sized.
   1403       if (!Ty->isSized())
   1404         return true;
   1405       // A global with an empty type might lie at the address of any other
   1406       // global.
   1407       if (Ty->isEmptyTy())
   1408         return true;
   1409     }
   1410     return false;
   1411   };
   1412   // Don't try to decide equality of aliases.
   1413   if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
   1414     if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
   1415       return ICmpInst::ICMP_NE;
   1416   return ICmpInst::BAD_ICMP_PREDICATE;
   1417 }
   1418 
   1419 /// This function determines if there is anything we can decide about the two
   1420 /// constants provided. This doesn't need to handle simple things like integer
   1421 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
   1422 /// If we can determine that the two constants have a particular relation to
   1423 /// each other, we should return the corresponding ICmp predicate, otherwise
   1424 /// return ICmpInst::BAD_ICMP_PREDICATE.
   1425 ///
   1426 /// To simplify this code we canonicalize the relation so that the first
   1427 /// operand is always the most "complex" of the two.  We consider simple
   1428 /// constants (like ConstantInt) to be the simplest, followed by
   1429 /// GlobalValues, followed by ConstantExpr's (the most complex).
   1430 ///
   1431 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
   1432                                                 bool isSigned) {
   1433   assert(V1->getType() == V2->getType() &&
   1434          "Cannot compare different types of values!");
   1435   if (V1 == V2) return ICmpInst::ICMP_EQ;
   1436 
   1437   if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
   1438       !isa<BlockAddress>(V1)) {
   1439     if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
   1440         !isa<BlockAddress>(V2)) {
   1441       // We distilled this down to a simple case, use the standard constant
   1442       // folder.
   1443       ConstantInt *R = nullptr;
   1444       ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
   1445       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
   1446       if (R && !R->isZero())
   1447         return pred;
   1448       pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
   1449       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
   1450       if (R && !R->isZero())
   1451         return pred;
   1452       pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1453       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
   1454       if (R && !R->isZero())
   1455         return pred;
   1456 
   1457       // If we couldn't figure it out, bail.
   1458       return ICmpInst::BAD_ICMP_PREDICATE;
   1459     }
   1460 
   1461     // If the first operand is simple, swap operands.
   1462     ICmpInst::Predicate SwappedRelation =
   1463       evaluateICmpRelation(V2, V1, isSigned);
   1464     if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
   1465       return ICmpInst::getSwappedPredicate(SwappedRelation);
   1466 
   1467   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
   1468     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
   1469       ICmpInst::Predicate SwappedRelation =
   1470         evaluateICmpRelation(V2, V1, isSigned);
   1471       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
   1472         return ICmpInst::getSwappedPredicate(SwappedRelation);
   1473       return ICmpInst::BAD_ICMP_PREDICATE;
   1474     }
   1475 
   1476     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
   1477     // constant (which, since the types must match, means that it's a
   1478     // ConstantPointerNull).
   1479     if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
   1480       return areGlobalsPotentiallyEqual(GV, GV2);
   1481     } else if (isa<BlockAddress>(V2)) {
   1482       return ICmpInst::ICMP_NE; // Globals never equal labels.
   1483     } else {
   1484       assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
   1485       // GlobalVals can never be null unless they have external weak linkage.
   1486       // We don't try to evaluate aliases here.
   1487       if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
   1488         return ICmpInst::ICMP_NE;
   1489     }
   1490   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
   1491     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
   1492       ICmpInst::Predicate SwappedRelation =
   1493         evaluateICmpRelation(V2, V1, isSigned);
   1494       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
   1495         return ICmpInst::getSwappedPredicate(SwappedRelation);
   1496       return ICmpInst::BAD_ICMP_PREDICATE;
   1497     }
   1498 
   1499     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
   1500     // constant (which, since the types must match, means that it is a
   1501     // ConstantPointerNull).
   1502     if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
   1503       // Block address in another function can't equal this one, but block
   1504       // addresses in the current function might be the same if blocks are
   1505       // empty.
   1506       if (BA2->getFunction() != BA->getFunction())
   1507         return ICmpInst::ICMP_NE;
   1508     } else {
   1509       // Block addresses aren't null, don't equal the address of globals.
   1510       assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
   1511              "Canonicalization guarantee!");
   1512       return ICmpInst::ICMP_NE;
   1513     }
   1514   } else {
   1515     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
   1516     // constantexpr, a global, block address, or a simple constant.
   1517     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
   1518     Constant *CE1Op0 = CE1->getOperand(0);
   1519 
   1520     switch (CE1->getOpcode()) {
   1521     case Instruction::Trunc:
   1522     case Instruction::FPTrunc:
   1523     case Instruction::FPExt:
   1524     case Instruction::FPToUI:
   1525     case Instruction::FPToSI:
   1526       break; // We can't evaluate floating point casts or truncations.
   1527 
   1528     case Instruction::UIToFP:
   1529     case Instruction::SIToFP:
   1530     case Instruction::BitCast:
   1531     case Instruction::ZExt:
   1532     case Instruction::SExt:
   1533       // We can't evaluate floating point casts or truncations.
   1534       if (CE1Op0->getType()->isFloatingPointTy())
   1535         break;
   1536 
   1537       // If the cast is not actually changing bits, and the second operand is a
   1538       // null pointer, do the comparison with the pre-casted value.
   1539       if (V2->isNullValue() &&
   1540           (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
   1541         if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
   1542         if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
   1543         return evaluateICmpRelation(CE1Op0,
   1544                                     Constant::getNullValue(CE1Op0->getType()),
   1545                                     isSigned);
   1546       }
   1547       break;
   1548 
   1549     case Instruction::GetElementPtr: {
   1550       GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
   1551       // Ok, since this is a getelementptr, we know that the constant has a
   1552       // pointer type.  Check the various cases.
   1553       if (isa<ConstantPointerNull>(V2)) {
   1554         // If we are comparing a GEP to a null pointer, check to see if the base
   1555         // of the GEP equals the null pointer.
   1556         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
   1557           if (GV->hasExternalWeakLinkage())
   1558             // Weak linkage GVals could be zero or not. We're comparing that
   1559             // to null pointer so its greater-or-equal
   1560             return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
   1561           else
   1562             // If its not weak linkage, the GVal must have a non-zero address
   1563             // so the result is greater-than
   1564             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1565         } else if (isa<ConstantPointerNull>(CE1Op0)) {
   1566           // If we are indexing from a null pointer, check to see if we have any
   1567           // non-zero indices.
   1568           for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
   1569             if (!CE1->getOperand(i)->isNullValue())
   1570               // Offsetting from null, must not be equal.
   1571               return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1572           // Only zero indexes from null, must still be zero.
   1573           return ICmpInst::ICMP_EQ;
   1574         }
   1575         // Otherwise, we can't really say if the first operand is null or not.
   1576       } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
   1577         if (isa<ConstantPointerNull>(CE1Op0)) {
   1578           if (GV2->hasExternalWeakLinkage())
   1579             // Weak linkage GVals could be zero or not. We're comparing it to
   1580             // a null pointer, so its less-or-equal
   1581             return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
   1582           else
   1583             // If its not weak linkage, the GVal must have a non-zero address
   1584             // so the result is less-than
   1585             return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
   1586         } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
   1587           if (GV == GV2) {
   1588             // If this is a getelementptr of the same global, then it must be
   1589             // different.  Because the types must match, the getelementptr could
   1590             // only have at most one index, and because we fold getelementptr's
   1591             // with a single zero index, it must be nonzero.
   1592             assert(CE1->getNumOperands() == 2 &&
   1593                    !CE1->getOperand(1)->isNullValue() &&
   1594                    "Surprising getelementptr!");
   1595             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1596           } else {
   1597             if (CE1GEP->hasAllZeroIndices())
   1598               return areGlobalsPotentiallyEqual(GV, GV2);
   1599             return ICmpInst::BAD_ICMP_PREDICATE;
   1600           }
   1601         }
   1602       } else {
   1603         ConstantExpr *CE2 = cast<ConstantExpr>(V2);
   1604         Constant *CE2Op0 = CE2->getOperand(0);
   1605 
   1606         // There are MANY other foldings that we could perform here.  They will
   1607         // probably be added on demand, as they seem needed.
   1608         switch (CE2->getOpcode()) {
   1609         default: break;
   1610         case Instruction::GetElementPtr:
   1611           // By far the most common case to handle is when the base pointers are
   1612           // obviously to the same global.
   1613           if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
   1614             // Don't know relative ordering, but check for inequality.
   1615             if (CE1Op0 != CE2Op0) {
   1616               GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
   1617               if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
   1618                 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
   1619                                                   cast<GlobalValue>(CE2Op0));
   1620               return ICmpInst::BAD_ICMP_PREDICATE;
   1621             }
   1622             // Ok, we know that both getelementptr instructions are based on the
   1623             // same global.  From this, we can precisely determine the relative
   1624             // ordering of the resultant pointers.
   1625             unsigned i = 1;
   1626 
   1627             // The logic below assumes that the result of the comparison
   1628             // can be determined by finding the first index that differs.
   1629             // This doesn't work if there is over-indexing in any
   1630             // subsequent indices, so check for that case first.
   1631             if (!CE1->isGEPWithNoNotionalOverIndexing() ||
   1632                 !CE2->isGEPWithNoNotionalOverIndexing())
   1633                return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
   1634 
   1635             // Compare all of the operands the GEP's have in common.
   1636             gep_type_iterator GTI = gep_type_begin(CE1);
   1637             for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
   1638                  ++i, ++GTI)
   1639               switch (IdxCompare(CE1->getOperand(i),
   1640                                  CE2->getOperand(i), GTI.getIndexedType())) {
   1641               case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
   1642               case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
   1643               case -2: return ICmpInst::BAD_ICMP_PREDICATE;
   1644               }
   1645 
   1646             // Ok, we ran out of things they have in common.  If any leftovers
   1647             // are non-zero then we have a difference, otherwise we are equal.
   1648             for (; i < CE1->getNumOperands(); ++i)
   1649               if (!CE1->getOperand(i)->isNullValue()) {
   1650                 if (isa<ConstantInt>(CE1->getOperand(i)))
   1651                   return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1652                 else
   1653                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
   1654               }
   1655 
   1656             for (; i < CE2->getNumOperands(); ++i)
   1657               if (!CE2->getOperand(i)->isNullValue()) {
   1658                 if (isa<ConstantInt>(CE2->getOperand(i)))
   1659                   return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
   1660                 else
   1661                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
   1662               }
   1663             return ICmpInst::ICMP_EQ;
   1664           }
   1665         }
   1666       }
   1667     }
   1668     default:
   1669       break;
   1670     }
   1671   }
   1672 
   1673   return ICmpInst::BAD_ICMP_PREDICATE;
   1674 }
   1675 
   1676 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
   1677                                                Constant *C1, Constant *C2) {
   1678   Type *ResultTy;
   1679   if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
   1680     ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
   1681                                VT->getNumElements());
   1682   else
   1683     ResultTy = Type::getInt1Ty(C1->getContext());
   1684 
   1685   // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
   1686   if (pred == FCmpInst::FCMP_FALSE)
   1687     return Constant::getNullValue(ResultTy);
   1688 
   1689   if (pred == FCmpInst::FCMP_TRUE)
   1690     return Constant::getAllOnesValue(ResultTy);
   1691 
   1692   // Handle some degenerate cases first
   1693   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
   1694     CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
   1695     bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
   1696     // For EQ and NE, we can always pick a value for the undef to make the
   1697     // predicate pass or fail, so we can return undef.
   1698     // Also, if both operands are undef, we can return undef for int comparison.
   1699     if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
   1700       return UndefValue::get(ResultTy);
   1701 
   1702     // Otherwise, for integer compare, pick the same value as the non-undef
   1703     // operand, and fold it to true or false.
   1704     if (isIntegerPredicate)
   1705       return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
   1706 
   1707     // Choosing NaN for the undef will always make unordered comparison succeed
   1708     // and ordered comparison fails.
   1709     return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
   1710   }
   1711 
   1712   // icmp eq/ne(null,GV) -> false/true
   1713   if (C1->isNullValue()) {
   1714     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
   1715       // Don't try to evaluate aliases.  External weak GV can be null.
   1716       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
   1717         if (pred == ICmpInst::ICMP_EQ)
   1718           return ConstantInt::getFalse(C1->getContext());
   1719         else if (pred == ICmpInst::ICMP_NE)
   1720           return ConstantInt::getTrue(C1->getContext());
   1721       }
   1722   // icmp eq/ne(GV,null) -> false/true
   1723   } else if (C2->isNullValue()) {
   1724     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
   1725       // Don't try to evaluate aliases.  External weak GV can be null.
   1726       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
   1727         if (pred == ICmpInst::ICMP_EQ)
   1728           return ConstantInt::getFalse(C1->getContext());
   1729         else if (pred == ICmpInst::ICMP_NE)
   1730           return ConstantInt::getTrue(C1->getContext());
   1731       }
   1732   }
   1733 
   1734   // If the comparison is a comparison between two i1's, simplify it.
   1735   if (C1->getType()->isIntegerTy(1)) {
   1736     switch(pred) {
   1737     case ICmpInst::ICMP_EQ:
   1738       if (isa<ConstantInt>(C2))
   1739         return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
   1740       return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
   1741     case ICmpInst::ICMP_NE:
   1742       return ConstantExpr::getXor(C1, C2);
   1743     default:
   1744       break;
   1745     }
   1746   }
   1747 
   1748   if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
   1749     const APInt &V1 = cast<ConstantInt>(C1)->getValue();
   1750     const APInt &V2 = cast<ConstantInt>(C2)->getValue();
   1751     switch (pred) {
   1752     default: llvm_unreachable("Invalid ICmp Predicate");
   1753     case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
   1754     case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
   1755     case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
   1756     case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
   1757     case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
   1758     case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
   1759     case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
   1760     case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
   1761     case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
   1762     case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
   1763     }
   1764   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
   1765     const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
   1766     const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
   1767     APFloat::cmpResult R = C1V.compare(C2V);
   1768     switch (pred) {
   1769     default: llvm_unreachable("Invalid FCmp Predicate");
   1770     case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
   1771     case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
   1772     case FCmpInst::FCMP_UNO:
   1773       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
   1774     case FCmpInst::FCMP_ORD:
   1775       return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
   1776     case FCmpInst::FCMP_UEQ:
   1777       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
   1778                                         R==APFloat::cmpEqual);
   1779     case FCmpInst::FCMP_OEQ:
   1780       return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
   1781     case FCmpInst::FCMP_UNE:
   1782       return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
   1783     case FCmpInst::FCMP_ONE:
   1784       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
   1785                                         R==APFloat::cmpGreaterThan);
   1786     case FCmpInst::FCMP_ULT:
   1787       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
   1788                                         R==APFloat::cmpLessThan);
   1789     case FCmpInst::FCMP_OLT:
   1790       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
   1791     case FCmpInst::FCMP_UGT:
   1792       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
   1793                                         R==APFloat::cmpGreaterThan);
   1794     case FCmpInst::FCMP_OGT:
   1795       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
   1796     case FCmpInst::FCMP_ULE:
   1797       return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
   1798     case FCmpInst::FCMP_OLE:
   1799       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
   1800                                         R==APFloat::cmpEqual);
   1801     case FCmpInst::FCMP_UGE:
   1802       return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
   1803     case FCmpInst::FCMP_OGE:
   1804       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
   1805                                         R==APFloat::cmpEqual);
   1806     }
   1807   } else if (C1->getType()->isVectorTy()) {
   1808     // If we can constant fold the comparison of each element, constant fold
   1809     // the whole vector comparison.
   1810     SmallVector<Constant*, 4> ResElts;
   1811     Type *Ty = IntegerType::get(C1->getContext(), 32);
   1812     // Compare the elements, producing an i1 result or constant expr.
   1813     for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
   1814       Constant *C1E =
   1815         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
   1816       Constant *C2E =
   1817         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
   1818 
   1819       ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
   1820     }
   1821 
   1822     return ConstantVector::get(ResElts);
   1823   }
   1824 
   1825   if (C1->getType()->isFloatingPointTy() &&
   1826       // Only call evaluateFCmpRelation if we have a constant expr to avoid
   1827       // infinite recursive loop
   1828       (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
   1829     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
   1830     switch (evaluateFCmpRelation(C1, C2)) {
   1831     default: llvm_unreachable("Unknown relation!");
   1832     case FCmpInst::FCMP_UNO:
   1833     case FCmpInst::FCMP_ORD:
   1834     case FCmpInst::FCMP_UEQ:
   1835     case FCmpInst::FCMP_UNE:
   1836     case FCmpInst::FCMP_ULT:
   1837     case FCmpInst::FCMP_UGT:
   1838     case FCmpInst::FCMP_ULE:
   1839     case FCmpInst::FCMP_UGE:
   1840     case FCmpInst::FCMP_TRUE:
   1841     case FCmpInst::FCMP_FALSE:
   1842     case FCmpInst::BAD_FCMP_PREDICATE:
   1843       break; // Couldn't determine anything about these constants.
   1844     case FCmpInst::FCMP_OEQ: // We know that C1 == C2
   1845       Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
   1846                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
   1847                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
   1848       break;
   1849     case FCmpInst::FCMP_OLT: // We know that C1 < C2
   1850       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
   1851                 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
   1852                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
   1853       break;
   1854     case FCmpInst::FCMP_OGT: // We know that C1 > C2
   1855       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
   1856                 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
   1857                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
   1858       break;
   1859     case FCmpInst::FCMP_OLE: // We know that C1 <= C2
   1860       // We can only partially decide this relation.
   1861       if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
   1862         Result = 0;
   1863       else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
   1864         Result = 1;
   1865       break;
   1866     case FCmpInst::FCMP_OGE: // We known that C1 >= C2
   1867       // We can only partially decide this relation.
   1868       if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
   1869         Result = 0;
   1870       else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
   1871         Result = 1;
   1872       break;
   1873     case FCmpInst::FCMP_ONE: // We know that C1 != C2
   1874       // We can only partially decide this relation.
   1875       if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
   1876         Result = 0;
   1877       else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
   1878         Result = 1;
   1879       break;
   1880     }
   1881 
   1882     // If we evaluated the result, return it now.
   1883     if (Result != -1)
   1884       return ConstantInt::get(ResultTy, Result);
   1885 
   1886   } else {
   1887     // Evaluate the relation between the two constants, per the predicate.
   1888     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
   1889     switch (evaluateICmpRelation(C1, C2,
   1890                                  CmpInst::isSigned((CmpInst::Predicate)pred))) {
   1891     default: llvm_unreachable("Unknown relational!");
   1892     case ICmpInst::BAD_ICMP_PREDICATE:
   1893       break;  // Couldn't determine anything about these constants.
   1894     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
   1895       // If we know the constants are equal, we can decide the result of this
   1896       // computation precisely.
   1897       Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
   1898       break;
   1899     case ICmpInst::ICMP_ULT:
   1900       switch (pred) {
   1901       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
   1902         Result = 1; break;
   1903       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
   1904         Result = 0; break;
   1905       }
   1906       break;
   1907     case ICmpInst::ICMP_SLT:
   1908       switch (pred) {
   1909       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
   1910         Result = 1; break;
   1911       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
   1912         Result = 0; break;
   1913       }
   1914       break;
   1915     case ICmpInst::ICMP_UGT:
   1916       switch (pred) {
   1917       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
   1918         Result = 1; break;
   1919       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
   1920         Result = 0; break;
   1921       }
   1922       break;
   1923     case ICmpInst::ICMP_SGT:
   1924       switch (pred) {
   1925       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
   1926         Result = 1; break;
   1927       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
   1928         Result = 0; break;
   1929       }
   1930       break;
   1931     case ICmpInst::ICMP_ULE:
   1932       if (pred == ICmpInst::ICMP_UGT) Result = 0;
   1933       if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
   1934       break;
   1935     case ICmpInst::ICMP_SLE:
   1936       if (pred == ICmpInst::ICMP_SGT) Result = 0;
   1937       if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
   1938       break;
   1939     case ICmpInst::ICMP_UGE:
   1940       if (pred == ICmpInst::ICMP_ULT) Result = 0;
   1941       if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
   1942       break;
   1943     case ICmpInst::ICMP_SGE:
   1944       if (pred == ICmpInst::ICMP_SLT) Result = 0;
   1945       if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
   1946       break;
   1947     case ICmpInst::ICMP_NE:
   1948       if (pred == ICmpInst::ICMP_EQ) Result = 0;
   1949       if (pred == ICmpInst::ICMP_NE) Result = 1;
   1950       break;
   1951     }
   1952 
   1953     // If we evaluated the result, return it now.
   1954     if (Result != -1)
   1955       return ConstantInt::get(ResultTy, Result);
   1956 
   1957     // If the right hand side is a bitcast, try using its inverse to simplify
   1958     // it by moving it to the left hand side.  We can't do this if it would turn
   1959     // a vector compare into a scalar compare or visa versa.
   1960     if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
   1961       Constant *CE2Op0 = CE2->getOperand(0);
   1962       if (CE2->getOpcode() == Instruction::BitCast &&
   1963           CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
   1964         Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
   1965         return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
   1966       }
   1967     }
   1968 
   1969     // If the left hand side is an extension, try eliminating it.
   1970     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
   1971       if ((CE1->getOpcode() == Instruction::SExt &&
   1972            ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
   1973           (CE1->getOpcode() == Instruction::ZExt &&
   1974            !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
   1975         Constant *CE1Op0 = CE1->getOperand(0);
   1976         Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
   1977         if (CE1Inverse == CE1Op0) {
   1978           // Check whether we can safely truncate the right hand side.
   1979           Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
   1980           if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
   1981                                     C2->getType()) == C2)
   1982             return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
   1983         }
   1984       }
   1985     }
   1986 
   1987     if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
   1988         (C1->isNullValue() && !C2->isNullValue())) {
   1989       // If C2 is a constant expr and C1 isn't, flip them around and fold the
   1990       // other way if possible.
   1991       // Also, if C1 is null and C2 isn't, flip them around.
   1992       pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
   1993       return ConstantExpr::getICmp(pred, C2, C1);
   1994     }
   1995   }
   1996   return nullptr;
   1997 }
   1998 
   1999 /// Test whether the given sequence of *normalized* indices is "inbounds".
   2000 template<typename IndexTy>
   2001 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
   2002   // No indices means nothing that could be out of bounds.
   2003   if (Idxs.empty()) return true;
   2004 
   2005   // If the first index is zero, it's in bounds.
   2006   if (cast<Constant>(Idxs[0])->isNullValue()) return true;
   2007 
   2008   // If the first index is one and all the rest are zero, it's in bounds,
   2009   // by the one-past-the-end rule.
   2010   if (!cast<ConstantInt>(Idxs[0])->isOne())
   2011     return false;
   2012   for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
   2013     if (!cast<Constant>(Idxs[i])->isNullValue())
   2014       return false;
   2015   return true;
   2016 }
   2017 
   2018 /// Test whether a given ConstantInt is in-range for a SequentialType.
   2019 static bool isIndexInRangeOfSequentialType(SequentialType *STy,
   2020                                            const ConstantInt *CI) {
   2021   // And indices are valid when indexing along a pointer
   2022   if (isa<PointerType>(STy))
   2023     return true;
   2024 
   2025   uint64_t NumElements = 0;
   2026   // Determine the number of elements in our sequential type.
   2027   if (auto *ATy = dyn_cast<ArrayType>(STy))
   2028     NumElements = ATy->getNumElements();
   2029   else if (auto *VTy = dyn_cast<VectorType>(STy))
   2030     NumElements = VTy->getNumElements();
   2031 
   2032   assert((isa<ArrayType>(STy) || NumElements > 0) &&
   2033          "didn't expect non-array type to have zero elements!");
   2034 
   2035   // We cannot bounds check the index if it doesn't fit in an int64_t.
   2036   if (CI->getValue().getActiveBits() > 64)
   2037     return false;
   2038 
   2039   // A negative index or an index past the end of our sequential type is
   2040   // considered out-of-range.
   2041   int64_t IndexVal = CI->getSExtValue();
   2042   if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
   2043     return false;
   2044 
   2045   // Otherwise, it is in-range.
   2046   return true;
   2047 }
   2048 
   2049 template<typename IndexTy>
   2050 static Constant *ConstantFoldGetElementPtrImpl(Type *PointeeTy, Constant *C,
   2051                                                bool inBounds,
   2052                                                ArrayRef<IndexTy> Idxs) {
   2053   if (Idxs.empty()) return C;
   2054   Constant *Idx0 = cast<Constant>(Idxs[0]);
   2055   if ((Idxs.size() == 1 && Idx0->isNullValue()))
   2056     return C;
   2057 
   2058   if (isa<UndefValue>(C)) {
   2059     PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
   2060     Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
   2061     assert(Ty && "Invalid indices for GEP!");
   2062     Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
   2063     if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
   2064       GEPTy = VectorType::get(GEPTy, VT->getNumElements());
   2065     return UndefValue::get(GEPTy);
   2066   }
   2067 
   2068   if (C->isNullValue()) {
   2069     bool isNull = true;
   2070     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
   2071       if (!cast<Constant>(Idxs[i])->isNullValue()) {
   2072         isNull = false;
   2073         break;
   2074       }
   2075     if (isNull) {
   2076       PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
   2077       Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
   2078 
   2079       assert(Ty && "Invalid indices for GEP!");
   2080       Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
   2081       if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
   2082         GEPTy = VectorType::get(GEPTy, VT->getNumElements());
   2083       return Constant::getNullValue(GEPTy);
   2084     }
   2085   }
   2086 
   2087   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   2088     // Combine Indices - If the source pointer to this getelementptr instruction
   2089     // is a getelementptr instruction, combine the indices of the two
   2090     // getelementptr instructions into a single instruction.
   2091     //
   2092     if (CE->getOpcode() == Instruction::GetElementPtr) {
   2093       Type *LastTy = nullptr;
   2094       for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
   2095            I != E; ++I)
   2096         LastTy = *I;
   2097 
   2098       // We cannot combine indices if doing so would take us outside of an
   2099       // array or vector.  Doing otherwise could trick us if we evaluated such a
   2100       // GEP as part of a load.
   2101       //
   2102       // e.g. Consider if the original GEP was:
   2103       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
   2104       //                    i32 0, i32 0, i64 0)
   2105       //
   2106       // If we then tried to offset it by '8' to get to the third element,
   2107       // an i8, we should *not* get:
   2108       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
   2109       //                    i32 0, i32 0, i64 8)
   2110       //
   2111       // This GEP tries to index array element '8  which runs out-of-bounds.
   2112       // Subsequent evaluation would get confused and produce erroneous results.
   2113       //
   2114       // The following prohibits such a GEP from being formed by checking to see
   2115       // if the index is in-range with respect to an array or vector.
   2116       bool PerformFold = false;
   2117       if (Idx0->isNullValue())
   2118         PerformFold = true;
   2119       else if (SequentialType *STy = dyn_cast_or_null<SequentialType>(LastTy))
   2120         if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
   2121           PerformFold = isIndexInRangeOfSequentialType(STy, CI);
   2122 
   2123       if (PerformFold) {
   2124         SmallVector<Value*, 16> NewIndices;
   2125         NewIndices.reserve(Idxs.size() + CE->getNumOperands());
   2126         NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1);
   2127 
   2128         // Add the last index of the source with the first index of the new GEP.
   2129         // Make sure to handle the case when they are actually different types.
   2130         Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
   2131         // Otherwise it must be an array.
   2132         if (!Idx0->isNullValue()) {
   2133           Type *IdxTy = Combined->getType();
   2134           if (IdxTy != Idx0->getType()) {
   2135             unsigned CommonExtendedWidth =
   2136                 std::max(IdxTy->getIntegerBitWidth(),
   2137                          Idx0->getType()->getIntegerBitWidth());
   2138             CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
   2139 
   2140             Type *CommonTy =
   2141                 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth);
   2142             Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
   2143             Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy);
   2144             Combined = ConstantExpr::get(Instruction::Add, C1, C2);
   2145           } else {
   2146             Combined =
   2147               ConstantExpr::get(Instruction::Add, Idx0, Combined);
   2148           }
   2149         }
   2150 
   2151         NewIndices.push_back(Combined);
   2152         NewIndices.append(Idxs.begin() + 1, Idxs.end());
   2153         return ConstantExpr::getGetElementPtr(
   2154             cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0),
   2155             NewIndices, inBounds && cast<GEPOperator>(CE)->isInBounds());
   2156       }
   2157     }
   2158 
   2159     // Attempt to fold casts to the same type away.  For example, folding:
   2160     //
   2161     //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
   2162     //                       i64 0, i64 0)
   2163     // into:
   2164     //
   2165     //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
   2166     //
   2167     // Don't fold if the cast is changing address spaces.
   2168     if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
   2169       PointerType *SrcPtrTy =
   2170         dyn_cast<PointerType>(CE->getOperand(0)->getType());
   2171       PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
   2172       if (SrcPtrTy && DstPtrTy) {
   2173         ArrayType *SrcArrayTy =
   2174           dyn_cast<ArrayType>(SrcPtrTy->getElementType());
   2175         ArrayType *DstArrayTy =
   2176           dyn_cast<ArrayType>(DstPtrTy->getElementType());
   2177         if (SrcArrayTy && DstArrayTy
   2178             && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
   2179             && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
   2180           return ConstantExpr::getGetElementPtr(
   2181               SrcArrayTy, (Constant *)CE->getOperand(0), Idxs, inBounds);
   2182       }
   2183     }
   2184   }
   2185 
   2186   // Check to see if any array indices are not within the corresponding
   2187   // notional array or vector bounds. If so, try to determine if they can be
   2188   // factored out into preceding dimensions.
   2189   SmallVector<Constant *, 8> NewIdxs;
   2190   Type *Ty = PointeeTy;
   2191   Type *Prev = C->getType();
   2192   bool Unknown = !isa<ConstantInt>(Idxs[0]);
   2193   for (unsigned i = 1, e = Idxs.size(); i != e;
   2194        Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
   2195     auto *CI = dyn_cast<ConstantInt>(Idxs[i]);
   2196     if (!CI) {
   2197       // We don't know if it's in range or not.
   2198       Unknown = true;
   2199       continue;
   2200     }
   2201     if (isa<StructType>(Ty)) {
   2202       // The verify makes sure that GEPs into a struct are in range.
   2203       continue;
   2204     }
   2205     auto *STy = cast<SequentialType>(Ty);
   2206     if (isa<PointerType>(STy)) {
   2207       // We don't know if it's in range or not.
   2208       Unknown = true;
   2209       continue;
   2210     }
   2211     if (isa<VectorType>(STy)) {
   2212       // There can be awkward padding in after a non-power of two vector.
   2213       Unknown = true;
   2214       continue;
   2215     }
   2216     if (isIndexInRangeOfSequentialType(STy, CI))
   2217       // It's in range, skip to the next index.
   2218       continue;
   2219     if (!isa<SequentialType>(Prev)) {
   2220       // It's out of range, but the prior dimension is a struct
   2221       // so we can't do anything about it.
   2222       Unknown = true;
   2223       continue;
   2224     }
   2225     if (CI->getSExtValue() < 0) {
   2226       // It's out of range and negative, don't try to factor it.
   2227       Unknown = true;
   2228       continue;
   2229     }
   2230     // It's out of range, but we can factor it into the prior
   2231     // dimension.
   2232     NewIdxs.resize(Idxs.size());
   2233     // Determine the number of elements in our sequential type.
   2234     uint64_t NumElements = STy->getArrayNumElements();
   2235 
   2236     ConstantInt *Factor = ConstantInt::get(CI->getType(), NumElements);
   2237     NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
   2238 
   2239     Constant *PrevIdx = cast<Constant>(Idxs[i - 1]);
   2240     Constant *Div = ConstantExpr::getSDiv(CI, Factor);
   2241 
   2242     unsigned CommonExtendedWidth =
   2243         std::max(PrevIdx->getType()->getIntegerBitWidth(),
   2244                  Div->getType()->getIntegerBitWidth());
   2245     CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
   2246 
   2247     // Before adding, extend both operands to i64 to avoid
   2248     // overflow trouble.
   2249     if (!PrevIdx->getType()->isIntegerTy(CommonExtendedWidth))
   2250       PrevIdx = ConstantExpr::getSExt(
   2251           PrevIdx, Type::getIntNTy(Div->getContext(), CommonExtendedWidth));
   2252     if (!Div->getType()->isIntegerTy(CommonExtendedWidth))
   2253       Div = ConstantExpr::getSExt(
   2254           Div, Type::getIntNTy(Div->getContext(), CommonExtendedWidth));
   2255 
   2256     NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
   2257   }
   2258 
   2259   // If we did any factoring, start over with the adjusted indices.
   2260   if (!NewIdxs.empty()) {
   2261     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
   2262       if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
   2263     return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, inBounds);
   2264   }
   2265 
   2266   // If all indices are known integers and normalized, we can do a simple
   2267   // check for the "inbounds" property.
   2268   if (!Unknown && !inBounds)
   2269     if (auto *GV = dyn_cast<GlobalVariable>(C))
   2270       if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
   2271         return ConstantExpr::getInBoundsGetElementPtr(PointeeTy, C, Idxs);
   2272 
   2273   return nullptr;
   2274 }
   2275 
   2276 Constant *llvm::ConstantFoldGetElementPtr(Type *Ty, Constant *C,
   2277                                           bool inBounds,
   2278                                           ArrayRef<Constant *> Idxs) {
   2279   return ConstantFoldGetElementPtrImpl(Ty, C, inBounds, Idxs);
   2280 }
   2281 
   2282 Constant *llvm::ConstantFoldGetElementPtr(Type *Ty, Constant *C,
   2283                                           bool inBounds,
   2284                                           ArrayRef<Value *> Idxs) {
   2285   return ConstantFoldGetElementPtrImpl(Ty, C, inBounds, Idxs);
   2286 }
   2287