Home | History | Annotate | Download | only in AArch64
      1 //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 // When profitable, replace GPR targeting i64 instructions with their
     10 // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
     11 // as minimizing the number of cross-class register copies.
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 // TODO: Graph based predicate heuristics.
     16 // Walking the instruction list linearly will get many, perhaps most, of
     17 // the cases, but to do a truly thorough job of this, we need a more
     18 // wholistic approach.
     19 //
     20 // This optimization is very similar in spirit to the register allocator's
     21 // spill placement, only here we're determining where to place cross-class
     22 // register copies rather than spills. As such, a similar approach is
     23 // called for.
     24 //
     25 // We want to build up a set of graphs of all instructions which are candidates
     26 // for transformation along with instructions which generate their inputs and
     27 // consume their outputs. For each edge in the graph, we assign a weight
     28 // based on whether there is a copy required there (weight zero if not) and
     29 // the block frequency of the block containing the defining or using
     30 // instruction, whichever is less. Our optimization is then a graph problem
     31 // to minimize the total weight of all the graphs, then transform instructions
     32 // and add or remove copy instructions as called for to implement the
     33 // solution.
     34 //===----------------------------------------------------------------------===//
     35 
     36 #include "AArch64.h"
     37 #include "AArch64InstrInfo.h"
     38 #include "AArch64RegisterInfo.h"
     39 #include "AArch64Subtarget.h"
     40 #include "llvm/ADT/Statistic.h"
     41 #include "llvm/CodeGen/MachineFunction.h"
     42 #include "llvm/CodeGen/MachineFunctionPass.h"
     43 #include "llvm/CodeGen/MachineInstr.h"
     44 #include "llvm/CodeGen/MachineInstrBuilder.h"
     45 #include "llvm/CodeGen/MachineRegisterInfo.h"
     46 #include "llvm/Support/CommandLine.h"
     47 #include "llvm/Support/Debug.h"
     48 #include "llvm/Support/raw_ostream.h"
     49 using namespace llvm;
     50 
     51 #define DEBUG_TYPE "aarch64-simd-scalar"
     52 
     53 // Allow forcing all i64 operations with equivalent SIMD instructions to use
     54 // them. For stress-testing the transformation function.
     55 static cl::opt<bool>
     56 TransformAll("aarch64-simd-scalar-force-all",
     57              cl::desc("Force use of AdvSIMD scalar instructions everywhere"),
     58              cl::init(false), cl::Hidden);
     59 
     60 STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used");
     61 STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted");
     62 STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted");
     63 
     64 namespace llvm {
     65 void initializeAArch64AdvSIMDScalarPass(PassRegistry &);
     66 }
     67 
     68 #define AARCH64_ADVSIMD_NAME "AdvSIMD Scalar Operation Optimization"
     69 
     70 namespace {
     71 class AArch64AdvSIMDScalar : public MachineFunctionPass {
     72   MachineRegisterInfo *MRI;
     73   const TargetInstrInfo *TII;
     74 
     75 private:
     76   // isProfitableToTransform - Predicate function to determine whether an
     77   // instruction should be transformed to its equivalent AdvSIMD scalar
     78   // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
     79   bool isProfitableToTransform(const MachineInstr &MI) const;
     80 
     81   // transformInstruction - Perform the transformation of an instruction
     82   // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
     83   // to be the correct register class, minimizing cross-class copies.
     84   void transformInstruction(MachineInstr &MI);
     85 
     86   // processMachineBasicBlock - Main optimzation loop.
     87   bool processMachineBasicBlock(MachineBasicBlock *MBB);
     88 
     89 public:
     90   static char ID; // Pass identification, replacement for typeid.
     91   explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) {
     92     initializeAArch64AdvSIMDScalarPass(*PassRegistry::getPassRegistry());
     93   }
     94 
     95   bool runOnMachineFunction(MachineFunction &F) override;
     96 
     97   const char *getPassName() const override {
     98     return AARCH64_ADVSIMD_NAME;
     99   }
    100 
    101   void getAnalysisUsage(AnalysisUsage &AU) const override {
    102     AU.setPreservesCFG();
    103     MachineFunctionPass::getAnalysisUsage(AU);
    104   }
    105 };
    106 char AArch64AdvSIMDScalar::ID = 0;
    107 } // end anonymous namespace
    108 
    109 INITIALIZE_PASS(AArch64AdvSIMDScalar, "aarch64-simd-scalar",
    110                 AARCH64_ADVSIMD_NAME, false, false)
    111 
    112 static bool isGPR64(unsigned Reg, unsigned SubReg,
    113                     const MachineRegisterInfo *MRI) {
    114   if (SubReg)
    115     return false;
    116   if (TargetRegisterInfo::isVirtualRegister(Reg))
    117     return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass);
    118   return AArch64::GPR64RegClass.contains(Reg);
    119 }
    120 
    121 static bool isFPR64(unsigned Reg, unsigned SubReg,
    122                     const MachineRegisterInfo *MRI) {
    123   if (TargetRegisterInfo::isVirtualRegister(Reg))
    124     return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) &&
    125             SubReg == 0) ||
    126            (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) &&
    127             SubReg == AArch64::dsub);
    128   // Physical register references just check the register class directly.
    129   return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) ||
    130          (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub);
    131 }
    132 
    133 // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
    134 // copy instruction. Return zero_reg if the instruction is not a copy.
    135 static MachineOperand *getSrcFromCopy(MachineInstr *MI,
    136                                       const MachineRegisterInfo *MRI,
    137                                       unsigned &SubReg) {
    138   SubReg = 0;
    139   // The "FMOV Xd, Dn" instruction is the typical form.
    140   if (MI->getOpcode() == AArch64::FMOVDXr ||
    141       MI->getOpcode() == AArch64::FMOVXDr)
    142     return &MI->getOperand(1);
    143   // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
    144   // these at this stage, but it's easy to check for.
    145   if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) {
    146     SubReg = AArch64::dsub;
    147     return &MI->getOperand(1);
    148   }
    149   // Or just a plain COPY instruction. This can be directly to/from FPR64,
    150   // or it can be a dsub subreg reference to an FPR128.
    151   if (MI->getOpcode() == AArch64::COPY) {
    152     if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
    153                 MRI) &&
    154         isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI))
    155       return &MI->getOperand(1);
    156     if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
    157                 MRI) &&
    158         isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(),
    159                 MRI)) {
    160       SubReg = MI->getOperand(1).getSubReg();
    161       return &MI->getOperand(1);
    162     }
    163   }
    164 
    165   // Otherwise, this is some other kind of instruction.
    166   return nullptr;
    167 }
    168 
    169 // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
    170 // that we're considering transforming to, return that AdvSIMD opcode. For all
    171 // others, return the original opcode.
    172 static unsigned getTransformOpcode(unsigned Opc) {
    173   switch (Opc) {
    174   default:
    175     break;
    176   // FIXME: Lots more possibilities.
    177   case AArch64::ADDXrr:
    178     return AArch64::ADDv1i64;
    179   case AArch64::SUBXrr:
    180     return AArch64::SUBv1i64;
    181   case AArch64::ANDXrr:
    182     return AArch64::ANDv8i8;
    183   case AArch64::EORXrr:
    184     return AArch64::EORv8i8;
    185   case AArch64::ORRXrr:
    186     return AArch64::ORRv8i8;
    187   }
    188   // No AdvSIMD equivalent, so just return the original opcode.
    189   return Opc;
    190 }
    191 
    192 static bool isTransformable(const MachineInstr &MI) {
    193   unsigned Opc = MI.getOpcode();
    194   return Opc != getTransformOpcode(Opc);
    195 }
    196 
    197 // isProfitableToTransform - Predicate function to determine whether an
    198 // instruction should be transformed to its equivalent AdvSIMD scalar
    199 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
    200 bool AArch64AdvSIMDScalar::isProfitableToTransform(
    201     const MachineInstr &MI) const {
    202   // If this instruction isn't eligible to be transformed (no SIMD equivalent),
    203   // early exit since that's the common case.
    204   if (!isTransformable(MI))
    205     return false;
    206 
    207   // Count the number of copies we'll need to add and approximate the number
    208   // of copies that a transform will enable us to remove.
    209   unsigned NumNewCopies = 3;
    210   unsigned NumRemovableCopies = 0;
    211 
    212   unsigned OrigSrc0 = MI.getOperand(1).getReg();
    213   unsigned OrigSrc1 = MI.getOperand(2).getReg();
    214   unsigned SubReg0;
    215   unsigned SubReg1;
    216   if (!MRI->def_empty(OrigSrc0)) {
    217     MachineRegisterInfo::def_instr_iterator Def =
    218         MRI->def_instr_begin(OrigSrc0);
    219     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
    220     MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
    221     // If the source was from a copy, we don't need to insert a new copy.
    222     if (MOSrc0)
    223       --NumNewCopies;
    224     // If there are no other users of the original source, we can delete
    225     // that instruction.
    226     if (MOSrc0 && MRI->hasOneNonDBGUse(OrigSrc0))
    227       ++NumRemovableCopies;
    228   }
    229   if (!MRI->def_empty(OrigSrc1)) {
    230     MachineRegisterInfo::def_instr_iterator Def =
    231         MRI->def_instr_begin(OrigSrc1);
    232     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
    233     MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
    234     if (MOSrc1)
    235       --NumNewCopies;
    236     // If there are no other users of the original source, we can delete
    237     // that instruction.
    238     if (MOSrc1 && MRI->hasOneNonDBGUse(OrigSrc1))
    239       ++NumRemovableCopies;
    240   }
    241 
    242   // If any of the uses of the original instructions is a cross class copy,
    243   // that's a copy that will be removable if we transform. Likewise, if
    244   // any of the uses is a transformable instruction, it's likely the tranforms
    245   // will chain, enabling us to save a copy there, too. This is an aggressive
    246   // heuristic that approximates the graph based cost analysis described above.
    247   unsigned Dst = MI.getOperand(0).getReg();
    248   bool AllUsesAreCopies = true;
    249   for (MachineRegisterInfo::use_instr_nodbg_iterator
    250            Use = MRI->use_instr_nodbg_begin(Dst),
    251            E = MRI->use_instr_nodbg_end();
    252        Use != E; ++Use) {
    253     unsigned SubReg;
    254     if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(*Use))
    255       ++NumRemovableCopies;
    256     // If the use is an INSERT_SUBREG, that's still something that can
    257     // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
    258     // preferable to have it use the FPR64 in most cases, as if the source
    259     // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
    260     // Ditto for a lane insert.
    261     else if (Use->getOpcode() == AArch64::INSERT_SUBREG ||
    262              Use->getOpcode() == AArch64::INSvi64gpr)
    263       ;
    264     else
    265       AllUsesAreCopies = false;
    266   }
    267   // If all of the uses of the original destination register are copies to
    268   // FPR64, then we won't end up having a new copy back to GPR64 either.
    269   if (AllUsesAreCopies)
    270     --NumNewCopies;
    271 
    272   // If a transform will not increase the number of cross-class copies required,
    273   // return true.
    274   if (NumNewCopies <= NumRemovableCopies)
    275     return true;
    276 
    277   // Finally, even if we otherwise wouldn't transform, check if we're forcing
    278   // transformation of everything.
    279   return TransformAll;
    280 }
    281 
    282 static MachineInstr *insertCopy(const TargetInstrInfo *TII, MachineInstr &MI,
    283                                 unsigned Dst, unsigned Src, bool IsKill) {
    284   MachineInstrBuilder MIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
    285                                     TII->get(AArch64::COPY), Dst)
    286                                 .addReg(Src, getKillRegState(IsKill));
    287   DEBUG(dbgs() << "    adding copy: " << *MIB);
    288   ++NumCopiesInserted;
    289   return MIB;
    290 }
    291 
    292 // transformInstruction - Perform the transformation of an instruction
    293 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
    294 // to be the correct register class, minimizing cross-class copies.
    295 void AArch64AdvSIMDScalar::transformInstruction(MachineInstr &MI) {
    296   DEBUG(dbgs() << "Scalar transform: " << MI);
    297 
    298   MachineBasicBlock *MBB = MI.getParent();
    299   unsigned OldOpc = MI.getOpcode();
    300   unsigned NewOpc = getTransformOpcode(OldOpc);
    301   assert(OldOpc != NewOpc && "transform an instruction to itself?!");
    302 
    303   // Check if we need a copy for the source registers.
    304   unsigned OrigSrc0 = MI.getOperand(1).getReg();
    305   unsigned OrigSrc1 = MI.getOperand(2).getReg();
    306   unsigned Src0 = 0, SubReg0;
    307   unsigned Src1 = 0, SubReg1;
    308   bool KillSrc0 = false, KillSrc1 = false;
    309   if (!MRI->def_empty(OrigSrc0)) {
    310     MachineRegisterInfo::def_instr_iterator Def =
    311         MRI->def_instr_begin(OrigSrc0);
    312     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
    313     MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
    314     // If there are no other users of the original source, we can delete
    315     // that instruction.
    316     if (MOSrc0) {
    317       Src0 = MOSrc0->getReg();
    318       KillSrc0 = MOSrc0->isKill();
    319       // Src0 is going to be reused, thus, it cannot be killed anymore.
    320       MOSrc0->setIsKill(false);
    321       if (MRI->hasOneNonDBGUse(OrigSrc0)) {
    322         assert(MOSrc0 && "Can't delete copy w/o a valid original source!");
    323         Def->eraseFromParent();
    324         ++NumCopiesDeleted;
    325       }
    326     }
    327   }
    328   if (!MRI->def_empty(OrigSrc1)) {
    329     MachineRegisterInfo::def_instr_iterator Def =
    330         MRI->def_instr_begin(OrigSrc1);
    331     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
    332     MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
    333     // If there are no other users of the original source, we can delete
    334     // that instruction.
    335     if (MOSrc1) {
    336       Src1 = MOSrc1->getReg();
    337       KillSrc1 = MOSrc1->isKill();
    338       // Src0 is going to be reused, thus, it cannot be killed anymore.
    339       MOSrc1->setIsKill(false);
    340       if (MRI->hasOneNonDBGUse(OrigSrc1)) {
    341         assert(MOSrc1 && "Can't delete copy w/o a valid original source!");
    342         Def->eraseFromParent();
    343         ++NumCopiesDeleted;
    344       }
    345     }
    346   }
    347   // If we weren't able to reference the original source directly, create a
    348   // copy.
    349   if (!Src0) {
    350     SubReg0 = 0;
    351     Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
    352     insertCopy(TII, MI, Src0, OrigSrc0, KillSrc0);
    353     KillSrc0 = true;
    354   }
    355   if (!Src1) {
    356     SubReg1 = 0;
    357     Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
    358     insertCopy(TII, MI, Src1, OrigSrc1, KillSrc1);
    359     KillSrc1 = true;
    360   }
    361 
    362   // Create a vreg for the destination.
    363   // FIXME: No need to do this if the ultimate user expects an FPR64.
    364   // Check for that and avoid the copy if possible.
    365   unsigned Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
    366 
    367   // For now, all of the new instructions have the same simple three-register
    368   // form, so no need to special case based on what instruction we're
    369   // building.
    370   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), Dst)
    371       .addReg(Src0, getKillRegState(KillSrc0), SubReg0)
    372       .addReg(Src1, getKillRegState(KillSrc1), SubReg1);
    373 
    374   // Now copy the result back out to a GPR.
    375   // FIXME: Try to avoid this if all uses could actually just use the FPR64
    376   // directly.
    377   insertCopy(TII, MI, MI.getOperand(0).getReg(), Dst, true);
    378 
    379   // Erase the old instruction.
    380   MI.eraseFromParent();
    381 
    382   ++NumScalarInsnsUsed;
    383 }
    384 
    385 // processMachineBasicBlock - Main optimzation loop.
    386 bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) {
    387   bool Changed = false;
    388   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
    389     MachineInstr &MI = *I++;
    390     if (isProfitableToTransform(MI)) {
    391       transformInstruction(MI);
    392       Changed = true;
    393     }
    394   }
    395   return Changed;
    396 }
    397 
    398 // runOnMachineFunction - Pass entry point from PassManager.
    399 bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) {
    400   bool Changed = false;
    401   DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n");
    402 
    403   if (skipFunction(*mf.getFunction()))
    404     return false;
    405 
    406   MRI = &mf.getRegInfo();
    407   TII = mf.getSubtarget().getInstrInfo();
    408 
    409   // Just check things on a one-block-at-a-time basis.
    410   for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I)
    411     if (processMachineBasicBlock(&*I))
    412       Changed = true;
    413   return Changed;
    414 }
    415 
    416 // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine
    417 // to add the pass to the PassManager.
    418 FunctionPass *llvm::createAArch64AdvSIMDScalar() {
    419   return new AArch64AdvSIMDScalar();
    420 }
    421