Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains small standalone helper functions and enum definitions for
     11 // the X86 target useful for the compiler back-end and the MC libraries.
     12 // As such, it deliberately does not include references to LLVM core
     13 // code gen types, passes, etc..
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
     18 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
     19 
     20 #include "X86MCTargetDesc.h"
     21 #include "llvm/MC/MCInstrDesc.h"
     22 #include "llvm/Support/DataTypes.h"
     23 #include "llvm/Support/ErrorHandling.h"
     24 
     25 namespace llvm {
     26 
     27 namespace X86 {
     28   // Enums for memory operand decoding.  Each memory operand is represented with
     29   // a 5 operand sequence in the form:
     30   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
     31   // These enums help decode this.
     32   enum {
     33     AddrBaseReg = 0,
     34     AddrScaleAmt = 1,
     35     AddrIndexReg = 2,
     36     AddrDisp = 3,
     37 
     38     /// AddrSegmentReg - The operand # of the segment in the memory operand.
     39     AddrSegmentReg = 4,
     40 
     41     /// AddrNumOperands - Total number of operands in a memory reference.
     42     AddrNumOperands = 5
     43   };
     44 
     45   /// AVX512 static rounding constants.  These need to match the values in
     46   /// avx512fintrin.h.
     47   enum STATIC_ROUNDING {
     48     TO_NEAREST_INT = 0,
     49     TO_NEG_INF = 1,
     50     TO_POS_INF = 2,
     51     TO_ZERO = 3,
     52     CUR_DIRECTION = 4
     53   };
     54 } // end namespace X86;
     55 
     56 /// X86II - This namespace holds all of the target specific flags that
     57 /// instruction info tracks.
     58 ///
     59 namespace X86II {
     60   /// Target Operand Flag enum.
     61   enum TOF {
     62     //===------------------------------------------------------------------===//
     63     // X86 Specific MachineOperand flags.
     64 
     65     MO_NO_FLAG,
     66 
     67     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
     68     /// relocation of:
     69     ///    SYMBOL_LABEL + [. - PICBASELABEL]
     70     MO_GOT_ABSOLUTE_ADDRESS,
     71 
     72     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
     73     /// immediate should get the value of the symbol minus the PIC base label:
     74     ///    SYMBOL_LABEL - PICBASELABEL
     75     MO_PIC_BASE_OFFSET,
     76 
     77     /// MO_GOT - On a symbol operand this indicates that the immediate is the
     78     /// offset to the GOT entry for the symbol name from the base of the GOT.
     79     ///
     80     /// See the X86-64 ELF ABI supplement for more details.
     81     ///    SYMBOL_LABEL @GOT
     82     MO_GOT,
     83 
     84     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
     85     /// the offset to the location of the symbol name from the base of the GOT.
     86     ///
     87     /// See the X86-64 ELF ABI supplement for more details.
     88     ///    SYMBOL_LABEL @GOTOFF
     89     MO_GOTOFF,
     90 
     91     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
     92     /// offset to the GOT entry for the symbol name from the current code
     93     /// location.
     94     ///
     95     /// See the X86-64 ELF ABI supplement for more details.
     96     ///    SYMBOL_LABEL @GOTPCREL
     97     MO_GOTPCREL,
     98 
     99     /// MO_PLT - On a symbol operand this indicates that the immediate is
    100     /// offset to the PLT entry of symbol name from the current code location.
    101     ///
    102     /// See the X86-64 ELF ABI supplement for more details.
    103     ///    SYMBOL_LABEL @PLT
    104     MO_PLT,
    105 
    106     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
    107     /// the offset of the GOT entry with the TLS index structure that contains
    108     /// the module number and variable offset for the symbol. Used in the
    109     /// general dynamic TLS access model.
    110     ///
    111     /// See 'ELF Handling for Thread-Local Storage' for more details.
    112     ///    SYMBOL_LABEL @TLSGD
    113     MO_TLSGD,
    114 
    115     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
    116     /// the offset of the GOT entry with the TLS index for the module that
    117     /// contains the symbol. When this index is passed to a call to
    118     /// __tls_get_addr, the function will return the base address of the TLS
    119     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
    120     ///
    121     /// See 'ELF Handling for Thread-Local Storage' for more details.
    122     ///    SYMBOL_LABEL @TLSLD
    123     MO_TLSLD,
    124 
    125     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
    126     /// the offset of the GOT entry with the TLS index for the module that
    127     /// contains the symbol. When this index is passed to a call to
    128     /// ___tls_get_addr, the function will return the base address of the TLS
    129     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
    130     ///
    131     /// See 'ELF Handling for Thread-Local Storage' for more details.
    132     ///    SYMBOL_LABEL @TLSLDM
    133     MO_TLSLDM,
    134 
    135     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
    136     /// the offset of the GOT entry with the thread-pointer offset for the
    137     /// symbol. Used in the x86-64 initial exec TLS access model.
    138     ///
    139     /// See 'ELF Handling for Thread-Local Storage' for more details.
    140     ///    SYMBOL_LABEL @GOTTPOFF
    141     MO_GOTTPOFF,
    142 
    143     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
    144     /// the absolute address of the GOT entry with the negative thread-pointer
    145     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
    146     /// model.
    147     ///
    148     /// See 'ELF Handling for Thread-Local Storage' for more details.
    149     ///    SYMBOL_LABEL @INDNTPOFF
    150     MO_INDNTPOFF,
    151 
    152     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
    153     /// the thread-pointer offset for the symbol. Used in the x86-64 local
    154     /// exec TLS access model.
    155     ///
    156     /// See 'ELF Handling for Thread-Local Storage' for more details.
    157     ///    SYMBOL_LABEL @TPOFF
    158     MO_TPOFF,
    159 
    160     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
    161     /// the offset of the GOT entry with the TLS offset of the symbol. Used
    162     /// in the local dynamic TLS access model.
    163     ///
    164     /// See 'ELF Handling for Thread-Local Storage' for more details.
    165     ///    SYMBOL_LABEL @DTPOFF
    166     MO_DTPOFF,
    167 
    168     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
    169     /// the negative thread-pointer offset for the symbol. Used in the IA32
    170     /// local exec TLS access model.
    171     ///
    172     /// See 'ELF Handling for Thread-Local Storage' for more details.
    173     ///    SYMBOL_LABEL @NTPOFF
    174     MO_NTPOFF,
    175 
    176     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
    177     /// the offset of the GOT entry with the negative thread-pointer offset for
    178     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
    179     ///
    180     /// See 'ELF Handling for Thread-Local Storage' for more details.
    181     ///    SYMBOL_LABEL @GOTNTPOFF
    182     MO_GOTNTPOFF,
    183 
    184     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
    185     /// reference is actually to the "__imp_FOO" symbol.  This is used for
    186     /// dllimport linkage on windows.
    187     MO_DLLIMPORT,
    188 
    189     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
    190     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
    191     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    192     MO_DARWIN_NONLAZY,
    193 
    194     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
    195     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
    196     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    197     MO_DARWIN_NONLAZY_PIC_BASE,
    198 
    199     /// MO_TLVP - On a symbol operand this indicates that the immediate is
    200     /// some TLS offset.
    201     ///
    202     /// This is the TLS offset for the Darwin TLS mechanism.
    203     MO_TLVP,
    204 
    205     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
    206     /// is some TLS offset from the picbase.
    207     ///
    208     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
    209     MO_TLVP_PIC_BASE,
    210 
    211     /// MO_SECREL - On a symbol operand this indicates that the immediate is
    212     /// the offset from beginning of section.
    213     ///
    214     /// This is the TLS offset for the COFF/Windows TLS mechanism.
    215     MO_SECREL
    216   };
    217 
    218   enum : uint64_t {
    219     //===------------------------------------------------------------------===//
    220     // Instruction encodings.  These are the standard/most common forms for X86
    221     // instructions.
    222     //
    223 
    224     // PseudoFrm - This represents an instruction that is a pseudo instruction
    225     // or one that has not been implemented yet.  It is illegal to code generate
    226     // it, but tolerated for intermediate implementation stages.
    227     Pseudo         = 0,
    228 
    229     /// Raw - This form is for instructions that don't have any operands, so
    230     /// they are just a fixed opcode value, like 'leave'.
    231     RawFrm         = 1,
    232 
    233     /// AddRegFrm - This form is used for instructions like 'push r32' that have
    234     /// their one register operand added to their opcode.
    235     AddRegFrm      = 2,
    236 
    237     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
    238     /// to specify a destination, which in this case is a register.
    239     ///
    240     MRMDestReg     = 3,
    241 
    242     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
    243     /// to specify a destination, which in this case is memory.
    244     ///
    245     MRMDestMem     = 4,
    246 
    247     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
    248     /// to specify a source, which in this case is a register.
    249     ///
    250     MRMSrcReg      = 5,
    251 
    252     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
    253     /// to specify a source, which in this case is memory.
    254     ///
    255     MRMSrcMem      = 6,
    256 
    257     /// RawFrmMemOffs - This form is for instructions that store an absolute
    258     /// memory offset as an immediate with a possible segment override.
    259     RawFrmMemOffs  = 7,
    260 
    261     /// RawFrmSrc - This form is for instructions that use the source index
    262     /// register SI/ESI/RSI with a possible segment override.
    263     RawFrmSrc      = 8,
    264 
    265     /// RawFrmDst - This form is for instructions that use the destination index
    266     /// register DI/EDI/ESI.
    267     RawFrmDst      = 9,
    268 
    269     /// RawFrmSrc - This form is for instructions that use the source index
    270     /// register SI/ESI/ERI with a possible segment override, and also the
    271     /// destination index register DI/ESI/RDI.
    272     RawFrmDstSrc   = 10,
    273 
    274     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
    275     /// immediates, the first of which is a 16-bit immediate (specified by
    276     /// the imm encoding) and the second is a 8-bit fixed value.
    277     RawFrmImm8 = 11,
    278 
    279     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
    280     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
    281     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
    282     /// manual, this operand is described as pntr16:32 and pntr16:16
    283     RawFrmImm16 = 12,
    284 
    285     /// MRMX[rm] - The forms are used to represent instructions that use a
    286     /// Mod/RM byte, and don't use the middle field for anything.
    287     MRMXr = 14, MRMXm = 15,
    288 
    289     /// MRM[0-7][rm] - These forms are used to represent instructions that use
    290     /// a Mod/RM byte, and use the middle field to hold extended opcode
    291     /// information.  In the intel manual these are represented as /0, /1, ...
    292     ///
    293 
    294     // First, instructions that operate on a register r/m operand...
    295     MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
    296     MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
    297 
    298     // Next, instructions that operate on a memory r/m operand...
    299     MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
    300     MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
    301 
    302     //// MRM_XX - A mod/rm byte of exactly 0xXX.
    303     MRM_C0 = 32, MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35,
    304     MRM_C4 = 36, MRM_C5 = 37, MRM_C6 = 38, MRM_C7 = 39,
    305     MRM_C8 = 40, MRM_C9 = 41, MRM_CA = 42, MRM_CB = 43,
    306     MRM_CC = 44, MRM_CD = 45, MRM_CE = 46, MRM_CF = 47,
    307     MRM_D0 = 48, MRM_D1 = 49, MRM_D2 = 50, MRM_D3 = 51,
    308     MRM_D4 = 52, MRM_D5 = 53, MRM_D6 = 54, MRM_D7 = 55,
    309     MRM_D8 = 56, MRM_D9 = 57, MRM_DA = 58, MRM_DB = 59,
    310     MRM_DC = 60, MRM_DD = 61, MRM_DE = 62, MRM_DF = 63,
    311     MRM_E0 = 64, MRM_E1 = 65, MRM_E2 = 66, MRM_E3 = 67,
    312     MRM_E4 = 68, MRM_E5 = 69, MRM_E6 = 70, MRM_E7 = 71,
    313     MRM_E8 = 72, MRM_E9 = 73, MRM_EA = 74, MRM_EB = 75,
    314     MRM_EC = 76, MRM_ED = 77, MRM_EE = 78, MRM_EF = 79,
    315     MRM_F0 = 80, MRM_F1 = 81, MRM_F2 = 82, MRM_F3 = 83,
    316     MRM_F4 = 84, MRM_F5 = 85, MRM_F6 = 86, MRM_F7 = 87,
    317     MRM_F8 = 88, MRM_F9 = 89, MRM_FA = 90, MRM_FB = 91,
    318     MRM_FC = 92, MRM_FD = 93, MRM_FE = 94, MRM_FF = 95,
    319 
    320     FormMask       = 127,
    321 
    322     //===------------------------------------------------------------------===//
    323     // Actual flags...
    324 
    325     // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
    326     // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
    327     // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
    328     // prefix in 16-bit mode.
    329     OpSizeShift = 7,
    330     OpSizeMask = 0x3 << OpSizeShift,
    331 
    332     OpSizeFixed = 0 << OpSizeShift,
    333     OpSize16    = 1 << OpSizeShift,
    334     OpSize32    = 2 << OpSizeShift,
    335 
    336     // AsSize - AdSizeX implies this instruction determines its need of 0x67
    337     // prefix from a normal ModRM memory operand. The other types indicate that
    338     // an operand is encoded with a specific width and a prefix is needed if
    339     // it differs from the current mode.
    340     AdSizeShift = OpSizeShift + 2,
    341     AdSizeMask  = 0x3 << AdSizeShift,
    342 
    343     AdSizeX  = 1 << AdSizeShift,
    344     AdSize16 = 1 << AdSizeShift,
    345     AdSize32 = 2 << AdSizeShift,
    346     AdSize64 = 3 << AdSizeShift,
    347 
    348     //===------------------------------------------------------------------===//
    349     // OpPrefix - There are several prefix bytes that are used as opcode
    350     // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
    351     // no prefix.
    352     //
    353     OpPrefixShift = AdSizeShift + 2,
    354     OpPrefixMask  = 0x7 << OpPrefixShift,
    355 
    356     // PS, PD - Prefix code for packed single and double precision vector
    357     // floating point operations performed in the SSE registers.
    358     PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
    359 
    360     // XS, XD - These prefix codes are for single and double precision scalar
    361     // floating point operations performed in the SSE registers.
    362     XS = 3 << OpPrefixShift,  XD = 4 << OpPrefixShift,
    363 
    364     //===------------------------------------------------------------------===//
    365     // OpMap - This field determines which opcode map this instruction
    366     // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
    367     //
    368     OpMapShift = OpPrefixShift + 3,
    369     OpMapMask  = 0x7 << OpMapShift,
    370 
    371     // OB - OneByte - Set if this instruction has a one byte opcode.
    372     OB = 0 << OpMapShift,
    373 
    374     // TB - TwoByte - Set if this instruction has a two byte opcode, which
    375     // starts with a 0x0F byte before the real opcode.
    376     TB = 1 << OpMapShift,
    377 
    378     // T8, TA - Prefix after the 0x0F prefix.
    379     T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
    380 
    381     // XOP8 - Prefix to include use of imm byte.
    382     XOP8 = 4 << OpMapShift,
    383 
    384     // XOP9 - Prefix to exclude use of imm byte.
    385     XOP9 = 5 << OpMapShift,
    386 
    387     // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
    388     XOPA = 6 << OpMapShift,
    389 
    390     //===------------------------------------------------------------------===//
    391     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
    392     // They are used to specify GPRs and SSE registers, 64-bit operand size,
    393     // etc. We only cares about REX.W and REX.R bits and only the former is
    394     // statically determined.
    395     //
    396     REXShift    = OpMapShift + 3,
    397     REX_W       = 1 << REXShift,
    398 
    399     //===------------------------------------------------------------------===//
    400     // This three-bit field describes the size of an immediate operand.  Zero is
    401     // unused so that we can tell if we forgot to set a value.
    402     ImmShift = REXShift + 1,
    403     ImmMask    = 15 << ImmShift,
    404     Imm8       = 1 << ImmShift,
    405     Imm8PCRel  = 2 << ImmShift,
    406     Imm16      = 3 << ImmShift,
    407     Imm16PCRel = 4 << ImmShift,
    408     Imm32      = 5 << ImmShift,
    409     Imm32PCRel = 6 << ImmShift,
    410     Imm32S     = 7 << ImmShift,
    411     Imm64      = 8 << ImmShift,
    412 
    413     //===------------------------------------------------------------------===//
    414     // FP Instruction Classification...  Zero is non-fp instruction.
    415 
    416     // FPTypeMask - Mask for all of the FP types...
    417     FPTypeShift = ImmShift + 4,
    418     FPTypeMask  = 7 << FPTypeShift,
    419 
    420     // NotFP - The default, set for instructions that do not use FP registers.
    421     NotFP      = 0 << FPTypeShift,
    422 
    423     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
    424     ZeroArgFP  = 1 << FPTypeShift,
    425 
    426     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
    427     OneArgFP   = 2 << FPTypeShift,
    428 
    429     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
    430     // result back to ST(0).  For example, fcos, fsqrt, etc.
    431     //
    432     OneArgFPRW = 3 << FPTypeShift,
    433 
    434     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
    435     // explicit argument, storing the result to either ST(0) or the implicit
    436     // argument.  For example: fadd, fsub, fmul, etc...
    437     TwoArgFP   = 4 << FPTypeShift,
    438 
    439     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
    440     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
    441     CompareFP  = 5 << FPTypeShift,
    442 
    443     // CondMovFP - "2 operand" floating point conditional move instructions.
    444     CondMovFP  = 6 << FPTypeShift,
    445 
    446     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
    447     SpecialFP  = 7 << FPTypeShift,
    448 
    449     // Lock prefix
    450     LOCKShift = FPTypeShift + 3,
    451     LOCK = 1 << LOCKShift,
    452 
    453     // REP prefix
    454     REPShift = LOCKShift + 1,
    455     REP = 1 << REPShift,
    456 
    457     // Execution domain for SSE instructions.
    458     // 0 means normal, non-SSE instruction.
    459     SSEDomainShift = REPShift + 1,
    460 
    461     // Encoding
    462     EncodingShift = SSEDomainShift + 2,
    463     EncodingMask = 0x3 << EncodingShift,
    464 
    465     // VEX - encoding using 0xC4/0xC5
    466     VEX = 1 << EncodingShift,
    467 
    468     /// XOP - Opcode prefix used by XOP instructions.
    469     XOP = 2 << EncodingShift,
    470 
    471     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
    472     // syntax support up to 32 512-bit register operands and up to 7 16-bit
    473     // mask operands as well as source operand data swizzling/memory operand
    474     // conversion, eviction hint, and rounding mode.
    475     EVEX = 3 << EncodingShift,
    476 
    477     // Opcode
    478     OpcodeShift   = EncodingShift + 2,
    479 
    480     /// VEX_W - Has a opcode specific functionality, but is used in the same
    481     /// way as REX_W is for regular SSE instructions.
    482     VEX_WShift  = OpcodeShift + 8,
    483     VEX_W       = 1ULL << VEX_WShift,
    484 
    485     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
    486     /// address instructions in SSE are represented as 3 address ones in AVX
    487     /// and the additional register is encoded in VEX_VVVV prefix.
    488     VEX_4VShift = VEX_WShift + 1,
    489     VEX_4V      = 1ULL << VEX_4VShift,
    490 
    491     /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
    492     /// operand 3 with VEX.vvvv.
    493     VEX_4VOp3Shift = VEX_4VShift + 1,
    494     VEX_4VOp3   = 1ULL << VEX_4VOp3Shift,
    495 
    496     /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
    497     /// must be encoded in the i8 immediate field. This usually happens in
    498     /// instructions with 4 operands.
    499     VEX_I8IMMShift = VEX_4VOp3Shift + 1,
    500     VEX_I8IMM   = 1ULL << VEX_I8IMMShift,
    501 
    502     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
    503     /// instruction uses 256-bit wide registers. This is usually auto detected
    504     /// if a VR256 register is used, but some AVX instructions also have this
    505     /// field marked when using a f256 memory references.
    506     VEX_LShift = VEX_I8IMMShift + 1,
    507     VEX_L       = 1ULL << VEX_LShift,
    508 
    509     // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
    510     // prefix. Usually used for scalar instructions. Needed by disassembler.
    511     VEX_LIGShift = VEX_LShift + 1,
    512     VEX_LIG     = 1ULL << VEX_LIGShift,
    513 
    514     // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
    515     // with following encoding:
    516     // - 00 V128
    517     // - 01 V256
    518     // - 10 V512
    519     // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
    520     // this will save 1 tsflag bit
    521 
    522     // EVEX_K - Set if this instruction requires masking
    523     EVEX_KShift = VEX_LIGShift + 1,
    524     EVEX_K      = 1ULL << EVEX_KShift,
    525 
    526     // EVEX_Z - Set if this instruction has EVEX.Z field set.
    527     EVEX_ZShift = EVEX_KShift + 1,
    528     EVEX_Z      = 1ULL << EVEX_ZShift,
    529 
    530     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
    531     EVEX_L2Shift = EVEX_ZShift + 1,
    532     EVEX_L2     = 1ULL << EVEX_L2Shift,
    533 
    534     // EVEX_B - Set if this instruction has EVEX.B field set.
    535     EVEX_BShift = EVEX_L2Shift + 1,
    536     EVEX_B      = 1ULL << EVEX_BShift,
    537 
    538     // The scaling factor for the AVX512's 8-bit compressed displacement.
    539     CD8_Scale_Shift = EVEX_BShift + 1,
    540     CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
    541 
    542     /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
    543     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
    544     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
    545     /// storing a classifier in the imm8 field.  To simplify our implementation,
    546     /// we handle this by storeing the classifier in the opcode field and using
    547     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
    548     Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7,
    549     Has3DNow0F0FOpcode = 1ULL << Has3DNow0F0FOpcodeShift,
    550 
    551     /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
    552     /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
    553     MemOp4Shift = Has3DNow0F0FOpcodeShift + 1,
    554     MemOp4 = 1ULL << MemOp4Shift,
    555 
    556     /// Explicitly specified rounding control
    557     EVEX_RCShift = MemOp4Shift + 1,
    558     EVEX_RC = 1ULL << EVEX_RCShift
    559   };
    560 
    561   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
    562   // specified machine instruction.
    563   //
    564   inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
    565     return TSFlags >> X86II::OpcodeShift;
    566   }
    567 
    568   inline bool hasImm(uint64_t TSFlags) {
    569     return (TSFlags & X86II::ImmMask) != 0;
    570   }
    571 
    572   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
    573   /// of the specified instruction.
    574   inline unsigned getSizeOfImm(uint64_t TSFlags) {
    575     switch (TSFlags & X86II::ImmMask) {
    576     default: llvm_unreachable("Unknown immediate size");
    577     case X86II::Imm8:
    578     case X86II::Imm8PCRel:  return 1;
    579     case X86II::Imm16:
    580     case X86II::Imm16PCRel: return 2;
    581     case X86II::Imm32:
    582     case X86II::Imm32S:
    583     case X86II::Imm32PCRel: return 4;
    584     case X86II::Imm64:      return 8;
    585     }
    586   }
    587 
    588   /// isImmPCRel - Return true if the immediate of the specified instruction's
    589   /// TSFlags indicates that it is pc relative.
    590   inline unsigned isImmPCRel(uint64_t TSFlags) {
    591     switch (TSFlags & X86II::ImmMask) {
    592     default: llvm_unreachable("Unknown immediate size");
    593     case X86II::Imm8PCRel:
    594     case X86II::Imm16PCRel:
    595     case X86II::Imm32PCRel:
    596       return true;
    597     case X86II::Imm8:
    598     case X86II::Imm16:
    599     case X86II::Imm32:
    600     case X86II::Imm32S:
    601     case X86II::Imm64:
    602       return false;
    603     }
    604   }
    605 
    606   /// isImmSigned - Return true if the immediate of the specified instruction's
    607   /// TSFlags indicates that it is signed.
    608   inline unsigned isImmSigned(uint64_t TSFlags) {
    609     switch (TSFlags & X86II::ImmMask) {
    610     default: llvm_unreachable("Unknown immediate signedness");
    611     case X86II::Imm32S:
    612       return true;
    613     case X86II::Imm8:
    614     case X86II::Imm8PCRel:
    615     case X86II::Imm16:
    616     case X86II::Imm16PCRel:
    617     case X86II::Imm32:
    618     case X86II::Imm32PCRel:
    619     case X86II::Imm64:
    620       return false;
    621     }
    622   }
    623 
    624   /// getOperandBias - compute any additional adjustment needed to
    625   ///                  the offset to the start of the memory operand
    626   ///                  in this instruction.
    627   /// If this is a two-address instruction,skip one of the register operands.
    628   /// FIXME: This should be handled during MCInst lowering.
    629   inline int getOperandBias(const MCInstrDesc& Desc)
    630   {
    631     unsigned NumOps = Desc.getNumOperands();
    632     unsigned CurOp = 0;
    633     if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
    634       ++CurOp;
    635     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
    636              Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
    637       // Special case for AVX-512 GATHER with 2 TIED_TO operands
    638       // Skip the first 2 operands: dst, mask_wb
    639       CurOp += 2;
    640     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
    641              Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
    642       // Special case for GATHER with 2 TIED_TO operands
    643       // Skip the first 2 operands: dst, mask_wb
    644       CurOp += 2;
    645     else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
    646       // SCATTER
    647       ++CurOp;
    648     return CurOp;
    649   }
    650 
    651   /// getMemoryOperandNo - The function returns the MCInst operand # for the
    652   /// first field of the memory operand.  If the instruction doesn't have a
    653   /// memory operand, this returns -1.
    654   ///
    655   /// Note that this ignores tied operands.  If there is a tied register which
    656   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
    657   /// counted as one operand.
    658   ///
    659   inline int getMemoryOperandNo(uint64_t TSFlags) {
    660     bool HasVEX_4V = TSFlags & X86II::VEX_4V;
    661     bool HasMemOp4 = TSFlags & X86II::MemOp4;
    662     bool HasEVEX_K = TSFlags & X86II::EVEX_K;
    663 
    664     switch (TSFlags & X86II::FormMask) {
    665     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
    666     case X86II::Pseudo:
    667     case X86II::RawFrm:
    668     case X86II::AddRegFrm:
    669     case X86II::MRMDestReg:
    670     case X86II::MRMSrcReg:
    671     case X86II::RawFrmImm8:
    672     case X86II::RawFrmImm16:
    673     case X86II::RawFrmMemOffs:
    674     case X86II::RawFrmSrc:
    675     case X86II::RawFrmDst:
    676     case X86II::RawFrmDstSrc:
    677       return -1;
    678     case X86II::MRMDestMem:
    679       return 0;
    680     case X86II::MRMSrcMem:
    681       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
    682       // mask register.
    683       return 1 + HasVEX_4V + HasMemOp4 + HasEVEX_K;
    684     case X86II::MRMXr:
    685     case X86II::MRM0r: case X86II::MRM1r:
    686     case X86II::MRM2r: case X86II::MRM3r:
    687     case X86II::MRM4r: case X86II::MRM5r:
    688     case X86II::MRM6r: case X86II::MRM7r:
    689       return -1;
    690     case X86II::MRMXm:
    691     case X86II::MRM0m: case X86II::MRM1m:
    692     case X86II::MRM2m: case X86II::MRM3m:
    693     case X86II::MRM4m: case X86II::MRM5m:
    694     case X86II::MRM6m: case X86II::MRM7m:
    695       // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
    696       return 0 + HasVEX_4V + HasEVEX_K;
    697     case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
    698     case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
    699     case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
    700     case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
    701     case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
    702     case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
    703     case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
    704     case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
    705     case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
    706     case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
    707     case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
    708     case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
    709     case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
    710     case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
    711     case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
    712     case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
    713     case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
    714     case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
    715     case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
    716     case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
    717     case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
    718     case X86II::MRM_FF:
    719       return -1;
    720     }
    721   }
    722 
    723   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
    724   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
    725   inline bool isX86_64ExtendedReg(unsigned RegNo) {
    726     if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM15) ||
    727         (RegNo >= X86::XMM24 && RegNo <= X86::XMM31) ||
    728         (RegNo >= X86::YMM8 && RegNo <= X86::YMM15) ||
    729         (RegNo >= X86::YMM24 && RegNo <= X86::YMM31) ||
    730         (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM15) ||
    731         (RegNo >= X86::ZMM24 && RegNo <= X86::ZMM31))
    732       return true;
    733 
    734     switch (RegNo) {
    735     default: break;
    736     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
    737     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
    738     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
    739     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
    740     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
    741     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
    742     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
    743     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
    744     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
    745     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
    746       return true;
    747     }
    748     return false;
    749   }
    750 
    751   /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
    752   /// registers? e.g. zmm21, etc.
    753   static inline bool is32ExtendedReg(unsigned RegNo) {
    754     return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
    755             (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
    756             (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
    757   }
    758 
    759 
    760   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
    761     return (reg == X86::SPL || reg == X86::BPL ||
    762             reg == X86::SIL || reg == X86::DIL);
    763   }
    764 }
    765 
    766 } // end namespace llvm;
    767 
    768 #endif
    769