Home | History | Annotate | Download | only in X86
      1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains code to lower X86 MachineInstrs to their corresponding
     11 // MCInst records.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "X86AsmPrinter.h"
     16 #include "X86RegisterInfo.h"
     17 #include "X86ShuffleDecodeConstantPool.h"
     18 #include "InstPrinter/X86ATTInstPrinter.h"
     19 #include "MCTargetDesc/X86BaseInfo.h"
     20 #include "Utils/X86ShuffleDecode.h"
     21 #include "llvm/ADT/Optional.h"
     22 #include "llvm/ADT/SmallString.h"
     23 #include "llvm/ADT/iterator_range.h"
     24 #include "llvm/CodeGen/MachineFunction.h"
     25 #include "llvm/CodeGen/MachineConstantPool.h"
     26 #include "llvm/CodeGen/MachineOperand.h"
     27 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
     28 #include "llvm/CodeGen/StackMaps.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/GlobalValue.h"
     31 #include "llvm/IR/Mangler.h"
     32 #include "llvm/MC/MCAsmInfo.h"
     33 #include "llvm/MC/MCCodeEmitter.h"
     34 #include "llvm/MC/MCContext.h"
     35 #include "llvm/MC/MCExpr.h"
     36 #include "llvm/MC/MCFixup.h"
     37 #include "llvm/MC/MCInst.h"
     38 #include "llvm/MC/MCInstBuilder.h"
     39 #include "llvm/MC/MCSection.h"
     40 #include "llvm/MC/MCStreamer.h"
     41 #include "llvm/MC/MCSymbol.h"
     42 #include "llvm/MC/MCSymbolELF.h"
     43 #include "llvm/MC/MCSectionELF.h"
     44 #include "llvm/Support/TargetRegistry.h"
     45 #include "llvm/Support/ELF.h"
     46 #include "llvm/Target/TargetLoweringObjectFile.h"
     47 
     48 using namespace llvm;
     49 
     50 namespace {
     51 
     52 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
     53 class X86MCInstLower {
     54   MCContext &Ctx;
     55   const MachineFunction &MF;
     56   const TargetMachine &TM;
     57   const MCAsmInfo &MAI;
     58   X86AsmPrinter &AsmPrinter;
     59 public:
     60   X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
     61 
     62   Optional<MCOperand> LowerMachineOperand(const MachineInstr *MI,
     63                                           const MachineOperand &MO) const;
     64   void Lower(const MachineInstr *MI, MCInst &OutMI) const;
     65 
     66   MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
     67   MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
     68 
     69 private:
     70   MachineModuleInfoMachO &getMachOMMI() const;
     71   Mangler *getMang() const {
     72     return AsmPrinter.Mang;
     73   }
     74 };
     75 
     76 } // end anonymous namespace
     77 
     78 // Emit a minimal sequence of nops spanning NumBytes bytes.
     79 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
     80                      const MCSubtargetInfo &STI);
     81 
     82 void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
     83                                                  const MCSubtargetInfo &STI,
     84                                                  MCCodeEmitter *CodeEmitter) {
     85   if (InShadow) {
     86     SmallString<256> Code;
     87     SmallVector<MCFixup, 4> Fixups;
     88     raw_svector_ostream VecOS(Code);
     89     CodeEmitter->encodeInstruction(Inst, VecOS, Fixups, STI);
     90     CurrentShadowSize += Code.size();
     91     if (CurrentShadowSize >= RequiredShadowSize)
     92       InShadow = false; // The shadow is big enough. Stop counting.
     93   }
     94 }
     95 
     96 void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
     97     MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
     98   if (InShadow && CurrentShadowSize < RequiredShadowSize) {
     99     InShadow = false;
    100     EmitNops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
    101              MF->getSubtarget<X86Subtarget>().is64Bit(), STI);
    102   }
    103 }
    104 
    105 void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
    106   OutStreamer->EmitInstruction(Inst, getSubtargetInfo());
    107   SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get());
    108 }
    109 
    110 X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
    111                                X86AsmPrinter &asmprinter)
    112     : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
    113       AsmPrinter(asmprinter) {}
    114 
    115 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
    116   return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
    117 }
    118 
    119 
    120 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
    121 /// operand to an MCSymbol.
    122 MCSymbol *X86MCInstLower::
    123 GetSymbolFromOperand(const MachineOperand &MO) const {
    124   const DataLayout &DL = MF.getDataLayout();
    125   assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && "Isn't a symbol reference");
    126 
    127   MCSymbol *Sym = nullptr;
    128   SmallString<128> Name;
    129   StringRef Suffix;
    130 
    131   switch (MO.getTargetFlags()) {
    132   case X86II::MO_DLLIMPORT:
    133     // Handle dllimport linkage.
    134     Name += "__imp_";
    135     break;
    136   case X86II::MO_DARWIN_NONLAZY:
    137   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
    138     Suffix = "$non_lazy_ptr";
    139     break;
    140   }
    141 
    142   if (!Suffix.empty())
    143     Name += DL.getPrivateGlobalPrefix();
    144 
    145   if (MO.isGlobal()) {
    146     const GlobalValue *GV = MO.getGlobal();
    147     AsmPrinter.getNameWithPrefix(Name, GV);
    148   } else if (MO.isSymbol()) {
    149     Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL);
    150   } else if (MO.isMBB()) {
    151     assert(Suffix.empty());
    152     Sym = MO.getMBB()->getSymbol();
    153   }
    154 
    155   Name += Suffix;
    156   if (!Sym)
    157     Sym = Ctx.getOrCreateSymbol(Name);
    158 
    159   // If the target flags on the operand changes the name of the symbol, do that
    160   // before we return the symbol.
    161   switch (MO.getTargetFlags()) {
    162   default: break;
    163   case X86II::MO_DARWIN_NONLAZY:
    164   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
    165     MachineModuleInfoImpl::StubValueTy &StubSym =
    166       getMachOMMI().getGVStubEntry(Sym);
    167     if (!StubSym.getPointer()) {
    168       assert(MO.isGlobal() && "Extern symbol not handled yet");
    169       StubSym =
    170         MachineModuleInfoImpl::
    171         StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
    172                     !MO.getGlobal()->hasInternalLinkage());
    173     }
    174     break;
    175   }
    176   }
    177 
    178   return Sym;
    179 }
    180 
    181 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
    182                                              MCSymbol *Sym) const {
    183   // FIXME: We would like an efficient form for this, so we don't have to do a
    184   // lot of extra uniquing.
    185   const MCExpr *Expr = nullptr;
    186   MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
    187 
    188   switch (MO.getTargetFlags()) {
    189   default: llvm_unreachable("Unknown target flag on GV operand");
    190   case X86II::MO_NO_FLAG:    // No flag.
    191   // These affect the name of the symbol, not any suffix.
    192   case X86II::MO_DARWIN_NONLAZY:
    193   case X86II::MO_DLLIMPORT:
    194     break;
    195 
    196   case X86II::MO_TLVP:      RefKind = MCSymbolRefExpr::VK_TLVP; break;
    197   case X86II::MO_TLVP_PIC_BASE:
    198     Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
    199     // Subtract the pic base.
    200     Expr = MCBinaryExpr::createSub(Expr,
    201                                   MCSymbolRefExpr::create(MF.getPICBaseSymbol(),
    202                                                            Ctx),
    203                                    Ctx);
    204     break;
    205   case X86II::MO_SECREL:    RefKind = MCSymbolRefExpr::VK_SECREL; break;
    206   case X86II::MO_TLSGD:     RefKind = MCSymbolRefExpr::VK_TLSGD; break;
    207   case X86II::MO_TLSLD:     RefKind = MCSymbolRefExpr::VK_TLSLD; break;
    208   case X86II::MO_TLSLDM:    RefKind = MCSymbolRefExpr::VK_TLSLDM; break;
    209   case X86II::MO_GOTTPOFF:  RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break;
    210   case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break;
    211   case X86II::MO_TPOFF:     RefKind = MCSymbolRefExpr::VK_TPOFF; break;
    212   case X86II::MO_DTPOFF:    RefKind = MCSymbolRefExpr::VK_DTPOFF; break;
    213   case X86II::MO_NTPOFF:    RefKind = MCSymbolRefExpr::VK_NTPOFF; break;
    214   case X86II::MO_GOTNTPOFF: RefKind = MCSymbolRefExpr::VK_GOTNTPOFF; break;
    215   case X86II::MO_GOTPCREL:  RefKind = MCSymbolRefExpr::VK_GOTPCREL; break;
    216   case X86II::MO_GOT:       RefKind = MCSymbolRefExpr::VK_GOT; break;
    217   case X86II::MO_GOTOFF:    RefKind = MCSymbolRefExpr::VK_GOTOFF; break;
    218   case X86II::MO_PLT:       RefKind = MCSymbolRefExpr::VK_PLT; break;
    219   case X86II::MO_PIC_BASE_OFFSET:
    220   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
    221     Expr = MCSymbolRefExpr::create(Sym, Ctx);
    222     // Subtract the pic base.
    223     Expr = MCBinaryExpr::createSub(Expr,
    224                             MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx),
    225                                    Ctx);
    226     if (MO.isJTI()) {
    227       assert(MAI.doesSetDirectiveSuppressReloc());
    228       // If .set directive is supported, use it to reduce the number of
    229       // relocations the assembler will generate for differences between
    230       // local labels. This is only safe when the symbols are in the same
    231       // section so we are restricting it to jumptable references.
    232       MCSymbol *Label = Ctx.createTempSymbol();
    233       AsmPrinter.OutStreamer->EmitAssignment(Label, Expr);
    234       Expr = MCSymbolRefExpr::create(Label, Ctx);
    235     }
    236     break;
    237   }
    238 
    239   if (!Expr)
    240     Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx);
    241 
    242   if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
    243     Expr = MCBinaryExpr::createAdd(Expr,
    244                                    MCConstantExpr::create(MO.getOffset(), Ctx),
    245                                    Ctx);
    246   return MCOperand::createExpr(Expr);
    247 }
    248 
    249 
    250 /// \brief Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
    251 /// a short fixed-register form.
    252 static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
    253   unsigned ImmOp = Inst.getNumOperands() - 1;
    254   assert(Inst.getOperand(0).isReg() &&
    255          (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
    256          ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
    257            Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
    258           Inst.getNumOperands() == 2) && "Unexpected instruction!");
    259 
    260   // Check whether the destination register can be fixed.
    261   unsigned Reg = Inst.getOperand(0).getReg();
    262   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
    263     return;
    264 
    265   // If so, rewrite the instruction.
    266   MCOperand Saved = Inst.getOperand(ImmOp);
    267   Inst = MCInst();
    268   Inst.setOpcode(Opcode);
    269   Inst.addOperand(Saved);
    270 }
    271 
    272 /// \brief If a movsx instruction has a shorter encoding for the used register
    273 /// simplify the instruction to use it instead.
    274 static void SimplifyMOVSX(MCInst &Inst) {
    275   unsigned NewOpcode = 0;
    276   unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg();
    277   switch (Inst.getOpcode()) {
    278   default:
    279     llvm_unreachable("Unexpected instruction!");
    280   case X86::MOVSX16rr8:  // movsbw %al, %ax   --> cbtw
    281     if (Op0 == X86::AX && Op1 == X86::AL)
    282       NewOpcode = X86::CBW;
    283     break;
    284   case X86::MOVSX32rr16: // movswl %ax, %eax  --> cwtl
    285     if (Op0 == X86::EAX && Op1 == X86::AX)
    286       NewOpcode = X86::CWDE;
    287     break;
    288   case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq
    289     if (Op0 == X86::RAX && Op1 == X86::EAX)
    290       NewOpcode = X86::CDQE;
    291     break;
    292   }
    293 
    294   if (NewOpcode != 0) {
    295     Inst = MCInst();
    296     Inst.setOpcode(NewOpcode);
    297   }
    298 }
    299 
    300 /// \brief Simplify things like MOV32rm to MOV32o32a.
    301 static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
    302                                   unsigned Opcode) {
    303   // Don't make these simplifications in 64-bit mode; other assemblers don't
    304   // perform them because they make the code larger.
    305   if (Printer.getSubtarget().is64Bit())
    306     return;
    307 
    308   bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
    309   unsigned AddrBase = IsStore;
    310   unsigned RegOp = IsStore ? 0 : 5;
    311   unsigned AddrOp = AddrBase + 3;
    312   assert(Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
    313          Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() &&
    314          Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() &&
    315          Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() &&
    316          Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() &&
    317          (Inst.getOperand(AddrOp).isExpr() ||
    318           Inst.getOperand(AddrOp).isImm()) &&
    319          "Unexpected instruction!");
    320 
    321   // Check whether the destination register can be fixed.
    322   unsigned Reg = Inst.getOperand(RegOp).getReg();
    323   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
    324     return;
    325 
    326   // Check whether this is an absolute address.
    327   // FIXME: We know TLVP symbol refs aren't, but there should be a better way
    328   // to do this here.
    329   bool Absolute = true;
    330   if (Inst.getOperand(AddrOp).isExpr()) {
    331     const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
    332     if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
    333       if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
    334         Absolute = false;
    335   }
    336 
    337   if (Absolute &&
    338       (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
    339        Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
    340        Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
    341     return;
    342 
    343   // If so, rewrite the instruction.
    344   MCOperand Saved = Inst.getOperand(AddrOp);
    345   MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg);
    346   Inst = MCInst();
    347   Inst.setOpcode(Opcode);
    348   Inst.addOperand(Saved);
    349   Inst.addOperand(Seg);
    350 }
    351 
    352 static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
    353   return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
    354 }
    355 
    356 Optional<MCOperand>
    357 X86MCInstLower::LowerMachineOperand(const MachineInstr *MI,
    358                                     const MachineOperand &MO) const {
    359   switch (MO.getType()) {
    360   default:
    361     MI->dump();
    362     llvm_unreachable("unknown operand type");
    363   case MachineOperand::MO_Register:
    364     // Ignore all implicit register operands.
    365     if (MO.isImplicit())
    366       return None;
    367     return MCOperand::createReg(MO.getReg());
    368   case MachineOperand::MO_Immediate:
    369     return MCOperand::createImm(MO.getImm());
    370   case MachineOperand::MO_MachineBasicBlock:
    371   case MachineOperand::MO_GlobalAddress:
    372   case MachineOperand::MO_ExternalSymbol:
    373     return LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
    374   case MachineOperand::MO_MCSymbol:
    375     return LowerSymbolOperand(MO, MO.getMCSymbol());
    376   case MachineOperand::MO_JumpTableIndex:
    377     return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
    378   case MachineOperand::MO_ConstantPoolIndex:
    379     return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
    380   case MachineOperand::MO_BlockAddress:
    381     return LowerSymbolOperand(
    382         MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
    383   case MachineOperand::MO_RegisterMask:
    384     // Ignore call clobbers.
    385     return None;
    386   }
    387 }
    388 
    389 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
    390   OutMI.setOpcode(MI->getOpcode());
    391 
    392   for (const MachineOperand &MO : MI->operands())
    393     if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
    394       OutMI.addOperand(MaybeMCOp.getValue());
    395 
    396   // Handle a few special cases to eliminate operand modifiers.
    397 ReSimplify:
    398   switch (OutMI.getOpcode()) {
    399   case X86::LEA64_32r:
    400   case X86::LEA64r:
    401   case X86::LEA16r:
    402   case X86::LEA32r:
    403     // LEA should have a segment register, but it must be empty.
    404     assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
    405            "Unexpected # of LEA operands");
    406     assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
    407            "LEA has segment specified!");
    408     break;
    409 
    410   // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
    411   // if one of the registers is extended, but other isn't.
    412   case X86::VMOVZPQILo2PQIrr:
    413   case X86::VMOVAPDrr:
    414   case X86::VMOVAPDYrr:
    415   case X86::VMOVAPSrr:
    416   case X86::VMOVAPSYrr:
    417   case X86::VMOVDQArr:
    418   case X86::VMOVDQAYrr:
    419   case X86::VMOVDQUrr:
    420   case X86::VMOVDQUYrr:
    421   case X86::VMOVUPDrr:
    422   case X86::VMOVUPDYrr:
    423   case X86::VMOVUPSrr:
    424   case X86::VMOVUPSYrr: {
    425     if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
    426         X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
    427       unsigned NewOpc;
    428       switch (OutMI.getOpcode()) {
    429       default: llvm_unreachable("Invalid opcode");
    430       case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr;   break;
    431       case X86::VMOVAPDrr:        NewOpc = X86::VMOVAPDrr_REV;  break;
    432       case X86::VMOVAPDYrr:       NewOpc = X86::VMOVAPDYrr_REV; break;
    433       case X86::VMOVAPSrr:        NewOpc = X86::VMOVAPSrr_REV;  break;
    434       case X86::VMOVAPSYrr:       NewOpc = X86::VMOVAPSYrr_REV; break;
    435       case X86::VMOVDQArr:        NewOpc = X86::VMOVDQArr_REV;  break;
    436       case X86::VMOVDQAYrr:       NewOpc = X86::VMOVDQAYrr_REV; break;
    437       case X86::VMOVDQUrr:        NewOpc = X86::VMOVDQUrr_REV;  break;
    438       case X86::VMOVDQUYrr:       NewOpc = X86::VMOVDQUYrr_REV; break;
    439       case X86::VMOVUPDrr:        NewOpc = X86::VMOVUPDrr_REV;  break;
    440       case X86::VMOVUPDYrr:       NewOpc = X86::VMOVUPDYrr_REV; break;
    441       case X86::VMOVUPSrr:        NewOpc = X86::VMOVUPSrr_REV;  break;
    442       case X86::VMOVUPSYrr:       NewOpc = X86::VMOVUPSYrr_REV; break;
    443       }
    444       OutMI.setOpcode(NewOpc);
    445     }
    446     break;
    447   }
    448   case X86::VMOVSDrr:
    449   case X86::VMOVSSrr: {
    450     if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
    451         X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
    452       unsigned NewOpc;
    453       switch (OutMI.getOpcode()) {
    454       default: llvm_unreachable("Invalid opcode");
    455       case X86::VMOVSDrr:   NewOpc = X86::VMOVSDrr_REV;   break;
    456       case X86::VMOVSSrr:   NewOpc = X86::VMOVSSrr_REV;   break;
    457       }
    458       OutMI.setOpcode(NewOpc);
    459     }
    460     break;
    461   }
    462 
    463   // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
    464   // inputs modeled as normal uses instead of implicit uses.  As such, truncate
    465   // off all but the first operand (the callee).  FIXME: Change isel.
    466   case X86::TAILJMPr64:
    467   case X86::TAILJMPr64_REX:
    468   case X86::CALL64r:
    469   case X86::CALL64pcrel32: {
    470     unsigned Opcode = OutMI.getOpcode();
    471     MCOperand Saved = OutMI.getOperand(0);
    472     OutMI = MCInst();
    473     OutMI.setOpcode(Opcode);
    474     OutMI.addOperand(Saved);
    475     break;
    476   }
    477 
    478   case X86::EH_RETURN:
    479   case X86::EH_RETURN64: {
    480     OutMI = MCInst();
    481     OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
    482     break;
    483   }
    484 
    485   case X86::CLEANUPRET: {
    486     // Replace CATCHRET with the appropriate RET.
    487     OutMI = MCInst();
    488     OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
    489     break;
    490   }
    491 
    492   case X86::CATCHRET: {
    493     // Replace CATCHRET with the appropriate RET.
    494     const X86Subtarget &Subtarget = AsmPrinter.getSubtarget();
    495     unsigned ReturnReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
    496     OutMI = MCInst();
    497     OutMI.setOpcode(getRetOpcode(Subtarget));
    498     OutMI.addOperand(MCOperand::createReg(ReturnReg));
    499     break;
    500   }
    501 
    502   // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
    503   case X86::TAILJMPr:
    504   case X86::TAILJMPd:
    505   case X86::TAILJMPd64: {
    506     unsigned Opcode;
    507     switch (OutMI.getOpcode()) {
    508     default: llvm_unreachable("Invalid opcode");
    509     case X86::TAILJMPr: Opcode = X86::JMP32r; break;
    510     case X86::TAILJMPd:
    511     case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
    512     }
    513 
    514     MCOperand Saved = OutMI.getOperand(0);
    515     OutMI = MCInst();
    516     OutMI.setOpcode(Opcode);
    517     OutMI.addOperand(Saved);
    518     break;
    519   }
    520 
    521   case X86::DEC16r:
    522   case X86::DEC32r:
    523   case X86::INC16r:
    524   case X86::INC32r:
    525     // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
    526     if (!AsmPrinter.getSubtarget().is64Bit()) {
    527       unsigned Opcode;
    528       switch (OutMI.getOpcode()) {
    529       default: llvm_unreachable("Invalid opcode");
    530       case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
    531       case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
    532       case X86::INC16r: Opcode = X86::INC16r_alt; break;
    533       case X86::INC32r: Opcode = X86::INC32r_alt; break;
    534       }
    535       OutMI.setOpcode(Opcode);
    536     }
    537     break;
    538 
    539   // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
    540   // this with an ugly goto in case the resultant OR uses EAX and needs the
    541   // short form.
    542   case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
    543   case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
    544   case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
    545   case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
    546   case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
    547   case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
    548   case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
    549   case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
    550   case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;
    551 
    552   // Atomic load and store require a separate pseudo-inst because Acquire
    553   // implies mayStore and Release implies mayLoad; fix these to regular MOV
    554   // instructions here
    555   case X86::ACQUIRE_MOV8rm:    OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
    556   case X86::ACQUIRE_MOV16rm:   OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
    557   case X86::ACQUIRE_MOV32rm:   OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
    558   case X86::ACQUIRE_MOV64rm:   OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
    559   case X86::RELEASE_MOV8mr:    OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
    560   case X86::RELEASE_MOV16mr:   OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
    561   case X86::RELEASE_MOV32mr:   OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
    562   case X86::RELEASE_MOV64mr:   OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
    563   case X86::RELEASE_MOV8mi:    OutMI.setOpcode(X86::MOV8mi); goto ReSimplify;
    564   case X86::RELEASE_MOV16mi:   OutMI.setOpcode(X86::MOV16mi); goto ReSimplify;
    565   case X86::RELEASE_MOV32mi:   OutMI.setOpcode(X86::MOV32mi); goto ReSimplify;
    566   case X86::RELEASE_MOV64mi32: OutMI.setOpcode(X86::MOV64mi32); goto ReSimplify;
    567   case X86::RELEASE_ADD8mi:    OutMI.setOpcode(X86::ADD8mi); goto ReSimplify;
    568   case X86::RELEASE_ADD8mr:    OutMI.setOpcode(X86::ADD8mr); goto ReSimplify;
    569   case X86::RELEASE_ADD32mi:   OutMI.setOpcode(X86::ADD32mi); goto ReSimplify;
    570   case X86::RELEASE_ADD32mr:   OutMI.setOpcode(X86::ADD32mr); goto ReSimplify;
    571   case X86::RELEASE_ADD64mi32: OutMI.setOpcode(X86::ADD64mi32); goto ReSimplify;
    572   case X86::RELEASE_ADD64mr:   OutMI.setOpcode(X86::ADD64mr); goto ReSimplify;
    573   case X86::RELEASE_AND8mi:    OutMI.setOpcode(X86::AND8mi); goto ReSimplify;
    574   case X86::RELEASE_AND8mr:    OutMI.setOpcode(X86::AND8mr); goto ReSimplify;
    575   case X86::RELEASE_AND32mi:   OutMI.setOpcode(X86::AND32mi); goto ReSimplify;
    576   case X86::RELEASE_AND32mr:   OutMI.setOpcode(X86::AND32mr); goto ReSimplify;
    577   case X86::RELEASE_AND64mi32: OutMI.setOpcode(X86::AND64mi32); goto ReSimplify;
    578   case X86::RELEASE_AND64mr:   OutMI.setOpcode(X86::AND64mr); goto ReSimplify;
    579   case X86::RELEASE_OR8mi:     OutMI.setOpcode(X86::OR8mi); goto ReSimplify;
    580   case X86::RELEASE_OR8mr:     OutMI.setOpcode(X86::OR8mr); goto ReSimplify;
    581   case X86::RELEASE_OR32mi:    OutMI.setOpcode(X86::OR32mi); goto ReSimplify;
    582   case X86::RELEASE_OR32mr:    OutMI.setOpcode(X86::OR32mr); goto ReSimplify;
    583   case X86::RELEASE_OR64mi32:  OutMI.setOpcode(X86::OR64mi32); goto ReSimplify;
    584   case X86::RELEASE_OR64mr:    OutMI.setOpcode(X86::OR64mr); goto ReSimplify;
    585   case X86::RELEASE_XOR8mi:    OutMI.setOpcode(X86::XOR8mi); goto ReSimplify;
    586   case X86::RELEASE_XOR8mr:    OutMI.setOpcode(X86::XOR8mr); goto ReSimplify;
    587   case X86::RELEASE_XOR32mi:   OutMI.setOpcode(X86::XOR32mi); goto ReSimplify;
    588   case X86::RELEASE_XOR32mr:   OutMI.setOpcode(X86::XOR32mr); goto ReSimplify;
    589   case X86::RELEASE_XOR64mi32: OutMI.setOpcode(X86::XOR64mi32); goto ReSimplify;
    590   case X86::RELEASE_XOR64mr:   OutMI.setOpcode(X86::XOR64mr); goto ReSimplify;
    591   case X86::RELEASE_INC8m:     OutMI.setOpcode(X86::INC8m); goto ReSimplify;
    592   case X86::RELEASE_INC16m:    OutMI.setOpcode(X86::INC16m); goto ReSimplify;
    593   case X86::RELEASE_INC32m:    OutMI.setOpcode(X86::INC32m); goto ReSimplify;
    594   case X86::RELEASE_INC64m:    OutMI.setOpcode(X86::INC64m); goto ReSimplify;
    595   case X86::RELEASE_DEC8m:     OutMI.setOpcode(X86::DEC8m); goto ReSimplify;
    596   case X86::RELEASE_DEC16m:    OutMI.setOpcode(X86::DEC16m); goto ReSimplify;
    597   case X86::RELEASE_DEC32m:    OutMI.setOpcode(X86::DEC32m); goto ReSimplify;
    598   case X86::RELEASE_DEC64m:    OutMI.setOpcode(X86::DEC64m); goto ReSimplify;
    599 
    600   // We don't currently select the correct instruction form for instructions
    601   // which have a short %eax, etc. form. Handle this by custom lowering, for
    602   // now.
    603   //
    604   // Note, we are currently not handling the following instructions:
    605   // MOV64ao8, MOV64o8a
    606   // XCHG16ar, XCHG32ar, XCHG64ar
    607   case X86::MOV8mr_NOREX:
    608   case X86::MOV8mr:
    609   case X86::MOV8rm_NOREX:
    610   case X86::MOV8rm:
    611   case X86::MOV16mr:
    612   case X86::MOV16rm:
    613   case X86::MOV32mr:
    614   case X86::MOV32rm: {
    615     unsigned NewOpc;
    616     switch (OutMI.getOpcode()) {
    617     default: llvm_unreachable("Invalid opcode");
    618     case X86::MOV8mr_NOREX:
    619     case X86::MOV8mr:     NewOpc = X86::MOV8o32a; break;
    620     case X86::MOV8rm_NOREX:
    621     case X86::MOV8rm:     NewOpc = X86::MOV8ao32; break;
    622     case X86::MOV16mr:    NewOpc = X86::MOV16o32a; break;
    623     case X86::MOV16rm:    NewOpc = X86::MOV16ao32; break;
    624     case X86::MOV32mr:    NewOpc = X86::MOV32o32a; break;
    625     case X86::MOV32rm:    NewOpc = X86::MOV32ao32; break;
    626     }
    627     SimplifyShortMoveForm(AsmPrinter, OutMI, NewOpc);
    628     break;
    629   }
    630 
    631   case X86::ADC8ri: case X86::ADC16ri: case X86::ADC32ri: case X86::ADC64ri32:
    632   case X86::ADD8ri: case X86::ADD16ri: case X86::ADD32ri: case X86::ADD64ri32:
    633   case X86::AND8ri: case X86::AND16ri: case X86::AND32ri: case X86::AND64ri32:
    634   case X86::CMP8ri: case X86::CMP16ri: case X86::CMP32ri: case X86::CMP64ri32:
    635   case X86::OR8ri:  case X86::OR16ri:  case X86::OR32ri:  case X86::OR64ri32:
    636   case X86::SBB8ri: case X86::SBB16ri: case X86::SBB32ri: case X86::SBB64ri32:
    637   case X86::SUB8ri: case X86::SUB16ri: case X86::SUB32ri: case X86::SUB64ri32:
    638   case X86::TEST8ri:case X86::TEST16ri:case X86::TEST32ri:case X86::TEST64ri32:
    639   case X86::XOR8ri: case X86::XOR16ri: case X86::XOR32ri: case X86::XOR64ri32: {
    640     unsigned NewOpc;
    641     switch (OutMI.getOpcode()) {
    642     default: llvm_unreachable("Invalid opcode");
    643     case X86::ADC8ri:     NewOpc = X86::ADC8i8;    break;
    644     case X86::ADC16ri:    NewOpc = X86::ADC16i16;  break;
    645     case X86::ADC32ri:    NewOpc = X86::ADC32i32;  break;
    646     case X86::ADC64ri32:  NewOpc = X86::ADC64i32;  break;
    647     case X86::ADD8ri:     NewOpc = X86::ADD8i8;    break;
    648     case X86::ADD16ri:    NewOpc = X86::ADD16i16;  break;
    649     case X86::ADD32ri:    NewOpc = X86::ADD32i32;  break;
    650     case X86::ADD64ri32:  NewOpc = X86::ADD64i32;  break;
    651     case X86::AND8ri:     NewOpc = X86::AND8i8;    break;
    652     case X86::AND16ri:    NewOpc = X86::AND16i16;  break;
    653     case X86::AND32ri:    NewOpc = X86::AND32i32;  break;
    654     case X86::AND64ri32:  NewOpc = X86::AND64i32;  break;
    655     case X86::CMP8ri:     NewOpc = X86::CMP8i8;    break;
    656     case X86::CMP16ri:    NewOpc = X86::CMP16i16;  break;
    657     case X86::CMP32ri:    NewOpc = X86::CMP32i32;  break;
    658     case X86::CMP64ri32:  NewOpc = X86::CMP64i32;  break;
    659     case X86::OR8ri:      NewOpc = X86::OR8i8;     break;
    660     case X86::OR16ri:     NewOpc = X86::OR16i16;   break;
    661     case X86::OR32ri:     NewOpc = X86::OR32i32;   break;
    662     case X86::OR64ri32:   NewOpc = X86::OR64i32;   break;
    663     case X86::SBB8ri:     NewOpc = X86::SBB8i8;    break;
    664     case X86::SBB16ri:    NewOpc = X86::SBB16i16;  break;
    665     case X86::SBB32ri:    NewOpc = X86::SBB32i32;  break;
    666     case X86::SBB64ri32:  NewOpc = X86::SBB64i32;  break;
    667     case X86::SUB8ri:     NewOpc = X86::SUB8i8;    break;
    668     case X86::SUB16ri:    NewOpc = X86::SUB16i16;  break;
    669     case X86::SUB32ri:    NewOpc = X86::SUB32i32;  break;
    670     case X86::SUB64ri32:  NewOpc = X86::SUB64i32;  break;
    671     case X86::TEST8ri:    NewOpc = X86::TEST8i8;   break;
    672     case X86::TEST16ri:   NewOpc = X86::TEST16i16; break;
    673     case X86::TEST32ri:   NewOpc = X86::TEST32i32; break;
    674     case X86::TEST64ri32: NewOpc = X86::TEST64i32; break;
    675     case X86::XOR8ri:     NewOpc = X86::XOR8i8;    break;
    676     case X86::XOR16ri:    NewOpc = X86::XOR16i16;  break;
    677     case X86::XOR32ri:    NewOpc = X86::XOR32i32;  break;
    678     case X86::XOR64ri32:  NewOpc = X86::XOR64i32;  break;
    679     }
    680     SimplifyShortImmForm(OutMI, NewOpc);
    681     break;
    682   }
    683 
    684   // Try to shrink some forms of movsx.
    685   case X86::MOVSX16rr8:
    686   case X86::MOVSX32rr16:
    687   case X86::MOVSX64rr32:
    688     SimplifyMOVSX(OutMI);
    689     break;
    690   }
    691 }
    692 
    693 void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
    694                                  const MachineInstr &MI) {
    695 
    696   bool is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
    697                   MI.getOpcode() == X86::TLS_base_addr64;
    698 
    699   bool needsPadding = MI.getOpcode() == X86::TLS_addr64;
    700 
    701   MCContext &context = OutStreamer->getContext();
    702 
    703   if (needsPadding)
    704     EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
    705 
    706   MCSymbolRefExpr::VariantKind SRVK;
    707   switch (MI.getOpcode()) {
    708     case X86::TLS_addr32:
    709     case X86::TLS_addr64:
    710       SRVK = MCSymbolRefExpr::VK_TLSGD;
    711       break;
    712     case X86::TLS_base_addr32:
    713       SRVK = MCSymbolRefExpr::VK_TLSLDM;
    714       break;
    715     case X86::TLS_base_addr64:
    716       SRVK = MCSymbolRefExpr::VK_TLSLD;
    717       break;
    718     default:
    719       llvm_unreachable("unexpected opcode");
    720   }
    721 
    722   MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
    723   const MCSymbolRefExpr *symRef = MCSymbolRefExpr::create(sym, SRVK, context);
    724 
    725   MCInst LEA;
    726   if (is64Bits) {
    727     LEA.setOpcode(X86::LEA64r);
    728     LEA.addOperand(MCOperand::createReg(X86::RDI)); // dest
    729     LEA.addOperand(MCOperand::createReg(X86::RIP)); // base
    730     LEA.addOperand(MCOperand::createImm(1));        // scale
    731     LEA.addOperand(MCOperand::createReg(0));        // index
    732     LEA.addOperand(MCOperand::createExpr(symRef));  // disp
    733     LEA.addOperand(MCOperand::createReg(0));        // seg
    734   } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) {
    735     LEA.setOpcode(X86::LEA32r);
    736     LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest
    737     LEA.addOperand(MCOperand::createReg(X86::EBX)); // base
    738     LEA.addOperand(MCOperand::createImm(1));        // scale
    739     LEA.addOperand(MCOperand::createReg(0));        // index
    740     LEA.addOperand(MCOperand::createExpr(symRef));  // disp
    741     LEA.addOperand(MCOperand::createReg(0));        // seg
    742   } else {
    743     LEA.setOpcode(X86::LEA32r);
    744     LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest
    745     LEA.addOperand(MCOperand::createReg(0));        // base
    746     LEA.addOperand(MCOperand::createImm(1));        // scale
    747     LEA.addOperand(MCOperand::createReg(X86::EBX)); // index
    748     LEA.addOperand(MCOperand::createExpr(symRef));  // disp
    749     LEA.addOperand(MCOperand::createReg(0));        // seg
    750   }
    751   EmitAndCountInstruction(LEA);
    752 
    753   if (needsPadding) {
    754     EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
    755     EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
    756     EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
    757   }
    758 
    759   StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
    760   MCSymbol *tlsGetAddr = context.getOrCreateSymbol(name);
    761   const MCSymbolRefExpr *tlsRef =
    762     MCSymbolRefExpr::create(tlsGetAddr,
    763                             MCSymbolRefExpr::VK_PLT,
    764                             context);
    765 
    766   EmitAndCountInstruction(MCInstBuilder(is64Bits ? X86::CALL64pcrel32
    767                                                  : X86::CALLpcrel32)
    768                             .addExpr(tlsRef));
    769 }
    770 
    771 /// \brief Emit the largest nop instruction smaller than or equal to \p NumBytes
    772 /// bytes.  Return the size of nop emitted.
    773 static unsigned EmitNop(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
    774                         const MCSubtargetInfo &STI) {
    775   // This works only for 64bit. For 32bit we have to do additional checking if
    776   // the CPU supports multi-byte nops.
    777   assert(Is64Bit && "EmitNops only supports X86-64");
    778 
    779   unsigned NopSize;
    780   unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
    781   Opc = IndexReg = Displacement = SegmentReg = 0;
    782   BaseReg = X86::RAX;
    783   ScaleVal = 1;
    784   switch (NumBytes) {
    785   case  0: llvm_unreachable("Zero nops?"); break;
    786   case  1: NopSize = 1; Opc = X86::NOOP; break;
    787   case  2: NopSize = 2; Opc = X86::XCHG16ar; break;
    788   case  3: NopSize = 3; Opc = X86::NOOPL; break;
    789   case  4: NopSize = 4; Opc = X86::NOOPL; Displacement = 8; break;
    790   case  5: NopSize = 5; Opc = X86::NOOPL; Displacement = 8;
    791            IndexReg = X86::RAX; break;
    792   case  6: NopSize = 6; Opc = X86::NOOPW; Displacement = 8;
    793            IndexReg = X86::RAX; break;
    794   case  7: NopSize = 7; Opc = X86::NOOPL; Displacement = 512; break;
    795   case  8: NopSize = 8; Opc = X86::NOOPL; Displacement = 512;
    796            IndexReg = X86::RAX; break;
    797   case  9: NopSize = 9; Opc = X86::NOOPW; Displacement = 512;
    798            IndexReg = X86::RAX; break;
    799   default: NopSize = 10; Opc = X86::NOOPW; Displacement = 512;
    800            IndexReg = X86::RAX; SegmentReg = X86::CS; break;
    801   }
    802 
    803   unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U);
    804   NopSize += NumPrefixes;
    805   for (unsigned i = 0; i != NumPrefixes; ++i)
    806     OS.EmitBytes("\x66");
    807 
    808   switch (Opc) {
    809   default:
    810     llvm_unreachable("Unexpected opcode");
    811     break;
    812   case X86::NOOP:
    813     OS.EmitInstruction(MCInstBuilder(Opc), STI);
    814     break;
    815   case X86::XCHG16ar:
    816     OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX), STI);
    817     break;
    818   case X86::NOOPL:
    819   case X86::NOOPW:
    820     OS.EmitInstruction(MCInstBuilder(Opc)
    821                            .addReg(BaseReg)
    822                            .addImm(ScaleVal)
    823                            .addReg(IndexReg)
    824                            .addImm(Displacement)
    825                            .addReg(SegmentReg),
    826                        STI);
    827     break;
    828   }
    829   assert(NopSize <= NumBytes && "We overemitted?");
    830   return NopSize;
    831 }
    832 
    833 /// \brief Emit the optimal amount of multi-byte nops on X86.
    834 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
    835                      const MCSubtargetInfo &STI) {
    836   unsigned NopsToEmit = NumBytes;
    837   (void)NopsToEmit;
    838   while (NumBytes) {
    839     NumBytes -= EmitNop(OS, NumBytes, Is64Bit, STI);
    840     assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!");
    841   }
    842 }
    843 
    844 void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI,
    845                                     X86MCInstLower &MCIL) {
    846   assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64");
    847 
    848   StatepointOpers SOpers(&MI);
    849   if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
    850     EmitNops(*OutStreamer, PatchBytes, Subtarget->is64Bit(),
    851              getSubtargetInfo());
    852   } else {
    853     // Lower call target and choose correct opcode
    854     const MachineOperand &CallTarget = SOpers.getCallTarget();
    855     MCOperand CallTargetMCOp;
    856     unsigned CallOpcode;
    857     switch (CallTarget.getType()) {
    858     case MachineOperand::MO_GlobalAddress:
    859     case MachineOperand::MO_ExternalSymbol:
    860       CallTargetMCOp = MCIL.LowerSymbolOperand(
    861           CallTarget, MCIL.GetSymbolFromOperand(CallTarget));
    862       CallOpcode = X86::CALL64pcrel32;
    863       // Currently, we only support relative addressing with statepoints.
    864       // Otherwise, we'll need a scratch register to hold the target
    865       // address.  You'll fail asserts during load & relocation if this
    866       // symbol is to far away. (TODO: support non-relative addressing)
    867       break;
    868     case MachineOperand::MO_Immediate:
    869       CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
    870       CallOpcode = X86::CALL64pcrel32;
    871       // Currently, we only support relative addressing with statepoints.
    872       // Otherwise, we'll need a scratch register to hold the target
    873       // immediate.  You'll fail asserts during load & relocation if this
    874       // address is to far away. (TODO: support non-relative addressing)
    875       break;
    876     case MachineOperand::MO_Register:
    877       CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
    878       CallOpcode = X86::CALL64r;
    879       break;
    880     default:
    881       llvm_unreachable("Unsupported operand type in statepoint call target");
    882       break;
    883     }
    884 
    885     // Emit call
    886     MCInst CallInst;
    887     CallInst.setOpcode(CallOpcode);
    888     CallInst.addOperand(CallTargetMCOp);
    889     OutStreamer->EmitInstruction(CallInst, getSubtargetInfo());
    890   }
    891 
    892   // Record our statepoint node in the same section used by STACKMAP
    893   // and PATCHPOINT
    894   SM.recordStatepoint(MI);
    895 }
    896 
    897 void X86AsmPrinter::LowerFAULTING_LOAD_OP(const MachineInstr &MI,
    898                                        X86MCInstLower &MCIL) {
    899   // FAULTING_LOAD_OP <def>, <MBB handler>, <load opcode>, <load operands>
    900 
    901   unsigned LoadDefRegister = MI.getOperand(0).getReg();
    902   MCSymbol *HandlerLabel = MI.getOperand(1).getMBB()->getSymbol();
    903   unsigned LoadOpcode = MI.getOperand(2).getImm();
    904   unsigned LoadOperandsBeginIdx = 3;
    905 
    906   FM.recordFaultingOp(FaultMaps::FaultingLoad, HandlerLabel);
    907 
    908   MCInst LoadMI;
    909   LoadMI.setOpcode(LoadOpcode);
    910 
    911   if (LoadDefRegister != X86::NoRegister)
    912     LoadMI.addOperand(MCOperand::createReg(LoadDefRegister));
    913 
    914   for (auto I = MI.operands_begin() + LoadOperandsBeginIdx,
    915             E = MI.operands_end();
    916        I != E; ++I)
    917     if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, *I))
    918       LoadMI.addOperand(MaybeOperand.getValue());
    919 
    920   OutStreamer->EmitInstruction(LoadMI, getSubtargetInfo());
    921 }
    922 
    923 void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI,
    924                                       X86MCInstLower &MCIL) {
    925   // PATCHABLE_OP minsize, opcode, operands
    926 
    927   unsigned MinSize = MI.getOperand(0).getImm();
    928   unsigned Opcode = MI.getOperand(1).getImm();
    929 
    930   MCInst MCI;
    931   MCI.setOpcode(Opcode);
    932   for (auto &MO : make_range(MI.operands_begin() + 2, MI.operands_end()))
    933     if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
    934       MCI.addOperand(MaybeOperand.getValue());
    935 
    936   SmallString<256> Code;
    937   SmallVector<MCFixup, 4> Fixups;
    938   raw_svector_ostream VecOS(Code);
    939   CodeEmitter->encodeInstruction(MCI, VecOS, Fixups, getSubtargetInfo());
    940 
    941   if (Code.size() < MinSize) {
    942     if (MinSize == 2 && Opcode == X86::PUSH64r) {
    943       // This is an optimization that lets us get away without emitting a nop in
    944       // many cases.
    945       //
    946       // NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %R9) takes two
    947       // bytes too, so the check on MinSize is important.
    948       MCI.setOpcode(X86::PUSH64rmr);
    949     } else {
    950       unsigned NopSize = EmitNop(*OutStreamer, MinSize, Subtarget->is64Bit(),
    951                                  getSubtargetInfo());
    952       assert(NopSize == MinSize && "Could not implement MinSize!");
    953       (void) NopSize;
    954     }
    955   }
    956 
    957   OutStreamer->EmitInstruction(MCI, getSubtargetInfo());
    958 }
    959 
    960 // Lower a stackmap of the form:
    961 // <id>, <shadowBytes>, ...
    962 void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
    963   SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
    964   SM.recordStackMap(MI);
    965   unsigned NumShadowBytes = MI.getOperand(1).getImm();
    966   SMShadowTracker.reset(NumShadowBytes);
    967 }
    968 
    969 // Lower a patchpoint of the form:
    970 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
    971 void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
    972                                     X86MCInstLower &MCIL) {
    973   assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
    974 
    975   SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
    976 
    977   SM.recordPatchPoint(MI);
    978 
    979   PatchPointOpers opers(&MI);
    980   unsigned ScratchIdx = opers.getNextScratchIdx();
    981   unsigned EncodedBytes = 0;
    982   const MachineOperand &CalleeMO =
    983     opers.getMetaOper(PatchPointOpers::TargetPos);
    984 
    985   // Check for null target. If target is non-null (i.e. is non-zero or is
    986   // symbolic) then emit a call.
    987   if (!(CalleeMO.isImm() && !CalleeMO.getImm())) {
    988     MCOperand CalleeMCOp;
    989     switch (CalleeMO.getType()) {
    990     default:
    991       /// FIXME: Add a verifier check for bad callee types.
    992       llvm_unreachable("Unrecognized callee operand type.");
    993     case MachineOperand::MO_Immediate:
    994       if (CalleeMO.getImm())
    995         CalleeMCOp = MCOperand::createImm(CalleeMO.getImm());
    996       break;
    997     case MachineOperand::MO_ExternalSymbol:
    998     case MachineOperand::MO_GlobalAddress:
    999       CalleeMCOp =
   1000         MCIL.LowerSymbolOperand(CalleeMO,
   1001                                 MCIL.GetSymbolFromOperand(CalleeMO));
   1002       break;
   1003     }
   1004 
   1005     // Emit MOV to materialize the target address and the CALL to target.
   1006     // This is encoded with 12-13 bytes, depending on which register is used.
   1007     unsigned ScratchReg = MI.getOperand(ScratchIdx).getReg();
   1008     if (X86II::isX86_64ExtendedReg(ScratchReg))
   1009       EncodedBytes = 13;
   1010     else
   1011       EncodedBytes = 12;
   1012 
   1013     EmitAndCountInstruction(
   1014         MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp));
   1015     EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
   1016   }
   1017 
   1018   // Emit padding.
   1019   unsigned NumBytes = opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
   1020   assert(NumBytes >= EncodedBytes &&
   1021          "Patchpoint can't request size less than the length of a call.");
   1022 
   1023   EmitNops(*OutStreamer, NumBytes - EncodedBytes, Subtarget->is64Bit(),
   1024            getSubtargetInfo());
   1025 }
   1026 
   1027 void X86AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
   1028                                SledKind Kind) {
   1029   auto Fn = MI.getParent()->getParent()->getFunction();
   1030   auto Attr = Fn->getFnAttribute("function-instrument");
   1031   bool AlwaysInstrument =
   1032       Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
   1033   Sleds.emplace_back(
   1034       XRayFunctionEntry{Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn});
   1035 }
   1036 
   1037 void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI,
   1038                                                   X86MCInstLower &MCIL) {
   1039   // We want to emit the following pattern:
   1040   //
   1041   // .Lxray_sled_N:
   1042   //   .palign 2, ...
   1043   //   jmp .tmpN
   1044   //   # 9 bytes worth of noops
   1045   // .tmpN
   1046   //
   1047   // We need the 9 bytes because at runtime, we'd be patching over the full 11
   1048   // bytes with the following pattern:
   1049   //
   1050   //   mov %r10, <function id, 32-bit>   // 6 bytes
   1051   //   call <relative offset, 32-bits>   // 5 bytes
   1052   //
   1053   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
   1054   OutStreamer->EmitLabel(CurSled);
   1055   OutStreamer->EmitCodeAlignment(4);
   1056   auto Target = OutContext.createTempSymbol();
   1057 
   1058   // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
   1059   // an operand (computed as an offset from the jmp instruction).
   1060   // FIXME: Find another less hacky way do force the relative jump.
   1061   OutStreamer->EmitBytes("\xeb\x09");
   1062   EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo());
   1063   OutStreamer->EmitLabel(Target);
   1064   recordSled(CurSled, MI, SledKind::FUNCTION_ENTER);
   1065 }
   1066 
   1067 void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI,
   1068                                        X86MCInstLower &MCIL) {
   1069   // Since PATCHABLE_RET takes the opcode of the return statement as an
   1070   // argument, we use that to emit the correct form of the RET that we want.
   1071   // i.e. when we see this:
   1072   //
   1073   //   PATCHABLE_RET X86::RET ...
   1074   //
   1075   // We should emit the RET followed by sleds.
   1076   //
   1077   // .Lxray_sled_N:
   1078   //   ret  # or equivalent instruction
   1079   //   # 10 bytes worth of noops
   1080   //
   1081   // This just makes sure that the alignment for the next instruction is 2.
   1082   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
   1083   OutStreamer->EmitLabel(CurSled);
   1084   unsigned OpCode = MI.getOperand(0).getImm();
   1085   MCInst Ret;
   1086   Ret.setOpcode(OpCode);
   1087   for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end()))
   1088     if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
   1089       Ret.addOperand(MaybeOperand.getValue());
   1090   OutStreamer->EmitInstruction(Ret, getSubtargetInfo());
   1091   EmitNops(*OutStreamer, 10, Subtarget->is64Bit(), getSubtargetInfo());
   1092   recordSled(CurSled, MI, SledKind::FUNCTION_EXIT);
   1093 }
   1094 
   1095 void X86AsmPrinter::EmitXRayTable() {
   1096   if (Sleds.empty())
   1097     return;
   1098   if (Subtarget->isTargetELF()) {
   1099     auto *Section = OutContext.getELFSection(
   1100         "xray_instr_map", ELF::SHT_PROGBITS,
   1101         ELF::SHF_ALLOC | ELF::SHF_GROUP | ELF::SHF_MERGE, 0,
   1102         CurrentFnSym->getName());
   1103     auto PrevSection = OutStreamer->getCurrentSectionOnly();
   1104     OutStreamer->SwitchSection(Section);
   1105     for (const auto &Sled : Sleds) {
   1106       OutStreamer->EmitSymbolValue(Sled.Sled, 8);
   1107       OutStreamer->EmitSymbolValue(CurrentFnSym, 8);
   1108       auto Kind = static_cast<uint8_t>(Sled.Kind);
   1109       OutStreamer->EmitBytes(
   1110           StringRef(reinterpret_cast<const char *>(&Kind), 1));
   1111       OutStreamer->EmitBytes(
   1112           StringRef(reinterpret_cast<const char *>(&Sled.AlwaysInstrument), 1));
   1113       OutStreamer->EmitZeros(14);
   1114     }
   1115     OutStreamer->SwitchSection(PrevSection);
   1116   }
   1117   Sleds.clear();
   1118 }
   1119 
   1120 // Returns instruction preceding MBBI in MachineFunction.
   1121 // If MBBI is the first instruction of the first basic block, returns null.
   1122 static MachineBasicBlock::const_iterator
   1123 PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
   1124   const MachineBasicBlock *MBB = MBBI->getParent();
   1125   while (MBBI == MBB->begin()) {
   1126     if (MBB == &MBB->getParent()->front())
   1127       return MachineBasicBlock::const_iterator();
   1128     MBB = MBB->getPrevNode();
   1129     MBBI = MBB->end();
   1130   }
   1131   return --MBBI;
   1132 }
   1133 
   1134 static const Constant *getConstantFromPool(const MachineInstr &MI,
   1135                                            const MachineOperand &Op) {
   1136   if (!Op.isCPI())
   1137     return nullptr;
   1138 
   1139   ArrayRef<MachineConstantPoolEntry> Constants =
   1140       MI.getParent()->getParent()->getConstantPool()->getConstants();
   1141   const MachineConstantPoolEntry &ConstantEntry =
   1142       Constants[Op.getIndex()];
   1143 
   1144   // Bail if this is a machine constant pool entry, we won't be able to dig out
   1145   // anything useful.
   1146   if (ConstantEntry.isMachineConstantPoolEntry())
   1147     return nullptr;
   1148 
   1149   auto *C = dyn_cast<Constant>(ConstantEntry.Val.ConstVal);
   1150   assert((!C || ConstantEntry.getType() == C->getType()) &&
   1151          "Expected a constant of the same type!");
   1152   return C;
   1153 }
   1154 
   1155 static std::string getShuffleComment(const MachineOperand &DstOp,
   1156                                      const MachineOperand &SrcOp1,
   1157                                      const MachineOperand &SrcOp2,
   1158                                      ArrayRef<int> Mask) {
   1159   std::string Comment;
   1160 
   1161   // Compute the name for a register. This is really goofy because we have
   1162   // multiple instruction printers that could (in theory) use different
   1163   // names. Fortunately most people use the ATT style (outside of Windows)
   1164   // and they actually agree on register naming here. Ultimately, this is
   1165   // a comment, and so its OK if it isn't perfect.
   1166   auto GetRegisterName = [](unsigned RegNum) -> StringRef {
   1167     return X86ATTInstPrinter::getRegisterName(RegNum);
   1168   };
   1169 
   1170   // TODO: Add support for specifying an AVX512 style mask register in the comment.
   1171   StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
   1172   StringRef Src1Name =
   1173       SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem";
   1174   StringRef Src2Name =
   1175       SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem";
   1176 
   1177   // One source operand, fix the mask to print all elements in one span.
   1178   SmallVector<int, 8> ShuffleMask(Mask.begin(), Mask.end());
   1179   if (Src1Name == Src2Name)
   1180     for (int i = 0, e = ShuffleMask.size(); i != e; ++i)
   1181       if (ShuffleMask[i] >= e)
   1182         ShuffleMask[i] -= e;
   1183 
   1184   raw_string_ostream CS(Comment);
   1185   CS << DstName << " = ";
   1186   for (int i = 0, e = ShuffleMask.size(); i != e; ++i) {
   1187     if (i != 0)
   1188       CS << ",";
   1189     if (ShuffleMask[i] == SM_SentinelZero) {
   1190       CS << "zero";
   1191       continue;
   1192     }
   1193 
   1194     // Otherwise, it must come from src1 or src2.  Print the span of elements
   1195     // that comes from this src.
   1196     bool isSrc1 = ShuffleMask[i] < (int)e;
   1197     CS << (isSrc1 ? Src1Name : Src2Name) << '[';
   1198 
   1199     bool IsFirst = true;
   1200     while (i != e && ShuffleMask[i] != SM_SentinelZero &&
   1201            (ShuffleMask[i] < (int)e) == isSrc1) {
   1202       if (!IsFirst)
   1203         CS << ',';
   1204       else
   1205         IsFirst = false;
   1206       if (ShuffleMask[i] == SM_SentinelUndef)
   1207         CS << "u";
   1208       else
   1209         CS << ShuffleMask[i] % (int)e;
   1210       ++i;
   1211     }
   1212     CS << ']';
   1213     --i; // For loop increments element #.
   1214   }
   1215   CS.flush();
   1216 
   1217   return Comment;
   1218 }
   1219 
   1220 void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
   1221   X86MCInstLower MCInstLowering(*MF, *this);
   1222   const X86RegisterInfo *RI = MF->getSubtarget<X86Subtarget>().getRegisterInfo();
   1223 
   1224   switch (MI->getOpcode()) {
   1225   case TargetOpcode::DBG_VALUE:
   1226     llvm_unreachable("Should be handled target independently");
   1227 
   1228   // Emit nothing here but a comment if we can.
   1229   case X86::Int_MemBarrier:
   1230     OutStreamer->emitRawComment("MEMBARRIER");
   1231     return;
   1232 
   1233 
   1234   case X86::EH_RETURN:
   1235   case X86::EH_RETURN64: {
   1236     // Lower these as normal, but add some comments.
   1237     unsigned Reg = MI->getOperand(0).getReg();
   1238     OutStreamer->AddComment(StringRef("eh_return, addr: %") +
   1239                             X86ATTInstPrinter::getRegisterName(Reg));
   1240     break;
   1241   }
   1242   case X86::CLEANUPRET: {
   1243     // Lower these as normal, but add some comments.
   1244     OutStreamer->AddComment("CLEANUPRET");
   1245     break;
   1246   }
   1247 
   1248   case X86::CATCHRET: {
   1249     // Lower these as normal, but add some comments.
   1250     OutStreamer->AddComment("CATCHRET");
   1251     break;
   1252   }
   1253 
   1254   case X86::TAILJMPr:
   1255   case X86::TAILJMPm:
   1256   case X86::TAILJMPd:
   1257   case X86::TAILJMPr64:
   1258   case X86::TAILJMPm64:
   1259   case X86::TAILJMPd64:
   1260   case X86::TAILJMPr64_REX:
   1261   case X86::TAILJMPm64_REX:
   1262   case X86::TAILJMPd64_REX:
   1263     // Lower these as normal, but add some comments.
   1264     OutStreamer->AddComment("TAILCALL");
   1265     break;
   1266 
   1267   case X86::TLS_addr32:
   1268   case X86::TLS_addr64:
   1269   case X86::TLS_base_addr32:
   1270   case X86::TLS_base_addr64:
   1271     return LowerTlsAddr(MCInstLowering, *MI);
   1272 
   1273   case X86::MOVPC32r: {
   1274     // This is a pseudo op for a two instruction sequence with a label, which
   1275     // looks like:
   1276     //     call "L1$pb"
   1277     // "L1$pb":
   1278     //     popl %esi
   1279 
   1280     // Emit the call.
   1281     MCSymbol *PICBase = MF->getPICBaseSymbol();
   1282     // FIXME: We would like an efficient form for this, so we don't have to do a
   1283     // lot of extra uniquing.
   1284     EmitAndCountInstruction(MCInstBuilder(X86::CALLpcrel32)
   1285       .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
   1286 
   1287     const X86FrameLowering* FrameLowering =
   1288         MF->getSubtarget<X86Subtarget>().getFrameLowering();
   1289     bool hasFP = FrameLowering->hasFP(*MF);
   1290 
   1291     // TODO: This is needed only if we require precise CFA.
   1292     bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() &&
   1293                                !OutStreamer->getDwarfFrameInfos().back().End;
   1294 
   1295     int stackGrowth = -RI->getSlotSize();
   1296 
   1297     if (HasActiveDwarfFrame && !hasFP) {
   1298       OutStreamer->EmitCFIAdjustCfaOffset(-stackGrowth);
   1299     }
   1300 
   1301     // Emit the label.
   1302     OutStreamer->EmitLabel(PICBase);
   1303 
   1304     // popl $reg
   1305     EmitAndCountInstruction(MCInstBuilder(X86::POP32r)
   1306                             .addReg(MI->getOperand(0).getReg()));
   1307 
   1308     if (HasActiveDwarfFrame && !hasFP) {
   1309       OutStreamer->EmitCFIAdjustCfaOffset(stackGrowth);
   1310     }
   1311     return;
   1312   }
   1313 
   1314   case X86::ADD32ri: {
   1315     // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
   1316     if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
   1317       break;
   1318 
   1319     // Okay, we have something like:
   1320     //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
   1321 
   1322     // For this, we want to print something like:
   1323     //   MYGLOBAL + (. - PICBASE)
   1324     // However, we can't generate a ".", so just emit a new label here and refer
   1325     // to it.
   1326     MCSymbol *DotSym = OutContext.createTempSymbol();
   1327     OutStreamer->EmitLabel(DotSym);
   1328 
   1329     // Now that we have emitted the label, lower the complex operand expression.
   1330     MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
   1331 
   1332     const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
   1333     const MCExpr *PICBase =
   1334       MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
   1335     DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext);
   1336 
   1337     DotExpr = MCBinaryExpr::createAdd(MCSymbolRefExpr::create(OpSym,OutContext),
   1338                                       DotExpr, OutContext);
   1339 
   1340     EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
   1341       .addReg(MI->getOperand(0).getReg())
   1342       .addReg(MI->getOperand(1).getReg())
   1343       .addExpr(DotExpr));
   1344     return;
   1345   }
   1346   case TargetOpcode::STATEPOINT:
   1347     return LowerSTATEPOINT(*MI, MCInstLowering);
   1348 
   1349   case TargetOpcode::FAULTING_LOAD_OP:
   1350     return LowerFAULTING_LOAD_OP(*MI, MCInstLowering);
   1351 
   1352   case TargetOpcode::PATCHABLE_OP:
   1353     return LowerPATCHABLE_OP(*MI, MCInstLowering);
   1354 
   1355   case TargetOpcode::STACKMAP:
   1356     return LowerSTACKMAP(*MI);
   1357 
   1358   case TargetOpcode::PATCHPOINT:
   1359     return LowerPATCHPOINT(*MI, MCInstLowering);
   1360 
   1361   case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
   1362     return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering);
   1363 
   1364   case TargetOpcode::PATCHABLE_RET:
   1365     return LowerPATCHABLE_RET(*MI, MCInstLowering);
   1366 
   1367   case X86::MORESTACK_RET:
   1368     EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
   1369     return;
   1370 
   1371   case X86::MORESTACK_RET_RESTORE_R10:
   1372     // Return, then restore R10.
   1373     EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
   1374     EmitAndCountInstruction(MCInstBuilder(X86::MOV64rr)
   1375                             .addReg(X86::R10)
   1376                             .addReg(X86::RAX));
   1377     return;
   1378 
   1379   case X86::SEH_PushReg:
   1380     OutStreamer->EmitWinCFIPushReg(RI->getSEHRegNum(MI->getOperand(0).getImm()));
   1381     return;
   1382 
   1383   case X86::SEH_SaveReg:
   1384     OutStreamer->EmitWinCFISaveReg(RI->getSEHRegNum(MI->getOperand(0).getImm()),
   1385                                    MI->getOperand(1).getImm());
   1386     return;
   1387 
   1388   case X86::SEH_SaveXMM:
   1389     OutStreamer->EmitWinCFISaveXMM(RI->getSEHRegNum(MI->getOperand(0).getImm()),
   1390                                    MI->getOperand(1).getImm());
   1391     return;
   1392 
   1393   case X86::SEH_StackAlloc:
   1394     OutStreamer->EmitWinCFIAllocStack(MI->getOperand(0).getImm());
   1395     return;
   1396 
   1397   case X86::SEH_SetFrame:
   1398     OutStreamer->EmitWinCFISetFrame(RI->getSEHRegNum(MI->getOperand(0).getImm()),
   1399                                     MI->getOperand(1).getImm());
   1400     return;
   1401 
   1402   case X86::SEH_PushFrame:
   1403     OutStreamer->EmitWinCFIPushFrame(MI->getOperand(0).getImm());
   1404     return;
   1405 
   1406   case X86::SEH_EndPrologue:
   1407     OutStreamer->EmitWinCFIEndProlog();
   1408     return;
   1409 
   1410   case X86::SEH_Epilogue: {
   1411     MachineBasicBlock::const_iterator MBBI(MI);
   1412     // Check if preceded by a call and emit nop if so.
   1413     for (MBBI = PrevCrossBBInst(MBBI);
   1414          MBBI != MachineBasicBlock::const_iterator();
   1415          MBBI = PrevCrossBBInst(MBBI)) {
   1416       // Conservatively assume that pseudo instructions don't emit code and keep
   1417       // looking for a call. We may emit an unnecessary nop in some cases.
   1418       if (!MBBI->isPseudo()) {
   1419         if (MBBI->isCall())
   1420           EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
   1421         break;
   1422       }
   1423     }
   1424     return;
   1425   }
   1426 
   1427   // Lower PSHUFB and VPERMILP normally but add a comment if we can find
   1428   // a constant shuffle mask. We won't be able to do this at the MC layer
   1429   // because the mask isn't an immediate.
   1430   case X86::PSHUFBrm:
   1431   case X86::VPSHUFBrm:
   1432   case X86::VPSHUFBYrm:
   1433   case X86::VPSHUFBZ128rm:
   1434   case X86::VPSHUFBZ128rmk:
   1435   case X86::VPSHUFBZ128rmkz:
   1436   case X86::VPSHUFBZ256rm:
   1437   case X86::VPSHUFBZ256rmk:
   1438   case X86::VPSHUFBZ256rmkz:
   1439   case X86::VPSHUFBZrm:
   1440   case X86::VPSHUFBZrmk:
   1441   case X86::VPSHUFBZrmkz: {
   1442     if (!OutStreamer->isVerboseAsm())
   1443       break;
   1444     unsigned SrcIdx, MaskIdx;
   1445     switch (MI->getOpcode()) {
   1446     default: llvm_unreachable("Invalid opcode");
   1447     case X86::PSHUFBrm:
   1448     case X86::VPSHUFBrm:
   1449     case X86::VPSHUFBYrm:
   1450     case X86::VPSHUFBZ128rm:
   1451     case X86::VPSHUFBZ256rm:
   1452     case X86::VPSHUFBZrm:
   1453       SrcIdx = 1; MaskIdx = 5; break;
   1454     case X86::VPSHUFBZ128rmkz:
   1455     case X86::VPSHUFBZ256rmkz:
   1456     case X86::VPSHUFBZrmkz:
   1457       SrcIdx = 2; MaskIdx = 6; break;
   1458     case X86::VPSHUFBZ128rmk:
   1459     case X86::VPSHUFBZ256rmk:
   1460     case X86::VPSHUFBZrmk:
   1461       SrcIdx = 3; MaskIdx = 7; break;
   1462     }
   1463 
   1464     assert(MI->getNumOperands() >= 6 &&
   1465            "We should always have at least 6 operands!");
   1466     const MachineOperand &DstOp = MI->getOperand(0);
   1467     const MachineOperand &SrcOp = MI->getOperand(SrcIdx);
   1468     const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
   1469 
   1470     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
   1471       SmallVector<int, 16> Mask;
   1472       DecodePSHUFBMask(C, Mask);
   1473       if (!Mask.empty())
   1474         OutStreamer->AddComment(getShuffleComment(DstOp, SrcOp, SrcOp, Mask));
   1475     }
   1476     break;
   1477   }
   1478 
   1479   case X86::VPERMILPDrm:
   1480   case X86::VPERMILPDYrm:
   1481   case X86::VPERMILPDZ128rm:
   1482   case X86::VPERMILPDZ256rm:
   1483   case X86::VPERMILPDZrm: {
   1484     if (!OutStreamer->isVerboseAsm())
   1485       break;
   1486     assert(MI->getNumOperands() > 5 &&
   1487            "We should always have at least 5 operands!");
   1488     const MachineOperand &DstOp = MI->getOperand(0);
   1489     const MachineOperand &SrcOp = MI->getOperand(1);
   1490     const MachineOperand &MaskOp = MI->getOperand(5);
   1491 
   1492     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
   1493       SmallVector<int, 8> Mask;
   1494       DecodeVPERMILPMask(C, 64, Mask);
   1495       if (!Mask.empty())
   1496         OutStreamer->AddComment(getShuffleComment(DstOp, SrcOp, SrcOp, Mask));
   1497     }
   1498     break;
   1499   }
   1500 
   1501   case X86::VPERMILPSrm:
   1502   case X86::VPERMILPSYrm:
   1503   case X86::VPERMILPSZ128rm:
   1504   case X86::VPERMILPSZ256rm:
   1505   case X86::VPERMILPSZrm: {
   1506     if (!OutStreamer->isVerboseAsm())
   1507       break;
   1508     assert(MI->getNumOperands() > 5 &&
   1509            "We should always have at least 5 operands!");
   1510     const MachineOperand &DstOp = MI->getOperand(0);
   1511     const MachineOperand &SrcOp = MI->getOperand(1);
   1512     const MachineOperand &MaskOp = MI->getOperand(5);
   1513 
   1514     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
   1515       SmallVector<int, 16> Mask;
   1516       DecodeVPERMILPMask(C, 32, Mask);
   1517       if (!Mask.empty())
   1518         OutStreamer->AddComment(getShuffleComment(DstOp, SrcOp, SrcOp, Mask));
   1519     }
   1520     break;
   1521   }
   1522 
   1523   case X86::VPERMIL2PDrm:
   1524   case X86::VPERMIL2PSrm:
   1525   case X86::VPERMIL2PDrmY:
   1526   case X86::VPERMIL2PSrmY: {
   1527     if (!OutStreamer->isVerboseAsm())
   1528       break;
   1529     assert(MI->getNumOperands() > 7 &&
   1530       "We should always have at least 7 operands!");
   1531     const MachineOperand &DstOp = MI->getOperand(0);
   1532     const MachineOperand &SrcOp1 = MI->getOperand(1);
   1533     const MachineOperand &SrcOp2 = MI->getOperand(2);
   1534     const MachineOperand &MaskOp = MI->getOperand(6);
   1535     const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1);
   1536 
   1537     if (!CtrlOp.isImm())
   1538       break;
   1539 
   1540     unsigned ElSize;
   1541     switch (MI->getOpcode()) {
   1542     default: llvm_unreachable("Invalid opcode");
   1543     case X86::VPERMIL2PSrm: case X86::VPERMIL2PSrmY: ElSize = 32; break;
   1544     case X86::VPERMIL2PDrm: case X86::VPERMIL2PDrmY: ElSize = 64; break;
   1545     }
   1546 
   1547     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
   1548       SmallVector<int, 16> Mask;
   1549       DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Mask);
   1550       if (!Mask.empty())
   1551         OutStreamer->AddComment(getShuffleComment(DstOp, SrcOp1, SrcOp2, Mask));
   1552     }
   1553     break;
   1554   }
   1555 
   1556   case X86::VPPERMrrm: {
   1557     if (!OutStreamer->isVerboseAsm())
   1558       break;
   1559     assert(MI->getNumOperands() > 6 &&
   1560            "We should always have at least 6 operands!");
   1561     const MachineOperand &DstOp = MI->getOperand(0);
   1562     const MachineOperand &SrcOp1 = MI->getOperand(1);
   1563     const MachineOperand &SrcOp2 = MI->getOperand(2);
   1564     const MachineOperand &MaskOp = MI->getOperand(6);
   1565 
   1566     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
   1567       SmallVector<int, 16> Mask;
   1568       DecodeVPPERMMask(C, Mask);
   1569       if (!Mask.empty())
   1570         OutStreamer->AddComment(getShuffleComment(DstOp, SrcOp1, SrcOp2, Mask));
   1571     }
   1572     break;
   1573   }
   1574 
   1575 #define MOV_CASE(Prefix, Suffix)        \
   1576   case X86::Prefix##MOVAPD##Suffix##rm: \
   1577   case X86::Prefix##MOVAPS##Suffix##rm: \
   1578   case X86::Prefix##MOVUPD##Suffix##rm: \
   1579   case X86::Prefix##MOVUPS##Suffix##rm: \
   1580   case X86::Prefix##MOVDQA##Suffix##rm: \
   1581   case X86::Prefix##MOVDQU##Suffix##rm:
   1582 
   1583 #define MOV_AVX512_CASE(Suffix)         \
   1584   case X86::VMOVDQA64##Suffix##rm:      \
   1585   case X86::VMOVDQA32##Suffix##rm:      \
   1586   case X86::VMOVDQU64##Suffix##rm:      \
   1587   case X86::VMOVDQU32##Suffix##rm:      \
   1588   case X86::VMOVDQU16##Suffix##rm:      \
   1589   case X86::VMOVDQU8##Suffix##rm:       \
   1590   case X86::VMOVAPS##Suffix##rm:        \
   1591   case X86::VMOVAPD##Suffix##rm:        \
   1592   case X86::VMOVUPS##Suffix##rm:        \
   1593   case X86::VMOVUPD##Suffix##rm:
   1594 
   1595 #define CASE_ALL_MOV_RM()               \
   1596   MOV_CASE(, )   /* SSE */              \
   1597   MOV_CASE(V, )  /* AVX-128 */          \
   1598   MOV_CASE(V, Y) /* AVX-256 */          \
   1599   MOV_AVX512_CASE(Z)                    \
   1600   MOV_AVX512_CASE(Z256)                 \
   1601   MOV_AVX512_CASE(Z128)
   1602 
   1603   // For loads from a constant pool to a vector register, print the constant
   1604   // loaded.
   1605   CASE_ALL_MOV_RM()
   1606     if (!OutStreamer->isVerboseAsm())
   1607       break;
   1608     if (MI->getNumOperands() > 4)
   1609     if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
   1610       std::string Comment;
   1611       raw_string_ostream CS(Comment);
   1612       const MachineOperand &DstOp = MI->getOperand(0);
   1613       CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
   1614       if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
   1615         CS << "[";
   1616         for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements; ++i) {
   1617           if (i != 0)
   1618             CS << ",";
   1619           if (CDS->getElementType()->isIntegerTy())
   1620             CS << CDS->getElementAsInteger(i);
   1621           else if (CDS->getElementType()->isFloatTy())
   1622             CS << CDS->getElementAsFloat(i);
   1623           else if (CDS->getElementType()->isDoubleTy())
   1624             CS << CDS->getElementAsDouble(i);
   1625           else
   1626             CS << "?";
   1627         }
   1628         CS << "]";
   1629         OutStreamer->AddComment(CS.str());
   1630       } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
   1631         CS << "<";
   1632         for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands; ++i) {
   1633           if (i != 0)
   1634             CS << ",";
   1635           Constant *COp = CV->getOperand(i);
   1636           if (isa<UndefValue>(COp)) {
   1637             CS << "u";
   1638           } else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
   1639             if (CI->getBitWidth() <= 64) {
   1640               CS << CI->getZExtValue();
   1641             } else {
   1642               // print multi-word constant as (w0,w1)
   1643               const auto &Val = CI->getValue();
   1644               CS << "(";
   1645               for (int i = 0, N = Val.getNumWords(); i < N; ++i) {
   1646                 if (i > 0)
   1647                   CS << ",";
   1648                 CS << Val.getRawData()[i];
   1649               }
   1650               CS << ")";
   1651             }
   1652           } else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
   1653             SmallString<32> Str;
   1654             CF->getValueAPF().toString(Str);
   1655             CS << Str;
   1656           } else {
   1657             CS << "?";
   1658           }
   1659         }
   1660         CS << ">";
   1661         OutStreamer->AddComment(CS.str());
   1662       }
   1663     }
   1664     break;
   1665   }
   1666 
   1667   MCInst TmpInst;
   1668   MCInstLowering.Lower(MI, TmpInst);
   1669 
   1670   // Stackmap shadows cannot include branch targets, so we can count the bytes
   1671   // in a call towards the shadow, but must ensure that the no thread returns
   1672   // in to the stackmap shadow.  The only way to achieve this is if the call
   1673   // is at the end of the shadow.
   1674   if (MI->isCall()) {
   1675     // Count then size of the call towards the shadow
   1676     SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get());
   1677     // Then flush the shadow so that we fill with nops before the call, not
   1678     // after it.
   1679     SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
   1680     // Then emit the call
   1681     OutStreamer->EmitInstruction(TmpInst, getSubtargetInfo());
   1682     return;
   1683   }
   1684 
   1685   EmitAndCountInstruction(TmpInst);
   1686 }
   1687