Home | History | Annotate | Download | only in IPO
      1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass transforms simple global variables that never have their address
     11 // taken.  If obviously true, it marks read/write globals as constant, deletes
     12 // variables only stored to, etc.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/IPO/GlobalOpt.h"
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Analysis/ConstantFolding.h"
     24 #include "llvm/Analysis/MemoryBuiltins.h"
     25 #include "llvm/Analysis/TargetLibraryInfo.h"
     26 #include "llvm/IR/CallSite.h"
     27 #include "llvm/IR/CallingConv.h"
     28 #include "llvm/IR/Constants.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/Dominators.h"
     32 #include "llvm/IR/GetElementPtrTypeIterator.h"
     33 #include "llvm/IR/Instructions.h"
     34 #include "llvm/IR/IntrinsicInst.h"
     35 #include "llvm/IR/Module.h"
     36 #include "llvm/IR/Operator.h"
     37 #include "llvm/IR/ValueHandle.h"
     38 #include "llvm/Pass.h"
     39 #include "llvm/Support/Debug.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 #include "llvm/Support/MathExtras.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include "llvm/Transforms/IPO.h"
     44 #include "llvm/Transforms/Utils/CtorUtils.h"
     45 #include "llvm/Transforms/Utils/Evaluator.h"
     46 #include "llvm/Transforms/Utils/GlobalStatus.h"
     47 #include <algorithm>
     48 using namespace llvm;
     49 
     50 #define DEBUG_TYPE "globalopt"
     51 
     52 STATISTIC(NumMarked    , "Number of globals marked constant");
     53 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
     54 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
     55 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
     56 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
     57 STATISTIC(NumDeleted   , "Number of globals deleted");
     58 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
     59 STATISTIC(NumLocalized , "Number of globals localized");
     60 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
     61 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
     62 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
     63 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
     64 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
     65 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
     66 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
     67 
     68 /// Is this global variable possibly used by a leak checker as a root?  If so,
     69 /// we might not really want to eliminate the stores to it.
     70 static bool isLeakCheckerRoot(GlobalVariable *GV) {
     71   // A global variable is a root if it is a pointer, or could plausibly contain
     72   // a pointer.  There are two challenges; one is that we could have a struct
     73   // the has an inner member which is a pointer.  We recurse through the type to
     74   // detect these (up to a point).  The other is that we may actually be a union
     75   // of a pointer and another type, and so our LLVM type is an integer which
     76   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
     77   // potentially contained here.
     78 
     79   if (GV->hasPrivateLinkage())
     80     return false;
     81 
     82   SmallVector<Type *, 4> Types;
     83   Types.push_back(GV->getValueType());
     84 
     85   unsigned Limit = 20;
     86   do {
     87     Type *Ty = Types.pop_back_val();
     88     switch (Ty->getTypeID()) {
     89       default: break;
     90       case Type::PointerTyID: return true;
     91       case Type::ArrayTyID:
     92       case Type::VectorTyID: {
     93         SequentialType *STy = cast<SequentialType>(Ty);
     94         Types.push_back(STy->getElementType());
     95         break;
     96       }
     97       case Type::StructTyID: {
     98         StructType *STy = cast<StructType>(Ty);
     99         if (STy->isOpaque()) return true;
    100         for (StructType::element_iterator I = STy->element_begin(),
    101                  E = STy->element_end(); I != E; ++I) {
    102           Type *InnerTy = *I;
    103           if (isa<PointerType>(InnerTy)) return true;
    104           if (isa<CompositeType>(InnerTy))
    105             Types.push_back(InnerTy);
    106         }
    107         break;
    108       }
    109     }
    110     if (--Limit == 0) return true;
    111   } while (!Types.empty());
    112   return false;
    113 }
    114 
    115 /// Given a value that is stored to a global but never read, determine whether
    116 /// it's safe to remove the store and the chain of computation that feeds the
    117 /// store.
    118 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
    119   do {
    120     if (isa<Constant>(V))
    121       return true;
    122     if (!V->hasOneUse())
    123       return false;
    124     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
    125         isa<GlobalValue>(V))
    126       return false;
    127     if (isAllocationFn(V, TLI))
    128       return true;
    129 
    130     Instruction *I = cast<Instruction>(V);
    131     if (I->mayHaveSideEffects())
    132       return false;
    133     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
    134       if (!GEP->hasAllConstantIndices())
    135         return false;
    136     } else if (I->getNumOperands() != 1) {
    137       return false;
    138     }
    139 
    140     V = I->getOperand(0);
    141   } while (1);
    142 }
    143 
    144 /// This GV is a pointer root.  Loop over all users of the global and clean up
    145 /// any that obviously don't assign the global a value that isn't dynamically
    146 /// allocated.
    147 static bool CleanupPointerRootUsers(GlobalVariable *GV,
    148                                     const TargetLibraryInfo *TLI) {
    149   // A brief explanation of leak checkers.  The goal is to find bugs where
    150   // pointers are forgotten, causing an accumulating growth in memory
    151   // usage over time.  The common strategy for leak checkers is to whitelist the
    152   // memory pointed to by globals at exit.  This is popular because it also
    153   // solves another problem where the main thread of a C++ program may shut down
    154   // before other threads that are still expecting to use those globals.  To
    155   // handle that case, we expect the program may create a singleton and never
    156   // destroy it.
    157 
    158   bool Changed = false;
    159 
    160   // If Dead[n].first is the only use of a malloc result, we can delete its
    161   // chain of computation and the store to the global in Dead[n].second.
    162   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
    163 
    164   // Constants can't be pointers to dynamically allocated memory.
    165   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
    166        UI != E;) {
    167     User *U = *UI++;
    168     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    169       Value *V = SI->getValueOperand();
    170       if (isa<Constant>(V)) {
    171         Changed = true;
    172         SI->eraseFromParent();
    173       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
    174         if (I->hasOneUse())
    175           Dead.push_back(std::make_pair(I, SI));
    176       }
    177     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
    178       if (isa<Constant>(MSI->getValue())) {
    179         Changed = true;
    180         MSI->eraseFromParent();
    181       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
    182         if (I->hasOneUse())
    183           Dead.push_back(std::make_pair(I, MSI));
    184       }
    185     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
    186       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
    187       if (MemSrc && MemSrc->isConstant()) {
    188         Changed = true;
    189         MTI->eraseFromParent();
    190       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
    191         if (I->hasOneUse())
    192           Dead.push_back(std::make_pair(I, MTI));
    193       }
    194     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
    195       if (CE->use_empty()) {
    196         CE->destroyConstant();
    197         Changed = true;
    198       }
    199     } else if (Constant *C = dyn_cast<Constant>(U)) {
    200       if (isSafeToDestroyConstant(C)) {
    201         C->destroyConstant();
    202         // This could have invalidated UI, start over from scratch.
    203         Dead.clear();
    204         CleanupPointerRootUsers(GV, TLI);
    205         return true;
    206       }
    207     }
    208   }
    209 
    210   for (int i = 0, e = Dead.size(); i != e; ++i) {
    211     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
    212       Dead[i].second->eraseFromParent();
    213       Instruction *I = Dead[i].first;
    214       do {
    215         if (isAllocationFn(I, TLI))
    216           break;
    217         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
    218         if (!J)
    219           break;
    220         I->eraseFromParent();
    221         I = J;
    222       } while (1);
    223       I->eraseFromParent();
    224     }
    225   }
    226 
    227   return Changed;
    228 }
    229 
    230 /// We just marked GV constant.  Loop over all users of the global, cleaning up
    231 /// the obvious ones.  This is largely just a quick scan over the use list to
    232 /// clean up the easy and obvious cruft.  This returns true if it made a change.
    233 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
    234                                        const DataLayout &DL,
    235                                        TargetLibraryInfo *TLI) {
    236   bool Changed = false;
    237   // Note that we need to use a weak value handle for the worklist items. When
    238   // we delete a constant array, we may also be holding pointer to one of its
    239   // elements (or an element of one of its elements if we're dealing with an
    240   // array of arrays) in the worklist.
    241   SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end());
    242   while (!WorkList.empty()) {
    243     Value *UV = WorkList.pop_back_val();
    244     if (!UV)
    245       continue;
    246 
    247     User *U = cast<User>(UV);
    248 
    249     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
    250       if (Init) {
    251         // Replace the load with the initializer.
    252         LI->replaceAllUsesWith(Init);
    253         LI->eraseFromParent();
    254         Changed = true;
    255       }
    256     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    257       // Store must be unreachable or storing Init into the global.
    258       SI->eraseFromParent();
    259       Changed = true;
    260     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
    261       if (CE->getOpcode() == Instruction::GetElementPtr) {
    262         Constant *SubInit = nullptr;
    263         if (Init)
    264           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
    265         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
    266       } else if ((CE->getOpcode() == Instruction::BitCast &&
    267                   CE->getType()->isPointerTy()) ||
    268                  CE->getOpcode() == Instruction::AddrSpaceCast) {
    269         // Pointer cast, delete any stores and memsets to the global.
    270         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
    271       }
    272 
    273       if (CE->use_empty()) {
    274         CE->destroyConstant();
    275         Changed = true;
    276       }
    277     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
    278       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
    279       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
    280       // and will invalidate our notion of what Init is.
    281       Constant *SubInit = nullptr;
    282       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
    283         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
    284             ConstantFoldInstruction(GEP, DL, TLI));
    285         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
    286           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
    287 
    288         // If the initializer is an all-null value and we have an inbounds GEP,
    289         // we already know what the result of any load from that GEP is.
    290         // TODO: Handle splats.
    291         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
    292           SubInit = Constant::getNullValue(GEP->getResultElementType());
    293       }
    294       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
    295 
    296       if (GEP->use_empty()) {
    297         GEP->eraseFromParent();
    298         Changed = true;
    299       }
    300     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
    301       if (MI->getRawDest() == V) {
    302         MI->eraseFromParent();
    303         Changed = true;
    304       }
    305 
    306     } else if (Constant *C = dyn_cast<Constant>(U)) {
    307       // If we have a chain of dead constantexprs or other things dangling from
    308       // us, and if they are all dead, nuke them without remorse.
    309       if (isSafeToDestroyConstant(C)) {
    310         C->destroyConstant();
    311         CleanupConstantGlobalUsers(V, Init, DL, TLI);
    312         return true;
    313       }
    314     }
    315   }
    316   return Changed;
    317 }
    318 
    319 /// Return true if the specified instruction is a safe user of a derived
    320 /// expression from a global that we want to SROA.
    321 static bool isSafeSROAElementUse(Value *V) {
    322   // We might have a dead and dangling constant hanging off of here.
    323   if (Constant *C = dyn_cast<Constant>(V))
    324     return isSafeToDestroyConstant(C);
    325 
    326   Instruction *I = dyn_cast<Instruction>(V);
    327   if (!I) return false;
    328 
    329   // Loads are ok.
    330   if (isa<LoadInst>(I)) return true;
    331 
    332   // Stores *to* the pointer are ok.
    333   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    334     return SI->getOperand(0) != V;
    335 
    336   // Otherwise, it must be a GEP.
    337   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
    338   if (!GEPI) return false;
    339 
    340   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
    341       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
    342     return false;
    343 
    344   for (User *U : GEPI->users())
    345     if (!isSafeSROAElementUse(U))
    346       return false;
    347   return true;
    348 }
    349 
    350 
    351 /// U is a direct user of the specified global value.  Look at it and its uses
    352 /// and decide whether it is safe to SROA this global.
    353 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
    354   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
    355   if (!isa<GetElementPtrInst>(U) &&
    356       (!isa<ConstantExpr>(U) ||
    357        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
    358     return false;
    359 
    360   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
    361   // don't like < 3 operand CE's, and we don't like non-constant integer
    362   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
    363   // value of C.
    364   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
    365       !cast<Constant>(U->getOperand(1))->isNullValue() ||
    366       !isa<ConstantInt>(U->getOperand(2)))
    367     return false;
    368 
    369   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
    370   ++GEPI;  // Skip over the pointer index.
    371 
    372   // If this is a use of an array allocation, do a bit more checking for sanity.
    373   if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
    374     uint64_t NumElements = AT->getNumElements();
    375     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
    376 
    377     // Check to make sure that index falls within the array.  If not,
    378     // something funny is going on, so we won't do the optimization.
    379     //
    380     if (Idx->getZExtValue() >= NumElements)
    381       return false;
    382 
    383     // We cannot scalar repl this level of the array unless any array
    384     // sub-indices are in-range constants.  In particular, consider:
    385     // A[0][i].  We cannot know that the user isn't doing invalid things like
    386     // allowing i to index an out-of-range subscript that accesses A[1].
    387     //
    388     // Scalar replacing *just* the outer index of the array is probably not
    389     // going to be a win anyway, so just give up.
    390     for (++GEPI; // Skip array index.
    391          GEPI != E;
    392          ++GEPI) {
    393       uint64_t NumElements;
    394       if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
    395         NumElements = SubArrayTy->getNumElements();
    396       else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
    397         NumElements = SubVectorTy->getNumElements();
    398       else {
    399         assert((*GEPI)->isStructTy() &&
    400                "Indexed GEP type is not array, vector, or struct!");
    401         continue;
    402       }
    403 
    404       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
    405       if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
    406         return false;
    407     }
    408   }
    409 
    410   for (User *UU : U->users())
    411     if (!isSafeSROAElementUse(UU))
    412       return false;
    413 
    414   return true;
    415 }
    416 
    417 /// Look at all uses of the global and decide whether it is safe for us to
    418 /// perform this transformation.
    419 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
    420   for (User *U : GV->users())
    421     if (!IsUserOfGlobalSafeForSRA(U, GV))
    422       return false;
    423 
    424   return true;
    425 }
    426 
    427 
    428 /// Perform scalar replacement of aggregates on the specified global variable.
    429 /// This opens the door for other optimizations by exposing the behavior of the
    430 /// program in a more fine-grained way.  We have determined that this
    431 /// transformation is safe already.  We return the first global variable we
    432 /// insert so that the caller can reprocess it.
    433 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
    434   // Make sure this global only has simple uses that we can SRA.
    435   if (!GlobalUsersSafeToSRA(GV))
    436     return nullptr;
    437 
    438   assert(GV->hasLocalLinkage());
    439   Constant *Init = GV->getInitializer();
    440   Type *Ty = Init->getType();
    441 
    442   std::vector<GlobalVariable*> NewGlobals;
    443   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
    444 
    445   // Get the alignment of the global, either explicit or target-specific.
    446   unsigned StartAlignment = GV->getAlignment();
    447   if (StartAlignment == 0)
    448     StartAlignment = DL.getABITypeAlignment(GV->getType());
    449 
    450   if (StructType *STy = dyn_cast<StructType>(Ty)) {
    451     NewGlobals.reserve(STy->getNumElements());
    452     const StructLayout &Layout = *DL.getStructLayout(STy);
    453     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    454       Constant *In = Init->getAggregateElement(i);
    455       assert(In && "Couldn't get element of initializer?");
    456       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
    457                                                GlobalVariable::InternalLinkage,
    458                                                In, GV->getName()+"."+Twine(i),
    459                                                GV->getThreadLocalMode(),
    460                                               GV->getType()->getAddressSpace());
    461       NGV->setExternallyInitialized(GV->isExternallyInitialized());
    462       NGV->copyAttributesFrom(GV);
    463       Globals.push_back(NGV);
    464       NewGlobals.push_back(NGV);
    465 
    466       // Calculate the known alignment of the field.  If the original aggregate
    467       // had 256 byte alignment for example, something might depend on that:
    468       // propagate info to each field.
    469       uint64_t FieldOffset = Layout.getElementOffset(i);
    470       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
    471       if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
    472         NGV->setAlignment(NewAlign);
    473     }
    474   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
    475     unsigned NumElements = 0;
    476     if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
    477       NumElements = ATy->getNumElements();
    478     else
    479       NumElements = cast<VectorType>(STy)->getNumElements();
    480 
    481     if (NumElements > 16 && GV->hasNUsesOrMore(16))
    482       return nullptr; // It's not worth it.
    483     NewGlobals.reserve(NumElements);
    484 
    485     uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType());
    486     unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType());
    487     for (unsigned i = 0, e = NumElements; i != e; ++i) {
    488       Constant *In = Init->getAggregateElement(i);
    489       assert(In && "Couldn't get element of initializer?");
    490 
    491       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
    492                                                GlobalVariable::InternalLinkage,
    493                                                In, GV->getName()+"."+Twine(i),
    494                                                GV->getThreadLocalMode(),
    495                                               GV->getType()->getAddressSpace());
    496       NGV->setExternallyInitialized(GV->isExternallyInitialized());
    497       NGV->copyAttributesFrom(GV);
    498       Globals.push_back(NGV);
    499       NewGlobals.push_back(NGV);
    500 
    501       // Calculate the known alignment of the field.  If the original aggregate
    502       // had 256 byte alignment for example, something might depend on that:
    503       // propagate info to each field.
    504       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
    505       if (NewAlign > EltAlign)
    506         NGV->setAlignment(NewAlign);
    507     }
    508   }
    509 
    510   if (NewGlobals.empty())
    511     return nullptr;
    512 
    513   DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
    514 
    515   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
    516 
    517   // Loop over all of the uses of the global, replacing the constantexpr geps,
    518   // with smaller constantexpr geps or direct references.
    519   while (!GV->use_empty()) {
    520     User *GEP = GV->user_back();
    521     assert(((isa<ConstantExpr>(GEP) &&
    522              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
    523             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
    524 
    525     // Ignore the 1th operand, which has to be zero or else the program is quite
    526     // broken (undefined).  Get the 2nd operand, which is the structure or array
    527     // index.
    528     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
    529     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
    530 
    531     Value *NewPtr = NewGlobals[Val];
    532     Type *NewTy = NewGlobals[Val]->getValueType();
    533 
    534     // Form a shorter GEP if needed.
    535     if (GEP->getNumOperands() > 3) {
    536       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
    537         SmallVector<Constant*, 8> Idxs;
    538         Idxs.push_back(NullInt);
    539         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
    540           Idxs.push_back(CE->getOperand(i));
    541         NewPtr =
    542             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
    543       } else {
    544         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
    545         SmallVector<Value*, 8> Idxs;
    546         Idxs.push_back(NullInt);
    547         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
    548           Idxs.push_back(GEPI->getOperand(i));
    549         NewPtr = GetElementPtrInst::Create(
    550             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
    551       }
    552     }
    553     GEP->replaceAllUsesWith(NewPtr);
    554 
    555     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
    556       GEPI->eraseFromParent();
    557     else
    558       cast<ConstantExpr>(GEP)->destroyConstant();
    559   }
    560 
    561   // Delete the old global, now that it is dead.
    562   Globals.erase(GV);
    563   ++NumSRA;
    564 
    565   // Loop over the new globals array deleting any globals that are obviously
    566   // dead.  This can arise due to scalarization of a structure or an array that
    567   // has elements that are dead.
    568   unsigned FirstGlobal = 0;
    569   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
    570     if (NewGlobals[i]->use_empty()) {
    571       Globals.erase(NewGlobals[i]);
    572       if (FirstGlobal == i) ++FirstGlobal;
    573     }
    574 
    575   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
    576 }
    577 
    578 /// Return true if all users of the specified value will trap if the value is
    579 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
    580 /// reprocessing them.
    581 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
    582                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
    583   for (const User *U : V->users())
    584     if (isa<LoadInst>(U)) {
    585       // Will trap.
    586     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
    587       if (SI->getOperand(0) == V) {
    588         //cerr << "NONTRAPPING USE: " << *U;
    589         return false;  // Storing the value.
    590       }
    591     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
    592       if (CI->getCalledValue() != V) {
    593         //cerr << "NONTRAPPING USE: " << *U;
    594         return false;  // Not calling the ptr
    595       }
    596     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
    597       if (II->getCalledValue() != V) {
    598         //cerr << "NONTRAPPING USE: " << *U;
    599         return false;  // Not calling the ptr
    600       }
    601     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
    602       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
    603     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
    604       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
    605     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
    606       // If we've already seen this phi node, ignore it, it has already been
    607       // checked.
    608       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
    609         return false;
    610     } else if (isa<ICmpInst>(U) &&
    611                isa<ConstantPointerNull>(U->getOperand(1))) {
    612       // Ignore icmp X, null
    613     } else {
    614       //cerr << "NONTRAPPING USE: " << *U;
    615       return false;
    616     }
    617 
    618   return true;
    619 }
    620 
    621 /// Return true if all uses of any loads from GV will trap if the loaded value
    622 /// is null.  Note that this also permits comparisons of the loaded value
    623 /// against null, as a special case.
    624 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
    625   for (const User *U : GV->users())
    626     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
    627       SmallPtrSet<const PHINode*, 8> PHIs;
    628       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
    629         return false;
    630     } else if (isa<StoreInst>(U)) {
    631       // Ignore stores to the global.
    632     } else {
    633       // We don't know or understand this user, bail out.
    634       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
    635       return false;
    636     }
    637   return true;
    638 }
    639 
    640 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
    641   bool Changed = false;
    642   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
    643     Instruction *I = cast<Instruction>(*UI++);
    644     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    645       LI->setOperand(0, NewV);
    646       Changed = true;
    647     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    648       if (SI->getOperand(1) == V) {
    649         SI->setOperand(1, NewV);
    650         Changed = true;
    651       }
    652     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
    653       CallSite CS(I);
    654       if (CS.getCalledValue() == V) {
    655         // Calling through the pointer!  Turn into a direct call, but be careful
    656         // that the pointer is not also being passed as an argument.
    657         CS.setCalledFunction(NewV);
    658         Changed = true;
    659         bool PassedAsArg = false;
    660         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
    661           if (CS.getArgument(i) == V) {
    662             PassedAsArg = true;
    663             CS.setArgument(i, NewV);
    664           }
    665 
    666         if (PassedAsArg) {
    667           // Being passed as an argument also.  Be careful to not invalidate UI!
    668           UI = V->user_begin();
    669         }
    670       }
    671     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
    672       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
    673                                 ConstantExpr::getCast(CI->getOpcode(),
    674                                                       NewV, CI->getType()));
    675       if (CI->use_empty()) {
    676         Changed = true;
    677         CI->eraseFromParent();
    678       }
    679     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
    680       // Should handle GEP here.
    681       SmallVector<Constant*, 8> Idxs;
    682       Idxs.reserve(GEPI->getNumOperands()-1);
    683       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
    684            i != e; ++i)
    685         if (Constant *C = dyn_cast<Constant>(*i))
    686           Idxs.push_back(C);
    687         else
    688           break;
    689       if (Idxs.size() == GEPI->getNumOperands()-1)
    690         Changed |= OptimizeAwayTrappingUsesOfValue(
    691             GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
    692       if (GEPI->use_empty()) {
    693         Changed = true;
    694         GEPI->eraseFromParent();
    695       }
    696     }
    697   }
    698 
    699   return Changed;
    700 }
    701 
    702 
    703 /// The specified global has only one non-null value stored into it.  If there
    704 /// are uses of the loaded value that would trap if the loaded value is
    705 /// dynamically null, then we know that they cannot be reachable with a null
    706 /// optimize away the load.
    707 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
    708                                             const DataLayout &DL,
    709                                             TargetLibraryInfo *TLI) {
    710   bool Changed = false;
    711 
    712   // Keep track of whether we are able to remove all the uses of the global
    713   // other than the store that defines it.
    714   bool AllNonStoreUsesGone = true;
    715 
    716   // Replace all uses of loads with uses of uses of the stored value.
    717   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
    718     User *GlobalUser = *GUI++;
    719     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
    720       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
    721       // If we were able to delete all uses of the loads
    722       if (LI->use_empty()) {
    723         LI->eraseFromParent();
    724         Changed = true;
    725       } else {
    726         AllNonStoreUsesGone = false;
    727       }
    728     } else if (isa<StoreInst>(GlobalUser)) {
    729       // Ignore the store that stores "LV" to the global.
    730       assert(GlobalUser->getOperand(1) == GV &&
    731              "Must be storing *to* the global");
    732     } else {
    733       AllNonStoreUsesGone = false;
    734 
    735       // If we get here we could have other crazy uses that are transitively
    736       // loaded.
    737       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
    738               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
    739               isa<BitCastInst>(GlobalUser) ||
    740               isa<GetElementPtrInst>(GlobalUser)) &&
    741              "Only expect load and stores!");
    742     }
    743   }
    744 
    745   if (Changed) {
    746     DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n");
    747     ++NumGlobUses;
    748   }
    749 
    750   // If we nuked all of the loads, then none of the stores are needed either,
    751   // nor is the global.
    752   if (AllNonStoreUsesGone) {
    753     if (isLeakCheckerRoot(GV)) {
    754       Changed |= CleanupPointerRootUsers(GV, TLI);
    755     } else {
    756       Changed = true;
    757       CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
    758     }
    759     if (GV->use_empty()) {
    760       DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
    761       Changed = true;
    762       GV->eraseFromParent();
    763       ++NumDeleted;
    764     }
    765   }
    766   return Changed;
    767 }
    768 
    769 /// Walk the use list of V, constant folding all of the instructions that are
    770 /// foldable.
    771 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
    772                                 TargetLibraryInfo *TLI) {
    773   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
    774     if (Instruction *I = dyn_cast<Instruction>(*UI++))
    775       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
    776         I->replaceAllUsesWith(NewC);
    777 
    778         // Advance UI to the next non-I use to avoid invalidating it!
    779         // Instructions could multiply use V.
    780         while (UI != E && *UI == I)
    781           ++UI;
    782         I->eraseFromParent();
    783       }
    784 }
    785 
    786 /// This function takes the specified global variable, and transforms the
    787 /// program as if it always contained the result of the specified malloc.
    788 /// Because it is always the result of the specified malloc, there is no reason
    789 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
    790 /// loads of GV as uses of the new global.
    791 static GlobalVariable *
    792 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
    793                               ConstantInt *NElements, const DataLayout &DL,
    794                               TargetLibraryInfo *TLI) {
    795   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
    796 
    797   Type *GlobalType;
    798   if (NElements->getZExtValue() == 1)
    799     GlobalType = AllocTy;
    800   else
    801     // If we have an array allocation, the global variable is of an array.
    802     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
    803 
    804   // Create the new global variable.  The contents of the malloc'd memory is
    805   // undefined, so initialize with an undef value.
    806   GlobalVariable *NewGV = new GlobalVariable(
    807       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
    808       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
    809       GV->getThreadLocalMode());
    810 
    811   // If there are bitcast users of the malloc (which is typical, usually we have
    812   // a malloc + bitcast) then replace them with uses of the new global.  Update
    813   // other users to use the global as well.
    814   BitCastInst *TheBC = nullptr;
    815   while (!CI->use_empty()) {
    816     Instruction *User = cast<Instruction>(CI->user_back());
    817     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
    818       if (BCI->getType() == NewGV->getType()) {
    819         BCI->replaceAllUsesWith(NewGV);
    820         BCI->eraseFromParent();
    821       } else {
    822         BCI->setOperand(0, NewGV);
    823       }
    824     } else {
    825       if (!TheBC)
    826         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
    827       User->replaceUsesOfWith(CI, TheBC);
    828     }
    829   }
    830 
    831   Constant *RepValue = NewGV;
    832   if (NewGV->getType() != GV->getValueType())
    833     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
    834 
    835   // If there is a comparison against null, we will insert a global bool to
    836   // keep track of whether the global was initialized yet or not.
    837   GlobalVariable *InitBool =
    838     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
    839                        GlobalValue::InternalLinkage,
    840                        ConstantInt::getFalse(GV->getContext()),
    841                        GV->getName()+".init", GV->getThreadLocalMode());
    842   bool InitBoolUsed = false;
    843 
    844   // Loop over all uses of GV, processing them in turn.
    845   while (!GV->use_empty()) {
    846     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
    847       // The global is initialized when the store to it occurs.
    848       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
    849                     SI->getOrdering(), SI->getSynchScope(), SI);
    850       SI->eraseFromParent();
    851       continue;
    852     }
    853 
    854     LoadInst *LI = cast<LoadInst>(GV->user_back());
    855     while (!LI->use_empty()) {
    856       Use &LoadUse = *LI->use_begin();
    857       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
    858       if (!ICI) {
    859         LoadUse = RepValue;
    860         continue;
    861       }
    862 
    863       // Replace the cmp X, 0 with a use of the bool value.
    864       // Sink the load to where the compare was, if atomic rules allow us to.
    865       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
    866                                LI->getOrdering(), LI->getSynchScope(),
    867                                LI->isUnordered() ? (Instruction*)ICI : LI);
    868       InitBoolUsed = true;
    869       switch (ICI->getPredicate()) {
    870       default: llvm_unreachable("Unknown ICmp Predicate!");
    871       case ICmpInst::ICMP_ULT:
    872       case ICmpInst::ICMP_SLT:   // X < null -> always false
    873         LV = ConstantInt::getFalse(GV->getContext());
    874         break;
    875       case ICmpInst::ICMP_ULE:
    876       case ICmpInst::ICMP_SLE:
    877       case ICmpInst::ICMP_EQ:
    878         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
    879         break;
    880       case ICmpInst::ICMP_NE:
    881       case ICmpInst::ICMP_UGE:
    882       case ICmpInst::ICMP_SGE:
    883       case ICmpInst::ICMP_UGT:
    884       case ICmpInst::ICMP_SGT:
    885         break;  // no change.
    886       }
    887       ICI->replaceAllUsesWith(LV);
    888       ICI->eraseFromParent();
    889     }
    890     LI->eraseFromParent();
    891   }
    892 
    893   // If the initialization boolean was used, insert it, otherwise delete it.
    894   if (!InitBoolUsed) {
    895     while (!InitBool->use_empty())  // Delete initializations
    896       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
    897     delete InitBool;
    898   } else
    899     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
    900 
    901   // Now the GV is dead, nuke it and the malloc..
    902   GV->eraseFromParent();
    903   CI->eraseFromParent();
    904 
    905   // To further other optimizations, loop over all users of NewGV and try to
    906   // constant prop them.  This will promote GEP instructions with constant
    907   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
    908   ConstantPropUsersOf(NewGV, DL, TLI);
    909   if (RepValue != NewGV)
    910     ConstantPropUsersOf(RepValue, DL, TLI);
    911 
    912   return NewGV;
    913 }
    914 
    915 /// Scan the use-list of V checking to make sure that there are no complex uses
    916 /// of V.  We permit simple things like dereferencing the pointer, but not
    917 /// storing through the address, unless it is to the specified global.
    918 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
    919                                                       const GlobalVariable *GV,
    920                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
    921   for (const User *U : V->users()) {
    922     const Instruction *Inst = cast<Instruction>(U);
    923 
    924     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
    925       continue; // Fine, ignore.
    926     }
    927 
    928     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    929       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
    930         return false;  // Storing the pointer itself... bad.
    931       continue; // Otherwise, storing through it, or storing into GV... fine.
    932     }
    933 
    934     // Must index into the array and into the struct.
    935     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
    936       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
    937         return false;
    938       continue;
    939     }
    940 
    941     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
    942       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
    943       // cycles.
    944       if (PHIs.insert(PN).second)
    945         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
    946           return false;
    947       continue;
    948     }
    949 
    950     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
    951       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
    952         return false;
    953       continue;
    954     }
    955 
    956     return false;
    957   }
    958   return true;
    959 }
    960 
    961 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
    962 /// allocation into loads from the global and uses of the resultant pointer.
    963 /// Further, delete the store into GV.  This assumes that these value pass the
    964 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
    965 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
    966                                           GlobalVariable *GV) {
    967   while (!Alloc->use_empty()) {
    968     Instruction *U = cast<Instruction>(*Alloc->user_begin());
    969     Instruction *InsertPt = U;
    970     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    971       // If this is the store of the allocation into the global, remove it.
    972       if (SI->getOperand(1) == GV) {
    973         SI->eraseFromParent();
    974         continue;
    975       }
    976     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
    977       // Insert the load in the corresponding predecessor, not right before the
    978       // PHI.
    979       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
    980     } else if (isa<BitCastInst>(U)) {
    981       // Must be bitcast between the malloc and store to initialize the global.
    982       ReplaceUsesOfMallocWithGlobal(U, GV);
    983       U->eraseFromParent();
    984       continue;
    985     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
    986       // If this is a "GEP bitcast" and the user is a store to the global, then
    987       // just process it as a bitcast.
    988       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
    989         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
    990           if (SI->getOperand(1) == GV) {
    991             // Must be bitcast GEP between the malloc and store to initialize
    992             // the global.
    993             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
    994             GEPI->eraseFromParent();
    995             continue;
    996           }
    997     }
    998 
    999     // Insert a load from the global, and use it instead of the malloc.
   1000     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
   1001     U->replaceUsesOfWith(Alloc, NL);
   1002   }
   1003 }
   1004 
   1005 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
   1006 /// perform heap SRA on.  This permits GEP's that index through the array and
   1007 /// struct field, icmps of null, and PHIs.
   1008 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
   1009                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
   1010                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
   1011   // We permit two users of the load: setcc comparing against the null
   1012   // pointer, and a getelementptr of a specific form.
   1013   for (const User *U : V->users()) {
   1014     const Instruction *UI = cast<Instruction>(U);
   1015 
   1016     // Comparison against null is ok.
   1017     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
   1018       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
   1019         return false;
   1020       continue;
   1021     }
   1022 
   1023     // getelementptr is also ok, but only a simple form.
   1024     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
   1025       // Must index into the array and into the struct.
   1026       if (GEPI->getNumOperands() < 3)
   1027         return false;
   1028 
   1029       // Otherwise the GEP is ok.
   1030       continue;
   1031     }
   1032 
   1033     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
   1034       if (!LoadUsingPHIsPerLoad.insert(PN).second)
   1035         // This means some phi nodes are dependent on each other.
   1036         // Avoid infinite looping!
   1037         return false;
   1038       if (!LoadUsingPHIs.insert(PN).second)
   1039         // If we have already analyzed this PHI, then it is safe.
   1040         continue;
   1041 
   1042       // Make sure all uses of the PHI are simple enough to transform.
   1043       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
   1044                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
   1045         return false;
   1046 
   1047       continue;
   1048     }
   1049 
   1050     // Otherwise we don't know what this is, not ok.
   1051     return false;
   1052   }
   1053 
   1054   return true;
   1055 }
   1056 
   1057 
   1058 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
   1059 /// return true.
   1060 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
   1061                                                     Instruction *StoredVal) {
   1062   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
   1063   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
   1064   for (const User *U : GV->users())
   1065     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
   1066       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
   1067                                           LoadUsingPHIsPerLoad))
   1068         return false;
   1069       LoadUsingPHIsPerLoad.clear();
   1070     }
   1071 
   1072   // If we reach here, we know that all uses of the loads and transitive uses
   1073   // (through PHI nodes) are simple enough to transform.  However, we don't know
   1074   // that all inputs the to the PHI nodes are in the same equivalence sets.
   1075   // Check to verify that all operands of the PHIs are either PHIS that can be
   1076   // transformed, loads from GV, or MI itself.
   1077   for (const PHINode *PN : LoadUsingPHIs) {
   1078     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
   1079       Value *InVal = PN->getIncomingValue(op);
   1080 
   1081       // PHI of the stored value itself is ok.
   1082       if (InVal == StoredVal) continue;
   1083 
   1084       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
   1085         // One of the PHIs in our set is (optimistically) ok.
   1086         if (LoadUsingPHIs.count(InPN))
   1087           continue;
   1088         return false;
   1089       }
   1090 
   1091       // Load from GV is ok.
   1092       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
   1093         if (LI->getOperand(0) == GV)
   1094           continue;
   1095 
   1096       // UNDEF? NULL?
   1097 
   1098       // Anything else is rejected.
   1099       return false;
   1100     }
   1101   }
   1102 
   1103   return true;
   1104 }
   1105 
   1106 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
   1107                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
   1108                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
   1109   std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
   1110 
   1111   if (FieldNo >= FieldVals.size())
   1112     FieldVals.resize(FieldNo+1);
   1113 
   1114   // If we already have this value, just reuse the previously scalarized
   1115   // version.
   1116   if (Value *FieldVal = FieldVals[FieldNo])
   1117     return FieldVal;
   1118 
   1119   // Depending on what instruction this is, we have several cases.
   1120   Value *Result;
   1121   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
   1122     // This is a scalarized version of the load from the global.  Just create
   1123     // a new Load of the scalarized global.
   1124     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
   1125                                            InsertedScalarizedValues,
   1126                                            PHIsToRewrite),
   1127                           LI->getName()+".f"+Twine(FieldNo), LI);
   1128   } else {
   1129     PHINode *PN = cast<PHINode>(V);
   1130     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
   1131     // field.
   1132 
   1133     PointerType *PTy = cast<PointerType>(PN->getType());
   1134     StructType *ST = cast<StructType>(PTy->getElementType());
   1135 
   1136     unsigned AS = PTy->getAddressSpace();
   1137     PHINode *NewPN =
   1138       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
   1139                      PN->getNumIncomingValues(),
   1140                      PN->getName()+".f"+Twine(FieldNo), PN);
   1141     Result = NewPN;
   1142     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
   1143   }
   1144 
   1145   return FieldVals[FieldNo] = Result;
   1146 }
   1147 
   1148 /// Given a load instruction and a value derived from the load, rewrite the
   1149 /// derived value to use the HeapSRoA'd load.
   1150 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
   1151              DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
   1152                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
   1153   // If this is a comparison against null, handle it.
   1154   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
   1155     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
   1156     // If we have a setcc of the loaded pointer, we can use a setcc of any
   1157     // field.
   1158     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
   1159                                    InsertedScalarizedValues, PHIsToRewrite);
   1160 
   1161     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
   1162                               Constant::getNullValue(NPtr->getType()),
   1163                               SCI->getName());
   1164     SCI->replaceAllUsesWith(New);
   1165     SCI->eraseFromParent();
   1166     return;
   1167   }
   1168 
   1169   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
   1170   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
   1171     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
   1172            && "Unexpected GEPI!");
   1173 
   1174     // Load the pointer for this field.
   1175     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
   1176     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
   1177                                      InsertedScalarizedValues, PHIsToRewrite);
   1178 
   1179     // Create the new GEP idx vector.
   1180     SmallVector<Value*, 8> GEPIdx;
   1181     GEPIdx.push_back(GEPI->getOperand(1));
   1182     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
   1183 
   1184     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
   1185                                              GEPI->getName(), GEPI);
   1186     GEPI->replaceAllUsesWith(NGEPI);
   1187     GEPI->eraseFromParent();
   1188     return;
   1189   }
   1190 
   1191   // Recursively transform the users of PHI nodes.  This will lazily create the
   1192   // PHIs that are needed for individual elements.  Keep track of what PHIs we
   1193   // see in InsertedScalarizedValues so that we don't get infinite loops (very
   1194   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
   1195   // already been seen first by another load, so its uses have already been
   1196   // processed.
   1197   PHINode *PN = cast<PHINode>(LoadUser);
   1198   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
   1199                                               std::vector<Value*>())).second)
   1200     return;
   1201 
   1202   // If this is the first time we've seen this PHI, recursively process all
   1203   // users.
   1204   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
   1205     Instruction *User = cast<Instruction>(*UI++);
   1206     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
   1207   }
   1208 }
   1209 
   1210 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
   1211 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
   1212 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
   1213 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
   1214                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
   1215                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
   1216   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
   1217     Instruction *User = cast<Instruction>(*UI++);
   1218     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
   1219   }
   1220 
   1221   if (Load->use_empty()) {
   1222     Load->eraseFromParent();
   1223     InsertedScalarizedValues.erase(Load);
   1224   }
   1225 }
   1226 
   1227 /// CI is an allocation of an array of structures.  Break it up into multiple
   1228 /// allocations of arrays of the fields.
   1229 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
   1230                                             Value *NElems, const DataLayout &DL,
   1231                                             const TargetLibraryInfo *TLI) {
   1232   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
   1233   Type *MAT = getMallocAllocatedType(CI, TLI);
   1234   StructType *STy = cast<StructType>(MAT);
   1235 
   1236   // There is guaranteed to be at least one use of the malloc (storing
   1237   // it into GV).  If there are other uses, change them to be uses of
   1238   // the global to simplify later code.  This also deletes the store
   1239   // into GV.
   1240   ReplaceUsesOfMallocWithGlobal(CI, GV);
   1241 
   1242   // Okay, at this point, there are no users of the malloc.  Insert N
   1243   // new mallocs at the same place as CI, and N globals.
   1244   std::vector<Value*> FieldGlobals;
   1245   std::vector<Value*> FieldMallocs;
   1246 
   1247   SmallVector<OperandBundleDef, 1> OpBundles;
   1248   CI->getOperandBundlesAsDefs(OpBundles);
   1249 
   1250   unsigned AS = GV->getType()->getPointerAddressSpace();
   1251   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
   1252     Type *FieldTy = STy->getElementType(FieldNo);
   1253     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
   1254 
   1255     GlobalVariable *NGV = new GlobalVariable(
   1256         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
   1257         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
   1258         nullptr, GV->getThreadLocalMode());
   1259     NGV->copyAttributesFrom(GV);
   1260     FieldGlobals.push_back(NGV);
   1261 
   1262     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
   1263     if (StructType *ST = dyn_cast<StructType>(FieldTy))
   1264       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
   1265     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
   1266     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
   1267                                         ConstantInt::get(IntPtrTy, TypeSize),
   1268                                         NElems, OpBundles, nullptr,
   1269                                         CI->getName() + ".f" + Twine(FieldNo));
   1270     FieldMallocs.push_back(NMI);
   1271     new StoreInst(NMI, NGV, CI);
   1272   }
   1273 
   1274   // The tricky aspect of this transformation is handling the case when malloc
   1275   // fails.  In the original code, malloc failing would set the result pointer
   1276   // of malloc to null.  In this case, some mallocs could succeed and others
   1277   // could fail.  As such, we emit code that looks like this:
   1278   //    F0 = malloc(field0)
   1279   //    F1 = malloc(field1)
   1280   //    F2 = malloc(field2)
   1281   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
   1282   //      if (F0) { free(F0); F0 = 0; }
   1283   //      if (F1) { free(F1); F1 = 0; }
   1284   //      if (F2) { free(F2); F2 = 0; }
   1285   //    }
   1286   // The malloc can also fail if its argument is too large.
   1287   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
   1288   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
   1289                                   ConstantZero, "isneg");
   1290   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
   1291     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
   1292                              Constant::getNullValue(FieldMallocs[i]->getType()),
   1293                                "isnull");
   1294     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
   1295   }
   1296 
   1297   // Split the basic block at the old malloc.
   1298   BasicBlock *OrigBB = CI->getParent();
   1299   BasicBlock *ContBB =
   1300       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
   1301 
   1302   // Create the block to check the first condition.  Put all these blocks at the
   1303   // end of the function as they are unlikely to be executed.
   1304   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
   1305                                                 "malloc_ret_null",
   1306                                                 OrigBB->getParent());
   1307 
   1308   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
   1309   // branch on RunningOr.
   1310   OrigBB->getTerminator()->eraseFromParent();
   1311   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
   1312 
   1313   // Within the NullPtrBlock, we need to emit a comparison and branch for each
   1314   // pointer, because some may be null while others are not.
   1315   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
   1316     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
   1317     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
   1318                               Constant::getNullValue(GVVal->getType()));
   1319     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
   1320                                                OrigBB->getParent());
   1321     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
   1322                                                OrigBB->getParent());
   1323     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
   1324                                          Cmp, NullPtrBlock);
   1325 
   1326     // Fill in FreeBlock.
   1327     CallInst::CreateFree(GVVal, OpBundles, BI);
   1328     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
   1329                   FreeBlock);
   1330     BranchInst::Create(NextBlock, FreeBlock);
   1331 
   1332     NullPtrBlock = NextBlock;
   1333   }
   1334 
   1335   BranchInst::Create(ContBB, NullPtrBlock);
   1336 
   1337   // CI is no longer needed, remove it.
   1338   CI->eraseFromParent();
   1339 
   1340   /// As we process loads, if we can't immediately update all uses of the load,
   1341   /// keep track of what scalarized loads are inserted for a given load.
   1342   DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
   1343   InsertedScalarizedValues[GV] = FieldGlobals;
   1344 
   1345   std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
   1346 
   1347   // Okay, the malloc site is completely handled.  All of the uses of GV are now
   1348   // loads, and all uses of those loads are simple.  Rewrite them to use loads
   1349   // of the per-field globals instead.
   1350   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
   1351     Instruction *User = cast<Instruction>(*UI++);
   1352 
   1353     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
   1354       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
   1355       continue;
   1356     }
   1357 
   1358     // Must be a store of null.
   1359     StoreInst *SI = cast<StoreInst>(User);
   1360     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
   1361            "Unexpected heap-sra user!");
   1362 
   1363     // Insert a store of null into each global.
   1364     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
   1365       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
   1366       Constant *Null = Constant::getNullValue(ValTy);
   1367       new StoreInst(Null, FieldGlobals[i], SI);
   1368     }
   1369     // Erase the original store.
   1370     SI->eraseFromParent();
   1371   }
   1372 
   1373   // While we have PHIs that are interesting to rewrite, do it.
   1374   while (!PHIsToRewrite.empty()) {
   1375     PHINode *PN = PHIsToRewrite.back().first;
   1376     unsigned FieldNo = PHIsToRewrite.back().second;
   1377     PHIsToRewrite.pop_back();
   1378     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
   1379     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
   1380 
   1381     // Add all the incoming values.  This can materialize more phis.
   1382     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1383       Value *InVal = PN->getIncomingValue(i);
   1384       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
   1385                                PHIsToRewrite);
   1386       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
   1387     }
   1388   }
   1389 
   1390   // Drop all inter-phi links and any loads that made it this far.
   1391   for (DenseMap<Value*, std::vector<Value*> >::iterator
   1392        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
   1393        I != E; ++I) {
   1394     if (PHINode *PN = dyn_cast<PHINode>(I->first))
   1395       PN->dropAllReferences();
   1396     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
   1397       LI->dropAllReferences();
   1398   }
   1399 
   1400   // Delete all the phis and loads now that inter-references are dead.
   1401   for (DenseMap<Value*, std::vector<Value*> >::iterator
   1402        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
   1403        I != E; ++I) {
   1404     if (PHINode *PN = dyn_cast<PHINode>(I->first))
   1405       PN->eraseFromParent();
   1406     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
   1407       LI->eraseFromParent();
   1408   }
   1409 
   1410   // The old global is now dead, remove it.
   1411   GV->eraseFromParent();
   1412 
   1413   ++NumHeapSRA;
   1414   return cast<GlobalVariable>(FieldGlobals[0]);
   1415 }
   1416 
   1417 /// This function is called when we see a pointer global variable with a single
   1418 /// value stored it that is a malloc or cast of malloc.
   1419 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
   1420                                                Type *AllocTy,
   1421                                                AtomicOrdering Ordering,
   1422                                                const DataLayout &DL,
   1423                                                TargetLibraryInfo *TLI) {
   1424   // If this is a malloc of an abstract type, don't touch it.
   1425   if (!AllocTy->isSized())
   1426     return false;
   1427 
   1428   // We can't optimize this global unless all uses of it are *known* to be
   1429   // of the malloc value, not of the null initializer value (consider a use
   1430   // that compares the global's value against zero to see if the malloc has
   1431   // been reached).  To do this, we check to see if all uses of the global
   1432   // would trap if the global were null: this proves that they must all
   1433   // happen after the malloc.
   1434   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
   1435     return false;
   1436 
   1437   // We can't optimize this if the malloc itself is used in a complex way,
   1438   // for example, being stored into multiple globals.  This allows the
   1439   // malloc to be stored into the specified global, loaded icmp'd, and
   1440   // GEP'd.  These are all things we could transform to using the global
   1441   // for.
   1442   SmallPtrSet<const PHINode*, 8> PHIs;
   1443   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
   1444     return false;
   1445 
   1446   // If we have a global that is only initialized with a fixed size malloc,
   1447   // transform the program to use global memory instead of malloc'd memory.
   1448   // This eliminates dynamic allocation, avoids an indirection accessing the
   1449   // data, and exposes the resultant global to further GlobalOpt.
   1450   // We cannot optimize the malloc if we cannot determine malloc array size.
   1451   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
   1452   if (!NElems)
   1453     return false;
   1454 
   1455   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
   1456     // Restrict this transformation to only working on small allocations
   1457     // (2048 bytes currently), as we don't want to introduce a 16M global or
   1458     // something.
   1459     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
   1460       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
   1461       return true;
   1462     }
   1463 
   1464   // If the allocation is an array of structures, consider transforming this
   1465   // into multiple malloc'd arrays, one for each field.  This is basically
   1466   // SRoA for malloc'd memory.
   1467 
   1468   if (Ordering != AtomicOrdering::NotAtomic)
   1469     return false;
   1470 
   1471   // If this is an allocation of a fixed size array of structs, analyze as a
   1472   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
   1473   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
   1474     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
   1475       AllocTy = AT->getElementType();
   1476 
   1477   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
   1478   if (!AllocSTy)
   1479     return false;
   1480 
   1481   // This the structure has an unreasonable number of fields, leave it
   1482   // alone.
   1483   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
   1484       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
   1485 
   1486     // If this is a fixed size array, transform the Malloc to be an alloc of
   1487     // structs.  malloc [100 x struct],1 -> malloc struct, 100
   1488     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
   1489       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
   1490       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
   1491       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
   1492       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
   1493       SmallVector<OperandBundleDef, 1> OpBundles;
   1494       CI->getOperandBundlesAsDefs(OpBundles);
   1495       Instruction *Malloc =
   1496           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
   1497                                  OpBundles, nullptr, CI->getName());
   1498       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
   1499       CI->replaceAllUsesWith(Cast);
   1500       CI->eraseFromParent();
   1501       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
   1502         CI = cast<CallInst>(BCI->getOperand(0));
   1503       else
   1504         CI = cast<CallInst>(Malloc);
   1505     }
   1506 
   1507     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
   1508                          TLI);
   1509     return true;
   1510   }
   1511 
   1512   return false;
   1513 }
   1514 
   1515 // Try to optimize globals based on the knowledge that only one value (besides
   1516 // its initializer) is ever stored to the global.
   1517 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
   1518                                      AtomicOrdering Ordering,
   1519                                      const DataLayout &DL,
   1520                                      TargetLibraryInfo *TLI) {
   1521   // Ignore no-op GEPs and bitcasts.
   1522   StoredOnceVal = StoredOnceVal->stripPointerCasts();
   1523 
   1524   // If we are dealing with a pointer global that is initialized to null and
   1525   // only has one (non-null) value stored into it, then we can optimize any
   1526   // users of the loaded value (often calls and loads) that would trap if the
   1527   // value was null.
   1528   if (GV->getInitializer()->getType()->isPointerTy() &&
   1529       GV->getInitializer()->isNullValue()) {
   1530     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
   1531       if (GV->getInitializer()->getType() != SOVC->getType())
   1532         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
   1533 
   1534       // Optimize away any trapping uses of the loaded value.
   1535       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
   1536         return true;
   1537     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
   1538       Type *MallocType = getMallocAllocatedType(CI, TLI);
   1539       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
   1540                                                            Ordering, DL, TLI))
   1541         return true;
   1542     }
   1543   }
   1544 
   1545   return false;
   1546 }
   1547 
   1548 /// At this point, we have learned that the only two values ever stored into GV
   1549 /// are its initializer and OtherVal.  See if we can shrink the global into a
   1550 /// boolean and select between the two values whenever it is used.  This exposes
   1551 /// the values to other scalar optimizations.
   1552 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
   1553   Type *GVElType = GV->getValueType();
   1554 
   1555   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
   1556   // an FP value, pointer or vector, don't do this optimization because a select
   1557   // between them is very expensive and unlikely to lead to later
   1558   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
   1559   // where v1 and v2 both require constant pool loads, a big loss.
   1560   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
   1561       GVElType->isFloatingPointTy() ||
   1562       GVElType->isPointerTy() || GVElType->isVectorTy())
   1563     return false;
   1564 
   1565   // Walk the use list of the global seeing if all the uses are load or store.
   1566   // If there is anything else, bail out.
   1567   for (User *U : GV->users())
   1568     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
   1569       return false;
   1570 
   1571   DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
   1572 
   1573   // Create the new global, initializing it to false.
   1574   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
   1575                                              false,
   1576                                              GlobalValue::InternalLinkage,
   1577                                         ConstantInt::getFalse(GV->getContext()),
   1578                                              GV->getName()+".b",
   1579                                              GV->getThreadLocalMode(),
   1580                                              GV->getType()->getAddressSpace());
   1581   NewGV->copyAttributesFrom(GV);
   1582   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
   1583 
   1584   Constant *InitVal = GV->getInitializer();
   1585   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
   1586          "No reason to shrink to bool!");
   1587 
   1588   // If initialized to zero and storing one into the global, we can use a cast
   1589   // instead of a select to synthesize the desired value.
   1590   bool IsOneZero = false;
   1591   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
   1592     IsOneZero = InitVal->isNullValue() && CI->isOne();
   1593 
   1594   while (!GV->use_empty()) {
   1595     Instruction *UI = cast<Instruction>(GV->user_back());
   1596     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
   1597       // Change the store into a boolean store.
   1598       bool StoringOther = SI->getOperand(0) == OtherVal;
   1599       // Only do this if we weren't storing a loaded value.
   1600       Value *StoreVal;
   1601       if (StoringOther || SI->getOperand(0) == InitVal) {
   1602         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
   1603                                     StoringOther);
   1604       } else {
   1605         // Otherwise, we are storing a previously loaded copy.  To do this,
   1606         // change the copy from copying the original value to just copying the
   1607         // bool.
   1608         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
   1609 
   1610         // If we've already replaced the input, StoredVal will be a cast or
   1611         // select instruction.  If not, it will be a load of the original
   1612         // global.
   1613         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
   1614           assert(LI->getOperand(0) == GV && "Not a copy!");
   1615           // Insert a new load, to preserve the saved value.
   1616           StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
   1617                                   LI->getOrdering(), LI->getSynchScope(), LI);
   1618         } else {
   1619           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
   1620                  "This is not a form that we understand!");
   1621           StoreVal = StoredVal->getOperand(0);
   1622           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
   1623         }
   1624       }
   1625       new StoreInst(StoreVal, NewGV, false, 0,
   1626                     SI->getOrdering(), SI->getSynchScope(), SI);
   1627     } else {
   1628       // Change the load into a load of bool then a select.
   1629       LoadInst *LI = cast<LoadInst>(UI);
   1630       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
   1631                                    LI->getOrdering(), LI->getSynchScope(), LI);
   1632       Value *NSI;
   1633       if (IsOneZero)
   1634         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
   1635       else
   1636         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
   1637       NSI->takeName(LI);
   1638       LI->replaceAllUsesWith(NSI);
   1639     }
   1640     UI->eraseFromParent();
   1641   }
   1642 
   1643   // Retain the name of the old global variable. People who are debugging their
   1644   // programs may expect these variables to be named the same.
   1645   NewGV->takeName(GV);
   1646   GV->eraseFromParent();
   1647   return true;
   1648 }
   1649 
   1650 static bool deleteIfDead(GlobalValue &GV,
   1651                          SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
   1652   GV.removeDeadConstantUsers();
   1653 
   1654   if (!GV.isDiscardableIfUnused())
   1655     return false;
   1656 
   1657   if (const Comdat *C = GV.getComdat())
   1658     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
   1659       return false;
   1660 
   1661   bool Dead;
   1662   if (auto *F = dyn_cast<Function>(&GV))
   1663     Dead = F->isDefTriviallyDead();
   1664   else
   1665     Dead = GV.use_empty();
   1666   if (!Dead)
   1667     return false;
   1668 
   1669   DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
   1670   GV.eraseFromParent();
   1671   ++NumDeleted;
   1672   return true;
   1673 }
   1674 
   1675 static bool isPointerValueDeadOnEntryToFunction(
   1676     const Function *F, GlobalValue *GV,
   1677     function_ref<DominatorTree &(Function &)> LookupDomTree) {
   1678   // Find all uses of GV. We expect them all to be in F, and if we can't
   1679   // identify any of the uses we bail out.
   1680   //
   1681   // On each of these uses, identify if the memory that GV points to is
   1682   // used/required/live at the start of the function. If it is not, for example
   1683   // if the first thing the function does is store to the GV, the GV can
   1684   // possibly be demoted.
   1685   //
   1686   // We don't do an exhaustive search for memory operations - simply look
   1687   // through bitcasts as they're quite common and benign.
   1688   const DataLayout &DL = GV->getParent()->getDataLayout();
   1689   SmallVector<LoadInst *, 4> Loads;
   1690   SmallVector<StoreInst *, 4> Stores;
   1691   for (auto *U : GV->users()) {
   1692     if (Operator::getOpcode(U) == Instruction::BitCast) {
   1693       for (auto *UU : U->users()) {
   1694         if (auto *LI = dyn_cast<LoadInst>(UU))
   1695           Loads.push_back(LI);
   1696         else if (auto *SI = dyn_cast<StoreInst>(UU))
   1697           Stores.push_back(SI);
   1698         else
   1699           return false;
   1700       }
   1701       continue;
   1702     }
   1703 
   1704     Instruction *I = dyn_cast<Instruction>(U);
   1705     if (!I)
   1706       return false;
   1707     assert(I->getParent()->getParent() == F);
   1708 
   1709     if (auto *LI = dyn_cast<LoadInst>(I))
   1710       Loads.push_back(LI);
   1711     else if (auto *SI = dyn_cast<StoreInst>(I))
   1712       Stores.push_back(SI);
   1713     else
   1714       return false;
   1715   }
   1716 
   1717   // We have identified all uses of GV into loads and stores. Now check if all
   1718   // of them are known not to depend on the value of the global at the function
   1719   // entry point. We do this by ensuring that every load is dominated by at
   1720   // least one store.
   1721   auto &DT = LookupDomTree(*const_cast<Function *>(F));
   1722 
   1723   // The below check is quadratic. Check we're not going to do too many tests.
   1724   // FIXME: Even though this will always have worst-case quadratic time, we
   1725   // could put effort into minimizing the average time by putting stores that
   1726   // have been shown to dominate at least one load at the beginning of the
   1727   // Stores array, making subsequent dominance checks more likely to succeed
   1728   // early.
   1729   //
   1730   // The threshold here is fairly large because global->local demotion is a
   1731   // very powerful optimization should it fire.
   1732   const unsigned Threshold = 100;
   1733   if (Loads.size() * Stores.size() > Threshold)
   1734     return false;
   1735 
   1736   for (auto *L : Loads) {
   1737     auto *LTy = L->getType();
   1738     if (!std::any_of(Stores.begin(), Stores.end(), [&](StoreInst *S) {
   1739           auto *STy = S->getValueOperand()->getType();
   1740           // The load is only dominated by the store if DomTree says so
   1741           // and the number of bits loaded in L is less than or equal to
   1742           // the number of bits stored in S.
   1743           return DT.dominates(S, L) &&
   1744                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
   1745         }))
   1746       return false;
   1747   }
   1748   // All loads have known dependences inside F, so the global can be localized.
   1749   return true;
   1750 }
   1751 
   1752 /// C may have non-instruction users. Can all of those users be turned into
   1753 /// instructions?
   1754 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
   1755   // We don't do this exhaustively. The most common pattern that we really need
   1756   // to care about is a constant GEP or constant bitcast - so just looking
   1757   // through one single ConstantExpr.
   1758   //
   1759   // The set of constants that this function returns true for must be able to be
   1760   // handled by makeAllConstantUsesInstructions.
   1761   for (auto *U : C->users()) {
   1762     if (isa<Instruction>(U))
   1763       continue;
   1764     if (!isa<ConstantExpr>(U))
   1765       // Non instruction, non-constantexpr user; cannot convert this.
   1766       return false;
   1767     for (auto *UU : U->users())
   1768       if (!isa<Instruction>(UU))
   1769         // A constantexpr used by another constant. We don't try and recurse any
   1770         // further but just bail out at this point.
   1771         return false;
   1772   }
   1773 
   1774   return true;
   1775 }
   1776 
   1777 /// C may have non-instruction users, and
   1778 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
   1779 /// non-instruction users to instructions.
   1780 static void makeAllConstantUsesInstructions(Constant *C) {
   1781   SmallVector<ConstantExpr*,4> Users;
   1782   for (auto *U : C->users()) {
   1783     if (isa<ConstantExpr>(U))
   1784       Users.push_back(cast<ConstantExpr>(U));
   1785     else
   1786       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
   1787       // should not have returned true for C.
   1788       assert(
   1789           isa<Instruction>(U) &&
   1790           "Can't transform non-constantexpr non-instruction to instruction!");
   1791   }
   1792 
   1793   SmallVector<Value*,4> UUsers;
   1794   for (auto *U : Users) {
   1795     UUsers.clear();
   1796     for (auto *UU : U->users())
   1797       UUsers.push_back(UU);
   1798     for (auto *UU : UUsers) {
   1799       Instruction *UI = cast<Instruction>(UU);
   1800       Instruction *NewU = U->getAsInstruction();
   1801       NewU->insertBefore(UI);
   1802       UI->replaceUsesOfWith(U, NewU);
   1803     }
   1804     U->dropAllReferences();
   1805   }
   1806 }
   1807 
   1808 /// Analyze the specified global variable and optimize
   1809 /// it if possible.  If we make a change, return true.
   1810 static bool processInternalGlobal(
   1811     GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI,
   1812     function_ref<DominatorTree &(Function &)> LookupDomTree) {
   1813   auto &DL = GV->getParent()->getDataLayout();
   1814   // If this is a first class global and has only one accessing function and
   1815   // this function is non-recursive, we replace the global with a local alloca
   1816   // in this function.
   1817   //
   1818   // NOTE: It doesn't make sense to promote non-single-value types since we
   1819   // are just replacing static memory to stack memory.
   1820   //
   1821   // If the global is in different address space, don't bring it to stack.
   1822   if (!GS.HasMultipleAccessingFunctions &&
   1823       GS.AccessingFunction &&
   1824       GV->getValueType()->isSingleValueType() &&
   1825       GV->getType()->getAddressSpace() == 0 &&
   1826       !GV->isExternallyInitialized() &&
   1827       allNonInstructionUsersCanBeMadeInstructions(GV) &&
   1828       GS.AccessingFunction->doesNotRecurse() &&
   1829       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
   1830                                           LookupDomTree)) {
   1831     DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
   1832     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
   1833                                                    ->getEntryBlock().begin());
   1834     Type *ElemTy = GV->getValueType();
   1835     // FIXME: Pass Global's alignment when globals have alignment
   1836     AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr,
   1837                                         GV->getName(), &FirstI);
   1838     if (!isa<UndefValue>(GV->getInitializer()))
   1839       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
   1840 
   1841     makeAllConstantUsesInstructions(GV);
   1842 
   1843     GV->replaceAllUsesWith(Alloca);
   1844     GV->eraseFromParent();
   1845     ++NumLocalized;
   1846     return true;
   1847   }
   1848 
   1849   // If the global is never loaded (but may be stored to), it is dead.
   1850   // Delete it now.
   1851   if (!GS.IsLoaded) {
   1852     DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
   1853 
   1854     bool Changed;
   1855     if (isLeakCheckerRoot(GV)) {
   1856       // Delete any constant stores to the global.
   1857       Changed = CleanupPointerRootUsers(GV, TLI);
   1858     } else {
   1859       // Delete any stores we can find to the global.  We may not be able to
   1860       // make it completely dead though.
   1861       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
   1862     }
   1863 
   1864     // If the global is dead now, delete it.
   1865     if (GV->use_empty()) {
   1866       GV->eraseFromParent();
   1867       ++NumDeleted;
   1868       Changed = true;
   1869     }
   1870     return Changed;
   1871 
   1872   }
   1873   if (GS.StoredType <= GlobalStatus::InitializerStored) {
   1874     DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
   1875     GV->setConstant(true);
   1876 
   1877     // Clean up any obviously simplifiable users now.
   1878     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
   1879 
   1880     // If the global is dead now, just nuke it.
   1881     if (GV->use_empty()) {
   1882       DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
   1883             << "all users and delete global!\n");
   1884       GV->eraseFromParent();
   1885       ++NumDeleted;
   1886       return true;
   1887     }
   1888 
   1889     // Fall through to the next check; see if we can optimize further.
   1890     ++NumMarked;
   1891   }
   1892   if (!GV->getInitializer()->getType()->isSingleValueType()) {
   1893     const DataLayout &DL = GV->getParent()->getDataLayout();
   1894     if (SRAGlobal(GV, DL))
   1895       return true;
   1896   }
   1897   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
   1898     // If the initial value for the global was an undef value, and if only
   1899     // one other value was stored into it, we can just change the
   1900     // initializer to be the stored value, then delete all stores to the
   1901     // global.  This allows us to mark it constant.
   1902     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
   1903       if (isa<UndefValue>(GV->getInitializer())) {
   1904         // Change the initial value here.
   1905         GV->setInitializer(SOVConstant);
   1906 
   1907         // Clean up any obviously simplifiable users now.
   1908         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
   1909 
   1910         if (GV->use_empty()) {
   1911           DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
   1912                        << "simplify all users and delete global!\n");
   1913           GV->eraseFromParent();
   1914           ++NumDeleted;
   1915         }
   1916         ++NumSubstitute;
   1917         return true;
   1918       }
   1919 
   1920     // Try to optimize globals based on the knowledge that only one value
   1921     // (besides its initializer) is ever stored to the global.
   1922     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
   1923       return true;
   1924 
   1925     // Otherwise, if the global was not a boolean, we can shrink it to be a
   1926     // boolean.
   1927     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
   1928       if (GS.Ordering == AtomicOrdering::NotAtomic) {
   1929         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
   1930           ++NumShrunkToBool;
   1931           return true;
   1932         }
   1933       }
   1934     }
   1935   }
   1936 
   1937   return false;
   1938 }
   1939 
   1940 /// Analyze the specified global variable and optimize it if possible.  If we
   1941 /// make a change, return true.
   1942 static bool
   1943 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI,
   1944               function_ref<DominatorTree &(Function &)> LookupDomTree) {
   1945   if (GV.getName().startswith("llvm."))
   1946     return false;
   1947 
   1948   GlobalStatus GS;
   1949 
   1950   if (GlobalStatus::analyzeGlobal(&GV, GS))
   1951     return false;
   1952 
   1953   bool Changed = false;
   1954   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
   1955     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
   1956                                                : GlobalValue::UnnamedAddr::Local;
   1957     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
   1958       GV.setUnnamedAddr(NewUnnamedAddr);
   1959       NumUnnamed++;
   1960       Changed = true;
   1961     }
   1962   }
   1963 
   1964   // Do more involved optimizations if the global is internal.
   1965   if (!GV.hasLocalLinkage())
   1966     return Changed;
   1967 
   1968   auto *GVar = dyn_cast<GlobalVariable>(&GV);
   1969   if (!GVar)
   1970     return Changed;
   1971 
   1972   if (GVar->isConstant() || !GVar->hasInitializer())
   1973     return Changed;
   1974 
   1975   return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed;
   1976 }
   1977 
   1978 /// Walk all of the direct calls of the specified function, changing them to
   1979 /// FastCC.
   1980 static void ChangeCalleesToFastCall(Function *F) {
   1981   for (User *U : F->users()) {
   1982     if (isa<BlockAddress>(U))
   1983       continue;
   1984     CallSite CS(cast<Instruction>(U));
   1985     CS.setCallingConv(CallingConv::Fast);
   1986   }
   1987 }
   1988 
   1989 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
   1990   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
   1991     unsigned Index = Attrs.getSlotIndex(i);
   1992     if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
   1993       continue;
   1994 
   1995     // There can be only one.
   1996     return Attrs.removeAttribute(C, Index, Attribute::Nest);
   1997   }
   1998 
   1999   return Attrs;
   2000 }
   2001 
   2002 static void RemoveNestAttribute(Function *F) {
   2003   F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
   2004   for (User *U : F->users()) {
   2005     if (isa<BlockAddress>(U))
   2006       continue;
   2007     CallSite CS(cast<Instruction>(U));
   2008     CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
   2009   }
   2010 }
   2011 
   2012 /// Return true if this is a calling convention that we'd like to change.  The
   2013 /// idea here is that we don't want to mess with the convention if the user
   2014 /// explicitly requested something with performance implications like coldcc,
   2015 /// GHC, or anyregcc.
   2016 static bool isProfitableToMakeFastCC(Function *F) {
   2017   CallingConv::ID CC = F->getCallingConv();
   2018   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
   2019   return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
   2020 }
   2021 
   2022 static bool
   2023 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI,
   2024                   function_ref<DominatorTree &(Function &)> LookupDomTree,
   2025                   SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
   2026   bool Changed = false;
   2027   // Optimize functions.
   2028   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
   2029     Function *F = &*FI++;
   2030     // Functions without names cannot be referenced outside this module.
   2031     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
   2032       F->setLinkage(GlobalValue::InternalLinkage);
   2033 
   2034     if (deleteIfDead(*F, NotDiscardableComdats)) {
   2035       Changed = true;
   2036       continue;
   2037     }
   2038 
   2039     Changed |= processGlobal(*F, TLI, LookupDomTree);
   2040 
   2041     if (!F->hasLocalLinkage())
   2042       continue;
   2043     if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
   2044         !F->hasAddressTaken()) {
   2045       // If this function has a calling convention worth changing, is not a
   2046       // varargs function, and is only called directly, promote it to use the
   2047       // Fast calling convention.
   2048       F->setCallingConv(CallingConv::Fast);
   2049       ChangeCalleesToFastCall(F);
   2050       ++NumFastCallFns;
   2051       Changed = true;
   2052     }
   2053 
   2054     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
   2055         !F->hasAddressTaken()) {
   2056       // The function is not used by a trampoline intrinsic, so it is safe
   2057       // to remove the 'nest' attribute.
   2058       RemoveNestAttribute(F);
   2059       ++NumNestRemoved;
   2060       Changed = true;
   2061     }
   2062   }
   2063   return Changed;
   2064 }
   2065 
   2066 static bool
   2067 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI,
   2068                    function_ref<DominatorTree &(Function &)> LookupDomTree,
   2069                    SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
   2070   bool Changed = false;
   2071 
   2072   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
   2073        GVI != E; ) {
   2074     GlobalVariable *GV = &*GVI++;
   2075     // Global variables without names cannot be referenced outside this module.
   2076     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
   2077       GV->setLinkage(GlobalValue::InternalLinkage);
   2078     // Simplify the initializer.
   2079     if (GV->hasInitializer())
   2080       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
   2081         auto &DL = M.getDataLayout();
   2082         Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
   2083         if (New && New != CE)
   2084           GV->setInitializer(New);
   2085       }
   2086 
   2087     if (deleteIfDead(*GV, NotDiscardableComdats)) {
   2088       Changed = true;
   2089       continue;
   2090     }
   2091 
   2092     Changed |= processGlobal(*GV, TLI, LookupDomTree);
   2093   }
   2094   return Changed;
   2095 }
   2096 
   2097 /// Evaluate a piece of a constantexpr store into a global initializer.  This
   2098 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
   2099 /// GEP operands of Addr [0, OpNo) have been stepped into.
   2100 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
   2101                                    ConstantExpr *Addr, unsigned OpNo) {
   2102   // Base case of the recursion.
   2103   if (OpNo == Addr->getNumOperands()) {
   2104     assert(Val->getType() == Init->getType() && "Type mismatch!");
   2105     return Val;
   2106   }
   2107 
   2108   SmallVector<Constant*, 32> Elts;
   2109   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
   2110     // Break up the constant into its elements.
   2111     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   2112       Elts.push_back(Init->getAggregateElement(i));
   2113 
   2114     // Replace the element that we are supposed to.
   2115     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
   2116     unsigned Idx = CU->getZExtValue();
   2117     assert(Idx < STy->getNumElements() && "Struct index out of range!");
   2118     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
   2119 
   2120     // Return the modified struct.
   2121     return ConstantStruct::get(STy, Elts);
   2122   }
   2123 
   2124   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
   2125   SequentialType *InitTy = cast<SequentialType>(Init->getType());
   2126 
   2127   uint64_t NumElts;
   2128   if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
   2129     NumElts = ATy->getNumElements();
   2130   else
   2131     NumElts = InitTy->getVectorNumElements();
   2132 
   2133   // Break up the array into elements.
   2134   for (uint64_t i = 0, e = NumElts; i != e; ++i)
   2135     Elts.push_back(Init->getAggregateElement(i));
   2136 
   2137   assert(CI->getZExtValue() < NumElts);
   2138   Elts[CI->getZExtValue()] =
   2139     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
   2140 
   2141   if (Init->getType()->isArrayTy())
   2142     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
   2143   return ConstantVector::get(Elts);
   2144 }
   2145 
   2146 /// We have decided that Addr (which satisfies the predicate
   2147 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
   2148 static void CommitValueTo(Constant *Val, Constant *Addr) {
   2149   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
   2150     assert(GV->hasInitializer());
   2151     GV->setInitializer(Val);
   2152     return;
   2153   }
   2154 
   2155   ConstantExpr *CE = cast<ConstantExpr>(Addr);
   2156   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
   2157   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
   2158 }
   2159 
   2160 /// Evaluate static constructors in the function, if we can.  Return true if we
   2161 /// can, false otherwise.
   2162 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
   2163                                       TargetLibraryInfo *TLI) {
   2164   // Call the function.
   2165   Evaluator Eval(DL, TLI);
   2166   Constant *RetValDummy;
   2167   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
   2168                                            SmallVector<Constant*, 0>());
   2169 
   2170   if (EvalSuccess) {
   2171     ++NumCtorsEvaluated;
   2172 
   2173     // We succeeded at evaluation: commit the result.
   2174     DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
   2175           << F->getName() << "' to " << Eval.getMutatedMemory().size()
   2176           << " stores.\n");
   2177     for (const auto &I : Eval.getMutatedMemory())
   2178       CommitValueTo(I.second, I.first);
   2179     for (GlobalVariable *GV : Eval.getInvariants())
   2180       GV->setConstant(true);
   2181   }
   2182 
   2183   return EvalSuccess;
   2184 }
   2185 
   2186 static int compareNames(Constant *const *A, Constant *const *B) {
   2187   Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
   2188   Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
   2189   return AStripped->getName().compare(BStripped->getName());
   2190 }
   2191 
   2192 static void setUsedInitializer(GlobalVariable &V,
   2193                                const SmallPtrSet<GlobalValue *, 8> &Init) {
   2194   if (Init.empty()) {
   2195     V.eraseFromParent();
   2196     return;
   2197   }
   2198 
   2199   // Type of pointer to the array of pointers.
   2200   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
   2201 
   2202   SmallVector<llvm::Constant *, 8> UsedArray;
   2203   for (GlobalValue *GV : Init) {
   2204     Constant *Cast
   2205       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
   2206     UsedArray.push_back(Cast);
   2207   }
   2208   // Sort to get deterministic order.
   2209   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
   2210   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
   2211 
   2212   Module *M = V.getParent();
   2213   V.removeFromParent();
   2214   GlobalVariable *NV =
   2215       new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
   2216                          llvm::ConstantArray::get(ATy, UsedArray), "");
   2217   NV->takeName(&V);
   2218   NV->setSection("llvm.metadata");
   2219   delete &V;
   2220 }
   2221 
   2222 namespace {
   2223 /// An easy to access representation of llvm.used and llvm.compiler.used.
   2224 class LLVMUsed {
   2225   SmallPtrSet<GlobalValue *, 8> Used;
   2226   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
   2227   GlobalVariable *UsedV;
   2228   GlobalVariable *CompilerUsedV;
   2229 
   2230 public:
   2231   LLVMUsed(Module &M) {
   2232     UsedV = collectUsedGlobalVariables(M, Used, false);
   2233     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
   2234   }
   2235   typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
   2236   typedef iterator_range<iterator> used_iterator_range;
   2237   iterator usedBegin() { return Used.begin(); }
   2238   iterator usedEnd() { return Used.end(); }
   2239   used_iterator_range used() {
   2240     return used_iterator_range(usedBegin(), usedEnd());
   2241   }
   2242   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
   2243   iterator compilerUsedEnd() { return CompilerUsed.end(); }
   2244   used_iterator_range compilerUsed() {
   2245     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
   2246   }
   2247   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
   2248   bool compilerUsedCount(GlobalValue *GV) const {
   2249     return CompilerUsed.count(GV);
   2250   }
   2251   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
   2252   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
   2253   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
   2254   bool compilerUsedInsert(GlobalValue *GV) {
   2255     return CompilerUsed.insert(GV).second;
   2256   }
   2257 
   2258   void syncVariablesAndSets() {
   2259     if (UsedV)
   2260       setUsedInitializer(*UsedV, Used);
   2261     if (CompilerUsedV)
   2262       setUsedInitializer(*CompilerUsedV, CompilerUsed);
   2263   }
   2264 };
   2265 }
   2266 
   2267 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
   2268   if (GA.use_empty()) // No use at all.
   2269     return false;
   2270 
   2271   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
   2272          "We should have removed the duplicated "
   2273          "element from llvm.compiler.used");
   2274   if (!GA.hasOneUse())
   2275     // Strictly more than one use. So at least one is not in llvm.used and
   2276     // llvm.compiler.used.
   2277     return true;
   2278 
   2279   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
   2280   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
   2281 }
   2282 
   2283 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
   2284                                                const LLVMUsed &U) {
   2285   unsigned N = 2;
   2286   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
   2287          "We should have removed the duplicated "
   2288          "element from llvm.compiler.used");
   2289   if (U.usedCount(&V) || U.compilerUsedCount(&V))
   2290     ++N;
   2291   return V.hasNUsesOrMore(N);
   2292 }
   2293 
   2294 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
   2295   if (!GA.hasLocalLinkage())
   2296     return true;
   2297 
   2298   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
   2299 }
   2300 
   2301 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
   2302                              bool &RenameTarget) {
   2303   RenameTarget = false;
   2304   bool Ret = false;
   2305   if (hasUseOtherThanLLVMUsed(GA, U))
   2306     Ret = true;
   2307 
   2308   // If the alias is externally visible, we may still be able to simplify it.
   2309   if (!mayHaveOtherReferences(GA, U))
   2310     return Ret;
   2311 
   2312   // If the aliasee has internal linkage, give it the name and linkage
   2313   // of the alias, and delete the alias.  This turns:
   2314   //   define internal ... @f(...)
   2315   //   @a = alias ... @f
   2316   // into:
   2317   //   define ... @a(...)
   2318   Constant *Aliasee = GA.getAliasee();
   2319   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
   2320   if (!Target->hasLocalLinkage())
   2321     return Ret;
   2322 
   2323   // Do not perform the transform if multiple aliases potentially target the
   2324   // aliasee. This check also ensures that it is safe to replace the section
   2325   // and other attributes of the aliasee with those of the alias.
   2326   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
   2327     return Ret;
   2328 
   2329   RenameTarget = true;
   2330   return true;
   2331 }
   2332 
   2333 static bool
   2334 OptimizeGlobalAliases(Module &M,
   2335                       SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
   2336   bool Changed = false;
   2337   LLVMUsed Used(M);
   2338 
   2339   for (GlobalValue *GV : Used.used())
   2340     Used.compilerUsedErase(GV);
   2341 
   2342   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
   2343        I != E;) {
   2344     GlobalAlias *J = &*I++;
   2345 
   2346     // Aliases without names cannot be referenced outside this module.
   2347     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
   2348       J->setLinkage(GlobalValue::InternalLinkage);
   2349 
   2350     if (deleteIfDead(*J, NotDiscardableComdats)) {
   2351       Changed = true;
   2352       continue;
   2353     }
   2354 
   2355     // If the aliasee may change at link time, nothing can be done - bail out.
   2356     if (J->isInterposable())
   2357       continue;
   2358 
   2359     Constant *Aliasee = J->getAliasee();
   2360     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
   2361     // We can't trivially replace the alias with the aliasee if the aliasee is
   2362     // non-trivial in some way.
   2363     // TODO: Try to handle non-zero GEPs of local aliasees.
   2364     if (!Target)
   2365       continue;
   2366     Target->removeDeadConstantUsers();
   2367 
   2368     // Make all users of the alias use the aliasee instead.
   2369     bool RenameTarget;
   2370     if (!hasUsesToReplace(*J, Used, RenameTarget))
   2371       continue;
   2372 
   2373     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
   2374     ++NumAliasesResolved;
   2375     Changed = true;
   2376 
   2377     if (RenameTarget) {
   2378       // Give the aliasee the name, linkage and other attributes of the alias.
   2379       Target->takeName(&*J);
   2380       Target->setLinkage(J->getLinkage());
   2381       Target->setVisibility(J->getVisibility());
   2382       Target->setDLLStorageClass(J->getDLLStorageClass());
   2383 
   2384       if (Used.usedErase(&*J))
   2385         Used.usedInsert(Target);
   2386 
   2387       if (Used.compilerUsedErase(&*J))
   2388         Used.compilerUsedInsert(Target);
   2389     } else if (mayHaveOtherReferences(*J, Used))
   2390       continue;
   2391 
   2392     // Delete the alias.
   2393     M.getAliasList().erase(J);
   2394     ++NumAliasesRemoved;
   2395     Changed = true;
   2396   }
   2397 
   2398   Used.syncVariablesAndSets();
   2399 
   2400   return Changed;
   2401 }
   2402 
   2403 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
   2404   LibFunc::Func F = LibFunc::cxa_atexit;
   2405   if (!TLI->has(F))
   2406     return nullptr;
   2407 
   2408   Function *Fn = M.getFunction(TLI->getName(F));
   2409   if (!Fn)
   2410     return nullptr;
   2411 
   2412   // Make sure that the function has the correct prototype.
   2413   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc::cxa_atexit)
   2414     return nullptr;
   2415 
   2416   return Fn;
   2417 }
   2418 
   2419 /// Returns whether the given function is an empty C++ destructor and can
   2420 /// therefore be eliminated.
   2421 /// Note that we assume that other optimization passes have already simplified
   2422 /// the code so we only look for a function with a single basic block, where
   2423 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
   2424 /// other side-effect free instructions.
   2425 static bool cxxDtorIsEmpty(const Function &Fn,
   2426                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
   2427   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
   2428   // nounwind, but that doesn't seem worth doing.
   2429   if (Fn.isDeclaration())
   2430     return false;
   2431 
   2432   if (++Fn.begin() != Fn.end())
   2433     return false;
   2434 
   2435   const BasicBlock &EntryBlock = Fn.getEntryBlock();
   2436   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
   2437        I != E; ++I) {
   2438     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
   2439       // Ignore debug intrinsics.
   2440       if (isa<DbgInfoIntrinsic>(CI))
   2441         continue;
   2442 
   2443       const Function *CalledFn = CI->getCalledFunction();
   2444 
   2445       if (!CalledFn)
   2446         return false;
   2447 
   2448       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
   2449 
   2450       // Don't treat recursive functions as empty.
   2451       if (!NewCalledFunctions.insert(CalledFn).second)
   2452         return false;
   2453 
   2454       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
   2455         return false;
   2456     } else if (isa<ReturnInst>(*I))
   2457       return true; // We're done.
   2458     else if (I->mayHaveSideEffects())
   2459       return false; // Destructor with side effects, bail.
   2460   }
   2461 
   2462   return false;
   2463 }
   2464 
   2465 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
   2466   /// Itanium C++ ABI p3.3.5:
   2467   ///
   2468   ///   After constructing a global (or local static) object, that will require
   2469   ///   destruction on exit, a termination function is registered as follows:
   2470   ///
   2471   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
   2472   ///
   2473   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
   2474   ///   call f(p) when DSO d is unloaded, before all such termination calls
   2475   ///   registered before this one. It returns zero if registration is
   2476   ///   successful, nonzero on failure.
   2477 
   2478   // This pass will look for calls to __cxa_atexit where the function is trivial
   2479   // and remove them.
   2480   bool Changed = false;
   2481 
   2482   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
   2483        I != E;) {
   2484     // We're only interested in calls. Theoretically, we could handle invoke
   2485     // instructions as well, but neither llvm-gcc nor clang generate invokes
   2486     // to __cxa_atexit.
   2487     CallInst *CI = dyn_cast<CallInst>(*I++);
   2488     if (!CI)
   2489       continue;
   2490 
   2491     Function *DtorFn =
   2492       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
   2493     if (!DtorFn)
   2494       continue;
   2495 
   2496     SmallPtrSet<const Function *, 8> CalledFunctions;
   2497     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
   2498       continue;
   2499 
   2500     // Just remove the call.
   2501     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
   2502     CI->eraseFromParent();
   2503 
   2504     ++NumCXXDtorsRemoved;
   2505 
   2506     Changed |= true;
   2507   }
   2508 
   2509   return Changed;
   2510 }
   2511 
   2512 static bool optimizeGlobalsInModule(
   2513     Module &M, const DataLayout &DL, TargetLibraryInfo *TLI,
   2514     function_ref<DominatorTree &(Function &)> LookupDomTree) {
   2515   SmallSet<const Comdat *, 8> NotDiscardableComdats;
   2516   bool Changed = false;
   2517   bool LocalChange = true;
   2518   while (LocalChange) {
   2519     LocalChange = false;
   2520 
   2521     NotDiscardableComdats.clear();
   2522     for (const GlobalVariable &GV : M.globals())
   2523       if (const Comdat *C = GV.getComdat())
   2524         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
   2525           NotDiscardableComdats.insert(C);
   2526     for (Function &F : M)
   2527       if (const Comdat *C = F.getComdat())
   2528         if (!F.isDefTriviallyDead())
   2529           NotDiscardableComdats.insert(C);
   2530     for (GlobalAlias &GA : M.aliases())
   2531       if (const Comdat *C = GA.getComdat())
   2532         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
   2533           NotDiscardableComdats.insert(C);
   2534 
   2535     // Delete functions that are trivially dead, ccc -> fastcc
   2536     LocalChange |=
   2537         OptimizeFunctions(M, TLI, LookupDomTree, NotDiscardableComdats);
   2538 
   2539     // Optimize global_ctors list.
   2540     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
   2541       return EvaluateStaticConstructor(F, DL, TLI);
   2542     });
   2543 
   2544     // Optimize non-address-taken globals.
   2545     LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree,
   2546                                       NotDiscardableComdats);
   2547 
   2548     // Resolve aliases, when possible.
   2549     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
   2550 
   2551     // Try to remove trivial global destructors if they are not removed
   2552     // already.
   2553     Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
   2554     if (CXAAtExitFn)
   2555       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
   2556 
   2557     Changed |= LocalChange;
   2558   }
   2559 
   2560   // TODO: Move all global ctors functions to the end of the module for code
   2561   // layout.
   2562 
   2563   return Changed;
   2564 }
   2565 
   2566 PreservedAnalyses GlobalOptPass::run(Module &M, AnalysisManager<Module> &AM) {
   2567     auto &DL = M.getDataLayout();
   2568     auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
   2569     auto &FAM =
   2570         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
   2571     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
   2572       return FAM.getResult<DominatorTreeAnalysis>(F);
   2573     };
   2574     if (!optimizeGlobalsInModule(M, DL, &TLI, LookupDomTree))
   2575       return PreservedAnalyses::all();
   2576     return PreservedAnalyses::none();
   2577 }
   2578 
   2579 namespace {
   2580 struct GlobalOptLegacyPass : public ModulePass {
   2581   static char ID; // Pass identification, replacement for typeid
   2582   GlobalOptLegacyPass() : ModulePass(ID) {
   2583     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
   2584   }
   2585 
   2586   bool runOnModule(Module &M) override {
   2587     if (skipModule(M))
   2588       return false;
   2589 
   2590     auto &DL = M.getDataLayout();
   2591     auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   2592     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
   2593       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
   2594     };
   2595     return optimizeGlobalsInModule(M, DL, TLI, LookupDomTree);
   2596   }
   2597 
   2598   void getAnalysisUsage(AnalysisUsage &AU) const override {
   2599     AU.addRequired<TargetLibraryInfoWrapperPass>();
   2600     AU.addRequired<DominatorTreeWrapperPass>();
   2601   }
   2602 };
   2603 }
   2604 
   2605 char GlobalOptLegacyPass::ID = 0;
   2606 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
   2607                       "Global Variable Optimizer", false, false)
   2608 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
   2609 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   2610 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
   2611                     "Global Variable Optimizer", false, false)
   2612 
   2613 ModulePass *llvm::createGlobalOptimizerPass() {
   2614   return new GlobalOptLegacyPass();
   2615 }
   2616