Home | History | Annotate | Download | only in Scalar
      1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Jump Threading pass.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Scalar/JumpThreading.h"
     15 #include "llvm/Transforms/Scalar.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/DenseSet.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/GlobalsModRef.h"
     21 #include "llvm/Analysis/CFG.h"
     22 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
     23 #include "llvm/Analysis/ConstantFolding.h"
     24 #include "llvm/Analysis/InstructionSimplify.h"
     25 #include "llvm/Analysis/Loads.h"
     26 #include "llvm/Analysis/LoopInfo.h"
     27 #include "llvm/Analysis/ValueTracking.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/IntrinsicInst.h"
     30 #include "llvm/IR/LLVMContext.h"
     31 #include "llvm/IR/MDBuilder.h"
     32 #include "llvm/IR/Metadata.h"
     33 #include "llvm/Pass.h"
     34 #include "llvm/Support/CommandLine.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     38 #include "llvm/Transforms/Utils/Local.h"
     39 #include "llvm/Transforms/Utils/SSAUpdater.h"
     40 #include <algorithm>
     41 #include <memory>
     42 using namespace llvm;
     43 using namespace jumpthreading;
     44 
     45 #define DEBUG_TYPE "jump-threading"
     46 
     47 STATISTIC(NumThreads, "Number of jumps threaded");
     48 STATISTIC(NumFolds,   "Number of terminators folded");
     49 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
     50 
     51 static cl::opt<unsigned>
     52 BBDuplicateThreshold("jump-threading-threshold",
     53           cl::desc("Max block size to duplicate for jump threading"),
     54           cl::init(6), cl::Hidden);
     55 
     56 static cl::opt<unsigned>
     57 ImplicationSearchThreshold(
     58   "jump-threading-implication-search-threshold",
     59   cl::desc("The number of predecessors to search for a stronger "
     60            "condition to use to thread over a weaker condition"),
     61   cl::init(3), cl::Hidden);
     62 
     63 namespace {
     64   /// This pass performs 'jump threading', which looks at blocks that have
     65   /// multiple predecessors and multiple successors.  If one or more of the
     66   /// predecessors of the block can be proven to always jump to one of the
     67   /// successors, we forward the edge from the predecessor to the successor by
     68   /// duplicating the contents of this block.
     69   ///
     70   /// An example of when this can occur is code like this:
     71   ///
     72   ///   if () { ...
     73   ///     X = 4;
     74   ///   }
     75   ///   if (X < 3) {
     76   ///
     77   /// In this case, the unconditional branch at the end of the first if can be
     78   /// revectored to the false side of the second if.
     79   ///
     80   class JumpThreading : public FunctionPass {
     81     JumpThreadingPass Impl;
     82 
     83   public:
     84     static char ID; // Pass identification
     85     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
     86       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
     87     }
     88 
     89     bool runOnFunction(Function &F) override;
     90 
     91     void getAnalysisUsage(AnalysisUsage &AU) const override {
     92       AU.addRequired<LazyValueInfoWrapperPass>();
     93       AU.addPreserved<LazyValueInfoWrapperPass>();
     94       AU.addPreserved<GlobalsAAWrapperPass>();
     95       AU.addRequired<TargetLibraryInfoWrapperPass>();
     96     }
     97 
     98     void releaseMemory() override { Impl.releaseMemory(); }
     99   };
    100 }
    101 
    102 char JumpThreading::ID = 0;
    103 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
    104                 "Jump Threading", false, false)
    105 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
    106 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    107 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
    108                 "Jump Threading", false, false)
    109 
    110 // Public interface to the Jump Threading pass
    111 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
    112 
    113 JumpThreadingPass::JumpThreadingPass(int T) {
    114   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
    115 }
    116 
    117 /// runOnFunction - Top level algorithm.
    118 ///
    119 bool JumpThreading::runOnFunction(Function &F) {
    120   if (skipFunction(F))
    121     return false;
    122   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    123   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
    124   std::unique_ptr<BlockFrequencyInfo> BFI;
    125   std::unique_ptr<BranchProbabilityInfo> BPI;
    126   bool HasProfileData = F.getEntryCount().hasValue();
    127   if (HasProfileData) {
    128     LoopInfo LI{DominatorTree(F)};
    129     BPI.reset(new BranchProbabilityInfo(F, LI));
    130     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
    131   }
    132   return Impl.runImpl(F, TLI, LVI, HasProfileData, std::move(BFI),
    133                       std::move(BPI));
    134 }
    135 
    136 PreservedAnalyses JumpThreadingPass::run(Function &F,
    137                                          AnalysisManager<Function> &AM) {
    138 
    139   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
    140   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
    141   std::unique_ptr<BlockFrequencyInfo> BFI;
    142   std::unique_ptr<BranchProbabilityInfo> BPI;
    143   bool HasProfileData = F.getEntryCount().hasValue();
    144   if (HasProfileData) {
    145     LoopInfo LI{DominatorTree(F)};
    146     BPI.reset(new BranchProbabilityInfo(F, LI));
    147     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
    148   }
    149   bool Changed =
    150       runImpl(F, &TLI, &LVI, HasProfileData, std::move(BFI), std::move(BPI));
    151 
    152   // FIXME: We need to invalidate LVI to avoid PR28400. Is there a better
    153   // solution?
    154   AM.invalidate<LazyValueAnalysis>(F);
    155 
    156   if (!Changed)
    157     return PreservedAnalyses::all();
    158   PreservedAnalyses PA;
    159   PA.preserve<GlobalsAA>();
    160   return PA;
    161 }
    162 
    163 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
    164                                 LazyValueInfo *LVI_, bool HasProfileData_,
    165                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
    166                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
    167 
    168   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
    169   TLI = TLI_;
    170   LVI = LVI_;
    171   BFI.reset();
    172   BPI.reset();
    173   // When profile data is available, we need to update edge weights after
    174   // successful jump threading, which requires both BPI and BFI being available.
    175   HasProfileData = HasProfileData_;
    176   if (HasProfileData) {
    177     BPI = std::move(BPI_);
    178     BFI = std::move(BFI_);
    179   }
    180 
    181   // Remove unreachable blocks from function as they may result in infinite
    182   // loop. We do threading if we found something profitable. Jump threading a
    183   // branch can create other opportunities. If these opportunities form a cycle
    184   // i.e. if any jump threading is undoing previous threading in the path, then
    185   // we will loop forever. We take care of this issue by not jump threading for
    186   // back edges. This works for normal cases but not for unreachable blocks as
    187   // they may have cycle with no back edge.
    188   bool EverChanged = false;
    189   EverChanged |= removeUnreachableBlocks(F, LVI);
    190 
    191   FindLoopHeaders(F);
    192 
    193   bool Changed;
    194   do {
    195     Changed = false;
    196     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
    197       BasicBlock *BB = &*I;
    198       // Thread all of the branches we can over this block.
    199       while (ProcessBlock(BB))
    200         Changed = true;
    201 
    202       ++I;
    203 
    204       // If the block is trivially dead, zap it.  This eliminates the successor
    205       // edges which simplifies the CFG.
    206       if (pred_empty(BB) &&
    207           BB != &BB->getParent()->getEntryBlock()) {
    208         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
    209               << "' with terminator: " << *BB->getTerminator() << '\n');
    210         LoopHeaders.erase(BB);
    211         LVI->eraseBlock(BB);
    212         DeleteDeadBlock(BB);
    213         Changed = true;
    214         continue;
    215       }
    216 
    217       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
    218 
    219       // Can't thread an unconditional jump, but if the block is "almost
    220       // empty", we can replace uses of it with uses of the successor and make
    221       // this dead.
    222       // We should not eliminate the loop header either, because eliminating
    223       // a loop header might later prevent LoopSimplify from transforming nested
    224       // loops into simplified form.
    225       if (BI && BI->isUnconditional() &&
    226           BB != &BB->getParent()->getEntryBlock() &&
    227           // If the terminator is the only non-phi instruction, try to nuke it.
    228           BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) {
    229         // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
    230         // block, we have to make sure it isn't in the LoopHeaders set.  We
    231         // reinsert afterward if needed.
    232         bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
    233         BasicBlock *Succ = BI->getSuccessor(0);
    234 
    235         // FIXME: It is always conservatively correct to drop the info
    236         // for a block even if it doesn't get erased.  This isn't totally
    237         // awesome, but it allows us to use AssertingVH to prevent nasty
    238         // dangling pointer issues within LazyValueInfo.
    239         LVI->eraseBlock(BB);
    240         if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
    241           Changed = true;
    242           // If we deleted BB and BB was the header of a loop, then the
    243           // successor is now the header of the loop.
    244           BB = Succ;
    245         }
    246 
    247         if (ErasedFromLoopHeaders)
    248           LoopHeaders.insert(BB);
    249       }
    250     }
    251     EverChanged |= Changed;
    252   } while (Changed);
    253 
    254   LoopHeaders.clear();
    255   return EverChanged;
    256 }
    257 
    258 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
    259 /// thread across it. Stop scanning the block when passing the threshold.
    260 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
    261                                              unsigned Threshold) {
    262   /// Ignore PHI nodes, these will be flattened when duplication happens.
    263   BasicBlock::const_iterator I(BB->getFirstNonPHI());
    264 
    265   // FIXME: THREADING will delete values that are just used to compute the
    266   // branch, so they shouldn't count against the duplication cost.
    267 
    268   unsigned Bonus = 0;
    269   const TerminatorInst *BBTerm = BB->getTerminator();
    270   // Threading through a switch statement is particularly profitable.  If this
    271   // block ends in a switch, decrease its cost to make it more likely to happen.
    272   if (isa<SwitchInst>(BBTerm))
    273     Bonus = 6;
    274 
    275   // The same holds for indirect branches, but slightly more so.
    276   if (isa<IndirectBrInst>(BBTerm))
    277     Bonus = 8;
    278 
    279   // Bump the threshold up so the early exit from the loop doesn't skip the
    280   // terminator-based Size adjustment at the end.
    281   Threshold += Bonus;
    282 
    283   // Sum up the cost of each instruction until we get to the terminator.  Don't
    284   // include the terminator because the copy won't include it.
    285   unsigned Size = 0;
    286   for (; !isa<TerminatorInst>(I); ++I) {
    287 
    288     // Stop scanning the block if we've reached the threshold.
    289     if (Size > Threshold)
    290       return Size;
    291 
    292     // Debugger intrinsics don't incur code size.
    293     if (isa<DbgInfoIntrinsic>(I)) continue;
    294 
    295     // If this is a pointer->pointer bitcast, it is free.
    296     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
    297       continue;
    298 
    299     // Bail out if this instruction gives back a token type, it is not possible
    300     // to duplicate it if it is used outside this BB.
    301     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
    302       return ~0U;
    303 
    304     // All other instructions count for at least one unit.
    305     ++Size;
    306 
    307     // Calls are more expensive.  If they are non-intrinsic calls, we model them
    308     // as having cost of 4.  If they are a non-vector intrinsic, we model them
    309     // as having cost of 2 total, and if they are a vector intrinsic, we model
    310     // them as having cost 1.
    311     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
    312       if (CI->cannotDuplicate() || CI->isConvergent())
    313         // Blocks with NoDuplicate are modelled as having infinite cost, so they
    314         // are never duplicated.
    315         return ~0U;
    316       else if (!isa<IntrinsicInst>(CI))
    317         Size += 3;
    318       else if (!CI->getType()->isVectorTy())
    319         Size += 1;
    320     }
    321   }
    322 
    323   return Size > Bonus ? Size - Bonus : 0;
    324 }
    325 
    326 /// FindLoopHeaders - We do not want jump threading to turn proper loop
    327 /// structures into irreducible loops.  Doing this breaks up the loop nesting
    328 /// hierarchy and pessimizes later transformations.  To prevent this from
    329 /// happening, we first have to find the loop headers.  Here we approximate this
    330 /// by finding targets of backedges in the CFG.
    331 ///
    332 /// Note that there definitely are cases when we want to allow threading of
    333 /// edges across a loop header.  For example, threading a jump from outside the
    334 /// loop (the preheader) to an exit block of the loop is definitely profitable.
    335 /// It is also almost always profitable to thread backedges from within the loop
    336 /// to exit blocks, and is often profitable to thread backedges to other blocks
    337 /// within the loop (forming a nested loop).  This simple analysis is not rich
    338 /// enough to track all of these properties and keep it up-to-date as the CFG
    339 /// mutates, so we don't allow any of these transformations.
    340 ///
    341 void JumpThreadingPass::FindLoopHeaders(Function &F) {
    342   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
    343   FindFunctionBackedges(F, Edges);
    344 
    345   for (const auto &Edge : Edges)
    346     LoopHeaders.insert(Edge.second);
    347 }
    348 
    349 /// getKnownConstant - Helper method to determine if we can thread over a
    350 /// terminator with the given value as its condition, and if so what value to
    351 /// use for that. What kind of value this is depends on whether we want an
    352 /// integer or a block address, but an undef is always accepted.
    353 /// Returns null if Val is null or not an appropriate constant.
    354 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
    355   if (!Val)
    356     return nullptr;
    357 
    358   // Undef is "known" enough.
    359   if (UndefValue *U = dyn_cast<UndefValue>(Val))
    360     return U;
    361 
    362   if (Preference == WantBlockAddress)
    363     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
    364 
    365   return dyn_cast<ConstantInt>(Val);
    366 }
    367 
    368 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
    369 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
    370 /// in any of our predecessors.  If so, return the known list of value and pred
    371 /// BB in the result vector.
    372 ///
    373 /// This returns true if there were any known values.
    374 ///
    375 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
    376     Value *V, BasicBlock *BB, PredValueInfo &Result,
    377     ConstantPreference Preference, Instruction *CxtI) {
    378   // This method walks up use-def chains recursively.  Because of this, we could
    379   // get into an infinite loop going around loops in the use-def chain.  To
    380   // prevent this, keep track of what (value, block) pairs we've already visited
    381   // and terminate the search if we loop back to them
    382   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
    383     return false;
    384 
    385   // An RAII help to remove this pair from the recursion set once the recursion
    386   // stack pops back out again.
    387   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
    388 
    389   // If V is a constant, then it is known in all predecessors.
    390   if (Constant *KC = getKnownConstant(V, Preference)) {
    391     for (BasicBlock *Pred : predecessors(BB))
    392       Result.push_back(std::make_pair(KC, Pred));
    393 
    394     return !Result.empty();
    395   }
    396 
    397   // If V is a non-instruction value, or an instruction in a different block,
    398   // then it can't be derived from a PHI.
    399   Instruction *I = dyn_cast<Instruction>(V);
    400   if (!I || I->getParent() != BB) {
    401 
    402     // Okay, if this is a live-in value, see if it has a known value at the end
    403     // of any of our predecessors.
    404     //
    405     // FIXME: This should be an edge property, not a block end property.
    406     /// TODO: Per PR2563, we could infer value range information about a
    407     /// predecessor based on its terminator.
    408     //
    409     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
    410     // "I" is a non-local compare-with-a-constant instruction.  This would be
    411     // able to handle value inequalities better, for example if the compare is
    412     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
    413     // Perhaps getConstantOnEdge should be smart enough to do this?
    414 
    415     for (BasicBlock *P : predecessors(BB)) {
    416       // If the value is known by LazyValueInfo to be a constant in a
    417       // predecessor, use that information to try to thread this block.
    418       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
    419       if (Constant *KC = getKnownConstant(PredCst, Preference))
    420         Result.push_back(std::make_pair(KC, P));
    421     }
    422 
    423     return !Result.empty();
    424   }
    425 
    426   /// If I is a PHI node, then we know the incoming values for any constants.
    427   if (PHINode *PN = dyn_cast<PHINode>(I)) {
    428     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    429       Value *InVal = PN->getIncomingValue(i);
    430       if (Constant *KC = getKnownConstant(InVal, Preference)) {
    431         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
    432       } else {
    433         Constant *CI = LVI->getConstantOnEdge(InVal,
    434                                               PN->getIncomingBlock(i),
    435                                               BB, CxtI);
    436         if (Constant *KC = getKnownConstant(CI, Preference))
    437           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
    438       }
    439     }
    440 
    441     return !Result.empty();
    442   }
    443 
    444   // Handle Cast instructions.  Only see through Cast when the source operand is
    445   // PHI or Cmp and the source type is i1 to save the compilation time.
    446   if (CastInst *CI = dyn_cast<CastInst>(I)) {
    447     Value *Source = CI->getOperand(0);
    448     if (!Source->getType()->isIntegerTy(1))
    449       return false;
    450     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
    451       return false;
    452     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
    453     if (Result.empty())
    454       return false;
    455 
    456     // Convert the known values.
    457     for (auto &R : Result)
    458       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
    459 
    460     return true;
    461   }
    462 
    463   PredValueInfoTy LHSVals, RHSVals;
    464 
    465   // Handle some boolean conditions.
    466   if (I->getType()->getPrimitiveSizeInBits() == 1) {
    467     assert(Preference == WantInteger && "One-bit non-integer type?");
    468     // X | true -> true
    469     // X & false -> false
    470     if (I->getOpcode() == Instruction::Or ||
    471         I->getOpcode() == Instruction::And) {
    472       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
    473                                       WantInteger, CxtI);
    474       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
    475                                       WantInteger, CxtI);
    476 
    477       if (LHSVals.empty() && RHSVals.empty())
    478         return false;
    479 
    480       ConstantInt *InterestingVal;
    481       if (I->getOpcode() == Instruction::Or)
    482         InterestingVal = ConstantInt::getTrue(I->getContext());
    483       else
    484         InterestingVal = ConstantInt::getFalse(I->getContext());
    485 
    486       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
    487 
    488       // Scan for the sentinel.  If we find an undef, force it to the
    489       // interesting value: x|undef -> true and x&undef -> false.
    490       for (const auto &LHSVal : LHSVals)
    491         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
    492           Result.emplace_back(InterestingVal, LHSVal.second);
    493           LHSKnownBBs.insert(LHSVal.second);
    494         }
    495       for (const auto &RHSVal : RHSVals)
    496         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
    497           // If we already inferred a value for this block on the LHS, don't
    498           // re-add it.
    499           if (!LHSKnownBBs.count(RHSVal.second))
    500             Result.emplace_back(InterestingVal, RHSVal.second);
    501         }
    502 
    503       return !Result.empty();
    504     }
    505 
    506     // Handle the NOT form of XOR.
    507     if (I->getOpcode() == Instruction::Xor &&
    508         isa<ConstantInt>(I->getOperand(1)) &&
    509         cast<ConstantInt>(I->getOperand(1))->isOne()) {
    510       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
    511                                       WantInteger, CxtI);
    512       if (Result.empty())
    513         return false;
    514 
    515       // Invert the known values.
    516       for (auto &R : Result)
    517         R.first = ConstantExpr::getNot(R.first);
    518 
    519       return true;
    520     }
    521 
    522   // Try to simplify some other binary operator values.
    523   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
    524     assert(Preference != WantBlockAddress
    525             && "A binary operator creating a block address?");
    526     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
    527       PredValueInfoTy LHSVals;
    528       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
    529                                       WantInteger, CxtI);
    530 
    531       // Try to use constant folding to simplify the binary operator.
    532       for (const auto &LHSVal : LHSVals) {
    533         Constant *V = LHSVal.first;
    534         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
    535 
    536         if (Constant *KC = getKnownConstant(Folded, WantInteger))
    537           Result.push_back(std::make_pair(KC, LHSVal.second));
    538       }
    539     }
    540 
    541     return !Result.empty();
    542   }
    543 
    544   // Handle compare with phi operand, where the PHI is defined in this block.
    545   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
    546     assert(Preference == WantInteger && "Compares only produce integers");
    547     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
    548     if (PN && PN->getParent() == BB) {
    549       const DataLayout &DL = PN->getModule()->getDataLayout();
    550       // We can do this simplification if any comparisons fold to true or false.
    551       // See if any do.
    552       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    553         BasicBlock *PredBB = PN->getIncomingBlock(i);
    554         Value *LHS = PN->getIncomingValue(i);
    555         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
    556 
    557         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
    558         if (!Res) {
    559           if (!isa<Constant>(RHS))
    560             continue;
    561 
    562           LazyValueInfo::Tristate
    563             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
    564                                            cast<Constant>(RHS), PredBB, BB,
    565                                            CxtI ? CxtI : Cmp);
    566           if (ResT == LazyValueInfo::Unknown)
    567             continue;
    568           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
    569         }
    570 
    571         if (Constant *KC = getKnownConstant(Res, WantInteger))
    572           Result.push_back(std::make_pair(KC, PredBB));
    573       }
    574 
    575       return !Result.empty();
    576     }
    577 
    578     // If comparing a live-in value against a constant, see if we know the
    579     // live-in value on any predecessors.
    580     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
    581       if (!isa<Instruction>(Cmp->getOperand(0)) ||
    582           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
    583         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
    584 
    585         for (BasicBlock *P : predecessors(BB)) {
    586           // If the value is known by LazyValueInfo to be a constant in a
    587           // predecessor, use that information to try to thread this block.
    588           LazyValueInfo::Tristate Res =
    589             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
    590                                     RHSCst, P, BB, CxtI ? CxtI : Cmp);
    591           if (Res == LazyValueInfo::Unknown)
    592             continue;
    593 
    594           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
    595           Result.push_back(std::make_pair(ResC, P));
    596         }
    597 
    598         return !Result.empty();
    599       }
    600 
    601       // Try to find a constant value for the LHS of a comparison,
    602       // and evaluate it statically if we can.
    603       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
    604         PredValueInfoTy LHSVals;
    605         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
    606                                         WantInteger, CxtI);
    607 
    608         for (const auto &LHSVal : LHSVals) {
    609           Constant *V = LHSVal.first;
    610           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
    611                                                       V, CmpConst);
    612           if (Constant *KC = getKnownConstant(Folded, WantInteger))
    613             Result.push_back(std::make_pair(KC, LHSVal.second));
    614         }
    615 
    616         return !Result.empty();
    617       }
    618     }
    619   }
    620 
    621   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
    622     // Handle select instructions where at least one operand is a known constant
    623     // and we can figure out the condition value for any predecessor block.
    624     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
    625     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
    626     PredValueInfoTy Conds;
    627     if ((TrueVal || FalseVal) &&
    628         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
    629                                         WantInteger, CxtI)) {
    630       for (auto &C : Conds) {
    631         Constant *Cond = C.first;
    632 
    633         // Figure out what value to use for the condition.
    634         bool KnownCond;
    635         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
    636           // A known boolean.
    637           KnownCond = CI->isOne();
    638         } else {
    639           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
    640           // Either operand will do, so be sure to pick the one that's a known
    641           // constant.
    642           // FIXME: Do this more cleverly if both values are known constants?
    643           KnownCond = (TrueVal != nullptr);
    644         }
    645 
    646         // See if the select has a known constant value for this predecessor.
    647         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
    648           Result.push_back(std::make_pair(Val, C.second));
    649       }
    650 
    651       return !Result.empty();
    652     }
    653   }
    654 
    655   // If all else fails, see if LVI can figure out a constant value for us.
    656   Constant *CI = LVI->getConstant(V, BB, CxtI);
    657   if (Constant *KC = getKnownConstant(CI, Preference)) {
    658     for (BasicBlock *Pred : predecessors(BB))
    659       Result.push_back(std::make_pair(KC, Pred));
    660   }
    661 
    662   return !Result.empty();
    663 }
    664 
    665 
    666 
    667 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
    668 /// in an undefined jump, decide which block is best to revector to.
    669 ///
    670 /// Since we can pick an arbitrary destination, we pick the successor with the
    671 /// fewest predecessors.  This should reduce the in-degree of the others.
    672 ///
    673 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
    674   TerminatorInst *BBTerm = BB->getTerminator();
    675   unsigned MinSucc = 0;
    676   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
    677   // Compute the successor with the minimum number of predecessors.
    678   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
    679   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
    680     TestBB = BBTerm->getSuccessor(i);
    681     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
    682     if (NumPreds < MinNumPreds) {
    683       MinSucc = i;
    684       MinNumPreds = NumPreds;
    685     }
    686   }
    687 
    688   return MinSucc;
    689 }
    690 
    691 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
    692   if (!BB->hasAddressTaken()) return false;
    693 
    694   // If the block has its address taken, it may be a tree of dead constants
    695   // hanging off of it.  These shouldn't keep the block alive.
    696   BlockAddress *BA = BlockAddress::get(BB);
    697   BA->removeDeadConstantUsers();
    698   return !BA->use_empty();
    699 }
    700 
    701 /// ProcessBlock - If there are any predecessors whose control can be threaded
    702 /// through to a successor, transform them now.
    703 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
    704   // If the block is trivially dead, just return and let the caller nuke it.
    705   // This simplifies other transformations.
    706   if (pred_empty(BB) &&
    707       BB != &BB->getParent()->getEntryBlock())
    708     return false;
    709 
    710   // If this block has a single predecessor, and if that pred has a single
    711   // successor, merge the blocks.  This encourages recursive jump threading
    712   // because now the condition in this block can be threaded through
    713   // predecessors of our predecessor block.
    714   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
    715     const TerminatorInst *TI = SinglePred->getTerminator();
    716     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
    717         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
    718       // If SinglePred was a loop header, BB becomes one.
    719       if (LoopHeaders.erase(SinglePred))
    720         LoopHeaders.insert(BB);
    721 
    722       LVI->eraseBlock(SinglePred);
    723       MergeBasicBlockIntoOnlyPred(BB);
    724 
    725       return true;
    726     }
    727   }
    728 
    729   if (TryToUnfoldSelectInCurrBB(BB))
    730     return true;
    731 
    732   // What kind of constant we're looking for.
    733   ConstantPreference Preference = WantInteger;
    734 
    735   // Look to see if the terminator is a conditional branch, switch or indirect
    736   // branch, if not we can't thread it.
    737   Value *Condition;
    738   Instruction *Terminator = BB->getTerminator();
    739   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
    740     // Can't thread an unconditional jump.
    741     if (BI->isUnconditional()) return false;
    742     Condition = BI->getCondition();
    743   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
    744     Condition = SI->getCondition();
    745   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
    746     // Can't thread indirect branch with no successors.
    747     if (IB->getNumSuccessors() == 0) return false;
    748     Condition = IB->getAddress()->stripPointerCasts();
    749     Preference = WantBlockAddress;
    750   } else {
    751     return false; // Must be an invoke.
    752   }
    753 
    754   // Run constant folding to see if we can reduce the condition to a simple
    755   // constant.
    756   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
    757     Value *SimpleVal =
    758         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
    759     if (SimpleVal) {
    760       I->replaceAllUsesWith(SimpleVal);
    761       I->eraseFromParent();
    762       Condition = SimpleVal;
    763     }
    764   }
    765 
    766   // If the terminator is branching on an undef, we can pick any of the
    767   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
    768   if (isa<UndefValue>(Condition)) {
    769     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
    770 
    771     // Fold the branch/switch.
    772     TerminatorInst *BBTerm = BB->getTerminator();
    773     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
    774       if (i == BestSucc) continue;
    775       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
    776     }
    777 
    778     DEBUG(dbgs() << "  In block '" << BB->getName()
    779           << "' folding undef terminator: " << *BBTerm << '\n');
    780     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
    781     BBTerm->eraseFromParent();
    782     return true;
    783   }
    784 
    785   // If the terminator of this block is branching on a constant, simplify the
    786   // terminator to an unconditional branch.  This can occur due to threading in
    787   // other blocks.
    788   if (getKnownConstant(Condition, Preference)) {
    789     DEBUG(dbgs() << "  In block '" << BB->getName()
    790           << "' folding terminator: " << *BB->getTerminator() << '\n');
    791     ++NumFolds;
    792     ConstantFoldTerminator(BB, true);
    793     return true;
    794   }
    795 
    796   Instruction *CondInst = dyn_cast<Instruction>(Condition);
    797 
    798   // All the rest of our checks depend on the condition being an instruction.
    799   if (!CondInst) {
    800     // FIXME: Unify this with code below.
    801     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
    802       return true;
    803     return false;
    804   }
    805 
    806 
    807   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
    808     // If we're branching on a conditional, LVI might be able to determine
    809     // it's value at the branch instruction.  We only handle comparisons
    810     // against a constant at this time.
    811     // TODO: This should be extended to handle switches as well.
    812     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
    813     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
    814     if (CondBr && CondConst && CondBr->isConditional()) {
    815       LazyValueInfo::Tristate Ret =
    816         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
    817                             CondConst, CondBr);
    818       if (Ret != LazyValueInfo::Unknown) {
    819         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
    820         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
    821         CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
    822         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
    823         CondBr->eraseFromParent();
    824         if (CondCmp->use_empty())
    825           CondCmp->eraseFromParent();
    826         else if (CondCmp->getParent() == BB) {
    827           // If the fact we just learned is true for all uses of the
    828           // condition, replace it with a constant value
    829           auto *CI = Ret == LazyValueInfo::True ?
    830             ConstantInt::getTrue(CondCmp->getType()) :
    831             ConstantInt::getFalse(CondCmp->getType());
    832           CondCmp->replaceAllUsesWith(CI);
    833           CondCmp->eraseFromParent();
    834         }
    835         return true;
    836       }
    837     }
    838 
    839     if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
    840       return true;
    841   }
    842 
    843   // Check for some cases that are worth simplifying.  Right now we want to look
    844   // for loads that are used by a switch or by the condition for the branch.  If
    845   // we see one, check to see if it's partially redundant.  If so, insert a PHI
    846   // which can then be used to thread the values.
    847   //
    848   Value *SimplifyValue = CondInst;
    849   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
    850     if (isa<Constant>(CondCmp->getOperand(1)))
    851       SimplifyValue = CondCmp->getOperand(0);
    852 
    853   // TODO: There are other places where load PRE would be profitable, such as
    854   // more complex comparisons.
    855   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
    856     if (SimplifyPartiallyRedundantLoad(LI))
    857       return true;
    858 
    859 
    860   // Handle a variety of cases where we are branching on something derived from
    861   // a PHI node in the current block.  If we can prove that any predecessors
    862   // compute a predictable value based on a PHI node, thread those predecessors.
    863   //
    864   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
    865     return true;
    866 
    867   // If this is an otherwise-unfoldable branch on a phi node in the current
    868   // block, see if we can simplify.
    869   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
    870     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
    871       return ProcessBranchOnPHI(PN);
    872 
    873 
    874   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
    875   if (CondInst->getOpcode() == Instruction::Xor &&
    876       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
    877     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
    878 
    879   // Search for a stronger dominating condition that can be used to simplify a
    880   // conditional branch leaving BB.
    881   if (ProcessImpliedCondition(BB))
    882     return true;
    883 
    884   return false;
    885 }
    886 
    887 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
    888   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
    889   if (!BI || !BI->isConditional())
    890     return false;
    891 
    892   Value *Cond = BI->getCondition();
    893   BasicBlock *CurrentBB = BB;
    894   BasicBlock *CurrentPred = BB->getSinglePredecessor();
    895   unsigned Iter = 0;
    896 
    897   auto &DL = BB->getModule()->getDataLayout();
    898 
    899   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
    900     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
    901     if (!PBI || !PBI->isConditional())
    902       return false;
    903     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
    904       return false;
    905 
    906     bool FalseDest = PBI->getSuccessor(1) == CurrentBB;
    907     Optional<bool> Implication =
    908       isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest);
    909     if (Implication) {
    910       BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB);
    911       BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI);
    912       BI->eraseFromParent();
    913       return true;
    914     }
    915     CurrentBB = CurrentPred;
    916     CurrentPred = CurrentBB->getSinglePredecessor();
    917   }
    918 
    919   return false;
    920 }
    921 
    922 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
    923 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
    924 /// important optimization that encourages jump threading, and needs to be run
    925 /// interlaced with other jump threading tasks.
    926 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
    927   // Don't hack volatile and ordered loads.
    928   if (!LI->isUnordered()) return false;
    929 
    930   // If the load is defined in a block with exactly one predecessor, it can't be
    931   // partially redundant.
    932   BasicBlock *LoadBB = LI->getParent();
    933   if (LoadBB->getSinglePredecessor())
    934     return false;
    935 
    936   // If the load is defined in an EH pad, it can't be partially redundant,
    937   // because the edges between the invoke and the EH pad cannot have other
    938   // instructions between them.
    939   if (LoadBB->isEHPad())
    940     return false;
    941 
    942   Value *LoadedPtr = LI->getOperand(0);
    943 
    944   // If the loaded operand is defined in the LoadBB, it can't be available.
    945   // TODO: Could do simple PHI translation, that would be fun :)
    946   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
    947     if (PtrOp->getParent() == LoadBB)
    948       return false;
    949 
    950   // Scan a few instructions up from the load, to see if it is obviously live at
    951   // the entry to its block.
    952   BasicBlock::iterator BBIt(LI);
    953 
    954   if (Value *AvailableVal =
    955         FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan)) {
    956     // If the value of the load is locally available within the block, just use
    957     // it.  This frequently occurs for reg2mem'd allocas.
    958 
    959     // If the returned value is the load itself, replace with an undef. This can
    960     // only happen in dead loops.
    961     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
    962     if (AvailableVal->getType() != LI->getType())
    963       AvailableVal =
    964           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
    965     LI->replaceAllUsesWith(AvailableVal);
    966     LI->eraseFromParent();
    967     return true;
    968   }
    969 
    970   // Otherwise, if we scanned the whole block and got to the top of the block,
    971   // we know the block is locally transparent to the load.  If not, something
    972   // might clobber its value.
    973   if (BBIt != LoadBB->begin())
    974     return false;
    975 
    976   // If all of the loads and stores that feed the value have the same AA tags,
    977   // then we can propagate them onto any newly inserted loads.
    978   AAMDNodes AATags;
    979   LI->getAAMetadata(AATags);
    980 
    981   SmallPtrSet<BasicBlock*, 8> PredsScanned;
    982   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
    983   AvailablePredsTy AvailablePreds;
    984   BasicBlock *OneUnavailablePred = nullptr;
    985 
    986   // If we got here, the loaded value is transparent through to the start of the
    987   // block.  Check to see if it is available in any of the predecessor blocks.
    988   for (BasicBlock *PredBB : predecessors(LoadBB)) {
    989     // If we already scanned this predecessor, skip it.
    990     if (!PredsScanned.insert(PredBB).second)
    991       continue;
    992 
    993     // Scan the predecessor to see if the value is available in the pred.
    994     BBIt = PredBB->end();
    995     AAMDNodes ThisAATags;
    996     Value *PredAvailable = FindAvailableLoadedValue(LI, PredBB, BBIt,
    997                                                     DefMaxInstsToScan,
    998                                                     nullptr, &ThisAATags);
    999     if (!PredAvailable) {
   1000       OneUnavailablePred = PredBB;
   1001       continue;
   1002     }
   1003 
   1004     // If AA tags disagree or are not present, forget about them.
   1005     if (AATags != ThisAATags) AATags = AAMDNodes();
   1006 
   1007     // If so, this load is partially redundant.  Remember this info so that we
   1008     // can create a PHI node.
   1009     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
   1010   }
   1011 
   1012   // If the loaded value isn't available in any predecessor, it isn't partially
   1013   // redundant.
   1014   if (AvailablePreds.empty()) return false;
   1015 
   1016   // Okay, the loaded value is available in at least one (and maybe all!)
   1017   // predecessors.  If the value is unavailable in more than one unique
   1018   // predecessor, we want to insert a merge block for those common predecessors.
   1019   // This ensures that we only have to insert one reload, thus not increasing
   1020   // code size.
   1021   BasicBlock *UnavailablePred = nullptr;
   1022 
   1023   // If there is exactly one predecessor where the value is unavailable, the
   1024   // already computed 'OneUnavailablePred' block is it.  If it ends in an
   1025   // unconditional branch, we know that it isn't a critical edge.
   1026   if (PredsScanned.size() == AvailablePreds.size()+1 &&
   1027       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
   1028     UnavailablePred = OneUnavailablePred;
   1029   } else if (PredsScanned.size() != AvailablePreds.size()) {
   1030     // Otherwise, we had multiple unavailable predecessors or we had a critical
   1031     // edge from the one.
   1032     SmallVector<BasicBlock*, 8> PredsToSplit;
   1033     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
   1034 
   1035     for (const auto &AvailablePred : AvailablePreds)
   1036       AvailablePredSet.insert(AvailablePred.first);
   1037 
   1038     // Add all the unavailable predecessors to the PredsToSplit list.
   1039     for (BasicBlock *P : predecessors(LoadBB)) {
   1040       // If the predecessor is an indirect goto, we can't split the edge.
   1041       if (isa<IndirectBrInst>(P->getTerminator()))
   1042         return false;
   1043 
   1044       if (!AvailablePredSet.count(P))
   1045         PredsToSplit.push_back(P);
   1046     }
   1047 
   1048     // Split them out to their own block.
   1049     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
   1050   }
   1051 
   1052   // If the value isn't available in all predecessors, then there will be
   1053   // exactly one where it isn't available.  Insert a load on that edge and add
   1054   // it to the AvailablePreds list.
   1055   if (UnavailablePred) {
   1056     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
   1057            "Can't handle critical edge here!");
   1058     LoadInst *NewVal =
   1059         new LoadInst(LoadedPtr, LI->getName() + ".pr", false,
   1060                      LI->getAlignment(), LI->getOrdering(), LI->getSynchScope(),
   1061                      UnavailablePred->getTerminator());
   1062     NewVal->setDebugLoc(LI->getDebugLoc());
   1063     if (AATags)
   1064       NewVal->setAAMetadata(AATags);
   1065 
   1066     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
   1067   }
   1068 
   1069   // Now we know that each predecessor of this block has a value in
   1070   // AvailablePreds, sort them for efficient access as we're walking the preds.
   1071   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
   1072 
   1073   // Create a PHI node at the start of the block for the PRE'd load value.
   1074   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
   1075   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
   1076                                 &LoadBB->front());
   1077   PN->takeName(LI);
   1078   PN->setDebugLoc(LI->getDebugLoc());
   1079 
   1080   // Insert new entries into the PHI for each predecessor.  A single block may
   1081   // have multiple entries here.
   1082   for (pred_iterator PI = PB; PI != PE; ++PI) {
   1083     BasicBlock *P = *PI;
   1084     AvailablePredsTy::iterator I =
   1085       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
   1086                        std::make_pair(P, (Value*)nullptr));
   1087 
   1088     assert(I != AvailablePreds.end() && I->first == P &&
   1089            "Didn't find entry for predecessor!");
   1090 
   1091     // If we have an available predecessor but it requires casting, insert the
   1092     // cast in the predecessor and use the cast. Note that we have to update the
   1093     // AvailablePreds vector as we go so that all of the PHI entries for this
   1094     // predecessor use the same bitcast.
   1095     Value *&PredV = I->second;
   1096     if (PredV->getType() != LI->getType())
   1097       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
   1098                                                P->getTerminator());
   1099 
   1100     PN->addIncoming(PredV, I->first);
   1101   }
   1102 
   1103   LI->replaceAllUsesWith(PN);
   1104   LI->eraseFromParent();
   1105 
   1106   return true;
   1107 }
   1108 
   1109 /// FindMostPopularDest - The specified list contains multiple possible
   1110 /// threadable destinations.  Pick the one that occurs the most frequently in
   1111 /// the list.
   1112 static BasicBlock *
   1113 FindMostPopularDest(BasicBlock *BB,
   1114                     const SmallVectorImpl<std::pair<BasicBlock*,
   1115                                   BasicBlock*> > &PredToDestList) {
   1116   assert(!PredToDestList.empty());
   1117 
   1118   // Determine popularity.  If there are multiple possible destinations, we
   1119   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
   1120   // blocks with known and real destinations to threading undef.  We'll handle
   1121   // them later if interesting.
   1122   DenseMap<BasicBlock*, unsigned> DestPopularity;
   1123   for (const auto &PredToDest : PredToDestList)
   1124     if (PredToDest.second)
   1125       DestPopularity[PredToDest.second]++;
   1126 
   1127   // Find the most popular dest.
   1128   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
   1129   BasicBlock *MostPopularDest = DPI->first;
   1130   unsigned Popularity = DPI->second;
   1131   SmallVector<BasicBlock*, 4> SamePopularity;
   1132 
   1133   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
   1134     // If the popularity of this entry isn't higher than the popularity we've
   1135     // seen so far, ignore it.
   1136     if (DPI->second < Popularity)
   1137       ; // ignore.
   1138     else if (DPI->second == Popularity) {
   1139       // If it is the same as what we've seen so far, keep track of it.
   1140       SamePopularity.push_back(DPI->first);
   1141     } else {
   1142       // If it is more popular, remember it.
   1143       SamePopularity.clear();
   1144       MostPopularDest = DPI->first;
   1145       Popularity = DPI->second;
   1146     }
   1147   }
   1148 
   1149   // Okay, now we know the most popular destination.  If there is more than one
   1150   // destination, we need to determine one.  This is arbitrary, but we need
   1151   // to make a deterministic decision.  Pick the first one that appears in the
   1152   // successor list.
   1153   if (!SamePopularity.empty()) {
   1154     SamePopularity.push_back(MostPopularDest);
   1155     TerminatorInst *TI = BB->getTerminator();
   1156     for (unsigned i = 0; ; ++i) {
   1157       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
   1158 
   1159       if (std::find(SamePopularity.begin(), SamePopularity.end(),
   1160                     TI->getSuccessor(i)) == SamePopularity.end())
   1161         continue;
   1162 
   1163       MostPopularDest = TI->getSuccessor(i);
   1164       break;
   1165     }
   1166   }
   1167 
   1168   // Okay, we have finally picked the most popular destination.
   1169   return MostPopularDest;
   1170 }
   1171 
   1172 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
   1173                                                ConstantPreference Preference,
   1174                                                Instruction *CxtI) {
   1175   // If threading this would thread across a loop header, don't even try to
   1176   // thread the edge.
   1177   if (LoopHeaders.count(BB))
   1178     return false;
   1179 
   1180   PredValueInfoTy PredValues;
   1181   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
   1182     return false;
   1183 
   1184   assert(!PredValues.empty() &&
   1185          "ComputeValueKnownInPredecessors returned true with no values");
   1186 
   1187   DEBUG(dbgs() << "IN BB: " << *BB;
   1188         for (const auto &PredValue : PredValues) {
   1189           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
   1190             << *PredValue.first
   1191             << " for pred '" << PredValue.second->getName() << "'.\n";
   1192         });
   1193 
   1194   // Decide what we want to thread through.  Convert our list of known values to
   1195   // a list of known destinations for each pred.  This also discards duplicate
   1196   // predecessors and keeps track of the undefined inputs (which are represented
   1197   // as a null dest in the PredToDestList).
   1198   SmallPtrSet<BasicBlock*, 16> SeenPreds;
   1199   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
   1200 
   1201   BasicBlock *OnlyDest = nullptr;
   1202   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
   1203 
   1204   for (const auto &PredValue : PredValues) {
   1205     BasicBlock *Pred = PredValue.second;
   1206     if (!SeenPreds.insert(Pred).second)
   1207       continue;  // Duplicate predecessor entry.
   1208 
   1209     // If the predecessor ends with an indirect goto, we can't change its
   1210     // destination.
   1211     if (isa<IndirectBrInst>(Pred->getTerminator()))
   1212       continue;
   1213 
   1214     Constant *Val = PredValue.first;
   1215 
   1216     BasicBlock *DestBB;
   1217     if (isa<UndefValue>(Val))
   1218       DestBB = nullptr;
   1219     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
   1220       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
   1221     else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
   1222       DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
   1223     } else {
   1224       assert(isa<IndirectBrInst>(BB->getTerminator())
   1225               && "Unexpected terminator");
   1226       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
   1227     }
   1228 
   1229     // If we have exactly one destination, remember it for efficiency below.
   1230     if (PredToDestList.empty())
   1231       OnlyDest = DestBB;
   1232     else if (OnlyDest != DestBB)
   1233       OnlyDest = MultipleDestSentinel;
   1234 
   1235     PredToDestList.push_back(std::make_pair(Pred, DestBB));
   1236   }
   1237 
   1238   // If all edges were unthreadable, we fail.
   1239   if (PredToDestList.empty())
   1240     return false;
   1241 
   1242   // Determine which is the most common successor.  If we have many inputs and
   1243   // this block is a switch, we want to start by threading the batch that goes
   1244   // to the most popular destination first.  If we only know about one
   1245   // threadable destination (the common case) we can avoid this.
   1246   BasicBlock *MostPopularDest = OnlyDest;
   1247 
   1248   if (MostPopularDest == MultipleDestSentinel)
   1249     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
   1250 
   1251   // Now that we know what the most popular destination is, factor all
   1252   // predecessors that will jump to it into a single predecessor.
   1253   SmallVector<BasicBlock*, 16> PredsToFactor;
   1254   for (const auto &PredToDest : PredToDestList)
   1255     if (PredToDest.second == MostPopularDest) {
   1256       BasicBlock *Pred = PredToDest.first;
   1257 
   1258       // This predecessor may be a switch or something else that has multiple
   1259       // edges to the block.  Factor each of these edges by listing them
   1260       // according to # occurrences in PredsToFactor.
   1261       for (BasicBlock *Succ : successors(Pred))
   1262         if (Succ == BB)
   1263           PredsToFactor.push_back(Pred);
   1264     }
   1265 
   1266   // If the threadable edges are branching on an undefined value, we get to pick
   1267   // the destination that these predecessors should get to.
   1268   if (!MostPopularDest)
   1269     MostPopularDest = BB->getTerminator()->
   1270                             getSuccessor(GetBestDestForJumpOnUndef(BB));
   1271 
   1272   // Ok, try to thread it!
   1273   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
   1274 }
   1275 
   1276 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
   1277 /// a PHI node in the current block.  See if there are any simplifications we
   1278 /// can do based on inputs to the phi node.
   1279 ///
   1280 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
   1281   BasicBlock *BB = PN->getParent();
   1282 
   1283   // TODO: We could make use of this to do it once for blocks with common PHI
   1284   // values.
   1285   SmallVector<BasicBlock*, 1> PredBBs;
   1286   PredBBs.resize(1);
   1287 
   1288   // If any of the predecessor blocks end in an unconditional branch, we can
   1289   // *duplicate* the conditional branch into that block in order to further
   1290   // encourage jump threading and to eliminate cases where we have branch on a
   1291   // phi of an icmp (branch on icmp is much better).
   1292   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1293     BasicBlock *PredBB = PN->getIncomingBlock(i);
   1294     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
   1295       if (PredBr->isUnconditional()) {
   1296         PredBBs[0] = PredBB;
   1297         // Try to duplicate BB into PredBB.
   1298         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
   1299           return true;
   1300       }
   1301   }
   1302 
   1303   return false;
   1304 }
   1305 
   1306 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
   1307 /// a xor instruction in the current block.  See if there are any
   1308 /// simplifications we can do based on inputs to the xor.
   1309 ///
   1310 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
   1311   BasicBlock *BB = BO->getParent();
   1312 
   1313   // If either the LHS or RHS of the xor is a constant, don't do this
   1314   // optimization.
   1315   if (isa<ConstantInt>(BO->getOperand(0)) ||
   1316       isa<ConstantInt>(BO->getOperand(1)))
   1317     return false;
   1318 
   1319   // If the first instruction in BB isn't a phi, we won't be able to infer
   1320   // anything special about any particular predecessor.
   1321   if (!isa<PHINode>(BB->front()))
   1322     return false;
   1323 
   1324   // If we have a xor as the branch input to this block, and we know that the
   1325   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
   1326   // the condition into the predecessor and fix that value to true, saving some
   1327   // logical ops on that path and encouraging other paths to simplify.
   1328   //
   1329   // This copies something like this:
   1330   //
   1331   //  BB:
   1332   //    %X = phi i1 [1],  [%X']
   1333   //    %Y = icmp eq i32 %A, %B
   1334   //    %Z = xor i1 %X, %Y
   1335   //    br i1 %Z, ...
   1336   //
   1337   // Into:
   1338   //  BB':
   1339   //    %Y = icmp ne i32 %A, %B
   1340   //    br i1 %Y, ...
   1341 
   1342   PredValueInfoTy XorOpValues;
   1343   bool isLHS = true;
   1344   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
   1345                                        WantInteger, BO)) {
   1346     assert(XorOpValues.empty());
   1347     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
   1348                                          WantInteger, BO))
   1349       return false;
   1350     isLHS = false;
   1351   }
   1352 
   1353   assert(!XorOpValues.empty() &&
   1354          "ComputeValueKnownInPredecessors returned true with no values");
   1355 
   1356   // Scan the information to see which is most popular: true or false.  The
   1357   // predecessors can be of the set true, false, or undef.
   1358   unsigned NumTrue = 0, NumFalse = 0;
   1359   for (const auto &XorOpValue : XorOpValues) {
   1360     if (isa<UndefValue>(XorOpValue.first))
   1361       // Ignore undefs for the count.
   1362       continue;
   1363     if (cast<ConstantInt>(XorOpValue.first)->isZero())
   1364       ++NumFalse;
   1365     else
   1366       ++NumTrue;
   1367   }
   1368 
   1369   // Determine which value to split on, true, false, or undef if neither.
   1370   ConstantInt *SplitVal = nullptr;
   1371   if (NumTrue > NumFalse)
   1372     SplitVal = ConstantInt::getTrue(BB->getContext());
   1373   else if (NumTrue != 0 || NumFalse != 0)
   1374     SplitVal = ConstantInt::getFalse(BB->getContext());
   1375 
   1376   // Collect all of the blocks that this can be folded into so that we can
   1377   // factor this once and clone it once.
   1378   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
   1379   for (const auto &XorOpValue : XorOpValues) {
   1380     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
   1381       continue;
   1382 
   1383     BlocksToFoldInto.push_back(XorOpValue.second);
   1384   }
   1385 
   1386   // If we inferred a value for all of the predecessors, then duplication won't
   1387   // help us.  However, we can just replace the LHS or RHS with the constant.
   1388   if (BlocksToFoldInto.size() ==
   1389       cast<PHINode>(BB->front()).getNumIncomingValues()) {
   1390     if (!SplitVal) {
   1391       // If all preds provide undef, just nuke the xor, because it is undef too.
   1392       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
   1393       BO->eraseFromParent();
   1394     } else if (SplitVal->isZero()) {
   1395       // If all preds provide 0, replace the xor with the other input.
   1396       BO->replaceAllUsesWith(BO->getOperand(isLHS));
   1397       BO->eraseFromParent();
   1398     } else {
   1399       // If all preds provide 1, set the computed value to 1.
   1400       BO->setOperand(!isLHS, SplitVal);
   1401     }
   1402 
   1403     return true;
   1404   }
   1405 
   1406   // Try to duplicate BB into PredBB.
   1407   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
   1408 }
   1409 
   1410 
   1411 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
   1412 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
   1413 /// NewPred using the entries from OldPred (suitably mapped).
   1414 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
   1415                                             BasicBlock *OldPred,
   1416                                             BasicBlock *NewPred,
   1417                                      DenseMap<Instruction*, Value*> &ValueMap) {
   1418   for (BasicBlock::iterator PNI = PHIBB->begin();
   1419        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
   1420     // Ok, we have a PHI node.  Figure out what the incoming value was for the
   1421     // DestBlock.
   1422     Value *IV = PN->getIncomingValueForBlock(OldPred);
   1423 
   1424     // Remap the value if necessary.
   1425     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
   1426       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
   1427       if (I != ValueMap.end())
   1428         IV = I->second;
   1429     }
   1430 
   1431     PN->addIncoming(IV, NewPred);
   1432   }
   1433 }
   1434 
   1435 /// ThreadEdge - We have decided that it is safe and profitable to factor the
   1436 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
   1437 /// across BB.  Transform the IR to reflect this change.
   1438 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
   1439                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
   1440                                    BasicBlock *SuccBB) {
   1441   // If threading to the same block as we come from, we would infinite loop.
   1442   if (SuccBB == BB) {
   1443     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
   1444           << "' - would thread to self!\n");
   1445     return false;
   1446   }
   1447 
   1448   // If threading this would thread across a loop header, don't thread the edge.
   1449   // See the comments above FindLoopHeaders for justifications and caveats.
   1450   if (LoopHeaders.count(BB)) {
   1451     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
   1452           << "' to dest BB '" << SuccBB->getName()
   1453           << "' - it might create an irreducible loop!\n");
   1454     return false;
   1455   }
   1456 
   1457   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
   1458   if (JumpThreadCost > BBDupThreshold) {
   1459     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
   1460           << "' - Cost is too high: " << JumpThreadCost << "\n");
   1461     return false;
   1462   }
   1463 
   1464   // And finally, do it!  Start by factoring the predecessors if needed.
   1465   BasicBlock *PredBB;
   1466   if (PredBBs.size() == 1)
   1467     PredBB = PredBBs[0];
   1468   else {
   1469     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
   1470           << " common predecessors.\n");
   1471     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
   1472   }
   1473 
   1474   // And finally, do it!
   1475   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
   1476         << SuccBB->getName() << "' with cost: " << JumpThreadCost
   1477         << ", across block:\n    "
   1478         << *BB << "\n");
   1479 
   1480   LVI->threadEdge(PredBB, BB, SuccBB);
   1481 
   1482   // We are going to have to map operands from the original BB block to the new
   1483   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
   1484   // account for entry from PredBB.
   1485   DenseMap<Instruction*, Value*> ValueMapping;
   1486 
   1487   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
   1488                                          BB->getName()+".thread",
   1489                                          BB->getParent(), BB);
   1490   NewBB->moveAfter(PredBB);
   1491 
   1492   // Set the block frequency of NewBB.
   1493   if (HasProfileData) {
   1494     auto NewBBFreq =
   1495         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
   1496     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
   1497   }
   1498 
   1499   BasicBlock::iterator BI = BB->begin();
   1500   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
   1501     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
   1502 
   1503   // Clone the non-phi instructions of BB into NewBB, keeping track of the
   1504   // mapping and using it to remap operands in the cloned instructions.
   1505   for (; !isa<TerminatorInst>(BI); ++BI) {
   1506     Instruction *New = BI->clone();
   1507     New->setName(BI->getName());
   1508     NewBB->getInstList().push_back(New);
   1509     ValueMapping[&*BI] = New;
   1510 
   1511     // Remap operands to patch up intra-block references.
   1512     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
   1513       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
   1514         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
   1515         if (I != ValueMapping.end())
   1516           New->setOperand(i, I->second);
   1517       }
   1518   }
   1519 
   1520   // We didn't copy the terminator from BB over to NewBB, because there is now
   1521   // an unconditional jump to SuccBB.  Insert the unconditional jump.
   1522   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
   1523   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
   1524 
   1525   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
   1526   // PHI nodes for NewBB now.
   1527   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
   1528 
   1529   // If there were values defined in BB that are used outside the block, then we
   1530   // now have to update all uses of the value to use either the original value,
   1531   // the cloned value, or some PHI derived value.  This can require arbitrary
   1532   // PHI insertion, of which we are prepared to do, clean these up now.
   1533   SSAUpdater SSAUpdate;
   1534   SmallVector<Use*, 16> UsesToRename;
   1535   for (Instruction &I : *BB) {
   1536     // Scan all uses of this instruction to see if it is used outside of its
   1537     // block, and if so, record them in UsesToRename.
   1538     for (Use &U : I.uses()) {
   1539       Instruction *User = cast<Instruction>(U.getUser());
   1540       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
   1541         if (UserPN->getIncomingBlock(U) == BB)
   1542           continue;
   1543       } else if (User->getParent() == BB)
   1544         continue;
   1545 
   1546       UsesToRename.push_back(&U);
   1547     }
   1548 
   1549     // If there are no uses outside the block, we're done with this instruction.
   1550     if (UsesToRename.empty())
   1551       continue;
   1552 
   1553     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
   1554 
   1555     // We found a use of I outside of BB.  Rename all uses of I that are outside
   1556     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
   1557     // with the two values we know.
   1558     SSAUpdate.Initialize(I.getType(), I.getName());
   1559     SSAUpdate.AddAvailableValue(BB, &I);
   1560     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
   1561 
   1562     while (!UsesToRename.empty())
   1563       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
   1564     DEBUG(dbgs() << "\n");
   1565   }
   1566 
   1567 
   1568   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
   1569   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
   1570   // us to simplify any PHI nodes in BB.
   1571   TerminatorInst *PredTerm = PredBB->getTerminator();
   1572   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
   1573     if (PredTerm->getSuccessor(i) == BB) {
   1574       BB->removePredecessor(PredBB, true);
   1575       PredTerm->setSuccessor(i, NewBB);
   1576     }
   1577 
   1578   // At this point, the IR is fully up to date and consistent.  Do a quick scan
   1579   // over the new instructions and zap any that are constants or dead.  This
   1580   // frequently happens because of phi translation.
   1581   SimplifyInstructionsInBlock(NewBB, TLI);
   1582 
   1583   // Update the edge weight from BB to SuccBB, which should be less than before.
   1584   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
   1585 
   1586   // Threaded an edge!
   1587   ++NumThreads;
   1588   return true;
   1589 }
   1590 
   1591 /// Create a new basic block that will be the predecessor of BB and successor of
   1592 /// all blocks in Preds. When profile data is availble, update the frequency of
   1593 /// this new block.
   1594 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
   1595                                                ArrayRef<BasicBlock *> Preds,
   1596                                                const char *Suffix) {
   1597   // Collect the frequencies of all predecessors of BB, which will be used to
   1598   // update the edge weight on BB->SuccBB.
   1599   BlockFrequency PredBBFreq(0);
   1600   if (HasProfileData)
   1601     for (auto Pred : Preds)
   1602       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
   1603 
   1604   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
   1605 
   1606   // Set the block frequency of the newly created PredBB, which is the sum of
   1607   // frequencies of Preds.
   1608   if (HasProfileData)
   1609     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
   1610   return PredBB;
   1611 }
   1612 
   1613 /// Update the block frequency of BB and branch weight and the metadata on the
   1614 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
   1615 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
   1616 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
   1617                                                      BasicBlock *BB,
   1618                                                      BasicBlock *NewBB,
   1619                                                      BasicBlock *SuccBB) {
   1620   if (!HasProfileData)
   1621     return;
   1622 
   1623   assert(BFI && BPI && "BFI & BPI should have been created here");
   1624 
   1625   // As the edge from PredBB to BB is deleted, we have to update the block
   1626   // frequency of BB.
   1627   auto BBOrigFreq = BFI->getBlockFreq(BB);
   1628   auto NewBBFreq = BFI->getBlockFreq(NewBB);
   1629   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
   1630   auto BBNewFreq = BBOrigFreq - NewBBFreq;
   1631   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
   1632 
   1633   // Collect updated outgoing edges' frequencies from BB and use them to update
   1634   // edge probabilities.
   1635   SmallVector<uint64_t, 4> BBSuccFreq;
   1636   for (BasicBlock *Succ : successors(BB)) {
   1637     auto SuccFreq = (Succ == SuccBB)
   1638                         ? BB2SuccBBFreq - NewBBFreq
   1639                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
   1640     BBSuccFreq.push_back(SuccFreq.getFrequency());
   1641   }
   1642 
   1643   uint64_t MaxBBSuccFreq =
   1644       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
   1645 
   1646   SmallVector<BranchProbability, 4> BBSuccProbs;
   1647   if (MaxBBSuccFreq == 0)
   1648     BBSuccProbs.assign(BBSuccFreq.size(),
   1649                        {1, static_cast<unsigned>(BBSuccFreq.size())});
   1650   else {
   1651     for (uint64_t Freq : BBSuccFreq)
   1652       BBSuccProbs.push_back(
   1653           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
   1654     // Normalize edge probabilities so that they sum up to one.
   1655     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
   1656                                               BBSuccProbs.end());
   1657   }
   1658 
   1659   // Update edge probabilities in BPI.
   1660   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
   1661     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
   1662 
   1663   if (BBSuccProbs.size() >= 2) {
   1664     SmallVector<uint32_t, 4> Weights;
   1665     for (auto Prob : BBSuccProbs)
   1666       Weights.push_back(Prob.getNumerator());
   1667 
   1668     auto TI = BB->getTerminator();
   1669     TI->setMetadata(
   1670         LLVMContext::MD_prof,
   1671         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
   1672   }
   1673 }
   1674 
   1675 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
   1676 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
   1677 /// If we can duplicate the contents of BB up into PredBB do so now, this
   1678 /// improves the odds that the branch will be on an analyzable instruction like
   1679 /// a compare.
   1680 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
   1681     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
   1682   assert(!PredBBs.empty() && "Can't handle an empty set");
   1683 
   1684   // If BB is a loop header, then duplicating this block outside the loop would
   1685   // cause us to transform this into an irreducible loop, don't do this.
   1686   // See the comments above FindLoopHeaders for justifications and caveats.
   1687   if (LoopHeaders.count(BB)) {
   1688     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
   1689           << "' into predecessor block '" << PredBBs[0]->getName()
   1690           << "' - it might create an irreducible loop!\n");
   1691     return false;
   1692   }
   1693 
   1694   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
   1695   if (DuplicationCost > BBDupThreshold) {
   1696     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
   1697           << "' - Cost is too high: " << DuplicationCost << "\n");
   1698     return false;
   1699   }
   1700 
   1701   // And finally, do it!  Start by factoring the predecessors if needed.
   1702   BasicBlock *PredBB;
   1703   if (PredBBs.size() == 1)
   1704     PredBB = PredBBs[0];
   1705   else {
   1706     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
   1707           << " common predecessors.\n");
   1708     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
   1709   }
   1710 
   1711   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
   1712   // of PredBB.
   1713   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
   1714         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
   1715         << DuplicationCost << " block is:" << *BB << "\n");
   1716 
   1717   // Unless PredBB ends with an unconditional branch, split the edge so that we
   1718   // can just clone the bits from BB into the end of the new PredBB.
   1719   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
   1720 
   1721   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
   1722     PredBB = SplitEdge(PredBB, BB);
   1723     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
   1724   }
   1725 
   1726   // We are going to have to map operands from the original BB block into the
   1727   // PredBB block.  Evaluate PHI nodes in BB.
   1728   DenseMap<Instruction*, Value*> ValueMapping;
   1729 
   1730   BasicBlock::iterator BI = BB->begin();
   1731   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
   1732     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
   1733   // Clone the non-phi instructions of BB into PredBB, keeping track of the
   1734   // mapping and using it to remap operands in the cloned instructions.
   1735   for (; BI != BB->end(); ++BI) {
   1736     Instruction *New = BI->clone();
   1737 
   1738     // Remap operands to patch up intra-block references.
   1739     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
   1740       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
   1741         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
   1742         if (I != ValueMapping.end())
   1743           New->setOperand(i, I->second);
   1744       }
   1745 
   1746     // If this instruction can be simplified after the operands are updated,
   1747     // just use the simplified value instead.  This frequently happens due to
   1748     // phi translation.
   1749     if (Value *IV =
   1750             SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
   1751       ValueMapping[&*BI] = IV;
   1752       if (!New->mayHaveSideEffects()) {
   1753         delete New;
   1754         New = nullptr;
   1755       }
   1756     } else {
   1757       ValueMapping[&*BI] = New;
   1758     }
   1759     if (New) {
   1760       // Otherwise, insert the new instruction into the block.
   1761       New->setName(BI->getName());
   1762       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
   1763     }
   1764   }
   1765 
   1766   // Check to see if the targets of the branch had PHI nodes. If so, we need to
   1767   // add entries to the PHI nodes for branch from PredBB now.
   1768   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
   1769   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
   1770                                   ValueMapping);
   1771   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
   1772                                   ValueMapping);
   1773 
   1774   // If there were values defined in BB that are used outside the block, then we
   1775   // now have to update all uses of the value to use either the original value,
   1776   // the cloned value, or some PHI derived value.  This can require arbitrary
   1777   // PHI insertion, of which we are prepared to do, clean these up now.
   1778   SSAUpdater SSAUpdate;
   1779   SmallVector<Use*, 16> UsesToRename;
   1780   for (Instruction &I : *BB) {
   1781     // Scan all uses of this instruction to see if it is used outside of its
   1782     // block, and if so, record them in UsesToRename.
   1783     for (Use &U : I.uses()) {
   1784       Instruction *User = cast<Instruction>(U.getUser());
   1785       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
   1786         if (UserPN->getIncomingBlock(U) == BB)
   1787           continue;
   1788       } else if (User->getParent() == BB)
   1789         continue;
   1790 
   1791       UsesToRename.push_back(&U);
   1792     }
   1793 
   1794     // If there are no uses outside the block, we're done with this instruction.
   1795     if (UsesToRename.empty())
   1796       continue;
   1797 
   1798     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
   1799 
   1800     // We found a use of I outside of BB.  Rename all uses of I that are outside
   1801     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
   1802     // with the two values we know.
   1803     SSAUpdate.Initialize(I.getType(), I.getName());
   1804     SSAUpdate.AddAvailableValue(BB, &I);
   1805     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
   1806 
   1807     while (!UsesToRename.empty())
   1808       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
   1809     DEBUG(dbgs() << "\n");
   1810   }
   1811 
   1812   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
   1813   // that we nuked.
   1814   BB->removePredecessor(PredBB, true);
   1815 
   1816   // Remove the unconditional branch at the end of the PredBB block.
   1817   OldPredBranch->eraseFromParent();
   1818 
   1819   ++NumDupes;
   1820   return true;
   1821 }
   1822 
   1823 /// TryToUnfoldSelect - Look for blocks of the form
   1824 /// bb1:
   1825 ///   %a = select
   1826 ///   br bb
   1827 ///
   1828 /// bb2:
   1829 ///   %p = phi [%a, %bb] ...
   1830 ///   %c = icmp %p
   1831 ///   br i1 %c
   1832 ///
   1833 /// And expand the select into a branch structure if one of its arms allows %c
   1834 /// to be folded. This later enables threading from bb1 over bb2.
   1835 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
   1836   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
   1837   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
   1838   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
   1839 
   1840   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
   1841       CondLHS->getParent() != BB)
   1842     return false;
   1843 
   1844   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
   1845     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
   1846     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
   1847 
   1848     // Look if one of the incoming values is a select in the corresponding
   1849     // predecessor.
   1850     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
   1851       continue;
   1852 
   1853     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
   1854     if (!PredTerm || !PredTerm->isUnconditional())
   1855       continue;
   1856 
   1857     // Now check if one of the select values would allow us to constant fold the
   1858     // terminator in BB. We don't do the transform if both sides fold, those
   1859     // cases will be threaded in any case.
   1860     LazyValueInfo::Tristate LHSFolds =
   1861         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
   1862                                 CondRHS, Pred, BB, CondCmp);
   1863     LazyValueInfo::Tristate RHSFolds =
   1864         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
   1865                                 CondRHS, Pred, BB, CondCmp);
   1866     if ((LHSFolds != LazyValueInfo::Unknown ||
   1867          RHSFolds != LazyValueInfo::Unknown) &&
   1868         LHSFolds != RHSFolds) {
   1869       // Expand the select.
   1870       //
   1871       // Pred --
   1872       //  |    v
   1873       //  |  NewBB
   1874       //  |    |
   1875       //  |-----
   1876       //  v
   1877       // BB
   1878       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
   1879                                              BB->getParent(), BB);
   1880       // Move the unconditional branch to NewBB.
   1881       PredTerm->removeFromParent();
   1882       NewBB->getInstList().insert(NewBB->end(), PredTerm);
   1883       // Create a conditional branch and update PHI nodes.
   1884       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
   1885       CondLHS->setIncomingValue(I, SI->getFalseValue());
   1886       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
   1887       // The select is now dead.
   1888       SI->eraseFromParent();
   1889 
   1890       // Update any other PHI nodes in BB.
   1891       for (BasicBlock::iterator BI = BB->begin();
   1892            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
   1893         if (Phi != CondLHS)
   1894           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
   1895       return true;
   1896     }
   1897   }
   1898   return false;
   1899 }
   1900 
   1901 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form
   1902 /// bb:
   1903 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
   1904 ///   %s = select p, trueval, falseval
   1905 ///
   1906 /// And expand the select into a branch structure. This later enables
   1907 /// jump-threading over bb in this pass.
   1908 ///
   1909 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
   1910 /// select if the associated PHI has at least one constant.  If the unfolded
   1911 /// select is not jump-threaded, it will be folded again in the later
   1912 /// optimizations.
   1913 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
   1914   // If threading this would thread across a loop header, don't thread the edge.
   1915   // See the comments above FindLoopHeaders for justifications and caveats.
   1916   if (LoopHeaders.count(BB))
   1917     return false;
   1918 
   1919   // Look for a Phi/Select pair in the same basic block.  The Phi feeds the
   1920   // condition of the Select and at least one of the incoming values is a
   1921   // constant.
   1922   for (BasicBlock::iterator BI = BB->begin();
   1923        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
   1924     unsigned NumPHIValues = PN->getNumIncomingValues();
   1925     if (NumPHIValues == 0 || !PN->hasOneUse())
   1926       continue;
   1927 
   1928     SelectInst *SI = dyn_cast<SelectInst>(PN->user_back());
   1929     if (!SI || SI->getParent() != BB)
   1930       continue;
   1931 
   1932     Value *Cond = SI->getCondition();
   1933     if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1))
   1934       continue;
   1935 
   1936     bool HasConst = false;
   1937     for (unsigned i = 0; i != NumPHIValues; ++i) {
   1938       if (PN->getIncomingBlock(i) == BB)
   1939         return false;
   1940       if (isa<ConstantInt>(PN->getIncomingValue(i)))
   1941         HasConst = true;
   1942     }
   1943 
   1944     if (HasConst) {
   1945       // Expand the select.
   1946       TerminatorInst *Term =
   1947           SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
   1948       PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
   1949       NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
   1950       NewPN->addIncoming(SI->getFalseValue(), BB);
   1951       SI->replaceAllUsesWith(NewPN);
   1952       SI->eraseFromParent();
   1953       return true;
   1954     }
   1955   }
   1956 
   1957   return false;
   1958 }
   1959