Home | History | Annotate | Download | only in dsymutil
      1 //===- tools/dsymutil/DwarfLinker.cpp - Dwarf debug info linker -----------===//
      2 //
      3 //                             The LLVM Linker
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 #include "DebugMap.h"
     10 #include "BinaryHolder.h"
     11 #include "DebugMap.h"
     12 #include "dsymutil.h"
     13 #include "MachOUtils.h"
     14 #include "NonRelocatableStringpool.h"
     15 #include "llvm/ADT/IntervalMap.h"
     16 #include "llvm/ADT/StringMap.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/CodeGen/AsmPrinter.h"
     19 #include "llvm/CodeGen/DIE.h"
     20 #include "llvm/Config/config.h"
     21 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
     22 #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h"
     23 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
     24 #include "llvm/MC/MCAsmBackend.h"
     25 #include "llvm/MC/MCAsmInfo.h"
     26 #include "llvm/MC/MCContext.h"
     27 #include "llvm/MC/MCCodeEmitter.h"
     28 #include "llvm/MC/MCDwarf.h"
     29 #include "llvm/MC/MCInstrInfo.h"
     30 #include "llvm/MC/MCObjectFileInfo.h"
     31 #include "llvm/MC/MCRegisterInfo.h"
     32 #include "llvm/MC/MCStreamer.h"
     33 #include "llvm/MC/MCSubtargetInfo.h"
     34 #include "llvm/MC/MCTargetOptionsCommandFlags.h"
     35 #include "llvm/Object/MachO.h"
     36 #include "llvm/Support/Dwarf.h"
     37 #include "llvm/Support/LEB128.h"
     38 #include "llvm/Support/TargetRegistry.h"
     39 #include "llvm/Target/TargetMachine.h"
     40 #include "llvm/Target/TargetOptions.h"
     41 #include <string>
     42 #include <tuple>
     43 
     44 namespace llvm {
     45 namespace dsymutil {
     46 
     47 namespace {
     48 
     49 template <typename KeyT, typename ValT>
     50 using HalfOpenIntervalMap =
     51     IntervalMap<KeyT, ValT, IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
     52                 IntervalMapHalfOpenInfo<KeyT>>;
     53 
     54 typedef HalfOpenIntervalMap<uint64_t, int64_t> FunctionIntervals;
     55 
     56 // FIXME: Delete this structure.
     57 struct PatchLocation {
     58   DIE::value_iterator I;
     59 
     60   PatchLocation() = default;
     61   PatchLocation(DIE::value_iterator I) : I(I) {}
     62 
     63   void set(uint64_t New) const {
     64     assert(I);
     65     const auto &Old = *I;
     66     assert(Old.getType() == DIEValue::isInteger);
     67     *I = DIEValue(Old.getAttribute(), Old.getForm(), DIEInteger(New));
     68   }
     69 
     70   uint64_t get() const {
     71     assert(I);
     72     return I->getDIEInteger().getValue();
     73   }
     74 };
     75 
     76 class CompileUnit;
     77 struct DeclMapInfo;
     78 
     79 /// A DeclContext is a named program scope that is used for ODR
     80 /// uniquing of types.
     81 /// The set of DeclContext for the ODR-subject parts of a Dwarf link
     82 /// is expanded (and uniqued) with each new object file processed. We
     83 /// need to determine the context of each DIE in an linked object file
     84 /// to see if the corresponding type has already been emitted.
     85 ///
     86 /// The contexts are conceptually organised as a tree (eg. a function
     87 /// scope is contained in a namespace scope that contains other
     88 /// scopes), but storing/accessing them in an actual tree is too
     89 /// inefficient: we need to be able to very quickly query a context
     90 /// for a given child context by name. Storing a StringMap in each
     91 /// DeclContext would be too space inefficient.
     92 /// The solution here is to give each DeclContext a link to its parent
     93 /// (this allows to walk up the tree), but to query the existance of a
     94 /// specific DeclContext using a separate DenseMap keyed on the hash
     95 /// of the fully qualified name of the context.
     96 class DeclContext {
     97   unsigned QualifiedNameHash;
     98   uint32_t Line;
     99   uint32_t ByteSize;
    100   uint16_t Tag;
    101   StringRef Name;
    102   StringRef File;
    103   const DeclContext &Parent;
    104   const DWARFDebugInfoEntryMinimal *LastSeenDIE;
    105   uint32_t LastSeenCompileUnitID;
    106   uint32_t CanonicalDIEOffset;
    107 
    108   friend DeclMapInfo;
    109 
    110 public:
    111   typedef DenseSet<DeclContext *, DeclMapInfo> Map;
    112 
    113   DeclContext()
    114       : QualifiedNameHash(0), Line(0), ByteSize(0),
    115         Tag(dwarf::DW_TAG_compile_unit), Name(), File(), Parent(*this),
    116         LastSeenDIE(nullptr), LastSeenCompileUnitID(0), CanonicalDIEOffset(0) {}
    117 
    118   DeclContext(unsigned Hash, uint32_t Line, uint32_t ByteSize, uint16_t Tag,
    119               StringRef Name, StringRef File, const DeclContext &Parent,
    120               const DWARFDebugInfoEntryMinimal *LastSeenDIE = nullptr,
    121               unsigned CUId = 0)
    122       : QualifiedNameHash(Hash), Line(Line), ByteSize(ByteSize), Tag(Tag),
    123         Name(Name), File(File), Parent(Parent), LastSeenDIE(LastSeenDIE),
    124         LastSeenCompileUnitID(CUId), CanonicalDIEOffset(0) {}
    125 
    126   uint32_t getQualifiedNameHash() const { return QualifiedNameHash; }
    127 
    128   bool setLastSeenDIE(CompileUnit &U, const DWARFDebugInfoEntryMinimal *Die);
    129 
    130   uint32_t getCanonicalDIEOffset() const { return CanonicalDIEOffset; }
    131   void setCanonicalDIEOffset(uint32_t Offset) { CanonicalDIEOffset = Offset; }
    132 
    133   uint16_t getTag() const { return Tag; }
    134   StringRef getName() const { return Name; }
    135 };
    136 
    137 /// Info type for the DenseMap storing the DeclContext pointers.
    138 struct DeclMapInfo : private DenseMapInfo<DeclContext *> {
    139   using DenseMapInfo<DeclContext *>::getEmptyKey;
    140   using DenseMapInfo<DeclContext *>::getTombstoneKey;
    141 
    142   static unsigned getHashValue(const DeclContext *Ctxt) {
    143     return Ctxt->QualifiedNameHash;
    144   }
    145 
    146   static bool isEqual(const DeclContext *LHS, const DeclContext *RHS) {
    147     if (RHS == getEmptyKey() || RHS == getTombstoneKey())
    148       return RHS == LHS;
    149     return LHS->QualifiedNameHash == RHS->QualifiedNameHash &&
    150            LHS->Line == RHS->Line && LHS->ByteSize == RHS->ByteSize &&
    151            LHS->Name.data() == RHS->Name.data() &&
    152            LHS->File.data() == RHS->File.data() &&
    153            LHS->Parent.QualifiedNameHash == RHS->Parent.QualifiedNameHash;
    154   }
    155 };
    156 
    157 /// This class gives a tree-like API to the DenseMap that stores the
    158 /// DeclContext objects. It also holds the BumpPtrAllocator where
    159 /// these objects will be allocated.
    160 class DeclContextTree {
    161   BumpPtrAllocator Allocator;
    162   DeclContext Root;
    163   DeclContext::Map Contexts;
    164 
    165 public:
    166   /// Get the child of \a Context described by \a DIE in \a Unit. The
    167   /// required strings will be interned in \a StringPool.
    168   /// \returns The child DeclContext along with one bit that is set if
    169   /// this context is invalid.
    170   /// An invalid context means it shouldn't be considered for uniquing, but its
    171   /// not returning null, because some children of that context might be
    172   /// uniquing candidates.  FIXME: The invalid bit along the return value is to
    173   /// emulate some dsymutil-classic functionality.
    174   PointerIntPair<DeclContext *, 1>
    175   getChildDeclContext(DeclContext &Context,
    176                       const DWARFDebugInfoEntryMinimal *DIE, CompileUnit &Unit,
    177                       NonRelocatableStringpool &StringPool, bool InClangModule);
    178 
    179   DeclContext &getRoot() { return Root; }
    180 };
    181 
    182 /// \brief Stores all information relating to a compile unit, be it in
    183 /// its original instance in the object file to its brand new cloned
    184 /// and linked DIE tree.
    185 class CompileUnit {
    186 public:
    187   /// \brief Information gathered about a DIE in the object file.
    188   struct DIEInfo {
    189     int64_t AddrAdjust; ///< Address offset to apply to the described entity.
    190     DeclContext *Ctxt;  ///< ODR Declaration context.
    191     DIE *Clone;         ///< Cloned version of that DIE.
    192     uint32_t ParentIdx; ///< The index of this DIE's parent.
    193     bool Keep : 1;      ///< Is the DIE part of the linked output?
    194     bool InDebugMap : 1;///< Was this DIE's entity found in the map?
    195     bool Prune : 1;     ///< Is this a pure forward declaration we can strip?
    196   };
    197 
    198   CompileUnit(DWARFUnit &OrigUnit, unsigned ID, bool CanUseODR,
    199               StringRef ClangModuleName)
    200       : OrigUnit(OrigUnit), ID(ID), LowPc(UINT64_MAX), HighPc(0), RangeAlloc(),
    201         Ranges(RangeAlloc), ClangModuleName(ClangModuleName) {
    202     Info.resize(OrigUnit.getNumDIEs());
    203 
    204     const auto *CUDie = OrigUnit.getUnitDIE(false);
    205     unsigned Lang = CUDie->getAttributeValueAsUnsignedConstant(
    206         &OrigUnit, dwarf::DW_AT_language, 0);
    207     HasODR = CanUseODR && (Lang == dwarf::DW_LANG_C_plus_plus ||
    208                            Lang == dwarf::DW_LANG_C_plus_plus_03 ||
    209                            Lang == dwarf::DW_LANG_C_plus_plus_11 ||
    210                            Lang == dwarf::DW_LANG_C_plus_plus_14 ||
    211                            Lang == dwarf::DW_LANG_ObjC_plus_plus);
    212   }
    213 
    214   CompileUnit(CompileUnit &&RHS)
    215       : OrigUnit(RHS.OrigUnit), Info(std::move(RHS.Info)),
    216         CUDie(std::move(RHS.CUDie)), StartOffset(RHS.StartOffset),
    217         NextUnitOffset(RHS.NextUnitOffset), RangeAlloc(), Ranges(RangeAlloc) {
    218     // The CompileUnit container has been 'reserve()'d with the right
    219     // size. We cannot move the IntervalMap anyway.
    220     llvm_unreachable("CompileUnits should not be moved.");
    221   }
    222 
    223   DWARFUnit &getOrigUnit() const { return OrigUnit; }
    224 
    225   unsigned getUniqueID() const { return ID; }
    226 
    227   DIE *getOutputUnitDIE() const { return CUDie; }
    228   void setOutputUnitDIE(DIE *Die) { CUDie = Die; }
    229 
    230   bool hasODR() const { return HasODR; }
    231   bool isClangModule() const { return !ClangModuleName.empty(); }
    232   const std::string &getClangModuleName() const { return ClangModuleName; }
    233 
    234   DIEInfo &getInfo(unsigned Idx) { return Info[Idx]; }
    235   const DIEInfo &getInfo(unsigned Idx) const { return Info[Idx]; }
    236 
    237   uint64_t getStartOffset() const { return StartOffset; }
    238   uint64_t getNextUnitOffset() const { return NextUnitOffset; }
    239   void setStartOffset(uint64_t DebugInfoSize) { StartOffset = DebugInfoSize; }
    240 
    241   uint64_t getLowPc() const { return LowPc; }
    242   uint64_t getHighPc() const { return HighPc; }
    243 
    244   Optional<PatchLocation> getUnitRangesAttribute() const {
    245     return UnitRangeAttribute;
    246   }
    247   const FunctionIntervals &getFunctionRanges() const { return Ranges; }
    248   const std::vector<PatchLocation> &getRangesAttributes() const {
    249     return RangeAttributes;
    250   }
    251 
    252   const std::vector<std::pair<PatchLocation, int64_t>> &
    253   getLocationAttributes() const {
    254     return LocationAttributes;
    255   }
    256 
    257   void setHasInterestingContent() { HasInterestingContent = true; }
    258   bool hasInterestingContent() { return HasInterestingContent; }
    259 
    260   /// Mark every DIE in this unit as kept. This function also
    261   /// marks variables as InDebugMap so that they appear in the
    262   /// reconstructed accelerator tables.
    263   void markEverythingAsKept();
    264 
    265   /// \brief Compute the end offset for this unit. Must be
    266   /// called after the CU's DIEs have been cloned.
    267   /// \returns the next unit offset (which is also the current
    268   /// debug_info section size).
    269   uint64_t computeNextUnitOffset();
    270 
    271   /// \brief Keep track of a forward reference to DIE \p Die in \p
    272   /// RefUnit by \p Attr. The attribute should be fixed up later to
    273   /// point to the absolute offset of \p Die in the debug_info section
    274   /// or to the canonical offset of \p Ctxt if it is non-null.
    275   void noteForwardReference(DIE *Die, const CompileUnit *RefUnit,
    276                             DeclContext *Ctxt, PatchLocation Attr);
    277 
    278   /// \brief Apply all fixups recored by noteForwardReference().
    279   void fixupForwardReferences();
    280 
    281   /// \brief Add a function range [\p LowPC, \p HighPC) that is
    282   /// relocatad by applying offset \p PCOffset.
    283   void addFunctionRange(uint64_t LowPC, uint64_t HighPC, int64_t PCOffset);
    284 
    285   /// \brief Keep track of a DW_AT_range attribute that we will need to
    286   /// patch up later.
    287   void noteRangeAttribute(const DIE &Die, PatchLocation Attr);
    288 
    289   /// \brief Keep track of a location attribute pointing to a location
    290   /// list in the debug_loc section.
    291   void noteLocationAttribute(PatchLocation Attr, int64_t PcOffset);
    292 
    293   /// \brief Add a name accelerator entry for \p Die with \p Name
    294   /// which is stored in the string table at \p Offset.
    295   void addNameAccelerator(const DIE *Die, const char *Name, uint32_t Offset,
    296                           bool SkipPubnamesSection = false);
    297 
    298   /// \brief Add a type accelerator entry for \p Die with \p Name
    299   /// which is stored in the string table at \p Offset.
    300   void addTypeAccelerator(const DIE *Die, const char *Name, uint32_t Offset);
    301 
    302   struct AccelInfo {
    303     StringRef Name;      ///< Name of the entry.
    304     const DIE *Die;      ///< DIE this entry describes.
    305     uint32_t NameOffset; ///< Offset of Name in the string pool.
    306     bool SkipPubSection; ///< Emit this entry only in the apple_* sections.
    307 
    308     AccelInfo(StringRef Name, const DIE *Die, uint32_t NameOffset,
    309               bool SkipPubSection = false)
    310         : Name(Name), Die(Die), NameOffset(NameOffset),
    311           SkipPubSection(SkipPubSection) {}
    312   };
    313 
    314   const std::vector<AccelInfo> &getPubnames() const { return Pubnames; }
    315   const std::vector<AccelInfo> &getPubtypes() const { return Pubtypes; }
    316 
    317   /// Get the full path for file \a FileNum in the line table
    318   StringRef getResolvedPath(unsigned FileNum) {
    319     if (FileNum >= ResolvedPaths.size())
    320       return StringRef();
    321     return ResolvedPaths[FileNum];
    322   }
    323 
    324   /// Set the fully resolved path for the line-table's file \a FileNum
    325   /// to \a Path.
    326   void setResolvedPath(unsigned FileNum, StringRef Path) {
    327     if (ResolvedPaths.size() <= FileNum)
    328       ResolvedPaths.resize(FileNum + 1);
    329     ResolvedPaths[FileNum] = Path;
    330   }
    331 
    332 private:
    333   DWARFUnit &OrigUnit;
    334   unsigned ID;
    335   std::vector<DIEInfo> Info; ///< DIE info indexed by DIE index.
    336   DIE *CUDie;                ///< Root of the linked DIE tree.
    337 
    338   uint64_t StartOffset;
    339   uint64_t NextUnitOffset;
    340 
    341   uint64_t LowPc;
    342   uint64_t HighPc;
    343 
    344   /// \brief A list of attributes to fixup with the absolute offset of
    345   /// a DIE in the debug_info section.
    346   ///
    347   /// The offsets for the attributes in this array couldn't be set while
    348   /// cloning because for cross-cu forward refences the target DIE's
    349   /// offset isn't known you emit the reference attribute.
    350   std::vector<std::tuple<DIE *, const CompileUnit *, DeclContext *,
    351                          PatchLocation>> ForwardDIEReferences;
    352 
    353   FunctionIntervals::Allocator RangeAlloc;
    354   /// \brief The ranges in that interval map are the PC ranges for
    355   /// functions in this unit, associated with the PC offset to apply
    356   /// to the addresses to get the linked address.
    357   FunctionIntervals Ranges;
    358 
    359   /// \brief DW_AT_ranges attributes to patch after we have gathered
    360   /// all the unit's function addresses.
    361   /// @{
    362   std::vector<PatchLocation> RangeAttributes;
    363   Optional<PatchLocation> UnitRangeAttribute;
    364   /// @}
    365 
    366   /// \brief Location attributes that need to be transfered from th
    367   /// original debug_loc section to the liked one. They are stored
    368   /// along with the PC offset that is to be applied to their
    369   /// function's address.
    370   std::vector<std::pair<PatchLocation, int64_t>> LocationAttributes;
    371 
    372   /// \brief Accelerator entries for the unit, both for the pub*
    373   /// sections and the apple* ones.
    374   /// @{
    375   std::vector<AccelInfo> Pubnames;
    376   std::vector<AccelInfo> Pubtypes;
    377   /// @}
    378 
    379   /// Cached resolved paths from the line table.
    380   /// Note, the StringRefs here point in to the intern (uniquing) string pool.
    381   /// This means that a StringRef returned here doesn't need to then be uniqued
    382   /// for the purposes of getting a unique address for each string.
    383   std::vector<StringRef> ResolvedPaths;
    384 
    385   /// Is this unit subject to the ODR rule?
    386   bool HasODR;
    387   /// Did a DIE actually contain a valid reloc?
    388   bool HasInterestingContent;
    389   /// If this is a Clang module, this holds the module's name.
    390   std::string ClangModuleName;
    391 };
    392 
    393 void CompileUnit::markEverythingAsKept() {
    394   for (auto &I : Info)
    395     // Mark everything that wasn't explicity marked for pruning.
    396     I.Keep = !I.Prune;
    397 }
    398 
    399 uint64_t CompileUnit::computeNextUnitOffset() {
    400   NextUnitOffset = StartOffset + 11 /* Header size */;
    401   // The root DIE might be null, meaning that the Unit had nothing to
    402   // contribute to the linked output. In that case, we will emit the
    403   // unit header without any actual DIE.
    404   if (CUDie)
    405     NextUnitOffset += CUDie->getSize();
    406   return NextUnitOffset;
    407 }
    408 
    409 /// \brief Keep track of a forward cross-cu reference from this unit
    410 /// to \p Die that lives in \p RefUnit.
    411 void CompileUnit::noteForwardReference(DIE *Die, const CompileUnit *RefUnit,
    412                                        DeclContext *Ctxt, PatchLocation Attr) {
    413   ForwardDIEReferences.emplace_back(Die, RefUnit, Ctxt, Attr);
    414 }
    415 
    416 /// \brief Apply all fixups recorded by noteForwardReference().
    417 void CompileUnit::fixupForwardReferences() {
    418   for (const auto &Ref : ForwardDIEReferences) {
    419     DIE *RefDie;
    420     const CompileUnit *RefUnit;
    421     PatchLocation Attr;
    422     DeclContext *Ctxt;
    423     std::tie(RefDie, RefUnit, Ctxt, Attr) = Ref;
    424     if (Ctxt && Ctxt->getCanonicalDIEOffset())
    425       Attr.set(Ctxt->getCanonicalDIEOffset());
    426     else
    427       Attr.set(RefDie->getOffset() + RefUnit->getStartOffset());
    428   }
    429 }
    430 
    431 void CompileUnit::addFunctionRange(uint64_t FuncLowPc, uint64_t FuncHighPc,
    432                                    int64_t PcOffset) {
    433   Ranges.insert(FuncLowPc, FuncHighPc, PcOffset);
    434   this->LowPc = std::min(LowPc, FuncLowPc + PcOffset);
    435   this->HighPc = std::max(HighPc, FuncHighPc + PcOffset);
    436 }
    437 
    438 void CompileUnit::noteRangeAttribute(const DIE &Die, PatchLocation Attr) {
    439   if (Die.getTag() != dwarf::DW_TAG_compile_unit)
    440     RangeAttributes.push_back(Attr);
    441   else
    442     UnitRangeAttribute = Attr;
    443 }
    444 
    445 void CompileUnit::noteLocationAttribute(PatchLocation Attr, int64_t PcOffset) {
    446   LocationAttributes.emplace_back(Attr, PcOffset);
    447 }
    448 
    449 /// \brief Add a name accelerator entry for \p Die with \p Name
    450 /// which is stored in the string table at \p Offset.
    451 void CompileUnit::addNameAccelerator(const DIE *Die, const char *Name,
    452                                      uint32_t Offset, bool SkipPubSection) {
    453   Pubnames.emplace_back(Name, Die, Offset, SkipPubSection);
    454 }
    455 
    456 /// \brief Add a type accelerator entry for \p Die with \p Name
    457 /// which is stored in the string table at \p Offset.
    458 void CompileUnit::addTypeAccelerator(const DIE *Die, const char *Name,
    459                                      uint32_t Offset) {
    460   Pubtypes.emplace_back(Name, Die, Offset, false);
    461 }
    462 
    463 /// \brief The Dwarf streaming logic
    464 ///
    465 /// All interactions with the MC layer that is used to build the debug
    466 /// information binary representation are handled in this class.
    467 class DwarfStreamer {
    468   /// \defgroup MCObjects MC layer objects constructed by the streamer
    469   /// @{
    470   std::unique_ptr<MCRegisterInfo> MRI;
    471   std::unique_ptr<MCAsmInfo> MAI;
    472   std::unique_ptr<MCObjectFileInfo> MOFI;
    473   std::unique_ptr<MCContext> MC;
    474   MCAsmBackend *MAB; // Owned by MCStreamer
    475   std::unique_ptr<MCInstrInfo> MII;
    476   std::unique_ptr<MCSubtargetInfo> MSTI;
    477   MCCodeEmitter *MCE; // Owned by MCStreamer
    478   MCStreamer *MS;     // Owned by AsmPrinter
    479   std::unique_ptr<TargetMachine> TM;
    480   std::unique_ptr<AsmPrinter> Asm;
    481   /// @}
    482 
    483   /// \brief the file we stream the linked Dwarf to.
    484   std::unique_ptr<raw_fd_ostream> OutFile;
    485 
    486   uint32_t RangesSectionSize;
    487   uint32_t LocSectionSize;
    488   uint32_t LineSectionSize;
    489   uint32_t FrameSectionSize;
    490 
    491   /// \brief Emit the pubnames or pubtypes section contribution for \p
    492   /// Unit into \p Sec. The data is provided in \p Names.
    493   void emitPubSectionForUnit(MCSection *Sec, StringRef Name,
    494                              const CompileUnit &Unit,
    495                              const std::vector<CompileUnit::AccelInfo> &Names);
    496 
    497 public:
    498   /// \brief Actually create the streamer and the ouptut file.
    499   ///
    500   /// This could be done directly in the constructor, but it feels
    501   /// more natural to handle errors through return value.
    502   bool init(Triple TheTriple, StringRef OutputFilename);
    503 
    504   /// \brief Dump the file to the disk.
    505   bool finish(const DebugMap &);
    506 
    507   AsmPrinter &getAsmPrinter() const { return *Asm; }
    508 
    509   /// \brief Set the current output section to debug_info and change
    510   /// the MC Dwarf version to \p DwarfVersion.
    511   void switchToDebugInfoSection(unsigned DwarfVersion);
    512 
    513   /// \brief Emit the compilation unit header for \p Unit in the
    514   /// debug_info section.
    515   ///
    516   /// As a side effect, this also switches the current Dwarf version
    517   /// of the MC layer to the one of U.getOrigUnit().
    518   void emitCompileUnitHeader(CompileUnit &Unit);
    519 
    520   /// \brief Recursively emit the DIE tree rooted at \p Die.
    521   void emitDIE(DIE &Die);
    522 
    523   /// \brief Emit the abbreviation table \p Abbrevs to the
    524   /// debug_abbrev section.
    525   void emitAbbrevs(const std::vector<std::unique_ptr<DIEAbbrev>> &Abbrevs);
    526 
    527   /// \brief Emit the string table described by \p Pool.
    528   void emitStrings(const NonRelocatableStringpool &Pool);
    529 
    530   /// \brief Emit debug_ranges for \p FuncRange by translating the
    531   /// original \p Entries.
    532   void emitRangesEntries(
    533       int64_t UnitPcOffset, uint64_t OrigLowPc,
    534       const FunctionIntervals::const_iterator &FuncRange,
    535       const std::vector<DWARFDebugRangeList::RangeListEntry> &Entries,
    536       unsigned AddressSize);
    537 
    538   /// \brief Emit debug_aranges entries for \p Unit and if \p
    539   /// DoRangesSection is true, also emit the debug_ranges entries for
    540   /// the DW_TAG_compile_unit's DW_AT_ranges attribute.
    541   void emitUnitRangesEntries(CompileUnit &Unit, bool DoRangesSection);
    542 
    543   uint32_t getRangesSectionSize() const { return RangesSectionSize; }
    544 
    545   /// \brief Emit the debug_loc contribution for \p Unit by copying
    546   /// the entries from \p Dwarf and offseting them. Update the
    547   /// location attributes to point to the new entries.
    548   void emitLocationsForUnit(const CompileUnit &Unit, DWARFContext &Dwarf);
    549 
    550   /// \brief Emit the line table described in \p Rows into the
    551   /// debug_line section.
    552   void emitLineTableForUnit(MCDwarfLineTableParams Params,
    553                             StringRef PrologueBytes, unsigned MinInstLength,
    554                             std::vector<DWARFDebugLine::Row> &Rows,
    555                             unsigned AdddressSize);
    556 
    557   uint32_t getLineSectionSize() const { return LineSectionSize; }
    558 
    559   /// \brief Emit the .debug_pubnames contribution for \p Unit.
    560   void emitPubNamesForUnit(const CompileUnit &Unit);
    561 
    562   /// \brief Emit the .debug_pubtypes contribution for \p Unit.
    563   void emitPubTypesForUnit(const CompileUnit &Unit);
    564 
    565   /// \brief Emit a CIE.
    566   void emitCIE(StringRef CIEBytes);
    567 
    568   /// \brief Emit an FDE with data \p Bytes.
    569   void emitFDE(uint32_t CIEOffset, uint32_t AddreSize, uint32_t Address,
    570                StringRef Bytes);
    571 
    572   uint32_t getFrameSectionSize() const { return FrameSectionSize; }
    573 };
    574 
    575 bool DwarfStreamer::init(Triple TheTriple, StringRef OutputFilename) {
    576   std::string ErrorStr;
    577   std::string TripleName;
    578   StringRef Context = "dwarf streamer init";
    579 
    580   // Get the target.
    581   const Target *TheTarget =
    582       TargetRegistry::lookupTarget(TripleName, TheTriple, ErrorStr);
    583   if (!TheTarget)
    584     return error(ErrorStr, Context);
    585   TripleName = TheTriple.getTriple();
    586 
    587   // Create all the MC Objects.
    588   MRI.reset(TheTarget->createMCRegInfo(TripleName));
    589   if (!MRI)
    590     return error(Twine("no register info for target ") + TripleName, Context);
    591 
    592   MAI.reset(TheTarget->createMCAsmInfo(*MRI, TripleName));
    593   if (!MAI)
    594     return error("no asm info for target " + TripleName, Context);
    595 
    596   MOFI.reset(new MCObjectFileInfo);
    597   MC.reset(new MCContext(MAI.get(), MRI.get(), MOFI.get()));
    598   MOFI->InitMCObjectFileInfo(TheTriple, /*PIC*/ false, CodeModel::Default, *MC);
    599 
    600   MAB = TheTarget->createMCAsmBackend(*MRI, TripleName, "");
    601   if (!MAB)
    602     return error("no asm backend for target " + TripleName, Context);
    603 
    604   MII.reset(TheTarget->createMCInstrInfo());
    605   if (!MII)
    606     return error("no instr info info for target " + TripleName, Context);
    607 
    608   MSTI.reset(TheTarget->createMCSubtargetInfo(TripleName, "", ""));
    609   if (!MSTI)
    610     return error("no subtarget info for target " + TripleName, Context);
    611 
    612   MCE = TheTarget->createMCCodeEmitter(*MII, *MRI, *MC);
    613   if (!MCE)
    614     return error("no code emitter for target " + TripleName, Context);
    615 
    616   // Create the output file.
    617   std::error_code EC;
    618   OutFile =
    619       llvm::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::F_None);
    620   if (EC)
    621     return error(Twine(OutputFilename) + ": " + EC.message(), Context);
    622 
    623   MCTargetOptions MCOptions = InitMCTargetOptionsFromFlags();
    624   MS = TheTarget->createMCObjectStreamer(
    625       TheTriple, *MC, *MAB, *OutFile, MCE, *MSTI, MCOptions.MCRelaxAll,
    626       MCOptions.MCIncrementalLinkerCompatible,
    627       /*DWARFMustBeAtTheEnd*/ false);
    628   if (!MS)
    629     return error("no object streamer for target " + TripleName, Context);
    630 
    631   // Finally create the AsmPrinter we'll use to emit the DIEs.
    632   TM.reset(TheTarget->createTargetMachine(TripleName, "", "", TargetOptions(),
    633                                           None));
    634   if (!TM)
    635     return error("no target machine for target " + TripleName, Context);
    636 
    637   Asm.reset(TheTarget->createAsmPrinter(*TM, std::unique_ptr<MCStreamer>(MS)));
    638   if (!Asm)
    639     return error("no asm printer for target " + TripleName, Context);
    640 
    641   RangesSectionSize = 0;
    642   LocSectionSize = 0;
    643   LineSectionSize = 0;
    644   FrameSectionSize = 0;
    645 
    646   return true;
    647 }
    648 
    649 bool DwarfStreamer::finish(const DebugMap &DM) {
    650   if (DM.getTriple().isOSDarwin() && !DM.getBinaryPath().empty())
    651     return MachOUtils::generateDsymCompanion(DM, *MS, *OutFile);
    652 
    653   MS->Finish();
    654   return true;
    655 }
    656 
    657 /// \brief Set the current output section to debug_info and change
    658 /// the MC Dwarf version to \p DwarfVersion.
    659 void DwarfStreamer::switchToDebugInfoSection(unsigned DwarfVersion) {
    660   MS->SwitchSection(MOFI->getDwarfInfoSection());
    661   MC->setDwarfVersion(DwarfVersion);
    662 }
    663 
    664 /// \brief Emit the compilation unit header for \p Unit in the
    665 /// debug_info section.
    666 ///
    667 /// A Dwarf scetion header is encoded as:
    668 ///  uint32_t   Unit length (omiting this field)
    669 ///  uint16_t   Version
    670 ///  uint32_t   Abbreviation table offset
    671 ///  uint8_t    Address size
    672 ///
    673 /// Leading to a total of 11 bytes.
    674 void DwarfStreamer::emitCompileUnitHeader(CompileUnit &Unit) {
    675   unsigned Version = Unit.getOrigUnit().getVersion();
    676   switchToDebugInfoSection(Version);
    677 
    678   // Emit size of content not including length itself. The size has
    679   // already been computed in CompileUnit::computeOffsets(). Substract
    680   // 4 to that size to account for the length field.
    681   Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset() - 4);
    682   Asm->EmitInt16(Version);
    683   // We share one abbreviations table across all units so it's always at the
    684   // start of the section.
    685   Asm->EmitInt32(0);
    686   Asm->EmitInt8(Unit.getOrigUnit().getAddressByteSize());
    687 }
    688 
    689 /// \brief Emit the \p Abbrevs array as the shared abbreviation table
    690 /// for the linked Dwarf file.
    691 void DwarfStreamer::emitAbbrevs(
    692     const std::vector<std::unique_ptr<DIEAbbrev>> &Abbrevs) {
    693   MS->SwitchSection(MOFI->getDwarfAbbrevSection());
    694   Asm->emitDwarfAbbrevs(Abbrevs);
    695 }
    696 
    697 /// \brief Recursively emit the DIE tree rooted at \p Die.
    698 void DwarfStreamer::emitDIE(DIE &Die) {
    699   MS->SwitchSection(MOFI->getDwarfInfoSection());
    700   Asm->emitDwarfDIE(Die);
    701 }
    702 
    703 /// \brief Emit the debug_str section stored in \p Pool.
    704 void DwarfStreamer::emitStrings(const NonRelocatableStringpool &Pool) {
    705   Asm->OutStreamer->SwitchSection(MOFI->getDwarfStrSection());
    706   for (auto *Entry = Pool.getFirstEntry(); Entry;
    707        Entry = Pool.getNextEntry(Entry))
    708     Asm->OutStreamer->EmitBytes(
    709         StringRef(Entry->getKey().data(), Entry->getKey().size() + 1));
    710 }
    711 
    712 /// \brief Emit the debug_range section contents for \p FuncRange by
    713 /// translating the original \p Entries. The debug_range section
    714 /// format is totally trivial, consisting just of pairs of address
    715 /// sized addresses describing the ranges.
    716 void DwarfStreamer::emitRangesEntries(
    717     int64_t UnitPcOffset, uint64_t OrigLowPc,
    718     const FunctionIntervals::const_iterator &FuncRange,
    719     const std::vector<DWARFDebugRangeList::RangeListEntry> &Entries,
    720     unsigned AddressSize) {
    721   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfRangesSection());
    722 
    723   // Offset each range by the right amount.
    724   int64_t PcOffset = Entries.empty() ? 0 : FuncRange.value() + UnitPcOffset;
    725   for (const auto &Range : Entries) {
    726     if (Range.isBaseAddressSelectionEntry(AddressSize)) {
    727       warn("unsupported base address selection operation",
    728            "emitting debug_ranges");
    729       break;
    730     }
    731     // Do not emit empty ranges.
    732     if (Range.StartAddress == Range.EndAddress)
    733       continue;
    734 
    735     // All range entries should lie in the function range.
    736     if (!(Range.StartAddress + OrigLowPc >= FuncRange.start() &&
    737           Range.EndAddress + OrigLowPc <= FuncRange.stop()))
    738       warn("inconsistent range data.", "emitting debug_ranges");
    739     MS->EmitIntValue(Range.StartAddress + PcOffset, AddressSize);
    740     MS->EmitIntValue(Range.EndAddress + PcOffset, AddressSize);
    741     RangesSectionSize += 2 * AddressSize;
    742   }
    743 
    744   // Add the terminator entry.
    745   MS->EmitIntValue(0, AddressSize);
    746   MS->EmitIntValue(0, AddressSize);
    747   RangesSectionSize += 2 * AddressSize;
    748 }
    749 
    750 /// \brief Emit the debug_aranges contribution of a unit and
    751 /// if \p DoDebugRanges is true the debug_range contents for a
    752 /// compile_unit level DW_AT_ranges attribute (Which are basically the
    753 /// same thing with a different base address).
    754 /// Just aggregate all the ranges gathered inside that unit.
    755 void DwarfStreamer::emitUnitRangesEntries(CompileUnit &Unit,
    756                                           bool DoDebugRanges) {
    757   unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
    758   // Gather the ranges in a vector, so that we can simplify them. The
    759   // IntervalMap will have coalesced the non-linked ranges, but here
    760   // we want to coalesce the linked addresses.
    761   std::vector<std::pair<uint64_t, uint64_t>> Ranges;
    762   const auto &FunctionRanges = Unit.getFunctionRanges();
    763   for (auto Range = FunctionRanges.begin(), End = FunctionRanges.end();
    764        Range != End; ++Range)
    765     Ranges.push_back(std::make_pair(Range.start() + Range.value(),
    766                                     Range.stop() + Range.value()));
    767 
    768   // The object addresses where sorted, but again, the linked
    769   // addresses might end up in a different order.
    770   std::sort(Ranges.begin(), Ranges.end());
    771 
    772   if (!Ranges.empty()) {
    773     MS->SwitchSection(MC->getObjectFileInfo()->getDwarfARangesSection());
    774 
    775     MCSymbol *BeginLabel = Asm->createTempSymbol("Barange");
    776     MCSymbol *EndLabel = Asm->createTempSymbol("Earange");
    777 
    778     unsigned HeaderSize =
    779         sizeof(int32_t) + // Size of contents (w/o this field
    780         sizeof(int16_t) + // DWARF ARange version number
    781         sizeof(int32_t) + // Offset of CU in the .debug_info section
    782         sizeof(int8_t) +  // Pointer Size (in bytes)
    783         sizeof(int8_t);   // Segment Size (in bytes)
    784 
    785     unsigned TupleSize = AddressSize * 2;
    786     unsigned Padding = OffsetToAlignment(HeaderSize, TupleSize);
    787 
    788     Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); // Arange length
    789     Asm->OutStreamer->EmitLabel(BeginLabel);
    790     Asm->EmitInt16(dwarf::DW_ARANGES_VERSION); // Version number
    791     Asm->EmitInt32(Unit.getStartOffset());     // Corresponding unit's offset
    792     Asm->EmitInt8(AddressSize);                // Address size
    793     Asm->EmitInt8(0);                          // Segment size
    794 
    795     Asm->OutStreamer->emitFill(Padding, 0x0);
    796 
    797     for (auto Range = Ranges.begin(), End = Ranges.end(); Range != End;
    798          ++Range) {
    799       uint64_t RangeStart = Range->first;
    800       MS->EmitIntValue(RangeStart, AddressSize);
    801       while ((Range + 1) != End && Range->second == (Range + 1)->first)
    802         ++Range;
    803       MS->EmitIntValue(Range->second - RangeStart, AddressSize);
    804     }
    805 
    806     // Emit terminator
    807     Asm->OutStreamer->EmitIntValue(0, AddressSize);
    808     Asm->OutStreamer->EmitIntValue(0, AddressSize);
    809     Asm->OutStreamer->EmitLabel(EndLabel);
    810   }
    811 
    812   if (!DoDebugRanges)
    813     return;
    814 
    815   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfRangesSection());
    816   // Offset each range by the right amount.
    817   int64_t PcOffset = -Unit.getLowPc();
    818   // Emit coalesced ranges.
    819   for (auto Range = Ranges.begin(), End = Ranges.end(); Range != End; ++Range) {
    820     MS->EmitIntValue(Range->first + PcOffset, AddressSize);
    821     while (Range + 1 != End && Range->second == (Range + 1)->first)
    822       ++Range;
    823     MS->EmitIntValue(Range->second + PcOffset, AddressSize);
    824     RangesSectionSize += 2 * AddressSize;
    825   }
    826 
    827   // Add the terminator entry.
    828   MS->EmitIntValue(0, AddressSize);
    829   MS->EmitIntValue(0, AddressSize);
    830   RangesSectionSize += 2 * AddressSize;
    831 }
    832 
    833 /// \brief Emit location lists for \p Unit and update attribtues to
    834 /// point to the new entries.
    835 void DwarfStreamer::emitLocationsForUnit(const CompileUnit &Unit,
    836                                          DWARFContext &Dwarf) {
    837   const auto &Attributes = Unit.getLocationAttributes();
    838 
    839   if (Attributes.empty())
    840     return;
    841 
    842   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfLocSection());
    843 
    844   unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
    845   const DWARFSection &InputSec = Dwarf.getLocSection();
    846   DataExtractor Data(InputSec.Data, Dwarf.isLittleEndian(), AddressSize);
    847   DWARFUnit &OrigUnit = Unit.getOrigUnit();
    848   const auto *OrigUnitDie = OrigUnit.getUnitDIE(false);
    849   int64_t UnitPcOffset = 0;
    850   uint64_t OrigLowPc = OrigUnitDie->getAttributeValueAsAddress(
    851       &OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
    852   if (OrigLowPc != -1ULL)
    853     UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
    854 
    855   for (const auto &Attr : Attributes) {
    856     uint32_t Offset = Attr.first.get();
    857     Attr.first.set(LocSectionSize);
    858     // This is the quantity to add to the old location address to get
    859     // the correct address for the new one.
    860     int64_t LocPcOffset = Attr.second + UnitPcOffset;
    861     while (Data.isValidOffset(Offset)) {
    862       uint64_t Low = Data.getUnsigned(&Offset, AddressSize);
    863       uint64_t High = Data.getUnsigned(&Offset, AddressSize);
    864       LocSectionSize += 2 * AddressSize;
    865       if (Low == 0 && High == 0) {
    866         Asm->OutStreamer->EmitIntValue(0, AddressSize);
    867         Asm->OutStreamer->EmitIntValue(0, AddressSize);
    868         break;
    869       }
    870       Asm->OutStreamer->EmitIntValue(Low + LocPcOffset, AddressSize);
    871       Asm->OutStreamer->EmitIntValue(High + LocPcOffset, AddressSize);
    872       uint64_t Length = Data.getU16(&Offset);
    873       Asm->OutStreamer->EmitIntValue(Length, 2);
    874       // Just copy the bytes over.
    875       Asm->OutStreamer->EmitBytes(
    876           StringRef(InputSec.Data.substr(Offset, Length)));
    877       Offset += Length;
    878       LocSectionSize += Length + 2;
    879     }
    880   }
    881 }
    882 
    883 void DwarfStreamer::emitLineTableForUnit(MCDwarfLineTableParams Params,
    884                                          StringRef PrologueBytes,
    885                                          unsigned MinInstLength,
    886                                          std::vector<DWARFDebugLine::Row> &Rows,
    887                                          unsigned PointerSize) {
    888   // Switch to the section where the table will be emitted into.
    889   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfLineSection());
    890   MCSymbol *LineStartSym = MC->createTempSymbol();
    891   MCSymbol *LineEndSym = MC->createTempSymbol();
    892 
    893   // The first 4 bytes is the total length of the information for this
    894   // compilation unit (not including these 4 bytes for the length).
    895   Asm->EmitLabelDifference(LineEndSym, LineStartSym, 4);
    896   Asm->OutStreamer->EmitLabel(LineStartSym);
    897   // Copy Prologue.
    898   MS->EmitBytes(PrologueBytes);
    899   LineSectionSize += PrologueBytes.size() + 4;
    900 
    901   SmallString<128> EncodingBuffer;
    902   raw_svector_ostream EncodingOS(EncodingBuffer);
    903 
    904   if (Rows.empty()) {
    905     // We only have the dummy entry, dsymutil emits an entry with a 0
    906     // address in that case.
    907     MCDwarfLineAddr::Encode(*MC, Params, INT64_MAX, 0, EncodingOS);
    908     MS->EmitBytes(EncodingOS.str());
    909     LineSectionSize += EncodingBuffer.size();
    910     MS->EmitLabel(LineEndSym);
    911     return;
    912   }
    913 
    914   // Line table state machine fields
    915   unsigned FileNum = 1;
    916   unsigned LastLine = 1;
    917   unsigned Column = 0;
    918   unsigned IsStatement = 1;
    919   unsigned Isa = 0;
    920   uint64_t Address = -1ULL;
    921 
    922   unsigned RowsSinceLastSequence = 0;
    923 
    924   for (unsigned Idx = 0; Idx < Rows.size(); ++Idx) {
    925     auto &Row = Rows[Idx];
    926 
    927     int64_t AddressDelta;
    928     if (Address == -1ULL) {
    929       MS->EmitIntValue(dwarf::DW_LNS_extended_op, 1);
    930       MS->EmitULEB128IntValue(PointerSize + 1);
    931       MS->EmitIntValue(dwarf::DW_LNE_set_address, 1);
    932       MS->EmitIntValue(Row.Address, PointerSize);
    933       LineSectionSize += 2 + PointerSize + getULEB128Size(PointerSize + 1);
    934       AddressDelta = 0;
    935     } else {
    936       AddressDelta = (Row.Address - Address) / MinInstLength;
    937     }
    938 
    939     // FIXME: code copied and transfromed from
    940     // MCDwarf.cpp::EmitDwarfLineTable. We should find a way to share
    941     // this code, but the current compatibility requirement with
    942     // classic dsymutil makes it hard. Revisit that once this
    943     // requirement is dropped.
    944 
    945     if (FileNum != Row.File) {
    946       FileNum = Row.File;
    947       MS->EmitIntValue(dwarf::DW_LNS_set_file, 1);
    948       MS->EmitULEB128IntValue(FileNum);
    949       LineSectionSize += 1 + getULEB128Size(FileNum);
    950     }
    951     if (Column != Row.Column) {
    952       Column = Row.Column;
    953       MS->EmitIntValue(dwarf::DW_LNS_set_column, 1);
    954       MS->EmitULEB128IntValue(Column);
    955       LineSectionSize += 1 + getULEB128Size(Column);
    956     }
    957 
    958     // FIXME: We should handle the discriminator here, but dsymutil
    959     // doesn' consider it, thus ignore it for now.
    960 
    961     if (Isa != Row.Isa) {
    962       Isa = Row.Isa;
    963       MS->EmitIntValue(dwarf::DW_LNS_set_isa, 1);
    964       MS->EmitULEB128IntValue(Isa);
    965       LineSectionSize += 1 + getULEB128Size(Isa);
    966     }
    967     if (IsStatement != Row.IsStmt) {
    968       IsStatement = Row.IsStmt;
    969       MS->EmitIntValue(dwarf::DW_LNS_negate_stmt, 1);
    970       LineSectionSize += 1;
    971     }
    972     if (Row.BasicBlock) {
    973       MS->EmitIntValue(dwarf::DW_LNS_set_basic_block, 1);
    974       LineSectionSize += 1;
    975     }
    976 
    977     if (Row.PrologueEnd) {
    978       MS->EmitIntValue(dwarf::DW_LNS_set_prologue_end, 1);
    979       LineSectionSize += 1;
    980     }
    981 
    982     if (Row.EpilogueBegin) {
    983       MS->EmitIntValue(dwarf::DW_LNS_set_epilogue_begin, 1);
    984       LineSectionSize += 1;
    985     }
    986 
    987     int64_t LineDelta = int64_t(Row.Line) - LastLine;
    988     if (!Row.EndSequence) {
    989       MCDwarfLineAddr::Encode(*MC, Params, LineDelta, AddressDelta, EncodingOS);
    990       MS->EmitBytes(EncodingOS.str());
    991       LineSectionSize += EncodingBuffer.size();
    992       EncodingBuffer.resize(0);
    993       Address = Row.Address;
    994       LastLine = Row.Line;
    995       RowsSinceLastSequence++;
    996     } else {
    997       if (LineDelta) {
    998         MS->EmitIntValue(dwarf::DW_LNS_advance_line, 1);
    999         MS->EmitSLEB128IntValue(LineDelta);
   1000         LineSectionSize += 1 + getSLEB128Size(LineDelta);
   1001       }
   1002       if (AddressDelta) {
   1003         MS->EmitIntValue(dwarf::DW_LNS_advance_pc, 1);
   1004         MS->EmitULEB128IntValue(AddressDelta);
   1005         LineSectionSize += 1 + getULEB128Size(AddressDelta);
   1006       }
   1007       MCDwarfLineAddr::Encode(*MC, Params, INT64_MAX, 0, EncodingOS);
   1008       MS->EmitBytes(EncodingOS.str());
   1009       LineSectionSize += EncodingBuffer.size();
   1010       EncodingBuffer.resize(0);
   1011       Address = -1ULL;
   1012       LastLine = FileNum = IsStatement = 1;
   1013       RowsSinceLastSequence = Column = Isa = 0;
   1014     }
   1015   }
   1016 
   1017   if (RowsSinceLastSequence) {
   1018     MCDwarfLineAddr::Encode(*MC, Params, INT64_MAX, 0, EncodingOS);
   1019     MS->EmitBytes(EncodingOS.str());
   1020     LineSectionSize += EncodingBuffer.size();
   1021     EncodingBuffer.resize(0);
   1022   }
   1023 
   1024   MS->EmitLabel(LineEndSym);
   1025 }
   1026 
   1027 /// \brief Emit the pubnames or pubtypes section contribution for \p
   1028 /// Unit into \p Sec. The data is provided in \p Names.
   1029 void DwarfStreamer::emitPubSectionForUnit(
   1030     MCSection *Sec, StringRef SecName, const CompileUnit &Unit,
   1031     const std::vector<CompileUnit::AccelInfo> &Names) {
   1032   if (Names.empty())
   1033     return;
   1034 
   1035   // Start the dwarf pubnames section.
   1036   Asm->OutStreamer->SwitchSection(Sec);
   1037   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + SecName + "_begin");
   1038   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + SecName + "_end");
   1039 
   1040   bool HeaderEmitted = false;
   1041   // Emit the pubnames for this compilation unit.
   1042   for (const auto &Name : Names) {
   1043     if (Name.SkipPubSection)
   1044       continue;
   1045 
   1046     if (!HeaderEmitted) {
   1047       // Emit the header.
   1048       Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); // Length
   1049       Asm->OutStreamer->EmitLabel(BeginLabel);
   1050       Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION); // Version
   1051       Asm->EmitInt32(Unit.getStartOffset());      // Unit offset
   1052       Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset()); // Size
   1053       HeaderEmitted = true;
   1054     }
   1055     Asm->EmitInt32(Name.Die->getOffset());
   1056     Asm->OutStreamer->EmitBytes(
   1057         StringRef(Name.Name.data(), Name.Name.size() + 1));
   1058   }
   1059 
   1060   if (!HeaderEmitted)
   1061     return;
   1062   Asm->EmitInt32(0); // End marker.
   1063   Asm->OutStreamer->EmitLabel(EndLabel);
   1064 }
   1065 
   1066 /// \brief Emit .debug_pubnames for \p Unit.
   1067 void DwarfStreamer::emitPubNamesForUnit(const CompileUnit &Unit) {
   1068   emitPubSectionForUnit(MC->getObjectFileInfo()->getDwarfPubNamesSection(),
   1069                         "names", Unit, Unit.getPubnames());
   1070 }
   1071 
   1072 /// \brief Emit .debug_pubtypes for \p Unit.
   1073 void DwarfStreamer::emitPubTypesForUnit(const CompileUnit &Unit) {
   1074   emitPubSectionForUnit(MC->getObjectFileInfo()->getDwarfPubTypesSection(),
   1075                         "types", Unit, Unit.getPubtypes());
   1076 }
   1077 
   1078 /// \brief Emit a CIE into the debug_frame section.
   1079 void DwarfStreamer::emitCIE(StringRef CIEBytes) {
   1080   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfFrameSection());
   1081 
   1082   MS->EmitBytes(CIEBytes);
   1083   FrameSectionSize += CIEBytes.size();
   1084 }
   1085 
   1086 /// \brief Emit a FDE into the debug_frame section. \p FDEBytes
   1087 /// contains the FDE data without the length, CIE offset and address
   1088 /// which will be replaced with the paramter values.
   1089 void DwarfStreamer::emitFDE(uint32_t CIEOffset, uint32_t AddrSize,
   1090                             uint32_t Address, StringRef FDEBytes) {
   1091   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfFrameSection());
   1092 
   1093   MS->EmitIntValue(FDEBytes.size() + 4 + AddrSize, 4);
   1094   MS->EmitIntValue(CIEOffset, 4);
   1095   MS->EmitIntValue(Address, AddrSize);
   1096   MS->EmitBytes(FDEBytes);
   1097   FrameSectionSize += FDEBytes.size() + 8 + AddrSize;
   1098 }
   1099 
   1100 /// \brief The core of the Dwarf linking logic.
   1101 ///
   1102 /// The link of the dwarf information from the object files will be
   1103 /// driven by the selection of 'root DIEs', which are DIEs that
   1104 /// describe variables or functions that are present in the linked
   1105 /// binary (and thus have entries in the debug map). All the debug
   1106 /// information that will be linked (the DIEs, but also the line
   1107 /// tables, ranges, ...) is derived from that set of root DIEs.
   1108 ///
   1109 /// The root DIEs are identified because they contain relocations that
   1110 /// correspond to a debug map entry at specific places (the low_pc for
   1111 /// a function, the location for a variable). These relocations are
   1112 /// called ValidRelocs in the DwarfLinker and are gathered as a very
   1113 /// first step when we start processing a DebugMapObject.
   1114 class DwarfLinker {
   1115 public:
   1116   DwarfLinker(StringRef OutputFilename, const LinkOptions &Options)
   1117       : OutputFilename(OutputFilename), Options(Options),
   1118         BinHolder(Options.Verbose), LastCIEOffset(0) {}
   1119 
   1120   /// \brief Link the contents of the DebugMap.
   1121   bool link(const DebugMap &);
   1122 
   1123   void reportWarning(const Twine &Warning, const DWARFUnit *Unit = nullptr,
   1124                      const DWARFDebugInfoEntryMinimal *DIE = nullptr) const;
   1125 
   1126 private:
   1127   /// \brief Called at the start of a debug object link.
   1128   void startDebugObject(DWARFContext &, DebugMapObject &);
   1129 
   1130   /// \brief Called at the end of a debug object link.
   1131   void endDebugObject();
   1132 
   1133   /// Keeps track of relocations.
   1134   class RelocationManager {
   1135     struct ValidReloc {
   1136       uint32_t Offset;
   1137       uint32_t Size;
   1138       uint64_t Addend;
   1139       const DebugMapObject::DebugMapEntry *Mapping;
   1140 
   1141       ValidReloc(uint32_t Offset, uint32_t Size, uint64_t Addend,
   1142                  const DebugMapObject::DebugMapEntry *Mapping)
   1143           : Offset(Offset), Size(Size), Addend(Addend), Mapping(Mapping) {}
   1144 
   1145       bool operator<(const ValidReloc &RHS) const {
   1146         return Offset < RHS.Offset;
   1147       }
   1148     };
   1149 
   1150     DwarfLinker &Linker;
   1151 
   1152     /// \brief The valid relocations for the current DebugMapObject.
   1153     /// This vector is sorted by relocation offset.
   1154     std::vector<ValidReloc> ValidRelocs;
   1155 
   1156     /// \brief Index into ValidRelocs of the next relocation to
   1157     /// consider. As we walk the DIEs in acsending file offset and as
   1158     /// ValidRelocs is sorted by file offset, keeping this index
   1159     /// uptodate is all we have to do to have a cheap lookup during the
   1160     /// root DIE selection and during DIE cloning.
   1161     unsigned NextValidReloc;
   1162 
   1163   public:
   1164     RelocationManager(DwarfLinker &Linker)
   1165         : Linker(Linker), NextValidReloc(0) {}
   1166 
   1167     bool hasValidRelocs() const { return !ValidRelocs.empty(); }
   1168     /// \brief Reset the NextValidReloc counter.
   1169     void resetValidRelocs() { NextValidReloc = 0; }
   1170 
   1171     /// \defgroup FindValidRelocations Translate debug map into a list
   1172     /// of relevant relocations
   1173     ///
   1174     /// @{
   1175     bool findValidRelocsInDebugInfo(const object::ObjectFile &Obj,
   1176                                     const DebugMapObject &DMO);
   1177 
   1178     bool findValidRelocs(const object::SectionRef &Section,
   1179                          const object::ObjectFile &Obj,
   1180                          const DebugMapObject &DMO);
   1181 
   1182     void findValidRelocsMachO(const object::SectionRef &Section,
   1183                               const object::MachOObjectFile &Obj,
   1184                               const DebugMapObject &DMO);
   1185     /// @}
   1186 
   1187     bool hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
   1188                             CompileUnit::DIEInfo &Info);
   1189 
   1190     bool applyValidRelocs(MutableArrayRef<char> Data, uint32_t BaseOffset,
   1191                           bool isLittleEndian);
   1192   };
   1193 
   1194   /// \defgroup FindRootDIEs Find DIEs corresponding to debug map entries.
   1195   ///
   1196   /// @{
   1197   /// \brief Recursively walk the \p DIE tree and look for DIEs to
   1198   /// keep. Store that information in \p CU's DIEInfo.
   1199   void lookForDIEsToKeep(RelocationManager &RelocMgr,
   1200                          const DWARFDebugInfoEntryMinimal &DIE,
   1201                          const DebugMapObject &DMO, CompileUnit &CU,
   1202                          unsigned Flags);
   1203 
   1204   /// If this compile unit is really a skeleton CU that points to a
   1205   /// clang module, register it in ClangModules and return true.
   1206   ///
   1207   /// A skeleton CU is a CU without children, a DW_AT_gnu_dwo_name
   1208   /// pointing to the module, and a DW_AT_gnu_dwo_id with the module
   1209   /// hash.
   1210   bool registerModuleReference(const DWARFDebugInfoEntryMinimal &CUDie,
   1211                                const DWARFUnit &Unit, DebugMap &ModuleMap,
   1212                                unsigned Indent = 0);
   1213 
   1214   /// Recursively add the debug info in this clang module .pcm
   1215   /// file (and all the modules imported by it in a bottom-up fashion)
   1216   /// to Units.
   1217   void loadClangModule(StringRef Filename, StringRef ModulePath,
   1218                        StringRef ModuleName, uint64_t DwoId,
   1219                        DebugMap &ModuleMap, unsigned Indent = 0);
   1220 
   1221   /// \brief Flags passed to DwarfLinker::lookForDIEsToKeep
   1222   enum TravesalFlags {
   1223     TF_Keep = 1 << 0,            ///< Mark the traversed DIEs as kept.
   1224     TF_InFunctionScope = 1 << 1, ///< Current scope is a fucntion scope.
   1225     TF_DependencyWalk = 1 << 2,  ///< Walking the dependencies of a kept DIE.
   1226     TF_ParentWalk = 1 << 3,      ///< Walking up the parents of a kept DIE.
   1227     TF_ODR = 1 << 4,             ///< Use the ODR whhile keeping dependants.
   1228     TF_SkipPC = 1 << 5,          ///< Skip all location attributes.
   1229   };
   1230 
   1231   /// \brief Mark the passed DIE as well as all the ones it depends on
   1232   /// as kept.
   1233   void keepDIEAndDependencies(RelocationManager &RelocMgr,
   1234                                const DWARFDebugInfoEntryMinimal &DIE,
   1235                                CompileUnit::DIEInfo &MyInfo,
   1236                                const DebugMapObject &DMO, CompileUnit &CU,
   1237                                bool UseODR);
   1238 
   1239   unsigned shouldKeepDIE(RelocationManager &RelocMgr,
   1240                          const DWARFDebugInfoEntryMinimal &DIE,
   1241                          CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
   1242                          unsigned Flags);
   1243 
   1244   unsigned shouldKeepVariableDIE(RelocationManager &RelocMgr,
   1245                                  const DWARFDebugInfoEntryMinimal &DIE,
   1246                                  CompileUnit &Unit,
   1247                                  CompileUnit::DIEInfo &MyInfo, unsigned Flags);
   1248 
   1249   unsigned shouldKeepSubprogramDIE(RelocationManager &RelocMgr,
   1250                                    const DWARFDebugInfoEntryMinimal &DIE,
   1251                                    CompileUnit &Unit,
   1252                                    CompileUnit::DIEInfo &MyInfo,
   1253                                    unsigned Flags);
   1254 
   1255   bool hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
   1256                           CompileUnit::DIEInfo &Info);
   1257   /// @}
   1258 
   1259   /// \defgroup Linking Methods used to link the debug information
   1260   ///
   1261   /// @{
   1262 
   1263   class DIECloner {
   1264     DwarfLinker &Linker;
   1265     RelocationManager &RelocMgr;
   1266     /// Allocator used for all the DIEValue objects.
   1267     BumpPtrAllocator &DIEAlloc;
   1268     MutableArrayRef<CompileUnit> CompileUnits;
   1269     LinkOptions Options;
   1270 
   1271   public:
   1272     DIECloner(DwarfLinker &Linker, RelocationManager &RelocMgr,
   1273               BumpPtrAllocator &DIEAlloc,
   1274               MutableArrayRef<CompileUnit> CompileUnits, LinkOptions &Options)
   1275         : Linker(Linker), RelocMgr(RelocMgr), DIEAlloc(DIEAlloc),
   1276           CompileUnits(CompileUnits), Options(Options) {}
   1277 
   1278     /// Recursively clone \p InputDIE into an tree of DIE objects
   1279     /// where useless (as decided by lookForDIEsToKeep()) bits have been
   1280     /// stripped out and addresses have been rewritten according to the
   1281     /// debug map.
   1282     ///
   1283     /// \param OutOffset is the offset the cloned DIE in the output
   1284     /// compile unit.
   1285     /// \param PCOffset (while cloning a function scope) is the offset
   1286     /// applied to the entry point of the function to get the linked address.
   1287     ///
   1288     /// \returns the root of the cloned tree or null if nothing was selected.
   1289     DIE *cloneDIE(const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &U,
   1290                   int64_t PCOffset, uint32_t OutOffset, unsigned Flags);
   1291 
   1292     /// Construct the output DIE tree by cloning the DIEs we
   1293     /// chose to keep above. If there are no valid relocs, then there's
   1294     /// nothing to clone/emit.
   1295     void cloneAllCompileUnits(DWARFContextInMemory &DwarfContext);
   1296 
   1297   private:
   1298     typedef DWARFAbbreviationDeclaration::AttributeSpec AttributeSpec;
   1299 
   1300     /// Information gathered and exchanged between the various
   1301     /// clone*Attributes helpers about the attributes of a particular DIE.
   1302     struct AttributesInfo {
   1303       const char *Name, *MangledName;         ///< Names.
   1304       uint32_t NameOffset, MangledNameOffset; ///< Offsets in the string pool.
   1305 
   1306       uint64_t OrigLowPc;  ///< Value of AT_low_pc in the input DIE
   1307       uint64_t OrigHighPc; ///< Value of AT_high_pc in the input DIE
   1308       int64_t PCOffset; ///< Offset to apply to PC addresses inside a function.
   1309 
   1310       bool HasLowPc;      ///< Does the DIE have a low_pc attribute?
   1311       bool IsDeclaration; ///< Is this DIE only a declaration?
   1312 
   1313       AttributesInfo()
   1314           : Name(nullptr), MangledName(nullptr), NameOffset(0),
   1315             MangledNameOffset(0), OrigLowPc(UINT64_MAX), OrigHighPc(0),
   1316             PCOffset(0), HasLowPc(false), IsDeclaration(false) {}
   1317     };
   1318 
   1319     /// Helper for cloneDIE.
   1320     unsigned cloneAttribute(DIE &Die,
   1321                             const DWARFDebugInfoEntryMinimal &InputDIE,
   1322                             CompileUnit &U, const DWARFFormValue &Val,
   1323                             const AttributeSpec AttrSpec, unsigned AttrSize,
   1324                             AttributesInfo &AttrInfo);
   1325 
   1326     /// Clone a string attribute described by \p AttrSpec and add
   1327     /// it to \p Die.
   1328     /// \returns the size of the new attribute.
   1329     unsigned cloneStringAttribute(DIE &Die, AttributeSpec AttrSpec,
   1330                                   const DWARFFormValue &Val,
   1331                                   const DWARFUnit &U);
   1332 
   1333     /// Clone an attribute referencing another DIE and add
   1334     /// it to \p Die.
   1335     /// \returns the size of the new attribute.
   1336     unsigned
   1337     cloneDieReferenceAttribute(DIE &Die,
   1338                                const DWARFDebugInfoEntryMinimal &InputDIE,
   1339                                AttributeSpec AttrSpec, unsigned AttrSize,
   1340                                const DWARFFormValue &Val, CompileUnit &Unit);
   1341 
   1342     /// Clone an attribute referencing another DIE and add
   1343     /// it to \p Die.
   1344     /// \returns the size of the new attribute.
   1345     unsigned cloneBlockAttribute(DIE &Die, AttributeSpec AttrSpec,
   1346                                  const DWARFFormValue &Val, unsigned AttrSize);
   1347 
   1348     /// Clone an attribute referencing another DIE and add
   1349     /// it to \p Die.
   1350     /// \returns the size of the new attribute.
   1351     unsigned cloneAddressAttribute(DIE &Die, AttributeSpec AttrSpec,
   1352                                    const DWARFFormValue &Val,
   1353                                    const CompileUnit &Unit,
   1354                                    AttributesInfo &Info);
   1355 
   1356     /// Clone a scalar attribute  and add it to \p Die.
   1357     /// \returns the size of the new attribute.
   1358     unsigned cloneScalarAttribute(DIE &Die,
   1359                                   const DWARFDebugInfoEntryMinimal &InputDIE,
   1360                                   CompileUnit &U, AttributeSpec AttrSpec,
   1361                                   const DWARFFormValue &Val, unsigned AttrSize,
   1362                                   AttributesInfo &Info);
   1363 
   1364     /// Get the potential name and mangled name for the entity
   1365     /// described by \p Die and store them in \Info if they are not
   1366     /// already there.
   1367     /// \returns is a name was found.
   1368     bool getDIENames(const DWARFDebugInfoEntryMinimal &Die, DWARFUnit &U,
   1369                      AttributesInfo &Info);
   1370 
   1371     /// Create a copy of abbreviation Abbrev.
   1372     void copyAbbrev(const DWARFAbbreviationDeclaration &Abbrev, bool hasODR);
   1373   };
   1374 
   1375   /// \brief Assign an abbreviation number to \p Abbrev
   1376   void AssignAbbrev(DIEAbbrev &Abbrev);
   1377 
   1378   /// \brief FoldingSet that uniques the abbreviations.
   1379   FoldingSet<DIEAbbrev> AbbreviationsSet;
   1380   /// \brief Storage for the unique Abbreviations.
   1381   /// This is passed to AsmPrinter::emitDwarfAbbrevs(), thus it cannot
   1382   /// be changed to a vecot of unique_ptrs.
   1383   std::vector<std::unique_ptr<DIEAbbrev>> Abbreviations;
   1384 
   1385   /// \brief Compute and emit debug_ranges section for \p Unit, and
   1386   /// patch the attributes referencing it.
   1387   void patchRangesForUnit(const CompileUnit &Unit, DWARFContext &Dwarf) const;
   1388 
   1389   /// \brief Generate and emit the DW_AT_ranges attribute for a
   1390   /// compile_unit if it had one.
   1391   void generateUnitRanges(CompileUnit &Unit) const;
   1392 
   1393   /// \brief Extract the line tables fromt he original dwarf, extract
   1394   /// the relevant parts according to the linked function ranges and
   1395   /// emit the result in the debug_line section.
   1396   void patchLineTableForUnit(CompileUnit &Unit, DWARFContext &OrigDwarf);
   1397 
   1398   /// \brief Emit the accelerator entries for \p Unit.
   1399   void emitAcceleratorEntriesForUnit(CompileUnit &Unit);
   1400 
   1401   /// \brief Patch the frame info for an object file and emit it.
   1402   void patchFrameInfoForObject(const DebugMapObject &, DWARFContext &,
   1403                                unsigned AddressSize);
   1404 
   1405   /// \brief DIELoc objects that need to be destructed (but not freed!).
   1406   std::vector<DIELoc *> DIELocs;
   1407   /// \brief DIEBlock objects that need to be destructed (but not freed!).
   1408   std::vector<DIEBlock *> DIEBlocks;
   1409   /// \brief Allocator used for all the DIEValue objects.
   1410   BumpPtrAllocator DIEAlloc;
   1411   /// @}
   1412 
   1413   /// ODR Contexts for that link.
   1414   DeclContextTree ODRContexts;
   1415 
   1416   /// \defgroup Helpers Various helper methods.
   1417   ///
   1418   /// @{
   1419   bool createStreamer(const Triple &TheTriple, StringRef OutputFilename);
   1420 
   1421   /// \brief Attempt to load a debug object from disk.
   1422   ErrorOr<const object::ObjectFile &> loadObject(BinaryHolder &BinaryHolder,
   1423                                                  DebugMapObject &Obj,
   1424                                                  const DebugMap &Map);
   1425   /// @}
   1426 
   1427   std::string OutputFilename;
   1428   LinkOptions Options;
   1429   BinaryHolder BinHolder;
   1430   std::unique_ptr<DwarfStreamer> Streamer;
   1431   uint64_t OutputDebugInfoSize;
   1432   unsigned UnitID; ///< A unique ID that identifies each compile unit.
   1433 
   1434   /// The units of the current debug map object.
   1435   std::vector<CompileUnit> Units;
   1436 
   1437   /// The debug map object currently under consideration.
   1438   DebugMapObject *CurrentDebugObject;
   1439 
   1440   /// \brief The Dwarf string pool
   1441   NonRelocatableStringpool StringPool;
   1442 
   1443   /// \brief This map is keyed by the entry PC of functions in that
   1444   /// debug object and the associated value is a pair storing the
   1445   /// corresponding end PC and the offset to apply to get the linked
   1446   /// address.
   1447   ///
   1448   /// See startDebugObject() for a more complete description of its use.
   1449   std::map<uint64_t, std::pair<uint64_t, int64_t>> Ranges;
   1450 
   1451   /// \brief The CIEs that have been emitted in the output
   1452   /// section. The actual CIE data serves a the key to this StringMap,
   1453   /// this takes care of comparing the semantics of CIEs defined in
   1454   /// different object files.
   1455   StringMap<uint32_t> EmittedCIEs;
   1456 
   1457   /// Offset of the last CIE that has been emitted in the output
   1458   /// debug_frame section.
   1459   uint32_t LastCIEOffset;
   1460 
   1461   /// Mapping the PCM filename to the DwoId.
   1462   StringMap<uint64_t> ClangModules;
   1463 
   1464   bool ModuleCacheHintDisplayed = false;
   1465   bool ArchiveHintDisplayed = false;
   1466 };
   1467 
   1468 /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
   1469 /// CompileUnit object instead.
   1470 static CompileUnit *getUnitForOffset(MutableArrayRef<CompileUnit> Units,
   1471                                      unsigned Offset) {
   1472   auto CU =
   1473       std::upper_bound(Units.begin(), Units.end(), Offset,
   1474                        [](uint32_t LHS, const CompileUnit &RHS) {
   1475                          return LHS < RHS.getOrigUnit().getNextUnitOffset();
   1476                        });
   1477   return CU != Units.end() ? &*CU : nullptr;
   1478 }
   1479 
   1480 /// Resolve the DIE attribute reference that has been
   1481 /// extracted in \p RefValue. The resulting DIE migh be in another
   1482 /// CompileUnit which is stored into \p ReferencedCU.
   1483 /// \returns null if resolving fails for any reason.
   1484 static const DWARFDebugInfoEntryMinimal *resolveDIEReference(
   1485     const DwarfLinker &Linker, MutableArrayRef<CompileUnit> Units,
   1486     const DWARFFormValue &RefValue, const DWARFUnit &Unit,
   1487     const DWARFDebugInfoEntryMinimal &DIE, CompileUnit *&RefCU) {
   1488   assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
   1489   uint64_t RefOffset = *RefValue.getAsReference(&Unit);
   1490 
   1491   if ((RefCU = getUnitForOffset(Units, RefOffset)))
   1492     if (const auto *RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset))
   1493       return RefDie;
   1494 
   1495   Linker.reportWarning("could not find referenced DIE", &Unit, &DIE);
   1496   return nullptr;
   1497 }
   1498 
   1499 /// \returns whether the passed \a Attr type might contain a DIE
   1500 /// reference suitable for ODR uniquing.
   1501 static bool isODRAttribute(uint16_t Attr) {
   1502   switch (Attr) {
   1503   default:
   1504     return false;
   1505   case dwarf::DW_AT_type:
   1506   case dwarf::DW_AT_containing_type:
   1507   case dwarf::DW_AT_specification:
   1508   case dwarf::DW_AT_abstract_origin:
   1509   case dwarf::DW_AT_import:
   1510     return true;
   1511   }
   1512   llvm_unreachable("Improper attribute.");
   1513 }
   1514 
   1515 /// Set the last DIE/CU a context was seen in and, possibly invalidate
   1516 /// the context if it is ambiguous.
   1517 ///
   1518 /// In the current implementation, we don't handle overloaded
   1519 /// functions well, because the argument types are not taken into
   1520 /// account when computing the DeclContext tree.
   1521 ///
   1522 /// Some of this is mitigated byt using mangled names that do contain
   1523 /// the arguments types, but sometimes (eg. with function templates)
   1524 /// we don't have that. In that case, just do not unique anything that
   1525 /// refers to the contexts we are not able to distinguish.
   1526 ///
   1527 /// If a context that is not a namespace appears twice in the same CU,
   1528 /// we know it is ambiguous. Make it invalid.
   1529 bool DeclContext::setLastSeenDIE(CompileUnit &U,
   1530                                  const DWARFDebugInfoEntryMinimal *Die) {
   1531   if (LastSeenCompileUnitID == U.getUniqueID()) {
   1532     DWARFUnit &OrigUnit = U.getOrigUnit();
   1533     uint32_t FirstIdx = OrigUnit.getDIEIndex(LastSeenDIE);
   1534     U.getInfo(FirstIdx).Ctxt = nullptr;
   1535     return false;
   1536   }
   1537 
   1538   LastSeenCompileUnitID = U.getUniqueID();
   1539   LastSeenDIE = Die;
   1540   return true;
   1541 }
   1542 
   1543 PointerIntPair<DeclContext *, 1> DeclContextTree::getChildDeclContext(
   1544     DeclContext &Context, const DWARFDebugInfoEntryMinimal *DIE, CompileUnit &U,
   1545     NonRelocatableStringpool &StringPool, bool InClangModule) {
   1546   unsigned Tag = DIE->getTag();
   1547 
   1548   // FIXME: dsymutil-classic compat: We should bail out here if we
   1549   // have a specification or an abstract_origin. We will get the
   1550   // parent context wrong here.
   1551 
   1552   switch (Tag) {
   1553   default:
   1554     // By default stop gathering child contexts.
   1555     return PointerIntPair<DeclContext *, 1>(nullptr);
   1556   case dwarf::DW_TAG_module:
   1557     break;
   1558   case dwarf::DW_TAG_compile_unit:
   1559     return PointerIntPair<DeclContext *, 1>(&Context);
   1560   case dwarf::DW_TAG_subprogram:
   1561     // Do not unique anything inside CU local functions.
   1562     if ((Context.getTag() == dwarf::DW_TAG_namespace ||
   1563          Context.getTag() == dwarf::DW_TAG_compile_unit) &&
   1564         !DIE->getAttributeValueAsUnsignedConstant(&U.getOrigUnit(),
   1565                                                   dwarf::DW_AT_external, 0))
   1566       return PointerIntPair<DeclContext *, 1>(nullptr);
   1567   // Fallthrough
   1568   case dwarf::DW_TAG_member:
   1569   case dwarf::DW_TAG_namespace:
   1570   case dwarf::DW_TAG_structure_type:
   1571   case dwarf::DW_TAG_class_type:
   1572   case dwarf::DW_TAG_union_type:
   1573   case dwarf::DW_TAG_enumeration_type:
   1574   case dwarf::DW_TAG_typedef:
   1575     // Artificial things might be ambiguous, because they might be
   1576     // created on demand. For example implicitely defined constructors
   1577     // are ambiguous because of the way we identify contexts, and they
   1578     // won't be generated everytime everywhere.
   1579     if (DIE->getAttributeValueAsUnsignedConstant(&U.getOrigUnit(),
   1580                                                  dwarf::DW_AT_artificial, 0))
   1581       return PointerIntPair<DeclContext *, 1>(nullptr);
   1582     break;
   1583   }
   1584 
   1585   const char *Name = DIE->getName(&U.getOrigUnit(), DINameKind::LinkageName);
   1586   const char *ShortName = DIE->getName(&U.getOrigUnit(), DINameKind::ShortName);
   1587   StringRef NameRef;
   1588   StringRef ShortNameRef;
   1589   StringRef FileRef;
   1590 
   1591   if (Name)
   1592     NameRef = StringPool.internString(Name);
   1593   else if (Tag == dwarf::DW_TAG_namespace)
   1594     // FIXME: For dsymutil-classic compatibility. I think uniquing
   1595     // within anonymous namespaces is wrong. There is no ODR guarantee
   1596     // there.
   1597     NameRef = StringPool.internString("(anonymous namespace)");
   1598 
   1599   if (ShortName && ShortName != Name)
   1600     ShortNameRef = StringPool.internString(ShortName);
   1601   else
   1602     ShortNameRef = NameRef;
   1603 
   1604   if (Tag != dwarf::DW_TAG_class_type && Tag != dwarf::DW_TAG_structure_type &&
   1605       Tag != dwarf::DW_TAG_union_type &&
   1606       Tag != dwarf::DW_TAG_enumeration_type && NameRef.empty())
   1607     return PointerIntPair<DeclContext *, 1>(nullptr);
   1608 
   1609   unsigned Line = 0;
   1610   unsigned ByteSize = UINT32_MAX;
   1611 
   1612   if (!InClangModule) {
   1613     // Gather some discriminating data about the DeclContext we will be
   1614     // creating: File, line number and byte size. This shouldn't be
   1615     // necessary, because the ODR is just about names, but given that we
   1616     // do some approximations with overloaded functions and anonymous
   1617     // namespaces, use these additional data points to make the process
   1618     // safer.  This is disabled for clang modules, because forward
   1619     // declarations of module-defined types do not have a file and line.
   1620     ByteSize = DIE->getAttributeValueAsUnsignedConstant(
   1621         &U.getOrigUnit(), dwarf::DW_AT_byte_size, UINT64_MAX);
   1622     if (Tag != dwarf::DW_TAG_namespace || !Name) {
   1623       if (unsigned FileNum = DIE->getAttributeValueAsUnsignedConstant(
   1624               &U.getOrigUnit(), dwarf::DW_AT_decl_file, 0)) {
   1625         if (const auto *LT = U.getOrigUnit().getContext().getLineTableForUnit(
   1626                 &U.getOrigUnit())) {
   1627           // FIXME: dsymutil-classic compatibility. I'd rather not
   1628           // unique anything in anonymous namespaces, but if we do, then
   1629           // verify that the file and line correspond.
   1630           if (!Name && Tag == dwarf::DW_TAG_namespace)
   1631             FileNum = 1;
   1632 
   1633           // FIXME: Passing U.getOrigUnit().getCompilationDir()
   1634           // instead of "" would allow more uniquing, but for now, do
   1635           // it this way to match dsymutil-classic.
   1636           std::string File;
   1637           if (LT->getFileNameByIndex(
   1638                   FileNum, "",
   1639                   DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath,
   1640                   File)) {
   1641             Line = DIE->getAttributeValueAsUnsignedConstant(
   1642                 &U.getOrigUnit(), dwarf::DW_AT_decl_line, 0);
   1643             // Cache the resolved paths, because calling realpath is expansive.
   1644             StringRef ResolvedPath = U.getResolvedPath(FileNum);
   1645             if (!ResolvedPath.empty()) {
   1646               FileRef = ResolvedPath;
   1647             } else {
   1648 #ifdef HAVE_REALPATH
   1649               char RealPath[PATH_MAX + 1];
   1650               RealPath[PATH_MAX] = 0;
   1651               if (::realpath(File.c_str(), RealPath))
   1652                 File = RealPath;
   1653 #endif
   1654               FileRef = StringPool.internString(File);
   1655               U.setResolvedPath(FileNum, FileRef);
   1656             }
   1657           }
   1658         }
   1659       }
   1660     }
   1661   }
   1662 
   1663   if (!Line && NameRef.empty())
   1664     return PointerIntPair<DeclContext *, 1>(nullptr);
   1665 
   1666   // We hash NameRef, which is the mangled name, in order to get most
   1667   // overloaded functions resolve correctly.
   1668   //
   1669   // Strictly speaking, hashing the Tag is only necessary for a
   1670   // DW_TAG_module, to prevent uniquing of a module and a namespace
   1671   // with the same name.
   1672   //
   1673   // FIXME: dsymutil-classic won't unique the same type presented
   1674   // once as a struct and once as a class. Using the Tag in the fully
   1675   // qualified name hash to get the same effect.
   1676   unsigned Hash = hash_combine(Context.getQualifiedNameHash(), Tag, NameRef);
   1677 
   1678   // FIXME: dsymutil-classic compatibility: when we don't have a name,
   1679   // use the filename.
   1680   if (Tag == dwarf::DW_TAG_namespace && NameRef == "(anonymous namespace)")
   1681     Hash = hash_combine(Hash, FileRef);
   1682 
   1683   // Now look if this context already exists.
   1684   DeclContext Key(Hash, Line, ByteSize, Tag, NameRef, FileRef, Context);
   1685   auto ContextIter = Contexts.find(&Key);
   1686 
   1687   if (ContextIter == Contexts.end()) {
   1688     // The context wasn't found.
   1689     bool Inserted;
   1690     DeclContext *NewContext =
   1691         new (Allocator) DeclContext(Hash, Line, ByteSize, Tag, NameRef, FileRef,
   1692                                     Context, DIE, U.getUniqueID());
   1693     std::tie(ContextIter, Inserted) = Contexts.insert(NewContext);
   1694     assert(Inserted && "Failed to insert DeclContext");
   1695     (void)Inserted;
   1696   } else if (Tag != dwarf::DW_TAG_namespace &&
   1697              !(*ContextIter)->setLastSeenDIE(U, DIE)) {
   1698     // The context was found, but it is ambiguous with another context
   1699     // in the same file. Mark it invalid.
   1700     return PointerIntPair<DeclContext *, 1>(*ContextIter, /* Invalid= */ 1);
   1701   }
   1702 
   1703   assert(ContextIter != Contexts.end());
   1704   // FIXME: dsymutil-classic compatibility. Union types aren't
   1705   // uniques, but their children might be.
   1706   if ((Tag == dwarf::DW_TAG_subprogram &&
   1707        Context.getTag() != dwarf::DW_TAG_structure_type &&
   1708        Context.getTag() != dwarf::DW_TAG_class_type) ||
   1709       (Tag == dwarf::DW_TAG_union_type))
   1710     return PointerIntPair<DeclContext *, 1>(*ContextIter, /* Invalid= */ 1);
   1711 
   1712   return PointerIntPair<DeclContext *, 1>(*ContextIter);
   1713 }
   1714 
   1715 bool DwarfLinker::DIECloner::getDIENames(const DWARFDebugInfoEntryMinimal &Die,
   1716                                          DWARFUnit &U, AttributesInfo &Info) {
   1717   // FIXME: a bit wasteful as the first getName might return the
   1718   // short name.
   1719   if (!Info.MangledName &&
   1720       (Info.MangledName = Die.getName(&U, DINameKind::LinkageName)))
   1721     Info.MangledNameOffset =
   1722         Linker.StringPool.getStringOffset(Info.MangledName);
   1723 
   1724   if (!Info.Name && (Info.Name = Die.getName(&U, DINameKind::ShortName)))
   1725     Info.NameOffset = Linker.StringPool.getStringOffset(Info.Name);
   1726 
   1727   return Info.Name || Info.MangledName;
   1728 }
   1729 
   1730 /// \brief Report a warning to the user, optionaly including
   1731 /// information about a specific \p DIE related to the warning.
   1732 void DwarfLinker::reportWarning(const Twine &Warning, const DWARFUnit *Unit,
   1733                                 const DWARFDebugInfoEntryMinimal *DIE) const {
   1734   StringRef Context = "<debug map>";
   1735   if (CurrentDebugObject)
   1736     Context = CurrentDebugObject->getObjectFilename();
   1737   warn(Warning, Context);
   1738 
   1739   if (!Options.Verbose || !DIE)
   1740     return;
   1741 
   1742   errs() << "    in DIE:\n";
   1743   DIE->dump(errs(), const_cast<DWARFUnit *>(Unit), 0 /* RecurseDepth */,
   1744             6 /* Indent */);
   1745 }
   1746 
   1747 bool DwarfLinker::createStreamer(const Triple &TheTriple,
   1748                                  StringRef OutputFilename) {
   1749   if (Options.NoOutput)
   1750     return true;
   1751 
   1752   Streamer = llvm::make_unique<DwarfStreamer>();
   1753   return Streamer->init(TheTriple, OutputFilename);
   1754 }
   1755 
   1756 /// Recursive helper to build the global DeclContext information and
   1757 /// gather the child->parent relationships in the original compile unit.
   1758 ///
   1759 /// \return true when this DIE and all of its children are only
   1760 /// forward declarations to types defined in external clang modules
   1761 /// (i.e., forward declarations that are children of a DW_TAG_module).
   1762 static bool analyzeContextInfo(const DWARFDebugInfoEntryMinimal *DIE,
   1763                                unsigned ParentIdx, CompileUnit &CU,
   1764                                DeclContext *CurrentDeclContext,
   1765                                NonRelocatableStringpool &StringPool,
   1766                                DeclContextTree &Contexts,
   1767                                bool InImportedModule = false) {
   1768   unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE);
   1769   CompileUnit::DIEInfo &Info = CU.getInfo(MyIdx);
   1770 
   1771   // Clang imposes an ODR on modules(!) regardless of the language:
   1772   //  "The module-id should consist of only a single identifier,
   1773   //   which provides the name of the module being defined. Each
   1774   //   module shall have a single definition."
   1775   //
   1776   // This does not extend to the types inside the modules:
   1777   //  "[I]n C, this implies that if two structs are defined in
   1778   //   different submodules with the same name, those two types are
   1779   //   distinct types (but may be compatible types if their
   1780   //   definitions match)."
   1781   //
   1782   // We treat non-C++ modules like namespaces for this reason.
   1783   if (DIE->getTag() == dwarf::DW_TAG_module && ParentIdx == 0 &&
   1784       DIE->getAttributeValueAsString(&CU.getOrigUnit(), dwarf::DW_AT_name,
   1785                                      "") != CU.getClangModuleName()) {
   1786     InImportedModule = true;
   1787   }
   1788 
   1789   Info.ParentIdx = ParentIdx;
   1790   bool InClangModule = CU.isClangModule() || InImportedModule;
   1791   if (CU.hasODR() || InClangModule) {
   1792     if (CurrentDeclContext) {
   1793       auto PtrInvalidPair = Contexts.getChildDeclContext(
   1794           *CurrentDeclContext, DIE, CU, StringPool, InClangModule);
   1795       CurrentDeclContext = PtrInvalidPair.getPointer();
   1796       Info.Ctxt =
   1797           PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
   1798     } else
   1799       Info.Ctxt = CurrentDeclContext = nullptr;
   1800   }
   1801 
   1802   Info.Prune = InImportedModule;
   1803   if (DIE->hasChildren())
   1804     for (auto *Child = DIE->getFirstChild(); Child && !Child->isNULL();
   1805          Child = Child->getSibling())
   1806       Info.Prune &= analyzeContextInfo(Child, MyIdx, CU, CurrentDeclContext,
   1807                                        StringPool, Contexts, InImportedModule);
   1808 
   1809   // Prune this DIE if it is either a forward declaration inside a
   1810   // DW_TAG_module or a DW_TAG_module that contains nothing but
   1811   // forward declarations.
   1812   Info.Prune &= (DIE->getTag() == dwarf::DW_TAG_module) ||
   1813                 DIE->getAttributeValueAsUnsignedConstant(
   1814                     &CU.getOrigUnit(), dwarf::DW_AT_declaration, 0);
   1815 
   1816   // Don't prune it if there is no definition for the DIE.
   1817   Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
   1818 
   1819   return Info.Prune;
   1820 }
   1821 
   1822 static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
   1823   switch (Tag) {
   1824   default:
   1825     return false;
   1826   case dwarf::DW_TAG_subprogram:
   1827   case dwarf::DW_TAG_lexical_block:
   1828   case dwarf::DW_TAG_subroutine_type:
   1829   case dwarf::DW_TAG_structure_type:
   1830   case dwarf::DW_TAG_class_type:
   1831   case dwarf::DW_TAG_union_type:
   1832     return true;
   1833   }
   1834   llvm_unreachable("Invalid Tag");
   1835 }
   1836 
   1837 static unsigned getRefAddrSize(const DWARFUnit &U) {
   1838   if (U.getVersion() == 2)
   1839     return U.getAddressByteSize();
   1840   return 4;
   1841 }
   1842 
   1843 void DwarfLinker::startDebugObject(DWARFContext &Dwarf, DebugMapObject &Obj) {
   1844   Units.reserve(Dwarf.getNumCompileUnits());
   1845   // Iterate over the debug map entries and put all the ones that are
   1846   // functions (because they have a size) into the Ranges map. This
   1847   // map is very similar to the FunctionRanges that are stored in each
   1848   // unit, with 2 notable differences:
   1849   //  - obviously this one is global, while the other ones are per-unit.
   1850   //  - this one contains not only the functions described in the DIE
   1851   // tree, but also the ones that are only in the debug map.
   1852   // The latter information is required to reproduce dsymutil's logic
   1853   // while linking line tables. The cases where this information
   1854   // matters look like bugs that need to be investigated, but for now
   1855   // we need to reproduce dsymutil's behavior.
   1856   // FIXME: Once we understood exactly if that information is needed,
   1857   // maybe totally remove this (or try to use it to do a real
   1858   // -gline-tables-only on Darwin.
   1859   for (const auto &Entry : Obj.symbols()) {
   1860     const auto &Mapping = Entry.getValue();
   1861     if (Mapping.Size && Mapping.ObjectAddress)
   1862       Ranges[*Mapping.ObjectAddress] = std::make_pair(
   1863           *Mapping.ObjectAddress + Mapping.Size,
   1864           int64_t(Mapping.BinaryAddress) - *Mapping.ObjectAddress);
   1865   }
   1866 }
   1867 
   1868 void DwarfLinker::endDebugObject() {
   1869   Units.clear();
   1870   Ranges.clear();
   1871 
   1872   for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I)
   1873     (*I)->~DIEBlock();
   1874   for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I)
   1875     (*I)->~DIELoc();
   1876 
   1877   DIEBlocks.clear();
   1878   DIELocs.clear();
   1879   DIEAlloc.Reset();
   1880 }
   1881 
   1882 static bool isMachOPairedReloc(uint64_t RelocType, uint64_t Arch) {
   1883   switch (Arch) {
   1884   case Triple::x86:
   1885     return RelocType == MachO::GENERIC_RELOC_SECTDIFF ||
   1886            RelocType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF;
   1887   case Triple::x86_64:
   1888     return RelocType == MachO::X86_64_RELOC_SUBTRACTOR;
   1889   case Triple::arm:
   1890   case Triple::thumb:
   1891     return RelocType == MachO::ARM_RELOC_SECTDIFF ||
   1892            RelocType == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
   1893            RelocType == MachO::ARM_RELOC_HALF ||
   1894            RelocType == MachO::ARM_RELOC_HALF_SECTDIFF;
   1895   case Triple::aarch64:
   1896     return RelocType == MachO::ARM64_RELOC_SUBTRACTOR;
   1897   default:
   1898     return false;
   1899   }
   1900 }
   1901 
   1902 /// \brief Iterate over the relocations of the given \p Section and
   1903 /// store the ones that correspond to debug map entries into the
   1904 /// ValidRelocs array.
   1905 void DwarfLinker::RelocationManager::
   1906 findValidRelocsMachO(const object::SectionRef &Section,
   1907                      const object::MachOObjectFile &Obj,
   1908                      const DebugMapObject &DMO) {
   1909   StringRef Contents;
   1910   Section.getContents(Contents);
   1911   DataExtractor Data(Contents, Obj.isLittleEndian(), 0);
   1912   bool SkipNext = false;
   1913 
   1914   for (const object::RelocationRef &Reloc : Section.relocations()) {
   1915     if (SkipNext) {
   1916       SkipNext = false;
   1917       continue;
   1918     }
   1919 
   1920     object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl();
   1921     MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef);
   1922 
   1923     if (isMachOPairedReloc(Obj.getAnyRelocationType(MachOReloc),
   1924                            Obj.getArch())) {
   1925       SkipNext = true;
   1926       Linker.reportWarning(" unsupported relocation in debug_info section.");
   1927       continue;
   1928     }
   1929 
   1930     unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc);
   1931     uint64_t Offset64 = Reloc.getOffset();
   1932     if ((RelocSize != 4 && RelocSize != 8)) {
   1933       Linker.reportWarning(" unsupported relocation in debug_info section.");
   1934       continue;
   1935     }
   1936     uint32_t Offset = Offset64;
   1937     // Mach-o uses REL relocations, the addend is at the relocation offset.
   1938     uint64_t Addend = Data.getUnsigned(&Offset, RelocSize);
   1939     uint64_t SymAddress;
   1940     int64_t SymOffset;
   1941 
   1942     if (Obj.isRelocationScattered(MachOReloc)) {
   1943       // The address of the base symbol for scattered relocations is
   1944       // stored in the reloc itself. The actual addend will store the
   1945       // base address plus the offset.
   1946       SymAddress = Obj.getScatteredRelocationValue(MachOReloc);
   1947       SymOffset = int64_t(Addend) - SymAddress;
   1948     } else {
   1949       SymAddress = Addend;
   1950       SymOffset = 0;
   1951     }
   1952 
   1953     auto Sym = Reloc.getSymbol();
   1954     if (Sym != Obj.symbol_end()) {
   1955       Expected<StringRef> SymbolName = Sym->getName();
   1956       if (!SymbolName) {
   1957         consumeError(SymbolName.takeError());
   1958         Linker.reportWarning("error getting relocation symbol name.");
   1959         continue;
   1960       }
   1961       if (const auto *Mapping = DMO.lookupSymbol(*SymbolName))
   1962         ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping);
   1963     } else if (const auto *Mapping = DMO.lookupObjectAddress(SymAddress)) {
   1964       // Do not store the addend. The addend was the address of the
   1965       // symbol in the object file, the address in the binary that is
   1966       // stored in the debug map doesn't need to be offseted.
   1967       ValidRelocs.emplace_back(Offset64, RelocSize, SymOffset, Mapping);
   1968     }
   1969   }
   1970 }
   1971 
   1972 /// \brief Dispatch the valid relocation finding logic to the
   1973 /// appropriate handler depending on the object file format.
   1974 bool DwarfLinker::RelocationManager::findValidRelocs(
   1975     const object::SectionRef &Section, const object::ObjectFile &Obj,
   1976     const DebugMapObject &DMO) {
   1977   // Dispatch to the right handler depending on the file type.
   1978   if (auto *MachOObj = dyn_cast<object::MachOObjectFile>(&Obj))
   1979     findValidRelocsMachO(Section, *MachOObj, DMO);
   1980   else
   1981     Linker.reportWarning(Twine("unsupported object file type: ") +
   1982                          Obj.getFileName());
   1983 
   1984   if (ValidRelocs.empty())
   1985     return false;
   1986 
   1987   // Sort the relocations by offset. We will walk the DIEs linearly in
   1988   // the file, this allows us to just keep an index in the relocation
   1989   // array that we advance during our walk, rather than resorting to
   1990   // some associative container. See DwarfLinker::NextValidReloc.
   1991   std::sort(ValidRelocs.begin(), ValidRelocs.end());
   1992   return true;
   1993 }
   1994 
   1995 /// \brief Look for relocations in the debug_info section that match
   1996 /// entries in the debug map. These relocations will drive the Dwarf
   1997 /// link by indicating which DIEs refer to symbols present in the
   1998 /// linked binary.
   1999 /// \returns wether there are any valid relocations in the debug info.
   2000 bool DwarfLinker::RelocationManager::
   2001 findValidRelocsInDebugInfo(const object::ObjectFile &Obj,
   2002                            const DebugMapObject &DMO) {
   2003   // Find the debug_info section.
   2004   for (const object::SectionRef &Section : Obj.sections()) {
   2005     StringRef SectionName;
   2006     Section.getName(SectionName);
   2007     SectionName = SectionName.substr(SectionName.find_first_not_of("._"));
   2008     if (SectionName != "debug_info")
   2009       continue;
   2010     return findValidRelocs(Section, Obj, DMO);
   2011   }
   2012   return false;
   2013 }
   2014 
   2015 /// \brief Checks that there is a relocation against an actual debug
   2016 /// map entry between \p StartOffset and \p NextOffset.
   2017 ///
   2018 /// This function must be called with offsets in strictly ascending
   2019 /// order because it never looks back at relocations it already 'went past'.
   2020 /// \returns true and sets Info.InDebugMap if it is the case.
   2021 bool DwarfLinker::RelocationManager::
   2022 hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
   2023                    CompileUnit::DIEInfo &Info) {
   2024   assert(NextValidReloc == 0 ||
   2025          StartOffset > ValidRelocs[NextValidReloc - 1].Offset);
   2026   if (NextValidReloc >= ValidRelocs.size())
   2027     return false;
   2028 
   2029   uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset;
   2030 
   2031   // We might need to skip some relocs that we didn't consider. For
   2032   // example the high_pc of a discarded DIE might contain a reloc that
   2033   // is in the list because it actually corresponds to the start of a
   2034   // function that is in the debug map.
   2035   while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1)
   2036     RelocOffset = ValidRelocs[++NextValidReloc].Offset;
   2037 
   2038   if (RelocOffset < StartOffset || RelocOffset >= EndOffset)
   2039     return false;
   2040 
   2041   const auto &ValidReloc = ValidRelocs[NextValidReloc++];
   2042   const auto &Mapping = ValidReloc.Mapping->getValue();
   2043   uint64_t ObjectAddress =
   2044       Mapping.ObjectAddress ? uint64_t(*Mapping.ObjectAddress) : UINT64_MAX;
   2045   if (Linker.Options.Verbose)
   2046     outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey()
   2047            << " " << format("\t%016" PRIx64 " => %016" PRIx64, ObjectAddress,
   2048                             uint64_t(Mapping.BinaryAddress));
   2049 
   2050   Info.AddrAdjust = int64_t(Mapping.BinaryAddress) + ValidReloc.Addend;
   2051   if (Mapping.ObjectAddress)
   2052     Info.AddrAdjust -= ObjectAddress;
   2053   Info.InDebugMap = true;
   2054   return true;
   2055 }
   2056 
   2057 /// \brief Get the starting and ending (exclusive) offset for the
   2058 /// attribute with index \p Idx descibed by \p Abbrev. \p Offset is
   2059 /// supposed to point to the position of the first attribute described
   2060 /// by \p Abbrev.
   2061 /// \return [StartOffset, EndOffset) as a pair.
   2062 static std::pair<uint32_t, uint32_t>
   2063 getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx,
   2064                     unsigned Offset, const DWARFUnit &Unit) {
   2065   DataExtractor Data = Unit.getDebugInfoExtractor();
   2066 
   2067   for (unsigned i = 0; i < Idx; ++i)
   2068     DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset, &Unit);
   2069 
   2070   uint32_t End = Offset;
   2071   DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End, &Unit);
   2072 
   2073   return std::make_pair(Offset, End);
   2074 }
   2075 
   2076 /// \brief Check if a variable describing DIE should be kept.
   2077 /// \returns updated TraversalFlags.
   2078 unsigned DwarfLinker::shouldKeepVariableDIE(RelocationManager &RelocMgr,
   2079                                             const DWARFDebugInfoEntryMinimal &DIE,
   2080                                             CompileUnit &Unit,
   2081                                             CompileUnit::DIEInfo &MyInfo,
   2082                                             unsigned Flags) {
   2083   const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
   2084 
   2085   // Global variables with constant value can always be kept.
   2086   if (!(Flags & TF_InFunctionScope) &&
   2087       Abbrev->findAttributeIndex(dwarf::DW_AT_const_value) != -1U) {
   2088     MyInfo.InDebugMap = true;
   2089     return Flags | TF_Keep;
   2090   }
   2091 
   2092   uint32_t LocationIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_location);
   2093   if (LocationIdx == -1U)
   2094     return Flags;
   2095 
   2096   uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
   2097   const DWARFUnit &OrigUnit = Unit.getOrigUnit();
   2098   uint32_t LocationOffset, LocationEndOffset;
   2099   std::tie(LocationOffset, LocationEndOffset) =
   2100       getAttributeOffsets(Abbrev, LocationIdx, Offset, OrigUnit);
   2101 
   2102   // See if there is a relocation to a valid debug map entry inside
   2103   // this variable's location. The order is important here. We want to
   2104   // always check in the variable has a valid relocation, so that the
   2105   // DIEInfo is filled. However, we don't want a static variable in a
   2106   // function to force us to keep the enclosing function.
   2107   if (!RelocMgr.hasValidRelocation(LocationOffset, LocationEndOffset, MyInfo) ||
   2108       (Flags & TF_InFunctionScope))
   2109     return Flags;
   2110 
   2111   if (Options.Verbose)
   2112     DIE.dump(outs(), const_cast<DWARFUnit *>(&OrigUnit), 0, 8 /* Indent */);
   2113 
   2114   return Flags | TF_Keep;
   2115 }
   2116 
   2117 /// \brief Check if a function describing DIE should be kept.
   2118 /// \returns updated TraversalFlags.
   2119 unsigned DwarfLinker::shouldKeepSubprogramDIE(
   2120     RelocationManager &RelocMgr,
   2121     const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit,
   2122     CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
   2123   const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
   2124 
   2125   Flags |= TF_InFunctionScope;
   2126 
   2127   uint32_t LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc);
   2128   if (LowPcIdx == -1U)
   2129     return Flags;
   2130 
   2131   uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
   2132   const DWARFUnit &OrigUnit = Unit.getOrigUnit();
   2133   uint32_t LowPcOffset, LowPcEndOffset;
   2134   std::tie(LowPcOffset, LowPcEndOffset) =
   2135       getAttributeOffsets(Abbrev, LowPcIdx, Offset, OrigUnit);
   2136 
   2137   uint64_t LowPc =
   2138       DIE.getAttributeValueAsAddress(&OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
   2139   assert(LowPc != -1ULL && "low_pc attribute is not an address.");
   2140   if (LowPc == -1ULL ||
   2141       !RelocMgr.hasValidRelocation(LowPcOffset, LowPcEndOffset, MyInfo))
   2142     return Flags;
   2143 
   2144   if (Options.Verbose)
   2145     DIE.dump(outs(), const_cast<DWARFUnit *>(&OrigUnit), 0, 8 /* Indent */);
   2146 
   2147   Flags |= TF_Keep;
   2148 
   2149   DWARFFormValue HighPcValue;
   2150   if (!DIE.getAttributeValue(&OrigUnit, dwarf::DW_AT_high_pc, HighPcValue)) {
   2151     reportWarning("Function without high_pc. Range will be discarded.\n",
   2152                   &OrigUnit, &DIE);
   2153     return Flags;
   2154   }
   2155 
   2156   uint64_t HighPc;
   2157   if (HighPcValue.isFormClass(DWARFFormValue::FC_Address)) {
   2158     HighPc = *HighPcValue.getAsAddress(&OrigUnit);
   2159   } else {
   2160     assert(HighPcValue.isFormClass(DWARFFormValue::FC_Constant));
   2161     HighPc = LowPc + *HighPcValue.getAsUnsignedConstant();
   2162   }
   2163 
   2164   // Replace the debug map range with a more accurate one.
   2165   Ranges[LowPc] = std::make_pair(HighPc, MyInfo.AddrAdjust);
   2166   Unit.addFunctionRange(LowPc, HighPc, MyInfo.AddrAdjust);
   2167   return Flags;
   2168 }
   2169 
   2170 /// \brief Check if a DIE should be kept.
   2171 /// \returns updated TraversalFlags.
   2172 unsigned DwarfLinker::shouldKeepDIE(RelocationManager &RelocMgr,
   2173                                     const DWARFDebugInfoEntryMinimal &DIE,
   2174                                     CompileUnit &Unit,
   2175                                     CompileUnit::DIEInfo &MyInfo,
   2176                                     unsigned Flags) {
   2177   switch (DIE.getTag()) {
   2178   case dwarf::DW_TAG_constant:
   2179   case dwarf::DW_TAG_variable:
   2180     return shouldKeepVariableDIE(RelocMgr, DIE, Unit, MyInfo, Flags);
   2181   case dwarf::DW_TAG_subprogram:
   2182     return shouldKeepSubprogramDIE(RelocMgr, DIE, Unit, MyInfo, Flags);
   2183   case dwarf::DW_TAG_module:
   2184   case dwarf::DW_TAG_imported_module:
   2185   case dwarf::DW_TAG_imported_declaration:
   2186   case dwarf::DW_TAG_imported_unit:
   2187     // We always want to keep these.
   2188     return Flags | TF_Keep;
   2189   }
   2190 
   2191   return Flags;
   2192 }
   2193 
   2194 /// \brief Mark the passed DIE as well as all the ones it depends on
   2195 /// as kept.
   2196 ///
   2197 /// This function is called by lookForDIEsToKeep on DIEs that are
   2198 /// newly discovered to be needed in the link. It recursively calls
   2199 /// back to lookForDIEsToKeep while adding TF_DependencyWalk to the
   2200 /// TraversalFlags to inform it that it's not doing the primary DIE
   2201 /// tree walk.
   2202 void DwarfLinker::keepDIEAndDependencies(RelocationManager &RelocMgr,
   2203                                           const DWARFDebugInfoEntryMinimal &Die,
   2204                                           CompileUnit::DIEInfo &MyInfo,
   2205                                           const DebugMapObject &DMO,
   2206                                           CompileUnit &CU, bool UseODR) {
   2207   const DWARFUnit &Unit = CU.getOrigUnit();
   2208   MyInfo.Keep = true;
   2209 
   2210   // First mark all the parent chain as kept.
   2211   unsigned AncestorIdx = MyInfo.ParentIdx;
   2212   while (!CU.getInfo(AncestorIdx).Keep) {
   2213     unsigned ODRFlag = UseODR ? TF_ODR : 0;
   2214     lookForDIEsToKeep(RelocMgr, *Unit.getDIEAtIndex(AncestorIdx), DMO, CU,
   2215                       TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag);
   2216     AncestorIdx = CU.getInfo(AncestorIdx).ParentIdx;
   2217   }
   2218 
   2219   // Then we need to mark all the DIEs referenced by this DIE's
   2220   // attributes as kept.
   2221   DataExtractor Data = Unit.getDebugInfoExtractor();
   2222   const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
   2223   uint32_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
   2224 
   2225   // Mark all DIEs referenced through atttributes as kept.
   2226   for (const auto &AttrSpec : Abbrev->attributes()) {
   2227     DWARFFormValue Val(AttrSpec.Form);
   2228 
   2229     if (!Val.isFormClass(DWARFFormValue::FC_Reference)) {
   2230       DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, &Unit);
   2231       continue;
   2232     }
   2233 
   2234     Val.extractValue(Data, &Offset, &Unit);
   2235     CompileUnit *ReferencedCU;
   2236     if (const auto *RefDIE =
   2237             resolveDIEReference(*this, MutableArrayRef<CompileUnit>(Units), Val,
   2238                                 Unit, Die, ReferencedCU)) {
   2239       uint32_t RefIdx = ReferencedCU->getOrigUnit().getDIEIndex(RefDIE);
   2240       CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefIdx);
   2241       // If the referenced DIE has a DeclContext that has already been
   2242       // emitted, then do not keep the one in this CU. We'll link to
   2243       // the canonical DIE in cloneDieReferenceAttribute.
   2244       // FIXME: compatibility with dsymutil-classic. UseODR shouldn't
   2245       // be necessary and could be advantageously replaced by
   2246       // ReferencedCU->hasODR() && CU.hasODR().
   2247       // FIXME: compatibility with dsymutil-classic. There is no
   2248       // reason not to unique ref_addr references.
   2249       if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && UseODR && Info.Ctxt &&
   2250           Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt &&
   2251           Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr))
   2252         continue;
   2253 
   2254       // Keep a module forward declaration if there is no definition.
   2255       if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
   2256             Info.Ctxt->getCanonicalDIEOffset()))
   2257         Info.Prune = false;
   2258 
   2259       unsigned ODRFlag = UseODR ? TF_ODR : 0;
   2260       lookForDIEsToKeep(RelocMgr, *RefDIE, DMO, *ReferencedCU,
   2261                         TF_Keep | TF_DependencyWalk | ODRFlag);
   2262     }
   2263   }
   2264 }
   2265 
   2266 /// \brief Recursively walk the \p DIE tree and look for DIEs to
   2267 /// keep. Store that information in \p CU's DIEInfo.
   2268 ///
   2269 /// This function is the entry point of the DIE selection
   2270 /// algorithm. It is expected to walk the DIE tree in file order and
   2271 /// (though the mediation of its helper) call hasValidRelocation() on
   2272 /// each DIE that might be a 'root DIE' (See DwarfLinker class
   2273 /// comment).
   2274 /// While walking the dependencies of root DIEs, this function is
   2275 /// also called, but during these dependency walks the file order is
   2276 /// not respected. The TF_DependencyWalk flag tells us which kind of
   2277 /// traversal we are currently doing.
   2278 void DwarfLinker::lookForDIEsToKeep(RelocationManager &RelocMgr,
   2279                                     const DWARFDebugInfoEntryMinimal &Die,
   2280                                     const DebugMapObject &DMO, CompileUnit &CU,
   2281                                     unsigned Flags) {
   2282   unsigned Idx = CU.getOrigUnit().getDIEIndex(&Die);
   2283   CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
   2284   bool AlreadyKept = MyInfo.Keep;
   2285   if (MyInfo.Prune)
   2286     return;
   2287 
   2288   // If the Keep flag is set, we are marking a required DIE's
   2289   // dependencies. If our target is already marked as kept, we're all
   2290   // set.
   2291   if ((Flags & TF_DependencyWalk) && AlreadyKept)
   2292     return;
   2293 
   2294   // We must not call shouldKeepDIE while called from keepDIEAndDependencies,
   2295   // because it would screw up the relocation finding logic.
   2296   if (!(Flags & TF_DependencyWalk))
   2297     Flags = shouldKeepDIE(RelocMgr, Die, CU, MyInfo, Flags);
   2298 
   2299   // If it is a newly kept DIE mark it as well as all its dependencies as kept.
   2300   if (!AlreadyKept && (Flags & TF_Keep)) {
   2301     bool UseOdr = (Flags & TF_DependencyWalk) ? (Flags & TF_ODR) : CU.hasODR();
   2302     keepDIEAndDependencies(RelocMgr, Die, MyInfo, DMO, CU, UseOdr);
   2303   }
   2304   // The TF_ParentWalk flag tells us that we are currently walking up
   2305   // the parent chain of a required DIE, and we don't want to mark all
   2306   // the children of the parents as kept (consider for example a
   2307   // DW_TAG_namespace node in the parent chain). There are however a
   2308   // set of DIE types for which we want to ignore that directive and still
   2309   // walk their children.
   2310   if (dieNeedsChildrenToBeMeaningful(Die.getTag()))
   2311     Flags &= ~TF_ParentWalk;
   2312 
   2313   if (!Die.hasChildren() || (Flags & TF_ParentWalk))
   2314     return;
   2315 
   2316   for (auto *Child = Die.getFirstChild(); Child && !Child->isNULL();
   2317        Child = Child->getSibling())
   2318     lookForDIEsToKeep(RelocMgr, *Child, DMO, CU, Flags);
   2319 }
   2320 
   2321 /// \brief Assign an abbreviation numer to \p Abbrev.
   2322 ///
   2323 /// Our DIEs get freed after every DebugMapObject has been processed,
   2324 /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
   2325 /// the instances hold by the DIEs. When we encounter an abbreviation
   2326 /// that we don't know, we create a permanent copy of it.
   2327 void DwarfLinker::AssignAbbrev(DIEAbbrev &Abbrev) {
   2328   // Check the set for priors.
   2329   FoldingSetNodeID ID;
   2330   Abbrev.Profile(ID);
   2331   void *InsertToken;
   2332   DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
   2333 
   2334   // If it's newly added.
   2335   if (InSet) {
   2336     // Assign existing abbreviation number.
   2337     Abbrev.setNumber(InSet->getNumber());
   2338   } else {
   2339     // Add to abbreviation list.
   2340     Abbreviations.push_back(
   2341         llvm::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
   2342     for (const auto &Attr : Abbrev.getData())
   2343       Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
   2344     AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
   2345     // Assign the unique abbreviation number.
   2346     Abbrev.setNumber(Abbreviations.size());
   2347     Abbreviations.back()->setNumber(Abbreviations.size());
   2348   }
   2349 }
   2350 
   2351 unsigned DwarfLinker::DIECloner::cloneStringAttribute(DIE &Die,
   2352                                                       AttributeSpec AttrSpec,
   2353                                                       const DWARFFormValue &Val,
   2354                                                       const DWARFUnit &U) {
   2355   // Switch everything to out of line strings.
   2356   const char *String = *Val.getAsCString(&U);
   2357   unsigned Offset = Linker.StringPool.getStringOffset(String);
   2358   Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
   2359                DIEInteger(Offset));
   2360   return 4;
   2361 }
   2362 
   2363 unsigned DwarfLinker::DIECloner::cloneDieReferenceAttribute(
   2364     DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE,
   2365     AttributeSpec AttrSpec, unsigned AttrSize, const DWARFFormValue &Val,
   2366     CompileUnit &Unit) {
   2367   const DWARFUnit &U = Unit.getOrigUnit();
   2368   uint32_t Ref = *Val.getAsReference(&U);
   2369   DIE *NewRefDie = nullptr;
   2370   CompileUnit *RefUnit = nullptr;
   2371   DeclContext *Ctxt = nullptr;
   2372 
   2373   const DWARFDebugInfoEntryMinimal *RefDie =
   2374       resolveDIEReference(Linker, CompileUnits, Val, U, InputDIE, RefUnit);
   2375 
   2376   // If the referenced DIE is not found,  drop the attribute.
   2377   if (!RefDie)
   2378     return 0;
   2379 
   2380   unsigned Idx = RefUnit->getOrigUnit().getDIEIndex(RefDie);
   2381   CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(Idx);
   2382 
   2383   // If we already have emitted an equivalent DeclContext, just point
   2384   // at it.
   2385   if (isODRAttribute(AttrSpec.Attr)) {
   2386     Ctxt = RefInfo.Ctxt;
   2387     if (Ctxt && Ctxt->getCanonicalDIEOffset()) {
   2388       DIEInteger Attr(Ctxt->getCanonicalDIEOffset());
   2389       Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
   2390                    dwarf::DW_FORM_ref_addr, Attr);
   2391       return getRefAddrSize(U);
   2392     }
   2393   }
   2394 
   2395   if (!RefInfo.Clone) {
   2396     assert(Ref > InputDIE.getOffset());
   2397     // We haven't cloned this DIE yet. Just create an empty one and
   2398     // store it. It'll get really cloned when we process it.
   2399     RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie->getTag()));
   2400   }
   2401   NewRefDie = RefInfo.Clone;
   2402 
   2403   if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
   2404       (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
   2405     // We cannot currently rely on a DIEEntry to emit ref_addr
   2406     // references, because the implementation calls back to DwarfDebug
   2407     // to find the unit offset. (We don't have a DwarfDebug)
   2408     // FIXME: we should be able to design DIEEntry reliance on
   2409     // DwarfDebug away.
   2410     uint64_t Attr;
   2411     if (Ref < InputDIE.getOffset()) {
   2412       // We must have already cloned that DIE.
   2413       uint32_t NewRefOffset =
   2414           RefUnit->getStartOffset() + NewRefDie->getOffset();
   2415       Attr = NewRefOffset;
   2416       Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
   2417                    dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
   2418     } else {
   2419       // A forward reference. Note and fixup later.
   2420       Attr = 0xBADDEF;
   2421       Unit.noteForwardReference(
   2422           NewRefDie, RefUnit, Ctxt,
   2423           Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
   2424                        dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
   2425     }
   2426     return getRefAddrSize(U);
   2427   }
   2428 
   2429   Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
   2430                dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
   2431   return AttrSize;
   2432 }
   2433 
   2434 unsigned DwarfLinker::DIECloner::cloneBlockAttribute(DIE &Die,
   2435                                                      AttributeSpec AttrSpec,
   2436                                                      const DWARFFormValue &Val,
   2437                                                      unsigned AttrSize) {
   2438   DIEValueList *Attr;
   2439   DIEValue Value;
   2440   DIELoc *Loc = nullptr;
   2441   DIEBlock *Block = nullptr;
   2442   // Just copy the block data over.
   2443   if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
   2444     Loc = new (DIEAlloc) DIELoc;
   2445     Linker.DIELocs.push_back(Loc);
   2446   } else {
   2447     Block = new (DIEAlloc) DIEBlock;
   2448     Linker.DIEBlocks.push_back(Block);
   2449   }
   2450   Attr = Loc ? static_cast<DIEValueList *>(Loc)
   2451              : static_cast<DIEValueList *>(Block);
   2452 
   2453   if (Loc)
   2454     Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
   2455                      dwarf::Form(AttrSpec.Form), Loc);
   2456   else
   2457     Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
   2458                      dwarf::Form(AttrSpec.Form), Block);
   2459   ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
   2460   for (auto Byte : Bytes)
   2461     Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
   2462                    dwarf::DW_FORM_data1, DIEInteger(Byte));
   2463   // FIXME: If DIEBlock and DIELoc just reuses the Size field of
   2464   // the DIE class, this if could be replaced by
   2465   // Attr->setSize(Bytes.size()).
   2466   if (Linker.Streamer) {
   2467     auto *AsmPrinter = &Linker.Streamer->getAsmPrinter();
   2468     if (Loc)
   2469       Loc->ComputeSize(AsmPrinter);
   2470     else
   2471       Block->ComputeSize(AsmPrinter);
   2472   }
   2473   Die.addValue(DIEAlloc, Value);
   2474   return AttrSize;
   2475 }
   2476 
   2477 unsigned DwarfLinker::DIECloner::cloneAddressAttribute(
   2478     DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
   2479     const CompileUnit &Unit, AttributesInfo &Info) {
   2480   uint64_t Addr = *Val.getAsAddress(&Unit.getOrigUnit());
   2481   if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
   2482     if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
   2483         Die.getTag() == dwarf::DW_TAG_lexical_block)
   2484       // The low_pc of a block or inline subroutine might get
   2485       // relocated because it happens to match the low_pc of the
   2486       // enclosing subprogram. To prevent issues with that, always use
   2487       // the low_pc from the input DIE if relocations have been applied.
   2488       Addr = (Info.OrigLowPc != UINT64_MAX ? Info.OrigLowPc : Addr) +
   2489              Info.PCOffset;
   2490     else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
   2491       Addr = Unit.getLowPc();
   2492       if (Addr == UINT64_MAX)
   2493         return 0;
   2494     }
   2495     Info.HasLowPc = true;
   2496   } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
   2497     if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
   2498       if (uint64_t HighPc = Unit.getHighPc())
   2499         Addr = HighPc;
   2500       else
   2501         return 0;
   2502     } else
   2503       // If we have a high_pc recorded for the input DIE, use
   2504       // it. Otherwise (when no relocations where applied) just use the
   2505       // one we just decoded.
   2506       Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
   2507   }
   2508 
   2509   Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
   2510                static_cast<dwarf::Form>(AttrSpec.Form), DIEInteger(Addr));
   2511   return Unit.getOrigUnit().getAddressByteSize();
   2512 }
   2513 
   2514 unsigned DwarfLinker::DIECloner::cloneScalarAttribute(
   2515     DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit,
   2516     AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize,
   2517     AttributesInfo &Info) {
   2518   uint64_t Value;
   2519   if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
   2520       Die.getTag() == dwarf::DW_TAG_compile_unit) {
   2521     if (Unit.getLowPc() == -1ULL)
   2522       return 0;
   2523     // Dwarf >= 4 high_pc is an size, not an address.
   2524     Value = Unit.getHighPc() - Unit.getLowPc();
   2525   } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
   2526     Value = *Val.getAsSectionOffset();
   2527   else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
   2528     Value = *Val.getAsSignedConstant();
   2529   else if (auto OptionalValue = Val.getAsUnsignedConstant())
   2530     Value = *OptionalValue;
   2531   else {
   2532     Linker.reportWarning(
   2533         "Unsupported scalar attribute form. Dropping attribute.",
   2534         &Unit.getOrigUnit(), &InputDIE);
   2535     return 0;
   2536   }
   2537   PatchLocation Patch =
   2538       Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
   2539                    dwarf::Form(AttrSpec.Form), DIEInteger(Value));
   2540   if (AttrSpec.Attr == dwarf::DW_AT_ranges)
   2541     Unit.noteRangeAttribute(Die, Patch);
   2542 
   2543   // A more generic way to check for location attributes would be
   2544   // nice, but it's very unlikely that any other attribute needs a
   2545   // location list.
   2546   else if (AttrSpec.Attr == dwarf::DW_AT_location ||
   2547            AttrSpec.Attr == dwarf::DW_AT_frame_base)
   2548     Unit.noteLocationAttribute(Patch, Info.PCOffset);
   2549   else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
   2550     Info.IsDeclaration = true;
   2551 
   2552   return AttrSize;
   2553 }
   2554 
   2555 /// \brief Clone \p InputDIE's attribute described by \p AttrSpec with
   2556 /// value \p Val, and add it to \p Die.
   2557 /// \returns the size of the cloned attribute.
   2558 unsigned DwarfLinker::DIECloner::cloneAttribute(
   2559     DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit,
   2560     const DWARFFormValue &Val, const AttributeSpec AttrSpec, unsigned AttrSize,
   2561     AttributesInfo &Info) {
   2562   const DWARFUnit &U = Unit.getOrigUnit();
   2563 
   2564   switch (AttrSpec.Form) {
   2565   case dwarf::DW_FORM_strp:
   2566   case dwarf::DW_FORM_string:
   2567     return cloneStringAttribute(Die, AttrSpec, Val, U);
   2568   case dwarf::DW_FORM_ref_addr:
   2569   case dwarf::DW_FORM_ref1:
   2570   case dwarf::DW_FORM_ref2:
   2571   case dwarf::DW_FORM_ref4:
   2572   case dwarf::DW_FORM_ref8:
   2573     return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
   2574                                       Unit);
   2575   case dwarf::DW_FORM_block:
   2576   case dwarf::DW_FORM_block1:
   2577   case dwarf::DW_FORM_block2:
   2578   case dwarf::DW_FORM_block4:
   2579   case dwarf::DW_FORM_exprloc:
   2580     return cloneBlockAttribute(Die, AttrSpec, Val, AttrSize);
   2581   case dwarf::DW_FORM_addr:
   2582     return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
   2583   case dwarf::DW_FORM_data1:
   2584   case dwarf::DW_FORM_data2:
   2585   case dwarf::DW_FORM_data4:
   2586   case dwarf::DW_FORM_data8:
   2587   case dwarf::DW_FORM_udata:
   2588   case dwarf::DW_FORM_sdata:
   2589   case dwarf::DW_FORM_sec_offset:
   2590   case dwarf::DW_FORM_flag:
   2591   case dwarf::DW_FORM_flag_present:
   2592     return cloneScalarAttribute(Die, InputDIE, Unit, AttrSpec, Val, AttrSize,
   2593                                 Info);
   2594   default:
   2595     Linker.reportWarning(
   2596         "Unsupported attribute form in cloneAttribute. Dropping.", &U,
   2597         &InputDIE);
   2598   }
   2599 
   2600   return 0;
   2601 }
   2602 
   2603 /// \brief Apply the valid relocations found by findValidRelocs() to
   2604 /// the buffer \p Data, taking into account that Data is at \p BaseOffset
   2605 /// in the debug_info section.
   2606 ///
   2607 /// Like for findValidRelocs(), this function must be called with
   2608 /// monotonic \p BaseOffset values.
   2609 ///
   2610 /// \returns wether any reloc has been applied.
   2611 bool DwarfLinker::RelocationManager::
   2612 applyValidRelocs(MutableArrayRef<char> Data, uint32_t BaseOffset,
   2613                  bool isLittleEndian) {
   2614   assert((NextValidReloc == 0 ||
   2615           BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) &&
   2616          "BaseOffset should only be increasing.");
   2617   if (NextValidReloc >= ValidRelocs.size())
   2618     return false;
   2619 
   2620   // Skip relocs that haven't been applied.
   2621   while (NextValidReloc < ValidRelocs.size() &&
   2622          ValidRelocs[NextValidReloc].Offset < BaseOffset)
   2623     ++NextValidReloc;
   2624 
   2625   bool Applied = false;
   2626   uint64_t EndOffset = BaseOffset + Data.size();
   2627   while (NextValidReloc < ValidRelocs.size() &&
   2628          ValidRelocs[NextValidReloc].Offset >= BaseOffset &&
   2629          ValidRelocs[NextValidReloc].Offset < EndOffset) {
   2630     const auto &ValidReloc = ValidRelocs[NextValidReloc++];
   2631     assert(ValidReloc.Offset - BaseOffset < Data.size());
   2632     assert(ValidReloc.Offset - BaseOffset + ValidReloc.Size <= Data.size());
   2633     char Buf[8];
   2634     uint64_t Value = ValidReloc.Mapping->getValue().BinaryAddress;
   2635     Value += ValidReloc.Addend;
   2636     for (unsigned i = 0; i != ValidReloc.Size; ++i) {
   2637       unsigned Index = isLittleEndian ? i : (ValidReloc.Size - i - 1);
   2638       Buf[i] = uint8_t(Value >> (Index * 8));
   2639     }
   2640     assert(ValidReloc.Size <= sizeof(Buf));
   2641     memcpy(&Data[ValidReloc.Offset - BaseOffset], Buf, ValidReloc.Size);
   2642     Applied = true;
   2643   }
   2644 
   2645   return Applied;
   2646 }
   2647 
   2648 static bool isTypeTag(uint16_t Tag) {
   2649   switch (Tag) {
   2650   case dwarf::DW_TAG_array_type:
   2651   case dwarf::DW_TAG_class_type:
   2652   case dwarf::DW_TAG_enumeration_type:
   2653   case dwarf::DW_TAG_pointer_type:
   2654   case dwarf::DW_TAG_reference_type:
   2655   case dwarf::DW_TAG_string_type:
   2656   case dwarf::DW_TAG_structure_type:
   2657   case dwarf::DW_TAG_subroutine_type:
   2658   case dwarf::DW_TAG_typedef:
   2659   case dwarf::DW_TAG_union_type:
   2660   case dwarf::DW_TAG_ptr_to_member_type:
   2661   case dwarf::DW_TAG_set_type:
   2662   case dwarf::DW_TAG_subrange_type:
   2663   case dwarf::DW_TAG_base_type:
   2664   case dwarf::DW_TAG_const_type:
   2665   case dwarf::DW_TAG_constant:
   2666   case dwarf::DW_TAG_file_type:
   2667   case dwarf::DW_TAG_namelist:
   2668   case dwarf::DW_TAG_packed_type:
   2669   case dwarf::DW_TAG_volatile_type:
   2670   case dwarf::DW_TAG_restrict_type:
   2671   case dwarf::DW_TAG_interface_type:
   2672   case dwarf::DW_TAG_unspecified_type:
   2673   case dwarf::DW_TAG_shared_type:
   2674     return true;
   2675   default:
   2676     break;
   2677   }
   2678   return false;
   2679 }
   2680 
   2681 static bool
   2682 shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
   2683                     uint16_t Tag, bool InDebugMap, bool SkipPC,
   2684                     bool InFunctionScope) {
   2685   switch (AttrSpec.Attr) {
   2686   default:
   2687     return false;
   2688   case dwarf::DW_AT_low_pc:
   2689   case dwarf::DW_AT_high_pc:
   2690   case dwarf::DW_AT_ranges:
   2691     return SkipPC;
   2692   case dwarf::DW_AT_location:
   2693   case dwarf::DW_AT_frame_base:
   2694     // FIXME: for some reason dsymutil-classic keeps the location
   2695     // attributes when they are of block type (ie. not location
   2696     // lists). This is totally wrong for globals where we will keep a
   2697     // wrong address. It is mostly harmless for locals, but there is
   2698     // no point in keeping these anyway when the function wasn't linked.
   2699     return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
   2700                        !InDebugMap)) &&
   2701            !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
   2702   }
   2703 }
   2704 
   2705 DIE *DwarfLinker::DIECloner::cloneDIE(
   2706     const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit,
   2707     int64_t PCOffset, uint32_t OutOffset, unsigned Flags) {
   2708   DWARFUnit &U = Unit.getOrigUnit();
   2709   unsigned Idx = U.getDIEIndex(&InputDIE);
   2710   CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
   2711 
   2712   // Should the DIE appear in the output?
   2713   if (!Unit.getInfo(Idx).Keep)
   2714     return nullptr;
   2715 
   2716   uint32_t Offset = InputDIE.getOffset();
   2717   // The DIE might have been already created by a forward reference
   2718   // (see cloneDieReferenceAttribute()).
   2719   DIE *Die = Info.Clone;
   2720   if (!Die)
   2721     Die = Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
   2722   assert(Die->getTag() == InputDIE.getTag());
   2723   Die->setOffset(OutOffset);
   2724   if ((Unit.hasODR() || Unit.isClangModule()) &&
   2725       Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt &&
   2726       Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt &&
   2727       !Info.Ctxt->getCanonicalDIEOffset()) {
   2728     // We are about to emit a DIE that is the root of its own valid
   2729     // DeclContext tree. Make the current offset the canonical offset
   2730     // for this context.
   2731     Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
   2732   }
   2733 
   2734   // Extract and clone every attribute.
   2735   DataExtractor Data = U.getDebugInfoExtractor();
   2736   // Point to the next DIE (generally there is always at least a NULL
   2737   // entry after the current one). If this is a lone
   2738   // DW_TAG_compile_unit without any children, point to the next unit.
   2739   uint32_t NextOffset =
   2740     (Idx + 1 < U.getNumDIEs())
   2741     ? U.getDIEAtIndex(Idx + 1)->getOffset()
   2742     : U.getNextUnitOffset();
   2743   AttributesInfo AttrInfo;
   2744 
   2745   // We could copy the data only if we need to aply a relocation to
   2746   // it. After testing, it seems there is no performance downside to
   2747   // doing the copy unconditionally, and it makes the code simpler.
   2748   SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
   2749   Data = DataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
   2750   // Modify the copy with relocated addresses.
   2751   if (RelocMgr.applyValidRelocs(DIECopy, Offset, Data.isLittleEndian())) {
   2752     // If we applied relocations, we store the value of high_pc that was
   2753     // potentially stored in the input DIE. If high_pc is an address
   2754     // (Dwarf version == 2), then it might have been relocated to a
   2755     // totally unrelated value (because the end address in the object
   2756     // file might be start address of another function which got moved
   2757     // independantly by the linker). The computation of the actual
   2758     // high_pc value is done in cloneAddressAttribute().
   2759     AttrInfo.OrigHighPc =
   2760         InputDIE.getAttributeValueAsAddress(&U, dwarf::DW_AT_high_pc, 0);
   2761     // Also store the low_pc. It might get relocated in an
   2762     // inline_subprogram that happens at the beginning of its
   2763     // inlining function.
   2764     AttrInfo.OrigLowPc =
   2765         InputDIE.getAttributeValueAsAddress(&U, dwarf::DW_AT_low_pc, UINT64_MAX);
   2766   }
   2767 
   2768   // Reset the Offset to 0 as we will be working on the local copy of
   2769   // the data.
   2770   Offset = 0;
   2771 
   2772   const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
   2773   Offset += getULEB128Size(Abbrev->getCode());
   2774 
   2775   // We are entering a subprogram. Get and propagate the PCOffset.
   2776   if (Die->getTag() == dwarf::DW_TAG_subprogram)
   2777     PCOffset = Info.AddrAdjust;
   2778   AttrInfo.PCOffset = PCOffset;
   2779 
   2780   if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
   2781     Flags |= TF_InFunctionScope;
   2782     if (!Info.InDebugMap)
   2783       Flags |= TF_SkipPC;
   2784   }
   2785 
   2786   bool Copied = false;
   2787   for (const auto &AttrSpec : Abbrev->attributes()) {
   2788     if (shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap,
   2789                             Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
   2790       DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, &U);
   2791       // FIXME: dsymutil-classic keeps the old abbreviation around
   2792       // even if it's not used. We can remove this (and the copyAbbrev
   2793       // helper) as soon as bit-for-bit compatibility is not a goal anymore.
   2794       if (!Copied) {
   2795         copyAbbrev(*InputDIE.getAbbreviationDeclarationPtr(), Unit.hasODR());
   2796         Copied = true;
   2797       }
   2798       continue;
   2799     }
   2800 
   2801     DWARFFormValue Val(AttrSpec.Form);
   2802     uint32_t AttrSize = Offset;
   2803     Val.extractValue(Data, &Offset, &U);
   2804     AttrSize = Offset - AttrSize;
   2805 
   2806     OutOffset +=
   2807         cloneAttribute(*Die, InputDIE, Unit, Val, AttrSpec, AttrSize, AttrInfo);
   2808   }
   2809 
   2810   // Look for accelerator entries.
   2811   uint16_t Tag = InputDIE.getTag();
   2812   // FIXME: This is slightly wrong. An inline_subroutine without a
   2813   // low_pc, but with AT_ranges might be interesting to get into the
   2814   // accelerator tables too. For now stick with dsymutil's behavior.
   2815   if ((Info.InDebugMap || AttrInfo.HasLowPc) &&
   2816       Tag != dwarf::DW_TAG_compile_unit &&
   2817       getDIENames(InputDIE, Unit.getOrigUnit(), AttrInfo)) {
   2818     if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
   2819       Unit.addNameAccelerator(Die, AttrInfo.MangledName,
   2820                               AttrInfo.MangledNameOffset,
   2821                               Tag == dwarf::DW_TAG_inlined_subroutine);
   2822     if (AttrInfo.Name)
   2823       Unit.addNameAccelerator(Die, AttrInfo.Name, AttrInfo.NameOffset,
   2824                               Tag == dwarf::DW_TAG_inlined_subroutine);
   2825   } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
   2826              getDIENames(InputDIE, Unit.getOrigUnit(), AttrInfo)) {
   2827     Unit.addTypeAccelerator(Die, AttrInfo.Name, AttrInfo.NameOffset);
   2828   }
   2829 
   2830   // Determine whether there are any children that we want to keep.
   2831   bool HasChildren = false;
   2832   for (auto *Child = InputDIE.getFirstChild(); Child && !Child->isNULL();
   2833        Child = Child->getSibling()) {
   2834     unsigned Idx = U.getDIEIndex(Child);
   2835     if (Unit.getInfo(Idx).Keep) {
   2836       HasChildren = true;
   2837       break;
   2838     }
   2839   }
   2840 
   2841   DIEAbbrev NewAbbrev = Die->generateAbbrev();
   2842   if (HasChildren)
   2843     NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
   2844   // Assign a permanent abbrev number
   2845   Linker.AssignAbbrev(NewAbbrev);
   2846   Die->setAbbrevNumber(NewAbbrev.getNumber());
   2847 
   2848   // Add the size of the abbreviation number to the output offset.
   2849   OutOffset += getULEB128Size(Die->getAbbrevNumber());
   2850 
   2851   if (!HasChildren) {
   2852     // Update our size.
   2853     Die->setSize(OutOffset - Die->getOffset());
   2854     return Die;
   2855   }
   2856 
   2857   // Recursively clone children.
   2858   for (auto *Child = InputDIE.getFirstChild(); Child && !Child->isNULL();
   2859        Child = Child->getSibling()) {
   2860     if (DIE *Clone = cloneDIE(*Child, Unit, PCOffset, OutOffset, Flags)) {
   2861       Die->addChild(Clone);
   2862       OutOffset = Clone->getOffset() + Clone->getSize();
   2863     }
   2864   }
   2865 
   2866   // Account for the end of children marker.
   2867   OutOffset += sizeof(int8_t);
   2868   // Update our size.
   2869   Die->setSize(OutOffset - Die->getOffset());
   2870   return Die;
   2871 }
   2872 
   2873 /// \brief Patch the input object file relevant debug_ranges entries
   2874 /// and emit them in the output file. Update the relevant attributes
   2875 /// to point at the new entries.
   2876 void DwarfLinker::patchRangesForUnit(const CompileUnit &Unit,
   2877                                      DWARFContext &OrigDwarf) const {
   2878   DWARFDebugRangeList RangeList;
   2879   const auto &FunctionRanges = Unit.getFunctionRanges();
   2880   unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
   2881   DataExtractor RangeExtractor(OrigDwarf.getRangeSection(),
   2882                                OrigDwarf.isLittleEndian(), AddressSize);
   2883   auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
   2884   DWARFUnit &OrigUnit = Unit.getOrigUnit();
   2885   const auto *OrigUnitDie = OrigUnit.getUnitDIE(false);
   2886   uint64_t OrigLowPc = OrigUnitDie->getAttributeValueAsAddress(
   2887       &OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
   2888   // Ranges addresses are based on the unit's low_pc. Compute the
   2889   // offset we need to apply to adapt to the new unit's low_pc.
   2890   int64_t UnitPcOffset = 0;
   2891   if (OrigLowPc != -1ULL)
   2892     UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
   2893 
   2894   for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
   2895     uint32_t Offset = RangeAttribute.get();
   2896     RangeAttribute.set(Streamer->getRangesSectionSize());
   2897     RangeList.extract(RangeExtractor, &Offset);
   2898     const auto &Entries = RangeList.getEntries();
   2899     if (!Entries.empty()) {
   2900       const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
   2901 
   2902       if (CurrRange == InvalidRange ||
   2903           First.StartAddress + OrigLowPc < CurrRange.start() ||
   2904           First.StartAddress + OrigLowPc >= CurrRange.stop()) {
   2905         CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc);
   2906         if (CurrRange == InvalidRange ||
   2907             CurrRange.start() > First.StartAddress + OrigLowPc) {
   2908           reportWarning("no mapping for range.");
   2909           continue;
   2910         }
   2911       }
   2912     }
   2913 
   2914     Streamer->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, Entries,
   2915                                 AddressSize);
   2916   }
   2917 }
   2918 
   2919 /// \brief Generate the debug_aranges entries for \p Unit and if the
   2920 /// unit has a DW_AT_ranges attribute, also emit the debug_ranges
   2921 /// contribution for this attribute.
   2922 /// FIXME: this could actually be done right in patchRangesForUnit,
   2923 /// but for the sake of initial bit-for-bit compatibility with legacy
   2924 /// dsymutil, we have to do it in a delayed pass.
   2925 void DwarfLinker::generateUnitRanges(CompileUnit &Unit) const {
   2926   auto Attr = Unit.getUnitRangesAttribute();
   2927   if (Attr)
   2928     Attr->set(Streamer->getRangesSectionSize());
   2929   Streamer->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
   2930 }
   2931 
   2932 /// \brief Insert the new line info sequence \p Seq into the current
   2933 /// set of already linked line info \p Rows.
   2934 static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
   2935                                std::vector<DWARFDebugLine::Row> &Rows) {
   2936   if (Seq.empty())
   2937     return;
   2938 
   2939   if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
   2940     Rows.insert(Rows.end(), Seq.begin(), Seq.end());
   2941     Seq.clear();
   2942     return;
   2943   }
   2944 
   2945   auto InsertPoint = std::lower_bound(
   2946       Rows.begin(), Rows.end(), Seq.front(),
   2947       [](const DWARFDebugLine::Row &LHS, const DWARFDebugLine::Row &RHS) {
   2948         return LHS.Address < RHS.Address;
   2949       });
   2950 
   2951   // FIXME: this only removes the unneeded end_sequence if the
   2952   // sequences have been inserted in order. using a global sort like
   2953   // described in patchLineTableForUnit() and delaying the end_sequene
   2954   // elimination to emitLineTableForUnit() we can get rid of all of them.
   2955   if (InsertPoint != Rows.end() &&
   2956       InsertPoint->Address == Seq.front().Address && InsertPoint->EndSequence) {
   2957     *InsertPoint = Seq.front();
   2958     Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
   2959   } else {
   2960     Rows.insert(InsertPoint, Seq.begin(), Seq.end());
   2961   }
   2962 
   2963   Seq.clear();
   2964 }
   2965 
   2966 static void patchStmtList(DIE &Die, DIEInteger Offset) {
   2967   for (auto &V : Die.values())
   2968     if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
   2969       V = DIEValue(V.getAttribute(), V.getForm(), Offset);
   2970       return;
   2971     }
   2972 
   2973   llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
   2974 }
   2975 
   2976 /// \brief Extract the line table for \p Unit from \p OrigDwarf, and
   2977 /// recreate a relocated version of these for the address ranges that
   2978 /// are present in the binary.
   2979 void DwarfLinker::patchLineTableForUnit(CompileUnit &Unit,
   2980                                         DWARFContext &OrigDwarf) {
   2981   const DWARFDebugInfoEntryMinimal *CUDie = Unit.getOrigUnit().getUnitDIE();
   2982   uint64_t StmtList = CUDie->getAttributeValueAsSectionOffset(
   2983       &Unit.getOrigUnit(), dwarf::DW_AT_stmt_list, -1ULL);
   2984   if (StmtList == -1ULL)
   2985     return;
   2986 
   2987   // Update the cloned DW_AT_stmt_list with the correct debug_line offset.
   2988   if (auto *OutputDIE = Unit.getOutputUnitDIE())
   2989     patchStmtList(*OutputDIE, DIEInteger(Streamer->getLineSectionSize()));
   2990 
   2991   // Parse the original line info for the unit.
   2992   DWARFDebugLine::LineTable LineTable;
   2993   uint32_t StmtOffset = StmtList;
   2994   StringRef LineData = OrigDwarf.getLineSection().Data;
   2995   DataExtractor LineExtractor(LineData, OrigDwarf.isLittleEndian(),
   2996                               Unit.getOrigUnit().getAddressByteSize());
   2997   LineTable.parse(LineExtractor, &OrigDwarf.getLineSection().Relocs,
   2998                   &StmtOffset);
   2999 
   3000   // This vector is the output line table.
   3001   std::vector<DWARFDebugLine::Row> NewRows;
   3002   NewRows.reserve(LineTable.Rows.size());
   3003 
   3004   // Current sequence of rows being extracted, before being inserted
   3005   // in NewRows.
   3006   std::vector<DWARFDebugLine::Row> Seq;
   3007   const auto &FunctionRanges = Unit.getFunctionRanges();
   3008   auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
   3009 
   3010   // FIXME: This logic is meant to generate exactly the same output as
   3011   // Darwin's classic dsynutil. There is a nicer way to implement this
   3012   // by simply putting all the relocated line info in NewRows and simply
   3013   // sorting NewRows before passing it to emitLineTableForUnit. This
   3014   // should be correct as sequences for a function should stay
   3015   // together in the sorted output. There are a few corner cases that
   3016   // look suspicious though, and that required to implement the logic
   3017   // this way. Revisit that once initial validation is finished.
   3018 
   3019   // Iterate over the object file line info and extract the sequences
   3020   // that correspond to linked functions.
   3021   for (auto &Row : LineTable.Rows) {
   3022     // Check wether we stepped out of the range. The range is
   3023     // half-open, but consider accept the end address of the range if
   3024     // it is marked as end_sequence in the input (because in that
   3025     // case, the relocation offset is accurate and that entry won't
   3026     // serve as the start of another function).
   3027     if (CurrRange == InvalidRange || Row.Address < CurrRange.start() ||
   3028         Row.Address > CurrRange.stop() ||
   3029         (Row.Address == CurrRange.stop() && !Row.EndSequence)) {
   3030       // We just stepped out of a known range. Insert a end_sequence
   3031       // corresponding to the end of the range.
   3032       uint64_t StopAddress = CurrRange != InvalidRange
   3033                                  ? CurrRange.stop() + CurrRange.value()
   3034                                  : -1ULL;
   3035       CurrRange = FunctionRanges.find(Row.Address);
   3036       bool CurrRangeValid =
   3037           CurrRange != InvalidRange && CurrRange.start() <= Row.Address;
   3038       if (!CurrRangeValid) {
   3039         CurrRange = InvalidRange;
   3040         if (StopAddress != -1ULL) {
   3041           // Try harder by looking in the DebugMapObject function
   3042           // ranges map. There are corner cases where this finds a
   3043           // valid entry. It's unclear if this is right or wrong, but
   3044           // for now do as dsymutil.
   3045           // FIXME: Understand exactly what cases this addresses and
   3046           // potentially remove it along with the Ranges map.
   3047           auto Range = Ranges.lower_bound(Row.Address);
   3048           if (Range != Ranges.begin() && Range != Ranges.end())
   3049             --Range;
   3050 
   3051           if (Range != Ranges.end() && Range->first <= Row.Address &&
   3052               Range->second.first >= Row.Address) {
   3053             StopAddress = Row.Address + Range->second.second;
   3054           }
   3055         }
   3056       }
   3057       if (StopAddress != -1ULL && !Seq.empty()) {
   3058         // Insert end sequence row with the computed end address, but
   3059         // the same line as the previous one.
   3060         auto NextLine = Seq.back();
   3061         NextLine.Address = StopAddress;
   3062         NextLine.EndSequence = 1;
   3063         NextLine.PrologueEnd = 0;
   3064         NextLine.BasicBlock = 0;
   3065         NextLine.EpilogueBegin = 0;
   3066         Seq.push_back(NextLine);
   3067         insertLineSequence(Seq, NewRows);
   3068       }
   3069 
   3070       if (!CurrRangeValid)
   3071         continue;
   3072     }
   3073 
   3074     // Ignore empty sequences.
   3075     if (Row.EndSequence && Seq.empty())
   3076       continue;
   3077 
   3078     // Relocate row address and add it to the current sequence.
   3079     Row.Address += CurrRange.value();
   3080     Seq.emplace_back(Row);
   3081 
   3082     if (Row.EndSequence)
   3083       insertLineSequence(Seq, NewRows);
   3084   }
   3085 
   3086   // Finished extracting, now emit the line tables.
   3087   uint32_t PrologueEnd = StmtList + 10 + LineTable.Prologue.PrologueLength;
   3088   // FIXME: LLVM hardcodes it's prologue values. We just copy the
   3089   // prologue over and that works because we act as both producer and
   3090   // consumer. It would be nicer to have a real configurable line
   3091   // table emitter.
   3092   if (LineTable.Prologue.Version != 2 ||
   3093       LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
   3094       LineTable.Prologue.OpcodeBase > 13)
   3095     reportWarning("line table paramters mismatch. Cannot emit.");
   3096   else {
   3097     MCDwarfLineTableParams Params;
   3098     Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
   3099     Params.DWARF2LineBase = LineTable.Prologue.LineBase;
   3100     Params.DWARF2LineRange = LineTable.Prologue.LineRange;
   3101     Streamer->emitLineTableForUnit(Params,
   3102                                    LineData.slice(StmtList + 4, PrologueEnd),
   3103                                    LineTable.Prologue.MinInstLength, NewRows,
   3104                                    Unit.getOrigUnit().getAddressByteSize());
   3105   }
   3106 }
   3107 
   3108 void DwarfLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
   3109   Streamer->emitPubNamesForUnit(Unit);
   3110   Streamer->emitPubTypesForUnit(Unit);
   3111 }
   3112 
   3113 /// \brief Read the frame info stored in the object, and emit the
   3114 /// patched frame descriptions for the linked binary.
   3115 ///
   3116 /// This is actually pretty easy as the data of the CIEs and FDEs can
   3117 /// be considered as black boxes and moved as is. The only thing to do
   3118 /// is to patch the addresses in the headers.
   3119 void DwarfLinker::patchFrameInfoForObject(const DebugMapObject &DMO,
   3120                                           DWARFContext &OrigDwarf,
   3121                                           unsigned AddrSize) {
   3122   StringRef FrameData = OrigDwarf.getDebugFrameSection();
   3123   if (FrameData.empty())
   3124     return;
   3125 
   3126   DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
   3127   uint32_t InputOffset = 0;
   3128 
   3129   // Store the data of the CIEs defined in this object, keyed by their
   3130   // offsets.
   3131   DenseMap<uint32_t, StringRef> LocalCIES;
   3132 
   3133   while (Data.isValidOffset(InputOffset)) {
   3134     uint32_t EntryOffset = InputOffset;
   3135     uint32_t InitialLength = Data.getU32(&InputOffset);
   3136     if (InitialLength == 0xFFFFFFFF)
   3137       return reportWarning("Dwarf64 bits no supported");
   3138 
   3139     uint32_t CIEId = Data.getU32(&InputOffset);
   3140     if (CIEId == 0xFFFFFFFF) {
   3141       // This is a CIE, store it.
   3142       StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
   3143       LocalCIES[EntryOffset] = CIEData;
   3144       // The -4 is to account for the CIEId we just read.
   3145       InputOffset += InitialLength - 4;
   3146       continue;
   3147     }
   3148 
   3149     uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize);
   3150 
   3151     // Some compilers seem to emit frame info that doesn't start at
   3152     // the function entry point, thus we can't just lookup the address
   3153     // in the debug map. Use the linker's range map to see if the FDE
   3154     // describes something that we can relocate.
   3155     auto Range = Ranges.upper_bound(Loc);
   3156     if (Range != Ranges.begin())
   3157       --Range;
   3158     if (Range == Ranges.end() || Range->first > Loc ||
   3159         Range->second.first <= Loc) {
   3160       // The +4 is to account for the size of the InitialLength field itself.
   3161       InputOffset = EntryOffset + InitialLength + 4;
   3162       continue;
   3163     }
   3164 
   3165     // This is an FDE, and we have a mapping.
   3166     // Have we already emitted a corresponding CIE?
   3167     StringRef CIEData = LocalCIES[CIEId];
   3168     if (CIEData.empty())
   3169       return reportWarning("Inconsistent debug_frame content. Dropping.");
   3170 
   3171     // Look if we already emitted a CIE that corresponds to the
   3172     // referenced one (the CIE data is the key of that lookup).
   3173     auto IteratorInserted = EmittedCIEs.insert(
   3174         std::make_pair(CIEData, Streamer->getFrameSectionSize()));
   3175     // If there is no CIE yet for this ID, emit it.
   3176     if (IteratorInserted.second ||
   3177         // FIXME: dsymutil-classic only caches the last used CIE for
   3178         // reuse. Mimic that behavior for now. Just removing that
   3179         // second half of the condition and the LastCIEOffset variable
   3180         // makes the code DTRT.
   3181         LastCIEOffset != IteratorInserted.first->getValue()) {
   3182       LastCIEOffset = Streamer->getFrameSectionSize();
   3183       IteratorInserted.first->getValue() = LastCIEOffset;
   3184       Streamer->emitCIE(CIEData);
   3185     }
   3186 
   3187     // Emit the FDE with updated address and CIE pointer.
   3188     // (4 + AddrSize) is the size of the CIEId + initial_location
   3189     // fields that will get reconstructed by emitFDE().
   3190     unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
   3191     Streamer->emitFDE(IteratorInserted.first->getValue(), AddrSize,
   3192                       Loc + Range->second.second,
   3193                       FrameData.substr(InputOffset, FDERemainingBytes));
   3194     InputOffset += FDERemainingBytes;
   3195   }
   3196 }
   3197 
   3198 void DwarfLinker::DIECloner::copyAbbrev(
   3199     const DWARFAbbreviationDeclaration &Abbrev, bool hasODR) {
   3200   DIEAbbrev Copy(dwarf::Tag(Abbrev.getTag()),
   3201                  dwarf::Form(Abbrev.hasChildren()));
   3202 
   3203   for (const auto &Attr : Abbrev.attributes()) {
   3204     uint16_t Form = Attr.Form;
   3205     if (hasODR && isODRAttribute(Attr.Attr))
   3206       Form = dwarf::DW_FORM_ref_addr;
   3207     Copy.AddAttribute(dwarf::Attribute(Attr.Attr), dwarf::Form(Form));
   3208   }
   3209 
   3210   Linker.AssignAbbrev(Copy);
   3211 }
   3212 
   3213 static uint64_t getDwoId(const DWARFDebugInfoEntryMinimal &CUDie,
   3214                          const DWARFUnit &Unit) {
   3215   uint64_t DwoId =
   3216       CUDie.getAttributeValueAsUnsignedConstant(&Unit, dwarf::DW_AT_dwo_id, 0);
   3217   if (!DwoId)
   3218     DwoId = CUDie.getAttributeValueAsUnsignedConstant(&Unit,
   3219                                                       dwarf::DW_AT_GNU_dwo_id, 0);
   3220   return DwoId;
   3221 }
   3222 
   3223 bool DwarfLinker::registerModuleReference(
   3224     const DWARFDebugInfoEntryMinimal &CUDie, const DWARFUnit &Unit,
   3225     DebugMap &ModuleMap, unsigned Indent) {
   3226   std::string PCMfile =
   3227       CUDie.getAttributeValueAsString(&Unit, dwarf::DW_AT_dwo_name, "");
   3228   if (PCMfile.empty())
   3229     PCMfile =
   3230         CUDie.getAttributeValueAsString(&Unit, dwarf::DW_AT_GNU_dwo_name, "");
   3231   if (PCMfile.empty())
   3232     return false;
   3233 
   3234   // Clang module DWARF skeleton CUs abuse this for the path to the module.
   3235   std::string PCMpath =
   3236       CUDie.getAttributeValueAsString(&Unit, dwarf::DW_AT_comp_dir, "");
   3237   uint64_t DwoId = getDwoId(CUDie, Unit);
   3238 
   3239   std::string Name =
   3240       CUDie.getAttributeValueAsString(&Unit, dwarf::DW_AT_name, "");
   3241   if (Name.empty()) {
   3242     reportWarning("Anonymous module skeleton CU for " + PCMfile);
   3243     return true;
   3244   }
   3245 
   3246   if (Options.Verbose) {
   3247     outs().indent(Indent);
   3248     outs() << "Found clang module reference " << PCMfile;
   3249   }
   3250 
   3251   auto Cached = ClangModules.find(PCMfile);
   3252   if (Cached != ClangModules.end()) {
   3253     // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
   3254     // fixed in clang, only warn about DWO_id mismatches in verbose mode.
   3255     // ASTFileSignatures will change randomly when a module is rebuilt.
   3256     if (Options.Verbose && (Cached->second != DwoId))
   3257       reportWarning(Twine("hash mismatch: this object file was built against a "
   3258                           "different version of the module ") + PCMfile);
   3259     if (Options.Verbose)
   3260       outs() << " [cached].\n";
   3261     return true;
   3262   }
   3263   if (Options.Verbose)
   3264     outs() << " ...\n";
   3265 
   3266   // Cyclic dependencies are disallowed by Clang, but we still
   3267   // shouldn't run into an infinite loop, so mark it as processed now.
   3268   ClangModules.insert({PCMfile, DwoId});
   3269   loadClangModule(PCMfile, PCMpath, Name, DwoId, ModuleMap, Indent + 2);
   3270   return true;
   3271 }
   3272 
   3273 ErrorOr<const object::ObjectFile &>
   3274 DwarfLinker::loadObject(BinaryHolder &BinaryHolder, DebugMapObject &Obj,
   3275                         const DebugMap &Map) {
   3276   auto ErrOrObjs =
   3277       BinaryHolder.GetObjectFiles(Obj.getObjectFilename(), Obj.getTimestamp());
   3278   if (std::error_code EC = ErrOrObjs.getError()) {
   3279     reportWarning(Twine(Obj.getObjectFilename()) + ": " + EC.message());
   3280     return EC;
   3281   }
   3282   auto ErrOrObj = BinaryHolder.Get(Map.getTriple());
   3283   if (std::error_code EC = ErrOrObj.getError())
   3284     reportWarning(Twine(Obj.getObjectFilename()) + ": " + EC.message());
   3285   return ErrOrObj;
   3286 }
   3287 
   3288 void DwarfLinker::loadClangModule(StringRef Filename, StringRef ModulePath,
   3289                                   StringRef ModuleName, uint64_t DwoId,
   3290                                   DebugMap &ModuleMap, unsigned Indent) {
   3291   SmallString<80> Path(Options.PrependPath);
   3292   if (sys::path::is_relative(Filename))
   3293     sys::path::append(Path, ModulePath, Filename);
   3294   else
   3295     sys::path::append(Path, Filename);
   3296   BinaryHolder ObjHolder(Options.Verbose);
   3297   auto &Obj =
   3298       ModuleMap.addDebugMapObject(Path, sys::TimeValue::PosixZeroTime());
   3299   auto ErrOrObj = loadObject(ObjHolder, Obj, ModuleMap);
   3300   if (!ErrOrObj) {
   3301     // Try and emit more helpful warnings by applying some heuristics.
   3302     StringRef ObjFile = CurrentDebugObject->getObjectFilename();
   3303     bool isClangModule = sys::path::extension(Filename).equals(".pcm");
   3304     bool isArchive = ObjFile.endswith(")");
   3305     if (isClangModule) {
   3306       StringRef ModuleCacheDir = sys::path::parent_path(Path);
   3307       if (sys::fs::exists(ModuleCacheDir)) {
   3308         // If the module's parent directory exists, we assume that the module
   3309         // cache has expired and was pruned by clang.  A more adventurous
   3310         // dsymutil would invoke clang to rebuild the module now.
   3311         if (!ModuleCacheHintDisplayed) {
   3312           errs() << "note: The clang module cache may have expired since this "
   3313                     "object file was built. Rebuilding the object file will "
   3314                     "rebuild the module cache.\n";
   3315           ModuleCacheHintDisplayed = true;
   3316         }
   3317       } else if (isArchive) {
   3318         // If the module cache directory doesn't exist at all and the object
   3319         // file is inside a static library, we assume that the static library
   3320         // was built on a different machine. We don't want to discourage module
   3321         // debugging for convenience libraries within a project though.
   3322         if (!ArchiveHintDisplayed) {
   3323           errs() << "note: Linking a static library that was built with "
   3324                     "-gmodules, but the module cache was not found.  "
   3325                     "Redistributable static libraries should never be built "
   3326                     "with module debugging enabled.  The debug experience will "
   3327                     "be degraded due to incomplete debug information.\n";
   3328           ArchiveHintDisplayed = true;
   3329         }
   3330       }
   3331     }
   3332     return;
   3333   }
   3334 
   3335   std::unique_ptr<CompileUnit> Unit;
   3336 
   3337   // Setup access to the debug info.
   3338   DWARFContextInMemory DwarfContext(*ErrOrObj);
   3339   RelocationManager RelocMgr(*this);
   3340   for (const auto &CU : DwarfContext.compile_units()) {
   3341     auto *CUDie = CU->getUnitDIE(false);
   3342     // Recursively get all modules imported by this one.
   3343     if (!registerModuleReference(*CUDie, *CU, ModuleMap, Indent)) {
   3344       if (Unit) {
   3345         errs() << Filename << ": Clang modules are expected to have exactly"
   3346                << " 1 compile unit.\n";
   3347         exitDsymutil(1);
   3348       }
   3349       // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
   3350       // fixed in clang, only warn about DWO_id mismatches in verbose mode.
   3351       // ASTFileSignatures will change randomly when a module is rebuilt.
   3352       uint64_t PCMDwoId = getDwoId(*CUDie, *CU);
   3353       if (PCMDwoId != DwoId) {
   3354         if (Options.Verbose)
   3355           reportWarning(
   3356               Twine("hash mismatch: this object file was built against a "
   3357                     "different version of the module ") + Filename);
   3358         // Update the cache entry with the DwoId of the module loaded from disk.
   3359         ClangModules[Filename] = PCMDwoId;
   3360       }
   3361 
   3362       // Add this module.
   3363       Unit = llvm::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR,
   3364                                             ModuleName);
   3365       Unit->setHasInterestingContent();
   3366       analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(), StringPool,
   3367                          ODRContexts);
   3368       // Keep everything.
   3369       Unit->markEverythingAsKept();
   3370     }
   3371   }
   3372   if (Options.Verbose) {
   3373     outs().indent(Indent);
   3374     outs() << "cloning .debug_info from " << Filename << "\n";
   3375   }
   3376 
   3377   DIECloner(*this, RelocMgr, DIEAlloc, MutableArrayRef<CompileUnit>(*Unit),
   3378             Options)
   3379       .cloneAllCompileUnits(DwarfContext);
   3380 }
   3381 
   3382 void DwarfLinker::DIECloner::cloneAllCompileUnits(
   3383     DWARFContextInMemory &DwarfContext) {
   3384   if (!Linker.Streamer)
   3385     return;
   3386 
   3387   for (auto &CurrentUnit : CompileUnits) {
   3388     const auto *InputDIE = CurrentUnit.getOrigUnit().getUnitDIE();
   3389     CurrentUnit.setStartOffset(Linker.OutputDebugInfoSize);
   3390     DIE *OutputDIE = cloneDIE(*InputDIE, CurrentUnit, 0 /* PC offset */,
   3391                               11 /* Unit Header size */, 0);
   3392     CurrentUnit.setOutputUnitDIE(OutputDIE);
   3393     Linker.OutputDebugInfoSize = CurrentUnit.computeNextUnitOffset();
   3394     if (Linker.Options.NoOutput)
   3395       continue;
   3396     // FIXME: for compatibility with the classic dsymutil, we emit
   3397     // an empty line table for the unit, even if the unit doesn't
   3398     // actually exist in the DIE tree.
   3399     Linker.patchLineTableForUnit(CurrentUnit, DwarfContext);
   3400     if (!OutputDIE)
   3401       continue;
   3402     Linker.patchRangesForUnit(CurrentUnit, DwarfContext);
   3403     Linker.Streamer->emitLocationsForUnit(CurrentUnit, DwarfContext);
   3404     Linker.emitAcceleratorEntriesForUnit(CurrentUnit);
   3405   }
   3406 
   3407   if (Linker.Options.NoOutput)
   3408     return;
   3409 
   3410   // Emit all the compile unit's debug information.
   3411   for (auto &CurrentUnit : CompileUnits) {
   3412     Linker.generateUnitRanges(CurrentUnit);
   3413     CurrentUnit.fixupForwardReferences();
   3414     Linker.Streamer->emitCompileUnitHeader(CurrentUnit);
   3415     if (!CurrentUnit.getOutputUnitDIE())
   3416       continue;
   3417     Linker.Streamer->emitDIE(*CurrentUnit.getOutputUnitDIE());
   3418   }
   3419 }
   3420 
   3421 bool DwarfLinker::link(const DebugMap &Map) {
   3422 
   3423   if (!createStreamer(Map.getTriple(), OutputFilename))
   3424     return false;
   3425 
   3426   // Size of the DIEs (and headers) generated for the linked output.
   3427   OutputDebugInfoSize = 0;
   3428   // A unique ID that identifies each compile unit.
   3429   UnitID = 0;
   3430   DebugMap ModuleMap(Map.getTriple(), Map.getBinaryPath());
   3431 
   3432   for (const auto &Obj : Map.objects()) {
   3433     CurrentDebugObject = Obj.get();
   3434 
   3435     if (Options.Verbose)
   3436       outs() << "DEBUG MAP OBJECT: " << Obj->getObjectFilename() << "\n";
   3437     auto ErrOrObj = loadObject(BinHolder, *Obj, Map);
   3438     if (!ErrOrObj)
   3439       continue;
   3440 
   3441     // Look for relocations that correspond to debug map entries.
   3442     RelocationManager RelocMgr(*this);
   3443     if (!RelocMgr.findValidRelocsInDebugInfo(*ErrOrObj, *Obj)) {
   3444       if (Options.Verbose)
   3445         outs() << "No valid relocations found. Skipping.\n";
   3446       continue;
   3447     }
   3448 
   3449     // Setup access to the debug info.
   3450     DWARFContextInMemory DwarfContext(*ErrOrObj);
   3451     startDebugObject(DwarfContext, *Obj);
   3452 
   3453     // In a first phase, just read in the debug info and load all clang modules.
   3454     for (const auto &CU : DwarfContext.compile_units()) {
   3455       auto *CUDie = CU->getUnitDIE(false);
   3456       if (Options.Verbose) {
   3457         outs() << "Input compilation unit:";
   3458         CUDie->dump(outs(), CU.get(), 0);
   3459       }
   3460 
   3461       if (!registerModuleReference(*CUDie, *CU, ModuleMap))
   3462         Units.emplace_back(*CU, UnitID++, !Options.NoODR, "");
   3463     }
   3464 
   3465     // Now build the DIE parent links that we will use during the next phase.
   3466     for (auto &CurrentUnit : Units)
   3467       analyzeContextInfo(CurrentUnit.getOrigUnit().getUnitDIE(), 0, CurrentUnit,
   3468                          &ODRContexts.getRoot(), StringPool, ODRContexts);
   3469 
   3470     // Then mark all the DIEs that need to be present in the linked
   3471     // output and collect some information about them. Note that this
   3472     // loop can not be merged with the previous one becaue cross-cu
   3473     // references require the ParentIdx to be setup for every CU in
   3474     // the object file before calling this.
   3475     for (auto &CurrentUnit : Units)
   3476       lookForDIEsToKeep(RelocMgr, *CurrentUnit.getOrigUnit().getUnitDIE(), *Obj,
   3477                         CurrentUnit, 0);
   3478 
   3479     // The calls to applyValidRelocs inside cloneDIE will walk the
   3480     // reloc array again (in the same way findValidRelocsInDebugInfo()
   3481     // did). We need to reset the NextValidReloc index to the beginning.
   3482     RelocMgr.resetValidRelocs();
   3483     if (RelocMgr.hasValidRelocs())
   3484       DIECloner(*this, RelocMgr, DIEAlloc, Units, Options)
   3485           .cloneAllCompileUnits(DwarfContext);
   3486     if (!Options.NoOutput && !Units.empty())
   3487       patchFrameInfoForObject(*Obj, DwarfContext,
   3488                               Units[0].getOrigUnit().getAddressByteSize());
   3489 
   3490     // Clean-up before starting working on the next object.
   3491     endDebugObject();
   3492   }
   3493 
   3494   // Emit everything that's global.
   3495   if (!Options.NoOutput) {
   3496     Streamer->emitAbbrevs(Abbreviations);
   3497     Streamer->emitStrings(StringPool);
   3498   }
   3499 
   3500   return Options.NoOutput ? true : Streamer->finish(Map);
   3501 }
   3502 }
   3503 
   3504 /// \brief Get the offset of string \p S in the string table. This
   3505 /// can insert a new element or return the offset of a preexisitng
   3506 /// one.
   3507 uint32_t NonRelocatableStringpool::getStringOffset(StringRef S) {
   3508   if (S.empty() && !Strings.empty())
   3509     return 0;
   3510 
   3511   std::pair<uint32_t, StringMapEntryBase *> Entry(0, nullptr);
   3512   MapTy::iterator It;
   3513   bool Inserted;
   3514 
   3515   // A non-empty string can't be at offset 0, so if we have an entry
   3516   // with a 0 offset, it must be a previously interned string.
   3517   std::tie(It, Inserted) = Strings.insert(std::make_pair(S, Entry));
   3518   if (Inserted || It->getValue().first == 0) {
   3519     // Set offset and chain at the end of the entries list.
   3520     It->getValue().first = CurrentEndOffset;
   3521     CurrentEndOffset += S.size() + 1; // +1 for the '\0'.
   3522     Last->getValue().second = &*It;
   3523     Last = &*It;
   3524   }
   3525   return It->getValue().first;
   3526 }
   3527 
   3528 /// \brief Put \p S into the StringMap so that it gets permanent
   3529 /// storage, but do not actually link it in the chain of elements
   3530 /// that go into the output section. A latter call to
   3531 /// getStringOffset() with the same string will chain it though.
   3532 StringRef NonRelocatableStringpool::internString(StringRef S) {
   3533   std::pair<uint32_t, StringMapEntryBase *> Entry(0, nullptr);
   3534   auto InsertResult = Strings.insert(std::make_pair(S, Entry));
   3535   return InsertResult.first->getKey();
   3536 }
   3537 
   3538 void warn(const Twine &Warning, const Twine &Context) {
   3539   errs() << Twine("while processing ") + Context + ":\n";
   3540   errs() << Twine("warning: ") + Warning + "\n";
   3541 }
   3542 
   3543 bool error(const Twine &Error, const Twine &Context) {
   3544   errs() << Twine("while processing ") + Context + ":\n";
   3545   errs() << Twine("error: ") + Error + "\n";
   3546   return false;
   3547 }
   3548 
   3549 bool linkDwarf(StringRef OutputFilename, const DebugMap &DM,
   3550                const LinkOptions &Options) {
   3551   DwarfLinker Linker(OutputFilename, Options);
   3552   return Linker.link(DM);
   3553 }
   3554 }
   3555 }
   3556