Home | History | Annotate | Download | only in glsl
      1 /*
      2  * Copyright  2010 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     21  * DEALINGS IN THE SOFTWARE.
     22  */
     23 
     24 /**
     25  * \file ast_to_hir.c
     26  * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
     27  *
     28  * During the conversion to HIR, the majority of the symantic checking is
     29  * preformed on the program.  This includes:
     30  *
     31  *    * Symbol table management
     32  *    * Type checking
     33  *    * Function binding
     34  *
     35  * The majority of this work could be done during parsing, and the parser could
     36  * probably generate HIR directly.  However, this results in frequent changes
     37  * to the parser code.  Since we do not assume that every system this complier
     38  * is built on will have Flex and Bison installed, we have to store the code
     39  * generated by these tools in our version control system.  In other parts of
     40  * the system we've seen problems where a parser was changed but the generated
     41  * code was not committed, merge conflicts where created because two developers
     42  * had slightly different versions of Bison installed, etc.
     43  *
     44  * I have also noticed that running Bison generated parsers in GDB is very
     45  * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
     46  * well 'print $1' in GDB.
     47  *
     48  * As a result, my preference is to put as little C code as possible in the
     49  * parser (and lexer) sources.
     50  */
     51 
     52 #include "glsl_symbol_table.h"
     53 #include "glsl_parser_extras.h"
     54 #include "ast.h"
     55 #include "compiler/glsl_types.h"
     56 #include "util/hash_table.h"
     57 #include "main/macros.h"
     58 #include "main/shaderobj.h"
     59 #include "ir.h"
     60 #include "ir_builder.h"
     61 
     62 using namespace ir_builder;
     63 
     64 static void
     65 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
     66                                exec_list *instructions);
     67 static void
     68 remove_per_vertex_blocks(exec_list *instructions,
     69                          _mesa_glsl_parse_state *state, ir_variable_mode mode);
     70 
     71 /**
     72  * Visitor class that finds the first instance of any write-only variable that
     73  * is ever read, if any
     74  */
     75 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
     76 {
     77 public:
     78    read_from_write_only_variable_visitor() : found(NULL)
     79    {
     80    }
     81 
     82    virtual ir_visitor_status visit(ir_dereference_variable *ir)
     83    {
     84       if (this->in_assignee)
     85          return visit_continue;
     86 
     87       ir_variable *var = ir->variable_referenced();
     88       /* We can have image_write_only set on both images and buffer variables,
     89        * but in the former there is a distinction between reads from
     90        * the variable itself (write_only) and from the memory they point to
     91        * (image_write_only), while in the case of buffer variables there is
     92        * no such distinction, that is why this check here is limited to
     93        * buffer variables alone.
     94        */
     95       if (!var || var->data.mode != ir_var_shader_storage)
     96          return visit_continue;
     97 
     98       if (var->data.image_write_only) {
     99          found = var;
    100          return visit_stop;
    101       }
    102 
    103       return visit_continue;
    104    }
    105 
    106    ir_variable *get_variable() {
    107       return found;
    108    }
    109 
    110    virtual ir_visitor_status visit_enter(ir_expression *ir)
    111    {
    112       /* .length() doesn't actually read anything */
    113       if (ir->operation == ir_unop_ssbo_unsized_array_length)
    114          return visit_continue_with_parent;
    115 
    116       return visit_continue;
    117    }
    118 
    119 private:
    120    ir_variable *found;
    121 };
    122 
    123 void
    124 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
    125 {
    126    _mesa_glsl_initialize_variables(instructions, state);
    127 
    128    state->symbols->separate_function_namespace = state->language_version == 110;
    129 
    130    state->current_function = NULL;
    131 
    132    state->toplevel_ir = instructions;
    133 
    134    state->gs_input_prim_type_specified = false;
    135    state->tcs_output_vertices_specified = false;
    136    state->cs_input_local_size_specified = false;
    137 
    138    /* Section 4.2 of the GLSL 1.20 specification states:
    139     * "The built-in functions are scoped in a scope outside the global scope
    140     *  users declare global variables in.  That is, a shader's global scope,
    141     *  available for user-defined functions and global variables, is nested
    142     *  inside the scope containing the built-in functions."
    143     *
    144     * Since built-in functions like ftransform() access built-in variables,
    145     * it follows that those must be in the outer scope as well.
    146     *
    147     * We push scope here to create this nesting effect...but don't pop.
    148     * This way, a shader's globals are still in the symbol table for use
    149     * by the linker.
    150     */
    151    state->symbols->push_scope();
    152 
    153    foreach_list_typed (ast_node, ast, link, & state->translation_unit)
    154       ast->hir(instructions, state);
    155 
    156    detect_recursion_unlinked(state, instructions);
    157    detect_conflicting_assignments(state, instructions);
    158 
    159    state->toplevel_ir = NULL;
    160 
    161    /* Move all of the variable declarations to the front of the IR list, and
    162     * reverse the order.  This has the (intended!) side effect that vertex
    163     * shader inputs and fragment shader outputs will appear in the IR in the
    164     * same order that they appeared in the shader code.  This results in the
    165     * locations being assigned in the declared order.  Many (arguably buggy)
    166     * applications depend on this behavior, and it matches what nearly all
    167     * other drivers do.
    168     */
    169    foreach_in_list_safe(ir_instruction, node, instructions) {
    170       ir_variable *const var = node->as_variable();
    171 
    172       if (var == NULL)
    173          continue;
    174 
    175       var->remove();
    176       instructions->push_head(var);
    177    }
    178 
    179    /* Figure out if gl_FragCoord is actually used in fragment shader */
    180    ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
    181    if (var != NULL)
    182       state->fs_uses_gl_fragcoord = var->data.used;
    183 
    184    /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
    185     *
    186     *     If multiple shaders using members of a built-in block belonging to
    187     *     the same interface are linked together in the same program, they
    188     *     must all redeclare the built-in block in the same way, as described
    189     *     in section 4.3.7 "Interface Blocks" for interface block matching, or
    190     *     a link error will result.
    191     *
    192     * The phrase "using members of a built-in block" implies that if two
    193     * shaders are linked together and one of them *does not use* any members
    194     * of the built-in block, then that shader does not need to have a matching
    195     * redeclaration of the built-in block.
    196     *
    197     * This appears to be a clarification to the behaviour established for
    198     * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
    199     * version.
    200     *
    201     * The definition of "interface" in section 4.3.7 that applies here is as
    202     * follows:
    203     *
    204     *     The boundary between adjacent programmable pipeline stages: This
    205     *     spans all the outputs in all compilation units of the first stage
    206     *     and all the inputs in all compilation units of the second stage.
    207     *
    208     * Therefore this rule applies to both inter- and intra-stage linking.
    209     *
    210     * The easiest way to implement this is to check whether the shader uses
    211     * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
    212     * remove all the relevant variable declaration from the IR, so that the
    213     * linker won't see them and complain about mismatches.
    214     */
    215    remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
    216    remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
    217 
    218    /* Check that we don't have reads from write-only variables */
    219    read_from_write_only_variable_visitor v;
    220    v.run(instructions);
    221    ir_variable *error_var = v.get_variable();
    222    if (error_var) {
    223       /* It would be nice to have proper location information, but for that
    224        * we would need to check this as we process each kind of AST node
    225        */
    226       YYLTYPE loc;
    227       memset(&loc, 0, sizeof(loc));
    228       _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
    229                        error_var->name);
    230    }
    231 }
    232 
    233 
    234 static ir_expression_operation
    235 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
    236                                   struct _mesa_glsl_parse_state *state)
    237 {
    238    switch (to->base_type) {
    239    case GLSL_TYPE_FLOAT:
    240       switch (from->base_type) {
    241       case GLSL_TYPE_INT: return ir_unop_i2f;
    242       case GLSL_TYPE_UINT: return ir_unop_u2f;
    243       default: return (ir_expression_operation)0;
    244       }
    245 
    246    case GLSL_TYPE_UINT:
    247       if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
    248           && !state->MESA_shader_integer_functions_enable)
    249          return (ir_expression_operation)0;
    250       switch (from->base_type) {
    251          case GLSL_TYPE_INT: return ir_unop_i2u;
    252          default: return (ir_expression_operation)0;
    253       }
    254 
    255    case GLSL_TYPE_DOUBLE:
    256       if (!state->has_double())
    257          return (ir_expression_operation)0;
    258       switch (from->base_type) {
    259       case GLSL_TYPE_INT: return ir_unop_i2d;
    260       case GLSL_TYPE_UINT: return ir_unop_u2d;
    261       case GLSL_TYPE_FLOAT: return ir_unop_f2d;
    262       default: return (ir_expression_operation)0;
    263       }
    264 
    265    default: return (ir_expression_operation)0;
    266    }
    267 }
    268 
    269 
    270 /**
    271  * If a conversion is available, convert one operand to a different type
    272  *
    273  * The \c from \c ir_rvalue is converted "in place".
    274  *
    275  * \param to     Type that the operand it to be converted to
    276  * \param from   Operand that is being converted
    277  * \param state  GLSL compiler state
    278  *
    279  * \return
    280  * If a conversion is possible (or unnecessary), \c true is returned.
    281  * Otherwise \c false is returned.
    282  */
    283 static bool
    284 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
    285                           struct _mesa_glsl_parse_state *state)
    286 {
    287    void *ctx = state;
    288    if (to->base_type == from->type->base_type)
    289       return true;
    290 
    291    /* Prior to GLSL 1.20, there are no implicit conversions */
    292    if (!state->is_version(120, 0))
    293       return false;
    294 
    295    /* ESSL does not allow implicit conversions */
    296    if (state->es_shader)
    297       return false;
    298 
    299    /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
    300     *
    301     *    "There are no implicit array or structure conversions. For
    302     *    example, an array of int cannot be implicitly converted to an
    303     *    array of float.
    304     */
    305    if (!to->is_numeric() || !from->type->is_numeric())
    306       return false;
    307 
    308    /* We don't actually want the specific type `to`, we want a type
    309     * with the same base type as `to`, but the same vector width as
    310     * `from`.
    311     */
    312    to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
    313                                 from->type->matrix_columns);
    314 
    315    ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
    316    if (op) {
    317       from = new(ctx) ir_expression(op, to, from, NULL);
    318       return true;
    319    } else {
    320       return false;
    321    }
    322 }
    323 
    324 
    325 static const struct glsl_type *
    326 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
    327                        bool multiply,
    328                        struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
    329 {
    330    const glsl_type *type_a = value_a->type;
    331    const glsl_type *type_b = value_b->type;
    332 
    333    /* From GLSL 1.50 spec, page 56:
    334     *
    335     *    "The arithmetic binary operators add (+), subtract (-),
    336     *    multiply (*), and divide (/) operate on integer and
    337     *    floating-point scalars, vectors, and matrices."
    338     */
    339    if (!type_a->is_numeric() || !type_b->is_numeric()) {
    340       _mesa_glsl_error(loc, state,
    341                        "operands to arithmetic operators must be numeric");
    342       return glsl_type::error_type;
    343    }
    344 
    345 
    346    /*    "If one operand is floating-point based and the other is
    347     *    not, then the conversions from Section 4.1.10 "Implicit
    348     *    Conversions" are applied to the non-floating-point-based operand."
    349     */
    350    if (!apply_implicit_conversion(type_a, value_b, state)
    351        && !apply_implicit_conversion(type_b, value_a, state)) {
    352       _mesa_glsl_error(loc, state,
    353                        "could not implicitly convert operands to "
    354                        "arithmetic operator");
    355       return glsl_type::error_type;
    356    }
    357    type_a = value_a->type;
    358    type_b = value_b->type;
    359 
    360    /*    "If the operands are integer types, they must both be signed or
    361     *    both be unsigned."
    362     *
    363     * From this rule and the preceeding conversion it can be inferred that
    364     * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
    365     * The is_numeric check above already filtered out the case where either
    366     * type is not one of these, so now the base types need only be tested for
    367     * equality.
    368     */
    369    if (type_a->base_type != type_b->base_type) {
    370       _mesa_glsl_error(loc, state,
    371                        "base type mismatch for arithmetic operator");
    372       return glsl_type::error_type;
    373    }
    374 
    375    /*    "All arithmetic binary operators result in the same fundamental type
    376     *    (signed integer, unsigned integer, or floating-point) as the
    377     *    operands they operate on, after operand type conversion. After
    378     *    conversion, the following cases are valid
    379     *
    380     *    * The two operands are scalars. In this case the operation is
    381     *      applied, resulting in a scalar."
    382     */
    383    if (type_a->is_scalar() && type_b->is_scalar())
    384       return type_a;
    385 
    386    /*   "* One operand is a scalar, and the other is a vector or matrix.
    387     *      In this case, the scalar operation is applied independently to each
    388     *      component of the vector or matrix, resulting in the same size
    389     *      vector or matrix."
    390     */
    391    if (type_a->is_scalar()) {
    392       if (!type_b->is_scalar())
    393          return type_b;
    394    } else if (type_b->is_scalar()) {
    395       return type_a;
    396    }
    397 
    398    /* All of the combinations of <scalar, scalar>, <vector, scalar>,
    399     * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
    400     * handled.
    401     */
    402    assert(!type_a->is_scalar());
    403    assert(!type_b->is_scalar());
    404 
    405    /*   "* The two operands are vectors of the same size. In this case, the
    406     *      operation is done component-wise resulting in the same size
    407     *      vector."
    408     */
    409    if (type_a->is_vector() && type_b->is_vector()) {
    410       if (type_a == type_b) {
    411          return type_a;
    412       } else {
    413          _mesa_glsl_error(loc, state,
    414                           "vector size mismatch for arithmetic operator");
    415          return glsl_type::error_type;
    416       }
    417    }
    418 
    419    /* All of the combinations of <scalar, scalar>, <vector, scalar>,
    420     * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
    421     * <vector, vector> have been handled.  At least one of the operands must
    422     * be matrix.  Further, since there are no integer matrix types, the base
    423     * type of both operands must be float.
    424     */
    425    assert(type_a->is_matrix() || type_b->is_matrix());
    426    assert(type_a->base_type == GLSL_TYPE_FLOAT ||
    427           type_a->base_type == GLSL_TYPE_DOUBLE);
    428    assert(type_b->base_type == GLSL_TYPE_FLOAT ||
    429           type_b->base_type == GLSL_TYPE_DOUBLE);
    430 
    431    /*   "* The operator is add (+), subtract (-), or divide (/), and the
    432     *      operands are matrices with the same number of rows and the same
    433     *      number of columns. In this case, the operation is done component-
    434     *      wise resulting in the same size matrix."
    435     *    * The operator is multiply (*), where both operands are matrices or
    436     *      one operand is a vector and the other a matrix. A right vector
    437     *      operand is treated as a column vector and a left vector operand as a
    438     *      row vector. In all these cases, it is required that the number of
    439     *      columns of the left operand is equal to the number of rows of the
    440     *      right operand. Then, the multiply (*) operation does a linear
    441     *      algebraic multiply, yielding an object that has the same number of
    442     *      rows as the left operand and the same number of columns as the right
    443     *      operand. Section 5.10 "Vector and Matrix Operations" explains in
    444     *      more detail how vectors and matrices are operated on."
    445     */
    446    if (! multiply) {
    447       if (type_a == type_b)
    448          return type_a;
    449    } else {
    450       const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
    451 
    452       if (type == glsl_type::error_type) {
    453          _mesa_glsl_error(loc, state,
    454                           "size mismatch for matrix multiplication");
    455       }
    456 
    457       return type;
    458    }
    459 
    460 
    461    /*    "All other cases are illegal."
    462     */
    463    _mesa_glsl_error(loc, state, "type mismatch");
    464    return glsl_type::error_type;
    465 }
    466 
    467 
    468 static const struct glsl_type *
    469 unary_arithmetic_result_type(const struct glsl_type *type,
    470                              struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
    471 {
    472    /* From GLSL 1.50 spec, page 57:
    473     *
    474     *    "The arithmetic unary operators negate (-), post- and pre-increment
    475     *     and decrement (-- and ++) operate on integer or floating-point
    476     *     values (including vectors and matrices). All unary operators work
    477     *     component-wise on their operands. These result with the same type
    478     *     they operated on."
    479     */
    480    if (!type->is_numeric()) {
    481       _mesa_glsl_error(loc, state,
    482                        "operands to arithmetic operators must be numeric");
    483       return glsl_type::error_type;
    484    }
    485 
    486    return type;
    487 }
    488 
    489 /**
    490  * \brief Return the result type of a bit-logic operation.
    491  *
    492  * If the given types to the bit-logic operator are invalid, return
    493  * glsl_type::error_type.
    494  *
    495  * \param value_a LHS of bit-logic op
    496  * \param value_b RHS of bit-logic op
    497  */
    498 static const struct glsl_type *
    499 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
    500                       ast_operators op,
    501                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
    502 {
    503    const glsl_type *type_a = value_a->type;
    504    const glsl_type *type_b = value_b->type;
    505 
    506    if (!state->check_bitwise_operations_allowed(loc)) {
    507       return glsl_type::error_type;
    508    }
    509 
    510    /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
    511     *
    512     *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
    513     *     (|). The operands must be of type signed or unsigned integers or
    514     *     integer vectors."
    515     */
    516    if (!type_a->is_integer()) {
    517       _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
    518                         ast_expression::operator_string(op));
    519       return glsl_type::error_type;
    520    }
    521    if (!type_b->is_integer()) {
    522       _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
    523                        ast_expression::operator_string(op));
    524       return glsl_type::error_type;
    525    }
    526 
    527    /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
    528     * make sense for bitwise operations, as they don't operate on floats.
    529     *
    530     * GLSL 4.0 added implicit int -> uint conversions, which are relevant
    531     * here.  It wasn't clear whether or not we should apply them to bitwise
    532     * operations.  However, Khronos has decided that they should in future
    533     * language revisions.  Applications also rely on this behavior.  We opt
    534     * to apply them in general, but issue a portability warning.
    535     *
    536     * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
    537     */
    538    if (type_a->base_type != type_b->base_type) {
    539       if (!apply_implicit_conversion(type_a, value_b, state)
    540           && !apply_implicit_conversion(type_b, value_a, state)) {
    541          _mesa_glsl_error(loc, state,
    542                           "could not implicitly convert operands to "
    543                           "`%s` operator",
    544                           ast_expression::operator_string(op));
    545          return glsl_type::error_type;
    546       } else {
    547          _mesa_glsl_warning(loc, state,
    548                             "some implementations may not support implicit "
    549                             "int -> uint conversions for `%s' operators; "
    550                             "consider casting explicitly for portability",
    551                             ast_expression::operator_string(op));
    552       }
    553       type_a = value_a->type;
    554       type_b = value_b->type;
    555    }
    556 
    557    /*     "The fundamental types of the operands (signed or unsigned) must
    558     *     match,"
    559     */
    560    if (type_a->base_type != type_b->base_type) {
    561       _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
    562                        "base type", ast_expression::operator_string(op));
    563       return glsl_type::error_type;
    564    }
    565 
    566    /*     "The operands cannot be vectors of differing size." */
    567    if (type_a->is_vector() &&
    568        type_b->is_vector() &&
    569        type_a->vector_elements != type_b->vector_elements) {
    570       _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
    571                        "different sizes", ast_expression::operator_string(op));
    572       return glsl_type::error_type;
    573    }
    574 
    575    /*     "If one operand is a scalar and the other a vector, the scalar is
    576     *     applied component-wise to the vector, resulting in the same type as
    577     *     the vector. The fundamental types of the operands [...] will be the
    578     *     resulting fundamental type."
    579     */
    580    if (type_a->is_scalar())
    581        return type_b;
    582    else
    583        return type_a;
    584 }
    585 
    586 static const struct glsl_type *
    587 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
    588                     struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
    589 {
    590    const glsl_type *type_a = value_a->type;
    591    const glsl_type *type_b = value_b->type;
    592 
    593    if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
    594       return glsl_type::error_type;
    595    }
    596 
    597    /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
    598     *
    599     *    "The operator modulus (%) operates on signed or unsigned integers or
    600     *    integer vectors."
    601     */
    602    if (!type_a->is_integer()) {
    603       _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
    604       return glsl_type::error_type;
    605    }
    606    if (!type_b->is_integer()) {
    607       _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
    608       return glsl_type::error_type;
    609    }
    610 
    611    /*    "If the fundamental types in the operands do not match, then the
    612     *    conversions from section 4.1.10 "Implicit Conversions" are applied
    613     *    to create matching types."
    614     *
    615     * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
    616     * int -> uint conversion rules.  Prior to that, there were no implicit
    617     * conversions.  So it's harmless to apply them universally - no implicit
    618     * conversions will exist.  If the types don't match, we'll receive false,
    619     * and raise an error, satisfying the GLSL 1.50 spec, page 56:
    620     *
    621     *    "The operand types must both be signed or unsigned."
    622     */
    623    if (!apply_implicit_conversion(type_a, value_b, state) &&
    624        !apply_implicit_conversion(type_b, value_a, state)) {
    625       _mesa_glsl_error(loc, state,
    626                        "could not implicitly convert operands to "
    627                        "modulus (%%) operator");
    628       return glsl_type::error_type;
    629    }
    630    type_a = value_a->type;
    631    type_b = value_b->type;
    632 
    633    /*    "The operands cannot be vectors of differing size. If one operand is
    634     *    a scalar and the other vector, then the scalar is applied component-
    635     *    wise to the vector, resulting in the same type as the vector. If both
    636     *    are vectors of the same size, the result is computed component-wise."
    637     */
    638    if (type_a->is_vector()) {
    639       if (!type_b->is_vector()
    640           || (type_a->vector_elements == type_b->vector_elements))
    641       return type_a;
    642    } else
    643       return type_b;
    644 
    645    /*    "The operator modulus (%) is not defined for any other data types
    646     *    (non-integer types)."
    647     */
    648    _mesa_glsl_error(loc, state, "type mismatch");
    649    return glsl_type::error_type;
    650 }
    651 
    652 
    653 static const struct glsl_type *
    654 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
    655                        struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
    656 {
    657    const glsl_type *type_a = value_a->type;
    658    const glsl_type *type_b = value_b->type;
    659 
    660    /* From GLSL 1.50 spec, page 56:
    661     *    "The relational operators greater than (>), less than (<), greater
    662     *    than or equal (>=), and less than or equal (<=) operate only on
    663     *    scalar integer and scalar floating-point expressions."
    664     */
    665    if (!type_a->is_numeric()
    666        || !type_b->is_numeric()
    667        || !type_a->is_scalar()
    668        || !type_b->is_scalar()) {
    669       _mesa_glsl_error(loc, state,
    670                        "operands to relational operators must be scalar and "
    671                        "numeric");
    672       return glsl_type::error_type;
    673    }
    674 
    675    /*    "Either the operands' types must match, or the conversions from
    676     *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
    677     *    operand, after which the types must match."
    678     */
    679    if (!apply_implicit_conversion(type_a, value_b, state)
    680        && !apply_implicit_conversion(type_b, value_a, state)) {
    681       _mesa_glsl_error(loc, state,
    682                        "could not implicitly convert operands to "
    683                        "relational operator");
    684       return glsl_type::error_type;
    685    }
    686    type_a = value_a->type;
    687    type_b = value_b->type;
    688 
    689    if (type_a->base_type != type_b->base_type) {
    690       _mesa_glsl_error(loc, state, "base type mismatch");
    691       return glsl_type::error_type;
    692    }
    693 
    694    /*    "The result is scalar Boolean."
    695     */
    696    return glsl_type::bool_type;
    697 }
    698 
    699 /**
    700  * \brief Return the result type of a bit-shift operation.
    701  *
    702  * If the given types to the bit-shift operator are invalid, return
    703  * glsl_type::error_type.
    704  *
    705  * \param type_a Type of LHS of bit-shift op
    706  * \param type_b Type of RHS of bit-shift op
    707  */
    708 static const struct glsl_type *
    709 shift_result_type(const struct glsl_type *type_a,
    710                   const struct glsl_type *type_b,
    711                   ast_operators op,
    712                   struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
    713 {
    714    if (!state->check_bitwise_operations_allowed(loc)) {
    715       return glsl_type::error_type;
    716    }
    717 
    718    /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
    719     *
    720     *     "The shift operators (<<) and (>>). For both operators, the operands
    721     *     must be signed or unsigned integers or integer vectors. One operand
    722     *     can be signed while the other is unsigned."
    723     */
    724    if (!type_a->is_integer()) {
    725       _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
    726                        "integer vector", ast_expression::operator_string(op));
    727      return glsl_type::error_type;
    728 
    729    }
    730    if (!type_b->is_integer()) {
    731       _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
    732                        "integer vector", ast_expression::operator_string(op));
    733      return glsl_type::error_type;
    734    }
    735 
    736    /*     "If the first operand is a scalar, the second operand has to be
    737     *     a scalar as well."
    738     */
    739    if (type_a->is_scalar() && !type_b->is_scalar()) {
    740       _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
    741                        "second must be scalar as well",
    742                        ast_expression::operator_string(op));
    743      return glsl_type::error_type;
    744    }
    745 
    746    /* If both operands are vectors, check that they have same number of
    747     * elements.
    748     */
    749    if (type_a->is_vector() &&
    750       type_b->is_vector() &&
    751       type_a->vector_elements != type_b->vector_elements) {
    752       _mesa_glsl_error(loc, state, "vector operands to operator %s must "
    753                        "have same number of elements",
    754                        ast_expression::operator_string(op));
    755      return glsl_type::error_type;
    756    }
    757 
    758    /*     "In all cases, the resulting type will be the same type as the left
    759     *     operand."
    760     */
    761    return type_a;
    762 }
    763 
    764 /**
    765  * Returns the innermost array index expression in an rvalue tree.
    766  * This is the largest indexing level -- if an array of blocks, then
    767  * it is the block index rather than an indexing expression for an
    768  * array-typed member of an array of blocks.
    769  */
    770 static ir_rvalue *
    771 find_innermost_array_index(ir_rvalue *rv)
    772 {
    773    ir_dereference_array *last = NULL;
    774    while (rv) {
    775       if (rv->as_dereference_array()) {
    776          last = rv->as_dereference_array();
    777          rv = last->array;
    778       } else if (rv->as_dereference_record())
    779          rv = rv->as_dereference_record()->record;
    780       else if (rv->as_swizzle())
    781          rv = rv->as_swizzle()->val;
    782       else
    783          rv = NULL;
    784    }
    785 
    786    if (last)
    787       return last->array_index;
    788 
    789    return NULL;
    790 }
    791 
    792 /**
    793  * Validates that a value can be assigned to a location with a specified type
    794  *
    795  * Validates that \c rhs can be assigned to some location.  If the types are
    796  * not an exact match but an automatic conversion is possible, \c rhs will be
    797  * converted.
    798  *
    799  * \return
    800  * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
    801  * Otherwise the actual RHS to be assigned will be returned.  This may be
    802  * \c rhs, or it may be \c rhs after some type conversion.
    803  *
    804  * \note
    805  * In addition to being used for assignments, this function is used to
    806  * type-check return values.
    807  */
    808 static ir_rvalue *
    809 validate_assignment(struct _mesa_glsl_parse_state *state,
    810                     YYLTYPE loc, ir_rvalue *lhs,
    811                     ir_rvalue *rhs, bool is_initializer)
    812 {
    813    /* If there is already some error in the RHS, just return it.  Anything
    814     * else will lead to an avalanche of error message back to the user.
    815     */
    816    if (rhs->type->is_error())
    817       return rhs;
    818 
    819    /* In the Tessellation Control Shader:
    820     * If a per-vertex output variable is used as an l-value, it is an error
    821     * if the expression indicating the vertex number is not the identifier
    822     * `gl_InvocationID`.
    823     */
    824    if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
    825       ir_variable *var = lhs->variable_referenced();
    826       if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
    827          ir_rvalue *index = find_innermost_array_index(lhs);
    828          ir_variable *index_var = index ? index->variable_referenced() : NULL;
    829          if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
    830             _mesa_glsl_error(&loc, state,
    831                              "Tessellation control shader outputs can only "
    832                              "be indexed by gl_InvocationID");
    833             return NULL;
    834          }
    835       }
    836    }
    837 
    838    /* If the types are identical, the assignment can trivially proceed.
    839     */
    840    if (rhs->type == lhs->type)
    841       return rhs;
    842 
    843    /* If the array element types are the same and the LHS is unsized,
    844     * the assignment is okay for initializers embedded in variable
    845     * declarations.
    846     *
    847     * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
    848     * is handled by ir_dereference::is_lvalue.
    849     */
    850    const glsl_type *lhs_t = lhs->type;
    851    const glsl_type *rhs_t = rhs->type;
    852    bool unsized_array = false;
    853    while(lhs_t->is_array()) {
    854       if (rhs_t == lhs_t)
    855          break; /* the rest of the inner arrays match so break out early */
    856       if (!rhs_t->is_array()) {
    857          unsized_array = false;
    858          break; /* number of dimensions mismatch */
    859       }
    860       if (lhs_t->length == rhs_t->length) {
    861          lhs_t = lhs_t->fields.array;
    862          rhs_t = rhs_t->fields.array;
    863          continue;
    864       } else if (lhs_t->is_unsized_array()) {
    865          unsized_array = true;
    866       } else {
    867          unsized_array = false;
    868          break; /* sized array mismatch */
    869       }
    870       lhs_t = lhs_t->fields.array;
    871       rhs_t = rhs_t->fields.array;
    872    }
    873    if (unsized_array) {
    874       if (is_initializer) {
    875          return rhs;
    876       } else {
    877          _mesa_glsl_error(&loc, state,
    878                           "implicitly sized arrays cannot be assigned");
    879          return NULL;
    880       }
    881    }
    882 
    883    /* Check for implicit conversion in GLSL 1.20 */
    884    if (apply_implicit_conversion(lhs->type, rhs, state)) {
    885       if (rhs->type == lhs->type)
    886          return rhs;
    887    }
    888 
    889    _mesa_glsl_error(&loc, state,
    890                     "%s of type %s cannot be assigned to "
    891                     "variable of type %s",
    892                     is_initializer ? "initializer" : "value",
    893                     rhs->type->name, lhs->type->name);
    894 
    895    return NULL;
    896 }
    897 
    898 static void
    899 mark_whole_array_access(ir_rvalue *access)
    900 {
    901    ir_dereference_variable *deref = access->as_dereference_variable();
    902 
    903    if (deref && deref->var) {
    904       deref->var->data.max_array_access = deref->type->length - 1;
    905    }
    906 }
    907 
    908 static bool
    909 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
    910               const char *non_lvalue_description,
    911               ir_rvalue *lhs, ir_rvalue *rhs,
    912               ir_rvalue **out_rvalue, bool needs_rvalue,
    913               bool is_initializer,
    914               YYLTYPE lhs_loc)
    915 {
    916    void *ctx = state;
    917    bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
    918 
    919    ir_variable *lhs_var = lhs->variable_referenced();
    920    if (lhs_var)
    921       lhs_var->data.assigned = true;
    922 
    923    if (!error_emitted) {
    924       if (non_lvalue_description != NULL) {
    925          _mesa_glsl_error(&lhs_loc, state,
    926                           "assignment to %s",
    927                           non_lvalue_description);
    928          error_emitted = true;
    929       } else if (lhs_var != NULL && (lhs_var->data.read_only ||
    930                  (lhs_var->data.mode == ir_var_shader_storage &&
    931                   lhs_var->data.image_read_only))) {
    932          /* We can have image_read_only set on both images and buffer variables,
    933           * but in the former there is a distinction between assignments to
    934           * the variable itself (read_only) and to the memory they point to
    935           * (image_read_only), while in the case of buffer variables there is
    936           * no such distinction, that is why this check here is limited to
    937           * buffer variables alone.
    938           */
    939          _mesa_glsl_error(&lhs_loc, state,
    940                           "assignment to read-only variable '%s'",
    941                           lhs_var->name);
    942          error_emitted = true;
    943       } else if (lhs->type->is_array() &&
    944                  !state->check_version(120, 300, &lhs_loc,
    945                                        "whole array assignment forbidden")) {
    946          /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
    947           *
    948           *    "Other binary or unary expressions, non-dereferenced
    949           *     arrays, function names, swizzles with repeated fields,
    950           *     and constants cannot be l-values."
    951           *
    952           * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
    953           */
    954          error_emitted = true;
    955       } else if (!lhs->is_lvalue()) {
    956          _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
    957          error_emitted = true;
    958       }
    959    }
    960 
    961    ir_rvalue *new_rhs =
    962       validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
    963    if (new_rhs != NULL) {
    964       rhs = new_rhs;
    965 
    966       /* If the LHS array was not declared with a size, it takes it size from
    967        * the RHS.  If the LHS is an l-value and a whole array, it must be a
    968        * dereference of a variable.  Any other case would require that the LHS
    969        * is either not an l-value or not a whole array.
    970        */
    971       if (lhs->type->is_unsized_array()) {
    972          ir_dereference *const d = lhs->as_dereference();
    973 
    974          assert(d != NULL);
    975 
    976          ir_variable *const var = d->variable_referenced();
    977 
    978          assert(var != NULL);
    979 
    980          if (var->data.max_array_access >= rhs->type->array_size()) {
    981             /* FINISHME: This should actually log the location of the RHS. */
    982             _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
    983                              "previous access",
    984                              var->data.max_array_access);
    985          }
    986 
    987          var->type = glsl_type::get_array_instance(lhs->type->fields.array,
    988                                                    rhs->type->array_size());
    989          d->type = var->type;
    990       }
    991       if (lhs->type->is_array()) {
    992          mark_whole_array_access(rhs);
    993          mark_whole_array_access(lhs);
    994       }
    995    }
    996 
    997    /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
    998     * but not post_inc) need the converted assigned value as an rvalue
    999     * to handle things like:
   1000     *
   1001     * i = j += 1;
   1002     */
   1003    if (needs_rvalue) {
   1004       ir_rvalue *rvalue;
   1005       if (!error_emitted) {
   1006          ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
   1007                                                  ir_var_temporary);
   1008          instructions->push_tail(var);
   1009          instructions->push_tail(assign(var, rhs));
   1010 
   1011          ir_dereference_variable *deref_var =
   1012             new(ctx) ir_dereference_variable(var);
   1013          instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
   1014          rvalue = new(ctx) ir_dereference_variable(var);
   1015       } else {
   1016          rvalue = ir_rvalue::error_value(ctx);
   1017       }
   1018       *out_rvalue = rvalue;
   1019    } else {
   1020       if (!error_emitted)
   1021          instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
   1022       *out_rvalue = NULL;
   1023    }
   1024 
   1025    return error_emitted;
   1026 }
   1027 
   1028 static ir_rvalue *
   1029 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
   1030 {
   1031    void *ctx = ralloc_parent(lvalue);
   1032    ir_variable *var;
   1033 
   1034    var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
   1035                               ir_var_temporary);
   1036    instructions->push_tail(var);
   1037 
   1038    instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
   1039                                                   lvalue));
   1040 
   1041    return new(ctx) ir_dereference_variable(var);
   1042 }
   1043 
   1044 
   1045 ir_rvalue *
   1046 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
   1047 {
   1048    (void) instructions;
   1049    (void) state;
   1050 
   1051    return NULL;
   1052 }
   1053 
   1054 bool
   1055 ast_node::has_sequence_subexpression() const
   1056 {
   1057    return false;
   1058 }
   1059 
   1060 void
   1061 ast_node::set_is_lhs(bool /* new_value */)
   1062 {
   1063 }
   1064 
   1065 void
   1066 ast_function_expression::hir_no_rvalue(exec_list *instructions,
   1067                                        struct _mesa_glsl_parse_state *state)
   1068 {
   1069    (void)hir(instructions, state);
   1070 }
   1071 
   1072 void
   1073 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
   1074                                          struct _mesa_glsl_parse_state *state)
   1075 {
   1076    (void)hir(instructions, state);
   1077 }
   1078 
   1079 static ir_rvalue *
   1080 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
   1081 {
   1082    int join_op;
   1083    ir_rvalue *cmp = NULL;
   1084 
   1085    if (operation == ir_binop_all_equal)
   1086       join_op = ir_binop_logic_and;
   1087    else
   1088       join_op = ir_binop_logic_or;
   1089 
   1090    switch (op0->type->base_type) {
   1091    case GLSL_TYPE_FLOAT:
   1092    case GLSL_TYPE_UINT:
   1093    case GLSL_TYPE_INT:
   1094    case GLSL_TYPE_BOOL:
   1095    case GLSL_TYPE_DOUBLE:
   1096       return new(mem_ctx) ir_expression(operation, op0, op1);
   1097 
   1098    case GLSL_TYPE_ARRAY: {
   1099       for (unsigned int i = 0; i < op0->type->length; i++) {
   1100          ir_rvalue *e0, *e1, *result;
   1101 
   1102          e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
   1103                                                 new(mem_ctx) ir_constant(i));
   1104          e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
   1105                                                 new(mem_ctx) ir_constant(i));
   1106          result = do_comparison(mem_ctx, operation, e0, e1);
   1107 
   1108          if (cmp) {
   1109             cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
   1110          } else {
   1111             cmp = result;
   1112          }
   1113       }
   1114 
   1115       mark_whole_array_access(op0);
   1116       mark_whole_array_access(op1);
   1117       break;
   1118    }
   1119 
   1120    case GLSL_TYPE_STRUCT: {
   1121       for (unsigned int i = 0; i < op0->type->length; i++) {
   1122          ir_rvalue *e0, *e1, *result;
   1123          const char *field_name = op0->type->fields.structure[i].name;
   1124 
   1125          e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
   1126                                                  field_name);
   1127          e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
   1128                                                  field_name);
   1129          result = do_comparison(mem_ctx, operation, e0, e1);
   1130 
   1131          if (cmp) {
   1132             cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
   1133          } else {
   1134             cmp = result;
   1135          }
   1136       }
   1137       break;
   1138    }
   1139 
   1140    case GLSL_TYPE_ERROR:
   1141    case GLSL_TYPE_VOID:
   1142    case GLSL_TYPE_SAMPLER:
   1143    case GLSL_TYPE_IMAGE:
   1144    case GLSL_TYPE_INTERFACE:
   1145    case GLSL_TYPE_ATOMIC_UINT:
   1146    case GLSL_TYPE_SUBROUTINE:
   1147    case GLSL_TYPE_FUNCTION:
   1148       /* I assume a comparison of a struct containing a sampler just
   1149        * ignores the sampler present in the type.
   1150        */
   1151       break;
   1152    }
   1153 
   1154    if (cmp == NULL)
   1155       cmp = new(mem_ctx) ir_constant(true);
   1156 
   1157    return cmp;
   1158 }
   1159 
   1160 /* For logical operations, we want to ensure that the operands are
   1161  * scalar booleans.  If it isn't, emit an error and return a constant
   1162  * boolean to avoid triggering cascading error messages.
   1163  */
   1164 ir_rvalue *
   1165 get_scalar_boolean_operand(exec_list *instructions,
   1166                            struct _mesa_glsl_parse_state *state,
   1167                            ast_expression *parent_expr,
   1168                            int operand,
   1169                            const char *operand_name,
   1170                            bool *error_emitted)
   1171 {
   1172    ast_expression *expr = parent_expr->subexpressions[operand];
   1173    void *ctx = state;
   1174    ir_rvalue *val = expr->hir(instructions, state);
   1175 
   1176    if (val->type->is_boolean() && val->type->is_scalar())
   1177       return val;
   1178 
   1179    if (!*error_emitted) {
   1180       YYLTYPE loc = expr->get_location();
   1181       _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
   1182                        operand_name,
   1183                        parent_expr->operator_string(parent_expr->oper));
   1184       *error_emitted = true;
   1185    }
   1186 
   1187    return new(ctx) ir_constant(true);
   1188 }
   1189 
   1190 /**
   1191  * If name refers to a builtin array whose maximum allowed size is less than
   1192  * size, report an error and return true.  Otherwise return false.
   1193  */
   1194 void
   1195 check_builtin_array_max_size(const char *name, unsigned size,
   1196                              YYLTYPE loc, struct _mesa_glsl_parse_state *state)
   1197 {
   1198    if ((strcmp("gl_TexCoord", name) == 0)
   1199        && (size > state->Const.MaxTextureCoords)) {
   1200       /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
   1201        *
   1202        *     "The size [of gl_TexCoord] can be at most
   1203        *     gl_MaxTextureCoords."
   1204        */
   1205       _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
   1206                        "be larger than gl_MaxTextureCoords (%u)",
   1207                        state->Const.MaxTextureCoords);
   1208    } else if (strcmp("gl_ClipDistance", name) == 0) {
   1209       state->clip_dist_size = size;
   1210       if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
   1211          /* From section 7.1 (Vertex Shader Special Variables) of the
   1212           * GLSL 1.30 spec:
   1213           *
   1214           *   "The gl_ClipDistance array is predeclared as unsized and
   1215           *   must be sized by the shader either redeclaring it with a
   1216           *   size or indexing it only with integral constant
   1217           *   expressions. ... The size can be at most
   1218           *   gl_MaxClipDistances."
   1219           */
   1220          _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
   1221                           "be larger than gl_MaxClipDistances (%u)",
   1222                           state->Const.MaxClipPlanes);
   1223       }
   1224    } else if (strcmp("gl_CullDistance", name) == 0) {
   1225       state->cull_dist_size = size;
   1226       if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
   1227          /* From the ARB_cull_distance spec:
   1228           *
   1229           *   "The gl_CullDistance array is predeclared as unsized and
   1230           *    must be sized by the shader either redeclaring it with
   1231           *    a size or indexing it only with integral constant
   1232           *    expressions. The size determines the number and set of
   1233           *    enabled cull distances and can be at most
   1234           *    gl_MaxCullDistances."
   1235           */
   1236          _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
   1237                           "be larger than gl_MaxCullDistances (%u)",
   1238                           state->Const.MaxClipPlanes);
   1239       }
   1240    }
   1241 }
   1242 
   1243 /**
   1244  * Create the constant 1, of a which is appropriate for incrementing and
   1245  * decrementing values of the given GLSL type.  For example, if type is vec4,
   1246  * this creates a constant value of 1.0 having type float.
   1247  *
   1248  * If the given type is invalid for increment and decrement operators, return
   1249  * a floating point 1--the error will be detected later.
   1250  */
   1251 static ir_rvalue *
   1252 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
   1253 {
   1254    switch (type->base_type) {
   1255    case GLSL_TYPE_UINT:
   1256       return new(ctx) ir_constant((unsigned) 1);
   1257    case GLSL_TYPE_INT:
   1258       return new(ctx) ir_constant(1);
   1259    default:
   1260    case GLSL_TYPE_FLOAT:
   1261       return new(ctx) ir_constant(1.0f);
   1262    }
   1263 }
   1264 
   1265 ir_rvalue *
   1266 ast_expression::hir(exec_list *instructions,
   1267                     struct _mesa_glsl_parse_state *state)
   1268 {
   1269    return do_hir(instructions, state, true);
   1270 }
   1271 
   1272 void
   1273 ast_expression::hir_no_rvalue(exec_list *instructions,
   1274                               struct _mesa_glsl_parse_state *state)
   1275 {
   1276    do_hir(instructions, state, false);
   1277 }
   1278 
   1279 void
   1280 ast_expression::set_is_lhs(bool new_value)
   1281 {
   1282    /* is_lhs is tracked only to print "variable used uninitialized" warnings,
   1283     * if we lack an identifier we can just skip it.
   1284     */
   1285    if (this->primary_expression.identifier == NULL)
   1286       return;
   1287 
   1288    this->is_lhs = new_value;
   1289 
   1290    /* We need to go through the subexpressions tree to cover cases like
   1291     * ast_field_selection
   1292     */
   1293    if (this->subexpressions[0] != NULL)
   1294       this->subexpressions[0]->set_is_lhs(new_value);
   1295 }
   1296 
   1297 ir_rvalue *
   1298 ast_expression::do_hir(exec_list *instructions,
   1299                        struct _mesa_glsl_parse_state *state,
   1300                        bool needs_rvalue)
   1301 {
   1302    void *ctx = state;
   1303    static const int operations[AST_NUM_OPERATORS] = {
   1304       -1,               /* ast_assign doesn't convert to ir_expression. */
   1305       -1,               /* ast_plus doesn't convert to ir_expression. */
   1306       ir_unop_neg,
   1307       ir_binop_add,
   1308       ir_binop_sub,
   1309       ir_binop_mul,
   1310       ir_binop_div,
   1311       ir_binop_mod,
   1312       ir_binop_lshift,
   1313       ir_binop_rshift,
   1314       ir_binop_less,
   1315       ir_binop_greater,
   1316       ir_binop_lequal,
   1317       ir_binop_gequal,
   1318       ir_binop_all_equal,
   1319       ir_binop_any_nequal,
   1320       ir_binop_bit_and,
   1321       ir_binop_bit_xor,
   1322       ir_binop_bit_or,
   1323       ir_unop_bit_not,
   1324       ir_binop_logic_and,
   1325       ir_binop_logic_xor,
   1326       ir_binop_logic_or,
   1327       ir_unop_logic_not,
   1328 
   1329       /* Note: The following block of expression types actually convert
   1330        * to multiple IR instructions.
   1331        */
   1332       ir_binop_mul,     /* ast_mul_assign */
   1333       ir_binop_div,     /* ast_div_assign */
   1334       ir_binop_mod,     /* ast_mod_assign */
   1335       ir_binop_add,     /* ast_add_assign */
   1336       ir_binop_sub,     /* ast_sub_assign */
   1337       ir_binop_lshift,  /* ast_ls_assign */
   1338       ir_binop_rshift,  /* ast_rs_assign */
   1339       ir_binop_bit_and, /* ast_and_assign */
   1340       ir_binop_bit_xor, /* ast_xor_assign */
   1341       ir_binop_bit_or,  /* ast_or_assign */
   1342 
   1343       -1,               /* ast_conditional doesn't convert to ir_expression. */
   1344       ir_binop_add,     /* ast_pre_inc. */
   1345       ir_binop_sub,     /* ast_pre_dec. */
   1346       ir_binop_add,     /* ast_post_inc. */
   1347       ir_binop_sub,     /* ast_post_dec. */
   1348       -1,               /* ast_field_selection doesn't conv to ir_expression. */
   1349       -1,               /* ast_array_index doesn't convert to ir_expression. */
   1350       -1,               /* ast_function_call doesn't conv to ir_expression. */
   1351       -1,               /* ast_identifier doesn't convert to ir_expression. */
   1352       -1,               /* ast_int_constant doesn't convert to ir_expression. */
   1353       -1,               /* ast_uint_constant doesn't conv to ir_expression. */
   1354       -1,               /* ast_float_constant doesn't conv to ir_expression. */
   1355       -1,               /* ast_bool_constant doesn't conv to ir_expression. */
   1356       -1,               /* ast_sequence doesn't convert to ir_expression. */
   1357       -1,               /* ast_aggregate shouldn't ever even get here. */
   1358    };
   1359    ir_rvalue *result = NULL;
   1360    ir_rvalue *op[3];
   1361    const struct glsl_type *type, *orig_type;
   1362    bool error_emitted = false;
   1363    YYLTYPE loc;
   1364 
   1365    loc = this->get_location();
   1366 
   1367    switch (this->oper) {
   1368    case ast_aggregate:
   1369       assert(!"ast_aggregate: Should never get here.");
   1370       break;
   1371 
   1372    case ast_assign: {
   1373       this->subexpressions[0]->set_is_lhs(true);
   1374       op[0] = this->subexpressions[0]->hir(instructions, state);
   1375       op[1] = this->subexpressions[1]->hir(instructions, state);
   1376 
   1377       error_emitted =
   1378          do_assignment(instructions, state,
   1379                        this->subexpressions[0]->non_lvalue_description,
   1380                        op[0], op[1], &result, needs_rvalue, false,
   1381                        this->subexpressions[0]->get_location());
   1382       break;
   1383    }
   1384 
   1385    case ast_plus:
   1386       op[0] = this->subexpressions[0]->hir(instructions, state);
   1387 
   1388       type = unary_arithmetic_result_type(op[0]->type, state, & loc);
   1389 
   1390       error_emitted = type->is_error();
   1391 
   1392       result = op[0];
   1393       break;
   1394 
   1395    case ast_neg:
   1396       op[0] = this->subexpressions[0]->hir(instructions, state);
   1397 
   1398       type = unary_arithmetic_result_type(op[0]->type, state, & loc);
   1399 
   1400       error_emitted = type->is_error();
   1401 
   1402       result = new(ctx) ir_expression(operations[this->oper], type,
   1403                                       op[0], NULL);
   1404       break;
   1405 
   1406    case ast_add:
   1407    case ast_sub:
   1408    case ast_mul:
   1409    case ast_div:
   1410       op[0] = this->subexpressions[0]->hir(instructions, state);
   1411       op[1] = this->subexpressions[1]->hir(instructions, state);
   1412 
   1413       type = arithmetic_result_type(op[0], op[1],
   1414                                     (this->oper == ast_mul),
   1415                                     state, & loc);
   1416       error_emitted = type->is_error();
   1417 
   1418       result = new(ctx) ir_expression(operations[this->oper], type,
   1419                                       op[0], op[1]);
   1420       break;
   1421 
   1422    case ast_mod:
   1423       op[0] = this->subexpressions[0]->hir(instructions, state);
   1424       op[1] = this->subexpressions[1]->hir(instructions, state);
   1425 
   1426       type = modulus_result_type(op[0], op[1], state, &loc);
   1427 
   1428       assert(operations[this->oper] == ir_binop_mod);
   1429 
   1430       result = new(ctx) ir_expression(operations[this->oper], type,
   1431                                       op[0], op[1]);
   1432       error_emitted = type->is_error();
   1433       break;
   1434 
   1435    case ast_lshift:
   1436    case ast_rshift:
   1437        if (!state->check_bitwise_operations_allowed(&loc)) {
   1438           error_emitted = true;
   1439        }
   1440 
   1441        op[0] = this->subexpressions[0]->hir(instructions, state);
   1442        op[1] = this->subexpressions[1]->hir(instructions, state);
   1443        type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
   1444                                 &loc);
   1445        result = new(ctx) ir_expression(operations[this->oper], type,
   1446                                        op[0], op[1]);
   1447        error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
   1448        break;
   1449 
   1450    case ast_less:
   1451    case ast_greater:
   1452    case ast_lequal:
   1453    case ast_gequal:
   1454       op[0] = this->subexpressions[0]->hir(instructions, state);
   1455       op[1] = this->subexpressions[1]->hir(instructions, state);
   1456 
   1457       type = relational_result_type(op[0], op[1], state, & loc);
   1458 
   1459       /* The relational operators must either generate an error or result
   1460        * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
   1461        */
   1462       assert(type->is_error()
   1463              || ((type->base_type == GLSL_TYPE_BOOL)
   1464                  && type->is_scalar()));
   1465 
   1466       result = new(ctx) ir_expression(operations[this->oper], type,
   1467                                       op[0], op[1]);
   1468       error_emitted = type->is_error();
   1469       break;
   1470 
   1471    case ast_nequal:
   1472    case ast_equal:
   1473       op[0] = this->subexpressions[0]->hir(instructions, state);
   1474       op[1] = this->subexpressions[1]->hir(instructions, state);
   1475 
   1476       /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
   1477        *
   1478        *    "The equality operators equal (==), and not equal (!=)
   1479        *    operate on all types. They result in a scalar Boolean. If
   1480        *    the operand types do not match, then there must be a
   1481        *    conversion from Section 4.1.10 "Implicit Conversions"
   1482        *    applied to one operand that can make them match, in which
   1483        *    case this conversion is done."
   1484        */
   1485 
   1486       if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
   1487          _mesa_glsl_error(& loc, state, "`%s':  wrong operand types: "
   1488                          "no operation `%1$s' exists that takes a left-hand "
   1489                          "operand of type 'void' or a right operand of type "
   1490                          "'void'", (this->oper == ast_equal) ? "==" : "!=");
   1491          error_emitted = true;
   1492       } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
   1493            && !apply_implicit_conversion(op[1]->type, op[0], state))
   1494           || (op[0]->type != op[1]->type)) {
   1495          _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
   1496                           "type", (this->oper == ast_equal) ? "==" : "!=");
   1497          error_emitted = true;
   1498       } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
   1499                  !state->check_version(120, 300, &loc,
   1500                                        "array comparisons forbidden")) {
   1501          error_emitted = true;
   1502       } else if ((op[0]->type->contains_subroutine() ||
   1503                   op[1]->type->contains_subroutine())) {
   1504          _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
   1505          error_emitted = true;
   1506       } else if ((op[0]->type->contains_opaque() ||
   1507                   op[1]->type->contains_opaque())) {
   1508          _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
   1509          error_emitted = true;
   1510       }
   1511 
   1512       if (error_emitted) {
   1513          result = new(ctx) ir_constant(false);
   1514       } else {
   1515          result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
   1516          assert(result->type == glsl_type::bool_type);
   1517       }
   1518       break;
   1519 
   1520    case ast_bit_and:
   1521    case ast_bit_xor:
   1522    case ast_bit_or:
   1523       op[0] = this->subexpressions[0]->hir(instructions, state);
   1524       op[1] = this->subexpressions[1]->hir(instructions, state);
   1525       type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
   1526       result = new(ctx) ir_expression(operations[this->oper], type,
   1527                                       op[0], op[1]);
   1528       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
   1529       break;
   1530 
   1531    case ast_bit_not:
   1532       op[0] = this->subexpressions[0]->hir(instructions, state);
   1533 
   1534       if (!state->check_bitwise_operations_allowed(&loc)) {
   1535          error_emitted = true;
   1536       }
   1537 
   1538       if (!op[0]->type->is_integer()) {
   1539          _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
   1540          error_emitted = true;
   1541       }
   1542 
   1543       type = error_emitted ? glsl_type::error_type : op[0]->type;
   1544       result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
   1545       break;
   1546 
   1547    case ast_logic_and: {
   1548       exec_list rhs_instructions;
   1549       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
   1550                                          "LHS", &error_emitted);
   1551       op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
   1552                                          "RHS", &error_emitted);
   1553 
   1554       if (rhs_instructions.is_empty()) {
   1555          result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
   1556          type = result->type;
   1557       } else {
   1558          ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
   1559                                                        "and_tmp",
   1560                                                        ir_var_temporary);
   1561          instructions->push_tail(tmp);
   1562 
   1563          ir_if *const stmt = new(ctx) ir_if(op[0]);
   1564          instructions->push_tail(stmt);
   1565 
   1566          stmt->then_instructions.append_list(&rhs_instructions);
   1567          ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
   1568          ir_assignment *const then_assign =
   1569             new(ctx) ir_assignment(then_deref, op[1]);
   1570          stmt->then_instructions.push_tail(then_assign);
   1571 
   1572          ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
   1573          ir_assignment *const else_assign =
   1574             new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
   1575          stmt->else_instructions.push_tail(else_assign);
   1576 
   1577          result = new(ctx) ir_dereference_variable(tmp);
   1578          type = tmp->type;
   1579       }
   1580       break;
   1581    }
   1582 
   1583    case ast_logic_or: {
   1584       exec_list rhs_instructions;
   1585       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
   1586                                          "LHS", &error_emitted);
   1587       op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
   1588                                          "RHS", &error_emitted);
   1589 
   1590       if (rhs_instructions.is_empty()) {
   1591          result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
   1592          type = result->type;
   1593       } else {
   1594          ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
   1595                                                        "or_tmp",
   1596                                                        ir_var_temporary);
   1597          instructions->push_tail(tmp);
   1598 
   1599          ir_if *const stmt = new(ctx) ir_if(op[0]);
   1600          instructions->push_tail(stmt);
   1601 
   1602          ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
   1603          ir_assignment *const then_assign =
   1604             new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
   1605          stmt->then_instructions.push_tail(then_assign);
   1606 
   1607          stmt->else_instructions.append_list(&rhs_instructions);
   1608          ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
   1609          ir_assignment *const else_assign =
   1610             new(ctx) ir_assignment(else_deref, op[1]);
   1611          stmt->else_instructions.push_tail(else_assign);
   1612 
   1613          result = new(ctx) ir_dereference_variable(tmp);
   1614          type = tmp->type;
   1615       }
   1616       break;
   1617    }
   1618 
   1619    case ast_logic_xor:
   1620       /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
   1621        *
   1622        *    "The logical binary operators and (&&), or ( | | ), and
   1623        *     exclusive or (^^). They operate only on two Boolean
   1624        *     expressions and result in a Boolean expression."
   1625        */
   1626       op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
   1627                                          &error_emitted);
   1628       op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
   1629                                          &error_emitted);
   1630 
   1631       result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
   1632                                       op[0], op[1]);
   1633       break;
   1634 
   1635    case ast_logic_not:
   1636       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
   1637                                          "operand", &error_emitted);
   1638 
   1639       result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
   1640                                       op[0], NULL);
   1641       break;
   1642 
   1643    case ast_mul_assign:
   1644    case ast_div_assign:
   1645    case ast_add_assign:
   1646    case ast_sub_assign: {
   1647       this->subexpressions[0]->set_is_lhs(true);
   1648       op[0] = this->subexpressions[0]->hir(instructions, state);
   1649       op[1] = this->subexpressions[1]->hir(instructions, state);
   1650 
   1651       orig_type = op[0]->type;
   1652       type = arithmetic_result_type(op[0], op[1],
   1653                                     (this->oper == ast_mul_assign),
   1654                                     state, & loc);
   1655 
   1656       if (type != orig_type) {
   1657          _mesa_glsl_error(& loc, state,
   1658                           "could not implicitly convert "
   1659                           "%s to %s", type->name, orig_type->name);
   1660          type = glsl_type::error_type;
   1661       }
   1662 
   1663       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
   1664                                                    op[0], op[1]);
   1665 
   1666       error_emitted =
   1667          do_assignment(instructions, state,
   1668                        this->subexpressions[0]->non_lvalue_description,
   1669                        op[0]->clone(ctx, NULL), temp_rhs,
   1670                        &result, needs_rvalue, false,
   1671                        this->subexpressions[0]->get_location());
   1672 
   1673       /* GLSL 1.10 does not allow array assignment.  However, we don't have to
   1674        * explicitly test for this because none of the binary expression
   1675        * operators allow array operands either.
   1676        */
   1677 
   1678       break;
   1679    }
   1680 
   1681    case ast_mod_assign: {
   1682       this->subexpressions[0]->set_is_lhs(true);
   1683       op[0] = this->subexpressions[0]->hir(instructions, state);
   1684       op[1] = this->subexpressions[1]->hir(instructions, state);
   1685 
   1686       orig_type = op[0]->type;
   1687       type = modulus_result_type(op[0], op[1], state, &loc);
   1688 
   1689       if (type != orig_type) {
   1690          _mesa_glsl_error(& loc, state,
   1691                           "could not implicitly convert "
   1692                           "%s to %s", type->name, orig_type->name);
   1693          type = glsl_type::error_type;
   1694       }
   1695 
   1696       assert(operations[this->oper] == ir_binop_mod);
   1697 
   1698       ir_rvalue *temp_rhs;
   1699       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
   1700                                         op[0], op[1]);
   1701 
   1702       error_emitted =
   1703          do_assignment(instructions, state,
   1704                        this->subexpressions[0]->non_lvalue_description,
   1705                        op[0]->clone(ctx, NULL), temp_rhs,
   1706                        &result, needs_rvalue, false,
   1707                        this->subexpressions[0]->get_location());
   1708       break;
   1709    }
   1710 
   1711    case ast_ls_assign:
   1712    case ast_rs_assign: {
   1713       this->subexpressions[0]->set_is_lhs(true);
   1714       op[0] = this->subexpressions[0]->hir(instructions, state);
   1715       op[1] = this->subexpressions[1]->hir(instructions, state);
   1716       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
   1717                                &loc);
   1718       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
   1719                                                    type, op[0], op[1]);
   1720       error_emitted =
   1721          do_assignment(instructions, state,
   1722                        this->subexpressions[0]->non_lvalue_description,
   1723                        op[0]->clone(ctx, NULL), temp_rhs,
   1724                        &result, needs_rvalue, false,
   1725                        this->subexpressions[0]->get_location());
   1726       break;
   1727    }
   1728 
   1729    case ast_and_assign:
   1730    case ast_xor_assign:
   1731    case ast_or_assign: {
   1732       this->subexpressions[0]->set_is_lhs(true);
   1733       op[0] = this->subexpressions[0]->hir(instructions, state);
   1734       op[1] = this->subexpressions[1]->hir(instructions, state);
   1735 
   1736       orig_type = op[0]->type;
   1737       type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
   1738 
   1739       if (type != orig_type) {
   1740          _mesa_glsl_error(& loc, state,
   1741                           "could not implicitly convert "
   1742                           "%s to %s", type->name, orig_type->name);
   1743          type = glsl_type::error_type;
   1744       }
   1745 
   1746       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
   1747                                                    type, op[0], op[1]);
   1748       error_emitted =
   1749          do_assignment(instructions, state,
   1750                        this->subexpressions[0]->non_lvalue_description,
   1751                        op[0]->clone(ctx, NULL), temp_rhs,
   1752                        &result, needs_rvalue, false,
   1753                        this->subexpressions[0]->get_location());
   1754       break;
   1755    }
   1756 
   1757    case ast_conditional: {
   1758       /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
   1759        *
   1760        *    "The ternary selection operator (?:). It operates on three
   1761        *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
   1762        *    first expression, which must result in a scalar Boolean."
   1763        */
   1764       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
   1765                                          "condition", &error_emitted);
   1766 
   1767       /* The :? operator is implemented by generating an anonymous temporary
   1768        * followed by an if-statement.  The last instruction in each branch of
   1769        * the if-statement assigns a value to the anonymous temporary.  This
   1770        * temporary is the r-value of the expression.
   1771        */
   1772       exec_list then_instructions;
   1773       exec_list else_instructions;
   1774 
   1775       op[1] = this->subexpressions[1]->hir(&then_instructions, state);
   1776       op[2] = this->subexpressions[2]->hir(&else_instructions, state);
   1777 
   1778       /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
   1779        *
   1780        *     "The second and third expressions can be any type, as
   1781        *     long their types match, or there is a conversion in
   1782        *     Section 4.1.10 "Implicit Conversions" that can be applied
   1783        *     to one of the expressions to make their types match. This
   1784        *     resulting matching type is the type of the entire
   1785        *     expression."
   1786        */
   1787       if ((!apply_implicit_conversion(op[1]->type, op[2], state)
   1788           && !apply_implicit_conversion(op[2]->type, op[1], state))
   1789           || (op[1]->type != op[2]->type)) {
   1790          YYLTYPE loc = this->subexpressions[1]->get_location();
   1791 
   1792          _mesa_glsl_error(& loc, state, "second and third operands of ?: "
   1793                           "operator must have matching types");
   1794          error_emitted = true;
   1795          type = glsl_type::error_type;
   1796       } else {
   1797          type = op[1]->type;
   1798       }
   1799 
   1800       /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
   1801        *
   1802        *    "The second and third expressions must be the same type, but can
   1803        *    be of any type other than an array."
   1804        */
   1805       if (type->is_array() &&
   1806           !state->check_version(120, 300, &loc,
   1807                                 "second and third operands of ?: operator "
   1808                                 "cannot be arrays")) {
   1809          error_emitted = true;
   1810       }
   1811 
   1812       /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
   1813        *
   1814        *  "Except for array indexing, structure member selection, and
   1815        *   parentheses, opaque variables are not allowed to be operands in
   1816        *   expressions; such use results in a compile-time error."
   1817        */
   1818       if (type->contains_opaque()) {
   1819          _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
   1820                           "of the ?: operator");
   1821          error_emitted = true;
   1822       }
   1823 
   1824       ir_constant *cond_val = op[0]->constant_expression_value();
   1825 
   1826       if (then_instructions.is_empty()
   1827           && else_instructions.is_empty()
   1828           && cond_val != NULL) {
   1829          result = cond_val->value.b[0] ? op[1] : op[2];
   1830       } else {
   1831          /* The copy to conditional_tmp reads the whole array. */
   1832          if (type->is_array()) {
   1833             mark_whole_array_access(op[1]);
   1834             mark_whole_array_access(op[2]);
   1835          }
   1836 
   1837          ir_variable *const tmp =
   1838             new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
   1839          instructions->push_tail(tmp);
   1840 
   1841          ir_if *const stmt = new(ctx) ir_if(op[0]);
   1842          instructions->push_tail(stmt);
   1843 
   1844          then_instructions.move_nodes_to(& stmt->then_instructions);
   1845          ir_dereference *const then_deref =
   1846             new(ctx) ir_dereference_variable(tmp);
   1847          ir_assignment *const then_assign =
   1848             new(ctx) ir_assignment(then_deref, op[1]);
   1849          stmt->then_instructions.push_tail(then_assign);
   1850 
   1851          else_instructions.move_nodes_to(& stmt->else_instructions);
   1852          ir_dereference *const else_deref =
   1853             new(ctx) ir_dereference_variable(tmp);
   1854          ir_assignment *const else_assign =
   1855             new(ctx) ir_assignment(else_deref, op[2]);
   1856          stmt->else_instructions.push_tail(else_assign);
   1857 
   1858          result = new(ctx) ir_dereference_variable(tmp);
   1859       }
   1860       break;
   1861    }
   1862 
   1863    case ast_pre_inc:
   1864    case ast_pre_dec: {
   1865       this->non_lvalue_description = (this->oper == ast_pre_inc)
   1866          ? "pre-increment operation" : "pre-decrement operation";
   1867 
   1868       op[0] = this->subexpressions[0]->hir(instructions, state);
   1869       op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
   1870 
   1871       type = arithmetic_result_type(op[0], op[1], false, state, & loc);
   1872 
   1873       ir_rvalue *temp_rhs;
   1874       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
   1875                                         op[0], op[1]);
   1876 
   1877       error_emitted =
   1878          do_assignment(instructions, state,
   1879                        this->subexpressions[0]->non_lvalue_description,
   1880                        op[0]->clone(ctx, NULL), temp_rhs,
   1881                        &result, needs_rvalue, false,
   1882                        this->subexpressions[0]->get_location());
   1883       break;
   1884    }
   1885 
   1886    case ast_post_inc:
   1887    case ast_post_dec: {
   1888       this->non_lvalue_description = (this->oper == ast_post_inc)
   1889          ? "post-increment operation" : "post-decrement operation";
   1890       op[0] = this->subexpressions[0]->hir(instructions, state);
   1891       op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
   1892 
   1893       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
   1894 
   1895       type = arithmetic_result_type(op[0], op[1], false, state, & loc);
   1896 
   1897       ir_rvalue *temp_rhs;
   1898       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
   1899                                         op[0], op[1]);
   1900 
   1901       /* Get a temporary of a copy of the lvalue before it's modified.
   1902        * This may get thrown away later.
   1903        */
   1904       result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
   1905 
   1906       ir_rvalue *junk_rvalue;
   1907       error_emitted =
   1908          do_assignment(instructions, state,
   1909                        this->subexpressions[0]->non_lvalue_description,
   1910                        op[0]->clone(ctx, NULL), temp_rhs,
   1911                        &junk_rvalue, false, false,
   1912                        this->subexpressions[0]->get_location());
   1913 
   1914       break;
   1915    }
   1916 
   1917    case ast_field_selection:
   1918       result = _mesa_ast_field_selection_to_hir(this, instructions, state);
   1919       break;
   1920 
   1921    case ast_array_index: {
   1922       YYLTYPE index_loc = subexpressions[1]->get_location();
   1923 
   1924       /* Getting if an array is being used uninitialized is beyond what we get
   1925        * from ir_value.data.assigned. Setting is_lhs as true would force to
   1926        * not raise a uninitialized warning when using an array
   1927        */
   1928       subexpressions[0]->set_is_lhs(true);
   1929       op[0] = subexpressions[0]->hir(instructions, state);
   1930       op[1] = subexpressions[1]->hir(instructions, state);
   1931 
   1932       result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
   1933                                             loc, index_loc);
   1934 
   1935       if (result->type->is_error())
   1936          error_emitted = true;
   1937 
   1938       break;
   1939    }
   1940 
   1941    case ast_unsized_array_dim:
   1942       assert(!"ast_unsized_array_dim: Should never get here.");
   1943       break;
   1944 
   1945    case ast_function_call:
   1946       /* Should *NEVER* get here.  ast_function_call should always be handled
   1947        * by ast_function_expression::hir.
   1948        */
   1949       assert(0);
   1950       break;
   1951 
   1952    case ast_identifier: {
   1953       /* ast_identifier can appear several places in a full abstract syntax
   1954        * tree.  This particular use must be at location specified in the grammar
   1955        * as 'variable_identifier'.
   1956        */
   1957       ir_variable *var =
   1958          state->symbols->get_variable(this->primary_expression.identifier);
   1959 
   1960       if (var == NULL) {
   1961          /* the identifier might be a subroutine name */
   1962          char *sub_name;
   1963          sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
   1964          var = state->symbols->get_variable(sub_name);
   1965          ralloc_free(sub_name);
   1966       }
   1967 
   1968       if (var != NULL) {
   1969          var->data.used = true;
   1970          result = new(ctx) ir_dereference_variable(var);
   1971 
   1972          if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
   1973              && !this->is_lhs
   1974              && result->variable_referenced()->data.assigned != true
   1975              && !is_gl_identifier(var->name)) {
   1976             _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
   1977                                this->primary_expression.identifier);
   1978          }
   1979       } else {
   1980          _mesa_glsl_error(& loc, state, "`%s' undeclared",
   1981                           this->primary_expression.identifier);
   1982 
   1983          result = ir_rvalue::error_value(ctx);
   1984          error_emitted = true;
   1985       }
   1986       break;
   1987    }
   1988 
   1989    case ast_int_constant:
   1990       result = new(ctx) ir_constant(this->primary_expression.int_constant);
   1991       break;
   1992 
   1993    case ast_uint_constant:
   1994       result = new(ctx) ir_constant(this->primary_expression.uint_constant);
   1995       break;
   1996 
   1997    case ast_float_constant:
   1998       result = new(ctx) ir_constant(this->primary_expression.float_constant);
   1999       break;
   2000 
   2001    case ast_bool_constant:
   2002       result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
   2003       break;
   2004 
   2005    case ast_double_constant:
   2006       result = new(ctx) ir_constant(this->primary_expression.double_constant);
   2007       break;
   2008 
   2009    case ast_sequence: {
   2010       /* It should not be possible to generate a sequence in the AST without
   2011        * any expressions in it.
   2012        */
   2013       assert(!this->expressions.is_empty());
   2014 
   2015       /* The r-value of a sequence is the last expression in the sequence.  If
   2016        * the other expressions in the sequence do not have side-effects (and
   2017        * therefore add instructions to the instruction list), they get dropped
   2018        * on the floor.
   2019        */
   2020       exec_node *previous_tail = NULL;
   2021       YYLTYPE previous_operand_loc = loc;
   2022 
   2023       foreach_list_typed (ast_node, ast, link, &this->expressions) {
   2024          /* If one of the operands of comma operator does not generate any
   2025           * code, we want to emit a warning.  At each pass through the loop
   2026           * previous_tail will point to the last instruction in the stream
   2027           * *before* processing the previous operand.  Naturally,
   2028           * instructions->get_tail_raw() will point to the last instruction in
   2029           * the stream *after* processing the previous operand.  If the two
   2030           * pointers match, then the previous operand had no effect.
   2031           *
   2032           * The warning behavior here differs slightly from GCC.  GCC will
   2033           * only emit a warning if none of the left-hand operands have an
   2034           * effect.  However, it will emit a warning for each.  I believe that
   2035           * there are some cases in C (especially with GCC extensions) where
   2036           * it is useful to have an intermediate step in a sequence have no
   2037           * effect, but I don't think these cases exist in GLSL.  Either way,
   2038           * it would be a giant hassle to replicate that behavior.
   2039           */
   2040          if (previous_tail == instructions->get_tail_raw()) {
   2041             _mesa_glsl_warning(&previous_operand_loc, state,
   2042                                "left-hand operand of comma expression has "
   2043                                "no effect");
   2044          }
   2045 
   2046          /* The tail is directly accessed instead of using the get_tail()
   2047           * method for performance reasons.  get_tail() has extra code to
   2048           * return NULL when the list is empty.  We don't care about that
   2049           * here, so using get_tail_raw() is fine.
   2050           */
   2051          previous_tail = instructions->get_tail_raw();
   2052          previous_operand_loc = ast->get_location();
   2053 
   2054          result = ast->hir(instructions, state);
   2055       }
   2056 
   2057       /* Any errors should have already been emitted in the loop above.
   2058        */
   2059       error_emitted = true;
   2060       break;
   2061    }
   2062    }
   2063    type = NULL; /* use result->type, not type. */
   2064    assert(result != NULL || !needs_rvalue);
   2065 
   2066    if (result && result->type->is_error() && !error_emitted)
   2067       _mesa_glsl_error(& loc, state, "type mismatch");
   2068 
   2069    return result;
   2070 }
   2071 
   2072 bool
   2073 ast_expression::has_sequence_subexpression() const
   2074 {
   2075    switch (this->oper) {
   2076    case ast_plus:
   2077    case ast_neg:
   2078    case ast_bit_not:
   2079    case ast_logic_not:
   2080    case ast_pre_inc:
   2081    case ast_pre_dec:
   2082    case ast_post_inc:
   2083    case ast_post_dec:
   2084       return this->subexpressions[0]->has_sequence_subexpression();
   2085 
   2086    case ast_assign:
   2087    case ast_add:
   2088    case ast_sub:
   2089    case ast_mul:
   2090    case ast_div:
   2091    case ast_mod:
   2092    case ast_lshift:
   2093    case ast_rshift:
   2094    case ast_less:
   2095    case ast_greater:
   2096    case ast_lequal:
   2097    case ast_gequal:
   2098    case ast_nequal:
   2099    case ast_equal:
   2100    case ast_bit_and:
   2101    case ast_bit_xor:
   2102    case ast_bit_or:
   2103    case ast_logic_and:
   2104    case ast_logic_or:
   2105    case ast_logic_xor:
   2106    case ast_array_index:
   2107    case ast_mul_assign:
   2108    case ast_div_assign:
   2109    case ast_add_assign:
   2110    case ast_sub_assign:
   2111    case ast_mod_assign:
   2112    case ast_ls_assign:
   2113    case ast_rs_assign:
   2114    case ast_and_assign:
   2115    case ast_xor_assign:
   2116    case ast_or_assign:
   2117       return this->subexpressions[0]->has_sequence_subexpression() ||
   2118              this->subexpressions[1]->has_sequence_subexpression();
   2119 
   2120    case ast_conditional:
   2121       return this->subexpressions[0]->has_sequence_subexpression() ||
   2122              this->subexpressions[1]->has_sequence_subexpression() ||
   2123              this->subexpressions[2]->has_sequence_subexpression();
   2124 
   2125    case ast_sequence:
   2126       return true;
   2127 
   2128    case ast_field_selection:
   2129    case ast_identifier:
   2130    case ast_int_constant:
   2131    case ast_uint_constant:
   2132    case ast_float_constant:
   2133    case ast_bool_constant:
   2134    case ast_double_constant:
   2135       return false;
   2136 
   2137    case ast_aggregate:
   2138       return false;
   2139 
   2140    case ast_function_call:
   2141       unreachable("should be handled by ast_function_expression::hir");
   2142 
   2143    case ast_unsized_array_dim:
   2144       unreachable("ast_unsized_array_dim: Should never get here.");
   2145    }
   2146 
   2147    return false;
   2148 }
   2149 
   2150 ir_rvalue *
   2151 ast_expression_statement::hir(exec_list *instructions,
   2152                               struct _mesa_glsl_parse_state *state)
   2153 {
   2154    /* It is possible to have expression statements that don't have an
   2155     * expression.  This is the solitary semicolon:
   2156     *
   2157     * for (i = 0; i < 5; i++)
   2158     *     ;
   2159     *
   2160     * In this case the expression will be NULL.  Test for NULL and don't do
   2161     * anything in that case.
   2162     */
   2163    if (expression != NULL)
   2164       expression->hir_no_rvalue(instructions, state);
   2165 
   2166    /* Statements do not have r-values.
   2167     */
   2168    return NULL;
   2169 }
   2170 
   2171 
   2172 ir_rvalue *
   2173 ast_compound_statement::hir(exec_list *instructions,
   2174                             struct _mesa_glsl_parse_state *state)
   2175 {
   2176    if (new_scope)
   2177       state->symbols->push_scope();
   2178 
   2179    foreach_list_typed (ast_node, ast, link, &this->statements)
   2180       ast->hir(instructions, state);
   2181 
   2182    if (new_scope)
   2183       state->symbols->pop_scope();
   2184 
   2185    /* Compound statements do not have r-values.
   2186     */
   2187    return NULL;
   2188 }
   2189 
   2190 /**
   2191  * Evaluate the given exec_node (which should be an ast_node representing
   2192  * a single array dimension) and return its integer value.
   2193  */
   2194 static unsigned
   2195 process_array_size(exec_node *node,
   2196                    struct _mesa_glsl_parse_state *state)
   2197 {
   2198    exec_list dummy_instructions;
   2199 
   2200    ast_node *array_size = exec_node_data(ast_node, node, link);
   2201 
   2202    /**
   2203     * Dimensions other than the outermost dimension can by unsized if they
   2204     * are immediately sized by a constructor or initializer.
   2205     */
   2206    if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
   2207       return 0;
   2208 
   2209    ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
   2210    YYLTYPE loc = array_size->get_location();
   2211 
   2212    if (ir == NULL) {
   2213       _mesa_glsl_error(& loc, state,
   2214                        "array size could not be resolved");
   2215       return 0;
   2216    }
   2217 
   2218    if (!ir->type->is_integer()) {
   2219       _mesa_glsl_error(& loc, state,
   2220                        "array size must be integer type");
   2221       return 0;
   2222    }
   2223 
   2224    if (!ir->type->is_scalar()) {
   2225       _mesa_glsl_error(& loc, state,
   2226                        "array size must be scalar type");
   2227       return 0;
   2228    }
   2229 
   2230    ir_constant *const size = ir->constant_expression_value();
   2231    if (size == NULL ||
   2232        (state->is_version(120, 300) &&
   2233         array_size->has_sequence_subexpression())) {
   2234       _mesa_glsl_error(& loc, state, "array size must be a "
   2235                        "constant valued expression");
   2236       return 0;
   2237    }
   2238 
   2239    if (size->value.i[0] <= 0) {
   2240       _mesa_glsl_error(& loc, state, "array size must be > 0");
   2241       return 0;
   2242    }
   2243 
   2244    assert(size->type == ir->type);
   2245 
   2246    /* If the array size is const (and we've verified that
   2247     * it is) then no instructions should have been emitted
   2248     * when we converted it to HIR. If they were emitted,
   2249     * then either the array size isn't const after all, or
   2250     * we are emitting unnecessary instructions.
   2251     */
   2252    assert(dummy_instructions.is_empty());
   2253 
   2254    return size->value.u[0];
   2255 }
   2256 
   2257 static const glsl_type *
   2258 process_array_type(YYLTYPE *loc, const glsl_type *base,
   2259                    ast_array_specifier *array_specifier,
   2260                    struct _mesa_glsl_parse_state *state)
   2261 {
   2262    const glsl_type *array_type = base;
   2263 
   2264    if (array_specifier != NULL) {
   2265       if (base->is_array()) {
   2266 
   2267          /* From page 19 (page 25) of the GLSL 1.20 spec:
   2268           *
   2269           * "Only one-dimensional arrays may be declared."
   2270           */
   2271          if (!state->check_arrays_of_arrays_allowed(loc)) {
   2272             return glsl_type::error_type;
   2273          }
   2274       }
   2275 
   2276       for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
   2277            !node->is_head_sentinel(); node = node->prev) {
   2278          unsigned array_size = process_array_size(node, state);
   2279          array_type = glsl_type::get_array_instance(array_type, array_size);
   2280       }
   2281    }
   2282 
   2283    return array_type;
   2284 }
   2285 
   2286 static bool
   2287 precision_qualifier_allowed(const glsl_type *type)
   2288 {
   2289    /* Precision qualifiers apply to floating point, integer and opaque
   2290     * types.
   2291     *
   2292     * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
   2293     *    "Any floating point or any integer declaration can have the type
   2294     *    preceded by one of these precision qualifiers [...] Literal
   2295     *    constants do not have precision qualifiers. Neither do Boolean
   2296     *    variables.
   2297     *
   2298     * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
   2299     * spec also says:
   2300     *
   2301     *     "Precision qualifiers are added for code portability with OpenGL
   2302     *     ES, not for functionality. They have the same syntax as in OpenGL
   2303     *     ES."
   2304     *
   2305     * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
   2306     *
   2307     *     "uniform lowp sampler2D sampler;
   2308     *     highp vec2 coord;
   2309     *     ...
   2310     *     lowp vec4 col = texture2D (sampler, coord);
   2311     *                                            // texture2D returns lowp"
   2312     *
   2313     * From this, we infer that GLSL 1.30 (and later) should allow precision
   2314     * qualifiers on sampler types just like float and integer types.
   2315     */
   2316    const glsl_type *const t = type->without_array();
   2317 
   2318    return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
   2319           !t->is_record();
   2320 }
   2321 
   2322 const glsl_type *
   2323 ast_type_specifier::glsl_type(const char **name,
   2324                               struct _mesa_glsl_parse_state *state) const
   2325 {
   2326    const struct glsl_type *type;
   2327 
   2328    type = state->symbols->get_type(this->type_name);
   2329    *name = this->type_name;
   2330 
   2331    YYLTYPE loc = this->get_location();
   2332    type = process_array_type(&loc, type, this->array_specifier, state);
   2333 
   2334    return type;
   2335 }
   2336 
   2337 /**
   2338  * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
   2339  *
   2340  * "The precision statement
   2341  *
   2342  *    precision precision-qualifier type;
   2343  *
   2344  *  can be used to establish a default precision qualifier. The type field can
   2345  *  be either int or float or any of the sampler types, (...) If type is float,
   2346  *  the directive applies to non-precision-qualified floating point type
   2347  *  (scalar, vector, and matrix) declarations. If type is int, the directive
   2348  *  applies to all non-precision-qualified integer type (scalar, vector, signed,
   2349  *  and unsigned) declarations."
   2350  *
   2351  * We use the symbol table to keep the values of the default precisions for
   2352  * each 'type' in each scope and we use the 'type' string from the precision
   2353  * statement as key in the symbol table. When we want to retrieve the default
   2354  * precision associated with a given glsl_type we need to know the type string
   2355  * associated with it. This is what this function returns.
   2356  */
   2357 static const char *
   2358 get_type_name_for_precision_qualifier(const glsl_type *type)
   2359 {
   2360    switch (type->base_type) {
   2361    case GLSL_TYPE_FLOAT:
   2362       return "float";
   2363    case GLSL_TYPE_UINT:
   2364    case GLSL_TYPE_INT:
   2365       return "int";
   2366    case GLSL_TYPE_ATOMIC_UINT:
   2367       return "atomic_uint";
   2368    case GLSL_TYPE_IMAGE:
   2369    /* fallthrough */
   2370    case GLSL_TYPE_SAMPLER: {
   2371       const unsigned type_idx =
   2372          type->sampler_array + 2 * type->sampler_shadow;
   2373       const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
   2374       assert(type_idx < 4);
   2375       switch (type->sampled_type) {
   2376       case GLSL_TYPE_FLOAT:
   2377          switch (type->sampler_dimensionality) {
   2378          case GLSL_SAMPLER_DIM_1D: {
   2379             assert(type->base_type == GLSL_TYPE_SAMPLER);
   2380             static const char *const names[4] = {
   2381               "sampler1D", "sampler1DArray",
   2382               "sampler1DShadow", "sampler1DArrayShadow"
   2383             };
   2384             return names[type_idx];
   2385          }
   2386          case GLSL_SAMPLER_DIM_2D: {
   2387             static const char *const names[8] = {
   2388               "sampler2D", "sampler2DArray",
   2389               "sampler2DShadow", "sampler2DArrayShadow",
   2390               "image2D", "image2DArray", NULL, NULL
   2391             };
   2392             return names[offset + type_idx];
   2393          }
   2394          case GLSL_SAMPLER_DIM_3D: {
   2395             static const char *const names[8] = {
   2396               "sampler3D", NULL, NULL, NULL,
   2397               "image3D", NULL, NULL, NULL
   2398             };
   2399             return names[offset + type_idx];
   2400          }
   2401          case GLSL_SAMPLER_DIM_CUBE: {
   2402             static const char *const names[8] = {
   2403               "samplerCube", "samplerCubeArray",
   2404               "samplerCubeShadow", "samplerCubeArrayShadow",
   2405               "imageCube", NULL, NULL, NULL
   2406             };
   2407             return names[offset + type_idx];
   2408          }
   2409          case GLSL_SAMPLER_DIM_MS: {
   2410             assert(type->base_type == GLSL_TYPE_SAMPLER);
   2411             static const char *const names[4] = {
   2412               "sampler2DMS", "sampler2DMSArray", NULL, NULL
   2413             };
   2414             return names[type_idx];
   2415          }
   2416          case GLSL_SAMPLER_DIM_RECT: {
   2417             assert(type->base_type == GLSL_TYPE_SAMPLER);
   2418             static const char *const names[4] = {
   2419               "samplerRect", NULL, "samplerRectShadow", NULL
   2420             };
   2421             return names[type_idx];
   2422          }
   2423          case GLSL_SAMPLER_DIM_BUF: {
   2424             static const char *const names[8] = {
   2425               "samplerBuffer", NULL, NULL, NULL,
   2426               "imageBuffer", NULL, NULL, NULL
   2427             };
   2428             return names[offset + type_idx];
   2429          }
   2430          case GLSL_SAMPLER_DIM_EXTERNAL: {
   2431             assert(type->base_type == GLSL_TYPE_SAMPLER);
   2432             static const char *const names[4] = {
   2433               "samplerExternalOES", NULL, NULL, NULL
   2434             };
   2435             return names[type_idx];
   2436          }
   2437          default:
   2438             unreachable("Unsupported sampler/image dimensionality");
   2439          } /* sampler/image float dimensionality */
   2440          break;
   2441       case GLSL_TYPE_INT:
   2442          switch (type->sampler_dimensionality) {
   2443          case GLSL_SAMPLER_DIM_1D: {
   2444             assert(type->base_type == GLSL_TYPE_SAMPLER);
   2445             static const char *const names[4] = {
   2446               "isampler1D", "isampler1DArray", NULL, NULL
   2447             };
   2448             return names[type_idx];
   2449          }
   2450          case GLSL_SAMPLER_DIM_2D: {
   2451             static const char *const names[8] = {
   2452               "isampler2D", "isampler2DArray", NULL, NULL,
   2453               "iimage2D", "iimage2DArray", NULL, NULL
   2454             };
   2455             return names[offset + type_idx];
   2456          }
   2457          case GLSL_SAMPLER_DIM_3D: {
   2458             static const char *const names[8] = {
   2459               "isampler3D", NULL, NULL, NULL,
   2460               "iimage3D", NULL, NULL, NULL
   2461             };
   2462             return names[offset + type_idx];
   2463          }
   2464          case GLSL_SAMPLER_DIM_CUBE: {
   2465             static const char *const names[8] = {
   2466               "isamplerCube", "isamplerCubeArray", NULL, NULL,
   2467               "iimageCube", NULL, NULL, NULL
   2468             };
   2469             return names[offset + type_idx];
   2470          }
   2471          case GLSL_SAMPLER_DIM_MS: {
   2472             assert(type->base_type == GLSL_TYPE_SAMPLER);
   2473             static const char *const names[4] = {
   2474               "isampler2DMS", "isampler2DMSArray", NULL, NULL
   2475             };
   2476             return names[type_idx];
   2477          }
   2478          case GLSL_SAMPLER_DIM_RECT: {
   2479             assert(type->base_type == GLSL_TYPE_SAMPLER);
   2480             static const char *const names[4] = {
   2481               "isamplerRect", NULL, "isamplerRectShadow", NULL
   2482             };
   2483             return names[type_idx];
   2484          }
   2485          case GLSL_SAMPLER_DIM_BUF: {
   2486             static const char *const names[8] = {
   2487               "isamplerBuffer", NULL, NULL, NULL,
   2488               "iimageBuffer", NULL, NULL, NULL
   2489             };
   2490             return names[offset + type_idx];
   2491          }
   2492          default:
   2493             unreachable("Unsupported isampler/iimage dimensionality");
   2494          } /* sampler/image int dimensionality */
   2495          break;
   2496       case GLSL_TYPE_UINT:
   2497          switch (type->sampler_dimensionality) {
   2498          case GLSL_SAMPLER_DIM_1D: {
   2499             assert(type->base_type == GLSL_TYPE_SAMPLER);
   2500             static const char *const names[4] = {
   2501               "usampler1D", "usampler1DArray", NULL, NULL
   2502             };
   2503             return names[type_idx];
   2504          }
   2505          case GLSL_SAMPLER_DIM_2D: {
   2506             static const char *const names[8] = {
   2507               "usampler2D", "usampler2DArray", NULL, NULL,
   2508               "uimage2D", "uimage2DArray", NULL, NULL
   2509             };
   2510             return names[offset + type_idx];
   2511          }
   2512          case GLSL_SAMPLER_DIM_3D: {
   2513             static const char *const names[8] = {
   2514               "usampler3D", NULL, NULL, NULL,
   2515               "uimage3D", NULL, NULL, NULL
   2516             };
   2517             return names[offset + type_idx];
   2518          }
   2519          case GLSL_SAMPLER_DIM_CUBE: {
   2520             static const char *const names[8] = {
   2521               "usamplerCube", "usamplerCubeArray", NULL, NULL,
   2522               "uimageCube", NULL, NULL, NULL
   2523             };
   2524             return names[offset + type_idx];
   2525          }
   2526          case GLSL_SAMPLER_DIM_MS: {
   2527             assert(type->base_type == GLSL_TYPE_SAMPLER);
   2528             static const char *const names[4] = {
   2529               "usampler2DMS", "usampler2DMSArray", NULL, NULL
   2530             };
   2531             return names[type_idx];
   2532          }
   2533          case GLSL_SAMPLER_DIM_RECT: {
   2534             assert(type->base_type == GLSL_TYPE_SAMPLER);
   2535             static const char *const names[4] = {
   2536               "usamplerRect", NULL, "usamplerRectShadow", NULL
   2537             };
   2538             return names[type_idx];
   2539          }
   2540          case GLSL_SAMPLER_DIM_BUF: {
   2541             static const char *const names[8] = {
   2542               "usamplerBuffer", NULL, NULL, NULL,
   2543               "uimageBuffer", NULL, NULL, NULL
   2544             };
   2545             return names[offset + type_idx];
   2546          }
   2547          default:
   2548             unreachable("Unsupported usampler/uimage dimensionality");
   2549          } /* sampler/image uint dimensionality */
   2550          break;
   2551       default:
   2552          unreachable("Unsupported sampler/image type");
   2553       } /* sampler/image type */
   2554       break;
   2555    } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
   2556    break;
   2557    default:
   2558       unreachable("Unsupported type");
   2559    } /* base type */
   2560 }
   2561 
   2562 static unsigned
   2563 select_gles_precision(unsigned qual_precision,
   2564                       const glsl_type *type,
   2565                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
   2566 {
   2567    /* Precision qualifiers do not have any meaning in Desktop GLSL.
   2568     * In GLES we take the precision from the type qualifier if present,
   2569     * otherwise, if the type of the variable allows precision qualifiers at
   2570     * all, we look for the default precision qualifier for that type in the
   2571     * current scope.
   2572     */
   2573    assert(state->es_shader);
   2574 
   2575    unsigned precision = GLSL_PRECISION_NONE;
   2576    if (qual_precision) {
   2577       precision = qual_precision;
   2578    } else if (precision_qualifier_allowed(type)) {
   2579       const char *type_name =
   2580          get_type_name_for_precision_qualifier(type->without_array());
   2581       assert(type_name != NULL);
   2582 
   2583       precision =
   2584          state->symbols->get_default_precision_qualifier(type_name);
   2585       if (precision == ast_precision_none) {
   2586          _mesa_glsl_error(loc, state,
   2587                           "No precision specified in this scope for type `%s'",
   2588                           type->name);
   2589       }
   2590    }
   2591 
   2592 
   2593    /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
   2594     *
   2595     *    "The default precision of all atomic types is highp. It is an error to
   2596     *    declare an atomic type with a different precision or to specify the
   2597     *    default precision for an atomic type to be lowp or mediump."
   2598     */
   2599    if (type->base_type == GLSL_TYPE_ATOMIC_UINT &&
   2600        precision != ast_precision_high) {
   2601       _mesa_glsl_error(loc, state,
   2602                        "atomic_uint can only have highp precision qualifier");
   2603    }
   2604 
   2605    return precision;
   2606 }
   2607 
   2608 const glsl_type *
   2609 ast_fully_specified_type::glsl_type(const char **name,
   2610                                     struct _mesa_glsl_parse_state *state) const
   2611 {
   2612    return this->specifier->glsl_type(name, state);
   2613 }
   2614 
   2615 /**
   2616  * Determine whether a toplevel variable declaration declares a varying.  This
   2617  * function operates by examining the variable's mode and the shader target,
   2618  * so it correctly identifies linkage variables regardless of whether they are
   2619  * declared using the deprecated "varying" syntax or the new "in/out" syntax.
   2620  *
   2621  * Passing a non-toplevel variable declaration (e.g. a function parameter) to
   2622  * this function will produce undefined results.
   2623  */
   2624 static bool
   2625 is_varying_var(ir_variable *var, gl_shader_stage target)
   2626 {
   2627    switch (target) {
   2628    case MESA_SHADER_VERTEX:
   2629       return var->data.mode == ir_var_shader_out;
   2630    case MESA_SHADER_FRAGMENT:
   2631       return var->data.mode == ir_var_shader_in;
   2632    default:
   2633       return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
   2634    }
   2635 }
   2636 
   2637 static bool
   2638 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
   2639 {
   2640    if (is_varying_var(var, state->stage))
   2641       return true;
   2642 
   2643    /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
   2644     * "Only variables output from a vertex shader can be candidates
   2645     * for invariance".
   2646     */
   2647    if (!state->is_version(130, 0))
   2648       return false;
   2649 
   2650    /*
   2651     * Later specs remove this language - so allowed invariant
   2652     * on fragment shader outputs as well.
   2653     */
   2654    if (state->stage == MESA_SHADER_FRAGMENT &&
   2655        var->data.mode == ir_var_shader_out)
   2656       return true;
   2657    return false;
   2658 }
   2659 
   2660 /**
   2661  * Matrix layout qualifiers are only allowed on certain types
   2662  */
   2663 static void
   2664 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
   2665                                 YYLTYPE *loc,
   2666                                 const glsl_type *type,
   2667                                 ir_variable *var)
   2668 {
   2669    if (var && !var->is_in_buffer_block()) {
   2670       /* Layout qualifiers may only apply to interface blocks and fields in
   2671        * them.
   2672        */
   2673       _mesa_glsl_error(loc, state,
   2674                        "uniform block layout qualifiers row_major and "
   2675                        "column_major may not be applied to variables "
   2676                        "outside of uniform blocks");
   2677    } else if (!type->without_array()->is_matrix()) {
   2678       /* The OpenGL ES 3.0 conformance tests did not originally allow
   2679        * matrix layout qualifiers on non-matrices.  However, the OpenGL
   2680        * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
   2681        * amended to specifically allow these layouts on all types.  Emit
   2682        * a warning so that people know their code may not be portable.
   2683        */
   2684       _mesa_glsl_warning(loc, state,
   2685                          "uniform block layout qualifiers row_major and "
   2686                          "column_major applied to non-matrix types may "
   2687                          "be rejected by older compilers");
   2688    }
   2689 }
   2690 
   2691 static bool
   2692 validate_xfb_buffer_qualifier(YYLTYPE *loc,
   2693                               struct _mesa_glsl_parse_state *state,
   2694                               unsigned xfb_buffer) {
   2695    if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
   2696       _mesa_glsl_error(loc, state,
   2697                        "invalid xfb_buffer specified %d is larger than "
   2698                        "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
   2699                        xfb_buffer,
   2700                        state->Const.MaxTransformFeedbackBuffers - 1);
   2701       return false;
   2702    }
   2703 
   2704    return true;
   2705 }
   2706 
   2707 /* From the ARB_enhanced_layouts spec:
   2708  *
   2709  *    "Variables and block members qualified with *xfb_offset* can be
   2710  *    scalars, vectors, matrices, structures, and (sized) arrays of these.
   2711  *    The offset must be a multiple of the size of the first component of
   2712  *    the first qualified variable or block member, or a compile-time error
   2713  *    results.  Further, if applied to an aggregate containing a double,
   2714  *    the offset must also be a multiple of 8, and the space taken in the
   2715  *    buffer will be a multiple of 8.
   2716  */
   2717 static bool
   2718 validate_xfb_offset_qualifier(YYLTYPE *loc,
   2719                               struct _mesa_glsl_parse_state *state,
   2720                               int xfb_offset, const glsl_type *type,
   2721                               unsigned component_size) {
   2722   const glsl_type *t_without_array = type->without_array();
   2723 
   2724    if (xfb_offset != -1 && type->is_unsized_array()) {
   2725       _mesa_glsl_error(loc, state,
   2726                        "xfb_offset can't be used with unsized arrays.");
   2727       return false;
   2728    }
   2729 
   2730    /* Make sure nested structs don't contain unsized arrays, and validate
   2731     * any xfb_offsets on interface members.
   2732     */
   2733    if (t_without_array->is_record() || t_without_array->is_interface())
   2734       for (unsigned int i = 0; i < t_without_array->length; i++) {
   2735          const glsl_type *member_t = t_without_array->fields.structure[i].type;
   2736 
   2737          /* When the interface block doesn't have an xfb_offset qualifier then
   2738           * we apply the component size rules at the member level.
   2739           */
   2740          if (xfb_offset == -1)
   2741             component_size = member_t->contains_double() ? 8 : 4;
   2742 
   2743          int xfb_offset = t_without_array->fields.structure[i].offset;
   2744          validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
   2745                                        component_size);
   2746       }
   2747 
   2748   /* Nested structs or interface block without offset may not have had an
   2749    * offset applied yet so return.
   2750    */
   2751    if (xfb_offset == -1) {
   2752      return true;
   2753    }
   2754 
   2755    if (xfb_offset % component_size) {
   2756       _mesa_glsl_error(loc, state,
   2757                        "invalid qualifier xfb_offset=%d must be a multiple "
   2758                        "of the first component size of the first qualified "
   2759                        "variable or block member. Or double if an aggregate "
   2760                        "that contains a double (%d).",
   2761                        xfb_offset, component_size);
   2762       return false;
   2763    }
   2764 
   2765    return true;
   2766 }
   2767 
   2768 static bool
   2769 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
   2770                           unsigned stream)
   2771 {
   2772    if (stream >= state->ctx->Const.MaxVertexStreams) {
   2773       _mesa_glsl_error(loc, state,
   2774                        "invalid stream specified %d is larger than "
   2775                        "MAX_VERTEX_STREAMS - 1 (%d).",
   2776                        stream, state->ctx->Const.MaxVertexStreams - 1);
   2777       return false;
   2778    }
   2779 
   2780    return true;
   2781 }
   2782 
   2783 static void
   2784 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
   2785                        YYLTYPE *loc,
   2786                        ir_variable *var,
   2787                        const glsl_type *type,
   2788                        const ast_type_qualifier *qual)
   2789 {
   2790    if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
   2791       _mesa_glsl_error(loc, state,
   2792                        "the \"binding\" qualifier only applies to uniforms and "
   2793                        "shader storage buffer objects");
   2794       return;
   2795    }
   2796 
   2797    unsigned qual_binding;
   2798    if (!process_qualifier_constant(state, loc, "binding", qual->binding,
   2799                                    &qual_binding)) {
   2800       return;
   2801    }
   2802 
   2803    const struct gl_context *const ctx = state->ctx;
   2804    unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
   2805    unsigned max_index = qual_binding + elements - 1;
   2806    const glsl_type *base_type = type->without_array();
   2807 
   2808    if (base_type->is_interface()) {
   2809       /* UBOs.  From page 60 of the GLSL 4.20 specification:
   2810        * "If the binding point for any uniform block instance is less than zero,
   2811        *  or greater than or equal to the implementation-dependent maximum
   2812        *  number of uniform buffer bindings, a compilation error will occur.
   2813        *  When the binding identifier is used with a uniform block instanced as
   2814        *  an array of size N, all elements of the array from binding through
   2815        *  binding + N  1 must be within this range."
   2816        *
   2817        * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
   2818        */
   2819       if (qual->flags.q.uniform &&
   2820          max_index >= ctx->Const.MaxUniformBufferBindings) {
   2821          _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
   2822                           "the maximum number of UBO binding points (%d)",
   2823                           qual_binding, elements,
   2824                           ctx->Const.MaxUniformBufferBindings);
   2825          return;
   2826       }
   2827 
   2828       /* SSBOs. From page 67 of the GLSL 4.30 specification:
   2829        * "If the binding point for any uniform or shader storage block instance
   2830        *  is less than zero, or greater than or equal to the
   2831        *  implementation-dependent maximum number of uniform buffer bindings, a
   2832        *  compile-time error will occur. When the binding identifier is used
   2833        *  with a uniform or shader storage block instanced as an array of size
   2834        *  N, all elements of the array from binding through binding + N  1 must
   2835        *  be within this range."
   2836        */
   2837       if (qual->flags.q.buffer &&
   2838          max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
   2839          _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
   2840                           "the maximum number of SSBO binding points (%d)",
   2841                           qual_binding, elements,
   2842                           ctx->Const.MaxShaderStorageBufferBindings);
   2843          return;
   2844       }
   2845    } else if (base_type->is_sampler()) {
   2846       /* Samplers.  From page 63 of the GLSL 4.20 specification:
   2847        * "If the binding is less than zero, or greater than or equal to the
   2848        *  implementation-dependent maximum supported number of units, a
   2849        *  compilation error will occur. When the binding identifier is used
   2850        *  with an array of size N, all elements of the array from binding
   2851        *  through binding + N - 1 must be within this range."
   2852        */
   2853       unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
   2854 
   2855       if (max_index >= limit) {
   2856          _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
   2857                           "exceeds the maximum number of texture image units "
   2858                           "(%u)", qual_binding, elements, limit);
   2859 
   2860          return;
   2861       }
   2862    } else if (base_type->contains_atomic()) {
   2863       assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
   2864       if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
   2865          _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
   2866                           " maximum number of atomic counter buffer bindings"
   2867                           "(%u)", qual_binding,
   2868                           ctx->Const.MaxAtomicBufferBindings);
   2869 
   2870          return;
   2871       }
   2872    } else if ((state->is_version(420, 310) ||
   2873                state->ARB_shading_language_420pack_enable) &&
   2874               base_type->is_image()) {
   2875       assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
   2876       if (max_index >= ctx->Const.MaxImageUnits) {
   2877          _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
   2878                           " maximum number of image units (%d)", max_index,
   2879                           ctx->Const.MaxImageUnits);
   2880          return;
   2881       }
   2882 
   2883    } else {
   2884       _mesa_glsl_error(loc, state,
   2885                        "the \"binding\" qualifier only applies to uniform "
   2886                        "blocks, opaque variables, or arrays thereof");
   2887       return;
   2888    }
   2889 
   2890    var->data.explicit_binding = true;
   2891    var->data.binding = qual_binding;
   2892 
   2893    return;
   2894 }
   2895 
   2896 
   2897 static void
   2898 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
   2899                                  YYLTYPE *loc,
   2900                                  const glsl_interp_mode interpolation,
   2901                                  const struct ast_type_qualifier *qual,
   2902                                  const struct glsl_type *var_type,
   2903                                  ir_variable_mode mode)
   2904 {
   2905    /* Interpolation qualifiers can only apply to shader inputs or outputs, but
   2906     * not to vertex shader inputs nor fragment shader outputs.
   2907     *
   2908     * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
   2909     *    "Outputs from a vertex shader (out) and inputs to a fragment
   2910     *    shader (in) can be further qualified with one or more of these
   2911     *    interpolation qualifiers"
   2912     *    ...
   2913     *    "These interpolation qualifiers may only precede the qualifiers in,
   2914     *    centroid in, out, or centroid out in a declaration. They do not apply
   2915     *    to the deprecated storage qualifiers varying or centroid
   2916     *    varying. They also do not apply to inputs into a vertex shader or
   2917     *    outputs from a fragment shader."
   2918     *
   2919     * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
   2920     *    "Outputs from a shader (out) and inputs to a shader (in) can be
   2921     *    further qualified with one of these interpolation qualifiers."
   2922     *    ...
   2923     *    "These interpolation qualifiers may only precede the qualifiers
   2924     *    in, centroid in, out, or centroid out in a declaration. They do
   2925     *    not apply to inputs into a vertex shader or outputs from a
   2926     *    fragment shader."
   2927     */
   2928    if (state->is_version(130, 300)
   2929        && interpolation != INTERP_MODE_NONE) {
   2930       const char *i = interpolation_string(interpolation);
   2931       if (mode != ir_var_shader_in && mode != ir_var_shader_out)
   2932          _mesa_glsl_error(loc, state,
   2933                           "interpolation qualifier `%s' can only be applied to "
   2934                           "shader inputs or outputs.", i);
   2935 
   2936       switch (state->stage) {
   2937       case MESA_SHADER_VERTEX:
   2938          if (mode == ir_var_shader_in) {
   2939             _mesa_glsl_error(loc, state,
   2940                              "interpolation qualifier '%s' cannot be applied to "
   2941                              "vertex shader inputs", i);
   2942          }
   2943          break;
   2944       case MESA_SHADER_FRAGMENT:
   2945          if (mode == ir_var_shader_out) {
   2946             _mesa_glsl_error(loc, state,
   2947                              "interpolation qualifier '%s' cannot be applied to "
   2948                              "fragment shader outputs", i);
   2949          }
   2950          break;
   2951       default:
   2952          break;
   2953       }
   2954    }
   2955 
   2956    /* Interpolation qualifiers cannot be applied to 'centroid' and
   2957     * 'centroid varying'.
   2958     *
   2959     * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
   2960     *    "interpolation qualifiers may only precede the qualifiers in,
   2961     *    centroid in, out, or centroid out in a declaration. They do not apply
   2962     *    to the deprecated storage qualifiers varying or centroid varying."
   2963     *
   2964     * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
   2965     */
   2966    if (state->is_version(130, 0)
   2967        && interpolation != INTERP_MODE_NONE
   2968        && qual->flags.q.varying) {
   2969 
   2970       const char *i = interpolation_string(interpolation);
   2971       const char *s;
   2972       if (qual->flags.q.centroid)
   2973          s = "centroid varying";
   2974       else
   2975          s = "varying";
   2976 
   2977       _mesa_glsl_error(loc, state,
   2978                        "qualifier '%s' cannot be applied to the "
   2979                        "deprecated storage qualifier '%s'", i, s);
   2980    }
   2981 
   2982    /* Integer fragment inputs must be qualified with 'flat'.  In GLSL ES,
   2983     * so must integer vertex outputs.
   2984     *
   2985     * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
   2986     *    "Fragment shader inputs that are signed or unsigned integers or
   2987     *    integer vectors must be qualified with the interpolation qualifier
   2988     *    flat."
   2989     *
   2990     * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
   2991     *    "Fragment shader inputs that are, or contain, signed or unsigned
   2992     *    integers or integer vectors must be qualified with the
   2993     *    interpolation qualifier flat."
   2994     *
   2995     * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
   2996     *    "Vertex shader outputs that are, or contain, signed or unsigned
   2997     *    integers or integer vectors must be qualified with the
   2998     *    interpolation qualifier flat."
   2999     *
   3000     * Note that prior to GLSL 1.50, this requirement applied to vertex
   3001     * outputs rather than fragment inputs.  That creates problems in the
   3002     * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
   3003     * desktop GL shaders.  For GLSL ES shaders, we follow the spec and
   3004     * apply the restriction to both vertex outputs and fragment inputs.
   3005     *
   3006     * Note also that the desktop GLSL specs are missing the text "or
   3007     * contain"; this is presumably an oversight, since there is no
   3008     * reasonable way to interpolate a fragment shader input that contains
   3009     * an integer. See Khronos bug #15671.
   3010     */
   3011    if (state->is_version(130, 300)
   3012        && var_type->contains_integer()
   3013        && interpolation != INTERP_MODE_FLAT
   3014        && state->stage == MESA_SHADER_FRAGMENT
   3015        && mode == ir_var_shader_in) {
   3016       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
   3017                        "an integer, then it must be qualified with 'flat'");
   3018    }
   3019 
   3020    /* Double fragment inputs must be qualified with 'flat'.
   3021     *
   3022     * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
   3023     *    "This extension does not support interpolation of double-precision
   3024     *    values; doubles used as fragment shader inputs must be qualified as
   3025     *    "flat"."
   3026     *
   3027     * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
   3028     *    "Fragment shader inputs that are signed or unsigned integers, integer
   3029     *    vectors, or any double-precision floating-point type must be
   3030     *    qualified with the interpolation qualifier flat."
   3031     *
   3032     * Note that the GLSL specs are missing the text "or contain"; this is
   3033     * presumably an oversight. See Khronos bug #15671.
   3034     *
   3035     * The 'double' type does not exist in GLSL ES so far.
   3036     */
   3037    if (state->has_double()
   3038        && var_type->contains_double()
   3039        && interpolation != INTERP_MODE_FLAT
   3040        && state->stage == MESA_SHADER_FRAGMENT
   3041        && mode == ir_var_shader_in) {
   3042       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
   3043                        "a double, then it must be qualified with 'flat'");
   3044    }
   3045 }
   3046 
   3047 static glsl_interp_mode
   3048 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
   3049                                   const struct glsl_type *var_type,
   3050                                   ir_variable_mode mode,
   3051                                   struct _mesa_glsl_parse_state *state,
   3052                                   YYLTYPE *loc)
   3053 {
   3054    glsl_interp_mode interpolation;
   3055    if (qual->flags.q.flat)
   3056       interpolation = INTERP_MODE_FLAT;
   3057    else if (qual->flags.q.noperspective)
   3058       interpolation = INTERP_MODE_NOPERSPECTIVE;
   3059    else if (qual->flags.q.smooth)
   3060       interpolation = INTERP_MODE_SMOOTH;
   3061    else if (state->es_shader &&
   3062             ((mode == ir_var_shader_in &&
   3063               state->stage != MESA_SHADER_VERTEX) ||
   3064              (mode == ir_var_shader_out &&
   3065               state->stage != MESA_SHADER_FRAGMENT)))
   3066       /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
   3067        *
   3068        *    "When no interpolation qualifier is present, smooth interpolation
   3069        *    is used."
   3070        */
   3071       interpolation = INTERP_MODE_SMOOTH;
   3072    else
   3073       interpolation = INTERP_MODE_NONE;
   3074 
   3075    validate_interpolation_qualifier(state, loc,
   3076                                     interpolation,
   3077                                     qual, var_type, mode);
   3078 
   3079    return interpolation;
   3080 }
   3081 
   3082 
   3083 static void
   3084 apply_explicit_location(const struct ast_type_qualifier *qual,
   3085                         ir_variable *var,
   3086                         struct _mesa_glsl_parse_state *state,
   3087                         YYLTYPE *loc)
   3088 {
   3089    bool fail = false;
   3090 
   3091    unsigned qual_location;
   3092    if (!process_qualifier_constant(state, loc, "location", qual->location,
   3093                                    &qual_location)) {
   3094       return;
   3095    }
   3096 
   3097    /* Checks for GL_ARB_explicit_uniform_location. */
   3098    if (qual->flags.q.uniform) {
   3099       if (!state->check_explicit_uniform_location_allowed(loc, var))
   3100          return;
   3101 
   3102       const struct gl_context *const ctx = state->ctx;
   3103       unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
   3104 
   3105       if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
   3106          _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
   3107                           ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
   3108                           ctx->Const.MaxUserAssignableUniformLocations);
   3109          return;
   3110       }
   3111 
   3112       var->data.explicit_location = true;
   3113       var->data.location = qual_location;
   3114       return;
   3115    }
   3116 
   3117    /* Between GL_ARB_explicit_attrib_location an
   3118     * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
   3119     * stage can be assigned explicit locations.  The checking here associates
   3120     * the correct extension with the correct stage's input / output:
   3121     *
   3122     *                     input            output
   3123     *                     -----            ------
   3124     * vertex              explicit_loc     sso
   3125     * tess control        sso              sso
   3126     * tess eval           sso              sso
   3127     * geometry            sso              sso
   3128     * fragment            sso              explicit_loc
   3129     */
   3130    switch (state->stage) {
   3131    case MESA_SHADER_VERTEX:
   3132       if (var->data.mode == ir_var_shader_in) {
   3133          if (!state->check_explicit_attrib_location_allowed(loc, var))
   3134             return;
   3135 
   3136          break;
   3137       }
   3138 
   3139       if (var->data.mode == ir_var_shader_out) {
   3140          if (!state->check_separate_shader_objects_allowed(loc, var))
   3141             return;
   3142 
   3143          break;
   3144       }
   3145 
   3146       fail = true;
   3147       break;
   3148 
   3149    case MESA_SHADER_TESS_CTRL:
   3150    case MESA_SHADER_TESS_EVAL:
   3151    case MESA_SHADER_GEOMETRY:
   3152       if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
   3153          if (!state->check_separate_shader_objects_allowed(loc, var))
   3154             return;
   3155 
   3156          break;
   3157       }
   3158 
   3159       fail = true;
   3160       break;
   3161 
   3162    case MESA_SHADER_FRAGMENT:
   3163       if (var->data.mode == ir_var_shader_in) {
   3164          if (!state->check_separate_shader_objects_allowed(loc, var))
   3165             return;
   3166 
   3167          break;
   3168       }
   3169 
   3170       if (var->data.mode == ir_var_shader_out) {
   3171          if (!state->check_explicit_attrib_location_allowed(loc, var))
   3172             return;
   3173 
   3174          break;
   3175       }
   3176 
   3177       fail = true;
   3178       break;
   3179 
   3180    case MESA_SHADER_COMPUTE:
   3181       _mesa_glsl_error(loc, state,
   3182                        "compute shader variables cannot be given "
   3183                        "explicit locations");
   3184       return;
   3185    };
   3186 
   3187    if (fail) {
   3188       _mesa_glsl_error(loc, state,
   3189                        "%s cannot be given an explicit location in %s shader",
   3190                        mode_string(var),
   3191       _mesa_shader_stage_to_string(state->stage));
   3192    } else {
   3193       var->data.explicit_location = true;
   3194 
   3195       switch (state->stage) {
   3196       case MESA_SHADER_VERTEX:
   3197          var->data.location = (var->data.mode == ir_var_shader_in)
   3198             ? (qual_location + VERT_ATTRIB_GENERIC0)
   3199             : (qual_location + VARYING_SLOT_VAR0);
   3200          break;
   3201 
   3202       case MESA_SHADER_TESS_CTRL:
   3203       case MESA_SHADER_TESS_EVAL:
   3204       case MESA_SHADER_GEOMETRY:
   3205          if (var->data.patch)
   3206             var->data.location = qual_location + VARYING_SLOT_PATCH0;
   3207          else
   3208             var->data.location = qual_location + VARYING_SLOT_VAR0;
   3209          break;
   3210 
   3211       case MESA_SHADER_FRAGMENT:
   3212          var->data.location = (var->data.mode == ir_var_shader_out)
   3213             ? (qual_location + FRAG_RESULT_DATA0)
   3214             : (qual_location + VARYING_SLOT_VAR0);
   3215          break;
   3216       case MESA_SHADER_COMPUTE:
   3217          assert(!"Unexpected shader type");
   3218          break;
   3219       }
   3220 
   3221       /* Check if index was set for the uniform instead of the function */
   3222       if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
   3223          _mesa_glsl_error(loc, state, "an index qualifier can only be "
   3224                           "used with subroutine functions");
   3225          return;
   3226       }
   3227 
   3228       unsigned qual_index;
   3229       if (qual->flags.q.explicit_index &&
   3230           process_qualifier_constant(state, loc, "index", qual->index,
   3231                                      &qual_index)) {
   3232          /* From the GLSL 4.30 specification, section 4.4.2 (Output
   3233           * Layout Qualifiers):
   3234           *
   3235           * "It is also a compile-time error if a fragment shader
   3236           *  sets a layout index to less than 0 or greater than 1."
   3237           *
   3238           * Older specifications don't mandate a behavior; we take
   3239           * this as a clarification and always generate the error.
   3240           */
   3241          if (qual_index > 1) {
   3242             _mesa_glsl_error(loc, state,
   3243                              "explicit index may only be 0 or 1");
   3244          } else {
   3245             var->data.explicit_index = true;
   3246             var->data.index = qual_index;
   3247          }
   3248       }
   3249    }
   3250 }
   3251 
   3252 static void
   3253 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
   3254                                   ir_variable *var,
   3255                                   struct _mesa_glsl_parse_state *state,
   3256                                   YYLTYPE *loc)
   3257 {
   3258    const glsl_type *base_type = var->type->without_array();
   3259 
   3260    if (base_type->is_image()) {
   3261       if (var->data.mode != ir_var_uniform &&
   3262           var->data.mode != ir_var_function_in) {
   3263          _mesa_glsl_error(loc, state, "image variables may only be declared as "
   3264                           "function parameters or uniform-qualified "
   3265                           "global variables");
   3266       }
   3267 
   3268       var->data.image_read_only |= qual->flags.q.read_only;
   3269       var->data.image_write_only |= qual->flags.q.write_only;
   3270       var->data.image_coherent |= qual->flags.q.coherent;
   3271       var->data.image_volatile |= qual->flags.q._volatile;
   3272       var->data.image_restrict |= qual->flags.q.restrict_flag;
   3273       var->data.read_only = true;
   3274 
   3275       if (qual->flags.q.explicit_image_format) {
   3276          if (var->data.mode == ir_var_function_in) {
   3277             _mesa_glsl_error(loc, state, "format qualifiers cannot be "
   3278                              "used on image function parameters");
   3279          }
   3280 
   3281          if (qual->image_base_type != base_type->sampled_type) {
   3282             _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
   3283                              "base data type of the image");
   3284          }
   3285 
   3286          var->data.image_format = qual->image_format;
   3287       } else {
   3288          if (var->data.mode == ir_var_uniform) {
   3289             if (state->es_shader) {
   3290                _mesa_glsl_error(loc, state, "all image uniforms "
   3291                                 "must have a format layout qualifier");
   3292 
   3293             } else if (!qual->flags.q.write_only) {
   3294                _mesa_glsl_error(loc, state, "image uniforms not qualified with "
   3295                                 "`writeonly' must have a format layout "
   3296                                 "qualifier");
   3297             }
   3298          }
   3299 
   3300          var->data.image_format = GL_NONE;
   3301       }
   3302 
   3303       /* From page 70 of the GLSL ES 3.1 specification:
   3304        *
   3305        * "Except for image variables qualified with the format qualifiers
   3306        *  r32f, r32i, and r32ui, image variables must specify either memory
   3307        *  qualifier readonly or the memory qualifier writeonly."
   3308        */
   3309       if (state->es_shader &&
   3310           var->data.image_format != GL_R32F &&
   3311           var->data.image_format != GL_R32I &&
   3312           var->data.image_format != GL_R32UI &&
   3313           !var->data.image_read_only &&
   3314           !var->data.image_write_only) {
   3315          _mesa_glsl_error(loc, state, "image variables of format other than "
   3316                           "r32f, r32i or r32ui must be qualified `readonly' or "
   3317                           "`writeonly'");
   3318       }
   3319 
   3320    } else if (qual->flags.q.read_only ||
   3321               qual->flags.q.write_only ||
   3322               qual->flags.q.coherent ||
   3323               qual->flags.q._volatile ||
   3324               qual->flags.q.restrict_flag ||
   3325               qual->flags.q.explicit_image_format) {
   3326       _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
   3327                        "images");
   3328    }
   3329 }
   3330 
   3331 static inline const char*
   3332 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
   3333 {
   3334    if (origin_upper_left && pixel_center_integer)
   3335       return "origin_upper_left, pixel_center_integer";
   3336    else if (origin_upper_left)
   3337       return "origin_upper_left";
   3338    else if (pixel_center_integer)
   3339       return "pixel_center_integer";
   3340    else
   3341       return " ";
   3342 }
   3343 
   3344 static inline bool
   3345 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
   3346                                        const struct ast_type_qualifier *qual)
   3347 {
   3348    /* If gl_FragCoord was previously declared, and the qualifiers were
   3349     * different in any way, return true.
   3350     */
   3351    if (state->fs_redeclares_gl_fragcoord) {
   3352       return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
   3353          || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
   3354    }
   3355 
   3356    return false;
   3357 }
   3358 
   3359 static inline void
   3360 validate_array_dimensions(const glsl_type *t,
   3361                           struct _mesa_glsl_parse_state *state,
   3362                           YYLTYPE *loc) {
   3363    if (t->is_array()) {
   3364       t = t->fields.array;
   3365       while (t->is_array()) {
   3366          if (t->is_unsized_array()) {
   3367             _mesa_glsl_error(loc, state,
   3368                              "only the outermost array dimension can "
   3369                              "be unsized",
   3370                              t->name);
   3371             break;
   3372          }
   3373          t = t->fields.array;
   3374       }
   3375    }
   3376 }
   3377 
   3378 static void
   3379 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
   3380                                    ir_variable *var,
   3381                                    struct _mesa_glsl_parse_state *state,
   3382                                    YYLTYPE *loc)
   3383 {
   3384    if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
   3385 
   3386       /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
   3387        *
   3388        *    "Within any shader, the first redeclarations of gl_FragCoord
   3389        *     must appear before any use of gl_FragCoord."
   3390        *
   3391        * Generate a compiler error if above condition is not met by the
   3392        * fragment shader.
   3393        */
   3394       ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
   3395       if (earlier != NULL &&
   3396           earlier->data.used &&
   3397           !state->fs_redeclares_gl_fragcoord) {
   3398          _mesa_glsl_error(loc, state,
   3399                           "gl_FragCoord used before its first redeclaration "
   3400                           "in fragment shader");
   3401       }
   3402 
   3403       /* Make sure all gl_FragCoord redeclarations specify the same layout
   3404        * qualifiers.
   3405        */
   3406       if (is_conflicting_fragcoord_redeclaration(state, qual)) {
   3407          const char *const qual_string =
   3408             get_layout_qualifier_string(qual->flags.q.origin_upper_left,
   3409                                         qual->flags.q.pixel_center_integer);
   3410 
   3411          const char *const state_string =
   3412             get_layout_qualifier_string(state->fs_origin_upper_left,
   3413                                         state->fs_pixel_center_integer);
   3414 
   3415          _mesa_glsl_error(loc, state,
   3416                           "gl_FragCoord redeclared with different layout "
   3417                           "qualifiers (%s) and (%s) ",
   3418                           state_string,
   3419                           qual_string);
   3420       }
   3421       state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
   3422       state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
   3423       state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
   3424          !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
   3425       state->fs_redeclares_gl_fragcoord =
   3426          state->fs_origin_upper_left ||
   3427          state->fs_pixel_center_integer ||
   3428          state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
   3429    }
   3430 
   3431    var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
   3432    var->data.origin_upper_left = qual->flags.q.origin_upper_left;
   3433    if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
   3434        && (strcmp(var->name, "gl_FragCoord") != 0)) {
   3435       const char *const qual_string = (qual->flags.q.origin_upper_left)
   3436          ? "origin_upper_left" : "pixel_center_integer";
   3437 
   3438       _mesa_glsl_error(loc, state,
   3439                        "layout qualifier `%s' can only be applied to "
   3440                        "fragment shader input `gl_FragCoord'",
   3441                        qual_string);
   3442    }
   3443 
   3444    if (qual->flags.q.explicit_location) {
   3445       apply_explicit_location(qual, var, state, loc);
   3446 
   3447       if (qual->flags.q.explicit_component) {
   3448          unsigned qual_component;
   3449          if (process_qualifier_constant(state, loc, "component",
   3450                                         qual->component, &qual_component)) {
   3451             const glsl_type *type = var->type->without_array();
   3452             unsigned components = type->component_slots();
   3453 
   3454             if (type->is_matrix() || type->is_record()) {
   3455                _mesa_glsl_error(loc, state, "component layout qualifier "
   3456                                 "cannot be applied to a matrix, a structure, "
   3457                                 "a block, or an array containing any of "
   3458                                 "these.");
   3459             } else if (qual_component != 0 &&
   3460                 (qual_component + components - 1) > 3) {
   3461                _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
   3462                                 (qual_component + components - 1));
   3463             } else if (qual_component == 1 && type->is_64bit()) {
   3464                /* We don't bother checking for 3 as it should be caught by the
   3465                 * overflow check above.
   3466                 */
   3467                _mesa_glsl_error(loc, state, "doubles cannot begin at "
   3468                                 "component 1 or 3");
   3469             } else {
   3470                var->data.explicit_component = true;
   3471                var->data.location_frac = qual_component;
   3472             }
   3473          }
   3474       }
   3475    } else if (qual->flags.q.explicit_index) {
   3476       if (!qual->flags.q.subroutine_def)
   3477          _mesa_glsl_error(loc, state,
   3478                           "explicit index requires explicit location");
   3479    } else if (qual->flags.q.explicit_component) {
   3480       _mesa_glsl_error(loc, state,
   3481                        "explicit component requires explicit location");
   3482    }
   3483 
   3484    if (qual->flags.q.explicit_binding) {
   3485       apply_explicit_binding(state, loc, var, var->type, qual);
   3486    }
   3487 
   3488    if (state->stage == MESA_SHADER_GEOMETRY &&
   3489        qual->flags.q.out && qual->flags.q.stream) {
   3490       unsigned qual_stream;
   3491       if (process_qualifier_constant(state, loc, "stream", qual->stream,
   3492                                      &qual_stream) &&
   3493           validate_stream_qualifier(loc, state, qual_stream)) {
   3494          var->data.stream = qual_stream;
   3495       }
   3496    }
   3497 
   3498    if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
   3499       unsigned qual_xfb_buffer;
   3500       if (process_qualifier_constant(state, loc, "xfb_buffer",
   3501                                      qual->xfb_buffer, &qual_xfb_buffer) &&
   3502           validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
   3503          var->data.xfb_buffer = qual_xfb_buffer;
   3504          if (qual->flags.q.explicit_xfb_buffer)
   3505             var->data.explicit_xfb_buffer = true;
   3506       }
   3507    }
   3508 
   3509    if (qual->flags.q.explicit_xfb_offset) {
   3510       unsigned qual_xfb_offset;
   3511       unsigned component_size = var->type->contains_double() ? 8 : 4;
   3512 
   3513       if (process_qualifier_constant(state, loc, "xfb_offset",
   3514                                      qual->offset, &qual_xfb_offset) &&
   3515           validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
   3516                                         var->type, component_size)) {
   3517          var->data.offset = qual_xfb_offset;
   3518          var->data.explicit_xfb_offset = true;
   3519       }
   3520    }
   3521 
   3522    if (qual->flags.q.explicit_xfb_stride) {
   3523       unsigned qual_xfb_stride;
   3524       if (process_qualifier_constant(state, loc, "xfb_stride",
   3525                                      qual->xfb_stride, &qual_xfb_stride)) {
   3526          var->data.xfb_stride = qual_xfb_stride;
   3527          var->data.explicit_xfb_stride = true;
   3528       }
   3529    }
   3530 
   3531    if (var->type->contains_atomic()) {
   3532       if (var->data.mode == ir_var_uniform) {
   3533          if (var->data.explicit_binding) {
   3534             unsigned *offset =
   3535                &state->atomic_counter_offsets[var->data.binding];
   3536 
   3537             if (*offset % ATOMIC_COUNTER_SIZE)
   3538                _mesa_glsl_error(loc, state,
   3539                                 "misaligned atomic counter offset");
   3540 
   3541             var->data.offset = *offset;
   3542             *offset += var->type->atomic_size();
   3543 
   3544          } else {
   3545             _mesa_glsl_error(loc, state,
   3546                              "atomic counters require explicit binding point");
   3547          }
   3548       } else if (var->data.mode != ir_var_function_in) {
   3549          _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
   3550                           "function parameters or uniform-qualified "
   3551                           "global variables");
   3552       }
   3553    }
   3554 
   3555    /* Is the 'layout' keyword used with parameters that allow relaxed checking.
   3556     * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
   3557     * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
   3558     * allowed the layout qualifier to be used with 'varying' and 'attribute'.
   3559     * These extensions and all following extensions that add the 'layout'
   3560     * keyword have been modified to require the use of 'in' or 'out'.
   3561     *
   3562     * The following extension do not allow the deprecated keywords:
   3563     *
   3564     *    GL_AMD_conservative_depth
   3565     *    GL_ARB_conservative_depth
   3566     *    GL_ARB_gpu_shader5
   3567     *    GL_ARB_separate_shader_objects
   3568     *    GL_ARB_tessellation_shader
   3569     *    GL_ARB_transform_feedback3
   3570     *    GL_ARB_uniform_buffer_object
   3571     *
   3572     * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
   3573     * allow layout with the deprecated keywords.
   3574     */
   3575    const bool relaxed_layout_qualifier_checking =
   3576       state->ARB_fragment_coord_conventions_enable;
   3577 
   3578    const bool uses_deprecated_qualifier = qual->flags.q.attribute
   3579       || qual->flags.q.varying;
   3580    if (qual->has_layout() && uses_deprecated_qualifier) {
   3581       if (relaxed_layout_qualifier_checking) {
   3582          _mesa_glsl_warning(loc, state,
   3583                             "`layout' qualifier may not be used with "
   3584                             "`attribute' or `varying'");
   3585       } else {
   3586          _mesa_glsl_error(loc, state,
   3587                           "`layout' qualifier may not be used with "
   3588                           "`attribute' or `varying'");
   3589       }
   3590    }
   3591 
   3592    /* Layout qualifiers for gl_FragDepth, which are enabled by extension
   3593     * AMD_conservative_depth.
   3594     */
   3595    int depth_layout_count = qual->flags.q.depth_any
   3596       + qual->flags.q.depth_greater
   3597       + qual->flags.q.depth_less
   3598       + qual->flags.q.depth_unchanged;
   3599    if (depth_layout_count > 0
   3600        && !state->is_version(420, 0)
   3601        && !state->AMD_conservative_depth_enable
   3602        && !state->ARB_conservative_depth_enable) {
   3603        _mesa_glsl_error(loc, state,
   3604                         "extension GL_AMD_conservative_depth or "
   3605                         "GL_ARB_conservative_depth must be enabled "
   3606                         "to use depth layout qualifiers");
   3607    } else if (depth_layout_count > 0
   3608               && strcmp(var->name, "gl_FragDepth") != 0) {
   3609        _mesa_glsl_error(loc, state,
   3610                         "depth layout qualifiers can be applied only to "
   3611                         "gl_FragDepth");
   3612    } else if (depth_layout_count > 1
   3613               && strcmp(var->name, "gl_FragDepth") == 0) {
   3614       _mesa_glsl_error(loc, state,
   3615                        "at most one depth layout qualifier can be applied to "
   3616                        "gl_FragDepth");
   3617    }
   3618    if (qual->flags.q.depth_any)
   3619       var->data.depth_layout = ir_depth_layout_any;
   3620    else if (qual->flags.q.depth_greater)
   3621       var->data.depth_layout = ir_depth_layout_greater;
   3622    else if (qual->flags.q.depth_less)
   3623       var->data.depth_layout = ir_depth_layout_less;
   3624    else if (qual->flags.q.depth_unchanged)
   3625        var->data.depth_layout = ir_depth_layout_unchanged;
   3626    else
   3627        var->data.depth_layout = ir_depth_layout_none;
   3628 
   3629    if (qual->flags.q.std140 ||
   3630        qual->flags.q.std430 ||
   3631        qual->flags.q.packed ||
   3632        qual->flags.q.shared) {
   3633       _mesa_glsl_error(loc, state,
   3634                        "uniform and shader storage block layout qualifiers "
   3635                        "std140, std430, packed, and shared can only be "
   3636                        "applied to uniform or shader storage blocks, not "
   3637                        "members");
   3638    }
   3639 
   3640    if (qual->flags.q.row_major || qual->flags.q.column_major) {
   3641       validate_matrix_layout_for_type(state, loc, var->type, var);
   3642    }
   3643 
   3644    /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
   3645     * Inputs):
   3646     *
   3647     *  "Fragment shaders also allow the following layout qualifier on in only
   3648     *   (not with variable declarations)
   3649     *     layout-qualifier-id
   3650     *        early_fragment_tests
   3651     *   [...]"
   3652     */
   3653    if (qual->flags.q.early_fragment_tests) {
   3654       _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
   3655                        "valid in fragment shader input layout declaration.");
   3656    }
   3657 
   3658    if (qual->flags.q.inner_coverage) {
   3659       _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
   3660                        "valid in fragment shader input layout declaration.");
   3661    }
   3662 
   3663    if (qual->flags.q.post_depth_coverage) {
   3664       _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
   3665                        "valid in fragment shader input layout declaration.");
   3666    }
   3667 }
   3668 
   3669 static void
   3670 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
   3671                                  ir_variable *var,
   3672                                  struct _mesa_glsl_parse_state *state,
   3673                                  YYLTYPE *loc,
   3674                                  bool is_parameter)
   3675 {
   3676    STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
   3677 
   3678    if (qual->flags.q.invariant) {
   3679       if (var->data.used) {
   3680          _mesa_glsl_error(loc, state,
   3681                           "variable `%s' may not be redeclared "
   3682                           "`invariant' after being used",
   3683                           var->name);
   3684       } else {
   3685          var->data.invariant = 1;
   3686       }
   3687    }
   3688 
   3689    if (qual->flags.q.precise) {
   3690       if (var->data.used) {
   3691          _mesa_glsl_error(loc, state,
   3692                           "variable `%s' may not be redeclared "
   3693                           "`precise' after being used",
   3694                           var->name);
   3695       } else {
   3696          var->data.precise = 1;
   3697       }
   3698    }
   3699 
   3700    if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
   3701       _mesa_glsl_error(loc, state,
   3702                        "`subroutine' may only be applied to uniforms, "
   3703                        "subroutine type declarations, or function definitions");
   3704    }
   3705 
   3706    if (qual->flags.q.constant || qual->flags.q.attribute
   3707        || qual->flags.q.uniform
   3708        || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
   3709       var->data.read_only = 1;
   3710 
   3711    if (qual->flags.q.centroid)
   3712       var->data.centroid = 1;
   3713 
   3714    if (qual->flags.q.sample)
   3715       var->data.sample = 1;
   3716 
   3717    /* Precision qualifiers do not hold any meaning in Desktop GLSL */
   3718    if (state->es_shader) {
   3719       var->data.precision =
   3720          select_gles_precision(qual->precision, var->type, state, loc);
   3721    }
   3722 
   3723    if (qual->flags.q.patch)
   3724       var->data.patch = 1;
   3725 
   3726    if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
   3727       var->type = glsl_type::error_type;
   3728       _mesa_glsl_error(loc, state,
   3729                        "`attribute' variables may not be declared in the "
   3730                        "%s shader",
   3731                        _mesa_shader_stage_to_string(state->stage));
   3732    }
   3733 
   3734    /* Disallow layout qualifiers which may only appear on layout declarations. */
   3735    if (qual->flags.q.prim_type) {
   3736       _mesa_glsl_error(loc, state,
   3737                        "Primitive type may only be specified on GS input or output "
   3738                        "layout declaration, not on variables.");
   3739    }
   3740 
   3741    /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
   3742     *
   3743     *     "However, the const qualifier cannot be used with out or inout."
   3744     *
   3745     * The same section of the GLSL 4.40 spec further clarifies this saying:
   3746     *
   3747     *     "The const qualifier cannot be used with out or inout, or a
   3748     *     compile-time error results."
   3749     */
   3750    if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
   3751       _mesa_glsl_error(loc, state,
   3752                        "`const' may not be applied to `out' or `inout' "
   3753                        "function parameters");
   3754    }
   3755 
   3756    /* If there is no qualifier that changes the mode of the variable, leave
   3757     * the setting alone.
   3758     */
   3759    assert(var->data.mode != ir_var_temporary);
   3760    if (qual->flags.q.in && qual->flags.q.out)
   3761       var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
   3762    else if (qual->flags.q.in)
   3763       var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
   3764    else if (qual->flags.q.attribute
   3765             || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
   3766       var->data.mode = ir_var_shader_in;
   3767    else if (qual->flags.q.out)
   3768       var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
   3769    else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
   3770       var->data.mode = ir_var_shader_out;
   3771    else if (qual->flags.q.uniform)
   3772       var->data.mode = ir_var_uniform;
   3773    else if (qual->flags.q.buffer)
   3774       var->data.mode = ir_var_shader_storage;
   3775    else if (qual->flags.q.shared_storage)
   3776       var->data.mode = ir_var_shader_shared;
   3777 
   3778    var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
   3779                                qual->flags.q.in && qual->flags.q.out;
   3780 
   3781    if (!is_parameter && is_varying_var(var, state->stage)) {
   3782       /* User-defined ins/outs are not permitted in compute shaders. */
   3783       if (state->stage == MESA_SHADER_COMPUTE) {
   3784          _mesa_glsl_error(loc, state,
   3785                           "user-defined input and output variables are not "
   3786                           "permitted in compute shaders");
   3787       }
   3788 
   3789       /* This variable is being used to link data between shader stages (in
   3790        * pre-glsl-1.30 parlance, it's a "varying").  Check that it has a type
   3791        * that is allowed for such purposes.
   3792        *
   3793        * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
   3794        *
   3795        *     "The varying qualifier can be used only with the data types
   3796        *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
   3797        *     these."
   3798        *
   3799        * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00.  From
   3800        * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
   3801        *
   3802        *     "Fragment inputs can only be signed and unsigned integers and
   3803        *     integer vectors, float, floating-point vectors, matrices, or
   3804        *     arrays of these. Structures cannot be input.
   3805        *
   3806        * Similar text exists in the section on vertex shader outputs.
   3807        *
   3808        * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
   3809        * 3.00 spec allows structs as well.  Varying structs are also allowed
   3810        * in GLSL 1.50.
   3811        */
   3812       switch (var->type->get_scalar_type()->base_type) {
   3813       case GLSL_TYPE_FLOAT:
   3814          /* Ok in all GLSL versions */
   3815          break;
   3816       case GLSL_TYPE_UINT:
   3817       case GLSL_TYPE_INT:
   3818          if (state->is_version(130, 300))
   3819             break;
   3820          _mesa_glsl_error(loc, state,
   3821                           "varying variables must be of base type float in %s",
   3822                           state->get_version_string());
   3823          break;
   3824       case GLSL_TYPE_STRUCT:
   3825          if (state->is_version(150, 300))
   3826             break;
   3827          _mesa_glsl_error(loc, state,
   3828                           "varying variables may not be of type struct");
   3829          break;
   3830       case GLSL_TYPE_DOUBLE:
   3831          break;
   3832       default:
   3833          _mesa_glsl_error(loc, state, "illegal type for a varying variable");
   3834          break;
   3835       }
   3836    }
   3837 
   3838    if (state->all_invariant && (state->current_function == NULL)) {
   3839       switch (state->stage) {
   3840       case MESA_SHADER_VERTEX:
   3841          if (var->data.mode == ir_var_shader_out)
   3842             var->data.invariant = true;
   3843          break;
   3844       case MESA_SHADER_TESS_CTRL:
   3845       case MESA_SHADER_TESS_EVAL:
   3846       case MESA_SHADER_GEOMETRY:
   3847          if ((var->data.mode == ir_var_shader_in)
   3848              || (var->data.mode == ir_var_shader_out))
   3849             var->data.invariant = true;
   3850          break;
   3851       case MESA_SHADER_FRAGMENT:
   3852          if (var->data.mode == ir_var_shader_in)
   3853             var->data.invariant = true;
   3854          break;
   3855       case MESA_SHADER_COMPUTE:
   3856          /* Invariance isn't meaningful in compute shaders. */
   3857          break;
   3858       }
   3859    }
   3860 
   3861    var->data.interpolation =
   3862       interpret_interpolation_qualifier(qual, var->type,
   3863                                         (ir_variable_mode) var->data.mode,
   3864                                         state, loc);
   3865 
   3866    /* Does the declaration use the deprecated 'attribute' or 'varying'
   3867     * keywords?
   3868     */
   3869    const bool uses_deprecated_qualifier = qual->flags.q.attribute
   3870       || qual->flags.q.varying;
   3871 
   3872 
   3873    /* Validate auxiliary storage qualifiers */
   3874 
   3875    /* From section 4.3.4 of the GLSL 1.30 spec:
   3876     *    "It is an error to use centroid in in a vertex shader."
   3877     *
   3878     * From section 4.3.4 of the GLSL ES 3.00 spec:
   3879     *    "It is an error to use centroid in or interpolation qualifiers in
   3880     *    a vertex shader input."
   3881     */
   3882 
   3883    /* Section 4.3.6 of the GLSL 1.30 specification states:
   3884     * "It is an error to use centroid out in a fragment shader."
   3885     *
   3886     * The GL_ARB_shading_language_420pack extension specification states:
   3887     * "It is an error to use auxiliary storage qualifiers or interpolation
   3888     *  qualifiers on an output in a fragment shader."
   3889     */
   3890    if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
   3891       _mesa_glsl_error(loc, state,
   3892                        "sample qualifier may only be used on `in` or `out` "
   3893                        "variables between shader stages");
   3894    }
   3895    if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
   3896       _mesa_glsl_error(loc, state,
   3897                        "centroid qualifier may only be used with `in', "
   3898                        "`out' or `varying' variables between shader stages");
   3899    }
   3900 
   3901    if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
   3902       _mesa_glsl_error(loc, state,
   3903                        "the shared storage qualifiers can only be used with "
   3904                        "compute shaders");
   3905    }
   3906 
   3907    apply_image_qualifier_to_variable(qual, var, state, loc);
   3908 }
   3909 
   3910 /**
   3911  * Get the variable that is being redeclared by this declaration
   3912  *
   3913  * Semantic checks to verify the validity of the redeclaration are also
   3914  * performed.  If semantic checks fail, compilation error will be emitted via
   3915  * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
   3916  *
   3917  * \returns
   3918  * A pointer to an existing variable in the current scope if the declaration
   3919  * is a redeclaration, \c NULL otherwise.
   3920  */
   3921 static ir_variable *
   3922 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
   3923                               struct _mesa_glsl_parse_state *state,
   3924                               bool allow_all_redeclarations)
   3925 {
   3926    /* Check if this declaration is actually a re-declaration, either to
   3927     * resize an array or add qualifiers to an existing variable.
   3928     *
   3929     * This is allowed for variables in the current scope, or when at
   3930     * global scope (for built-ins in the implicit outer scope).
   3931     */
   3932    ir_variable *earlier = state->symbols->get_variable(var->name);
   3933    if (earlier == NULL ||
   3934        (state->current_function != NULL &&
   3935        !state->symbols->name_declared_this_scope(var->name))) {
   3936       return NULL;
   3937    }
   3938 
   3939 
   3940    /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
   3941     *
   3942     * "It is legal to declare an array without a size and then
   3943     *  later re-declare the same name as an array of the same
   3944     *  type and specify a size."
   3945     */
   3946    if (earlier->type->is_unsized_array() && var->type->is_array()
   3947        && (var->type->fields.array == earlier->type->fields.array)) {
   3948       /* FINISHME: This doesn't match the qualifiers on the two
   3949        * FINISHME: declarations.  It's not 100% clear whether this is
   3950        * FINISHME: required or not.
   3951        */
   3952 
   3953       const int size = var->type->array_size();
   3954       check_builtin_array_max_size(var->name, size, loc, state);
   3955       if ((size > 0) && (size <= earlier->data.max_array_access)) {
   3956          _mesa_glsl_error(& loc, state, "array size must be > %u due to "
   3957                           "previous access",
   3958                           earlier->data.max_array_access);
   3959       }
   3960 
   3961       earlier->type = var->type;
   3962       delete var;
   3963       var = NULL;
   3964    } else if ((state->ARB_fragment_coord_conventions_enable ||
   3965               state->is_version(150, 0))
   3966               && strcmp(var->name, "gl_FragCoord") == 0
   3967               && earlier->type == var->type
   3968               && var->data.mode == ir_var_shader_in) {
   3969       /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
   3970        * qualifiers.
   3971        */
   3972       earlier->data.origin_upper_left = var->data.origin_upper_left;
   3973       earlier->data.pixel_center_integer = var->data.pixel_center_integer;
   3974 
   3975       /* According to section 4.3.7 of the GLSL 1.30 spec,
   3976        * the following built-in varaibles can be redeclared with an
   3977        * interpolation qualifier:
   3978        *    * gl_FrontColor
   3979        *    * gl_BackColor
   3980        *    * gl_FrontSecondaryColor
   3981        *    * gl_BackSecondaryColor
   3982        *    * gl_Color
   3983        *    * gl_SecondaryColor
   3984        */
   3985    } else if (state->is_version(130, 0)
   3986               && (strcmp(var->name, "gl_FrontColor") == 0
   3987                   || strcmp(var->name, "gl_BackColor") == 0
   3988                   || strcmp(var->name, "gl_FrontSecondaryColor") == 0
   3989                   || strcmp(var->name, "gl_BackSecondaryColor") == 0
   3990                   || strcmp(var->name, "gl_Color") == 0
   3991                   || strcmp(var->name, "gl_SecondaryColor") == 0)
   3992               && earlier->type == var->type
   3993               && earlier->data.mode == var->data.mode) {
   3994       earlier->data.interpolation = var->data.interpolation;
   3995 
   3996       /* Layout qualifiers for gl_FragDepth. */
   3997    } else if ((state->is_version(420, 0) ||
   3998                state->AMD_conservative_depth_enable ||
   3999                state->ARB_conservative_depth_enable)
   4000               && strcmp(var->name, "gl_FragDepth") == 0
   4001               && earlier->type == var->type
   4002               && earlier->data.mode == var->data.mode) {
   4003 
   4004       /** From the AMD_conservative_depth spec:
   4005        *     Within any shader, the first redeclarations of gl_FragDepth
   4006        *     must appear before any use of gl_FragDepth.
   4007        */
   4008       if (earlier->data.used) {
   4009          _mesa_glsl_error(&loc, state,
   4010                           "the first redeclaration of gl_FragDepth "
   4011                           "must appear before any use of gl_FragDepth");
   4012       }
   4013 
   4014       /* Prevent inconsistent redeclaration of depth layout qualifier. */
   4015       if (earlier->data.depth_layout != ir_depth_layout_none
   4016           && earlier->data.depth_layout != var->data.depth_layout) {
   4017             _mesa_glsl_error(&loc, state,
   4018                              "gl_FragDepth: depth layout is declared here "
   4019                              "as '%s, but it was previously declared as "
   4020                              "'%s'",
   4021                              depth_layout_string(var->data.depth_layout),
   4022                              depth_layout_string(earlier->data.depth_layout));
   4023       }
   4024 
   4025       earlier->data.depth_layout = var->data.depth_layout;
   4026 
   4027    } else if (state->has_framebuffer_fetch() &&
   4028               strcmp(var->name, "gl_LastFragData") == 0 &&
   4029               var->type == earlier->type &&
   4030               var->data.mode == ir_var_auto) {
   4031       /* According to the EXT_shader_framebuffer_fetch spec:
   4032        *
   4033        *   "By default, gl_LastFragData is declared with the mediump precision
   4034        *    qualifier. This can be changed by redeclaring the corresponding
   4035        *    variables with the desired precision qualifier."
   4036        */
   4037       earlier->data.precision = var->data.precision;
   4038 
   4039    } else if (allow_all_redeclarations) {
   4040       if (earlier->data.mode != var->data.mode) {
   4041          _mesa_glsl_error(&loc, state,
   4042                           "redeclaration of `%s' with incorrect qualifiers",
   4043                           var->name);
   4044       } else if (earlier->type != var->type) {
   4045          _mesa_glsl_error(&loc, state,
   4046                           "redeclaration of `%s' has incorrect type",
   4047                           var->name);
   4048       }
   4049    } else {
   4050       _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
   4051    }
   4052 
   4053    return earlier;
   4054 }
   4055 
   4056 /**
   4057  * Generate the IR for an initializer in a variable declaration
   4058  */
   4059 ir_rvalue *
   4060 process_initializer(ir_variable *var, ast_declaration *decl,
   4061                     ast_fully_specified_type *type,
   4062                     exec_list *initializer_instructions,
   4063                     struct _mesa_glsl_parse_state *state)
   4064 {
   4065    ir_rvalue *result = NULL;
   4066 
   4067    YYLTYPE initializer_loc = decl->initializer->get_location();
   4068 
   4069    /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
   4070     *
   4071     *    "All uniform variables are read-only and are initialized either
   4072     *    directly by an application via API commands, or indirectly by
   4073     *    OpenGL."
   4074     */
   4075    if (var->data.mode == ir_var_uniform) {
   4076       state->check_version(120, 0, &initializer_loc,
   4077                            "cannot initialize uniform %s",
   4078                            var->name);
   4079    }
   4080 
   4081    /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
   4082     *
   4083     *    "Buffer variables cannot have initializers."
   4084     */
   4085    if (var->data.mode == ir_var_shader_storage) {
   4086       _mesa_glsl_error(&initializer_loc, state,
   4087                        "cannot initialize buffer variable %s",
   4088                        var->name);
   4089    }
   4090 
   4091    /* From section 4.1.7 of the GLSL 4.40 spec:
   4092     *
   4093     *    "Opaque variables [...] are initialized only through the
   4094     *     OpenGL API; they cannot be declared with an initializer in a
   4095     *     shader."
   4096     */
   4097    if (var->type->contains_opaque()) {
   4098       _mesa_glsl_error(&initializer_loc, state,
   4099                        "cannot initialize opaque variable %s",
   4100                        var->name);
   4101    }
   4102 
   4103    if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
   4104       _mesa_glsl_error(&initializer_loc, state,
   4105                        "cannot initialize %s shader input / %s %s",
   4106                        _mesa_shader_stage_to_string(state->stage),
   4107                        (state->stage == MESA_SHADER_VERTEX)
   4108                        ? "attribute" : "varying",
   4109                        var->name);
   4110    }
   4111 
   4112    if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
   4113       _mesa_glsl_error(&initializer_loc, state,
   4114                        "cannot initialize %s shader output %s",
   4115                        _mesa_shader_stage_to_string(state->stage),
   4116                        var->name);
   4117    }
   4118 
   4119    /* If the initializer is an ast_aggregate_initializer, recursively store
   4120     * type information from the LHS into it, so that its hir() function can do
   4121     * type checking.
   4122     */
   4123    if (decl->initializer->oper == ast_aggregate)
   4124       _mesa_ast_set_aggregate_type(var->type, decl->initializer);
   4125 
   4126    ir_dereference *const lhs = new(state) ir_dereference_variable(var);
   4127    ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
   4128 
   4129    /* Calculate the constant value if this is a const or uniform
   4130     * declaration.
   4131     *
   4132     * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
   4133     *
   4134     *     "Declarations of globals without a storage qualifier, or with
   4135     *     just the const qualifier, may include initializers, in which case
   4136     *     they will be initialized before the first line of main() is
   4137     *     executed.  Such initializers must be a constant expression."
   4138     *
   4139     * The same section of the GLSL ES 3.00.4 spec has similar language.
   4140     */
   4141    if (type->qualifier.flags.q.constant
   4142        || type->qualifier.flags.q.uniform
   4143        || (state->es_shader && state->current_function == NULL)) {
   4144       ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
   4145                                                lhs, rhs, true);
   4146       if (new_rhs != NULL) {
   4147          rhs = new_rhs;
   4148 
   4149          /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
   4150           * says:
   4151           *
   4152           *     "A constant expression is one of
   4153           *
   4154           *        ...
   4155           *
   4156           *        - an expression formed by an operator on operands that are
   4157           *          all constant expressions, including getting an element of
   4158           *          a constant array, or a field of a constant structure, or
   4159           *          components of a constant vector.  However, the sequence
   4160           *          operator ( , ) and the assignment operators ( =, +=, ...)
   4161           *          are not included in the operators that can create a
   4162           *          constant expression."
   4163           *
   4164           * Section 12.43 (Sequence operator and constant expressions) says:
   4165           *
   4166           *     "Should the following construct be allowed?
   4167           *
   4168           *         float a[2,3];
   4169           *
   4170           *     The expression within the brackets uses the sequence operator
   4171           *     (',') and returns the integer 3 so the construct is declaring
   4172           *     a single-dimensional array of size 3.  In some languages, the
   4173           *     construct declares a two-dimensional array.  It would be
   4174           *     preferable to make this construct illegal to avoid confusion.
   4175           *
   4176           *     One possibility is to change the definition of the sequence
   4177           *     operator so that it does not return a constant-expression and
   4178           *     hence cannot be used to declare an array size.
   4179           *
   4180           *     RESOLUTION: The result of a sequence operator is not a
   4181           *     constant-expression."
   4182           *
   4183           * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
   4184           * contains language almost identical to the section 4.3.3 in the
   4185           * GLSL ES 3.00.4 spec.  This is a new limitation for these GLSL
   4186           * versions.
   4187           */
   4188          ir_constant *constant_value = rhs->constant_expression_value();
   4189          if (!constant_value ||
   4190              (state->is_version(430, 300) &&
   4191               decl->initializer->has_sequence_subexpression())) {
   4192             const char *const variable_mode =
   4193                (type->qualifier.flags.q.constant)
   4194                ? "const"
   4195                : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
   4196 
   4197             /* If ARB_shading_language_420pack is enabled, initializers of
   4198              * const-qualified local variables do not have to be constant
   4199              * expressions. Const-qualified global variables must still be
   4200              * initialized with constant expressions.
   4201              */
   4202             if (!state->has_420pack()
   4203                 || state->current_function == NULL) {
   4204                _mesa_glsl_error(& initializer_loc, state,
   4205                                 "initializer of %s variable `%s' must be a "
   4206                                 "constant expression",
   4207                                 variable_mode,
   4208                                 decl->identifier);
   4209                if (var->type->is_numeric()) {
   4210                   /* Reduce cascading errors. */
   4211                   var->constant_value = type->qualifier.flags.q.constant
   4212                      ? ir_constant::zero(state, var->type) : NULL;
   4213                }
   4214             }
   4215          } else {
   4216             rhs = constant_value;
   4217             var->constant_value = type->qualifier.flags.q.constant
   4218                ? constant_value : NULL;
   4219          }
   4220       } else {
   4221          if (var->type->is_numeric()) {
   4222             /* Reduce cascading errors. */
   4223             var->constant_value = type->qualifier.flags.q.constant
   4224                ? ir_constant::zero(state, var->type) : NULL;
   4225          }
   4226       }
   4227    }
   4228 
   4229    if (rhs && !rhs->type->is_error()) {
   4230       bool temp = var->data.read_only;
   4231       if (type->qualifier.flags.q.constant)
   4232          var->data.read_only = false;
   4233 
   4234       /* Never emit code to initialize a uniform.
   4235        */
   4236       const glsl_type *initializer_type;
   4237       if (!type->qualifier.flags.q.uniform) {
   4238          do_assignment(initializer_instructions, state,
   4239                        NULL,
   4240                        lhs, rhs,
   4241                        &result, true,
   4242                        true,
   4243                        type->get_location());
   4244          initializer_type = result->type;
   4245       } else
   4246          initializer_type = rhs->type;
   4247 
   4248       var->constant_initializer = rhs->constant_expression_value();
   4249       var->data.has_initializer = true;
   4250 
   4251       /* If the declared variable is an unsized array, it must inherrit
   4252        * its full type from the initializer.  A declaration such as
   4253        *
   4254        *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
   4255        *
   4256        * becomes
   4257        *
   4258        *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
   4259        *
   4260        * The assignment generated in the if-statement (below) will also
   4261        * automatically handle this case for non-uniforms.
   4262        *
   4263        * If the declared variable is not an array, the types must
   4264        * already match exactly.  As a result, the type assignment
   4265        * here can be done unconditionally.  For non-uniforms the call
   4266        * to do_assignment can change the type of the initializer (via
   4267        * the implicit conversion rules).  For uniforms the initializer
   4268        * must be a constant expression, and the type of that expression
   4269        * was validated above.
   4270        */
   4271       var->type = initializer_type;
   4272 
   4273       var->data.read_only = temp;
   4274    }
   4275 
   4276    return result;
   4277 }
   4278 
   4279 static void
   4280 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
   4281                                        YYLTYPE loc, ir_variable *var,
   4282                                        unsigned num_vertices,
   4283                                        unsigned *size,
   4284                                        const char *var_category)
   4285 {
   4286    if (var->type->is_unsized_array()) {
   4287       /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
   4288        *
   4289        *   All geometry shader input unsized array declarations will be
   4290        *   sized by an earlier input layout qualifier, when present, as per
   4291        *   the following table.
   4292        *
   4293        * Followed by a table mapping each allowed input layout qualifier to
   4294        * the corresponding input length.
   4295        *
   4296        * Similarly for tessellation control shader outputs.
   4297        */
   4298       if (num_vertices != 0)
   4299          var->type = glsl_type::get_array_instance(var->type->fields.array,
   4300                                                    num_vertices);
   4301    } else {
   4302       /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
   4303        * includes the following examples of compile-time errors:
   4304        *
   4305        *   // code sequence within one shader...
   4306        *   in vec4 Color1[];    // size unknown
   4307        *   ...Color1.length()...// illegal, length() unknown
   4308        *   in vec4 Color2[2];   // size is 2
   4309        *   ...Color1.length()...// illegal, Color1 still has no size
   4310        *   in vec4 Color3[3];   // illegal, input sizes are inconsistent
   4311        *   layout(lines) in;    // legal, input size is 2, matching
   4312        *   in vec4 Color4[3];   // illegal, contradicts layout
   4313        *   ...
   4314        *
   4315        * To detect the case illustrated by Color3, we verify that the size of
   4316        * an explicitly-sized array matches the size of any previously declared
   4317        * explicitly-sized array.  To detect the case illustrated by Color4, we
   4318        * verify that the size of an explicitly-sized array is consistent with
   4319        * any previously declared input layout.
   4320        */
   4321       if (num_vertices != 0 && var->type->length != num_vertices) {
   4322          _mesa_glsl_error(&loc, state,
   4323                           "%s size contradicts previously declared layout "
   4324                           "(size is %u, but layout requires a size of %u)",
   4325                           var_category, var->type->length, num_vertices);
   4326       } else if (*size != 0 && var->type->length != *size) {
   4327          _mesa_glsl_error(&loc, state,
   4328                           "%s sizes are inconsistent (size is %u, but a "
   4329                           "previous declaration has size %u)",
   4330                           var_category, var->type->length, *size);
   4331       } else {
   4332          *size = var->type->length;
   4333       }
   4334    }
   4335 }
   4336 
   4337 static void
   4338 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
   4339                                     YYLTYPE loc, ir_variable *var)
   4340 {
   4341    unsigned num_vertices = 0;
   4342 
   4343    if (state->tcs_output_vertices_specified) {
   4344       if (!state->out_qualifier->vertices->
   4345              process_qualifier_constant(state, "vertices",
   4346                                         &num_vertices, false)) {
   4347          return;
   4348       }
   4349 
   4350       if (num_vertices > state->Const.MaxPatchVertices) {
   4351          _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
   4352                           "GL_MAX_PATCH_VERTICES", num_vertices);
   4353          return;
   4354       }
   4355    }
   4356 
   4357    if (!var->type->is_array() && !var->data.patch) {
   4358       _mesa_glsl_error(&loc, state,
   4359                        "tessellation control shader outputs must be arrays");
   4360 
   4361       /* To avoid cascading failures, short circuit the checks below. */
   4362       return;
   4363    }
   4364 
   4365    if (var->data.patch)
   4366       return;
   4367 
   4368    var->data.tess_varying_implicit_sized_array = var->type->is_unsized_array();
   4369 
   4370    validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
   4371                                           &state->tcs_output_size,
   4372                                           "tessellation control shader output");
   4373 }
   4374 
   4375 /**
   4376  * Do additional processing necessary for tessellation control/evaluation shader
   4377  * input declarations. This covers both interface block arrays and bare input
   4378  * variables.
   4379  */
   4380 static void
   4381 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
   4382                               YYLTYPE loc, ir_variable *var)
   4383 {
   4384    if (!var->type->is_array() && !var->data.patch) {
   4385       _mesa_glsl_error(&loc, state,
   4386                        "per-vertex tessellation shader inputs must be arrays");
   4387       /* Avoid cascading failures. */
   4388       return;
   4389    }
   4390 
   4391    if (var->data.patch)
   4392       return;
   4393 
   4394    /* The ARB_tessellation_shader spec says:
   4395     *
   4396     *    "Declaring an array size is optional.  If no size is specified, it
   4397     *     will be taken from the implementation-dependent maximum patch size
   4398     *     (gl_MaxPatchVertices).  If a size is specified, it must match the
   4399     *     maximum patch size; otherwise, a compile or link error will occur."
   4400     *
   4401     * This text appears twice, once for TCS inputs, and again for TES inputs.
   4402     */
   4403    if (var->type->is_unsized_array()) {
   4404       var->type = glsl_type::get_array_instance(var->type->fields.array,
   4405             state->Const.MaxPatchVertices);
   4406       var->data.tess_varying_implicit_sized_array = true;
   4407    } else if (var->type->length != state->Const.MaxPatchVertices) {
   4408       _mesa_glsl_error(&loc, state,
   4409                        "per-vertex tessellation shader input arrays must be "
   4410                        "sized to gl_MaxPatchVertices (%d).",
   4411                        state->Const.MaxPatchVertices);
   4412    }
   4413 }
   4414 
   4415 
   4416 /**
   4417  * Do additional processing necessary for geometry shader input declarations
   4418  * (this covers both interface blocks arrays and bare input variables).
   4419  */
   4420 static void
   4421 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
   4422                                   YYLTYPE loc, ir_variable *var)
   4423 {
   4424    unsigned num_vertices = 0;
   4425 
   4426    if (state->gs_input_prim_type_specified) {
   4427       num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
   4428    }
   4429 
   4430    /* Geometry shader input variables must be arrays.  Caller should have
   4431     * reported an error for this.
   4432     */
   4433    if (!var->type->is_array()) {
   4434       assert(state->error);
   4435 
   4436       /* To avoid cascading failures, short circuit the checks below. */
   4437       return;
   4438    }
   4439 
   4440    validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
   4441                                           &state->gs_input_size,
   4442                                           "geometry shader input");
   4443 }
   4444 
   4445 void
   4446 validate_identifier(const char *identifier, YYLTYPE loc,
   4447                     struct _mesa_glsl_parse_state *state)
   4448 {
   4449    /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
   4450     *
   4451     *   "Identifiers starting with "gl_" are reserved for use by
   4452     *   OpenGL, and may not be declared in a shader as either a
   4453     *   variable or a function."
   4454     */
   4455    if (is_gl_identifier(identifier)) {
   4456       _mesa_glsl_error(&loc, state,
   4457                        "identifier `%s' uses reserved `gl_' prefix",
   4458                        identifier);
   4459    } else if (strstr(identifier, "__")) {
   4460       /* From page 14 (page 20 of the PDF) of the GLSL 1.10
   4461        * spec:
   4462        *
   4463        *     "In addition, all identifiers containing two
   4464        *      consecutive underscores (__) are reserved as
   4465        *      possible future keywords."
   4466        *
   4467        * The intention is that names containing __ are reserved for internal
   4468        * use by the implementation, and names prefixed with GL_ are reserved
   4469        * for use by Khronos.  Names simply containing __ are dangerous to use,
   4470        * but should be allowed.
   4471        *
   4472        * A future version of the GLSL specification will clarify this.
   4473        */
   4474       _mesa_glsl_warning(&loc, state,
   4475                          "identifier `%s' uses reserved `__' string",
   4476                          identifier);
   4477    }
   4478 }
   4479 
   4480 ir_rvalue *
   4481 ast_declarator_list::hir(exec_list *instructions,
   4482                          struct _mesa_glsl_parse_state *state)
   4483 {
   4484    void *ctx = state;
   4485    const struct glsl_type *decl_type;
   4486    const char *type_name = NULL;
   4487    ir_rvalue *result = NULL;
   4488    YYLTYPE loc = this->get_location();
   4489 
   4490    /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
   4491     *
   4492     *     "To ensure that a particular output variable is invariant, it is
   4493     *     necessary to use the invariant qualifier. It can either be used to
   4494     *     qualify a previously declared variable as being invariant
   4495     *
   4496     *         invariant gl_Position; // make existing gl_Position be invariant"
   4497     *
   4498     * In these cases the parser will set the 'invariant' flag in the declarator
   4499     * list, and the type will be NULL.
   4500     */
   4501    if (this->invariant) {
   4502       assert(this->type == NULL);
   4503 
   4504       if (state->current_function != NULL) {
   4505          _mesa_glsl_error(& loc, state,
   4506                           "all uses of `invariant' keyword must be at global "
   4507                           "scope");
   4508       }
   4509 
   4510       foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
   4511          assert(decl->array_specifier == NULL);
   4512          assert(decl->initializer == NULL);
   4513 
   4514          ir_variable *const earlier =
   4515             state->symbols->get_variable(decl->identifier);
   4516          if (earlier == NULL) {
   4517             _mesa_glsl_error(& loc, state,
   4518                              "undeclared variable `%s' cannot be marked "
   4519                              "invariant", decl->identifier);
   4520          } else if (!is_allowed_invariant(earlier, state)) {
   4521             _mesa_glsl_error(&loc, state,
   4522                              "`%s' cannot be marked invariant; interfaces between "
   4523                              "shader stages only.", decl->identifier);
   4524          } else if (earlier->data.used) {
   4525             _mesa_glsl_error(& loc, state,
   4526                             "variable `%s' may not be redeclared "
   4527                             "`invariant' after being used",
   4528                             earlier->name);
   4529          } else {
   4530             earlier->data.invariant = true;
   4531          }
   4532       }
   4533 
   4534       /* Invariant redeclarations do not have r-values.
   4535        */
   4536       return NULL;
   4537    }
   4538 
   4539    if (this->precise) {
   4540       assert(this->type == NULL);
   4541 
   4542       foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
   4543          assert(decl->array_specifier == NULL);
   4544          assert(decl->initializer == NULL);
   4545 
   4546          ir_variable *const earlier =
   4547             state->symbols->get_variable(decl->identifier);
   4548          if (earlier == NULL) {
   4549             _mesa_glsl_error(& loc, state,
   4550                              "undeclared variable `%s' cannot be marked "
   4551                              "precise", decl->identifier);
   4552          } else if (state->current_function != NULL &&
   4553                     !state->symbols->name_declared_this_scope(decl->identifier)) {
   4554             /* Note: we have to check if we're in a function, since
   4555              * builtins are treated as having come from another scope.
   4556              */
   4557             _mesa_glsl_error(& loc, state,
   4558                              "variable `%s' from an outer scope may not be "
   4559                              "redeclared `precise' in this scope",
   4560                              earlier->name);
   4561          } else if (earlier->data.used) {
   4562             _mesa_glsl_error(& loc, state,
   4563                              "variable `%s' may not be redeclared "
   4564                              "`precise' after being used",
   4565                              earlier->name);
   4566          } else {
   4567             earlier->data.precise = true;
   4568          }
   4569       }
   4570 
   4571       /* Precise redeclarations do not have r-values either. */
   4572       return NULL;
   4573    }
   4574 
   4575    assert(this->type != NULL);
   4576    assert(!this->invariant);
   4577    assert(!this->precise);
   4578 
   4579    /* The type specifier may contain a structure definition.  Process that
   4580     * before any of the variable declarations.
   4581     */
   4582    (void) this->type->specifier->hir(instructions, state);
   4583 
   4584    decl_type = this->type->glsl_type(& type_name, state);
   4585 
   4586    /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
   4587     *    "Buffer variables may only be declared inside interface blocks
   4588     *    (section 4.3.9 Interface Blocks), which are then referred to as
   4589     *    shader storage blocks. It is a compile-time error to declare buffer
   4590     *    variables at global scope (outside a block)."
   4591     */
   4592    if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
   4593       _mesa_glsl_error(&loc, state,
   4594                        "buffer variables cannot be declared outside "
   4595                        "interface blocks");
   4596    }
   4597 
   4598    /* An offset-qualified atomic counter declaration sets the default
   4599     * offset for the next declaration within the same atomic counter
   4600     * buffer.
   4601     */
   4602    if (decl_type && decl_type->contains_atomic()) {
   4603       if (type->qualifier.flags.q.explicit_binding &&
   4604           type->qualifier.flags.q.explicit_offset) {
   4605          unsigned qual_binding;
   4606          unsigned qual_offset;
   4607          if (process_qualifier_constant(state, &loc, "binding",
   4608                                         type->qualifier.binding,
   4609                                         &qual_binding)
   4610              && process_qualifier_constant(state, &loc, "offset",
   4611                                         type->qualifier.offset,
   4612                                         &qual_offset)) {
   4613             state->atomic_counter_offsets[qual_binding] = qual_offset;
   4614          }
   4615       }
   4616 
   4617       ast_type_qualifier allowed_atomic_qual_mask;
   4618       allowed_atomic_qual_mask.flags.i = 0;
   4619       allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
   4620       allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
   4621       allowed_atomic_qual_mask.flags.q.uniform = 1;
   4622 
   4623       type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
   4624                                      "invalid layout qualifier for",
   4625                                      "atomic_uint");
   4626    }
   4627 
   4628    if (this->declarations.is_empty()) {
   4629       /* If there is no structure involved in the program text, there are two
   4630        * possible scenarios:
   4631        *
   4632        * - The program text contained something like 'vec4;'.  This is an
   4633        *   empty declaration.  It is valid but weird.  Emit a warning.
   4634        *
   4635        * - The program text contained something like 'S;' and 'S' is not the
   4636        *   name of a known structure type.  This is both invalid and weird.
   4637        *   Emit an error.
   4638        *
   4639        * - The program text contained something like 'mediump float;'
   4640        *   when the programmer probably meant 'precision mediump
   4641        *   float;' Emit a warning with a description of what they
   4642        *   probably meant to do.
   4643        *
   4644        * Note that if decl_type is NULL and there is a structure involved,
   4645        * there must have been some sort of error with the structure.  In this
   4646        * case we assume that an error was already generated on this line of
   4647        * code for the structure.  There is no need to generate an additional,
   4648        * confusing error.
   4649        */
   4650       assert(this->type->specifier->structure == NULL || decl_type != NULL
   4651              || state->error);
   4652 
   4653       if (decl_type == NULL) {
   4654          _mesa_glsl_error(&loc, state,
   4655                           "invalid type `%s' in empty declaration",
   4656                           type_name);
   4657       } else {
   4658          if (decl_type->base_type == GLSL_TYPE_ARRAY) {
   4659             /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
   4660              * spec:
   4661              *
   4662              *    "... any declaration that leaves the size undefined is
   4663              *    disallowed as this would add complexity and there are no
   4664              *    use-cases."
   4665              */
   4666             if (state->es_shader && decl_type->is_unsized_array()) {
   4667                _mesa_glsl_error(&loc, state, "array size must be explicitly "
   4668                                 "or implicitly defined");
   4669             }
   4670 
   4671             /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
   4672              *
   4673              *    "The combinations of types and qualifiers that cause
   4674              *    compile-time or link-time errors are the same whether or not
   4675              *    the declaration is empty."
   4676              */
   4677             validate_array_dimensions(decl_type, state, &loc);
   4678          }
   4679 
   4680          if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
   4681             /* Empty atomic counter declarations are allowed and useful
   4682              * to set the default offset qualifier.
   4683              */
   4684             return NULL;
   4685          } else if (this->type->qualifier.precision != ast_precision_none) {
   4686             if (this->type->specifier->structure != NULL) {
   4687                _mesa_glsl_error(&loc, state,
   4688                                 "precision qualifiers can't be applied "
   4689                                 "to structures");
   4690             } else {
   4691                static const char *const precision_names[] = {
   4692                   "highp",
   4693                   "highp",
   4694                   "mediump",
   4695                   "lowp"
   4696                };
   4697 
   4698                _mesa_glsl_warning(&loc, state,
   4699                                   "empty declaration with precision "
   4700                                   "qualifier, to set the default precision, "
   4701                                   "use `precision %s %s;'",
   4702                                   precision_names[this->type->
   4703                                      qualifier.precision],
   4704                                   type_name);
   4705             }
   4706          } else if (this->type->specifier->structure == NULL) {
   4707             _mesa_glsl_warning(&loc, state, "empty declaration");
   4708          }
   4709       }
   4710    }
   4711 
   4712    foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
   4713       const struct glsl_type *var_type;
   4714       ir_variable *var;
   4715       const char *identifier = decl->identifier;
   4716       /* FINISHME: Emit a warning if a variable declaration shadows a
   4717        * FINISHME: declaration at a higher scope.
   4718        */
   4719 
   4720       if ((decl_type == NULL) || decl_type->is_void()) {
   4721          if (type_name != NULL) {
   4722             _mesa_glsl_error(& loc, state,
   4723                              "invalid type `%s' in declaration of `%s'",
   4724                              type_name, decl->identifier);
   4725          } else {
   4726             _mesa_glsl_error(& loc, state,
   4727                              "invalid type in declaration of `%s'",
   4728                              decl->identifier);
   4729          }
   4730          continue;
   4731       }
   4732 
   4733       if (this->type->qualifier.flags.q.subroutine) {
   4734          const glsl_type *t;
   4735          const char *name;
   4736 
   4737          t = state->symbols->get_type(this->type->specifier->type_name);
   4738          if (!t)
   4739             _mesa_glsl_error(& loc, state,
   4740                              "invalid type in declaration of `%s'",
   4741                              decl->identifier);
   4742          name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
   4743 
   4744          identifier = name;
   4745 
   4746       }
   4747       var_type = process_array_type(&loc, decl_type, decl->array_specifier,
   4748                                     state);
   4749 
   4750       var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
   4751 
   4752       /* The 'varying in' and 'varying out' qualifiers can only be used with
   4753        * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
   4754        * yet.
   4755        */
   4756       if (this->type->qualifier.flags.q.varying) {
   4757          if (this->type->qualifier.flags.q.in) {
   4758             _mesa_glsl_error(& loc, state,
   4759                              "`varying in' qualifier in declaration of "
   4760                              "`%s' only valid for geometry shaders using "
   4761                              "ARB_geometry_shader4 or EXT_geometry_shader4",
   4762                              decl->identifier);
   4763          } else if (this->type->qualifier.flags.q.out) {
   4764             _mesa_glsl_error(& loc, state,
   4765                              "`varying out' qualifier in declaration of "
   4766                              "`%s' only valid for geometry shaders using "
   4767                              "ARB_geometry_shader4 or EXT_geometry_shader4",
   4768                              decl->identifier);
   4769          }
   4770       }
   4771 
   4772       /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
   4773        *
   4774        *     "Global variables can only use the qualifiers const,
   4775        *     attribute, uniform, or varying. Only one may be
   4776        *     specified.
   4777        *
   4778        *     Local variables can only use the qualifier const."
   4779        *
   4780        * This is relaxed in GLSL 1.30 and GLSL ES 3.00.  It is also relaxed by
   4781        * any extension that adds the 'layout' keyword.
   4782        */
   4783       if (!state->is_version(130, 300)
   4784           && !state->has_explicit_attrib_location()
   4785           && !state->has_separate_shader_objects()
   4786           && !state->ARB_fragment_coord_conventions_enable) {
   4787          if (this->type->qualifier.flags.q.out) {
   4788             _mesa_glsl_error(& loc, state,
   4789                              "`out' qualifier in declaration of `%s' "
   4790                              "only valid for function parameters in %s",
   4791                              decl->identifier, state->get_version_string());
   4792          }
   4793          if (this->type->qualifier.flags.q.in) {
   4794             _mesa_glsl_error(& loc, state,
   4795                              "`in' qualifier in declaration of `%s' "
   4796                              "only valid for function parameters in %s",
   4797                              decl->identifier, state->get_version_string());
   4798          }
   4799          /* FINISHME: Test for other invalid qualifiers. */
   4800       }
   4801 
   4802       apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
   4803                                        & loc, false);
   4804       apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
   4805                                          &loc);
   4806 
   4807       if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
   4808           && (var->type->is_numeric() || var->type->is_boolean())
   4809           && state->zero_init) {
   4810          const ir_constant_data data = {0};
   4811          var->data.has_initializer = true;
   4812          var->constant_initializer = new(var) ir_constant(var->type, &data);
   4813       }
   4814 
   4815       if (this->type->qualifier.flags.q.invariant) {
   4816          if (!is_allowed_invariant(var, state)) {
   4817             _mesa_glsl_error(&loc, state,
   4818                              "`%s' cannot be marked invariant; interfaces between "
   4819                              "shader stages only", var->name);
   4820          }
   4821       }
   4822 
   4823       if (state->current_function != NULL) {
   4824          const char *mode = NULL;
   4825          const char *extra = "";
   4826 
   4827          /* There is no need to check for 'inout' here because the parser will
   4828           * only allow that in function parameter lists.
   4829           */
   4830          if (this->type->qualifier.flags.q.attribute) {
   4831             mode = "attribute";
   4832          } else if (this->type->qualifier.flags.q.subroutine) {
   4833             mode = "subroutine uniform";
   4834          } else if (this->type->qualifier.flags.q.uniform) {
   4835             mode = "uniform";
   4836          } else if (this->type->qualifier.flags.q.varying) {
   4837             mode = "varying";
   4838          } else if (this->type->qualifier.flags.q.in) {
   4839             mode = "in";
   4840             extra = " or in function parameter list";
   4841          } else if (this->type->qualifier.flags.q.out) {
   4842             mode = "out";
   4843             extra = " or in function parameter list";
   4844          }
   4845 
   4846          if (mode) {
   4847             _mesa_glsl_error(& loc, state,
   4848                              "%s variable `%s' must be declared at "
   4849                              "global scope%s",
   4850                              mode, var->name, extra);
   4851          }
   4852       } else if (var->data.mode == ir_var_shader_in) {
   4853          var->data.read_only = true;
   4854 
   4855          if (state->stage == MESA_SHADER_VERTEX) {
   4856             bool error_emitted = false;
   4857 
   4858             /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
   4859              *
   4860              *    "Vertex shader inputs can only be float, floating-point
   4861              *    vectors, matrices, signed and unsigned integers and integer
   4862              *    vectors. Vertex shader inputs can also form arrays of these
   4863              *    types, but not structures."
   4864              *
   4865              * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
   4866              *
   4867              *    "Vertex shader inputs can only be float, floating-point
   4868              *    vectors, matrices, signed and unsigned integers and integer
   4869              *    vectors. They cannot be arrays or structures."
   4870              *
   4871              * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
   4872              *
   4873              *    "The attribute qualifier can be used only with float,
   4874              *    floating-point vectors, and matrices. Attribute variables
   4875              *    cannot be declared as arrays or structures."
   4876              *
   4877              * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
   4878              *
   4879              *    "Vertex shader inputs can only be float, floating-point
   4880              *    vectors, matrices, signed and unsigned integers and integer
   4881              *    vectors. Vertex shader inputs cannot be arrays or
   4882              *    structures."
   4883              */
   4884             const glsl_type *check_type = var->type->without_array();
   4885 
   4886             switch (check_type->base_type) {
   4887             case GLSL_TYPE_FLOAT:
   4888             break;
   4889             case GLSL_TYPE_UINT:
   4890             case GLSL_TYPE_INT:
   4891                if (state->is_version(120, 300))
   4892                   break;
   4893             case GLSL_TYPE_DOUBLE:
   4894                if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
   4895                   break;
   4896             /* FALLTHROUGH */
   4897             default:
   4898                _mesa_glsl_error(& loc, state,
   4899                                 "vertex shader input / attribute cannot have "
   4900                                 "type %s`%s'",
   4901                                 var->type->is_array() ? "array of " : "",
   4902                                 check_type->name);
   4903                error_emitted = true;
   4904             }
   4905 
   4906             if (!error_emitted && var->type->is_array() &&
   4907                 !state->check_version(150, 0, &loc,
   4908                                       "vertex shader input / attribute "
   4909                                       "cannot have array type")) {
   4910                error_emitted = true;
   4911             }
   4912          } else if (state->stage == MESA_SHADER_GEOMETRY) {
   4913             /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
   4914              *
   4915              *     Geometry shader input variables get the per-vertex values
   4916              *     written out by vertex shader output variables of the same
   4917              *     names. Since a geometry shader operates on a set of
   4918              *     vertices, each input varying variable (or input block, see
   4919              *     interface blocks below) needs to be declared as an array.
   4920              */
   4921             if (!var->type->is_array()) {
   4922                _mesa_glsl_error(&loc, state,
   4923                                 "geometry shader inputs must be arrays");
   4924             }
   4925 
   4926             handle_geometry_shader_input_decl(state, loc, var);
   4927          } else if (state->stage == MESA_SHADER_FRAGMENT) {
   4928             /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
   4929              *
   4930              *     It is a compile-time error to declare a fragment shader
   4931              *     input with, or that contains, any of the following types:
   4932              *
   4933              *     * A boolean type
   4934              *     * An opaque type
   4935              *     * An array of arrays
   4936              *     * An array of structures
   4937              *     * A structure containing an array
   4938              *     * A structure containing a structure
   4939              */
   4940             if (state->es_shader) {
   4941                const glsl_type *check_type = var->type->without_array();
   4942                if (check_type->is_boolean() ||
   4943                    check_type->contains_opaque()) {
   4944                   _mesa_glsl_error(&loc, state,
   4945                                    "fragment shader input cannot have type %s",
   4946                                    check_type->name);
   4947                }
   4948                if (var->type->is_array() &&
   4949                    var->type->fields.array->is_array()) {
   4950                   _mesa_glsl_error(&loc, state,
   4951                                    "%s shader output "
   4952                                    "cannot have an array of arrays",
   4953                                    _mesa_shader_stage_to_string(state->stage));
   4954                }
   4955                if (var->type->is_array() &&
   4956                    var->type->fields.array->is_record()) {
   4957                   _mesa_glsl_error(&loc, state,
   4958                                    "fragment shader input "
   4959                                    "cannot have an array of structs");
   4960                }
   4961                if (var->type->is_record()) {
   4962                   for (unsigned i = 0; i < var->type->length; i++) {
   4963                      if (var->type->fields.structure[i].type->is_array() ||
   4964                          var->type->fields.structure[i].type->is_record())
   4965                         _mesa_glsl_error(&loc, state,
   4966                                          "fragement shader input cannot have "
   4967                                          "a struct that contains an "
   4968                                          "array or struct");
   4969                   }
   4970                }
   4971             }
   4972          } else if (state->stage == MESA_SHADER_TESS_CTRL ||
   4973                     state->stage == MESA_SHADER_TESS_EVAL) {
   4974             handle_tess_shader_input_decl(state, loc, var);
   4975          }
   4976       } else if (var->data.mode == ir_var_shader_out) {
   4977          const glsl_type *check_type = var->type->without_array();
   4978 
   4979          /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
   4980           *
   4981           *     It is a compile-time error to declare a vertex, tessellation
   4982           *     evaluation, tessellation control, or geometry shader output
   4983           *     that contains any of the following:
   4984           *
   4985           *     * A Boolean type (bool, bvec2 ...)
   4986           *     * An opaque type
   4987           */
   4988          if (check_type->is_boolean() || check_type->contains_opaque())
   4989             _mesa_glsl_error(&loc, state,
   4990                              "%s shader output cannot have type %s",
   4991                              _mesa_shader_stage_to_string(state->stage),
   4992                              check_type->name);
   4993 
   4994          /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
   4995           *
   4996           *     It is a compile-time error to declare a fragment shader output
   4997           *     that contains any of the following:
   4998           *
   4999           *     * A Boolean type (bool, bvec2 ...)
   5000           *     * A double-precision scalar or vector (double, dvec2 ...)
   5001           *     * An opaque type
   5002           *     * Any matrix type
   5003           *     * A structure
   5004           */
   5005          if (state->stage == MESA_SHADER_FRAGMENT) {
   5006             if (check_type->is_record() || check_type->is_matrix())
   5007                _mesa_glsl_error(&loc, state,
   5008                                 "fragment shader output "
   5009                                 "cannot have struct or matrix type");
   5010             switch (check_type->base_type) {
   5011             case GLSL_TYPE_UINT:
   5012             case GLSL_TYPE_INT:
   5013             case GLSL_TYPE_FLOAT:
   5014                break;
   5015             default:
   5016                _mesa_glsl_error(&loc, state,
   5017                                 "fragment shader output cannot have "
   5018                                 "type %s", check_type->name);
   5019             }
   5020          }
   5021 
   5022          /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
   5023           *
   5024           *     It is a compile-time error to declare a vertex shader output
   5025           *     with, or that contains, any of the following types:
   5026           *
   5027           *     * A boolean type
   5028           *     * An opaque type
   5029           *     * An array of arrays
   5030           *     * An array of structures
   5031           *     * A structure containing an array
   5032           *     * A structure containing a structure
   5033           *
   5034           *     It is a compile-time error to declare a fragment shader output
   5035           *     with, or that contains, any of the following types:
   5036           *
   5037           *     * A boolean type
   5038           *     * An opaque type
   5039           *     * A matrix
   5040           *     * A structure
   5041           *     * An array of array
   5042           *
   5043           * ES 3.20 updates this to apply to tessellation and geometry shaders
   5044           * as well.  Because there are per-vertex arrays in the new stages,
   5045           * it strikes the "array of..." rules and replaces them with these:
   5046           *
   5047           *     * For per-vertex-arrayed variables (applies to tessellation
   5048           *       control, tessellation evaluation and geometry shaders):
   5049           *
   5050           *       * Per-vertex-arrayed arrays of arrays
   5051           *       * Per-vertex-arrayed arrays of structures
   5052           *
   5053           *     * For non-per-vertex-arrayed variables:
   5054           *
   5055           *       * An array of arrays
   5056           *       * An array of structures
   5057           *
   5058           * which basically says to unwrap the per-vertex aspect and apply
   5059           * the old rules.
   5060           */
   5061          if (state->es_shader) {
   5062             if (var->type->is_array() &&
   5063                 var->type->fields.array->is_array()) {
   5064                _mesa_glsl_error(&loc, state,
   5065                                 "%s shader output "
   5066                                 "cannot have an array of arrays",
   5067                                 _mesa_shader_stage_to_string(state->stage));
   5068             }
   5069             if (state->stage <= MESA_SHADER_GEOMETRY) {
   5070                const glsl_type *type = var->type;
   5071 
   5072                if (state->stage == MESA_SHADER_TESS_CTRL &&
   5073                    !var->data.patch && var->type->is_array()) {
   5074                   type = var->type->fields.array;
   5075                }
   5076 
   5077                if (type->is_array() && type->fields.array->is_record()) {
   5078                   _mesa_glsl_error(&loc, state,
   5079                                    "%s shader output cannot have "
   5080                                    "an array of structs",
   5081                                    _mesa_shader_stage_to_string(state->stage));
   5082                }
   5083                if (type->is_record()) {
   5084                   for (unsigned i = 0; i < type->length; i++) {
   5085                      if (type->fields.structure[i].type->is_array() ||
   5086                          type->fields.structure[i].type->is_record())
   5087                         _mesa_glsl_error(&loc, state,
   5088                                          "%s shader output cannot have a "
   5089                                          "struct that contains an "
   5090                                          "array or struct",
   5091                                          _mesa_shader_stage_to_string(state->stage));
   5092                   }
   5093                }
   5094             }
   5095          }
   5096 
   5097          if (state->stage == MESA_SHADER_TESS_CTRL) {
   5098             handle_tess_ctrl_shader_output_decl(state, loc, var);
   5099          }
   5100       } else if (var->type->contains_subroutine()) {
   5101          /* declare subroutine uniforms as hidden */
   5102          var->data.how_declared = ir_var_hidden;
   5103       }
   5104 
   5105       /* From section 4.3.4 of the GLSL 4.00 spec:
   5106        *    "Input variables may not be declared using the patch in qualifier
   5107        *    in tessellation control or geometry shaders."
   5108        *
   5109        * From section 4.3.6 of the GLSL 4.00 spec:
   5110        *    "It is an error to use patch out in a vertex, tessellation
   5111        *    evaluation, or geometry shader."
   5112        *
   5113        * This doesn't explicitly forbid using them in a fragment shader, but
   5114        * that's probably just an oversight.
   5115        */
   5116       if (state->stage != MESA_SHADER_TESS_EVAL
   5117           && this->type->qualifier.flags.q.patch
   5118           && this->type->qualifier.flags.q.in) {
   5119 
   5120          _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
   5121                           "tessellation evaluation shader");
   5122       }
   5123 
   5124       if (state->stage != MESA_SHADER_TESS_CTRL
   5125           && this->type->qualifier.flags.q.patch
   5126           && this->type->qualifier.flags.q.out) {
   5127 
   5128          _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
   5129                           "tessellation control shader");
   5130       }
   5131 
   5132       /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
   5133        */
   5134       if (this->type->qualifier.precision != ast_precision_none) {
   5135          state->check_precision_qualifiers_allowed(&loc);
   5136       }
   5137 
   5138       if (this->type->qualifier.precision != ast_precision_none &&
   5139           !precision_qualifier_allowed(var->type)) {
   5140          _mesa_glsl_error(&loc, state,
   5141                           "precision qualifiers apply only to floating point"
   5142                           ", integer and opaque types");
   5143       }
   5144 
   5145       /* From section 4.1.7 of the GLSL 4.40 spec:
   5146        *
   5147        *    "[Opaque types] can only be declared as function
   5148        *     parameters or uniform-qualified variables."
   5149        */
   5150       if (var_type->contains_opaque() &&
   5151           !this->type->qualifier.flags.q.uniform) {
   5152          _mesa_glsl_error(&loc, state,
   5153                           "opaque variables must be declared uniform");
   5154       }
   5155 
   5156       /* Process the initializer and add its instructions to a temporary
   5157        * list.  This list will be added to the instruction stream (below) after
   5158        * the declaration is added.  This is done because in some cases (such as
   5159        * redeclarations) the declaration may not actually be added to the
   5160        * instruction stream.
   5161        */
   5162       exec_list initializer_instructions;
   5163 
   5164       /* Examine var name here since var may get deleted in the next call */
   5165       bool var_is_gl_id = is_gl_identifier(var->name);
   5166 
   5167       ir_variable *earlier =
   5168          get_variable_being_redeclared(var, decl->get_location(), state,
   5169                                        false /* allow_all_redeclarations */);
   5170       if (earlier != NULL) {
   5171          if (var_is_gl_id &&
   5172              earlier->data.how_declared == ir_var_declared_in_block) {
   5173             _mesa_glsl_error(&loc, state,
   5174                              "`%s' has already been redeclared using "
   5175                              "gl_PerVertex", earlier->name);
   5176          }
   5177          earlier->data.how_declared = ir_var_declared_normally;
   5178       }
   5179 
   5180       if (decl->initializer != NULL) {
   5181          result = process_initializer((earlier == NULL) ? var : earlier,
   5182                                       decl, this->type,
   5183                                       &initializer_instructions, state);
   5184       } else {
   5185          validate_array_dimensions(var_type, state, &loc);
   5186       }
   5187 
   5188       /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
   5189        *
   5190        *     "It is an error to write to a const variable outside of
   5191        *      its declaration, so they must be initialized when
   5192        *      declared."
   5193        */
   5194       if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
   5195          _mesa_glsl_error(& loc, state,
   5196                           "const declaration of `%s' must be initialized",
   5197                           decl->identifier);
   5198       }
   5199 
   5200       if (state->es_shader) {
   5201          const glsl_type *const t = (earlier == NULL)
   5202             ? var->type : earlier->type;
   5203 
   5204          /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
   5205           *
   5206           * The GL_OES_tessellation_shader spec says about inputs:
   5207           *
   5208           *    "Declaring an array size is optional. If no size is specified,
   5209           *     it will be taken from the implementation-dependent maximum
   5210           *     patch size (gl_MaxPatchVertices)."
   5211           *
   5212           * and about TCS outputs:
   5213           *
   5214           *    "If no size is specified, it will be taken from output patch
   5215           *     size declared in the shader."
   5216           *
   5217           * The GL_OES_geometry_shader spec says:
   5218           *
   5219           *    "All geometry shader input unsized array declarations will be
   5220           *     sized by an earlier input primitive layout qualifier, when
   5221           *     present, as per the following table."
   5222           */
   5223          const enum ir_variable_mode mode = (const enum ir_variable_mode)
   5224             (earlier == NULL ? var->data.mode : earlier->data.mode);
   5225          const bool implicitly_sized =
   5226             (mode == ir_var_shader_in &&
   5227              state->stage >= MESA_SHADER_TESS_CTRL &&
   5228              state->stage <= MESA_SHADER_GEOMETRY) ||
   5229             (mode == ir_var_shader_out &&
   5230              state->stage == MESA_SHADER_TESS_CTRL);
   5231 
   5232          if (t->is_unsized_array() && !implicitly_sized)
   5233             /* Section 10.17 of the GLSL ES 1.00 specification states that
   5234              * unsized array declarations have been removed from the language.
   5235              * Arrays that are sized using an initializer are still explicitly
   5236              * sized.  However, GLSL ES 1.00 does not allow array
   5237              * initializers.  That is only allowed in GLSL ES 3.00.
   5238              *
   5239              * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
   5240              *
   5241              *     "An array type can also be formed without specifying a size
   5242              *     if the definition includes an initializer:
   5243              *
   5244              *         float x[] = float[2] (1.0, 2.0);     // declares an array of size 2
   5245              *         float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
   5246              *
   5247              *         float a[5];
   5248              *         float b[] = a;"
   5249              */
   5250             _mesa_glsl_error(& loc, state,
   5251                              "unsized array declarations are not allowed in "
   5252                              "GLSL ES");
   5253       }
   5254 
   5255       /* If the declaration is not a redeclaration, there are a few additional
   5256        * semantic checks that must be applied.  In addition, variable that was
   5257        * created for the declaration should be added to the IR stream.
   5258        */
   5259       if (earlier == NULL) {
   5260          validate_identifier(decl->identifier, loc, state);
   5261 
   5262          /* Add the variable to the symbol table.  Note that the initializer's
   5263           * IR was already processed earlier (though it hasn't been emitted
   5264           * yet), without the variable in scope.
   5265           *
   5266           * This differs from most C-like languages, but it follows the GLSL
   5267           * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
   5268           * spec:
   5269           *
   5270           *     "Within a declaration, the scope of a name starts immediately
   5271           *     after the initializer if present or immediately after the name
   5272           *     being declared if not."
   5273           */
   5274          if (!state->symbols->add_variable(var)) {
   5275             YYLTYPE loc = this->get_location();
   5276             _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
   5277                              "current scope", decl->identifier);
   5278             continue;
   5279          }
   5280 
   5281          /* Push the variable declaration to the top.  It means that all the
   5282           * variable declarations will appear in a funny last-to-first order,
   5283           * but otherwise we run into trouble if a function is prototyped, a
   5284           * global var is decled, then the function is defined with usage of
   5285           * the global var.  See glslparsertest's CorrectModule.frag.
   5286           */
   5287          instructions->push_head(var);
   5288       }
   5289 
   5290       instructions->append_list(&initializer_instructions);
   5291    }
   5292 
   5293 
   5294    /* Generally, variable declarations do not have r-values.  However,
   5295     * one is used for the declaration in
   5296     *
   5297     * while (bool b = some_condition()) {
   5298     *   ...
   5299     * }
   5300     *
   5301     * so we return the rvalue from the last seen declaration here.
   5302     */
   5303    return result;
   5304 }
   5305 
   5306 
   5307 ir_rvalue *
   5308 ast_parameter_declarator::hir(exec_list *instructions,
   5309                               struct _mesa_glsl_parse_state *state)
   5310 {
   5311    void *ctx = state;
   5312    const struct glsl_type *type;
   5313    const char *name = NULL;
   5314    YYLTYPE loc = this->get_location();
   5315 
   5316    type = this->type->glsl_type(& name, state);
   5317 
   5318    if (type == NULL) {
   5319       if (name != NULL) {
   5320          _mesa_glsl_error(& loc, state,
   5321                           "invalid type `%s' in declaration of `%s'",
   5322                           name, this->identifier);
   5323       } else {
   5324          _mesa_glsl_error(& loc, state,
   5325                           "invalid type in declaration of `%s'",
   5326                           this->identifier);
   5327       }
   5328 
   5329       type = glsl_type::error_type;
   5330    }
   5331 
   5332    /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
   5333     *
   5334     *    "Functions that accept no input arguments need not use void in the
   5335     *    argument list because prototypes (or definitions) are required and
   5336     *    therefore there is no ambiguity when an empty argument list "( )" is
   5337     *    declared. The idiom "(void)" as a parameter list is provided for
   5338     *    convenience."
   5339     *
   5340     * Placing this check here prevents a void parameter being set up
   5341     * for a function, which avoids tripping up checks for main taking
   5342     * parameters and lookups of an unnamed symbol.
   5343     */
   5344    if (type->is_void()) {
   5345       if (this->identifier != NULL)
   5346          _mesa_glsl_error(& loc, state,
   5347                           "named parameter cannot have type `void'");
   5348 
   5349       is_void = true;
   5350       return NULL;
   5351    }
   5352 
   5353    if (formal_parameter && (this->identifier == NULL)) {
   5354       _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
   5355       return NULL;
   5356    }
   5357 
   5358    /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
   5359     * call already handled the "vec4[..] foo" case.
   5360     */
   5361    type = process_array_type(&loc, type, this->array_specifier, state);
   5362 
   5363    if (!type->is_error() && type->is_unsized_array()) {
   5364       _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
   5365                        "a declared size");
   5366       type = glsl_type::error_type;
   5367    }
   5368 
   5369    is_void = false;
   5370    ir_variable *var = new(ctx)
   5371       ir_variable(type, this->identifier, ir_var_function_in);
   5372 
   5373    /* Apply any specified qualifiers to the parameter declaration.  Note that
   5374     * for function parameters the default mode is 'in'.
   5375     */
   5376    apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
   5377                                     true);
   5378 
   5379    /* From section 4.1.7 of the GLSL 4.40 spec:
   5380     *
   5381     *   "Opaque variables cannot be treated as l-values; hence cannot
   5382     *    be used as out or inout function parameters, nor can they be
   5383     *    assigned into."
   5384     */
   5385    if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
   5386        && type->contains_opaque()) {
   5387       _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
   5388                        "contain opaque variables");
   5389       type = glsl_type::error_type;
   5390    }
   5391 
   5392    /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
   5393     *
   5394     *    "When calling a function, expressions that do not evaluate to
   5395     *     l-values cannot be passed to parameters declared as out or inout."
   5396     *
   5397     * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
   5398     *
   5399     *    "Other binary or unary expressions, non-dereferenced arrays,
   5400     *     function names, swizzles with repeated fields, and constants
   5401     *     cannot be l-values."
   5402     *
   5403     * So for GLSL 1.10, passing an array as an out or inout parameter is not
   5404     * allowed.  This restriction is removed in GLSL 1.20, and in GLSL ES.
   5405     */
   5406    if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
   5407        && type->is_array()
   5408        && !state->check_version(120, 100, &loc,
   5409                                 "arrays cannot be out or inout parameters")) {
   5410       type = glsl_type::error_type;
   5411    }
   5412 
   5413    instructions->push_tail(var);
   5414 
   5415    /* Parameter declarations do not have r-values.
   5416     */
   5417    return NULL;
   5418 }
   5419 
   5420 
   5421 void
   5422 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
   5423                                             bool formal,
   5424                                             exec_list *ir_parameters,
   5425                                             _mesa_glsl_parse_state *state)
   5426 {
   5427    ast_parameter_declarator *void_param = NULL;
   5428    unsigned count = 0;
   5429 
   5430    foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
   5431       param->formal_parameter = formal;
   5432       param->hir(ir_parameters, state);
   5433 
   5434       if (param->is_void)
   5435          void_param = param;
   5436 
   5437       count++;
   5438    }
   5439 
   5440    if ((void_param != NULL) && (count > 1)) {
   5441       YYLTYPE loc = void_param->get_location();
   5442 
   5443       _mesa_glsl_error(& loc, state,
   5444                        "`void' parameter must be only parameter");
   5445    }
   5446 }
   5447 
   5448 
   5449 void
   5450 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
   5451 {
   5452    /* IR invariants disallow function declarations or definitions
   5453     * nested within other function definitions.  But there is no
   5454     * requirement about the relative order of function declarations
   5455     * and definitions with respect to one another.  So simply insert
   5456     * the new ir_function block at the end of the toplevel instruction
   5457     * list.
   5458     */
   5459    state->toplevel_ir->push_tail(f);
   5460 }
   5461 
   5462 
   5463 ir_rvalue *
   5464 ast_function::hir(exec_list *instructions,
   5465                   struct _mesa_glsl_parse_state *state)
   5466 {
   5467    void *ctx = state;
   5468    ir_function *f = NULL;
   5469    ir_function_signature *sig = NULL;
   5470    exec_list hir_parameters;
   5471    YYLTYPE loc = this->get_location();
   5472 
   5473    const char *const name = identifier;
   5474 
   5475    /* New functions are always added to the top-level IR instruction stream,
   5476     * so this instruction list pointer is ignored.  See also emit_function
   5477     * (called below).
   5478     */
   5479    (void) instructions;
   5480 
   5481    /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
   5482     *
   5483     *   "Function declarations (prototypes) cannot occur inside of functions;
   5484     *   they must be at global scope, or for the built-in functions, outside
   5485     *   the global scope."
   5486     *
   5487     * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
   5488     *
   5489     *   "User defined functions may only be defined within the global scope."
   5490     *
   5491     * Note that this language does not appear in GLSL 1.10.
   5492     */
   5493    if ((state->current_function != NULL) &&
   5494        state->is_version(120, 100)) {
   5495       YYLTYPE loc = this->get_location();
   5496       _mesa_glsl_error(&loc, state,
   5497                        "declaration of function `%s' not allowed within "
   5498                        "function body", name);
   5499    }
   5500 
   5501    validate_identifier(name, this->get_location(), state);
   5502 
   5503    /* Convert the list of function parameters to HIR now so that they can be
   5504     * used below to compare this function's signature with previously seen
   5505     * signatures for functions with the same name.
   5506     */
   5507    ast_parameter_declarator::parameters_to_hir(& this->parameters,
   5508                                                is_definition,
   5509                                                & hir_parameters, state);
   5510 
   5511    const char *return_type_name;
   5512    const glsl_type *return_type =
   5513       this->return_type->glsl_type(& return_type_name, state);
   5514 
   5515    if (!return_type) {
   5516       YYLTYPE loc = this->get_location();
   5517       _mesa_glsl_error(&loc, state,
   5518                        "function `%s' has undeclared return type `%s'",
   5519                        name, return_type_name);
   5520       return_type = glsl_type::error_type;
   5521    }
   5522 
   5523    /* ARB_shader_subroutine states:
   5524     *  "Subroutine declarations cannot be prototyped. It is an error to prepend
   5525     *   subroutine(...) to a function declaration."
   5526     */
   5527    if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
   5528       YYLTYPE loc = this->get_location();
   5529       _mesa_glsl_error(&loc, state,
   5530                        "function declaration `%s' cannot have subroutine prepended",
   5531                        name);
   5532    }
   5533 
   5534    /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
   5535     * "No qualifier is allowed on the return type of a function."
   5536     */
   5537    if (this->return_type->has_qualifiers(state)) {
   5538       YYLTYPE loc = this->get_location();
   5539       _mesa_glsl_error(& loc, state,
   5540                        "function `%s' return type has qualifiers", name);
   5541    }
   5542 
   5543    /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
   5544     *
   5545     *     "Arrays are allowed as arguments and as the return type. In both
   5546     *     cases, the array must be explicitly sized."
   5547     */
   5548    if (return_type->is_unsized_array()) {
   5549       YYLTYPE loc = this->get_location();
   5550       _mesa_glsl_error(& loc, state,
   5551                        "function `%s' return type array must be explicitly "
   5552                        "sized", name);
   5553    }
   5554 
   5555    /* From section 4.1.7 of the GLSL 4.40 spec:
   5556     *
   5557     *    "[Opaque types] can only be declared as function parameters
   5558     *     or uniform-qualified variables."
   5559     */
   5560    if (return_type->contains_opaque()) {
   5561       YYLTYPE loc = this->get_location();
   5562       _mesa_glsl_error(&loc, state,
   5563                        "function `%s' return type can't contain an opaque type",
   5564                        name);
   5565    }
   5566 
   5567    /**/
   5568    if (return_type->is_subroutine()) {
   5569       YYLTYPE loc = this->get_location();
   5570       _mesa_glsl_error(&loc, state,
   5571                        "function `%s' return type can't be a subroutine type",
   5572                        name);
   5573    }
   5574 
   5575 
   5576    /* Create an ir_function if one doesn't already exist. */
   5577    f = state->symbols->get_function(name);
   5578    if (f == NULL) {
   5579       f = new(ctx) ir_function(name);
   5580       if (!this->return_type->qualifier.flags.q.subroutine) {
   5581          if (!state->symbols->add_function(f)) {
   5582             /* This function name shadows a non-function use of the same name. */
   5583             YYLTYPE loc = this->get_location();
   5584             _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
   5585                              "non-function", name);
   5586             return NULL;
   5587          }
   5588       }
   5589       emit_function(state, f);
   5590    }
   5591 
   5592    /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
   5593     *
   5594     * "A shader cannot redefine or overload built-in functions."
   5595     *
   5596     * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
   5597     *
   5598     * "User code can overload the built-in functions but cannot redefine
   5599     * them."
   5600     */
   5601    if (state->es_shader && state->language_version >= 300) {
   5602       /* Local shader has no exact candidates; check the built-ins. */
   5603       _mesa_glsl_initialize_builtin_functions();
   5604       if (_mesa_glsl_find_builtin_function_by_name(name)) {
   5605          YYLTYPE loc = this->get_location();
   5606          _mesa_glsl_error(& loc, state,
   5607                           "A shader cannot redefine or overload built-in "
   5608                           "function `%s' in GLSL ES 3.00", name);
   5609          return NULL;
   5610       }
   5611    }
   5612 
   5613    /* Verify that this function's signature either doesn't match a previously
   5614     * seen signature for a function with the same name, or, if a match is found,
   5615     * that the previously seen signature does not have an associated definition.
   5616     */
   5617    if (state->es_shader || f->has_user_signature()) {
   5618       sig = f->exact_matching_signature(state, &hir_parameters);
   5619       if (sig != NULL) {
   5620          const char *badvar = sig->qualifiers_match(&hir_parameters);
   5621          if (badvar != NULL) {
   5622             YYLTYPE loc = this->get_location();
   5623 
   5624             _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
   5625                              "qualifiers don't match prototype", name, badvar);
   5626          }
   5627 
   5628          if (sig->return_type != return_type) {
   5629             YYLTYPE loc = this->get_location();
   5630 
   5631             _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
   5632                              "match prototype", name);
   5633          }
   5634 
   5635          if (sig->is_defined) {
   5636             if (is_definition) {
   5637                YYLTYPE loc = this->get_location();
   5638                _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
   5639             } else {
   5640                /* We just encountered a prototype that exactly matches a
   5641                 * function that's already been defined.  This is redundant,
   5642                 * and we should ignore it.
   5643                 */
   5644                return NULL;
   5645             }
   5646          }
   5647       }
   5648    }
   5649 
   5650    /* Verify the return type of main() */
   5651    if (strcmp(name, "main") == 0) {
   5652       if (! return_type->is_void()) {
   5653          YYLTYPE loc = this->get_location();
   5654 
   5655          _mesa_glsl_error(& loc, state, "main() must return void");
   5656       }
   5657 
   5658       if (!hir_parameters.is_empty()) {
   5659          YYLTYPE loc = this->get_location();
   5660 
   5661          _mesa_glsl_error(& loc, state, "main() must not take any parameters");
   5662       }
   5663    }
   5664 
   5665    /* Finish storing the information about this new function in its signature.
   5666     */
   5667    if (sig == NULL) {
   5668       sig = new(ctx) ir_function_signature(return_type);
   5669       f->add_signature(sig);
   5670    }
   5671 
   5672    sig->replace_parameters(&hir_parameters);
   5673    signature = sig;
   5674 
   5675    if (this->return_type->qualifier.flags.q.subroutine_def) {
   5676       int idx;
   5677 
   5678       if (this->return_type->qualifier.flags.q.explicit_index) {
   5679          unsigned qual_index;
   5680          if (process_qualifier_constant(state, &loc, "index",
   5681                                         this->return_type->qualifier.index,
   5682                                         &qual_index)) {
   5683             if (!state->has_explicit_uniform_location()) {
   5684                _mesa_glsl_error(&loc, state, "subroutine index requires "
   5685                                 "GL_ARB_explicit_uniform_location or "
   5686                                 "GLSL 4.30");
   5687             } else if (qual_index >= MAX_SUBROUTINES) {
   5688                _mesa_glsl_error(&loc, state,
   5689                                 "invalid subroutine index (%d) index must "
   5690                                 "be a number between 0 and "
   5691                                 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
   5692                                 MAX_SUBROUTINES - 1);
   5693             } else {
   5694                f->subroutine_index = qual_index;
   5695             }
   5696          }
   5697       }
   5698 
   5699       f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
   5700       f->subroutine_types = ralloc_array(state, const struct glsl_type *,
   5701                                          f->num_subroutine_types);
   5702       idx = 0;
   5703       foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
   5704          const struct glsl_type *type;
   5705          /* the subroutine type must be already declared */
   5706          type = state->symbols->get_type(decl->identifier);
   5707          if (!type) {
   5708             _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
   5709          }
   5710 
   5711          for (int i = 0; i < state->num_subroutine_types; i++) {
   5712             ir_function *fn = state->subroutine_types[i];
   5713             ir_function_signature *tsig = NULL;
   5714 
   5715             if (strcmp(fn->name, decl->identifier))
   5716                continue;
   5717 
   5718             tsig = fn->matching_signature(state, &sig->parameters,
   5719                                           false);
   5720             if (!tsig) {
   5721                _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
   5722             } else {
   5723                if (tsig->return_type != sig->return_type) {
   5724                   _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
   5725                }
   5726             }
   5727          }
   5728          f->subroutine_types[idx++] = type;
   5729       }
   5730       state->subroutines = (ir_function **)reralloc(state, state->subroutines,
   5731                                                     ir_function *,
   5732                                                     state->num_subroutines + 1);
   5733       state->subroutines[state->num_subroutines] = f;
   5734       state->num_subroutines++;
   5735 
   5736    }
   5737 
   5738    if (this->return_type->qualifier.flags.q.subroutine) {
   5739       if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
   5740          _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
   5741          return NULL;
   5742       }
   5743       state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
   5744                                                          ir_function *,
   5745                                                          state->num_subroutine_types + 1);
   5746       state->subroutine_types[state->num_subroutine_types] = f;
   5747       state->num_subroutine_types++;
   5748 
   5749       f->is_subroutine = true;
   5750    }
   5751 
   5752    /* Function declarations (prototypes) do not have r-values.
   5753     */
   5754    return NULL;
   5755 }
   5756 
   5757 
   5758 ir_rvalue *
   5759 ast_function_definition::hir(exec_list *instructions,
   5760                              struct _mesa_glsl_parse_state *state)
   5761 {
   5762    prototype->is_definition = true;
   5763    prototype->hir(instructions, state);
   5764 
   5765    ir_function_signature *signature = prototype->signature;
   5766    if (signature == NULL)
   5767       return NULL;
   5768 
   5769    assert(state->current_function == NULL);
   5770    state->current_function = signature;
   5771    state->found_return = false;
   5772 
   5773    /* Duplicate parameters declared in the prototype as concrete variables.
   5774     * Add these to the symbol table.
   5775     */
   5776    state->symbols->push_scope();
   5777    foreach_in_list(ir_variable, var, &signature->parameters) {
   5778       assert(var->as_variable() != NULL);
   5779 
   5780       /* The only way a parameter would "exist" is if two parameters have
   5781        * the same name.
   5782        */
   5783       if (state->symbols->name_declared_this_scope(var->name)) {
   5784          YYLTYPE loc = this->get_location();
   5785 
   5786          _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
   5787       } else {
   5788          state->symbols->add_variable(var);
   5789       }
   5790    }
   5791 
   5792    /* Convert the body of the function to HIR. */
   5793    this->body->hir(&signature->body, state);
   5794    signature->is_defined = true;
   5795 
   5796    state->symbols->pop_scope();
   5797 
   5798    assert(state->current_function == signature);
   5799    state->current_function = NULL;
   5800 
   5801    if (!signature->return_type->is_void() && !state->found_return) {
   5802       YYLTYPE loc = this->get_location();
   5803       _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
   5804                        "%s, but no return statement",
   5805                        signature->function_name(),
   5806                        signature->return_type->name);
   5807    }
   5808 
   5809    /* Function definitions do not have r-values.
   5810     */
   5811    return NULL;
   5812 }
   5813 
   5814 
   5815 ir_rvalue *
   5816 ast_jump_statement::hir(exec_list *instructions,
   5817                         struct _mesa_glsl_parse_state *state)
   5818 {
   5819    void *ctx = state;
   5820 
   5821    switch (mode) {
   5822    case ast_return: {
   5823       ir_return *inst;
   5824       assert(state->current_function);
   5825 
   5826       if (opt_return_value) {
   5827          ir_rvalue *ret = opt_return_value->hir(instructions, state);
   5828 
   5829          /* The value of the return type can be NULL if the shader says
   5830           * 'return foo();' and foo() is a function that returns void.
   5831           *
   5832           * NOTE: The GLSL spec doesn't say that this is an error.  The type
   5833           * of the return value is void.  If the return type of the function is
   5834           * also void, then this should compile without error.  Seriously.
   5835           */
   5836          const glsl_type *const ret_type =
   5837             (ret == NULL) ? glsl_type::void_type : ret->type;
   5838 
   5839          /* Implicit conversions are not allowed for return values prior to
   5840           * ARB_shading_language_420pack.
   5841           */
   5842          if (state->current_function->return_type != ret_type) {
   5843             YYLTYPE loc = this->get_location();
   5844 
   5845             if (state->has_420pack()) {
   5846                if (!apply_implicit_conversion(state->current_function->return_type,
   5847                                               ret, state)) {
   5848                   _mesa_glsl_error(& loc, state,
   5849                                    "could not implicitly convert return value "
   5850                                    "to %s, in function `%s'",
   5851                                    state->current_function->return_type->name,
   5852                                    state->current_function->function_name());
   5853                }
   5854             } else {
   5855                _mesa_glsl_error(& loc, state,
   5856                                 "`return' with wrong type %s, in function `%s' "
   5857                                 "returning %s",
   5858                                 ret_type->name,
   5859                                 state->current_function->function_name(),
   5860                                 state->current_function->return_type->name);
   5861             }
   5862          } else if (state->current_function->return_type->base_type ==
   5863                     GLSL_TYPE_VOID) {
   5864             YYLTYPE loc = this->get_location();
   5865 
   5866             /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
   5867              * specs add a clarification:
   5868              *
   5869              *    "A void function can only use return without a return argument, even if
   5870              *     the return argument has void type. Return statements only accept values:
   5871              *
   5872              *         void func1() { }
   5873              *         void func2() { return func1(); } // illegal return statement"
   5874              */
   5875             _mesa_glsl_error(& loc, state,
   5876                              "void functions can only use `return' without a "
   5877                              "return argument");
   5878          }
   5879 
   5880          inst = new(ctx) ir_return(ret);
   5881       } else {
   5882          if (state->current_function->return_type->base_type !=
   5883              GLSL_TYPE_VOID) {
   5884             YYLTYPE loc = this->get_location();
   5885 
   5886             _mesa_glsl_error(& loc, state,
   5887                              "`return' with no value, in function %s returning "
   5888                              "non-void",
   5889             state->current_function->function_name());
   5890          }
   5891          inst = new(ctx) ir_return;
   5892       }
   5893 
   5894       state->found_return = true;
   5895       instructions->push_tail(inst);
   5896       break;
   5897    }
   5898 
   5899    case ast_discard:
   5900       if (state->stage != MESA_SHADER_FRAGMENT) {
   5901          YYLTYPE loc = this->get_location();
   5902 
   5903          _mesa_glsl_error(& loc, state,
   5904                           "`discard' may only appear in a fragment shader");
   5905       }
   5906       instructions->push_tail(new(ctx) ir_discard);
   5907       break;
   5908 
   5909    case ast_break:
   5910    case ast_continue:
   5911       if (mode == ast_continue &&
   5912           state->loop_nesting_ast == NULL) {
   5913          YYLTYPE loc = this->get_location();
   5914 
   5915          _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
   5916       } else if (mode == ast_break &&
   5917          state->loop_nesting_ast == NULL &&
   5918          state->switch_state.switch_nesting_ast == NULL) {
   5919          YYLTYPE loc = this->get_location();
   5920 
   5921          _mesa_glsl_error(& loc, state,
   5922                           "break may only appear in a loop or a switch");
   5923       } else {
   5924          /* For a loop, inline the for loop expression again, since we don't
   5925           * know where near the end of the loop body the normal copy of it is
   5926           * going to be placed.  Same goes for the condition for a do-while
   5927           * loop.
   5928           */
   5929          if (state->loop_nesting_ast != NULL &&
   5930              mode == ast_continue && !state->switch_state.is_switch_innermost) {
   5931             if (state->loop_nesting_ast->rest_expression) {
   5932                state->loop_nesting_ast->rest_expression->hir(instructions,
   5933                                                              state);
   5934             }
   5935             if (state->loop_nesting_ast->mode ==
   5936                 ast_iteration_statement::ast_do_while) {
   5937                state->loop_nesting_ast->condition_to_hir(instructions, state);
   5938             }
   5939          }
   5940 
   5941          if (state->switch_state.is_switch_innermost &&
   5942              mode == ast_continue) {
   5943             /* Set 'continue_inside' to true. */
   5944             ir_rvalue *const true_val = new (ctx) ir_constant(true);
   5945             ir_dereference_variable *deref_continue_inside_var =
   5946                new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
   5947             instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
   5948                                                            true_val));
   5949 
   5950             /* Break out from the switch, continue for the loop will
   5951              * be called right after switch. */
   5952             ir_loop_jump *const jump =
   5953                new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
   5954             instructions->push_tail(jump);
   5955 
   5956          } else if (state->switch_state.is_switch_innermost &&
   5957              mode == ast_break) {
   5958             /* Force break out of switch by inserting a break. */
   5959             ir_loop_jump *const jump =
   5960                new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
   5961             instructions->push_tail(jump);
   5962          } else {
   5963             ir_loop_jump *const jump =
   5964                new(ctx) ir_loop_jump((mode == ast_break)
   5965                   ? ir_loop_jump::jump_break
   5966                   : ir_loop_jump::jump_continue);
   5967             instructions->push_tail(jump);
   5968          }
   5969       }
   5970 
   5971       break;
   5972    }
   5973 
   5974    /* Jump instructions do not have r-values.
   5975     */
   5976    return NULL;
   5977 }
   5978 
   5979 
   5980 ir_rvalue *
   5981 ast_selection_statement::hir(exec_list *instructions,
   5982                              struct _mesa_glsl_parse_state *state)
   5983 {
   5984    void *ctx = state;
   5985 
   5986    ir_rvalue *const condition = this->condition->hir(instructions, state);
   5987 
   5988    /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
   5989     *
   5990     *    "Any expression whose type evaluates to a Boolean can be used as the
   5991     *    conditional expression bool-expression. Vector types are not accepted
   5992     *    as the expression to if."
   5993     *
   5994     * The checks are separated so that higher quality diagnostics can be
   5995     * generated for cases where both rules are violated.
   5996     */
   5997    if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
   5998       YYLTYPE loc = this->condition->get_location();
   5999 
   6000       _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
   6001                        "boolean");
   6002    }
   6003 
   6004    ir_if *const stmt = new(ctx) ir_if(condition);
   6005 
   6006    if (then_statement != NULL) {
   6007       state->symbols->push_scope();
   6008       then_statement->hir(& stmt->then_instructions, state);
   6009       state->symbols->pop_scope();
   6010    }
   6011 
   6012    if (else_statement != NULL) {
   6013       state->symbols->push_scope();
   6014       else_statement->hir(& stmt->else_instructions, state);
   6015       state->symbols->pop_scope();
   6016    }
   6017 
   6018    instructions->push_tail(stmt);
   6019 
   6020    /* if-statements do not have r-values.
   6021     */
   6022    return NULL;
   6023 }
   6024 
   6025 
   6026 /* Used for detection of duplicate case values, compare
   6027  * given contents directly.
   6028  */
   6029 static bool
   6030 compare_case_value(const void *a, const void *b)
   6031 {
   6032    return *(unsigned *) a == *(unsigned *) b;
   6033 }
   6034 
   6035 
   6036 /* Used for detection of duplicate case values, just
   6037  * returns key contents as is.
   6038  */
   6039 static unsigned
   6040 key_contents(const void *key)
   6041 {
   6042    return *(unsigned *) key;
   6043 }
   6044 
   6045 
   6046 ir_rvalue *
   6047 ast_switch_statement::hir(exec_list *instructions,
   6048                           struct _mesa_glsl_parse_state *state)
   6049 {
   6050    void *ctx = state;
   6051 
   6052    ir_rvalue *const test_expression =
   6053       this->test_expression->hir(instructions, state);
   6054 
   6055    /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
   6056     *
   6057     *    "The type of init-expression in a switch statement must be a
   6058     *     scalar integer."
   6059     */
   6060    if (!test_expression->type->is_scalar() ||
   6061        !test_expression->type->is_integer()) {
   6062       YYLTYPE loc = this->test_expression->get_location();
   6063 
   6064       _mesa_glsl_error(& loc,
   6065                        state,
   6066                        "switch-statement expression must be scalar "
   6067                        "integer");
   6068    }
   6069 
   6070    /* Track the switch-statement nesting in a stack-like manner.
   6071     */
   6072    struct glsl_switch_state saved = state->switch_state;
   6073 
   6074    state->switch_state.is_switch_innermost = true;
   6075    state->switch_state.switch_nesting_ast = this;
   6076    state->switch_state.labels_ht =
   6077          _mesa_hash_table_create(NULL, key_contents,
   6078                                  compare_case_value);
   6079    state->switch_state.previous_default = NULL;
   6080 
   6081    /* Initalize is_fallthru state to false.
   6082     */
   6083    ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
   6084    state->switch_state.is_fallthru_var =
   6085       new(ctx) ir_variable(glsl_type::bool_type,
   6086                            "switch_is_fallthru_tmp",
   6087                            ir_var_temporary);
   6088    instructions->push_tail(state->switch_state.is_fallthru_var);
   6089 
   6090    ir_dereference_variable *deref_is_fallthru_var =
   6091       new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
   6092    instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
   6093                                                   is_fallthru_val));
   6094 
   6095    /* Initialize continue_inside state to false.
   6096     */
   6097    state->switch_state.continue_inside =
   6098       new(ctx) ir_variable(glsl_type::bool_type,
   6099                            "continue_inside_tmp",
   6100                            ir_var_temporary);
   6101    instructions->push_tail(state->switch_state.continue_inside);
   6102 
   6103    ir_rvalue *const false_val = new (ctx) ir_constant(false);
   6104    ir_dereference_variable *deref_continue_inside_var =
   6105       new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
   6106    instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
   6107                                                   false_val));
   6108 
   6109    state->switch_state.run_default =
   6110       new(ctx) ir_variable(glsl_type::bool_type,
   6111                              "run_default_tmp",
   6112                              ir_var_temporary);
   6113    instructions->push_tail(state->switch_state.run_default);
   6114 
   6115    /* Loop around the switch is used for flow control. */
   6116    ir_loop * loop = new(ctx) ir_loop();
   6117    instructions->push_tail(loop);
   6118 
   6119    /* Cache test expression.
   6120     */
   6121    test_to_hir(&loop->body_instructions, state);
   6122 
   6123    /* Emit code for body of switch stmt.
   6124     */
   6125    body->hir(&loop->body_instructions, state);
   6126 
   6127    /* Insert a break at the end to exit loop. */
   6128    ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
   6129    loop->body_instructions.push_tail(jump);
   6130 
   6131    /* If we are inside loop, check if continue got called inside switch. */
   6132    if (state->loop_nesting_ast != NULL) {
   6133       ir_dereference_variable *deref_continue_inside =
   6134          new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
   6135       ir_if *irif = new(ctx) ir_if(deref_continue_inside);
   6136       ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
   6137 
   6138       if (state->loop_nesting_ast != NULL) {
   6139          if (state->loop_nesting_ast->rest_expression) {
   6140             state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
   6141                                                           state);
   6142          }
   6143          if (state->loop_nesting_ast->mode ==
   6144              ast_iteration_statement::ast_do_while) {
   6145             state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
   6146          }
   6147       }
   6148       irif->then_instructions.push_tail(jump);
   6149       instructions->push_tail(irif);
   6150    }
   6151 
   6152    _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
   6153 
   6154    state->switch_state = saved;
   6155 
   6156    /* Switch statements do not have r-values. */
   6157    return NULL;
   6158 }
   6159 
   6160 
   6161 void
   6162 ast_switch_statement::test_to_hir(exec_list *instructions,
   6163                                   struct _mesa_glsl_parse_state *state)
   6164 {
   6165    void *ctx = state;
   6166 
   6167    /* set to true to avoid a duplicate "use of uninitialized variable" warning
   6168     * on the switch test case. The first one would be already raised when
   6169     * getting the test_expression at ast_switch_statement::hir
   6170     */
   6171    test_expression->set_is_lhs(true);
   6172    /* Cache value of test expression. */
   6173    ir_rvalue *const test_val = test_expression->hir(instructions, state);
   6174 
   6175    state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
   6176                                                        "switch_test_tmp",
   6177                                                        ir_var_temporary);
   6178    ir_dereference_variable *deref_test_var =
   6179       new(ctx) ir_dereference_variable(state->switch_state.test_var);
   6180 
   6181    instructions->push_tail(state->switch_state.test_var);
   6182    instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
   6183 }
   6184 
   6185 
   6186 ir_rvalue *
   6187 ast_switch_body::hir(exec_list *instructions,
   6188                      struct _mesa_glsl_parse_state *state)
   6189 {
   6190    if (stmts != NULL)
   6191       stmts->hir(instructions, state);
   6192 
   6193    /* Switch bodies do not have r-values. */
   6194    return NULL;
   6195 }
   6196 
   6197 ir_rvalue *
   6198 ast_case_statement_list::hir(exec_list *instructions,
   6199                              struct _mesa_glsl_parse_state *state)
   6200 {
   6201    exec_list default_case, after_default, tmp;
   6202 
   6203    foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
   6204       case_stmt->hir(&tmp, state);
   6205 
   6206       /* Default case. */
   6207       if (state->switch_state.previous_default && default_case.is_empty()) {
   6208          default_case.append_list(&tmp);
   6209          continue;
   6210       }
   6211 
   6212       /* If default case found, append 'after_default' list. */
   6213       if (!default_case.is_empty())
   6214          after_default.append_list(&tmp);
   6215       else
   6216          instructions->append_list(&tmp);
   6217    }
   6218 
   6219    /* Handle the default case. This is done here because default might not be
   6220     * the last case. We need to add checks against following cases first to see
   6221     * if default should be chosen or not.
   6222     */
   6223    if (!default_case.is_empty()) {
   6224 
   6225       ir_rvalue *const true_val = new (state) ir_constant(true);
   6226       ir_dereference_variable *deref_run_default_var =
   6227          new(state) ir_dereference_variable(state->switch_state.run_default);
   6228 
   6229       /* Choose to run default case initially, following conditional
   6230        * assignments might change this.
   6231        */
   6232       ir_assignment *const init_var =
   6233          new(state) ir_assignment(deref_run_default_var, true_val);
   6234       instructions->push_tail(init_var);
   6235 
   6236       /* Default case was the last one, no checks required. */
   6237       if (after_default.is_empty()) {
   6238          instructions->append_list(&default_case);
   6239          return NULL;
   6240       }
   6241 
   6242       foreach_in_list(ir_instruction, ir, &after_default) {
   6243          ir_assignment *assign = ir->as_assignment();
   6244 
   6245          if (!assign)
   6246             continue;
   6247 
   6248          /* Clone the check between case label and init expression. */
   6249          ir_expression *exp = (ir_expression*) assign->condition;
   6250          ir_expression *clone = exp->clone(state, NULL);
   6251 
   6252          ir_dereference_variable *deref_var =
   6253             new(state) ir_dereference_variable(state->switch_state.run_default);
   6254          ir_rvalue *const false_val = new (state) ir_constant(false);
   6255 
   6256          ir_assignment *const set_false =
   6257             new(state) ir_assignment(deref_var, false_val, clone);
   6258 
   6259          instructions->push_tail(set_false);
   6260       }
   6261 
   6262       /* Append default case and all cases after it. */
   6263       instructions->append_list(&default_case);
   6264       instructions->append_list(&after_default);
   6265    }
   6266 
   6267    /* Case statements do not have r-values. */
   6268    return NULL;
   6269 }
   6270 
   6271 ir_rvalue *
   6272 ast_case_statement::hir(exec_list *instructions,
   6273                         struct _mesa_glsl_parse_state *state)
   6274 {
   6275    labels->hir(instructions, state);
   6276 
   6277    /* Guard case statements depending on fallthru state. */
   6278    ir_dereference_variable *const deref_fallthru_guard =
   6279       new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
   6280    ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
   6281 
   6282    foreach_list_typed (ast_node, stmt, link, & this->stmts)
   6283       stmt->hir(& test_fallthru->then_instructions, state);
   6284 
   6285    instructions->push_tail(test_fallthru);
   6286 
   6287    /* Case statements do not have r-values. */
   6288    return NULL;
   6289 }
   6290 
   6291 
   6292 ir_rvalue *
   6293 ast_case_label_list::hir(exec_list *instructions,
   6294                          struct _mesa_glsl_parse_state *state)
   6295 {
   6296    foreach_list_typed (ast_case_label, label, link, & this->labels)
   6297       label->hir(instructions, state);
   6298 
   6299    /* Case labels do not have r-values. */
   6300    return NULL;
   6301 }
   6302 
   6303 ir_rvalue *
   6304 ast_case_label::hir(exec_list *instructions,
   6305                     struct _mesa_glsl_parse_state *state)
   6306 {
   6307    void *ctx = state;
   6308 
   6309    ir_dereference_variable *deref_fallthru_var =
   6310       new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
   6311 
   6312    ir_rvalue *const true_val = new(ctx) ir_constant(true);
   6313 
   6314    /* If not default case, ... */
   6315    if (this->test_value != NULL) {
   6316       /* Conditionally set fallthru state based on
   6317        * comparison of cached test expression value to case label.
   6318        */
   6319       ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
   6320       ir_constant *label_const = label_rval->constant_expression_value();
   6321 
   6322       if (!label_const) {
   6323          YYLTYPE loc = this->test_value->get_location();
   6324 
   6325          _mesa_glsl_error(& loc, state,
   6326                           "switch statement case label must be a "
   6327                           "constant expression");
   6328 
   6329          /* Stuff a dummy value in to allow processing to continue. */
   6330          label_const = new(ctx) ir_constant(0);
   6331       } else {
   6332          hash_entry *entry =
   6333                _mesa_hash_table_search(state->switch_state.labels_ht,
   6334                      (void *)(uintptr_t)&label_const->value.u[0]);
   6335 
   6336          if (entry) {
   6337             ast_expression *previous_label = (ast_expression *) entry->data;
   6338             YYLTYPE loc = this->test_value->get_location();
   6339             _mesa_glsl_error(& loc, state, "duplicate case value");
   6340 
   6341             loc = previous_label->get_location();
   6342             _mesa_glsl_error(& loc, state, "this is the previous case label");
   6343          } else {
   6344             _mesa_hash_table_insert(state->switch_state.labels_ht,
   6345                                     (void *)(uintptr_t)&label_const->value.u[0],
   6346                                     this->test_value);
   6347          }
   6348       }
   6349 
   6350       ir_dereference_variable *deref_test_var =
   6351          new(ctx) ir_dereference_variable(state->switch_state.test_var);
   6352 
   6353       ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
   6354                                                         label_const,
   6355                                                         deref_test_var);
   6356 
   6357       /*
   6358        * From GLSL 4.40 specification section 6.2 ("Selection"):
   6359        *
   6360        *     "The type of the init-expression value in a switch statement must
   6361        *     be a scalar int or uint. The type of the constant-expression value
   6362        *     in a case label also must be a scalar int or uint. When any pair
   6363        *     of these values is tested for "equal value" and the types do not
   6364        *     match, an implicit conversion will be done to convert the int to a
   6365        *     uint (see section 4.1.10 Implicit Conversions) before the compare
   6366        *     is done."
   6367        */
   6368       if (label_const->type != state->switch_state.test_var->type) {
   6369          YYLTYPE loc = this->test_value->get_location();
   6370 
   6371          const glsl_type *type_a = label_const->type;
   6372          const glsl_type *type_b = state->switch_state.test_var->type;
   6373 
   6374          /* Check if int->uint implicit conversion is supported. */
   6375          bool integer_conversion_supported =
   6376             glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
   6377                                                            state);
   6378 
   6379          if ((!type_a->is_integer() || !type_b->is_integer()) ||
   6380               !integer_conversion_supported) {
   6381             _mesa_glsl_error(&loc, state, "type mismatch with switch "
   6382                              "init-expression and case label (%s != %s)",
   6383                              type_a->name, type_b->name);
   6384          } else {
   6385             /* Conversion of the case label. */
   6386             if (type_a->base_type == GLSL_TYPE_INT) {
   6387                if (!apply_implicit_conversion(glsl_type::uint_type,
   6388                                               test_cond->operands[0], state))
   6389                   _mesa_glsl_error(&loc, state, "implicit type conversion error");
   6390             } else {
   6391                /* Conversion of the init-expression value. */
   6392                if (!apply_implicit_conversion(glsl_type::uint_type,
   6393                                               test_cond->operands[1], state))
   6394                   _mesa_glsl_error(&loc, state, "implicit type conversion error");
   6395             }
   6396          }
   6397       }
   6398 
   6399       ir_assignment *set_fallthru_on_test =
   6400          new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
   6401 
   6402       instructions->push_tail(set_fallthru_on_test);
   6403    } else { /* default case */
   6404       if (state->switch_state.previous_default) {
   6405          YYLTYPE loc = this->get_location();
   6406          _mesa_glsl_error(& loc, state,
   6407                           "multiple default labels in one switch");
   6408 
   6409          loc = state->switch_state.previous_default->get_location();
   6410          _mesa_glsl_error(& loc, state, "this is the first default label");
   6411       }
   6412       state->switch_state.previous_default = this;
   6413 
   6414       /* Set fallthru condition on 'run_default' bool. */
   6415       ir_dereference_variable *deref_run_default =
   6416          new(ctx) ir_dereference_variable(state->switch_state.run_default);
   6417       ir_rvalue *const cond_true = new(ctx) ir_constant(true);
   6418       ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
   6419                                                         cond_true,
   6420                                                         deref_run_default);
   6421 
   6422       /* Set falltrhu state. */
   6423       ir_assignment *set_fallthru =
   6424          new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
   6425 
   6426       instructions->push_tail(set_fallthru);
   6427    }
   6428 
   6429    /* Case statements do not have r-values. */
   6430    return NULL;
   6431 }
   6432 
   6433 void
   6434 ast_iteration_statement::condition_to_hir(exec_list *instructions,
   6435                                           struct _mesa_glsl_parse_state *state)
   6436 {
   6437    void *ctx = state;
   6438 
   6439    if (condition != NULL) {
   6440       ir_rvalue *const cond =
   6441          condition->hir(instructions, state);
   6442 
   6443       if ((cond == NULL)
   6444           || !cond->type->is_boolean() || !cond->type->is_scalar()) {
   6445          YYLTYPE loc = condition->get_location();
   6446 
   6447          _mesa_glsl_error(& loc, state,
   6448                           "loop condition must be scalar boolean");
   6449       } else {
   6450          /* As the first code in the loop body, generate a block that looks
   6451           * like 'if (!condition) break;' as the loop termination condition.
   6452           */
   6453          ir_rvalue *const not_cond =
   6454             new(ctx) ir_expression(ir_unop_logic_not, cond);
   6455 
   6456          ir_if *const if_stmt = new(ctx) ir_if(not_cond);
   6457 
   6458          ir_jump *const break_stmt =
   6459             new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
   6460 
   6461          if_stmt->then_instructions.push_tail(break_stmt);
   6462          instructions->push_tail(if_stmt);
   6463       }
   6464    }
   6465 }
   6466 
   6467 
   6468 ir_rvalue *
   6469 ast_iteration_statement::hir(exec_list *instructions,
   6470                              struct _mesa_glsl_parse_state *state)
   6471 {
   6472    void *ctx = state;
   6473 
   6474    /* For-loops and while-loops start a new scope, but do-while loops do not.
   6475     */
   6476    if (mode != ast_do_while)
   6477       state->symbols->push_scope();
   6478 
   6479    if (init_statement != NULL)
   6480       init_statement->hir(instructions, state);
   6481 
   6482    ir_loop *const stmt = new(ctx) ir_loop();
   6483    instructions->push_tail(stmt);
   6484 
   6485    /* Track the current loop nesting. */
   6486    ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
   6487 
   6488    state->loop_nesting_ast = this;
   6489 
   6490    /* Likewise, indicate that following code is closest to a loop,
   6491     * NOT closest to a switch.
   6492     */
   6493    bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
   6494    state->switch_state.is_switch_innermost = false;
   6495 
   6496    if (mode != ast_do_while)
   6497       condition_to_hir(&stmt->body_instructions, state);
   6498 
   6499    if (body != NULL)
   6500       body->hir(& stmt->body_instructions, state);
   6501 
   6502    if (rest_expression != NULL)
   6503       rest_expression->hir(& stmt->body_instructions, state);
   6504 
   6505    if (mode == ast_do_while)
   6506       condition_to_hir(&stmt->body_instructions, state);
   6507 
   6508    if (mode != ast_do_while)
   6509       state->symbols->pop_scope();
   6510 
   6511    /* Restore previous nesting before returning. */
   6512    state->loop_nesting_ast = nesting_ast;
   6513    state->switch_state.is_switch_innermost = saved_is_switch_innermost;
   6514 
   6515    /* Loops do not have r-values.
   6516     */
   6517    return NULL;
   6518 }
   6519 
   6520 
   6521 /**
   6522  * Determine if the given type is valid for establishing a default precision
   6523  * qualifier.
   6524  *
   6525  * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
   6526  *
   6527  *     "The precision statement
   6528  *
   6529  *         precision precision-qualifier type;
   6530  *
   6531  *     can be used to establish a default precision qualifier. The type field
   6532  *     can be either int or float or any of the sampler types, and the
   6533  *     precision-qualifier can be lowp, mediump, or highp."
   6534  *
   6535  * GLSL ES 1.00 has similar language.  GLSL 1.30 doesn't allow precision
   6536  * qualifiers on sampler types, but this seems like an oversight (since the
   6537  * intention of including these in GLSL 1.30 is to allow compatibility with ES
   6538  * shaders).  So we allow int, float, and all sampler types regardless of GLSL
   6539  * version.
   6540  */
   6541 static bool
   6542 is_valid_default_precision_type(const struct glsl_type *const type)
   6543 {
   6544    if (type == NULL)
   6545       return false;
   6546 
   6547    switch (type->base_type) {
   6548    case GLSL_TYPE_INT:
   6549    case GLSL_TYPE_FLOAT:
   6550       /* "int" and "float" are valid, but vectors and matrices are not. */
   6551       return type->vector_elements == 1 && type->matrix_columns == 1;
   6552    case GLSL_TYPE_SAMPLER:
   6553    case GLSL_TYPE_IMAGE:
   6554    case GLSL_TYPE_ATOMIC_UINT:
   6555       return true;
   6556    default:
   6557       return false;
   6558    }
   6559 }
   6560 
   6561 
   6562 ir_rvalue *
   6563 ast_type_specifier::hir(exec_list *instructions,
   6564                         struct _mesa_glsl_parse_state *state)
   6565 {
   6566    if (this->default_precision == ast_precision_none && this->structure == NULL)
   6567       return NULL;
   6568 
   6569    YYLTYPE loc = this->get_location();
   6570 
   6571    /* If this is a precision statement, check that the type to which it is
   6572     * applied is either float or int.
   6573     *
   6574     * From section 4.5.3 of the GLSL 1.30 spec:
   6575     *    "The precision statement
   6576     *       precision precision-qualifier type;
   6577     *    can be used to establish a default precision qualifier. The type
   6578     *    field can be either int or float [...].  Any other types or
   6579     *    qualifiers will result in an error.
   6580     */
   6581    if (this->default_precision != ast_precision_none) {
   6582       if (!state->check_precision_qualifiers_allowed(&loc))
   6583          return NULL;
   6584 
   6585       if (this->structure != NULL) {
   6586          _mesa_glsl_error(&loc, state,
   6587                           "precision qualifiers do not apply to structures");
   6588          return NULL;
   6589       }
   6590 
   6591       if (this->array_specifier != NULL) {
   6592          _mesa_glsl_error(&loc, state,
   6593                           "default precision statements do not apply to "
   6594                           "arrays");
   6595          return NULL;
   6596       }
   6597 
   6598       const struct glsl_type *const type =
   6599          state->symbols->get_type(this->type_name);
   6600       if (!is_valid_default_precision_type(type)) {
   6601          _mesa_glsl_error(&loc, state,
   6602                           "default precision statements apply only to "
   6603                           "float, int, and opaque types");
   6604          return NULL;
   6605       }
   6606 
   6607       if (state->es_shader) {
   6608          /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
   6609           * spec says:
   6610           *
   6611           *     "Non-precision qualified declarations will use the precision
   6612           *     qualifier specified in the most recent precision statement
   6613           *     that is still in scope. The precision statement has the same
   6614           *     scoping rules as variable declarations. If it is declared
   6615           *     inside a compound statement, its effect stops at the end of
   6616           *     the innermost statement it was declared in. Precision
   6617           *     statements in nested scopes override precision statements in
   6618           *     outer scopes. Multiple precision statements for the same basic
   6619           *     type can appear inside the same scope, with later statements
   6620           *     overriding earlier statements within that scope."
   6621           *
   6622           * Default precision specifications follow the same scope rules as
   6623           * variables.  So, we can track the state of the default precision
   6624           * qualifiers in the symbol table, and the rules will just work.  This
   6625           * is a slight abuse of the symbol table, but it has the semantics
   6626           * that we want.
   6627           */
   6628          state->symbols->add_default_precision_qualifier(this->type_name,
   6629                                                          this->default_precision);
   6630       }
   6631 
   6632       /* FINISHME: Translate precision statements into IR. */
   6633       return NULL;
   6634    }
   6635 
   6636    /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
   6637     * process_record_constructor() can do type-checking on C-style initializer
   6638     * expressions of structs, but ast_struct_specifier should only be translated
   6639     * to HIR if it is declaring the type of a structure.
   6640     *
   6641     * The ->is_declaration field is false for initializers of variables
   6642     * declared separately from the struct's type definition.
   6643     *
   6644     *    struct S { ... };              (is_declaration = true)
   6645     *    struct T { ... } t = { ... };  (is_declaration = true)
   6646     *    S s = { ... };                 (is_declaration = false)
   6647     */
   6648    if (this->structure != NULL && this->structure->is_declaration)
   6649       return this->structure->hir(instructions, state);
   6650 
   6651    return NULL;
   6652 }
   6653 
   6654 
   6655 /**
   6656  * Process a structure or interface block tree into an array of structure fields
   6657  *
   6658  * After parsing, where there are some syntax differnces, structures and
   6659  * interface blocks are almost identical.  They are similar enough that the
   6660  * AST for each can be processed the same way into a set of
   6661  * \c glsl_struct_field to describe the members.
   6662  *
   6663  * If we're processing an interface block, var_mode should be the type of the
   6664  * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
   6665  * ir_var_shader_storage).  If we're processing a structure, var_mode should be
   6666  * ir_var_auto.
   6667  *
   6668  * \return
   6669  * The number of fields processed.  A pointer to the array structure fields is
   6670  * stored in \c *fields_ret.
   6671  */
   6672 static unsigned
   6673 ast_process_struct_or_iface_block_members(exec_list *instructions,
   6674                                           struct _mesa_glsl_parse_state *state,
   6675                                           exec_list *declarations,
   6676                                           glsl_struct_field **fields_ret,
   6677                                           bool is_interface,
   6678                                           enum glsl_matrix_layout matrix_layout,
   6679                                           bool allow_reserved_names,
   6680                                           ir_variable_mode var_mode,
   6681                                           ast_type_qualifier *layout,
   6682                                           unsigned block_stream,
   6683                                           unsigned block_xfb_buffer,
   6684                                           unsigned block_xfb_offset,
   6685                                           unsigned expl_location,
   6686                                           unsigned expl_align)
   6687 {
   6688    unsigned decl_count = 0;
   6689    unsigned next_offset = 0;
   6690 
   6691    /* Make an initial pass over the list of fields to determine how
   6692     * many there are.  Each element in this list is an ast_declarator_list.
   6693     * This means that we actually need to count the number of elements in the
   6694     * 'declarations' list in each of the elements.
   6695     */
   6696    foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
   6697       decl_count += decl_list->declarations.length();
   6698    }
   6699 
   6700    /* Allocate storage for the fields and process the field
   6701     * declarations.  As the declarations are processed, try to also convert
   6702     * the types to HIR.  This ensures that structure definitions embedded in
   6703     * other structure definitions or in interface blocks are processed.
   6704     */
   6705    glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
   6706                                                    decl_count);
   6707 
   6708    bool first_member = true;
   6709    bool first_member_has_explicit_location = false;
   6710 
   6711    unsigned i = 0;
   6712    foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
   6713       const char *type_name;
   6714       YYLTYPE loc = decl_list->get_location();
   6715 
   6716       decl_list->type->specifier->hir(instructions, state);
   6717 
   6718       /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
   6719        *
   6720        *    "Anonymous structures are not supported; so embedded structures
   6721        *    must have a declarator. A name given to an embedded struct is
   6722        *    scoped at the same level as the struct it is embedded in."
   6723        *
   6724        * The same section of the  GLSL 1.20 spec says:
   6725        *
   6726        *    "Anonymous structures are not supported. Embedded structures are
   6727        *    not supported."
   6728        *
   6729        * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
   6730        * embedded structures in 1.10 only.
   6731        */
   6732       if (state->language_version != 110 &&
   6733           decl_list->type->specifier->structure != NULL)
   6734          _mesa_glsl_error(&loc, state,
   6735                           "embedded structure declarations are not allowed");
   6736 
   6737       const glsl_type *decl_type =
   6738          decl_list->type->glsl_type(& type_name, state);
   6739 
   6740       const struct ast_type_qualifier *const qual =
   6741          &decl_list->type->qualifier;
   6742 
   6743       /* From section 4.3.9 of the GLSL 4.40 spec:
   6744        *
   6745        *    "[In interface blocks] opaque types are not allowed."
   6746        *
   6747        * It should be impossible for decl_type to be NULL here.  Cases that
   6748        * might naturally lead to decl_type being NULL, especially for the
   6749        * is_interface case, will have resulted in compilation having
   6750        * already halted due to a syntax error.
   6751        */
   6752       assert(decl_type);
   6753 
   6754       if (is_interface) {
   6755          if (decl_type->contains_opaque()) {
   6756             _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
   6757                              "interface block contains opaque variable");
   6758          }
   6759       } else {
   6760          if (decl_type->contains_atomic()) {
   6761             /* From section 4.1.7.3 of the GLSL 4.40 spec:
   6762              *
   6763              *    "Members of structures cannot be declared as atomic counter
   6764              *     types."
   6765              */
   6766             _mesa_glsl_error(&loc, state, "atomic counter in structure");
   6767          }
   6768 
   6769          if (decl_type->contains_image()) {
   6770             /* FINISHME: Same problem as with atomic counters.
   6771              * FINISHME: Request clarification from Khronos and add
   6772              * FINISHME: spec quotation here.
   6773              */
   6774             _mesa_glsl_error(&loc, state, "image in structure");
   6775          }
   6776       }
   6777 
   6778       if (qual->flags.q.explicit_binding) {
   6779          _mesa_glsl_error(&loc, state,
   6780                           "binding layout qualifier cannot be applied "
   6781                           "to struct or interface block members");
   6782       }
   6783 
   6784       if (is_interface) {
   6785          if (!first_member) {
   6786             if (!layout->flags.q.explicit_location &&
   6787                 ((first_member_has_explicit_location &&
   6788                   !qual->flags.q.explicit_location) ||
   6789                  (!first_member_has_explicit_location &&
   6790                   qual->flags.q.explicit_location))) {
   6791                _mesa_glsl_error(&loc, state,
   6792                                 "when block-level location layout qualifier "
   6793                                 "is not supplied either all members must "
   6794                                 "have a location layout qualifier or all "
   6795                                 "members must not have a location layout "
   6796                                 "qualifier");
   6797             }
   6798          } else {
   6799             first_member = false;
   6800             first_member_has_explicit_location =
   6801                qual->flags.q.explicit_location;
   6802          }
   6803       }
   6804 
   6805       if (qual->flags.q.std140 ||
   6806           qual->flags.q.std430 ||
   6807           qual->flags.q.packed ||
   6808           qual->flags.q.shared) {
   6809          _mesa_glsl_error(&loc, state,
   6810                           "uniform/shader storage block layout qualifiers "
   6811                           "std140, std430, packed, and shared can only be "
   6812                           "applied to uniform/shader storage blocks, not "
   6813                           "members");
   6814       }
   6815 
   6816       if (qual->flags.q.constant) {
   6817          _mesa_glsl_error(&loc, state,
   6818                           "const storage qualifier cannot be applied "
   6819                           "to struct or interface block members");
   6820       }
   6821 
   6822       /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
   6823        *
   6824        *   "A block member may be declared with a stream identifier, but
   6825        *   the specified stream must match the stream associated with the
   6826        *   containing block."
   6827        */
   6828       if (qual->flags.q.explicit_stream) {
   6829          unsigned qual_stream;
   6830          if (process_qualifier_constant(state, &loc, "stream",
   6831                                         qual->stream, &qual_stream) &&
   6832              qual_stream != block_stream) {
   6833             _mesa_glsl_error(&loc, state, "stream layout qualifier on "
   6834                              "interface block member does not match "
   6835                              "the interface block (%u vs %u)", qual_stream,
   6836                              block_stream);
   6837          }
   6838       }
   6839 
   6840       int xfb_buffer;
   6841       unsigned explicit_xfb_buffer = 0;
   6842       if (qual->flags.q.explicit_xfb_buffer) {
   6843          unsigned qual_xfb_buffer;
   6844          if (process_qualifier_constant(state, &loc, "xfb_buffer",
   6845                                         qual->xfb_buffer, &qual_xfb_buffer)) {
   6846             explicit_xfb_buffer = 1;
   6847             if (qual_xfb_buffer != block_xfb_buffer)
   6848                _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
   6849                                 "interface block member does not match "
   6850                                 "the interface block (%u vs %u)",
   6851                                 qual_xfb_buffer, block_xfb_buffer);
   6852          }
   6853          xfb_buffer = (int) qual_xfb_buffer;
   6854       } else {
   6855          if (layout)
   6856             explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
   6857          xfb_buffer = (int) block_xfb_buffer;
   6858       }
   6859 
   6860       int xfb_stride = -1;
   6861       if (qual->flags.q.explicit_xfb_stride) {
   6862          unsigned qual_xfb_stride;
   6863          if (process_qualifier_constant(state, &loc, "xfb_stride",
   6864                                         qual->xfb_stride, &qual_xfb_stride)) {
   6865             xfb_stride = (int) qual_xfb_stride;
   6866          }
   6867       }
   6868 
   6869       if (qual->flags.q.uniform && qual->has_interpolation()) {
   6870          _mesa_glsl_error(&loc, state,
   6871                           "interpolation qualifiers cannot be used "
   6872                           "with uniform interface blocks");
   6873       }
   6874 
   6875       if ((qual->flags.q.uniform || !is_interface) &&
   6876           qual->has_auxiliary_storage()) {
   6877          _mesa_glsl_error(&loc, state,
   6878                           "auxiliary storage qualifiers cannot be used "
   6879                           "in uniform blocks or structures.");
   6880       }
   6881 
   6882       if (qual->flags.q.row_major || qual->flags.q.column_major) {
   6883          if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
   6884             _mesa_glsl_error(&loc, state,
   6885                              "row_major and column_major can only be "
   6886                              "applied to interface blocks");
   6887          } else
   6888             validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
   6889       }
   6890 
   6891       if (qual->flags.q.read_only && qual->flags.q.write_only) {
   6892          _mesa_glsl_error(&loc, state, "buffer variable can't be both "
   6893                           "readonly and writeonly.");
   6894       }
   6895 
   6896       foreach_list_typed (ast_declaration, decl, link,
   6897                           &decl_list->declarations) {
   6898          YYLTYPE loc = decl->get_location();
   6899 
   6900          if (!allow_reserved_names)
   6901             validate_identifier(decl->identifier, loc, state);
   6902 
   6903          const struct glsl_type *field_type =
   6904             process_array_type(&loc, decl_type, decl->array_specifier, state);
   6905          validate_array_dimensions(field_type, state, &loc);
   6906          fields[i].type = field_type;
   6907          fields[i].name = decl->identifier;
   6908          fields[i].interpolation =
   6909             interpret_interpolation_qualifier(qual, field_type,
   6910                                               var_mode, state, &loc);
   6911          fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
   6912          fields[i].sample = qual->flags.q.sample ? 1 : 0;
   6913          fields[i].patch = qual->flags.q.patch ? 1 : 0;
   6914          fields[i].precision = qual->precision;
   6915          fields[i].offset = -1;
   6916          fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
   6917          fields[i].xfb_buffer = xfb_buffer;
   6918          fields[i].xfb_stride = xfb_stride;
   6919 
   6920          if (qual->flags.q.explicit_location) {
   6921             unsigned qual_location;
   6922             if (process_qualifier_constant(state, &loc, "location",
   6923                                            qual->location, &qual_location)) {
   6924                fields[i].location = qual_location +
   6925                   (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
   6926                expl_location = fields[i].location +
   6927                   fields[i].type->count_attribute_slots(false);
   6928             }
   6929          } else {
   6930             if (layout && layout->flags.q.explicit_location) {
   6931                fields[i].location = expl_location;
   6932                expl_location += fields[i].type->count_attribute_slots(false);
   6933             } else {
   6934                fields[i].location = -1;
   6935             }
   6936          }
   6937 
   6938          /* Offset can only be used with std430 and std140 layouts an initial
   6939           * value of 0 is used for error detection.
   6940           */
   6941          unsigned align = 0;
   6942          unsigned size = 0;
   6943          if (layout) {
   6944             bool row_major;
   6945             if (qual->flags.q.row_major ||
   6946                 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
   6947                row_major = true;
   6948             } else {
   6949                row_major = false;
   6950             }
   6951 
   6952             if(layout->flags.q.std140) {
   6953                align = field_type->std140_base_alignment(row_major);
   6954                size = field_type->std140_size(row_major);
   6955             } else if (layout->flags.q.std430) {
   6956                align = field_type->std430_base_alignment(row_major);
   6957                size = field_type->std430_size(row_major);
   6958             }
   6959          }
   6960 
   6961          if (qual->flags.q.explicit_offset) {
   6962             unsigned qual_offset;
   6963             if (process_qualifier_constant(state, &loc, "offset",
   6964                                            qual->offset, &qual_offset)) {
   6965                if (align != 0 && size != 0) {
   6966                    if (next_offset > qual_offset)
   6967                       _mesa_glsl_error(&loc, state, "layout qualifier "
   6968                                        "offset overlaps previous member");
   6969 
   6970                   if (qual_offset % align) {
   6971                      _mesa_glsl_error(&loc, state, "layout qualifier offset "
   6972                                       "must be a multiple of the base "
   6973                                       "alignment of %s", field_type->name);
   6974                   }
   6975                   fields[i].offset = qual_offset;
   6976                   next_offset = glsl_align(qual_offset + size, align);
   6977                } else {
   6978                   _mesa_glsl_error(&loc, state, "offset can only be used "
   6979                                    "with std430 and std140 layouts");
   6980                }
   6981             }
   6982          }
   6983 
   6984          if (qual->flags.q.explicit_align || expl_align != 0) {
   6985             unsigned offset = fields[i].offset != -1 ? fields[i].offset :
   6986                next_offset;
   6987             if (align == 0 || size == 0) {
   6988                _mesa_glsl_error(&loc, state, "align can only be used with "
   6989                                 "std430 and std140 layouts");
   6990             } else if (qual->flags.q.explicit_align) {
   6991                unsigned member_align;
   6992                if (process_qualifier_constant(state, &loc, "align",
   6993                                               qual->align, &member_align)) {
   6994                   if (member_align == 0 ||
   6995                       member_align & (member_align - 1)) {
   6996                      _mesa_glsl_error(&loc, state, "align layout qualifier "
   6997                                       "in not a power of 2");
   6998                   } else {
   6999                      fields[i].offset = glsl_align(offset, member_align);
   7000                      next_offset = glsl_align(fields[i].offset + size, align);
   7001                   }
   7002                }
   7003             } else {
   7004                fields[i].offset = glsl_align(offset, expl_align);
   7005                next_offset = glsl_align(fields[i].offset + size, align);
   7006             }
   7007          } else if (!qual->flags.q.explicit_offset) {
   7008             if (align != 0 && size != 0)
   7009                next_offset = glsl_align(next_offset + size, align);
   7010          }
   7011 
   7012          /* From the ARB_enhanced_layouts spec:
   7013           *
   7014           *    "The given offset applies to the first component of the first
   7015           *    member of the qualified entity.  Then, within the qualified
   7016           *    entity, subsequent components are each assigned, in order, to
   7017           *    the next available offset aligned to a multiple of that
   7018           *    component's size.  Aggregate types are flattened down to the
   7019           *    component level to get this sequence of components."
   7020           */
   7021          if (qual->flags.q.explicit_xfb_offset) {
   7022             unsigned xfb_offset;
   7023             if (process_qualifier_constant(state, &loc, "xfb_offset",
   7024                                            qual->offset, &xfb_offset)) {
   7025                fields[i].offset = xfb_offset;
   7026                block_xfb_offset = fields[i].offset +
   7027                   MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
   7028             }
   7029          } else {
   7030             if (layout && layout->flags.q.explicit_xfb_offset) {
   7031                unsigned align = field_type->is_64bit() ? 8 : 4;
   7032                fields[i].offset = glsl_align(block_xfb_offset, align);
   7033                block_xfb_offset +=
   7034                   MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
   7035             }
   7036          }
   7037 
   7038          /* Propogate row- / column-major information down the fields of the
   7039           * structure or interface block.  Structures need this data because
   7040           * the structure may contain a structure that contains ... a matrix
   7041           * that need the proper layout.
   7042           */
   7043          if (is_interface && layout &&
   7044              (layout->flags.q.uniform || layout->flags.q.buffer) &&
   7045              (field_type->without_array()->is_matrix()
   7046               || field_type->without_array()->is_record())) {
   7047             /* If no layout is specified for the field, inherit the layout
   7048              * from the block.
   7049              */
   7050             fields[i].matrix_layout = matrix_layout;
   7051 
   7052             if (qual->flags.q.row_major)
   7053                fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
   7054             else if (qual->flags.q.column_major)
   7055                fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
   7056 
   7057             /* If we're processing an uniform or buffer block, the matrix
   7058              * layout must be decided by this point.
   7059              */
   7060             assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
   7061                    || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
   7062          }
   7063 
   7064          /* Image qualifiers are allowed on buffer variables, which can only
   7065           * be defined inside shader storage buffer objects
   7066           */
   7067          if (layout && var_mode == ir_var_shader_storage) {
   7068             /* For readonly and writeonly qualifiers the field definition,
   7069              * if set, overwrites the layout qualifier.
   7070              */
   7071             if (qual->flags.q.read_only) {
   7072                fields[i].image_read_only = true;
   7073                fields[i].image_write_only = false;
   7074             } else if (qual->flags.q.write_only) {
   7075                fields[i].image_read_only = false;
   7076                fields[i].image_write_only = true;
   7077             } else {
   7078                fields[i].image_read_only = layout->flags.q.read_only;
   7079                fields[i].image_write_only = layout->flags.q.write_only;
   7080             }
   7081 
   7082             /* For other qualifiers, we set the flag if either the layout
   7083              * qualifier or the field qualifier are set
   7084              */
   7085             fields[i].image_coherent = qual->flags.q.coherent ||
   7086                                         layout->flags.q.coherent;
   7087             fields[i].image_volatile = qual->flags.q._volatile ||
   7088                                         layout->flags.q._volatile;
   7089             fields[i].image_restrict = qual->flags.q.restrict_flag ||
   7090                                         layout->flags.q.restrict_flag;
   7091          }
   7092 
   7093          i++;
   7094       }
   7095    }
   7096 
   7097    assert(i == decl_count);
   7098 
   7099    *fields_ret = fields;
   7100    return decl_count;
   7101 }
   7102 
   7103 
   7104 ir_rvalue *
   7105 ast_struct_specifier::hir(exec_list *instructions,
   7106                           struct _mesa_glsl_parse_state *state)
   7107 {
   7108    YYLTYPE loc = this->get_location();
   7109 
   7110    unsigned expl_location = 0;
   7111    if (layout && layout->flags.q.explicit_location) {
   7112       if (!process_qualifier_constant(state, &loc, "location",
   7113                                       layout->location, &expl_location)) {
   7114          return NULL;
   7115       } else {
   7116          expl_location = VARYING_SLOT_VAR0 + expl_location;
   7117       }
   7118    }
   7119 
   7120    glsl_struct_field *fields;
   7121    unsigned decl_count =
   7122       ast_process_struct_or_iface_block_members(instructions,
   7123                                                 state,
   7124                                                 &this->declarations,
   7125                                                 &fields,
   7126                                                 false,
   7127                                                 GLSL_MATRIX_LAYOUT_INHERITED,
   7128                                                 false /* allow_reserved_names */,
   7129                                                 ir_var_auto,
   7130                                                 layout,
   7131                                                 0, /* for interface only */
   7132                                                 0, /* for interface only */
   7133                                                 0, /* for interface only */
   7134                                                 expl_location,
   7135                                                 0 /* for interface only */);
   7136 
   7137    validate_identifier(this->name, loc, state);
   7138 
   7139    const glsl_type *t =
   7140       glsl_type::get_record_instance(fields, decl_count, this->name);
   7141 
   7142    if (!state->symbols->add_type(name, t)) {
   7143       const glsl_type *match = state->symbols->get_type(name);
   7144       /* allow struct matching for desktop GL - older UE4 does this */
   7145       if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
   7146          _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
   7147       else
   7148          _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
   7149    } else {
   7150       const glsl_type **s = reralloc(state, state->user_structures,
   7151                                      const glsl_type *,
   7152                                      state->num_user_structures + 1);
   7153       if (s != NULL) {
   7154          s[state->num_user_structures] = t;
   7155          state->user_structures = s;
   7156          state->num_user_structures++;
   7157       }
   7158    }
   7159 
   7160    /* Structure type definitions do not have r-values.
   7161     */
   7162    return NULL;
   7163 }
   7164 
   7165 
   7166 /**
   7167  * Visitor class which detects whether a given interface block has been used.
   7168  */
   7169 class interface_block_usage_visitor : public ir_hierarchical_visitor
   7170 {
   7171 public:
   7172    interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
   7173       : mode(mode), block(block), found(false)
   7174    {
   7175    }
   7176 
   7177    virtual ir_visitor_status visit(ir_dereference_variable *ir)
   7178    {
   7179       if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
   7180          found = true;
   7181          return visit_stop;
   7182       }
   7183       return visit_continue;
   7184    }
   7185 
   7186    bool usage_found() const
   7187    {
   7188       return this->found;
   7189    }
   7190 
   7191 private:
   7192    ir_variable_mode mode;
   7193    const glsl_type *block;
   7194    bool found;
   7195 };
   7196 
   7197 static bool
   7198 is_unsized_array_last_element(ir_variable *v)
   7199 {
   7200    const glsl_type *interface_type = v->get_interface_type();
   7201    int length = interface_type->length;
   7202 
   7203    assert(v->type->is_unsized_array());
   7204 
   7205    /* Check if it is the last element of the interface */
   7206    if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
   7207       return true;
   7208    return false;
   7209 }
   7210 
   7211 static void
   7212 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
   7213 {
   7214    var->data.image_read_only = field.image_read_only;
   7215    var->data.image_write_only = field.image_write_only;
   7216    var->data.image_coherent = field.image_coherent;
   7217    var->data.image_volatile = field.image_volatile;
   7218    var->data.image_restrict = field.image_restrict;
   7219 }
   7220 
   7221 ir_rvalue *
   7222 ast_interface_block::hir(exec_list *instructions,
   7223                          struct _mesa_glsl_parse_state *state)
   7224 {
   7225    YYLTYPE loc = this->get_location();
   7226 
   7227    /* Interface blocks must be declared at global scope */
   7228    if (state->current_function != NULL) {
   7229       _mesa_glsl_error(&loc, state,
   7230                        "Interface block `%s' must be declared "
   7231                        "at global scope",
   7232                        this->block_name);
   7233    }
   7234 
   7235    /* Validate qualifiers:
   7236     *
   7237     * - Layout Qualifiers as per the table in Section 4.4
   7238     *   ("Layout Qualifiers") of the GLSL 4.50 spec.
   7239     *
   7240     * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
   7241     *   GLSL 4.50 spec:
   7242     *
   7243     *     "Additionally, memory qualifiers may also be used in the declaration
   7244     *      of shader storage blocks"
   7245     *
   7246     * Note the table in Section 4.4 says std430 is allowed on both uniform and
   7247     * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
   7248     * Layout Qualifiers) of the GLSL 4.50 spec says:
   7249     *
   7250     *    "The std430 qualifier is supported only for shader storage blocks;
   7251     *    using std430 on a uniform block will result in a compile-time error."
   7252     */
   7253    ast_type_qualifier allowed_blk_qualifiers;
   7254    allowed_blk_qualifiers.flags.i = 0;
   7255    if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
   7256       allowed_blk_qualifiers.flags.q.shared = 1;
   7257       allowed_blk_qualifiers.flags.q.packed = 1;
   7258       allowed_blk_qualifiers.flags.q.std140 = 1;
   7259       allowed_blk_qualifiers.flags.q.row_major = 1;
   7260       allowed_blk_qualifiers.flags.q.column_major = 1;
   7261       allowed_blk_qualifiers.flags.q.explicit_align = 1;
   7262       allowed_blk_qualifiers.flags.q.explicit_binding = 1;
   7263       if (this->layout.flags.q.buffer) {
   7264          allowed_blk_qualifiers.flags.q.buffer = 1;
   7265          allowed_blk_qualifiers.flags.q.std430 = 1;
   7266          allowed_blk_qualifiers.flags.q.coherent = 1;
   7267          allowed_blk_qualifiers.flags.q._volatile = 1;
   7268          allowed_blk_qualifiers.flags.q.restrict_flag = 1;
   7269          allowed_blk_qualifiers.flags.q.read_only = 1;
   7270          allowed_blk_qualifiers.flags.q.write_only = 1;
   7271       } else {
   7272          allowed_blk_qualifiers.flags.q.uniform = 1;
   7273       }
   7274    } else {
   7275       /* Interface block */
   7276       assert(this->layout.flags.q.in || this->layout.flags.q.out);
   7277 
   7278       allowed_blk_qualifiers.flags.q.explicit_location = 1;
   7279       if (this->layout.flags.q.out) {
   7280          allowed_blk_qualifiers.flags.q.out = 1;
   7281          if (state->stage == MESA_SHADER_GEOMETRY ||
   7282           state->stage == MESA_SHADER_TESS_CTRL ||
   7283           state->stage == MESA_SHADER_TESS_EVAL ||
   7284           state->stage == MESA_SHADER_VERTEX ) {
   7285             allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
   7286             allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
   7287             allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
   7288             allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
   7289             allowed_blk_qualifiers.flags.q.xfb_stride = 1;
   7290             if (state->stage == MESA_SHADER_GEOMETRY) {
   7291                allowed_blk_qualifiers.flags.q.stream = 1;
   7292                allowed_blk_qualifiers.flags.q.explicit_stream = 1;
   7293             }
   7294             if (state->stage == MESA_SHADER_TESS_CTRL) {
   7295                allowed_blk_qualifiers.flags.q.patch = 1;
   7296             }
   7297          }
   7298       } else {
   7299          allowed_blk_qualifiers.flags.q.in = 1;
   7300          if (state->stage == MESA_SHADER_TESS_EVAL) {
   7301             allowed_blk_qualifiers.flags.q.patch = 1;
   7302          }
   7303       }
   7304    }
   7305 
   7306    this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
   7307                                "invalid qualifier for block",
   7308                                this->block_name);
   7309 
   7310    /* The ast_interface_block has a list of ast_declarator_lists.  We
   7311     * need to turn those into ir_variables with an association
   7312     * with this uniform block.
   7313     */
   7314    enum glsl_interface_packing packing;
   7315    if (this->layout.flags.q.shared) {
   7316       packing = GLSL_INTERFACE_PACKING_SHARED;
   7317    } else if (this->layout.flags.q.packed) {
   7318       packing = GLSL_INTERFACE_PACKING_PACKED;
   7319    } else if (this->layout.flags.q.std430) {
   7320       packing = GLSL_INTERFACE_PACKING_STD430;
   7321    } else {
   7322       /* The default layout is std140.
   7323        */
   7324       packing = GLSL_INTERFACE_PACKING_STD140;
   7325    }
   7326 
   7327    ir_variable_mode var_mode;
   7328    const char *iface_type_name;
   7329    if (this->layout.flags.q.in) {
   7330       var_mode = ir_var_shader_in;
   7331       iface_type_name = "in";
   7332    } else if (this->layout.flags.q.out) {
   7333       var_mode = ir_var_shader_out;
   7334       iface_type_name = "out";
   7335    } else if (this->layout.flags.q.uniform) {
   7336       var_mode = ir_var_uniform;
   7337       iface_type_name = "uniform";
   7338    } else if (this->layout.flags.q.buffer) {
   7339       var_mode = ir_var_shader_storage;
   7340       iface_type_name = "buffer";
   7341    } else {
   7342       var_mode = ir_var_auto;
   7343       iface_type_name = "UNKNOWN";
   7344       assert(!"interface block layout qualifier not found!");
   7345    }
   7346 
   7347    enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
   7348    if (this->layout.flags.q.row_major)
   7349       matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
   7350    else if (this->layout.flags.q.column_major)
   7351       matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
   7352 
   7353    bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
   7354    exec_list declared_variables;
   7355    glsl_struct_field *fields;
   7356 
   7357    /* For blocks that accept memory qualifiers (i.e. shader storage), verify
   7358     * that we don't have incompatible qualifiers
   7359     */
   7360    if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
   7361       _mesa_glsl_error(&loc, state,
   7362                        "Interface block sets both readonly and writeonly");
   7363    }
   7364 
   7365    unsigned qual_stream;
   7366    if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
   7367                                    &qual_stream) ||
   7368        !validate_stream_qualifier(&loc, state, qual_stream)) {
   7369       /* If the stream qualifier is invalid it doesn't make sense to continue
   7370        * on and try to compare stream layouts on member variables against it
   7371        * so just return early.
   7372        */
   7373       return NULL;
   7374    }
   7375 
   7376    unsigned qual_xfb_buffer;
   7377    if (!process_qualifier_constant(state, &loc, "xfb_buffer",
   7378                                    layout.xfb_buffer, &qual_xfb_buffer) ||
   7379        !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
   7380       return NULL;
   7381    }
   7382 
   7383    unsigned qual_xfb_offset;
   7384    if (layout.flags.q.explicit_xfb_offset) {
   7385       if (!process_qualifier_constant(state, &loc, "xfb_offset",
   7386                                       layout.offset, &qual_xfb_offset)) {
   7387          return NULL;
   7388       }
   7389    }
   7390 
   7391    unsigned qual_xfb_stride;
   7392    if (layout.flags.q.explicit_xfb_stride) {
   7393       if (!process_qualifier_constant(state, &loc, "xfb_stride",
   7394                                       layout.xfb_stride, &qual_xfb_stride)) {
   7395          return NULL;
   7396       }
   7397    }
   7398 
   7399    unsigned expl_location = 0;
   7400    if (layout.flags.q.explicit_location) {
   7401       if (!process_qualifier_constant(state, &loc, "location",
   7402                                       layout.location, &expl_location)) {
   7403          return NULL;
   7404       } else {
   7405          expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
   7406                                                      : VARYING_SLOT_VAR0;
   7407       }
   7408    }
   7409 
   7410    unsigned expl_align = 0;
   7411    if (layout.flags.q.explicit_align) {
   7412       if (!process_qualifier_constant(state, &loc, "align",
   7413                                       layout.align, &expl_align)) {
   7414          return NULL;
   7415       } else {
   7416          if (expl_align == 0 || expl_align & (expl_align - 1)) {
   7417             _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
   7418                              "power of 2.");
   7419             return NULL;
   7420          }
   7421       }
   7422    }
   7423 
   7424    unsigned int num_variables =
   7425       ast_process_struct_or_iface_block_members(&declared_variables,
   7426                                                 state,
   7427                                                 &this->declarations,
   7428                                                 &fields,
   7429                                                 true,
   7430                                                 matrix_layout,
   7431                                                 redeclaring_per_vertex,
   7432                                                 var_mode,
   7433                                                 &this->layout,
   7434                                                 qual_stream,
   7435                                                 qual_xfb_buffer,
   7436                                                 qual_xfb_offset,
   7437                                                 expl_location,
   7438                                                 expl_align);
   7439 
   7440    if (!redeclaring_per_vertex) {
   7441       validate_identifier(this->block_name, loc, state);
   7442 
   7443       /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
   7444        *
   7445        *     "Block names have no other use within a shader beyond interface
   7446        *     matching; it is a compile-time error to use a block name at global
   7447        *     scope for anything other than as a block name."
   7448        */
   7449       ir_variable *var = state->symbols->get_variable(this->block_name);
   7450       if (var && !var->type->is_interface()) {
   7451          _mesa_glsl_error(&loc, state, "Block name `%s' is "
   7452                           "already used in the scope.",
   7453                           this->block_name);
   7454       }
   7455    }
   7456 
   7457    const glsl_type *earlier_per_vertex = NULL;
   7458    if (redeclaring_per_vertex) {
   7459       /* Find the previous declaration of gl_PerVertex.  If we're redeclaring
   7460        * the named interface block gl_in, we can find it by looking at the
   7461        * previous declaration of gl_in.  Otherwise we can find it by looking
   7462        * at the previous decalartion of any of the built-in outputs,
   7463        * e.g. gl_Position.
   7464        *
   7465        * Also check that the instance name and array-ness of the redeclaration
   7466        * are correct.
   7467        */
   7468       switch (var_mode) {
   7469       case ir_var_shader_in:
   7470          if (ir_variable *earlier_gl_in =
   7471              state->symbols->get_variable("gl_in")) {
   7472             earlier_per_vertex = earlier_gl_in->get_interface_type();
   7473          } else {
   7474             _mesa_glsl_error(&loc, state,
   7475                              "redeclaration of gl_PerVertex input not allowed "
   7476                              "in the %s shader",
   7477                              _mesa_shader_stage_to_string(state->stage));
   7478          }
   7479          if (this->instance_name == NULL ||
   7480              strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
   7481              !this->array_specifier->is_single_dimension()) {
   7482             _mesa_glsl_error(&loc, state,
   7483                              "gl_PerVertex input must be redeclared as "
   7484                              "gl_in[]");
   7485          }
   7486          break;
   7487       case ir_var_shader_out:
   7488          if (ir_variable *earlier_gl_Position =
   7489              state->symbols->get_variable("gl_Position")) {
   7490             earlier_per_vertex = earlier_gl_Position->get_interface_type();
   7491          } else if (ir_variable *earlier_gl_out =
   7492                state->symbols->get_variable("gl_out")) {
   7493             earlier_per_vertex = earlier_gl_out->get_interface_type();
   7494          } else {
   7495             _mesa_glsl_error(&loc, state,
   7496                              "redeclaration of gl_PerVertex output not "
   7497                              "allowed in the %s shader",
   7498                              _mesa_shader_stage_to_string(state->stage));
   7499          }
   7500          if (state->stage == MESA_SHADER_TESS_CTRL) {
   7501             if (this->instance_name == NULL ||
   7502                 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
   7503                _mesa_glsl_error(&loc, state,
   7504                                 "gl_PerVertex output must be redeclared as "
   7505                                 "gl_out[]");
   7506             }
   7507          } else {
   7508             if (this->instance_name != NULL) {
   7509                _mesa_glsl_error(&loc, state,
   7510                                 "gl_PerVertex output may not be redeclared with "
   7511                                 "an instance name");
   7512             }
   7513          }
   7514          break;
   7515       default:
   7516          _mesa_glsl_error(&loc, state,
   7517                           "gl_PerVertex must be declared as an input or an "
   7518                           "output");
   7519          break;
   7520       }
   7521 
   7522       if (earlier_per_vertex == NULL) {
   7523          /* An error has already been reported.  Bail out to avoid null
   7524           * dereferences later in this function.
   7525           */
   7526          return NULL;
   7527       }
   7528 
   7529       /* Copy locations from the old gl_PerVertex interface block. */
   7530       for (unsigned i = 0; i < num_variables; i++) {
   7531          int j = earlier_per_vertex->field_index(fields[i].name);
   7532          if (j == -1) {
   7533             _mesa_glsl_error(&loc, state,
   7534                              "redeclaration of gl_PerVertex must be a subset "
   7535                              "of the built-in members of gl_PerVertex");
   7536          } else {
   7537             fields[i].location =
   7538                earlier_per_vertex->fields.structure[j].location;
   7539             fields[i].offset =
   7540                earlier_per_vertex->fields.structure[j].offset;
   7541             fields[i].interpolation =
   7542                earlier_per_vertex->fields.structure[j].interpolation;
   7543             fields[i].centroid =
   7544                earlier_per_vertex->fields.structure[j].centroid;
   7545             fields[i].sample =
   7546                earlier_per_vertex->fields.structure[j].sample;
   7547             fields[i].patch =
   7548                earlier_per_vertex->fields.structure[j].patch;
   7549             fields[i].precision =
   7550                earlier_per_vertex->fields.structure[j].precision;
   7551             fields[i].explicit_xfb_buffer =
   7552                earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
   7553             fields[i].xfb_buffer =
   7554                earlier_per_vertex->fields.structure[j].xfb_buffer;
   7555             fields[i].xfb_stride =
   7556                earlier_per_vertex->fields.structure[j].xfb_stride;
   7557          }
   7558       }
   7559 
   7560       /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
   7561        * spec:
   7562        *
   7563        *     If a built-in interface block is redeclared, it must appear in
   7564        *     the shader before any use of any member included in the built-in
   7565        *     declaration, or a compilation error will result.
   7566        *
   7567        * This appears to be a clarification to the behaviour established for
   7568        * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
   7569        * regardless of GLSL version.
   7570        */
   7571       interface_block_usage_visitor v(var_mode, earlier_per_vertex);
   7572       v.run(instructions);
   7573       if (v.usage_found()) {
   7574          _mesa_glsl_error(&loc, state,
   7575                           "redeclaration of a built-in interface block must "
   7576                           "appear before any use of any member of the "
   7577                           "interface block");
   7578       }
   7579    }
   7580 
   7581    const glsl_type *block_type =
   7582       glsl_type::get_interface_instance(fields,
   7583                                         num_variables,
   7584                                         packing,
   7585                                         matrix_layout ==
   7586                                            GLSL_MATRIX_LAYOUT_ROW_MAJOR,
   7587                                         this->block_name);
   7588 
   7589    unsigned component_size = block_type->contains_double() ? 8 : 4;
   7590    int xfb_offset =
   7591       layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
   7592    validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
   7593                                  component_size);
   7594 
   7595    if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
   7596       YYLTYPE loc = this->get_location();
   7597       _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
   7598                        "already taken in the current scope",
   7599                        this->block_name, iface_type_name);
   7600    }
   7601 
   7602    /* Since interface blocks cannot contain statements, it should be
   7603     * impossible for the block to generate any instructions.
   7604     */
   7605    assert(declared_variables.is_empty());
   7606 
   7607    /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
   7608     *
   7609     *     Geometry shader input variables get the per-vertex values written
   7610     *     out by vertex shader output variables of the same names. Since a
   7611     *     geometry shader operates on a set of vertices, each input varying
   7612     *     variable (or input block, see interface blocks below) needs to be
   7613     *     declared as an array.
   7614     */
   7615    if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
   7616        var_mode == ir_var_shader_in) {
   7617       _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
   7618    } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
   7619                state->stage == MESA_SHADER_TESS_EVAL) &&
   7620               !this->layout.flags.q.patch &&
   7621               this->array_specifier == NULL &&
   7622               var_mode == ir_var_shader_in) {
   7623       _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
   7624    } else if (state->stage == MESA_SHADER_TESS_CTRL &&
   7625               !this->layout.flags.q.patch &&
   7626               this->array_specifier == NULL &&
   7627               var_mode == ir_var_shader_out) {
   7628       _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
   7629    }
   7630 
   7631 
   7632    /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
   7633     * says:
   7634     *
   7635     *     "If an instance name (instance-name) is used, then it puts all the
   7636     *     members inside a scope within its own name space, accessed with the
   7637     *     field selector ( . ) operator (analogously to structures)."
   7638     */
   7639    if (this->instance_name) {
   7640       if (redeclaring_per_vertex) {
   7641          /* When a built-in in an unnamed interface block is redeclared,
   7642           * get_variable_being_redeclared() calls
   7643           * check_builtin_array_max_size() to make sure that built-in array
   7644           * variables aren't redeclared to illegal sizes.  But we're looking
   7645           * at a redeclaration of a named built-in interface block.  So we
   7646           * have to manually call check_builtin_array_max_size() for all parts
   7647           * of the interface that are arrays.
   7648           */
   7649          for (unsigned i = 0; i < num_variables; i++) {
   7650             if (fields[i].type->is_array()) {
   7651                const unsigned size = fields[i].type->array_size();
   7652                check_builtin_array_max_size(fields[i].name, size, loc, state);
   7653             }
   7654          }
   7655       } else {
   7656          validate_identifier(this->instance_name, loc, state);
   7657       }
   7658 
   7659       ir_variable *var;
   7660 
   7661       if (this->array_specifier != NULL) {
   7662          const glsl_type *block_array_type =
   7663             process_array_type(&loc, block_type, this->array_specifier, state);
   7664 
   7665          /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
   7666           *
   7667           *     For uniform blocks declared an array, each individual array
   7668           *     element corresponds to a separate buffer object backing one
   7669           *     instance of the block. As the array size indicates the number
   7670           *     of buffer objects needed, uniform block array declarations
   7671           *     must specify an array size.
   7672           *
   7673           * And a few paragraphs later:
   7674           *
   7675           *     Geometry shader input blocks must be declared as arrays and
   7676           *     follow the array declaration and linking rules for all
   7677           *     geometry shader inputs. All other input and output block
   7678           *     arrays must specify an array size.
   7679           *
   7680           * The same applies to tessellation shaders.
   7681           *
   7682           * The upshot of this is that the only circumstance where an
   7683           * interface array size *doesn't* need to be specified is on a
   7684           * geometry shader input, tessellation control shader input,
   7685           * tessellation control shader output, and tessellation evaluation
   7686           * shader input.
   7687           */
   7688          if (block_array_type->is_unsized_array()) {
   7689             bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
   7690                                 state->stage == MESA_SHADER_TESS_CTRL ||
   7691                                 state->stage == MESA_SHADER_TESS_EVAL;
   7692             bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
   7693 
   7694             if (this->layout.flags.q.in) {
   7695                if (!allow_inputs)
   7696                   _mesa_glsl_error(&loc, state,
   7697                                    "unsized input block arrays not allowed in "
   7698                                    "%s shader",
   7699                                    _mesa_shader_stage_to_string(state->stage));
   7700             } else if (this->layout.flags.q.out) {
   7701                if (!allow_outputs)
   7702                   _mesa_glsl_error(&loc, state,
   7703                                    "unsized output block arrays not allowed in "
   7704                                    "%s shader",
   7705                                    _mesa_shader_stage_to_string(state->stage));
   7706             } else {
   7707                /* by elimination, this is a uniform block array */
   7708                _mesa_glsl_error(&loc, state,
   7709                                 "unsized uniform block arrays not allowed in "
   7710                                 "%s shader",
   7711                                 _mesa_shader_stage_to_string(state->stage));
   7712             }
   7713          }
   7714 
   7715          /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
   7716           *
   7717           *     * Arrays of arrays of blocks are not allowed
   7718           */
   7719          if (state->es_shader && block_array_type->is_array() &&
   7720              block_array_type->fields.array->is_array()) {
   7721             _mesa_glsl_error(&loc, state,
   7722                              "arrays of arrays interface blocks are "
   7723                              "not allowed");
   7724          }
   7725 
   7726          var = new(state) ir_variable(block_array_type,
   7727                                       this->instance_name,
   7728                                       var_mode);
   7729       } else {
   7730          var = new(state) ir_variable(block_type,
   7731                                       this->instance_name,
   7732                                       var_mode);
   7733       }
   7734 
   7735       var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
   7736          ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
   7737 
   7738       if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
   7739          var->data.read_only = true;
   7740 
   7741       var->data.patch = this->layout.flags.q.patch;
   7742 
   7743       if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
   7744          handle_geometry_shader_input_decl(state, loc, var);
   7745       else if ((state->stage == MESA_SHADER_TESS_CTRL ||
   7746            state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
   7747          handle_tess_shader_input_decl(state, loc, var);
   7748       else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
   7749          handle_tess_ctrl_shader_output_decl(state, loc, var);
   7750 
   7751       for (unsigned i = 0; i < num_variables; i++) {
   7752          if (var->data.mode == ir_var_shader_storage)
   7753             apply_memory_qualifiers(var, fields[i]);
   7754       }
   7755 
   7756       if (ir_variable *earlier =
   7757           state->symbols->get_variable(this->instance_name)) {
   7758          if (!redeclaring_per_vertex) {
   7759             _mesa_glsl_error(&loc, state, "`%s' redeclared",
   7760                              this->instance_name);
   7761          }
   7762          earlier->data.how_declared = ir_var_declared_normally;
   7763          earlier->type = var->type;
   7764          earlier->reinit_interface_type(block_type);
   7765          delete var;
   7766       } else {
   7767          if (this->layout.flags.q.explicit_binding) {
   7768             apply_explicit_binding(state, &loc, var, var->type,
   7769                                    &this->layout);
   7770          }
   7771 
   7772          var->data.stream = qual_stream;
   7773          if (layout.flags.q.explicit_location) {
   7774             var->data.location = expl_location;
   7775             var->data.explicit_location = true;
   7776          }
   7777 
   7778          state->symbols->add_variable(var);
   7779          instructions->push_tail(var);
   7780       }
   7781    } else {
   7782       /* In order to have an array size, the block must also be declared with
   7783        * an instance name.
   7784        */
   7785       assert(this->array_specifier == NULL);
   7786 
   7787       for (unsigned i = 0; i < num_variables; i++) {
   7788          ir_variable *var =
   7789             new(state) ir_variable(fields[i].type,
   7790                                    ralloc_strdup(state, fields[i].name),
   7791                                    var_mode);
   7792          var->data.interpolation = fields[i].interpolation;
   7793          var->data.centroid = fields[i].centroid;
   7794          var->data.sample = fields[i].sample;
   7795          var->data.patch = fields[i].patch;
   7796          var->data.stream = qual_stream;
   7797          var->data.location = fields[i].location;
   7798 
   7799          if (fields[i].location != -1)
   7800             var->data.explicit_location = true;
   7801 
   7802          var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
   7803          var->data.xfb_buffer = fields[i].xfb_buffer;
   7804 
   7805          if (fields[i].offset != -1)
   7806             var->data.explicit_xfb_offset = true;
   7807          var->data.offset = fields[i].offset;
   7808 
   7809          var->init_interface_type(block_type);
   7810 
   7811          if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
   7812             var->data.read_only = true;
   7813 
   7814          /* Precision qualifiers do not have any meaning in Desktop GLSL */
   7815          if (state->es_shader) {
   7816             var->data.precision =
   7817                select_gles_precision(fields[i].precision, fields[i].type,
   7818                                      state, &loc);
   7819          }
   7820 
   7821          if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
   7822             var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
   7823                ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
   7824          } else {
   7825             var->data.matrix_layout = fields[i].matrix_layout;
   7826          }
   7827 
   7828          if (var->data.mode == ir_var_shader_storage)
   7829             apply_memory_qualifiers(var, fields[i]);
   7830 
   7831          /* Examine var name here since var may get deleted in the next call */
   7832          bool var_is_gl_id = is_gl_identifier(var->name);
   7833 
   7834          if (redeclaring_per_vertex) {
   7835             ir_variable *earlier =
   7836                get_variable_being_redeclared(var, loc, state,
   7837                                              true /* allow_all_redeclarations */);
   7838             if (!var_is_gl_id || earlier == NULL) {
   7839                _mesa_glsl_error(&loc, state,
   7840                                 "redeclaration of gl_PerVertex can only "
   7841                                 "include built-in variables");
   7842             } else if (earlier->data.how_declared == ir_var_declared_normally) {
   7843                _mesa_glsl_error(&loc, state,
   7844                                 "`%s' has already been redeclared",
   7845                                 earlier->name);
   7846             } else {
   7847                earlier->data.how_declared = ir_var_declared_in_block;
   7848                earlier->reinit_interface_type(block_type);
   7849             }
   7850             continue;
   7851          }
   7852 
   7853          if (state->symbols->get_variable(var->name) != NULL)
   7854             _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
   7855 
   7856          /* Propagate the "binding" keyword into this UBO/SSBO's fields.
   7857           * The UBO declaration itself doesn't get an ir_variable unless it
   7858           * has an instance name.  This is ugly.
   7859           */
   7860          if (this->layout.flags.q.explicit_binding) {
   7861             apply_explicit_binding(state, &loc, var,
   7862                                    var->get_interface_type(), &this->layout);
   7863          }
   7864 
   7865          if (var->type->is_unsized_array()) {
   7866             if (var->is_in_shader_storage_block() &&
   7867                 is_unsized_array_last_element(var)) {
   7868                var->data.from_ssbo_unsized_array = true;
   7869             } else {
   7870                /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
   7871                 *
   7872                 * "If an array is declared as the last member of a shader storage
   7873                 * block and the size is not specified at compile-time, it is
   7874                 * sized at run-time. In all other cases, arrays are sized only
   7875                 * at compile-time."
   7876                 *
   7877                 * In desktop GLSL it is allowed to have unsized-arrays that are
   7878                 * not last, as long as we can determine that they are implicitly
   7879                 * sized.
   7880                 */
   7881                if (state->es_shader) {
   7882                   _mesa_glsl_error(&loc, state, "unsized array `%s' "
   7883                                    "definition: only last member of a shader "
   7884                                    "storage block can be defined as unsized "
   7885                                    "array", fields[i].name);
   7886                }
   7887             }
   7888          }
   7889 
   7890          state->symbols->add_variable(var);
   7891          instructions->push_tail(var);
   7892       }
   7893 
   7894       if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
   7895          /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
   7896           *
   7897           *     It is also a compilation error ... to redeclare a built-in
   7898           *     block and then use a member from that built-in block that was
   7899           *     not included in the redeclaration.
   7900           *
   7901           * This appears to be a clarification to the behaviour established
   7902           * for gl_PerVertex by GLSL 1.50, therefore we implement this
   7903           * behaviour regardless of GLSL version.
   7904           *
   7905           * To prevent the shader from using a member that was not included in
   7906           * the redeclaration, we disable any ir_variables that are still
   7907           * associated with the old declaration of gl_PerVertex (since we've
   7908           * already updated all of the variables contained in the new
   7909           * gl_PerVertex to point to it).
   7910           *
   7911           * As a side effect this will prevent
   7912           * validate_intrastage_interface_blocks() from getting confused and
   7913           * thinking there are conflicting definitions of gl_PerVertex in the
   7914           * shader.
   7915           */
   7916          foreach_in_list_safe(ir_instruction, node, instructions) {
   7917             ir_variable *const var = node->as_variable();
   7918             if (var != NULL &&
   7919                 var->get_interface_type() == earlier_per_vertex &&
   7920                 var->data.mode == var_mode) {
   7921                if (var->data.how_declared == ir_var_declared_normally) {
   7922                   _mesa_glsl_error(&loc, state,
   7923                                    "redeclaration of gl_PerVertex cannot "
   7924                                    "follow a redeclaration of `%s'",
   7925                                    var->name);
   7926                }
   7927                state->symbols->disable_variable(var->name);
   7928                var->remove();
   7929             }
   7930          }
   7931       }
   7932    }
   7933 
   7934    return NULL;
   7935 }
   7936 
   7937 
   7938 ir_rvalue *
   7939 ast_tcs_output_layout::hir(exec_list *instructions,
   7940                            struct _mesa_glsl_parse_state *state)
   7941 {
   7942    YYLTYPE loc = this->get_location();
   7943 
   7944    unsigned num_vertices;
   7945    if (!state->out_qualifier->vertices->
   7946           process_qualifier_constant(state, "vertices", &num_vertices,
   7947                                      false)) {
   7948       /* return here to stop cascading incorrect error messages */
   7949      return NULL;
   7950    }
   7951 
   7952    /* If any shader outputs occurred before this declaration and specified an
   7953     * array size, make sure the size they specified is consistent with the
   7954     * primitive type.
   7955     */
   7956    if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
   7957       _mesa_glsl_error(&loc, state,
   7958                        "this tessellation control shader output layout "
   7959                        "specifies %u vertices, but a previous output "
   7960                        "is declared with size %u",
   7961                        num_vertices, state->tcs_output_size);
   7962       return NULL;
   7963    }
   7964 
   7965    state->tcs_output_vertices_specified = true;
   7966 
   7967    /* If any shader outputs occurred before this declaration and did not
   7968     * specify an array size, their size is determined now.
   7969     */
   7970    foreach_in_list (ir_instruction, node, instructions) {
   7971       ir_variable *var = node->as_variable();
   7972       if (var == NULL || var->data.mode != ir_var_shader_out)
   7973          continue;
   7974 
   7975       /* Note: Not all tessellation control shader output are arrays. */
   7976       if (!var->type->is_unsized_array() || var->data.patch)
   7977          continue;
   7978 
   7979       if (var->data.max_array_access >= (int)num_vertices) {
   7980          _mesa_glsl_error(&loc, state,
   7981                           "this tessellation control shader output layout "
   7982                           "specifies %u vertices, but an access to element "
   7983                           "%u of output `%s' already exists", num_vertices,
   7984                           var->data.max_array_access, var->name);
   7985       } else {
   7986          var->type = glsl_type::get_array_instance(var->type->fields.array,
   7987                                                    num_vertices);
   7988       }
   7989    }
   7990 
   7991    return NULL;
   7992 }
   7993 
   7994 
   7995 ir_rvalue *
   7996 ast_gs_input_layout::hir(exec_list *instructions,
   7997                          struct _mesa_glsl_parse_state *state)
   7998 {
   7999    YYLTYPE loc = this->get_location();
   8000 
   8001    /* Should have been prevented by the parser. */
   8002    assert(!state->gs_input_prim_type_specified
   8003           || state->in_qualifier->prim_type == this->prim_type);
   8004 
   8005    /* If any shader inputs occurred before this declaration and specified an
   8006     * array size, make sure the size they specified is consistent with the
   8007     * primitive type.
   8008     */
   8009    unsigned num_vertices = vertices_per_prim(this->prim_type);
   8010    if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
   8011       _mesa_glsl_error(&loc, state,
   8012                        "this geometry shader input layout implies %u vertices"
   8013                        " per primitive, but a previous input is declared"
   8014                        " with size %u", num_vertices, state->gs_input_size);
   8015       return NULL;
   8016    }
   8017 
   8018    state->gs_input_prim_type_specified = true;
   8019 
   8020    /* If any shader inputs occurred before this declaration and did not
   8021     * specify an array size, their size is determined now.
   8022     */
   8023    foreach_in_list(ir_instruction, node, instructions) {
   8024       ir_variable *var = node->as_variable();
   8025       if (var == NULL || var->data.mode != ir_var_shader_in)
   8026          continue;
   8027 
   8028       /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
   8029        * array; skip it.
   8030        */
   8031 
   8032       if (var->type->is_unsized_array()) {
   8033          if (var->data.max_array_access >= (int)num_vertices) {
   8034             _mesa_glsl_error(&loc, state,
   8035                              "this geometry shader input layout implies %u"
   8036                              " vertices, but an access to element %u of input"
   8037                              " `%s' already exists", num_vertices,
   8038                              var->data.max_array_access, var->name);
   8039          } else {
   8040             var->type = glsl_type::get_array_instance(var->type->fields.array,
   8041                                                       num_vertices);
   8042          }
   8043       }
   8044    }
   8045 
   8046    return NULL;
   8047 }
   8048 
   8049 
   8050 ir_rvalue *
   8051 ast_cs_input_layout::hir(exec_list *instructions,
   8052                          struct _mesa_glsl_parse_state *state)
   8053 {
   8054    YYLTYPE loc = this->get_location();
   8055 
   8056    /* From the ARB_compute_shader specification:
   8057     *
   8058     *     If the local size of the shader in any dimension is greater
   8059     *     than the maximum size supported by the implementation for that
   8060     *     dimension, a compile-time error results.
   8061     *
   8062     * It is not clear from the spec how the error should be reported if
   8063     * the total size of the work group exceeds
   8064     * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
   8065     * report it at compile time as well.
   8066     */
   8067    GLuint64 total_invocations = 1;
   8068    unsigned qual_local_size[3];
   8069    for (int i = 0; i < 3; i++) {
   8070 
   8071       char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
   8072                                              'x' + i);
   8073       /* Infer a local_size of 1 for unspecified dimensions */
   8074       if (this->local_size[i] == NULL) {
   8075          qual_local_size[i] = 1;
   8076       } else if (!this->local_size[i]->
   8077              process_qualifier_constant(state, local_size_str,
   8078                                         &qual_local_size[i], false)) {
   8079          ralloc_free(local_size_str);
   8080          return NULL;
   8081       }
   8082       ralloc_free(local_size_str);
   8083 
   8084       if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
   8085          _mesa_glsl_error(&loc, state,
   8086                           "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
   8087                           " (%d)", 'x' + i,
   8088                           state->ctx->Const.MaxComputeWorkGroupSize[i]);
   8089          break;
   8090       }
   8091       total_invocations *= qual_local_size[i];
   8092       if (total_invocations >
   8093           state->ctx->Const.MaxComputeWorkGroupInvocations) {
   8094          _mesa_glsl_error(&loc, state,
   8095                           "product of local_sizes exceeds "
   8096                           "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
   8097                           state->ctx->Const.MaxComputeWorkGroupInvocations);
   8098          break;
   8099       }
   8100    }
   8101 
   8102    /* If any compute input layout declaration preceded this one, make sure it
   8103     * was consistent with this one.
   8104     */
   8105    if (state->cs_input_local_size_specified) {
   8106       for (int i = 0; i < 3; i++) {
   8107          if (state->cs_input_local_size[i] != qual_local_size[i]) {
   8108             _mesa_glsl_error(&loc, state,
   8109                              "compute shader input layout does not match"
   8110                              " previous declaration");
   8111             return NULL;
   8112          }
   8113       }
   8114    }
   8115 
   8116    /* The ARB_compute_variable_group_size spec says:
   8117     *
   8118     *     If a compute shader including a *local_size_variable* qualifier also
   8119     *     declares a fixed local group size using the *local_size_x*,
   8120     *     *local_size_y*, or *local_size_z* qualifiers, a compile-time error
   8121     *     results
   8122     */
   8123    if (state->cs_input_local_size_variable_specified) {
   8124       _mesa_glsl_error(&loc, state,
   8125                        "compute shader can't include both a variable and a "
   8126                        "fixed local group size");
   8127       return NULL;
   8128    }
   8129 
   8130    state->cs_input_local_size_specified = true;
   8131    for (int i = 0; i < 3; i++)
   8132       state->cs_input_local_size[i] = qual_local_size[i];
   8133 
   8134    /* We may now declare the built-in constant gl_WorkGroupSize (see
   8135     * builtin_variable_generator::generate_constants() for why we didn't
   8136     * declare it earlier).
   8137     */
   8138    ir_variable *var = new(state->symbols)
   8139       ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
   8140    var->data.how_declared = ir_var_declared_implicitly;
   8141    var->data.read_only = true;
   8142    instructions->push_tail(var);
   8143    state->symbols->add_variable(var);
   8144    ir_constant_data data;
   8145    memset(&data, 0, sizeof(data));
   8146    for (int i = 0; i < 3; i++)
   8147       data.u[i] = qual_local_size[i];
   8148    var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
   8149    var->constant_initializer =
   8150       new(var) ir_constant(glsl_type::uvec3_type, &data);
   8151    var->data.has_initializer = true;
   8152 
   8153    return NULL;
   8154 }
   8155 
   8156 
   8157 static void
   8158 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
   8159                                exec_list *instructions)
   8160 {
   8161    bool gl_FragColor_assigned = false;
   8162    bool gl_FragData_assigned = false;
   8163    bool gl_FragSecondaryColor_assigned = false;
   8164    bool gl_FragSecondaryData_assigned = false;
   8165    bool user_defined_fs_output_assigned = false;
   8166    ir_variable *user_defined_fs_output = NULL;
   8167 
   8168    /* It would be nice to have proper location information. */
   8169    YYLTYPE loc;
   8170    memset(&loc, 0, sizeof(loc));
   8171 
   8172    foreach_in_list(ir_instruction, node, instructions) {
   8173       ir_variable *var = node->as_variable();
   8174 
   8175       if (!var || !var->data.assigned)
   8176          continue;
   8177 
   8178       if (strcmp(var->name, "gl_FragColor") == 0)
   8179          gl_FragColor_assigned = true;
   8180       else if (strcmp(var->name, "gl_FragData") == 0)
   8181          gl_FragData_assigned = true;
   8182         else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
   8183          gl_FragSecondaryColor_assigned = true;
   8184         else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
   8185          gl_FragSecondaryData_assigned = true;
   8186       else if (!is_gl_identifier(var->name)) {
   8187          if (state->stage == MESA_SHADER_FRAGMENT &&
   8188              var->data.mode == ir_var_shader_out) {
   8189             user_defined_fs_output_assigned = true;
   8190             user_defined_fs_output = var;
   8191          }
   8192       }
   8193    }
   8194 
   8195    /* From the GLSL 1.30 spec:
   8196     *
   8197     *     "If a shader statically assigns a value to gl_FragColor, it
   8198     *      may not assign a value to any element of gl_FragData. If a
   8199     *      shader statically writes a value to any element of
   8200     *      gl_FragData, it may not assign a value to
   8201     *      gl_FragColor. That is, a shader may assign values to either
   8202     *      gl_FragColor or gl_FragData, but not both. Multiple shaders
   8203     *      linked together must also consistently write just one of
   8204     *      these variables.  Similarly, if user declared output
   8205     *      variables are in use (statically assigned to), then the
   8206     *      built-in variables gl_FragColor and gl_FragData may not be
   8207     *      assigned to. These incorrect usages all generate compile
   8208     *      time errors."
   8209     */
   8210    if (gl_FragColor_assigned && gl_FragData_assigned) {
   8211       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
   8212                        "`gl_FragColor' and `gl_FragData'");
   8213    } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
   8214       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
   8215                        "`gl_FragColor' and `%s'",
   8216                        user_defined_fs_output->name);
   8217    } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
   8218       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
   8219                        "`gl_FragSecondaryColorEXT' and"
   8220                        " `gl_FragSecondaryDataEXT'");
   8221    } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
   8222       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
   8223                        "`gl_FragColor' and"
   8224                        " `gl_FragSecondaryDataEXT'");
   8225    } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
   8226       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
   8227                        "`gl_FragData' and"
   8228                        " `gl_FragSecondaryColorEXT'");
   8229    } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
   8230       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
   8231                        "`gl_FragData' and `%s'",
   8232                        user_defined_fs_output->name);
   8233    }
   8234 
   8235    if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
   8236        !state->EXT_blend_func_extended_enable) {
   8237       _mesa_glsl_error(&loc, state,
   8238                        "Dual source blending requires EXT_blend_func_extended");
   8239    }
   8240 }
   8241 
   8242 
   8243 static void
   8244 remove_per_vertex_blocks(exec_list *instructions,
   8245                          _mesa_glsl_parse_state *state, ir_variable_mode mode)
   8246 {
   8247    /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
   8248     * if it exists in this shader type.
   8249     */
   8250    const glsl_type *per_vertex = NULL;
   8251    switch (mode) {
   8252    case ir_var_shader_in:
   8253       if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
   8254          per_vertex = gl_in->get_interface_type();
   8255       break;
   8256    case ir_var_shader_out:
   8257       if (ir_variable *gl_Position =
   8258           state->symbols->get_variable("gl_Position")) {
   8259          per_vertex = gl_Position->get_interface_type();
   8260       }
   8261       break;
   8262    default:
   8263       assert(!"Unexpected mode");
   8264       break;
   8265    }
   8266 
   8267    /* If we didn't find a built-in gl_PerVertex interface block, then we don't
   8268     * need to do anything.
   8269     */
   8270    if (per_vertex == NULL)
   8271       return;
   8272 
   8273    /* If the interface block is used by the shader, then we don't need to do
   8274     * anything.
   8275     */
   8276    interface_block_usage_visitor v(mode, per_vertex);
   8277    v.run(instructions);
   8278    if (v.usage_found())
   8279       return;
   8280 
   8281    /* Remove any ir_variable declarations that refer to the interface block
   8282     * we're removing.
   8283     */
   8284    foreach_in_list_safe(ir_instruction, node, instructions) {
   8285       ir_variable *const var = node->as_variable();
   8286       if (var != NULL && var->get_interface_type() == per_vertex &&
   8287           var->data.mode == mode) {
   8288          state->symbols->disable_variable(var->name);
   8289          var->remove();
   8290       }
   8291    }
   8292 }
   8293