Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright 2014 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkPatchUtils.h"
      9 
     10 #include "SkColorData.h"
     11 #include "SkGeometry.h"
     12 #include "SkPM4f.h"
     13 
     14 namespace {
     15     enum CubicCtrlPts {
     16         kTopP0_CubicCtrlPts = 0,
     17         kTopP1_CubicCtrlPts = 1,
     18         kTopP2_CubicCtrlPts = 2,
     19         kTopP3_CubicCtrlPts = 3,
     20 
     21         kRightP0_CubicCtrlPts = 3,
     22         kRightP1_CubicCtrlPts = 4,
     23         kRightP2_CubicCtrlPts = 5,
     24         kRightP3_CubicCtrlPts = 6,
     25 
     26         kBottomP0_CubicCtrlPts = 9,
     27         kBottomP1_CubicCtrlPts = 8,
     28         kBottomP2_CubicCtrlPts = 7,
     29         kBottomP3_CubicCtrlPts = 6,
     30 
     31         kLeftP0_CubicCtrlPts = 0,
     32         kLeftP1_CubicCtrlPts = 11,
     33         kLeftP2_CubicCtrlPts = 10,
     34         kLeftP3_CubicCtrlPts = 9,
     35     };
     36 
     37     // Enum for corner also clockwise.
     38     enum Corner {
     39         kTopLeft_Corner = 0,
     40         kTopRight_Corner,
     41         kBottomRight_Corner,
     42         kBottomLeft_Corner
     43     };
     44 }
     45 
     46 /**
     47  * Evaluator to sample the values of a cubic bezier using forward differences.
     48  * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
     49  * adding precalculated values.
     50  * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
     51  * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
     52  * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
     53  * obtaining this value (mh) we could just add this constant step to our first sampled point
     54  * to compute the next one.
     55  *
     56  * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
     57  * apply again forward differences and get linear function to which we can apply again forward
     58  * differences to get a constant difference. This is why we keep an array of size 4, the 0th
     59  * position keeps the sampled value while the next ones keep the quadratic, linear and constant
     60  * difference values.
     61  */
     62 
     63 class FwDCubicEvaluator {
     64 
     65 public:
     66 
     67     /**
     68      * Receives the 4 control points of the cubic bezier.
     69      */
     70 
     71     explicit FwDCubicEvaluator(const SkPoint points[4])
     72             : fCoefs(points) {
     73         memcpy(fPoints, points, 4 * sizeof(SkPoint));
     74 
     75         this->restart(1);
     76     }
     77 
     78     /**
     79      * Restarts the forward differences evaluator to the first value of t = 0.
     80      */
     81     void restart(int divisions)  {
     82         fDivisions = divisions;
     83         fCurrent    = 0;
     84         fMax        = fDivisions + 1;
     85         Sk2s h  = Sk2s(1.f / fDivisions);
     86         Sk2s h2 = h * h;
     87         Sk2s h3 = h2 * h;
     88         Sk2s fwDiff3 = Sk2s(6) * fCoefs.fA * h3;
     89         fFwDiff[3] = to_point(fwDiff3);
     90         fFwDiff[2] = to_point(fwDiff3 + times_2(fCoefs.fB) * h2);
     91         fFwDiff[1] = to_point(fCoefs.fA * h3 + fCoefs.fB * h2 + fCoefs.fC * h);
     92         fFwDiff[0] = to_point(fCoefs.fD);
     93     }
     94 
     95     /**
     96      * Check if the evaluator is still within the range of 0<=t<=1
     97      */
     98     bool done() const {
     99         return fCurrent > fMax;
    100     }
    101 
    102     /**
    103      * Call next to obtain the SkPoint sampled and move to the next one.
    104      */
    105     SkPoint next() {
    106         SkPoint point = fFwDiff[0];
    107         fFwDiff[0]    += fFwDiff[1];
    108         fFwDiff[1]    += fFwDiff[2];
    109         fFwDiff[2]    += fFwDiff[3];
    110         fCurrent++;
    111         return point;
    112     }
    113 
    114     const SkPoint* getCtrlPoints() const {
    115         return fPoints;
    116     }
    117 
    118 private:
    119     SkCubicCoeff fCoefs;
    120     int fMax, fCurrent, fDivisions;
    121     SkPoint fFwDiff[4], fPoints[4];
    122 };
    123 
    124 ////////////////////////////////////////////////////////////////////////////////
    125 
    126 // size in pixels of each partition per axis, adjust this knob
    127 static const int kPartitionSize = 10;
    128 
    129 /**
    130  * Calculate the approximate arc length given a bezier curve's control points.
    131  */
    132 static SkScalar approx_arc_length(SkPoint* points, int count) {
    133     if (count < 2) {
    134         return 0;
    135     }
    136     SkScalar arcLength = 0;
    137     for (int i = 0; i < count - 1; i++) {
    138         arcLength += SkPoint::Distance(points[i], points[i + 1]);
    139     }
    140     return arcLength;
    141 }
    142 
    143 static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
    144                        SkScalar c11) {
    145     SkScalar a = c00 * (1.f - tx) + c10 * tx;
    146     SkScalar b = c01 * (1.f - tx) + c11 * tx;
    147     return a * (1.f - ty) + b * ty;
    148 }
    149 
    150 static Sk4f bilerp(SkScalar tx, SkScalar ty,
    151                    const Sk4f& c00, const Sk4f& c10, const Sk4f& c01, const Sk4f& c11) {
    152     Sk4f a = c00 * (1.f - tx) + c10 * tx;
    153     Sk4f b = c01 * (1.f - tx) + c11 * tx;
    154     return a * (1.f - ty) + b * ty;
    155 }
    156 
    157 SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) {
    158 
    159     // Approximate length of each cubic.
    160     SkPoint pts[kNumPtsCubic];
    161     SkPatchUtils::GetTopCubic(cubics, pts);
    162     matrix->mapPoints(pts, kNumPtsCubic);
    163     SkScalar topLength = approx_arc_length(pts, kNumPtsCubic);
    164 
    165     SkPatchUtils::GetBottomCubic(cubics, pts);
    166     matrix->mapPoints(pts, kNumPtsCubic);
    167     SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic);
    168 
    169     SkPatchUtils::GetLeftCubic(cubics, pts);
    170     matrix->mapPoints(pts, kNumPtsCubic);
    171     SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic);
    172 
    173     SkPatchUtils::GetRightCubic(cubics, pts);
    174     matrix->mapPoints(pts, kNumPtsCubic);
    175     SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic);
    176 
    177     // Level of detail per axis, based on the larger side between top and bottom or left and right
    178     int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitionSize);
    179     int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitionSize);
    180 
    181     return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY));
    182 }
    183 
    184 void SkPatchUtils::GetTopCubic(const SkPoint cubics[12], SkPoint points[4]) {
    185     points[0] = cubics[kTopP0_CubicCtrlPts];
    186     points[1] = cubics[kTopP1_CubicCtrlPts];
    187     points[2] = cubics[kTopP2_CubicCtrlPts];
    188     points[3] = cubics[kTopP3_CubicCtrlPts];
    189 }
    190 
    191 void SkPatchUtils::GetBottomCubic(const SkPoint cubics[12], SkPoint points[4]) {
    192     points[0] = cubics[kBottomP0_CubicCtrlPts];
    193     points[1] = cubics[kBottomP1_CubicCtrlPts];
    194     points[2] = cubics[kBottomP2_CubicCtrlPts];
    195     points[3] = cubics[kBottomP3_CubicCtrlPts];
    196 }
    197 
    198 void SkPatchUtils::GetLeftCubic(const SkPoint cubics[12], SkPoint points[4]) {
    199     points[0] = cubics[kLeftP0_CubicCtrlPts];
    200     points[1] = cubics[kLeftP1_CubicCtrlPts];
    201     points[2] = cubics[kLeftP2_CubicCtrlPts];
    202     points[3] = cubics[kLeftP3_CubicCtrlPts];
    203 }
    204 
    205 void SkPatchUtils::GetRightCubic(const SkPoint cubics[12], SkPoint points[4]) {
    206     points[0] = cubics[kRightP0_CubicCtrlPts];
    207     points[1] = cubics[kRightP1_CubicCtrlPts];
    208     points[2] = cubics[kRightP2_CubicCtrlPts];
    209     points[3] = cubics[kRightP3_CubicCtrlPts];
    210 }
    211 
    212 #include "SkPM4fPriv.h"
    213 #include "SkColorSpaceXform.h"
    214 
    215 struct SkRGBAf {
    216     float fVec[4];
    217 
    218     static SkRGBAf From4f(const Sk4f& x) {
    219         SkRGBAf c;
    220         x.store(c.fVec);
    221         return c;
    222     }
    223 
    224     static SkRGBAf FromBGRA32(SkColor c) {
    225         return From4f(swizzle_rb(SkNx_cast<float>(Sk4b::Load(&c)) * (1/255.0f)));
    226     }
    227 
    228     Sk4f to4f() const {
    229         return Sk4f::Load(fVec);
    230     }
    231 
    232     SkColor toBGRA32() const {
    233         SkColor color;
    234         SkNx_cast<uint8_t>(swizzle_rb(this->to4f()) * Sk4f(255) + Sk4f(0.5f)).store(&color);
    235         return color;
    236     }
    237 
    238     SkRGBAf premul() const {
    239         float a = fVec[3];
    240         return From4f(this->to4f() * Sk4f(a, a, a, 1));
    241     }
    242 
    243     SkRGBAf unpremul() const {
    244         float a = fVec[3];
    245         float inv = a ? 1/a : 0;
    246         return From4f(this->to4f() * Sk4f(inv, inv, inv, 1));
    247     }
    248 };
    249 
    250 static void skcolor_to_linear(SkRGBAf dst[], const SkColor src[], int count, SkColorSpace* cs,
    251                               bool doPremul) {
    252     if (cs) {
    253         auto srcCS = SkColorSpace::MakeSRGB();
    254         auto dstCS = cs->makeLinearGamma();
    255         auto op = doPremul ? SkColorSpaceXform::kPremul_AlphaOp
    256                            : SkColorSpaceXform::kPreserve_AlphaOp;
    257         SkColorSpaceXform::Apply(dstCS.get(), SkColorSpaceXform::kRGBA_F32_ColorFormat,  dst,
    258                                  srcCS.get(), SkColorSpaceXform::kBGRA_8888_ColorFormat, src,
    259                                  count, op);
    260     } else {
    261         for (int i = 0; i < count; ++i) {
    262             dst[i] = SkRGBAf::FromBGRA32(src[i]);
    263             if (doPremul) {
    264                 dst[i] = dst[i].premul();
    265             }
    266         }
    267     }
    268 }
    269 
    270 static void linear_to_skcolor(SkColor dst[], const SkRGBAf src[], int count, SkColorSpace* cs) {
    271     if (cs) {
    272         auto srcCS = cs->makeLinearGamma();
    273         auto dstCS = SkColorSpace::MakeSRGB();
    274         SkColorSpaceXform::Apply(dstCS.get(), SkColorSpaceXform::kBGRA_8888_ColorFormat, dst,
    275                                  srcCS.get(), SkColorSpaceXform::kRGBA_F32_ColorFormat,  src,
    276                                  count, SkColorSpaceXform::kPreserve_AlphaOp);
    277     } else {
    278         for (int i = 0; i < count; ++i) {
    279             dst[i] = src[i].toBGRA32();
    280         }
    281     }
    282 }
    283 
    284 static void unpremul(SkRGBAf array[], int count) {
    285     for (int i = 0; i < count; ++i) {
    286         array[i] = array[i].unpremul();
    287     }
    288 }
    289 
    290 sk_sp<SkVertices> SkPatchUtils::MakeVertices(const SkPoint cubics[12], const SkColor srcColors[4],
    291                                              const SkPoint srcTexCoords[4], int lodX, int lodY,
    292                                              bool interpColorsLinearly) {
    293     if (lodX < 1 || lodY < 1 || nullptr == cubics) {
    294         return nullptr;
    295     }
    296 
    297     // check for overflow in multiplication
    298     const int64_t lodX64 = (lodX + 1),
    299     lodY64 = (lodY + 1),
    300     mult64 = lodX64 * lodY64;
    301     if (mult64 > SK_MaxS32) {
    302         return nullptr;
    303     }
    304 
    305     int vertexCount = SkToS32(mult64);
    306     // it is recommended to generate draw calls of no more than 65536 indices, so we never generate
    307     // more than 60000 indices. To accomplish that we resize the LOD and vertex count
    308     if (vertexCount > 10000 || lodX > 200 || lodY > 200) {
    309         float weightX = static_cast<float>(lodX) / (lodX + lodY);
    310         float weightY = static_cast<float>(lodY) / (lodX + lodY);
    311 
    312         // 200 comes from the 100 * 2 which is the max value of vertices because of the limit of
    313         // 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6)
    314         lodX = static_cast<int>(weightX * 200);
    315         lodY = static_cast<int>(weightY * 200);
    316         vertexCount = (lodX + 1) * (lodY + 1);
    317     }
    318     const int indexCount = lodX * lodY * 6;
    319     uint32_t flags = 0;
    320     if (srcTexCoords) {
    321         flags |= SkVertices::kHasTexCoords_BuilderFlag;
    322     }
    323     if (srcColors) {
    324         flags |= SkVertices::kHasColors_BuilderFlag;
    325     }
    326 
    327     SkSTArenaAlloc<2048> alloc;
    328     SkRGBAf* cornerColors = srcColors ? alloc.makeArray<SkRGBAf>(4) : nullptr;
    329     SkRGBAf* tmpColors = srcColors ? alloc.makeArray<SkRGBAf>(vertexCount) : nullptr;
    330     auto convertCS = interpColorsLinearly ? SkColorSpace::MakeSRGB() : nullptr;
    331 
    332     SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, indexCount, flags);
    333     SkPoint* pos = builder.positions();
    334     SkPoint* texs = builder.texCoords();
    335     uint16_t* indices = builder.indices();
    336     bool is_opaque = false;
    337 
    338     /*
    339      *  1. Should we offer this as a runtime choice, as we do in gradients?
    340      *  2. Since drawing the vertices wants premul, shoudl we extend SkVertices to store
    341      *     premul colors (as floats, w/ a colorspace)?
    342      */
    343     bool doPremul = true;
    344     if (cornerColors) {
    345         SkColor c = ~0;
    346         for (int i = 0; i < kNumCorners; i++) {
    347             c &= srcColors[i];
    348         }
    349         is_opaque = (SkColorGetA(c) == 0xFF);
    350         if (is_opaque) {
    351             doPremul = false;   // no need
    352         }
    353 
    354         skcolor_to_linear(cornerColors, srcColors, kNumCorners, convertCS.get(), doPremul);
    355     }
    356 
    357     SkPoint pts[kNumPtsCubic];
    358     SkPatchUtils::GetBottomCubic(cubics, pts);
    359     FwDCubicEvaluator fBottom(pts);
    360     SkPatchUtils::GetTopCubic(cubics, pts);
    361     FwDCubicEvaluator fTop(pts);
    362     SkPatchUtils::GetLeftCubic(cubics, pts);
    363     FwDCubicEvaluator fLeft(pts);
    364     SkPatchUtils::GetRightCubic(cubics, pts);
    365     FwDCubicEvaluator fRight(pts);
    366 
    367     fBottom.restart(lodX);
    368     fTop.restart(lodX);
    369 
    370     SkScalar u = 0.0f;
    371     int stride = lodY + 1;
    372     for (int x = 0; x <= lodX; x++) {
    373         SkPoint bottom = fBottom.next(), top = fTop.next();
    374         fLeft.restart(lodY);
    375         fRight.restart(lodY);
    376         SkScalar v = 0.f;
    377         for (int y = 0; y <= lodY; y++) {
    378             int dataIndex = x * (lodY + 1) + y;
    379 
    380             SkPoint left = fLeft.next(), right = fRight.next();
    381 
    382             SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
    383                                        (1.0f - v) * top.y() + v * bottom.y());
    384             SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
    385                                        (1.0f - u) * left.y() + u * right.y());
    386             SkPoint s2 = SkPoint::Make(
    387                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
    388                                                      + u * fTop.getCtrlPoints()[3].x())
    389                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
    390                                               + u * fBottom.getCtrlPoints()[3].x()),
    391                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
    392                                                      + u * fTop.getCtrlPoints()[3].y())
    393                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
    394                                               + u * fBottom.getCtrlPoints()[3].y()));
    395             pos[dataIndex] = s0 + s1 - s2;
    396 
    397             if (cornerColors) {
    398                 bilerp(u, v, cornerColors[kTopLeft_Corner].to4f(),
    399                              cornerColors[kTopRight_Corner].to4f(),
    400                              cornerColors[kBottomLeft_Corner].to4f(),
    401                              cornerColors[kBottomRight_Corner].to4f()).store(tmpColors[dataIndex].fVec);
    402                 if (is_opaque) {
    403                     tmpColors[dataIndex].fVec[3] = 1;
    404                 }
    405             }
    406 
    407             if (texs) {
    408                 texs[dataIndex] = SkPoint::Make(bilerp(u, v, srcTexCoords[kTopLeft_Corner].x(),
    409                                                        srcTexCoords[kTopRight_Corner].x(),
    410                                                        srcTexCoords[kBottomLeft_Corner].x(),
    411                                                        srcTexCoords[kBottomRight_Corner].x()),
    412                                                 bilerp(u, v, srcTexCoords[kTopLeft_Corner].y(),
    413                                                        srcTexCoords[kTopRight_Corner].y(),
    414                                                        srcTexCoords[kBottomLeft_Corner].y(),
    415                                                        srcTexCoords[kBottomRight_Corner].y()));
    416 
    417             }
    418 
    419             if(x < lodX && y < lodY) {
    420                 int i = 6 * (x * lodY + y);
    421                 indices[i] = x * stride + y;
    422                 indices[i + 1] = x * stride + 1 + y;
    423                 indices[i + 2] = (x + 1) * stride + 1 + y;
    424                 indices[i + 3] = indices[i];
    425                 indices[i + 4] = indices[i + 2];
    426                 indices[i + 5] = (x + 1) * stride + y;
    427             }
    428             v = SkScalarClampMax(v + 1.f / lodY, 1);
    429         }
    430         u = SkScalarClampMax(u + 1.f / lodX, 1);
    431     }
    432 
    433     if (tmpColors) {
    434         if (doPremul) {
    435             unpremul(tmpColors, vertexCount);
    436         }
    437         linear_to_skcolor(builder.colors(), tmpColors, vertexCount, convertCS.get());
    438     }
    439     return builder.detach();
    440 }
    441