Home | History | Annotate | Download | only in Analysis
      1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines routines for folding instructions into constants.
     11 //
     12 // Also, to supplement the basic VMCore ConstantExpr simplifications,
     13 // this file defines some additional folding routines that can make use of
     14 // TargetData information. These functions cannot go in VMCore due to library
     15 // dependency issues.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/Analysis/ConstantFolding.h"
     20 #include "llvm/Constants.h"
     21 #include "llvm/DerivedTypes.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/GlobalVariable.h"
     24 #include "llvm/Instructions.h"
     25 #include "llvm/Intrinsics.h"
     26 #include "llvm/Operator.h"
     27 #include "llvm/Analysis/ValueTracking.h"
     28 #include "llvm/Target/TargetData.h"
     29 #include "llvm/ADT/SmallVector.h"
     30 #include "llvm/ADT/StringMap.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/GetElementPtrTypeIterator.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include "llvm/Support/FEnv.h"
     35 #include <cerrno>
     36 #include <cmath>
     37 using namespace llvm;
     38 
     39 //===----------------------------------------------------------------------===//
     40 // Constant Folding internal helper functions
     41 //===----------------------------------------------------------------------===//
     42 
     43 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
     44 /// TargetData.  This always returns a non-null constant, but it may be a
     45 /// ConstantExpr if unfoldable.
     46 static Constant *FoldBitCast(Constant *C, Type *DestTy,
     47                              const TargetData &TD) {
     48   // Catch the obvious splat cases.
     49   if (C->isNullValue() && !DestTy->isX86_MMXTy())
     50     return Constant::getNullValue(DestTy);
     51   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
     52     return Constant::getAllOnesValue(DestTy);
     53 
     54   // The code below only handles casts to vectors currently.
     55   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
     56   if (DestVTy == 0)
     57     return ConstantExpr::getBitCast(C, DestTy);
     58 
     59   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
     60   // vector so the code below can handle it uniformly.
     61   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
     62     Constant *Ops = C; // don't take the address of C!
     63     return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
     64   }
     65 
     66   // If this is a bitcast from constant vector -> vector, fold it.
     67   ConstantVector *CV = dyn_cast<ConstantVector>(C);
     68   if (CV == 0)
     69     return ConstantExpr::getBitCast(C, DestTy);
     70 
     71   // If the element types match, VMCore can fold it.
     72   unsigned NumDstElt = DestVTy->getNumElements();
     73   unsigned NumSrcElt = CV->getNumOperands();
     74   if (NumDstElt == NumSrcElt)
     75     return ConstantExpr::getBitCast(C, DestTy);
     76 
     77   Type *SrcEltTy = CV->getType()->getElementType();
     78   Type *DstEltTy = DestVTy->getElementType();
     79 
     80   // Otherwise, we're changing the number of elements in a vector, which
     81   // requires endianness information to do the right thing.  For example,
     82   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
     83   // folds to (little endian):
     84   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
     85   // and to (big endian):
     86   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
     87 
     88   // First thing is first.  We only want to think about integer here, so if
     89   // we have something in FP form, recast it as integer.
     90   if (DstEltTy->isFloatingPointTy()) {
     91     // Fold to an vector of integers with same size as our FP type.
     92     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
     93     Type *DestIVTy =
     94       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
     95     // Recursively handle this integer conversion, if possible.
     96     C = FoldBitCast(C, DestIVTy, TD);
     97     if (!C) return ConstantExpr::getBitCast(C, DestTy);
     98 
     99     // Finally, VMCore can handle this now that #elts line up.
    100     return ConstantExpr::getBitCast(C, DestTy);
    101   }
    102 
    103   // Okay, we know the destination is integer, if the input is FP, convert
    104   // it to integer first.
    105   if (SrcEltTy->isFloatingPointTy()) {
    106     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
    107     Type *SrcIVTy =
    108       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
    109     // Ask VMCore to do the conversion now that #elts line up.
    110     C = ConstantExpr::getBitCast(C, SrcIVTy);
    111     CV = dyn_cast<ConstantVector>(C);
    112     if (!CV)  // If VMCore wasn't able to fold it, bail out.
    113       return C;
    114   }
    115 
    116   // Now we know that the input and output vectors are both integer vectors
    117   // of the same size, and that their #elements is not the same.  Do the
    118   // conversion here, which depends on whether the input or output has
    119   // more elements.
    120   bool isLittleEndian = TD.isLittleEndian();
    121 
    122   SmallVector<Constant*, 32> Result;
    123   if (NumDstElt < NumSrcElt) {
    124     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
    125     Constant *Zero = Constant::getNullValue(DstEltTy);
    126     unsigned Ratio = NumSrcElt/NumDstElt;
    127     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
    128     unsigned SrcElt = 0;
    129     for (unsigned i = 0; i != NumDstElt; ++i) {
    130       // Build each element of the result.
    131       Constant *Elt = Zero;
    132       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
    133       for (unsigned j = 0; j != Ratio; ++j) {
    134         Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
    135         if (!Src)  // Reject constantexpr elements.
    136           return ConstantExpr::getBitCast(C, DestTy);
    137 
    138         // Zero extend the element to the right size.
    139         Src = ConstantExpr::getZExt(Src, Elt->getType());
    140 
    141         // Shift it to the right place, depending on endianness.
    142         Src = ConstantExpr::getShl(Src,
    143                                    ConstantInt::get(Src->getType(), ShiftAmt));
    144         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
    145 
    146         // Mix it in.
    147         Elt = ConstantExpr::getOr(Elt, Src);
    148       }
    149       Result.push_back(Elt);
    150     }
    151   } else {
    152     // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    153     unsigned Ratio = NumDstElt/NumSrcElt;
    154     unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
    155 
    156     // Loop over each source value, expanding into multiple results.
    157     for (unsigned i = 0; i != NumSrcElt; ++i) {
    158       Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
    159       if (!Src)  // Reject constantexpr elements.
    160         return ConstantExpr::getBitCast(C, DestTy);
    161 
    162       unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
    163       for (unsigned j = 0; j != Ratio; ++j) {
    164         // Shift the piece of the value into the right place, depending on
    165         // endianness.
    166         Constant *Elt = ConstantExpr::getLShr(Src,
    167                                     ConstantInt::get(Src->getType(), ShiftAmt));
    168         ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
    169 
    170         // Truncate and remember this piece.
    171         Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
    172       }
    173     }
    174   }
    175 
    176   return ConstantVector::get(Result);
    177 }
    178 
    179 
    180 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
    181 /// from a global, return the global and the constant.  Because of
    182 /// constantexprs, this function is recursive.
    183 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
    184                                        int64_t &Offset, const TargetData &TD) {
    185   // Trivial case, constant is the global.
    186   if ((GV = dyn_cast<GlobalValue>(C))) {
    187     Offset = 0;
    188     return true;
    189   }
    190 
    191   // Otherwise, if this isn't a constant expr, bail out.
    192   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    193   if (!CE) return false;
    194 
    195   // Look through ptr->int and ptr->ptr casts.
    196   if (CE->getOpcode() == Instruction::PtrToInt ||
    197       CE->getOpcode() == Instruction::BitCast)
    198     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
    199 
    200   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
    201   if (CE->getOpcode() == Instruction::GetElementPtr) {
    202     // Cannot compute this if the element type of the pointer is missing size
    203     // info.
    204     if (!cast<PointerType>(CE->getOperand(0)->getType())
    205                  ->getElementType()->isSized())
    206       return false;
    207 
    208     // If the base isn't a global+constant, we aren't either.
    209     if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
    210       return false;
    211 
    212     // Otherwise, add any offset that our operands provide.
    213     gep_type_iterator GTI = gep_type_begin(CE);
    214     for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
    215          i != e; ++i, ++GTI) {
    216       ConstantInt *CI = dyn_cast<ConstantInt>(*i);
    217       if (!CI) return false;  // Index isn't a simple constant?
    218       if (CI->isZero()) continue;  // Not adding anything.
    219 
    220       if (StructType *ST = dyn_cast<StructType>(*GTI)) {
    221         // N = N + Offset
    222         Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
    223       } else {
    224         SequentialType *SQT = cast<SequentialType>(*GTI);
    225         Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
    226       }
    227     }
    228     return true;
    229   }
    230 
    231   return false;
    232 }
    233 
    234 /// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
    235 /// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
    236 /// pointer to copy results into and BytesLeft is the number of bytes left in
    237 /// the CurPtr buffer.  TD is the target data.
    238 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
    239                                unsigned char *CurPtr, unsigned BytesLeft,
    240                                const TargetData &TD) {
    241   assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
    242          "Out of range access");
    243 
    244   // If this element is zero or undefined, we can just return since *CurPtr is
    245   // zero initialized.
    246   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
    247     return true;
    248 
    249   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    250     if (CI->getBitWidth() > 64 ||
    251         (CI->getBitWidth() & 7) != 0)
    252       return false;
    253 
    254     uint64_t Val = CI->getZExtValue();
    255     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
    256 
    257     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
    258       CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
    259       ++ByteOffset;
    260     }
    261     return true;
    262   }
    263 
    264   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    265     if (CFP->getType()->isDoubleTy()) {
    266       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
    267       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
    268     }
    269     if (CFP->getType()->isFloatTy()){
    270       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
    271       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
    272     }
    273     return false;
    274   }
    275 
    276   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
    277     const StructLayout *SL = TD.getStructLayout(CS->getType());
    278     unsigned Index = SL->getElementContainingOffset(ByteOffset);
    279     uint64_t CurEltOffset = SL->getElementOffset(Index);
    280     ByteOffset -= CurEltOffset;
    281 
    282     while (1) {
    283       // If the element access is to the element itself and not to tail padding,
    284       // read the bytes from the element.
    285       uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
    286 
    287       if (ByteOffset < EltSize &&
    288           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
    289                               BytesLeft, TD))
    290         return false;
    291 
    292       ++Index;
    293 
    294       // Check to see if we read from the last struct element, if so we're done.
    295       if (Index == CS->getType()->getNumElements())
    296         return true;
    297 
    298       // If we read all of the bytes we needed from this element we're done.
    299       uint64_t NextEltOffset = SL->getElementOffset(Index);
    300 
    301       if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
    302         return true;
    303 
    304       // Move to the next element of the struct.
    305       CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
    306       BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
    307       ByteOffset = 0;
    308       CurEltOffset = NextEltOffset;
    309     }
    310     // not reached.
    311   }
    312 
    313   if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
    314     uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
    315     uint64_t Index = ByteOffset / EltSize;
    316     uint64_t Offset = ByteOffset - Index * EltSize;
    317     for (; Index != CA->getType()->getNumElements(); ++Index) {
    318       if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
    319                               BytesLeft, TD))
    320         return false;
    321       if (EltSize >= BytesLeft)
    322         return true;
    323 
    324       Offset = 0;
    325       BytesLeft -= EltSize;
    326       CurPtr += EltSize;
    327     }
    328     return true;
    329   }
    330 
    331   if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
    332     uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
    333     uint64_t Index = ByteOffset / EltSize;
    334     uint64_t Offset = ByteOffset - Index * EltSize;
    335     for (; Index != CV->getType()->getNumElements(); ++Index) {
    336       if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
    337                               BytesLeft, TD))
    338         return false;
    339       if (EltSize >= BytesLeft)
    340         return true;
    341 
    342       Offset = 0;
    343       BytesLeft -= EltSize;
    344       CurPtr += EltSize;
    345     }
    346     return true;
    347   }
    348 
    349   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    350     if (CE->getOpcode() == Instruction::IntToPtr &&
    351         CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
    352         return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
    353                                   BytesLeft, TD);
    354   }
    355 
    356   // Otherwise, unknown initializer type.
    357   return false;
    358 }
    359 
    360 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
    361                                                  const TargetData &TD) {
    362   Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
    363   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
    364 
    365   // If this isn't an integer load we can't fold it directly.
    366   if (!IntType) {
    367     // If this is a float/double load, we can try folding it as an int32/64 load
    368     // and then bitcast the result.  This can be useful for union cases.  Note
    369     // that address spaces don't matter here since we're not going to result in
    370     // an actual new load.
    371     Type *MapTy;
    372     if (LoadTy->isFloatTy())
    373       MapTy = Type::getInt32PtrTy(C->getContext());
    374     else if (LoadTy->isDoubleTy())
    375       MapTy = Type::getInt64PtrTy(C->getContext());
    376     else if (LoadTy->isVectorTy()) {
    377       MapTy = IntegerType::get(C->getContext(),
    378                                TD.getTypeAllocSizeInBits(LoadTy));
    379       MapTy = PointerType::getUnqual(MapTy);
    380     } else
    381       return 0;
    382 
    383     C = FoldBitCast(C, MapTy, TD);
    384     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
    385       return FoldBitCast(Res, LoadTy, TD);
    386     return 0;
    387   }
    388 
    389   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
    390   if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
    391 
    392   GlobalValue *GVal;
    393   int64_t Offset;
    394   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
    395     return 0;
    396 
    397   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
    398   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
    399       !GV->getInitializer()->getType()->isSized())
    400     return 0;
    401 
    402   // If we're loading off the beginning of the global, some bytes may be valid,
    403   // but we don't try to handle this.
    404   if (Offset < 0) return 0;
    405 
    406   // If we're not accessing anything in this constant, the result is undefined.
    407   if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
    408     return UndefValue::get(IntType);
    409 
    410   unsigned char RawBytes[32] = {0};
    411   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
    412                           BytesLoaded, TD))
    413     return 0;
    414 
    415   APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
    416   for (unsigned i = 1; i != BytesLoaded; ++i) {
    417     ResultVal <<= 8;
    418     ResultVal |= RawBytes[BytesLoaded-1-i];
    419   }
    420 
    421   return ConstantInt::get(IntType->getContext(), ResultVal);
    422 }
    423 
    424 /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
    425 /// produce if it is constant and determinable.  If this is not determinable,
    426 /// return null.
    427 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
    428                                              const TargetData *TD) {
    429   // First, try the easy cases:
    430   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
    431     if (GV->isConstant() && GV->hasDefinitiveInitializer())
    432       return GV->getInitializer();
    433 
    434   // If the loaded value isn't a constant expr, we can't handle it.
    435   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    436   if (!CE) return 0;
    437 
    438   if (CE->getOpcode() == Instruction::GetElementPtr) {
    439     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
    440       if (GV->isConstant() && GV->hasDefinitiveInitializer())
    441         if (Constant *V =
    442              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
    443           return V;
    444   }
    445 
    446   // Instead of loading constant c string, use corresponding integer value
    447   // directly if string length is small enough.
    448   std::string Str;
    449   if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
    450     unsigned StrLen = Str.length();
    451     Type *Ty = cast<PointerType>(CE->getType())->getElementType();
    452     unsigned NumBits = Ty->getPrimitiveSizeInBits();
    453     // Replace load with immediate integer if the result is an integer or fp
    454     // value.
    455     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
    456         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
    457       APInt StrVal(NumBits, 0);
    458       APInt SingleChar(NumBits, 0);
    459       if (TD->isLittleEndian()) {
    460         for (signed i = StrLen-1; i >= 0; i--) {
    461           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
    462           StrVal = (StrVal << 8) | SingleChar;
    463         }
    464       } else {
    465         for (unsigned i = 0; i < StrLen; i++) {
    466           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
    467           StrVal = (StrVal << 8) | SingleChar;
    468         }
    469         // Append NULL at the end.
    470         SingleChar = 0;
    471         StrVal = (StrVal << 8) | SingleChar;
    472       }
    473 
    474       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
    475       if (Ty->isFloatingPointTy())
    476         Res = ConstantExpr::getBitCast(Res, Ty);
    477       return Res;
    478     }
    479   }
    480 
    481   // If this load comes from anywhere in a constant global, and if the global
    482   // is all undef or zero, we know what it loads.
    483   if (GlobalVariable *GV =
    484         dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
    485     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
    486       Type *ResTy = cast<PointerType>(C->getType())->getElementType();
    487       if (GV->getInitializer()->isNullValue())
    488         return Constant::getNullValue(ResTy);
    489       if (isa<UndefValue>(GV->getInitializer()))
    490         return UndefValue::get(ResTy);
    491     }
    492   }
    493 
    494   // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
    495   // currently don't do any of this for big endian systems.  It can be
    496   // generalized in the future if someone is interested.
    497   if (TD && TD->isLittleEndian())
    498     return FoldReinterpretLoadFromConstPtr(CE, *TD);
    499   return 0;
    500 }
    501 
    502 static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
    503   if (LI->isVolatile()) return 0;
    504 
    505   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
    506     return ConstantFoldLoadFromConstPtr(C, TD);
    507 
    508   return 0;
    509 }
    510 
    511 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
    512 /// Attempt to symbolically evaluate the result of a binary operator merging
    513 /// these together.  If target data info is available, it is provided as TD,
    514 /// otherwise TD is null.
    515 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
    516                                            Constant *Op1, const TargetData *TD){
    517   // SROA
    518 
    519   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
    520   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
    521   // bits.
    522 
    523 
    524   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
    525   // constant.  This happens frequently when iterating over a global array.
    526   if (Opc == Instruction::Sub && TD) {
    527     GlobalValue *GV1, *GV2;
    528     int64_t Offs1, Offs2;
    529 
    530     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
    531       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
    532           GV1 == GV2) {
    533         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
    534         return ConstantInt::get(Op0->getType(), Offs1-Offs2);
    535       }
    536   }
    537 
    538   return 0;
    539 }
    540 
    541 /// CastGEPIndices - If array indices are not pointer-sized integers,
    542 /// explicitly cast them so that they aren't implicitly casted by the
    543 /// getelementptr.
    544 static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
    545                                 Type *ResultTy,
    546                                 const TargetData *TD) {
    547   if (!TD) return 0;
    548   Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
    549 
    550   bool Any = false;
    551   SmallVector<Constant*, 32> NewIdxs;
    552   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
    553     if ((i == 1 ||
    554          !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
    555                                                         Ops.slice(1, i-1)))) &&
    556         Ops[i]->getType() != IntPtrTy) {
    557       Any = true;
    558       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
    559                                                                       true,
    560                                                                       IntPtrTy,
    561                                                                       true),
    562                                               Ops[i], IntPtrTy));
    563     } else
    564       NewIdxs.push_back(Ops[i]);
    565   }
    566   if (!Any) return 0;
    567 
    568   Constant *C =
    569     ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
    570   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    571     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
    572       C = Folded;
    573   return C;
    574 }
    575 
    576 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
    577 /// constant expression, do so.
    578 static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
    579                                          Type *ResultTy,
    580                                          const TargetData *TD) {
    581   Constant *Ptr = Ops[0];
    582   if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
    583     return 0;
    584 
    585   Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
    586 
    587   // If this is a constant expr gep that is effectively computing an
    588   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
    589   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
    590     if (!isa<ConstantInt>(Ops[i])) {
    591 
    592       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
    593       // "inttoptr (sub (ptrtoint Ptr), V)"
    594       if (Ops.size() == 2 &&
    595           cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
    596         ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
    597         assert((CE == 0 || CE->getType() == IntPtrTy) &&
    598                "CastGEPIndices didn't canonicalize index types!");
    599         if (CE && CE->getOpcode() == Instruction::Sub &&
    600             CE->getOperand(0)->isNullValue()) {
    601           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
    602           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
    603           Res = ConstantExpr::getIntToPtr(Res, ResultTy);
    604           if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
    605             Res = ConstantFoldConstantExpression(ResCE, TD);
    606           return Res;
    607         }
    608       }
    609       return 0;
    610     }
    611 
    612   unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
    613   APInt Offset =
    614     APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
    615                                          makeArrayRef((Value **)Ops.data() + 1,
    616                                                       Ops.size() - 1)));
    617   Ptr = cast<Constant>(Ptr->stripPointerCasts());
    618 
    619   // If this is a GEP of a GEP, fold it all into a single GEP.
    620   while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
    621     SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
    622 
    623     // Do not try the incorporate the sub-GEP if some index is not a number.
    624     bool AllConstantInt = true;
    625     for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
    626       if (!isa<ConstantInt>(NestedOps[i])) {
    627         AllConstantInt = false;
    628         break;
    629       }
    630     if (!AllConstantInt)
    631       break;
    632 
    633     Ptr = cast<Constant>(GEP->getOperand(0));
    634     Offset += APInt(BitWidth,
    635                     TD->getIndexedOffset(Ptr->getType(), NestedOps));
    636     Ptr = cast<Constant>(Ptr->stripPointerCasts());
    637   }
    638 
    639   // If the base value for this address is a literal integer value, fold the
    640   // getelementptr to the resulting integer value casted to the pointer type.
    641   APInt BasePtr(BitWidth, 0);
    642   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
    643     if (CE->getOpcode() == Instruction::IntToPtr)
    644       if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
    645         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
    646   if (Ptr->isNullValue() || BasePtr != 0) {
    647     Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
    648     return ConstantExpr::getIntToPtr(C, ResultTy);
    649   }
    650 
    651   // Otherwise form a regular getelementptr. Recompute the indices so that
    652   // we eliminate over-indexing of the notional static type array bounds.
    653   // This makes it easy to determine if the getelementptr is "inbounds".
    654   // Also, this helps GlobalOpt do SROA on GlobalVariables.
    655   Type *Ty = Ptr->getType();
    656   SmallVector<Constant*, 32> NewIdxs;
    657   do {
    658     if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
    659       if (ATy->isPointerTy()) {
    660         // The only pointer indexing we'll do is on the first index of the GEP.
    661         if (!NewIdxs.empty())
    662           break;
    663 
    664         // Only handle pointers to sized types, not pointers to functions.
    665         if (!ATy->getElementType()->isSized())
    666           return 0;
    667       }
    668 
    669       // Determine which element of the array the offset points into.
    670       APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
    671       IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
    672       if (ElemSize == 0)
    673         // The element size is 0. This may be [0 x Ty]*, so just use a zero
    674         // index for this level and proceed to the next level to see if it can
    675         // accommodate the offset.
    676         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
    677       else {
    678         // The element size is non-zero divide the offset by the element
    679         // size (rounding down), to compute the index at this level.
    680         APInt NewIdx = Offset.udiv(ElemSize);
    681         Offset -= NewIdx * ElemSize;
    682         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
    683       }
    684       Ty = ATy->getElementType();
    685     } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
    686       // Determine which field of the struct the offset points into. The
    687       // getZExtValue is at least as safe as the StructLayout API because we
    688       // know the offset is within the struct at this point.
    689       const StructLayout &SL = *TD->getStructLayout(STy);
    690       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
    691       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
    692                                          ElIdx));
    693       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
    694       Ty = STy->getTypeAtIndex(ElIdx);
    695     } else {
    696       // We've reached some non-indexable type.
    697       break;
    698     }
    699   } while (Ty != cast<PointerType>(ResultTy)->getElementType());
    700 
    701   // If we haven't used up the entire offset by descending the static
    702   // type, then the offset is pointing into the middle of an indivisible
    703   // member, so we can't simplify it.
    704   if (Offset != 0)
    705     return 0;
    706 
    707   // Create a GEP.
    708   Constant *C =
    709     ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
    710   assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
    711          "Computed GetElementPtr has unexpected type!");
    712 
    713   // If we ended up indexing a member with a type that doesn't match
    714   // the type of what the original indices indexed, add a cast.
    715   if (Ty != cast<PointerType>(ResultTy)->getElementType())
    716     C = FoldBitCast(C, ResultTy, *TD);
    717 
    718   return C;
    719 }
    720 
    721 
    722 
    723 //===----------------------------------------------------------------------===//
    724 // Constant Folding public APIs
    725 //===----------------------------------------------------------------------===//
    726 
    727 /// ConstantFoldInstruction - Try to constant fold the specified instruction.
    728 /// If successful, the constant result is returned, if not, null is returned.
    729 /// Note that this fails if not all of the operands are constant.  Otherwise,
    730 /// this function can only fail when attempting to fold instructions like loads
    731 /// and stores, which have no constant expression form.
    732 Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
    733   // Handle PHI nodes quickly here...
    734   if (PHINode *PN = dyn_cast<PHINode>(I)) {
    735     Constant *CommonValue = 0;
    736 
    737     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    738       Value *Incoming = PN->getIncomingValue(i);
    739       // If the incoming value is undef then skip it.  Note that while we could
    740       // skip the value if it is equal to the phi node itself we choose not to
    741       // because that would break the rule that constant folding only applies if
    742       // all operands are constants.
    743       if (isa<UndefValue>(Incoming))
    744         continue;
    745       // If the incoming value is not a constant, or is a different constant to
    746       // the one we saw previously, then give up.
    747       Constant *C = dyn_cast<Constant>(Incoming);
    748       if (!C || (CommonValue && C != CommonValue))
    749         return 0;
    750       CommonValue = C;
    751     }
    752 
    753     // If we reach here, all incoming values are the same constant or undef.
    754     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
    755   }
    756 
    757   // Scan the operand list, checking to see if they are all constants, if so,
    758   // hand off to ConstantFoldInstOperands.
    759   SmallVector<Constant*, 8> Ops;
    760   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    761     if (Constant *Op = dyn_cast<Constant>(*i))
    762       Ops.push_back(Op);
    763     else
    764       return 0;  // All operands not constant!
    765 
    766   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
    767     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
    768                                            TD);
    769 
    770   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    771     return ConstantFoldLoadInst(LI, TD);
    772 
    773   if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
    774     return ConstantExpr::getInsertValue(
    775                                 cast<Constant>(IVI->getAggregateOperand()),
    776                                 cast<Constant>(IVI->getInsertedValueOperand()),
    777                                 IVI->getIndices());
    778 
    779   if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
    780     return ConstantExpr::getExtractValue(
    781                                     cast<Constant>(EVI->getAggregateOperand()),
    782                                     EVI->getIndices());
    783 
    784   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD);
    785 }
    786 
    787 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
    788 /// using the specified TargetData.  If successful, the constant result is
    789 /// result is returned, if not, null is returned.
    790 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
    791                                                const TargetData *TD) {
    792   SmallVector<Constant*, 8> Ops;
    793   for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
    794        i != e; ++i) {
    795     Constant *NewC = cast<Constant>(*i);
    796     // Recursively fold the ConstantExpr's operands.
    797     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
    798       NewC = ConstantFoldConstantExpression(NewCE, TD);
    799     Ops.push_back(NewC);
    800   }
    801 
    802   if (CE->isCompare())
    803     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
    804                                            TD);
    805   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD);
    806 }
    807 
    808 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
    809 /// specified opcode and operands.  If successful, the constant result is
    810 /// returned, if not, null is returned.  Note that this function can fail when
    811 /// attempting to fold instructions like loads and stores, which have no
    812 /// constant expression form.
    813 ///
    814 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
    815 /// information, due to only being passed an opcode and operands. Constant
    816 /// folding using this function strips this information.
    817 ///
    818 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
    819                                          ArrayRef<Constant *> Ops,
    820                                          const TargetData *TD) {
    821   // Handle easy binops first.
    822   if (Instruction::isBinaryOp(Opcode)) {
    823     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
    824       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
    825         return C;
    826 
    827     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
    828   }
    829 
    830   switch (Opcode) {
    831   default: return 0;
    832   case Instruction::ICmp:
    833   case Instruction::FCmp: assert(0 && "Invalid for compares");
    834   case Instruction::Call:
    835     if (Function *F = dyn_cast<Function>(Ops.back()))
    836       if (canConstantFoldCallTo(F))
    837         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1));
    838     return 0;
    839   case Instruction::PtrToInt:
    840     // If the input is a inttoptr, eliminate the pair.  This requires knowing
    841     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
    842     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
    843       if (TD && CE->getOpcode() == Instruction::IntToPtr) {
    844         Constant *Input = CE->getOperand(0);
    845         unsigned InWidth = Input->getType()->getScalarSizeInBits();
    846         if (TD->getPointerSizeInBits() < InWidth) {
    847           Constant *Mask =
    848             ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
    849                                                   TD->getPointerSizeInBits()));
    850           Input = ConstantExpr::getAnd(Input, Mask);
    851         }
    852         // Do a zext or trunc to get to the dest size.
    853         return ConstantExpr::getIntegerCast(Input, DestTy, false);
    854       }
    855     }
    856     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
    857   case Instruction::IntToPtr:
    858     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
    859     // the int size is >= the ptr size.  This requires knowing the width of a
    860     // pointer, so it can't be done in ConstantExpr::getCast.
    861     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
    862       if (TD &&
    863           TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
    864           CE->getOpcode() == Instruction::PtrToInt)
    865         return FoldBitCast(CE->getOperand(0), DestTy, *TD);
    866 
    867     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
    868   case Instruction::Trunc:
    869   case Instruction::ZExt:
    870   case Instruction::SExt:
    871   case Instruction::FPTrunc:
    872   case Instruction::FPExt:
    873   case Instruction::UIToFP:
    874   case Instruction::SIToFP:
    875   case Instruction::FPToUI:
    876   case Instruction::FPToSI:
    877       return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
    878   case Instruction::BitCast:
    879     if (TD)
    880       return FoldBitCast(Ops[0], DestTy, *TD);
    881     return ConstantExpr::getBitCast(Ops[0], DestTy);
    882   case Instruction::Select:
    883     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
    884   case Instruction::ExtractElement:
    885     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
    886   case Instruction::InsertElement:
    887     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
    888   case Instruction::ShuffleVector:
    889     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
    890   case Instruction::GetElementPtr:
    891     if (Constant *C = CastGEPIndices(Ops, DestTy, TD))
    892       return C;
    893     if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD))
    894       return C;
    895 
    896     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
    897   }
    898 }
    899 
    900 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
    901 /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
    902 /// returns a constant expression of the specified operands.
    903 ///
    904 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
    905                                                 Constant *Ops0, Constant *Ops1,
    906                                                 const TargetData *TD) {
    907   // fold: icmp (inttoptr x), null         -> icmp x, 0
    908   // fold: icmp (ptrtoint x), 0            -> icmp x, null
    909   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
    910   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
    911   //
    912   // ConstantExpr::getCompare cannot do this, because it doesn't have TD
    913   // around to know if bit truncation is happening.
    914   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
    915     if (TD && Ops1->isNullValue()) {
    916       Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
    917       if (CE0->getOpcode() == Instruction::IntToPtr) {
    918         // Convert the integer value to the right size to ensure we get the
    919         // proper extension or truncation.
    920         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
    921                                                    IntPtrTy, false);
    922         Constant *Null = Constant::getNullValue(C->getType());
    923         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
    924       }
    925 
    926       // Only do this transformation if the int is intptrty in size, otherwise
    927       // there is a truncation or extension that we aren't modeling.
    928       if (CE0->getOpcode() == Instruction::PtrToInt &&
    929           CE0->getType() == IntPtrTy) {
    930         Constant *C = CE0->getOperand(0);
    931         Constant *Null = Constant::getNullValue(C->getType());
    932         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
    933       }
    934     }
    935 
    936     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
    937       if (TD && CE0->getOpcode() == CE1->getOpcode()) {
    938         Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
    939 
    940         if (CE0->getOpcode() == Instruction::IntToPtr) {
    941           // Convert the integer value to the right size to ensure we get the
    942           // proper extension or truncation.
    943           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
    944                                                       IntPtrTy, false);
    945           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
    946                                                       IntPtrTy, false);
    947           return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
    948         }
    949 
    950         // Only do this transformation if the int is intptrty in size, otherwise
    951         // there is a truncation or extension that we aren't modeling.
    952         if ((CE0->getOpcode() == Instruction::PtrToInt &&
    953              CE0->getType() == IntPtrTy &&
    954              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
    955           return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
    956                                                  CE1->getOperand(0), TD);
    957       }
    958     }
    959 
    960     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
    961     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
    962     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
    963         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
    964       Constant *LHS =
    965         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
    966       Constant *RHS =
    967         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
    968       unsigned OpC =
    969         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
    970       Constant *Ops[] = { LHS, RHS };
    971       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD);
    972     }
    973   }
    974 
    975   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
    976 }
    977 
    978 
    979 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
    980 /// getelementptr constantexpr, return the constant value being addressed by the
    981 /// constant expression, or null if something is funny and we can't decide.
    982 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
    983                                                        ConstantExpr *CE) {
    984   if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
    985     return 0;  // Do not allow stepping over the value!
    986 
    987   // Loop over all of the operands, tracking down which value we are
    988   // addressing...
    989   gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
    990   for (++I; I != E; ++I)
    991     if (StructType *STy = dyn_cast<StructType>(*I)) {
    992       ConstantInt *CU = cast<ConstantInt>(I.getOperand());
    993       assert(CU->getZExtValue() < STy->getNumElements() &&
    994              "Struct index out of range!");
    995       unsigned El = (unsigned)CU->getZExtValue();
    996       if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
    997         C = CS->getOperand(El);
    998       } else if (isa<ConstantAggregateZero>(C)) {
    999         C = Constant::getNullValue(STy->getElementType(El));
   1000       } else if (isa<UndefValue>(C)) {
   1001         C = UndefValue::get(STy->getElementType(El));
   1002       } else {
   1003         return 0;
   1004       }
   1005     } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
   1006       if (ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
   1007         if (CI->getZExtValue() >= ATy->getNumElements())
   1008          return 0;
   1009         if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
   1010           C = CA->getOperand(CI->getZExtValue());
   1011         else if (isa<ConstantAggregateZero>(C))
   1012           C = Constant::getNullValue(ATy->getElementType());
   1013         else if (isa<UndefValue>(C))
   1014           C = UndefValue::get(ATy->getElementType());
   1015         else
   1016           return 0;
   1017       } else if (VectorType *VTy = dyn_cast<VectorType>(*I)) {
   1018         if (CI->getZExtValue() >= VTy->getNumElements())
   1019           return 0;
   1020         if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
   1021           C = CP->getOperand(CI->getZExtValue());
   1022         else if (isa<ConstantAggregateZero>(C))
   1023           C = Constant::getNullValue(VTy->getElementType());
   1024         else if (isa<UndefValue>(C))
   1025           C = UndefValue::get(VTy->getElementType());
   1026         else
   1027           return 0;
   1028       } else {
   1029         return 0;
   1030       }
   1031     } else {
   1032       return 0;
   1033     }
   1034   return C;
   1035 }
   1036 
   1037 
   1038 //===----------------------------------------------------------------------===//
   1039 //  Constant Folding for Calls
   1040 //
   1041 
   1042 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
   1043 /// the specified function.
   1044 bool
   1045 llvm::canConstantFoldCallTo(const Function *F) {
   1046   switch (F->getIntrinsicID()) {
   1047   case Intrinsic::sqrt:
   1048   case Intrinsic::powi:
   1049   case Intrinsic::bswap:
   1050   case Intrinsic::ctpop:
   1051   case Intrinsic::ctlz:
   1052   case Intrinsic::cttz:
   1053   case Intrinsic::sadd_with_overflow:
   1054   case Intrinsic::uadd_with_overflow:
   1055   case Intrinsic::ssub_with_overflow:
   1056   case Intrinsic::usub_with_overflow:
   1057   case Intrinsic::smul_with_overflow:
   1058   case Intrinsic::umul_with_overflow:
   1059   case Intrinsic::convert_from_fp16:
   1060   case Intrinsic::convert_to_fp16:
   1061   case Intrinsic::x86_sse_cvtss2si:
   1062   case Intrinsic::x86_sse_cvtss2si64:
   1063   case Intrinsic::x86_sse_cvttss2si:
   1064   case Intrinsic::x86_sse_cvttss2si64:
   1065   case Intrinsic::x86_sse2_cvtsd2si:
   1066   case Intrinsic::x86_sse2_cvtsd2si64:
   1067   case Intrinsic::x86_sse2_cvttsd2si:
   1068   case Intrinsic::x86_sse2_cvttsd2si64:
   1069     return true;
   1070   default:
   1071     return false;
   1072   case 0: break;
   1073   }
   1074 
   1075   if (!F->hasName()) return false;
   1076   StringRef Name = F->getName();
   1077 
   1078   // In these cases, the check of the length is required.  We don't want to
   1079   // return true for a name like "cos\0blah" which strcmp would return equal to
   1080   // "cos", but has length 8.
   1081   switch (Name[0]) {
   1082   default: return false;
   1083   case 'a':
   1084     return Name == "acos" || Name == "asin" ||
   1085       Name == "atan" || Name == "atan2";
   1086   case 'c':
   1087     return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
   1088   case 'e':
   1089     return Name == "exp" || Name == "exp2";
   1090   case 'f':
   1091     return Name == "fabs" || Name == "fmod" || Name == "floor";
   1092   case 'l':
   1093     return Name == "log" || Name == "log10";
   1094   case 'p':
   1095     return Name == "pow";
   1096   case 's':
   1097     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
   1098       Name == "sinf" || Name == "sqrtf";
   1099   case 't':
   1100     return Name == "tan" || Name == "tanh";
   1101   }
   1102 }
   1103 
   1104 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
   1105                                 Type *Ty) {
   1106   sys::llvm_fenv_clearexcept();
   1107   V = NativeFP(V);
   1108   if (sys::llvm_fenv_testexcept()) {
   1109     sys::llvm_fenv_clearexcept();
   1110     return 0;
   1111   }
   1112 
   1113   if (Ty->isFloatTy())
   1114     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   1115   if (Ty->isDoubleTy())
   1116     return ConstantFP::get(Ty->getContext(), APFloat(V));
   1117   llvm_unreachable("Can only constant fold float/double");
   1118   return 0; // dummy return to suppress warning
   1119 }
   1120 
   1121 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
   1122                                       double V, double W, Type *Ty) {
   1123   sys::llvm_fenv_clearexcept();
   1124   V = NativeFP(V, W);
   1125   if (sys::llvm_fenv_testexcept()) {
   1126     sys::llvm_fenv_clearexcept();
   1127     return 0;
   1128   }
   1129 
   1130   if (Ty->isFloatTy())
   1131     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   1132   if (Ty->isDoubleTy())
   1133     return ConstantFP::get(Ty->getContext(), APFloat(V));
   1134   llvm_unreachable("Can only constant fold float/double");
   1135   return 0; // dummy return to suppress warning
   1136 }
   1137 
   1138 /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
   1139 /// conversion of a constant floating point. If roundTowardZero is false, the
   1140 /// default IEEE rounding is used (toward nearest, ties to even). This matches
   1141 /// the behavior of the non-truncating SSE instructions in the default rounding
   1142 /// mode. The desired integer type Ty is used to select how many bits are
   1143 /// available for the result. Returns null if the conversion cannot be
   1144 /// performed, otherwise returns the Constant value resulting from the
   1145 /// conversion.
   1146 static Constant *ConstantFoldConvertToInt(ConstantFP *Op, bool roundTowardZero,
   1147                                           Type *Ty) {
   1148   assert(Op && "Called with NULL operand");
   1149   APFloat Val(Op->getValueAPF());
   1150 
   1151   // All of these conversion intrinsics form an integer of at most 64bits.
   1152   unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
   1153   assert(ResultWidth <= 64 &&
   1154          "Can only constant fold conversions to 64 and 32 bit ints");
   1155 
   1156   uint64_t UIntVal;
   1157   bool isExact = false;
   1158   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
   1159                                               : APFloat::rmNearestTiesToEven;
   1160   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
   1161                                                   /*isSigned=*/true, mode,
   1162                                                   &isExact);
   1163   if (status != APFloat::opOK && status != APFloat::opInexact)
   1164     return 0;
   1165   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
   1166 }
   1167 
   1168 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
   1169 /// with the specified arguments, returning null if unsuccessful.
   1170 Constant *
   1171 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands) {
   1172   if (!F->hasName()) return 0;
   1173   StringRef Name = F->getName();
   1174 
   1175   Type *Ty = F->getReturnType();
   1176   if (Operands.size() == 1) {
   1177     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
   1178       if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
   1179         APFloat Val(Op->getValueAPF());
   1180 
   1181         bool lost = false;
   1182         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
   1183 
   1184         return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
   1185       }
   1186 
   1187       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
   1188         return 0;
   1189 
   1190       /// We only fold functions with finite arguments. Folding NaN and inf is
   1191       /// likely to be aborted with an exception anyway, and some host libms
   1192       /// have known errors raising exceptions.
   1193       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
   1194         return 0;
   1195 
   1196       /// Currently APFloat versions of these functions do not exist, so we use
   1197       /// the host native double versions.  Float versions are not called
   1198       /// directly but for all these it is true (float)(f((double)arg)) ==
   1199       /// f(arg).  Long double not supported yet.
   1200       double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
   1201                                      Op->getValueAPF().convertToDouble();
   1202       switch (Name[0]) {
   1203       case 'a':
   1204         if (Name == "acos")
   1205           return ConstantFoldFP(acos, V, Ty);
   1206         else if (Name == "asin")
   1207           return ConstantFoldFP(asin, V, Ty);
   1208         else if (Name == "atan")
   1209           return ConstantFoldFP(atan, V, Ty);
   1210         break;
   1211       case 'c':
   1212         if (Name == "ceil")
   1213           return ConstantFoldFP(ceil, V, Ty);
   1214         else if (Name == "cos")
   1215           return ConstantFoldFP(cos, V, Ty);
   1216         else if (Name == "cosh")
   1217           return ConstantFoldFP(cosh, V, Ty);
   1218         else if (Name == "cosf")
   1219           return ConstantFoldFP(cos, V, Ty);
   1220         break;
   1221       case 'e':
   1222         if (Name == "exp")
   1223           return ConstantFoldFP(exp, V, Ty);
   1224 
   1225         if (Name == "exp2") {
   1226           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
   1227           // C99 library.
   1228           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
   1229         }
   1230         break;
   1231       case 'f':
   1232         if (Name == "fabs")
   1233           return ConstantFoldFP(fabs, V, Ty);
   1234         else if (Name == "floor")
   1235           return ConstantFoldFP(floor, V, Ty);
   1236         break;
   1237       case 'l':
   1238         if (Name == "log" && V > 0)
   1239           return ConstantFoldFP(log, V, Ty);
   1240         else if (Name == "log10" && V > 0)
   1241           return ConstantFoldFP(log10, V, Ty);
   1242         else if (F->getIntrinsicID() == Intrinsic::sqrt &&
   1243                  (Ty->isFloatTy() || Ty->isDoubleTy())) {
   1244           if (V >= -0.0)
   1245             return ConstantFoldFP(sqrt, V, Ty);
   1246           else // Undefined
   1247             return Constant::getNullValue(Ty);
   1248         }
   1249         break;
   1250       case 's':
   1251         if (Name == "sin")
   1252           return ConstantFoldFP(sin, V, Ty);
   1253         else if (Name == "sinh")
   1254           return ConstantFoldFP(sinh, V, Ty);
   1255         else if (Name == "sqrt" && V >= 0)
   1256           return ConstantFoldFP(sqrt, V, Ty);
   1257         else if (Name == "sqrtf" && V >= 0)
   1258           return ConstantFoldFP(sqrt, V, Ty);
   1259         else if (Name == "sinf")
   1260           return ConstantFoldFP(sin, V, Ty);
   1261         break;
   1262       case 't':
   1263         if (Name == "tan")
   1264           return ConstantFoldFP(tan, V, Ty);
   1265         else if (Name == "tanh")
   1266           return ConstantFoldFP(tanh, V, Ty);
   1267         break;
   1268       default:
   1269         break;
   1270       }
   1271       return 0;
   1272     }
   1273 
   1274     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
   1275       switch (F->getIntrinsicID()) {
   1276       case Intrinsic::bswap:
   1277         return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
   1278       case Intrinsic::ctpop:
   1279         return ConstantInt::get(Ty, Op->getValue().countPopulation());
   1280       case Intrinsic::cttz:
   1281         return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
   1282       case Intrinsic::ctlz:
   1283         return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
   1284       case Intrinsic::convert_from_fp16: {
   1285         APFloat Val(Op->getValue());
   1286 
   1287         bool lost = false;
   1288         APFloat::opStatus status =
   1289           Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
   1290 
   1291         // Conversion is always precise.
   1292         (void)status;
   1293         assert(status == APFloat::opOK && !lost &&
   1294                "Precision lost during fp16 constfolding");
   1295 
   1296         return ConstantFP::get(F->getContext(), Val);
   1297       }
   1298       default:
   1299         return 0;
   1300       }
   1301     }
   1302 
   1303     if (ConstantVector *Op = dyn_cast<ConstantVector>(Operands[0])) {
   1304       switch (F->getIntrinsicID()) {
   1305       default: break;
   1306       case Intrinsic::x86_sse_cvtss2si:
   1307       case Intrinsic::x86_sse_cvtss2si64:
   1308       case Intrinsic::x86_sse2_cvtsd2si:
   1309       case Intrinsic::x86_sse2_cvtsd2si64:
   1310         if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
   1311           return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/false, Ty);
   1312       case Intrinsic::x86_sse_cvttss2si:
   1313       case Intrinsic::x86_sse_cvttss2si64:
   1314       case Intrinsic::x86_sse2_cvttsd2si:
   1315       case Intrinsic::x86_sse2_cvttsd2si64:
   1316         if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
   1317           return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/true, Ty);
   1318       }
   1319     }
   1320 
   1321     if (isa<UndefValue>(Operands[0])) {
   1322       if (F->getIntrinsicID() == Intrinsic::bswap)
   1323         return Operands[0];
   1324       return 0;
   1325     }
   1326 
   1327     return 0;
   1328   }
   1329 
   1330   if (Operands.size() == 2) {
   1331     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
   1332       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
   1333         return 0;
   1334       double Op1V = Ty->isFloatTy() ?
   1335                       (double)Op1->getValueAPF().convertToFloat() :
   1336                       Op1->getValueAPF().convertToDouble();
   1337       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
   1338         if (Op2->getType() != Op1->getType())
   1339           return 0;
   1340 
   1341         double Op2V = Ty->isFloatTy() ?
   1342                       (double)Op2->getValueAPF().convertToFloat():
   1343                       Op2->getValueAPF().convertToDouble();
   1344 
   1345         if (Name == "pow")
   1346           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1347         if (Name == "fmod")
   1348           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
   1349         if (Name == "atan2")
   1350           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
   1351       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
   1352         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
   1353           return ConstantFP::get(F->getContext(),
   1354                                  APFloat((float)std::pow((float)Op1V,
   1355                                                  (int)Op2C->getZExtValue())));
   1356         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
   1357           return ConstantFP::get(F->getContext(),
   1358                                  APFloat((double)std::pow((double)Op1V,
   1359                                                    (int)Op2C->getZExtValue())));
   1360       }
   1361       return 0;
   1362     }
   1363 
   1364 
   1365     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
   1366       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
   1367         switch (F->getIntrinsicID()) {
   1368         default: break;
   1369         case Intrinsic::sadd_with_overflow:
   1370         case Intrinsic::uadd_with_overflow:
   1371         case Intrinsic::ssub_with_overflow:
   1372         case Intrinsic::usub_with_overflow:
   1373         case Intrinsic::smul_with_overflow:
   1374         case Intrinsic::umul_with_overflow: {
   1375           APInt Res;
   1376           bool Overflow;
   1377           switch (F->getIntrinsicID()) {
   1378           default: assert(0 && "Invalid case");
   1379           case Intrinsic::sadd_with_overflow:
   1380             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
   1381             break;
   1382           case Intrinsic::uadd_with_overflow:
   1383             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
   1384             break;
   1385           case Intrinsic::ssub_with_overflow:
   1386             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
   1387             break;
   1388           case Intrinsic::usub_with_overflow:
   1389             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
   1390             break;
   1391           case Intrinsic::smul_with_overflow:
   1392             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
   1393             break;
   1394           case Intrinsic::umul_with_overflow:
   1395             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
   1396             break;
   1397           }
   1398           Constant *Ops[] = {
   1399             ConstantInt::get(F->getContext(), Res),
   1400             ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
   1401           };
   1402           return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
   1403         }
   1404         }
   1405       }
   1406 
   1407       return 0;
   1408     }
   1409     return 0;
   1410   }
   1411   return 0;
   1412 }
   1413