Home | History | Annotate | Download | only in Analysis
      1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the scalar evolution expander,
     11 // which is used to generate the code corresponding to a given scalar evolution
     12 // expression.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     17 #include "llvm/Analysis/LoopInfo.h"
     18 #include "llvm/IntrinsicInst.h"
     19 #include "llvm/LLVMContext.h"
     20 #include "llvm/Support/Debug.h"
     21 #include "llvm/Target/TargetData.h"
     22 #include "llvm/ADT/STLExtras.h"
     23 
     24 using namespace llvm;
     25 
     26 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
     27 /// reusing an existing cast if a suitable one exists, moving an existing
     28 /// cast if a suitable one exists but isn't in the right place, or
     29 /// creating a new one.
     30 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
     31                                        Instruction::CastOps Op,
     32                                        BasicBlock::iterator IP) {
     33   // Check to see if there is already a cast!
     34   for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
     35        UI != E; ++UI) {
     36     User *U = *UI;
     37     if (U->getType() == Ty)
     38       if (CastInst *CI = dyn_cast<CastInst>(U))
     39         if (CI->getOpcode() == Op) {
     40           // If the cast isn't where we want it, fix it.
     41           if (BasicBlock::iterator(CI) != IP) {
     42             // Create a new cast, and leave the old cast in place in case
     43             // it is being used as an insert point. Clear its operand
     44             // so that it doesn't hold anything live.
     45             Instruction *NewCI = CastInst::Create(Op, V, Ty, "", IP);
     46             NewCI->takeName(CI);
     47             CI->replaceAllUsesWith(NewCI);
     48             CI->setOperand(0, UndefValue::get(V->getType()));
     49             rememberInstruction(NewCI);
     50             return NewCI;
     51           }
     52           rememberInstruction(CI);
     53           return CI;
     54         }
     55   }
     56 
     57   // Create a new cast.
     58   Instruction *I = CastInst::Create(Op, V, Ty, V->getName(), IP);
     59   rememberInstruction(I);
     60   return I;
     61 }
     62 
     63 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
     64 /// which must be possible with a noop cast, doing what we can to share
     65 /// the casts.
     66 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
     67   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
     68   assert((Op == Instruction::BitCast ||
     69           Op == Instruction::PtrToInt ||
     70           Op == Instruction::IntToPtr) &&
     71          "InsertNoopCastOfTo cannot perform non-noop casts!");
     72   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
     73          "InsertNoopCastOfTo cannot change sizes!");
     74 
     75   // Short-circuit unnecessary bitcasts.
     76   if (Op == Instruction::BitCast && V->getType() == Ty)
     77     return V;
     78 
     79   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
     80   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
     81       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
     82     if (CastInst *CI = dyn_cast<CastInst>(V))
     83       if ((CI->getOpcode() == Instruction::PtrToInt ||
     84            CI->getOpcode() == Instruction::IntToPtr) &&
     85           SE.getTypeSizeInBits(CI->getType()) ==
     86           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
     87         return CI->getOperand(0);
     88     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
     89       if ((CE->getOpcode() == Instruction::PtrToInt ||
     90            CE->getOpcode() == Instruction::IntToPtr) &&
     91           SE.getTypeSizeInBits(CE->getType()) ==
     92           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
     93         return CE->getOperand(0);
     94   }
     95 
     96   // Fold a cast of a constant.
     97   if (Constant *C = dyn_cast<Constant>(V))
     98     return ConstantExpr::getCast(Op, C, Ty);
     99 
    100   // Cast the argument at the beginning of the entry block, after
    101   // any bitcasts of other arguments.
    102   if (Argument *A = dyn_cast<Argument>(V)) {
    103     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
    104     while ((isa<BitCastInst>(IP) &&
    105             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
    106             cast<BitCastInst>(IP)->getOperand(0) != A) ||
    107            isa<DbgInfoIntrinsic>(IP) ||
    108            isa<LandingPadInst>(IP))
    109       ++IP;
    110     return ReuseOrCreateCast(A, Ty, Op, IP);
    111   }
    112 
    113   // Cast the instruction immediately after the instruction.
    114   Instruction *I = cast<Instruction>(V);
    115   BasicBlock::iterator IP = I; ++IP;
    116   if (InvokeInst *II = dyn_cast<InvokeInst>(I))
    117     IP = II->getNormalDest()->begin();
    118   while (isa<PHINode>(IP) || isa<DbgInfoIntrinsic>(IP) ||
    119          isa<LandingPadInst>(IP))
    120     ++IP;
    121   return ReuseOrCreateCast(I, Ty, Op, IP);
    122 }
    123 
    124 /// InsertBinop - Insert the specified binary operator, doing a small amount
    125 /// of work to avoid inserting an obviously redundant operation.
    126 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
    127                                  Value *LHS, Value *RHS) {
    128   // Fold a binop with constant operands.
    129   if (Constant *CLHS = dyn_cast<Constant>(LHS))
    130     if (Constant *CRHS = dyn_cast<Constant>(RHS))
    131       return ConstantExpr::get(Opcode, CLHS, CRHS);
    132 
    133   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
    134   unsigned ScanLimit = 6;
    135   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
    136   // Scanning starts from the last instruction before the insertion point.
    137   BasicBlock::iterator IP = Builder.GetInsertPoint();
    138   if (IP != BlockBegin) {
    139     --IP;
    140     for (; ScanLimit; --IP, --ScanLimit) {
    141       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
    142       // generated code.
    143       if (isa<DbgInfoIntrinsic>(IP))
    144         ScanLimit++;
    145       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
    146           IP->getOperand(1) == RHS)
    147         return IP;
    148       if (IP == BlockBegin) break;
    149     }
    150   }
    151 
    152   // Save the original insertion point so we can restore it when we're done.
    153   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
    154   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
    155 
    156   // Move the insertion point out of as many loops as we can.
    157   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    158     if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
    159     BasicBlock *Preheader = L->getLoopPreheader();
    160     if (!Preheader) break;
    161 
    162     // Ok, move up a level.
    163     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    164   }
    165 
    166   // If we haven't found this binop, insert it.
    167   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
    168   BO->setDebugLoc(SaveInsertPt->getDebugLoc());
    169   rememberInstruction(BO);
    170 
    171   // Restore the original insert point.
    172   if (SaveInsertBB)
    173     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
    174 
    175   return BO;
    176 }
    177 
    178 /// FactorOutConstant - Test if S is divisible by Factor, using signed
    179 /// division. If so, update S with Factor divided out and return true.
    180 /// S need not be evenly divisible if a reasonable remainder can be
    181 /// computed.
    182 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
    183 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
    184 /// check to see if the divide was folded.
    185 static bool FactorOutConstant(const SCEV *&S,
    186                               const SCEV *&Remainder,
    187                               const SCEV *Factor,
    188                               ScalarEvolution &SE,
    189                               const TargetData *TD) {
    190   // Everything is divisible by one.
    191   if (Factor->isOne())
    192     return true;
    193 
    194   // x/x == 1.
    195   if (S == Factor) {
    196     S = SE.getConstant(S->getType(), 1);
    197     return true;
    198   }
    199 
    200   // For a Constant, check for a multiple of the given factor.
    201   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    202     // 0/x == 0.
    203     if (C->isZero())
    204       return true;
    205     // Check for divisibility.
    206     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
    207       ConstantInt *CI =
    208         ConstantInt::get(SE.getContext(),
    209                          C->getValue()->getValue().sdiv(
    210                                                    FC->getValue()->getValue()));
    211       // If the quotient is zero and the remainder is non-zero, reject
    212       // the value at this scale. It will be considered for subsequent
    213       // smaller scales.
    214       if (!CI->isZero()) {
    215         const SCEV *Div = SE.getConstant(CI);
    216         S = Div;
    217         Remainder =
    218           SE.getAddExpr(Remainder,
    219                         SE.getConstant(C->getValue()->getValue().srem(
    220                                                   FC->getValue()->getValue())));
    221         return true;
    222       }
    223     }
    224   }
    225 
    226   // In a Mul, check if there is a constant operand which is a multiple
    227   // of the given factor.
    228   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
    229     if (TD) {
    230       // With TargetData, the size is known. Check if there is a constant
    231       // operand which is a multiple of the given factor. If so, we can
    232       // factor it.
    233       const SCEVConstant *FC = cast<SCEVConstant>(Factor);
    234       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
    235         if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
    236           SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
    237           NewMulOps[0] =
    238             SE.getConstant(C->getValue()->getValue().sdiv(
    239                                                    FC->getValue()->getValue()));
    240           S = SE.getMulExpr(NewMulOps);
    241           return true;
    242         }
    243     } else {
    244       // Without TargetData, check if Factor can be factored out of any of the
    245       // Mul's operands. If so, we can just remove it.
    246       for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
    247         const SCEV *SOp = M->getOperand(i);
    248         const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
    249         if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
    250             Remainder->isZero()) {
    251           SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
    252           NewMulOps[i] = SOp;
    253           S = SE.getMulExpr(NewMulOps);
    254           return true;
    255         }
    256       }
    257     }
    258   }
    259 
    260   // In an AddRec, check if both start and step are divisible.
    261   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
    262     const SCEV *Step = A->getStepRecurrence(SE);
    263     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
    264     if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
    265       return false;
    266     if (!StepRem->isZero())
    267       return false;
    268     const SCEV *Start = A->getStart();
    269     if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
    270       return false;
    271     // FIXME: can use A->getNoWrapFlags(FlagNW)
    272     S = SE.getAddRecExpr(Start, Step, A->getLoop(), SCEV::FlagAnyWrap);
    273     return true;
    274   }
    275 
    276   return false;
    277 }
    278 
    279 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
    280 /// is the number of SCEVAddRecExprs present, which are kept at the end of
    281 /// the list.
    282 ///
    283 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
    284                                 Type *Ty,
    285                                 ScalarEvolution &SE) {
    286   unsigned NumAddRecs = 0;
    287   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
    288     ++NumAddRecs;
    289   // Group Ops into non-addrecs and addrecs.
    290   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
    291   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
    292   // Let ScalarEvolution sort and simplify the non-addrecs list.
    293   const SCEV *Sum = NoAddRecs.empty() ?
    294                     SE.getConstant(Ty, 0) :
    295                     SE.getAddExpr(NoAddRecs);
    296   // If it returned an add, use the operands. Otherwise it simplified
    297   // the sum into a single value, so just use that.
    298   Ops.clear();
    299   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
    300     Ops.append(Add->op_begin(), Add->op_end());
    301   else if (!Sum->isZero())
    302     Ops.push_back(Sum);
    303   // Then append the addrecs.
    304   Ops.append(AddRecs.begin(), AddRecs.end());
    305 }
    306 
    307 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
    308 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
    309 /// This helps expose more opportunities for folding parts of the expressions
    310 /// into GEP indices.
    311 ///
    312 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
    313                          Type *Ty,
    314                          ScalarEvolution &SE) {
    315   // Find the addrecs.
    316   SmallVector<const SCEV *, 8> AddRecs;
    317   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    318     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
    319       const SCEV *Start = A->getStart();
    320       if (Start->isZero()) break;
    321       const SCEV *Zero = SE.getConstant(Ty, 0);
    322       AddRecs.push_back(SE.getAddRecExpr(Zero,
    323                                          A->getStepRecurrence(SE),
    324                                          A->getLoop(),
    325                                          // FIXME: A->getNoWrapFlags(FlagNW)
    326                                          SCEV::FlagAnyWrap));
    327       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
    328         Ops[i] = Zero;
    329         Ops.append(Add->op_begin(), Add->op_end());
    330         e += Add->getNumOperands();
    331       } else {
    332         Ops[i] = Start;
    333       }
    334     }
    335   if (!AddRecs.empty()) {
    336     // Add the addrecs onto the end of the list.
    337     Ops.append(AddRecs.begin(), AddRecs.end());
    338     // Resort the operand list, moving any constants to the front.
    339     SimplifyAddOperands(Ops, Ty, SE);
    340   }
    341 }
    342 
    343 /// expandAddToGEP - Expand an addition expression with a pointer type into
    344 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
    345 /// BasicAliasAnalysis and other passes analyze the result. See the rules
    346 /// for getelementptr vs. inttoptr in
    347 /// http://llvm.org/docs/LangRef.html#pointeraliasing
    348 /// for details.
    349 ///
    350 /// Design note: The correctness of using getelementptr here depends on
    351 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
    352 /// they may introduce pointer arithmetic which may not be safely converted
    353 /// into getelementptr.
    354 ///
    355 /// Design note: It might seem desirable for this function to be more
    356 /// loop-aware. If some of the indices are loop-invariant while others
    357 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
    358 /// loop-invariant portions of the overall computation outside the loop.
    359 /// However, there are a few reasons this is not done here. Hoisting simple
    360 /// arithmetic is a low-level optimization that often isn't very
    361 /// important until late in the optimization process. In fact, passes
    362 /// like InstructionCombining will combine GEPs, even if it means
    363 /// pushing loop-invariant computation down into loops, so even if the
    364 /// GEPs were split here, the work would quickly be undone. The
    365 /// LoopStrengthReduction pass, which is usually run quite late (and
    366 /// after the last InstructionCombining pass), takes care of hoisting
    367 /// loop-invariant portions of expressions, after considering what
    368 /// can be folded using target addressing modes.
    369 ///
    370 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
    371                                     const SCEV *const *op_end,
    372                                     PointerType *PTy,
    373                                     Type *Ty,
    374                                     Value *V) {
    375   Type *ElTy = PTy->getElementType();
    376   SmallVector<Value *, 4> GepIndices;
    377   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
    378   bool AnyNonZeroIndices = false;
    379 
    380   // Split AddRecs up into parts as either of the parts may be usable
    381   // without the other.
    382   SplitAddRecs(Ops, Ty, SE);
    383 
    384   // Descend down the pointer's type and attempt to convert the other
    385   // operands into GEP indices, at each level. The first index in a GEP
    386   // indexes into the array implied by the pointer operand; the rest of
    387   // the indices index into the element or field type selected by the
    388   // preceding index.
    389   for (;;) {
    390     // If the scale size is not 0, attempt to factor out a scale for
    391     // array indexing.
    392     SmallVector<const SCEV *, 8> ScaledOps;
    393     if (ElTy->isSized()) {
    394       const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
    395       if (!ElSize->isZero()) {
    396         SmallVector<const SCEV *, 8> NewOps;
    397         for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    398           const SCEV *Op = Ops[i];
    399           const SCEV *Remainder = SE.getConstant(Ty, 0);
    400           if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
    401             // Op now has ElSize factored out.
    402             ScaledOps.push_back(Op);
    403             if (!Remainder->isZero())
    404               NewOps.push_back(Remainder);
    405             AnyNonZeroIndices = true;
    406           } else {
    407             // The operand was not divisible, so add it to the list of operands
    408             // we'll scan next iteration.
    409             NewOps.push_back(Ops[i]);
    410           }
    411         }
    412         // If we made any changes, update Ops.
    413         if (!ScaledOps.empty()) {
    414           Ops = NewOps;
    415           SimplifyAddOperands(Ops, Ty, SE);
    416         }
    417       }
    418     }
    419 
    420     // Record the scaled array index for this level of the type. If
    421     // we didn't find any operands that could be factored, tentatively
    422     // assume that element zero was selected (since the zero offset
    423     // would obviously be folded away).
    424     Value *Scaled = ScaledOps.empty() ?
    425                     Constant::getNullValue(Ty) :
    426                     expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
    427     GepIndices.push_back(Scaled);
    428 
    429     // Collect struct field index operands.
    430     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
    431       bool FoundFieldNo = false;
    432       // An empty struct has no fields.
    433       if (STy->getNumElements() == 0) break;
    434       if (SE.TD) {
    435         // With TargetData, field offsets are known. See if a constant offset
    436         // falls within any of the struct fields.
    437         if (Ops.empty()) break;
    438         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
    439           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
    440             const StructLayout &SL = *SE.TD->getStructLayout(STy);
    441             uint64_t FullOffset = C->getValue()->getZExtValue();
    442             if (FullOffset < SL.getSizeInBytes()) {
    443               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
    444               GepIndices.push_back(
    445                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
    446               ElTy = STy->getTypeAtIndex(ElIdx);
    447               Ops[0] =
    448                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
    449               AnyNonZeroIndices = true;
    450               FoundFieldNo = true;
    451             }
    452           }
    453       } else {
    454         // Without TargetData, just check for an offsetof expression of the
    455         // appropriate struct type.
    456         for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    457           if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
    458             Type *CTy;
    459             Constant *FieldNo;
    460             if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
    461               GepIndices.push_back(FieldNo);
    462               ElTy =
    463                 STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
    464               Ops[i] = SE.getConstant(Ty, 0);
    465               AnyNonZeroIndices = true;
    466               FoundFieldNo = true;
    467               break;
    468             }
    469           }
    470       }
    471       // If no struct field offsets were found, tentatively assume that
    472       // field zero was selected (since the zero offset would obviously
    473       // be folded away).
    474       if (!FoundFieldNo) {
    475         ElTy = STy->getTypeAtIndex(0u);
    476         GepIndices.push_back(
    477           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
    478       }
    479     }
    480 
    481     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
    482       ElTy = ATy->getElementType();
    483     else
    484       break;
    485   }
    486 
    487   // If none of the operands were convertible to proper GEP indices, cast
    488   // the base to i8* and do an ugly getelementptr with that. It's still
    489   // better than ptrtoint+arithmetic+inttoptr at least.
    490   if (!AnyNonZeroIndices) {
    491     // Cast the base to i8*.
    492     V = InsertNoopCastOfTo(V,
    493        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
    494 
    495     // Expand the operands for a plain byte offset.
    496     Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
    497 
    498     // Fold a GEP with constant operands.
    499     if (Constant *CLHS = dyn_cast<Constant>(V))
    500       if (Constant *CRHS = dyn_cast<Constant>(Idx))
    501         return ConstantExpr::getGetElementPtr(CLHS, CRHS);
    502 
    503     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
    504     unsigned ScanLimit = 6;
    505     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
    506     // Scanning starts from the last instruction before the insertion point.
    507     BasicBlock::iterator IP = Builder.GetInsertPoint();
    508     if (IP != BlockBegin) {
    509       --IP;
    510       for (; ScanLimit; --IP, --ScanLimit) {
    511         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
    512         // generated code.
    513         if (isa<DbgInfoIntrinsic>(IP))
    514           ScanLimit++;
    515         if (IP->getOpcode() == Instruction::GetElementPtr &&
    516             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
    517           return IP;
    518         if (IP == BlockBegin) break;
    519       }
    520     }
    521 
    522     // Save the original insertion point so we can restore it when we're done.
    523     BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
    524     BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
    525 
    526     // Move the insertion point out of as many loops as we can.
    527     while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    528       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
    529       BasicBlock *Preheader = L->getLoopPreheader();
    530       if (!Preheader) break;
    531 
    532       // Ok, move up a level.
    533       Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    534     }
    535 
    536     // Emit a GEP.
    537     Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
    538     rememberInstruction(GEP);
    539 
    540     // Restore the original insert point.
    541     if (SaveInsertBB)
    542       restoreInsertPoint(SaveInsertBB, SaveInsertPt);
    543 
    544     return GEP;
    545   }
    546 
    547   // Save the original insertion point so we can restore it when we're done.
    548   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
    549   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
    550 
    551   // Move the insertion point out of as many loops as we can.
    552   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    553     if (!L->isLoopInvariant(V)) break;
    554 
    555     bool AnyIndexNotLoopInvariant = false;
    556     for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
    557          E = GepIndices.end(); I != E; ++I)
    558       if (!L->isLoopInvariant(*I)) {
    559         AnyIndexNotLoopInvariant = true;
    560         break;
    561       }
    562     if (AnyIndexNotLoopInvariant)
    563       break;
    564 
    565     BasicBlock *Preheader = L->getLoopPreheader();
    566     if (!Preheader) break;
    567 
    568     // Ok, move up a level.
    569     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    570   }
    571 
    572   // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
    573   // because ScalarEvolution may have changed the address arithmetic to
    574   // compute a value which is beyond the end of the allocated object.
    575   Value *Casted = V;
    576   if (V->getType() != PTy)
    577     Casted = InsertNoopCastOfTo(Casted, PTy);
    578   Value *GEP = Builder.CreateGEP(Casted,
    579                                  GepIndices,
    580                                  "scevgep");
    581   Ops.push_back(SE.getUnknown(GEP));
    582   rememberInstruction(GEP);
    583 
    584   // Restore the original insert point.
    585   if (SaveInsertBB)
    586     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
    587 
    588   return expand(SE.getAddExpr(Ops));
    589 }
    590 
    591 /// isNonConstantNegative - Return true if the specified scev is negated, but
    592 /// not a constant.
    593 static bool isNonConstantNegative(const SCEV *F) {
    594   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F);
    595   if (!Mul) return false;
    596 
    597   // If there is a constant factor, it will be first.
    598   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
    599   if (!SC) return false;
    600 
    601   // Return true if the value is negative, this matches things like (-42 * V).
    602   return SC->getValue()->getValue().isNegative();
    603 }
    604 
    605 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
    606 /// SCEV expansion. If they are nested, this is the most nested. If they are
    607 /// neighboring, pick the later.
    608 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
    609                                         DominatorTree &DT) {
    610   if (!A) return B;
    611   if (!B) return A;
    612   if (A->contains(B)) return B;
    613   if (B->contains(A)) return A;
    614   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
    615   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
    616   return A; // Arbitrarily break the tie.
    617 }
    618 
    619 /// getRelevantLoop - Get the most relevant loop associated with the given
    620 /// expression, according to PickMostRelevantLoop.
    621 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
    622   // Test whether we've already computed the most relevant loop for this SCEV.
    623   std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
    624     RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
    625   if (!Pair.second)
    626     return Pair.first->second;
    627 
    628   if (isa<SCEVConstant>(S))
    629     // A constant has no relevant loops.
    630     return 0;
    631   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    632     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
    633       return Pair.first->second = SE.LI->getLoopFor(I->getParent());
    634     // A non-instruction has no relevant loops.
    635     return 0;
    636   }
    637   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
    638     const Loop *L = 0;
    639     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
    640       L = AR->getLoop();
    641     for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
    642          I != E; ++I)
    643       L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
    644     return RelevantLoops[N] = L;
    645   }
    646   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
    647     const Loop *Result = getRelevantLoop(C->getOperand());
    648     return RelevantLoops[C] = Result;
    649   }
    650   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
    651     const Loop *Result =
    652       PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
    653                            getRelevantLoop(D->getRHS()),
    654                            *SE.DT);
    655     return RelevantLoops[D] = Result;
    656   }
    657   llvm_unreachable("Unexpected SCEV type!");
    658   return 0;
    659 }
    660 
    661 namespace {
    662 
    663 /// LoopCompare - Compare loops by PickMostRelevantLoop.
    664 class LoopCompare {
    665   DominatorTree &DT;
    666 public:
    667   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
    668 
    669   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
    670                   std::pair<const Loop *, const SCEV *> RHS) const {
    671     // Keep pointer operands sorted at the end.
    672     if (LHS.second->getType()->isPointerTy() !=
    673         RHS.second->getType()->isPointerTy())
    674       return LHS.second->getType()->isPointerTy();
    675 
    676     // Compare loops with PickMostRelevantLoop.
    677     if (LHS.first != RHS.first)
    678       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
    679 
    680     // If one operand is a non-constant negative and the other is not,
    681     // put the non-constant negative on the right so that a sub can
    682     // be used instead of a negate and add.
    683     if (isNonConstantNegative(LHS.second)) {
    684       if (!isNonConstantNegative(RHS.second))
    685         return false;
    686     } else if (isNonConstantNegative(RHS.second))
    687       return true;
    688 
    689     // Otherwise they are equivalent according to this comparison.
    690     return false;
    691   }
    692 };
    693 
    694 }
    695 
    696 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
    697   Type *Ty = SE.getEffectiveSCEVType(S->getType());
    698 
    699   // Collect all the add operands in a loop, along with their associated loops.
    700   // Iterate in reverse so that constants are emitted last, all else equal, and
    701   // so that pointer operands are inserted first, which the code below relies on
    702   // to form more involved GEPs.
    703   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
    704   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
    705        E(S->op_begin()); I != E; ++I)
    706     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
    707 
    708   // Sort by loop. Use a stable sort so that constants follow non-constants and
    709   // pointer operands precede non-pointer operands.
    710   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
    711 
    712   // Emit instructions to add all the operands. Hoist as much as possible
    713   // out of loops, and form meaningful getelementptrs where possible.
    714   Value *Sum = 0;
    715   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
    716        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
    717     const Loop *CurLoop = I->first;
    718     const SCEV *Op = I->second;
    719     if (!Sum) {
    720       // This is the first operand. Just expand it.
    721       Sum = expand(Op);
    722       ++I;
    723     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
    724       // The running sum expression is a pointer. Try to form a getelementptr
    725       // at this level with that as the base.
    726       SmallVector<const SCEV *, 4> NewOps;
    727       for (; I != E && I->first == CurLoop; ++I) {
    728         // If the operand is SCEVUnknown and not instructions, peek through
    729         // it, to enable more of it to be folded into the GEP.
    730         const SCEV *X = I->second;
    731         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
    732           if (!isa<Instruction>(U->getValue()))
    733             X = SE.getSCEV(U->getValue());
    734         NewOps.push_back(X);
    735       }
    736       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
    737     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
    738       // The running sum is an integer, and there's a pointer at this level.
    739       // Try to form a getelementptr. If the running sum is instructions,
    740       // use a SCEVUnknown to avoid re-analyzing them.
    741       SmallVector<const SCEV *, 4> NewOps;
    742       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
    743                                                SE.getSCEV(Sum));
    744       for (++I; I != E && I->first == CurLoop; ++I)
    745         NewOps.push_back(I->second);
    746       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
    747     } else if (isNonConstantNegative(Op)) {
    748       // Instead of doing a negate and add, just do a subtract.
    749       Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
    750       Sum = InsertNoopCastOfTo(Sum, Ty);
    751       Sum = InsertBinop(Instruction::Sub, Sum, W);
    752       ++I;
    753     } else {
    754       // A simple add.
    755       Value *W = expandCodeFor(Op, Ty);
    756       Sum = InsertNoopCastOfTo(Sum, Ty);
    757       // Canonicalize a constant to the RHS.
    758       if (isa<Constant>(Sum)) std::swap(Sum, W);
    759       Sum = InsertBinop(Instruction::Add, Sum, W);
    760       ++I;
    761     }
    762   }
    763 
    764   return Sum;
    765 }
    766 
    767 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
    768   Type *Ty = SE.getEffectiveSCEVType(S->getType());
    769 
    770   // Collect all the mul operands in a loop, along with their associated loops.
    771   // Iterate in reverse so that constants are emitted last, all else equal.
    772   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
    773   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
    774        E(S->op_begin()); I != E; ++I)
    775     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
    776 
    777   // Sort by loop. Use a stable sort so that constants follow non-constants.
    778   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
    779 
    780   // Emit instructions to mul all the operands. Hoist as much as possible
    781   // out of loops.
    782   Value *Prod = 0;
    783   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
    784        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
    785     const SCEV *Op = I->second;
    786     if (!Prod) {
    787       // This is the first operand. Just expand it.
    788       Prod = expand(Op);
    789       ++I;
    790     } else if (Op->isAllOnesValue()) {
    791       // Instead of doing a multiply by negative one, just do a negate.
    792       Prod = InsertNoopCastOfTo(Prod, Ty);
    793       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
    794       ++I;
    795     } else {
    796       // A simple mul.
    797       Value *W = expandCodeFor(Op, Ty);
    798       Prod = InsertNoopCastOfTo(Prod, Ty);
    799       // Canonicalize a constant to the RHS.
    800       if (isa<Constant>(Prod)) std::swap(Prod, W);
    801       Prod = InsertBinop(Instruction::Mul, Prod, W);
    802       ++I;
    803     }
    804   }
    805 
    806   return Prod;
    807 }
    808 
    809 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
    810   Type *Ty = SE.getEffectiveSCEVType(S->getType());
    811 
    812   Value *LHS = expandCodeFor(S->getLHS(), Ty);
    813   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
    814     const APInt &RHS = SC->getValue()->getValue();
    815     if (RHS.isPowerOf2())
    816       return InsertBinop(Instruction::LShr, LHS,
    817                          ConstantInt::get(Ty, RHS.logBase2()));
    818   }
    819 
    820   Value *RHS = expandCodeFor(S->getRHS(), Ty);
    821   return InsertBinop(Instruction::UDiv, LHS, RHS);
    822 }
    823 
    824 /// Move parts of Base into Rest to leave Base with the minimal
    825 /// expression that provides a pointer operand suitable for a
    826 /// GEP expansion.
    827 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
    828                               ScalarEvolution &SE) {
    829   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
    830     Base = A->getStart();
    831     Rest = SE.getAddExpr(Rest,
    832                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
    833                                           A->getStepRecurrence(SE),
    834                                           A->getLoop(),
    835                                           // FIXME: A->getNoWrapFlags(FlagNW)
    836                                           SCEV::FlagAnyWrap));
    837   }
    838   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
    839     Base = A->getOperand(A->getNumOperands()-1);
    840     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
    841     NewAddOps.back() = Rest;
    842     Rest = SE.getAddExpr(NewAddOps);
    843     ExposePointerBase(Base, Rest, SE);
    844   }
    845 }
    846 
    847 /// Determine if this is a well-behaved chain of instructions leading back to
    848 /// the PHI. If so, it may be reused by expanded expressions.
    849 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
    850                                          const Loop *L) {
    851   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
    852       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
    853     return false;
    854   // If any of the operands don't dominate the insert position, bail.
    855   // Addrec operands are always loop-invariant, so this can only happen
    856   // if there are instructions which haven't been hoisted.
    857   if (L == IVIncInsertLoop) {
    858     for (User::op_iterator OI = IncV->op_begin()+1,
    859            OE = IncV->op_end(); OI != OE; ++OI)
    860       if (Instruction *OInst = dyn_cast<Instruction>(OI))
    861         if (!SE.DT->dominates(OInst, IVIncInsertPos))
    862           return false;
    863   }
    864   // Advance to the next instruction.
    865   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
    866   if (!IncV)
    867     return false;
    868 
    869   if (IncV->mayHaveSideEffects())
    870     return false;
    871 
    872   if (IncV != PN)
    873     return true;
    874 
    875   return isNormalAddRecExprPHI(PN, IncV, L);
    876 }
    877 
    878 /// Determine if this cyclic phi is in a form that would have been generated by
    879 /// LSR. We don't care if the phi was actually expanded in this pass, as long
    880 /// as it is in a low-cost form, for example, no implied multiplication. This
    881 /// should match any patterns generated by getAddRecExprPHILiterally and
    882 /// expandAddtoGEP.
    883 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
    884                                            const Loop *L) {
    885   switch (IncV->getOpcode()) {
    886   // Check for a simple Add/Sub or GEP of a loop invariant step.
    887   case Instruction::Add:
    888   case Instruction::Sub:
    889     return IncV->getOperand(0) == PN
    890       && L->isLoopInvariant(IncV->getOperand(1));
    891   case Instruction::BitCast:
    892     IncV = dyn_cast<GetElementPtrInst>(IncV->getOperand(0));
    893     if (!IncV)
    894       return false;
    895     // fall-thru to GEP handling
    896   case Instruction::GetElementPtr: {
    897     // This must be a pointer addition of constants (pretty) or some number of
    898     // address-size elements (ugly).
    899     for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
    900          I != E; ++I) {
    901       if (isa<Constant>(*I))
    902         continue;
    903       // ugly geps have 2 operands.
    904       // i1* is used by the expander to represent an address-size element.
    905       if (IncV->getNumOperands() != 2)
    906         return false;
    907       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
    908       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
    909           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
    910         return false;
    911       // Ensure the operands dominate the insertion point. I don't know of a
    912       // case when this would not be true, so this is somewhat untested.
    913       if (L == IVIncInsertLoop) {
    914         for (User::op_iterator OI = IncV->op_begin()+1,
    915                OE = IncV->op_end(); OI != OE; ++OI)
    916           if (Instruction *OInst = dyn_cast<Instruction>(OI))
    917             if (!SE.DT->dominates(OInst, IVIncInsertPos))
    918               return false;
    919       }
    920       break;
    921     }
    922     IncV = dyn_cast<Instruction>(IncV->getOperand(0));
    923     if (IncV && IncV->getOpcode() == Instruction::BitCast)
    924       IncV = dyn_cast<Instruction>(IncV->getOperand(0));
    925     return IncV == PN;
    926   }
    927   default:
    928     return false;
    929   }
    930 }
    931 
    932 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
    933 /// the base addrec, which is the addrec without any non-loop-dominating
    934 /// values, and return the PHI.
    935 PHINode *
    936 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
    937                                         const Loop *L,
    938                                         Type *ExpandTy,
    939                                         Type *IntTy) {
    940   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
    941 
    942   // Reuse a previously-inserted PHI, if present.
    943   BasicBlock *LatchBlock = L->getLoopLatch();
    944   if (LatchBlock) {
    945     for (BasicBlock::iterator I = L->getHeader()->begin();
    946          PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    947       if (!SE.isSCEVable(PN->getType()) ||
    948           (SE.getEffectiveSCEVType(PN->getType()) !=
    949            SE.getEffectiveSCEVType(Normalized->getType())) ||
    950           SE.getSCEV(PN) != Normalized)
    951         continue;
    952 
    953       Instruction *IncV =
    954         cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
    955 
    956       if (LSRMode) {
    957         if (!isExpandedAddRecExprPHI(PN, IncV, L))
    958           continue;
    959       }
    960       else {
    961         if (!isNormalAddRecExprPHI(PN, IncV, L))
    962           continue;
    963       }
    964       // Ok, the add recurrence looks usable.
    965       // Remember this PHI, even in post-inc mode.
    966       InsertedValues.insert(PN);
    967       // Remember the increment.
    968       rememberInstruction(IncV);
    969       if (L == IVIncInsertLoop)
    970         do {
    971           if (SE.DT->dominates(IncV, IVIncInsertPos))
    972             break;
    973           // Make sure the increment is where we want it. But don't move it
    974           // down past a potential existing post-inc user.
    975           IncV->moveBefore(IVIncInsertPos);
    976           IVIncInsertPos = IncV;
    977           IncV = cast<Instruction>(IncV->getOperand(0));
    978         } while (IncV != PN);
    979       return PN;
    980     }
    981   }
    982 
    983   // Save the original insertion point so we can restore it when we're done.
    984   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
    985   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
    986 
    987   // Expand code for the start value.
    988   Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
    989                                 L->getHeader()->begin());
    990 
    991   // StartV must be hoisted into L's preheader to dominate the new phi.
    992   assert(!isa<Instruction>(StartV) ||
    993          SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
    994                                   L->getHeader()));
    995 
    996   // Expand code for the step value. Insert instructions right before the
    997   // terminator corresponding to the back-edge. Do this before creating the PHI
    998   // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
    999   // negative, insert a sub instead of an add for the increment (unless it's a
   1000   // constant, because subtracts of constants are canonicalized to adds).
   1001   const SCEV *Step = Normalized->getStepRecurrence(SE);
   1002   bool isPointer = ExpandTy->isPointerTy();
   1003   bool isNegative = !isPointer && isNonConstantNegative(Step);
   1004   if (isNegative)
   1005     Step = SE.getNegativeSCEV(Step);
   1006   Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
   1007 
   1008   // Create the PHI.
   1009   BasicBlock *Header = L->getHeader();
   1010   Builder.SetInsertPoint(Header, Header->begin());
   1011   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
   1012   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
   1013                                   Twine(IVName) + ".iv");
   1014   rememberInstruction(PN);
   1015 
   1016   // Create the step instructions and populate the PHI.
   1017   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
   1018     BasicBlock *Pred = *HPI;
   1019 
   1020     // Add a start value.
   1021     if (!L->contains(Pred)) {
   1022       PN->addIncoming(StartV, Pred);
   1023       continue;
   1024     }
   1025 
   1026     // Create a step value and add it to the PHI. If IVIncInsertLoop is
   1027     // non-null and equal to the addrec's loop, insert the instructions
   1028     // at IVIncInsertPos.
   1029     Instruction *InsertPos = L == IVIncInsertLoop ?
   1030       IVIncInsertPos : Pred->getTerminator();
   1031     Builder.SetInsertPoint(InsertPos);
   1032     Value *IncV;
   1033     // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
   1034     if (isPointer) {
   1035       PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
   1036       // If the step isn't constant, don't use an implicitly scaled GEP, because
   1037       // that would require a multiply inside the loop.
   1038       if (!isa<ConstantInt>(StepV))
   1039         GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
   1040                                     GEPPtrTy->getAddressSpace());
   1041       const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
   1042       IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
   1043       if (IncV->getType() != PN->getType()) {
   1044         IncV = Builder.CreateBitCast(IncV, PN->getType());
   1045         rememberInstruction(IncV);
   1046       }
   1047     } else {
   1048       IncV = isNegative ?
   1049         Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
   1050         Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
   1051       rememberInstruction(IncV);
   1052     }
   1053     PN->addIncoming(IncV, Pred);
   1054   }
   1055 
   1056   // Restore the original insert point.
   1057   if (SaveInsertBB)
   1058     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
   1059 
   1060   // Remember this PHI, even in post-inc mode.
   1061   InsertedValues.insert(PN);
   1062 
   1063   return PN;
   1064 }
   1065 
   1066 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
   1067   Type *STy = S->getType();
   1068   Type *IntTy = SE.getEffectiveSCEVType(STy);
   1069   const Loop *L = S->getLoop();
   1070 
   1071   // Determine a normalized form of this expression, which is the expression
   1072   // before any post-inc adjustment is made.
   1073   const SCEVAddRecExpr *Normalized = S;
   1074   if (PostIncLoops.count(L)) {
   1075     PostIncLoopSet Loops;
   1076     Loops.insert(L);
   1077     Normalized =
   1078       cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
   1079                                                   Loops, SE, *SE.DT));
   1080   }
   1081 
   1082   // Strip off any non-loop-dominating component from the addrec start.
   1083   const SCEV *Start = Normalized->getStart();
   1084   const SCEV *PostLoopOffset = 0;
   1085   if (!SE.properlyDominates(Start, L->getHeader())) {
   1086     PostLoopOffset = Start;
   1087     Start = SE.getConstant(Normalized->getType(), 0);
   1088     Normalized = cast<SCEVAddRecExpr>(
   1089       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
   1090                        Normalized->getLoop(),
   1091                        // FIXME: Normalized->getNoWrapFlags(FlagNW)
   1092                        SCEV::FlagAnyWrap));
   1093   }
   1094 
   1095   // Strip off any non-loop-dominating component from the addrec step.
   1096   const SCEV *Step = Normalized->getStepRecurrence(SE);
   1097   const SCEV *PostLoopScale = 0;
   1098   if (!SE.dominates(Step, L->getHeader())) {
   1099     PostLoopScale = Step;
   1100     Step = SE.getConstant(Normalized->getType(), 1);
   1101     Normalized =
   1102       cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
   1103                                             Normalized->getLoop(),
   1104                                             // FIXME: Normalized
   1105                                             // ->getNoWrapFlags(FlagNW)
   1106                                             SCEV::FlagAnyWrap));
   1107   }
   1108 
   1109   // Expand the core addrec. If we need post-loop scaling, force it to
   1110   // expand to an integer type to avoid the need for additional casting.
   1111   Type *ExpandTy = PostLoopScale ? IntTy : STy;
   1112   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
   1113 
   1114   // Accommodate post-inc mode, if necessary.
   1115   Value *Result;
   1116   if (!PostIncLoops.count(L))
   1117     Result = PN;
   1118   else {
   1119     // In PostInc mode, use the post-incremented value.
   1120     BasicBlock *LatchBlock = L->getLoopLatch();
   1121     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
   1122     Result = PN->getIncomingValueForBlock(LatchBlock);
   1123 
   1124     // For an expansion to use the postinc form, the client must call
   1125     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
   1126     // or dominated by IVIncInsertPos.
   1127     assert((!isa<Instruction>(Result) ||
   1128             SE.DT->dominates(cast<Instruction>(Result),
   1129                              Builder.GetInsertPoint())) &&
   1130            "postinc expansion does not dominate use");
   1131   }
   1132 
   1133   // Re-apply any non-loop-dominating scale.
   1134   if (PostLoopScale) {
   1135     Result = InsertNoopCastOfTo(Result, IntTy);
   1136     Result = Builder.CreateMul(Result,
   1137                                expandCodeFor(PostLoopScale, IntTy));
   1138     rememberInstruction(Result);
   1139   }
   1140 
   1141   // Re-apply any non-loop-dominating offset.
   1142   if (PostLoopOffset) {
   1143     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
   1144       const SCEV *const OffsetArray[1] = { PostLoopOffset };
   1145       Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
   1146     } else {
   1147       Result = InsertNoopCastOfTo(Result, IntTy);
   1148       Result = Builder.CreateAdd(Result,
   1149                                  expandCodeFor(PostLoopOffset, IntTy));
   1150       rememberInstruction(Result);
   1151     }
   1152   }
   1153 
   1154   return Result;
   1155 }
   1156 
   1157 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
   1158   if (!CanonicalMode) return expandAddRecExprLiterally(S);
   1159 
   1160   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1161   const Loop *L = S->getLoop();
   1162 
   1163   // First check for an existing canonical IV in a suitable type.
   1164   PHINode *CanonicalIV = 0;
   1165   if (PHINode *PN = L->getCanonicalInductionVariable())
   1166     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
   1167       CanonicalIV = PN;
   1168 
   1169   // Rewrite an AddRec in terms of the canonical induction variable, if
   1170   // its type is more narrow.
   1171   if (CanonicalIV &&
   1172       SE.getTypeSizeInBits(CanonicalIV->getType()) >
   1173       SE.getTypeSizeInBits(Ty)) {
   1174     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
   1175     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
   1176       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
   1177     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
   1178                                        // FIXME: S->getNoWrapFlags(FlagNW)
   1179                                        SCEV::FlagAnyWrap));
   1180     BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
   1181     BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
   1182     BasicBlock::iterator NewInsertPt =
   1183       llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
   1184     while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
   1185            isa<LandingPadInst>(NewInsertPt))
   1186       ++NewInsertPt;
   1187     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
   1188                       NewInsertPt);
   1189     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
   1190     return V;
   1191   }
   1192 
   1193   // {X,+,F} --> X + {0,+,F}
   1194   if (!S->getStart()->isZero()) {
   1195     SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
   1196     NewOps[0] = SE.getConstant(Ty, 0);
   1197     // FIXME: can use S->getNoWrapFlags()
   1198     const SCEV *Rest = SE.getAddRecExpr(NewOps, L, SCEV::FlagAnyWrap);
   1199 
   1200     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
   1201     // comments on expandAddToGEP for details.
   1202     const SCEV *Base = S->getStart();
   1203     const SCEV *RestArray[1] = { Rest };
   1204     // Dig into the expression to find the pointer base for a GEP.
   1205     ExposePointerBase(Base, RestArray[0], SE);
   1206     // If we found a pointer, expand the AddRec with a GEP.
   1207     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
   1208       // Make sure the Base isn't something exotic, such as a multiplied
   1209       // or divided pointer value. In those cases, the result type isn't
   1210       // actually a pointer type.
   1211       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
   1212         Value *StartV = expand(Base);
   1213         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
   1214         return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
   1215       }
   1216     }
   1217 
   1218     // Just do a normal add. Pre-expand the operands to suppress folding.
   1219     return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
   1220                                 SE.getUnknown(expand(Rest))));
   1221   }
   1222 
   1223   // If we don't yet have a canonical IV, create one.
   1224   if (!CanonicalIV) {
   1225     // Create and insert the PHI node for the induction variable in the
   1226     // specified loop.
   1227     BasicBlock *Header = L->getHeader();
   1228     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
   1229     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
   1230                                   Header->begin());
   1231     rememberInstruction(CanonicalIV);
   1232 
   1233     Constant *One = ConstantInt::get(Ty, 1);
   1234     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
   1235       BasicBlock *HP = *HPI;
   1236       if (L->contains(HP)) {
   1237         // Insert a unit add instruction right before the terminator
   1238         // corresponding to the back-edge.
   1239         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
   1240                                                      "indvar.next",
   1241                                                      HP->getTerminator());
   1242         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
   1243         rememberInstruction(Add);
   1244         CanonicalIV->addIncoming(Add, HP);
   1245       } else {
   1246         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
   1247       }
   1248     }
   1249   }
   1250 
   1251   // {0,+,1} --> Insert a canonical induction variable into the loop!
   1252   if (S->isAffine() && S->getOperand(1)->isOne()) {
   1253     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
   1254            "IVs with types different from the canonical IV should "
   1255            "already have been handled!");
   1256     return CanonicalIV;
   1257   }
   1258 
   1259   // {0,+,F} --> {0,+,1} * F
   1260 
   1261   // If this is a simple linear addrec, emit it now as a special case.
   1262   if (S->isAffine())    // {0,+,F} --> i*F
   1263     return
   1264       expand(SE.getTruncateOrNoop(
   1265         SE.getMulExpr(SE.getUnknown(CanonicalIV),
   1266                       SE.getNoopOrAnyExtend(S->getOperand(1),
   1267                                             CanonicalIV->getType())),
   1268         Ty));
   1269 
   1270   // If this is a chain of recurrences, turn it into a closed form, using the
   1271   // folders, then expandCodeFor the closed form.  This allows the folders to
   1272   // simplify the expression without having to build a bunch of special code
   1273   // into this folder.
   1274   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
   1275 
   1276   // Promote S up to the canonical IV type, if the cast is foldable.
   1277   const SCEV *NewS = S;
   1278   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
   1279   if (isa<SCEVAddRecExpr>(Ext))
   1280     NewS = Ext;
   1281 
   1282   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
   1283   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
   1284 
   1285   // Truncate the result down to the original type, if needed.
   1286   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
   1287   return expand(T);
   1288 }
   1289 
   1290 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
   1291   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1292   Value *V = expandCodeFor(S->getOperand(),
   1293                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
   1294   Value *I = Builder.CreateTrunc(V, Ty);
   1295   rememberInstruction(I);
   1296   return I;
   1297 }
   1298 
   1299 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
   1300   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1301   Value *V = expandCodeFor(S->getOperand(),
   1302                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
   1303   Value *I = Builder.CreateZExt(V, Ty);
   1304   rememberInstruction(I);
   1305   return I;
   1306 }
   1307 
   1308 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
   1309   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1310   Value *V = expandCodeFor(S->getOperand(),
   1311                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
   1312   Value *I = Builder.CreateSExt(V, Ty);
   1313   rememberInstruction(I);
   1314   return I;
   1315 }
   1316 
   1317 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
   1318   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
   1319   Type *Ty = LHS->getType();
   1320   for (int i = S->getNumOperands()-2; i >= 0; --i) {
   1321     // In the case of mixed integer and pointer types, do the
   1322     // rest of the comparisons as integer.
   1323     if (S->getOperand(i)->getType() != Ty) {
   1324       Ty = SE.getEffectiveSCEVType(Ty);
   1325       LHS = InsertNoopCastOfTo(LHS, Ty);
   1326     }
   1327     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
   1328     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
   1329     rememberInstruction(ICmp);
   1330     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
   1331     rememberInstruction(Sel);
   1332     LHS = Sel;
   1333   }
   1334   // In the case of mixed integer and pointer types, cast the
   1335   // final result back to the pointer type.
   1336   if (LHS->getType() != S->getType())
   1337     LHS = InsertNoopCastOfTo(LHS, S->getType());
   1338   return LHS;
   1339 }
   1340 
   1341 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
   1342   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
   1343   Type *Ty = LHS->getType();
   1344   for (int i = S->getNumOperands()-2; i >= 0; --i) {
   1345     // In the case of mixed integer and pointer types, do the
   1346     // rest of the comparisons as integer.
   1347     if (S->getOperand(i)->getType() != Ty) {
   1348       Ty = SE.getEffectiveSCEVType(Ty);
   1349       LHS = InsertNoopCastOfTo(LHS, Ty);
   1350     }
   1351     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
   1352     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
   1353     rememberInstruction(ICmp);
   1354     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
   1355     rememberInstruction(Sel);
   1356     LHS = Sel;
   1357   }
   1358   // In the case of mixed integer and pointer types, cast the
   1359   // final result back to the pointer type.
   1360   if (LHS->getType() != S->getType())
   1361     LHS = InsertNoopCastOfTo(LHS, S->getType());
   1362   return LHS;
   1363 }
   1364 
   1365 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
   1366                                    Instruction *I) {
   1367   BasicBlock::iterator IP = I;
   1368   while (isInsertedInstruction(IP) || isa<DbgInfoIntrinsic>(IP))
   1369     ++IP;
   1370   Builder.SetInsertPoint(IP->getParent(), IP);
   1371   return expandCodeFor(SH, Ty);
   1372 }
   1373 
   1374 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
   1375   // Expand the code for this SCEV.
   1376   Value *V = expand(SH);
   1377   if (Ty) {
   1378     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
   1379            "non-trivial casts should be done with the SCEVs directly!");
   1380     V = InsertNoopCastOfTo(V, Ty);
   1381   }
   1382   return V;
   1383 }
   1384 
   1385 Value *SCEVExpander::expand(const SCEV *S) {
   1386   // Compute an insertion point for this SCEV object. Hoist the instructions
   1387   // as far out in the loop nest as possible.
   1388   Instruction *InsertPt = Builder.GetInsertPoint();
   1389   for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
   1390        L = L->getParentLoop())
   1391     if (SE.isLoopInvariant(S, L)) {
   1392       if (!L) break;
   1393       if (BasicBlock *Preheader = L->getLoopPreheader())
   1394         InsertPt = Preheader->getTerminator();
   1395     } else {
   1396       // If the SCEV is computable at this level, insert it into the header
   1397       // after the PHIs (and after any other instructions that we've inserted
   1398       // there) so that it is guaranteed to dominate any user inside the loop.
   1399       if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
   1400         InsertPt = L->getHeader()->getFirstInsertionPt();
   1401       while (isInsertedInstruction(InsertPt) || isa<DbgInfoIntrinsic>(InsertPt))
   1402         InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
   1403       break;
   1404     }
   1405 
   1406   // Check to see if we already expanded this here.
   1407   std::map<std::pair<const SCEV *, Instruction *>,
   1408            AssertingVH<Value> >::iterator I =
   1409     InsertedExpressions.find(std::make_pair(S, InsertPt));
   1410   if (I != InsertedExpressions.end())
   1411     return I->second;
   1412 
   1413   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
   1414   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
   1415   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
   1416 
   1417   // Expand the expression into instructions.
   1418   Value *V = visit(S);
   1419 
   1420   // Remember the expanded value for this SCEV at this location.
   1421   //
   1422   // This is independent of PostIncLoops. The mapped value simply materializes
   1423   // the expression at this insertion point. If the mapped value happened to be
   1424   // a postinc expansion, it could be reused by a non postinc user, but only if
   1425   // its insertion point was already at the head of the loop.
   1426   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
   1427 
   1428   restoreInsertPoint(SaveInsertBB, SaveInsertPt);
   1429   return V;
   1430 }
   1431 
   1432 void SCEVExpander::rememberInstruction(Value *I) {
   1433   if (!PostIncLoops.empty())
   1434     InsertedPostIncValues.insert(I);
   1435   else
   1436     InsertedValues.insert(I);
   1437 
   1438   // If we just claimed an existing instruction and that instruction had
   1439   // been the insert point, adjust the insert point forward so that
   1440   // subsequently inserted code will be dominated.
   1441   if (Builder.GetInsertPoint() == I) {
   1442     BasicBlock::iterator It = cast<Instruction>(I);
   1443     do { ++It; } while (isInsertedInstruction(It) ||
   1444                         isa<DbgInfoIntrinsic>(It));
   1445     Builder.SetInsertPoint(Builder.GetInsertBlock(), It);
   1446   }
   1447 }
   1448 
   1449 void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
   1450   // If we acquired more instructions since the old insert point was saved,
   1451   // advance past them.
   1452   while (isInsertedInstruction(I) || isa<DbgInfoIntrinsic>(I)) ++I;
   1453 
   1454   Builder.SetInsertPoint(BB, I);
   1455 }
   1456 
   1457 /// getOrInsertCanonicalInductionVariable - This method returns the
   1458 /// canonical induction variable of the specified type for the specified
   1459 /// loop (inserting one if there is none).  A canonical induction variable
   1460 /// starts at zero and steps by one on each iteration.
   1461 PHINode *
   1462 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
   1463                                                     Type *Ty) {
   1464   assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
   1465 
   1466   // Build a SCEV for {0,+,1}<L>.
   1467   // Conservatively use FlagAnyWrap for now.
   1468   const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
   1469                                    SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
   1470 
   1471   // Emit code for it.
   1472   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
   1473   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
   1474   PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
   1475   if (SaveInsertBB)
   1476     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
   1477 
   1478   return V;
   1479 }
   1480 
   1481 /// hoistStep - Attempt to hoist an IV increment above a potential use.
   1482 ///
   1483 /// To successfully hoist, two criteria must be met:
   1484 /// - IncV operands dominate InsertPos and
   1485 /// - InsertPos dominates IncV
   1486 ///
   1487 /// Meeting the second condition means that we don't need to check all of IncV's
   1488 /// existing uses (it's moving up in the domtree).
   1489 ///
   1490 /// This does not yet recursively hoist the operands, although that would
   1491 /// not be difficult.
   1492 ///
   1493 /// This does not require a SCEVExpander instance and could be replaced by a
   1494 /// general code-insertion helper.
   1495 bool SCEVExpander::hoistStep(Instruction *IncV, Instruction *InsertPos,
   1496                              const DominatorTree *DT) {
   1497   if (DT->dominates(IncV, InsertPos))
   1498     return true;
   1499 
   1500   if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
   1501     return false;
   1502 
   1503   if (IncV->mayHaveSideEffects())
   1504     return false;
   1505 
   1506   // Attempt to hoist IncV
   1507   for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
   1508        OI != OE; ++OI) {
   1509     Instruction *OInst = dyn_cast<Instruction>(OI);
   1510     if (OInst && !DT->dominates(OInst, InsertPos))
   1511       return false;
   1512   }
   1513   IncV->moveBefore(InsertPos);
   1514   return true;
   1515 }
   1516 
   1517 /// replaceCongruentIVs - Check for congruent phis in this loop header and
   1518 /// replace them with their most canonical representative. Return the number of
   1519 /// phis eliminated.
   1520 ///
   1521 /// This does not depend on any SCEVExpander state but should be used in
   1522 /// the same context that SCEVExpander is used.
   1523 unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
   1524                                            SmallVectorImpl<WeakVH> &DeadInsts) {
   1525   unsigned NumElim = 0;
   1526   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
   1527   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
   1528     PHINode *Phi = cast<PHINode>(I);
   1529     if (!SE.isSCEVable(Phi->getType()))
   1530       continue;
   1531 
   1532     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
   1533     if (!OrigPhiRef) {
   1534       OrigPhiRef = Phi;
   1535       continue;
   1536     }
   1537 
   1538     // If one phi derives from the other via GEPs, types may differ.
   1539     // We could consider adding a bitcast here to handle it.
   1540     if (OrigPhiRef->getType() != Phi->getType())
   1541       continue;
   1542 
   1543     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
   1544       Instruction *OrigInc =
   1545         cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
   1546       Instruction *IsomorphicInc =
   1547         cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
   1548 
   1549       // If this phi is more canonical, swap it with the original.
   1550       if (!isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)
   1551           && isExpandedAddRecExprPHI(Phi, IsomorphicInc, L)) {
   1552         std::swap(OrigPhiRef, Phi);
   1553         std::swap(OrigInc, IsomorphicInc);
   1554       }
   1555       // Replacing the congruent phi is sufficient because acyclic redundancy
   1556       // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
   1557       // that a phi is congruent, it's often the head of an IV user cycle that
   1558       // is isomorphic with the original phi. So it's worth eagerly cleaning up
   1559       // the common case of a single IV increment.
   1560       if (OrigInc != IsomorphicInc &&
   1561           OrigInc->getType() == IsomorphicInc->getType() &&
   1562           SE.getSCEV(OrigInc) == SE.getSCEV(IsomorphicInc) &&
   1563           hoistStep(OrigInc, IsomorphicInc, DT)) {
   1564         DEBUG_WITH_TYPE(DebugType, dbgs()
   1565                         << "INDVARS: Eliminated congruent iv.inc: "
   1566                         << *IsomorphicInc << '\n');
   1567         IsomorphicInc->replaceAllUsesWith(OrigInc);
   1568         DeadInsts.push_back(IsomorphicInc);
   1569       }
   1570     }
   1571     DEBUG_WITH_TYPE(DebugType, dbgs()
   1572                     << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
   1573     ++NumElim;
   1574     Phi->replaceAllUsesWith(OrigPhiRef);
   1575     DeadInsts.push_back(Phi);
   1576   }
   1577   return NumElim;
   1578 }
   1579