Home | History | Annotate | Download | only in CodeGen
      1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass eliminates machine instruction PHI nodes by inserting copy
     11 // instructions.  This destroys SSA information, but is the desired input for
     12 // some register allocators.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "phielim"
     17 #include "PHIEliminationUtils.h"
     18 #include "llvm/CodeGen/LiveVariables.h"
     19 #include "llvm/CodeGen/Passes.h"
     20 #include "llvm/CodeGen/MachineDominators.h"
     21 #include "llvm/CodeGen/MachineInstr.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineLoopInfo.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/Target/TargetInstrInfo.h"
     26 #include "llvm/Function.h"
     27 #include "llvm/Target/TargetMachine.h"
     28 #include "llvm/ADT/SmallPtrSet.h"
     29 #include "llvm/ADT/STLExtras.h"
     30 #include "llvm/ADT/Statistic.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Compiler.h"
     33 #include "llvm/Support/Debug.h"
     34 #include <algorithm>
     35 using namespace llvm;
     36 
     37 static cl::opt<bool>
     38 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
     39                      cl::Hidden, cl::desc("Disable critical edge splitting "
     40                                           "during PHI elimination"));
     41 
     42 namespace {
     43   class PHIElimination : public MachineFunctionPass {
     44     MachineRegisterInfo *MRI; // Machine register information
     45 
     46   public:
     47     static char ID; // Pass identification, replacement for typeid
     48     PHIElimination() : MachineFunctionPass(ID) {
     49       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
     50     }
     51 
     52     virtual bool runOnMachineFunction(MachineFunction &Fn);
     53     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
     54 
     55   private:
     56     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
     57     /// in predecessor basic blocks.
     58     ///
     59     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
     60     void LowerAtomicPHINode(MachineBasicBlock &MBB,
     61                             MachineBasicBlock::iterator AfterPHIsIt);
     62 
     63     /// analyzePHINodes - Gather information about the PHI nodes in
     64     /// here. In particular, we want to map the number of uses of a virtual
     65     /// register which is used in a PHI node. We map that to the BB the
     66     /// vreg is coming from. This is used later to determine when the vreg
     67     /// is killed in the BB.
     68     ///
     69     void analyzePHINodes(const MachineFunction& Fn);
     70 
     71     /// Split critical edges where necessary for good coalescer performance.
     72     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
     73                        LiveVariables &LV, MachineLoopInfo *MLI);
     74 
     75     typedef std::pair<unsigned, unsigned> BBVRegPair;
     76     typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
     77 
     78     VRegPHIUse VRegPHIUseCount;
     79 
     80     // Defs of PHI sources which are implicit_def.
     81     SmallPtrSet<MachineInstr*, 4> ImpDefs;
     82 
     83     // Map reusable lowered PHI node -> incoming join register.
     84     typedef DenseMap<MachineInstr*, unsigned,
     85                      MachineInstrExpressionTrait> LoweredPHIMap;
     86     LoweredPHIMap LoweredPHIs;
     87   };
     88 }
     89 
     90 STATISTIC(NumAtomic, "Number of atomic phis lowered");
     91 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
     92 STATISTIC(NumReused, "Number of reused lowered phis");
     93 
     94 char PHIElimination::ID = 0;
     95 INITIALIZE_PASS(PHIElimination, "phi-node-elimination",
     96                 "Eliminate PHI nodes for register allocation", false, false)
     97 
     98 char& llvm::PHIEliminationID = PHIElimination::ID;
     99 
    100 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
    101   AU.addPreserved<LiveVariables>();
    102   AU.addPreserved<MachineDominatorTree>();
    103   AU.addPreserved<MachineLoopInfo>();
    104   MachineFunctionPass::getAnalysisUsage(AU);
    105 }
    106 
    107 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
    108   MRI = &MF.getRegInfo();
    109 
    110   bool Changed = false;
    111 
    112   // This pass takes the function out of SSA form.
    113   MRI->leaveSSA();
    114 
    115   // Split critical edges to help the coalescer
    116   if (!DisableEdgeSplitting) {
    117     if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
    118       MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
    119       for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    120         Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
    121     }
    122   }
    123 
    124   // Populate VRegPHIUseCount
    125   analyzePHINodes(MF);
    126 
    127   // Eliminate PHI instructions by inserting copies into predecessor blocks.
    128   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    129     Changed |= EliminatePHINodes(MF, *I);
    130 
    131   // Remove dead IMPLICIT_DEF instructions.
    132   for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
    133          E = ImpDefs.end(); I != E; ++I) {
    134     MachineInstr *DefMI = *I;
    135     unsigned DefReg = DefMI->getOperand(0).getReg();
    136     if (MRI->use_nodbg_empty(DefReg))
    137       DefMI->eraseFromParent();
    138   }
    139 
    140   // Clean up the lowered PHI instructions.
    141   for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
    142        I != E; ++I)
    143     MF.DeleteMachineInstr(I->first);
    144 
    145   LoweredPHIs.clear();
    146   ImpDefs.clear();
    147   VRegPHIUseCount.clear();
    148 
    149   return Changed;
    150 }
    151 
    152 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
    153 /// predecessor basic blocks.
    154 ///
    155 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
    156                                              MachineBasicBlock &MBB) {
    157   if (MBB.empty() || !MBB.front().isPHI())
    158     return false;   // Quick exit for basic blocks without PHIs.
    159 
    160   // Get an iterator to the first instruction after the last PHI node (this may
    161   // also be the end of the basic block).
    162   MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
    163 
    164   while (MBB.front().isPHI())
    165     LowerAtomicPHINode(MBB, AfterPHIsIt);
    166 
    167   return true;
    168 }
    169 
    170 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
    171 /// are implicit_def's.
    172 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
    173                                          const MachineRegisterInfo *MRI) {
    174   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
    175     unsigned SrcReg = MPhi->getOperand(i).getReg();
    176     const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
    177     if (!DefMI || !DefMI->isImplicitDef())
    178       return false;
    179   }
    180   return true;
    181 }
    182 
    183 
    184 
    185 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
    186 /// under the assuption that it needs to be lowered in a way that supports
    187 /// atomic execution of PHIs.  This lowering method is always correct all of the
    188 /// time.
    189 ///
    190 void PHIElimination::LowerAtomicPHINode(
    191                                       MachineBasicBlock &MBB,
    192                                       MachineBasicBlock::iterator AfterPHIsIt) {
    193   ++NumAtomic;
    194   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
    195   MachineInstr *MPhi = MBB.remove(MBB.begin());
    196 
    197   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
    198   unsigned DestReg = MPhi->getOperand(0).getReg();
    199   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
    200   bool isDead = MPhi->getOperand(0).isDead();
    201 
    202   // Create a new register for the incoming PHI arguments.
    203   MachineFunction &MF = *MBB.getParent();
    204   unsigned IncomingReg = 0;
    205   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
    206 
    207   // Insert a register to register copy at the top of the current block (but
    208   // after any remaining phi nodes) which copies the new incoming register
    209   // into the phi node destination.
    210   const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
    211   if (isSourceDefinedByImplicitDef(MPhi, MRI))
    212     // If all sources of a PHI node are implicit_def, just emit an
    213     // implicit_def instead of a copy.
    214     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    215             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
    216   else {
    217     // Can we reuse an earlier PHI node? This only happens for critical edges,
    218     // typically those created by tail duplication.
    219     unsigned &entry = LoweredPHIs[MPhi];
    220     if (entry) {
    221       // An identical PHI node was already lowered. Reuse the incoming register.
    222       IncomingReg = entry;
    223       reusedIncoming = true;
    224       ++NumReused;
    225       DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
    226     } else {
    227       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
    228       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
    229     }
    230     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    231             TII->get(TargetOpcode::COPY), DestReg)
    232       .addReg(IncomingReg);
    233   }
    234 
    235   // Update live variable information if there is any.
    236   LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
    237   if (LV) {
    238     MachineInstr *PHICopy = prior(AfterPHIsIt);
    239 
    240     if (IncomingReg) {
    241       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
    242 
    243       // Increment use count of the newly created virtual register.
    244       VI.NumUses++;
    245       LV->setPHIJoin(IncomingReg);
    246 
    247       // When we are reusing the incoming register, it may already have been
    248       // killed in this block. The old kill will also have been inserted at
    249       // AfterPHIsIt, so it appears before the current PHICopy.
    250       if (reusedIncoming)
    251         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
    252           DEBUG(dbgs() << "Remove old kill from " << *OldKill);
    253           LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
    254           DEBUG(MBB.dump());
    255         }
    256 
    257       // Add information to LiveVariables to know that the incoming value is
    258       // killed.  Note that because the value is defined in several places (once
    259       // each for each incoming block), the "def" block and instruction fields
    260       // for the VarInfo is not filled in.
    261       LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
    262     }
    263 
    264     // Since we are going to be deleting the PHI node, if it is the last use of
    265     // any registers, or if the value itself is dead, we need to move this
    266     // information over to the new copy we just inserted.
    267     LV->removeVirtualRegistersKilled(MPhi);
    268 
    269     // If the result is dead, update LV.
    270     if (isDead) {
    271       LV->addVirtualRegisterDead(DestReg, PHICopy);
    272       LV->removeVirtualRegisterDead(DestReg, MPhi);
    273     }
    274   }
    275 
    276   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
    277   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    278     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
    279                                  MPhi->getOperand(i).getReg())];
    280 
    281   // Now loop over all of the incoming arguments, changing them to copy into the
    282   // IncomingReg register in the corresponding predecessor basic block.
    283   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
    284   for (int i = NumSrcs - 1; i >= 0; --i) {
    285     unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
    286     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
    287 
    288     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
    289            "Machine PHI Operands must all be virtual registers!");
    290 
    291     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
    292     // path the PHI.
    293     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
    294 
    295     // If source is defined by an implicit def, there is no need to insert a
    296     // copy.
    297     MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
    298     if (DefMI->isImplicitDef()) {
    299       ImpDefs.insert(DefMI);
    300       continue;
    301     }
    302 
    303     // Check to make sure we haven't already emitted the copy for this block.
    304     // This can happen because PHI nodes may have multiple entries for the same
    305     // basic block.
    306     if (!MBBsInsertedInto.insert(&opBlock))
    307       continue;  // If the copy has already been emitted, we're done.
    308 
    309     // Find a safe location to insert the copy, this may be the first terminator
    310     // in the block (or end()).
    311     MachineBasicBlock::iterator InsertPos =
    312       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
    313 
    314     // Insert the copy.
    315     if (!reusedIncoming && IncomingReg)
    316       BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
    317               TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
    318 
    319     // Now update live variable information if we have it.  Otherwise we're done
    320     if (!LV) continue;
    321 
    322     // We want to be able to insert a kill of the register if this PHI (aka, the
    323     // copy we just inserted) is the last use of the source value.  Live
    324     // variable analysis conservatively handles this by saying that the value is
    325     // live until the end of the block the PHI entry lives in.  If the value
    326     // really is dead at the PHI copy, there will be no successor blocks which
    327     // have the value live-in.
    328 
    329     // Also check to see if this register is in use by another PHI node which
    330     // has not yet been eliminated.  If so, it will be killed at an appropriate
    331     // point later.
    332 
    333     // Is it used by any PHI instructions in this block?
    334     bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
    335 
    336     // Okay, if we now know that the value is not live out of the block, we can
    337     // add a kill marker in this block saying that it kills the incoming value!
    338     if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
    339       // In our final twist, we have to decide which instruction kills the
    340       // register.  In most cases this is the copy, however, the first
    341       // terminator instruction at the end of the block may also use the value.
    342       // In this case, we should mark *it* as being the killing block, not the
    343       // copy.
    344       MachineBasicBlock::iterator KillInst;
    345       MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
    346       if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
    347         KillInst = Term;
    348 
    349         // Check that no other terminators use values.
    350 #ifndef NDEBUG
    351         for (MachineBasicBlock::iterator TI = llvm::next(Term);
    352              TI != opBlock.end(); ++TI) {
    353           if (TI->isDebugValue())
    354             continue;
    355           assert(!TI->readsRegister(SrcReg) &&
    356                  "Terminator instructions cannot use virtual registers unless"
    357                  "they are the first terminator in a block!");
    358         }
    359 #endif
    360       } else if (reusedIncoming || !IncomingReg) {
    361         // We may have to rewind a bit if we didn't insert a copy this time.
    362         KillInst = Term;
    363         while (KillInst != opBlock.begin()) {
    364           --KillInst;
    365           if (KillInst->isDebugValue())
    366             continue;
    367           if (KillInst->readsRegister(SrcReg))
    368             break;
    369         }
    370       } else {
    371         // We just inserted this copy.
    372         KillInst = prior(InsertPos);
    373       }
    374       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
    375 
    376       // Finally, mark it killed.
    377       LV->addVirtualRegisterKilled(SrcReg, KillInst);
    378 
    379       // This vreg no longer lives all of the way through opBlock.
    380       unsigned opBlockNum = opBlock.getNumber();
    381       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
    382     }
    383   }
    384 
    385   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
    386   if (reusedIncoming || !IncomingReg)
    387     MF.DeleteMachineInstr(MPhi);
    388 }
    389 
    390 /// analyzePHINodes - Gather information about the PHI nodes in here. In
    391 /// particular, we want to map the number of uses of a virtual register which is
    392 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
    393 /// used later to determine when the vreg is killed in the BB.
    394 ///
    395 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
    396   for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
    397        I != E; ++I)
    398     for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
    399          BBI != BBE && BBI->isPHI(); ++BBI)
    400       for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
    401         ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
    402                                      BBI->getOperand(i).getReg())];
    403 }
    404 
    405 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
    406                                    MachineBasicBlock &MBB,
    407                                    LiveVariables &LV,
    408                                    MachineLoopInfo *MLI) {
    409   if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
    410     return false;   // Quick exit for basic blocks without PHIs.
    411 
    412   bool Changed = false;
    413   for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
    414        BBI != BBE && BBI->isPHI(); ++BBI) {
    415     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
    416       unsigned Reg = BBI->getOperand(i).getReg();
    417       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
    418       // We break edges when registers are live out from the predecessor block
    419       // (not considering PHI nodes). If the register is live in to this block
    420       // anyway, we would gain nothing from splitting.
    421       // Avoid splitting backedges of loops. It would introduce small
    422       // out-of-line blocks into the loop which is very bad for code placement.
    423       if (PreMBB != &MBB &&
    424           !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
    425         if (!MLI ||
    426             !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
    427               MLI->isLoopHeader(&MBB))) {
    428           if (PreMBB->SplitCriticalEdge(&MBB, this)) {
    429             Changed = true;
    430             ++NumCriticalEdgesSplit;
    431           }
    432         }
    433       }
    434     }
    435   }
    436   return Changed;
    437 }
    438