Home | History | Annotate | Download | only in CodeGen
      1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the ScheduleDAG class, which is a base class used by
     11 // scheduling implementation classes.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "pre-RA-sched"
     16 #include "llvm/CodeGen/ScheduleDAG.h"
     17 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     18 #include "llvm/CodeGen/SelectionDAGNodes.h"
     19 #include "llvm/Target/TargetMachine.h"
     20 #include "llvm/Target/TargetInstrInfo.h"
     21 #include "llvm/Target/TargetRegisterInfo.h"
     22 #include "llvm/Support/CommandLine.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/raw_ostream.h"
     25 #include <climits>
     26 using namespace llvm;
     27 
     28 #ifndef NDEBUG
     29 static cl::opt<bool> StressSchedOpt(
     30   "stress-sched", cl::Hidden, cl::init(false),
     31   cl::desc("Stress test instruction scheduling"));
     32 #endif
     33 
     34 ScheduleDAG::ScheduleDAG(MachineFunction &mf)
     35   : TM(mf.getTarget()),
     36     TII(TM.getInstrInfo()),
     37     TRI(TM.getRegisterInfo()),
     38     MF(mf), MRI(mf.getRegInfo()),
     39     EntrySU(), ExitSU() {
     40 #ifndef NDEBUG
     41   StressSched = StressSchedOpt;
     42 #endif
     43 }
     44 
     45 ScheduleDAG::~ScheduleDAG() {}
     46 
     47 /// getInstrDesc helper to handle SDNodes.
     48 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
     49   if (!Node || !Node->isMachineOpcode()) return NULL;
     50   return &TII->get(Node->getMachineOpcode());
     51 }
     52 
     53 /// dump - dump the schedule.
     54 void ScheduleDAG::dumpSchedule() const {
     55   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
     56     if (SUnit *SU = Sequence[i])
     57       SU->dump(this);
     58     else
     59       dbgs() << "**** NOOP ****\n";
     60   }
     61 }
     62 
     63 
     64 /// Run - perform scheduling.
     65 ///
     66 void ScheduleDAG::Run(MachineBasicBlock *bb,
     67                       MachineBasicBlock::iterator insertPos) {
     68   BB = bb;
     69   InsertPos = insertPos;
     70 
     71   SUnits.clear();
     72   Sequence.clear();
     73   EntrySU = SUnit();
     74   ExitSU = SUnit();
     75 
     76   Schedule();
     77 
     78   DEBUG({
     79       dbgs() << "*** Final schedule ***\n";
     80       dumpSchedule();
     81       dbgs() << '\n';
     82     });
     83 }
     84 
     85 /// addPred - This adds the specified edge as a pred of the current node if
     86 /// not already.  It also adds the current node as a successor of the
     87 /// specified node.
     88 bool SUnit::addPred(const SDep &D) {
     89   // If this node already has this depenence, don't add a redundant one.
     90   for (SmallVector<SDep, 4>::const_iterator I = Preds.begin(), E = Preds.end();
     91        I != E; ++I)
     92     if (*I == D)
     93       return false;
     94   // Now add a corresponding succ to N.
     95   SDep P = D;
     96   P.setSUnit(this);
     97   SUnit *N = D.getSUnit();
     98   // Update the bookkeeping.
     99   if (D.getKind() == SDep::Data) {
    100     assert(NumPreds < UINT_MAX && "NumPreds will overflow!");
    101     assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!");
    102     ++NumPreds;
    103     ++N->NumSuccs;
    104   }
    105   if (!N->isScheduled) {
    106     assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!");
    107     ++NumPredsLeft;
    108   }
    109   if (!isScheduled) {
    110     assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
    111     ++N->NumSuccsLeft;
    112   }
    113   Preds.push_back(D);
    114   N->Succs.push_back(P);
    115   if (P.getLatency() != 0) {
    116     this->setDepthDirty();
    117     N->setHeightDirty();
    118   }
    119   return true;
    120 }
    121 
    122 /// removePred - This removes the specified edge as a pred of the current
    123 /// node if it exists.  It also removes the current node as a successor of
    124 /// the specified node.
    125 void SUnit::removePred(const SDep &D) {
    126   // Find the matching predecessor.
    127   for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
    128        I != E; ++I)
    129     if (*I == D) {
    130       bool FoundSucc = false;
    131       // Find the corresponding successor in N.
    132       SDep P = D;
    133       P.setSUnit(this);
    134       SUnit *N = D.getSUnit();
    135       for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
    136              EE = N->Succs.end(); II != EE; ++II)
    137         if (*II == P) {
    138           FoundSucc = true;
    139           N->Succs.erase(II);
    140           break;
    141         }
    142       assert(FoundSucc && "Mismatching preds / succs lists!");
    143       (void)FoundSucc;
    144       Preds.erase(I);
    145       // Update the bookkeeping.
    146       if (P.getKind() == SDep::Data) {
    147         assert(NumPreds > 0 && "NumPreds will underflow!");
    148         assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
    149         --NumPreds;
    150         --N->NumSuccs;
    151       }
    152       if (!N->isScheduled) {
    153         assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
    154         --NumPredsLeft;
    155       }
    156       if (!isScheduled) {
    157         assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
    158         --N->NumSuccsLeft;
    159       }
    160       if (P.getLatency() != 0) {
    161         this->setDepthDirty();
    162         N->setHeightDirty();
    163       }
    164       return;
    165     }
    166 }
    167 
    168 void SUnit::setDepthDirty() {
    169   if (!isDepthCurrent) return;
    170   SmallVector<SUnit*, 8> WorkList;
    171   WorkList.push_back(this);
    172   do {
    173     SUnit *SU = WorkList.pop_back_val();
    174     SU->isDepthCurrent = false;
    175     for (SUnit::const_succ_iterator I = SU->Succs.begin(),
    176          E = SU->Succs.end(); I != E; ++I) {
    177       SUnit *SuccSU = I->getSUnit();
    178       if (SuccSU->isDepthCurrent)
    179         WorkList.push_back(SuccSU);
    180     }
    181   } while (!WorkList.empty());
    182 }
    183 
    184 void SUnit::setHeightDirty() {
    185   if (!isHeightCurrent) return;
    186   SmallVector<SUnit*, 8> WorkList;
    187   WorkList.push_back(this);
    188   do {
    189     SUnit *SU = WorkList.pop_back_val();
    190     SU->isHeightCurrent = false;
    191     for (SUnit::const_pred_iterator I = SU->Preds.begin(),
    192          E = SU->Preds.end(); I != E; ++I) {
    193       SUnit *PredSU = I->getSUnit();
    194       if (PredSU->isHeightCurrent)
    195         WorkList.push_back(PredSU);
    196     }
    197   } while (!WorkList.empty());
    198 }
    199 
    200 /// setDepthToAtLeast - Update this node's successors to reflect the
    201 /// fact that this node's depth just increased.
    202 ///
    203 void SUnit::setDepthToAtLeast(unsigned NewDepth) {
    204   if (NewDepth <= getDepth())
    205     return;
    206   setDepthDirty();
    207   Depth = NewDepth;
    208   isDepthCurrent = true;
    209 }
    210 
    211 /// setHeightToAtLeast - Update this node's predecessors to reflect the
    212 /// fact that this node's height just increased.
    213 ///
    214 void SUnit::setHeightToAtLeast(unsigned NewHeight) {
    215   if (NewHeight <= getHeight())
    216     return;
    217   setHeightDirty();
    218   Height = NewHeight;
    219   isHeightCurrent = true;
    220 }
    221 
    222 /// ComputeDepth - Calculate the maximal path from the node to the exit.
    223 ///
    224 void SUnit::ComputeDepth() {
    225   SmallVector<SUnit*, 8> WorkList;
    226   WorkList.push_back(this);
    227   do {
    228     SUnit *Cur = WorkList.back();
    229 
    230     bool Done = true;
    231     unsigned MaxPredDepth = 0;
    232     for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
    233          E = Cur->Preds.end(); I != E; ++I) {
    234       SUnit *PredSU = I->getSUnit();
    235       if (PredSU->isDepthCurrent)
    236         MaxPredDepth = std::max(MaxPredDepth,
    237                                 PredSU->Depth + I->getLatency());
    238       else {
    239         Done = false;
    240         WorkList.push_back(PredSU);
    241       }
    242     }
    243 
    244     if (Done) {
    245       WorkList.pop_back();
    246       if (MaxPredDepth != Cur->Depth) {
    247         Cur->setDepthDirty();
    248         Cur->Depth = MaxPredDepth;
    249       }
    250       Cur->isDepthCurrent = true;
    251     }
    252   } while (!WorkList.empty());
    253 }
    254 
    255 /// ComputeHeight - Calculate the maximal path from the node to the entry.
    256 ///
    257 void SUnit::ComputeHeight() {
    258   SmallVector<SUnit*, 8> WorkList;
    259   WorkList.push_back(this);
    260   do {
    261     SUnit *Cur = WorkList.back();
    262 
    263     bool Done = true;
    264     unsigned MaxSuccHeight = 0;
    265     for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
    266          E = Cur->Succs.end(); I != E; ++I) {
    267       SUnit *SuccSU = I->getSUnit();
    268       if (SuccSU->isHeightCurrent)
    269         MaxSuccHeight = std::max(MaxSuccHeight,
    270                                  SuccSU->Height + I->getLatency());
    271       else {
    272         Done = false;
    273         WorkList.push_back(SuccSU);
    274       }
    275     }
    276 
    277     if (Done) {
    278       WorkList.pop_back();
    279       if (MaxSuccHeight != Cur->Height) {
    280         Cur->setHeightDirty();
    281         Cur->Height = MaxSuccHeight;
    282       }
    283       Cur->isHeightCurrent = true;
    284     }
    285   } while (!WorkList.empty());
    286 }
    287 
    288 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
    289 /// a group of nodes flagged together.
    290 void SUnit::dump(const ScheduleDAG *G) const {
    291   dbgs() << "SU(" << NodeNum << "): ";
    292   G->dumpNode(this);
    293 }
    294 
    295 void SUnit::dumpAll(const ScheduleDAG *G) const {
    296   dump(G);
    297 
    298   dbgs() << "  # preds left       : " << NumPredsLeft << "\n";
    299   dbgs() << "  # succs left       : " << NumSuccsLeft << "\n";
    300   dbgs() << "  # rdefs left       : " << NumRegDefsLeft << "\n";
    301   dbgs() << "  Latency            : " << Latency << "\n";
    302   dbgs() << "  Depth              : " << Depth << "\n";
    303   dbgs() << "  Height             : " << Height << "\n";
    304 
    305   if (Preds.size() != 0) {
    306     dbgs() << "  Predecessors:\n";
    307     for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
    308          I != E; ++I) {
    309       dbgs() << "   ";
    310       switch (I->getKind()) {
    311       case SDep::Data:        dbgs() << "val "; break;
    312       case SDep::Anti:        dbgs() << "anti"; break;
    313       case SDep::Output:      dbgs() << "out "; break;
    314       case SDep::Order:       dbgs() << "ch  "; break;
    315       }
    316       dbgs() << "#";
    317       dbgs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
    318       if (I->isArtificial())
    319         dbgs() << " *";
    320       dbgs() << ": Latency=" << I->getLatency();
    321       if (I->isAssignedRegDep())
    322         dbgs() << " Reg=" << G->TRI->getName(I->getReg());
    323       dbgs() << "\n";
    324     }
    325   }
    326   if (Succs.size() != 0) {
    327     dbgs() << "  Successors:\n";
    328     for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
    329          I != E; ++I) {
    330       dbgs() << "   ";
    331       switch (I->getKind()) {
    332       case SDep::Data:        dbgs() << "val "; break;
    333       case SDep::Anti:        dbgs() << "anti"; break;
    334       case SDep::Output:      dbgs() << "out "; break;
    335       case SDep::Order:       dbgs() << "ch  "; break;
    336       }
    337       dbgs() << "#";
    338       dbgs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
    339       if (I->isArtificial())
    340         dbgs() << " *";
    341       dbgs() << ": Latency=" << I->getLatency();
    342       dbgs() << "\n";
    343     }
    344   }
    345   dbgs() << "\n";
    346 }
    347 
    348 #ifndef NDEBUG
    349 /// VerifySchedule - Verify that all SUnits were scheduled and that
    350 /// their state is consistent.
    351 ///
    352 void ScheduleDAG::VerifySchedule(bool isBottomUp) {
    353   bool AnyNotSched = false;
    354   unsigned DeadNodes = 0;
    355   unsigned Noops = 0;
    356   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    357     if (!SUnits[i].isScheduled) {
    358       if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
    359         ++DeadNodes;
    360         continue;
    361       }
    362       if (!AnyNotSched)
    363         dbgs() << "*** Scheduling failed! ***\n";
    364       SUnits[i].dump(this);
    365       dbgs() << "has not been scheduled!\n";
    366       AnyNotSched = true;
    367     }
    368     if (SUnits[i].isScheduled &&
    369         (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) >
    370           unsigned(INT_MAX)) {
    371       if (!AnyNotSched)
    372         dbgs() << "*** Scheduling failed! ***\n";
    373       SUnits[i].dump(this);
    374       dbgs() << "has an unexpected "
    375            << (isBottomUp ? "Height" : "Depth") << " value!\n";
    376       AnyNotSched = true;
    377     }
    378     if (isBottomUp) {
    379       if (SUnits[i].NumSuccsLeft != 0) {
    380         if (!AnyNotSched)
    381           dbgs() << "*** Scheduling failed! ***\n";
    382         SUnits[i].dump(this);
    383         dbgs() << "has successors left!\n";
    384         AnyNotSched = true;
    385       }
    386     } else {
    387       if (SUnits[i].NumPredsLeft != 0) {
    388         if (!AnyNotSched)
    389           dbgs() << "*** Scheduling failed! ***\n";
    390         SUnits[i].dump(this);
    391         dbgs() << "has predecessors left!\n";
    392         AnyNotSched = true;
    393       }
    394     }
    395   }
    396   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
    397     if (!Sequence[i])
    398       ++Noops;
    399   assert(!AnyNotSched);
    400   assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
    401          "The number of nodes scheduled doesn't match the expected number!");
    402 }
    403 #endif
    404 
    405 /// InitDAGTopologicalSorting - create the initial topological
    406 /// ordering from the DAG to be scheduled.
    407 ///
    408 /// The idea of the algorithm is taken from
    409 /// "Online algorithms for managing the topological order of
    410 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
    411 /// This is the MNR algorithm, which was first introduced by
    412 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
    413 /// "Maintaining a topological order under edge insertions".
    414 ///
    415 /// Short description of the algorithm:
    416 ///
    417 /// Topological ordering, ord, of a DAG maps each node to a topological
    418 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
    419 ///
    420 /// This means that if there is a path from the node X to the node Z,
    421 /// then ord(X) < ord(Z).
    422 ///
    423 /// This property can be used to check for reachability of nodes:
    424 /// if Z is reachable from X, then an insertion of the edge Z->X would
    425 /// create a cycle.
    426 ///
    427 /// The algorithm first computes a topological ordering for the DAG by
    428 /// initializing the Index2Node and Node2Index arrays and then tries to keep
    429 /// the ordering up-to-date after edge insertions by reordering the DAG.
    430 ///
    431 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS
    432 /// the nodes reachable from Y, and then shifts them using Shift to lie
    433 /// immediately after X in Index2Node.
    434 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
    435   unsigned DAGSize = SUnits.size();
    436   std::vector<SUnit*> WorkList;
    437   WorkList.reserve(DAGSize);
    438 
    439   Index2Node.resize(DAGSize);
    440   Node2Index.resize(DAGSize);
    441 
    442   // Initialize the data structures.
    443   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    444     SUnit *SU = &SUnits[i];
    445     int NodeNum = SU->NodeNum;
    446     unsigned Degree = SU->Succs.size();
    447     // Temporarily use the Node2Index array as scratch space for degree counts.
    448     Node2Index[NodeNum] = Degree;
    449 
    450     // Is it a node without dependencies?
    451     if (Degree == 0) {
    452       assert(SU->Succs.empty() && "SUnit should have no successors");
    453       // Collect leaf nodes.
    454       WorkList.push_back(SU);
    455     }
    456   }
    457 
    458   int Id = DAGSize;
    459   while (!WorkList.empty()) {
    460     SUnit *SU = WorkList.back();
    461     WorkList.pop_back();
    462     Allocate(SU->NodeNum, --Id);
    463     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    464          I != E; ++I) {
    465       SUnit *SU = I->getSUnit();
    466       if (!--Node2Index[SU->NodeNum])
    467         // If all dependencies of the node are processed already,
    468         // then the node can be computed now.
    469         WorkList.push_back(SU);
    470     }
    471   }
    472 
    473   Visited.resize(DAGSize);
    474 
    475 #ifndef NDEBUG
    476   // Check correctness of the ordering
    477   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    478     SUnit *SU = &SUnits[i];
    479     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    480          I != E; ++I) {
    481       assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
    482       "Wrong topological sorting");
    483     }
    484   }
    485 #endif
    486 }
    487 
    488 /// AddPred - Updates the topological ordering to accommodate an edge
    489 /// to be added from SUnit X to SUnit Y.
    490 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
    491   int UpperBound, LowerBound;
    492   LowerBound = Node2Index[Y->NodeNum];
    493   UpperBound = Node2Index[X->NodeNum];
    494   bool HasLoop = false;
    495   // Is Ord(X) < Ord(Y) ?
    496   if (LowerBound < UpperBound) {
    497     // Update the topological order.
    498     Visited.reset();
    499     DFS(Y, UpperBound, HasLoop);
    500     assert(!HasLoop && "Inserted edge creates a loop!");
    501     // Recompute topological indexes.
    502     Shift(Visited, LowerBound, UpperBound);
    503   }
    504 }
    505 
    506 /// RemovePred - Updates the topological ordering to accommodate an
    507 /// an edge to be removed from the specified node N from the predecessors
    508 /// of the current node M.
    509 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
    510   // InitDAGTopologicalSorting();
    511 }
    512 
    513 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
    514 /// all nodes affected by the edge insertion. These nodes will later get new
    515 /// topological indexes by means of the Shift method.
    516 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
    517                                      bool &HasLoop) {
    518   std::vector<const SUnit*> WorkList;
    519   WorkList.reserve(SUnits.size());
    520 
    521   WorkList.push_back(SU);
    522   do {
    523     SU = WorkList.back();
    524     WorkList.pop_back();
    525     Visited.set(SU->NodeNum);
    526     for (int I = SU->Succs.size()-1; I >= 0; --I) {
    527       int s = SU->Succs[I].getSUnit()->NodeNum;
    528       if (Node2Index[s] == UpperBound) {
    529         HasLoop = true;
    530         return;
    531       }
    532       // Visit successors if not already and in affected region.
    533       if (!Visited.test(s) && Node2Index[s] < UpperBound) {
    534         WorkList.push_back(SU->Succs[I].getSUnit());
    535       }
    536     }
    537   } while (!WorkList.empty());
    538 }
    539 
    540 /// Shift - Renumber the nodes so that the topological ordering is
    541 /// preserved.
    542 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
    543                                        int UpperBound) {
    544   std::vector<int> L;
    545   int shift = 0;
    546   int i;
    547 
    548   for (i = LowerBound; i <= UpperBound; ++i) {
    549     // w is node at topological index i.
    550     int w = Index2Node[i];
    551     if (Visited.test(w)) {
    552       // Unmark.
    553       Visited.reset(w);
    554       L.push_back(w);
    555       shift = shift + 1;
    556     } else {
    557       Allocate(w, i - shift);
    558     }
    559   }
    560 
    561   for (unsigned j = 0; j < L.size(); ++j) {
    562     Allocate(L[j], i - shift);
    563     i = i + 1;
    564   }
    565 }
    566 
    567 
    568 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
    569 /// create a cycle.
    570 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
    571   if (IsReachable(TargetSU, SU))
    572     return true;
    573   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    574        I != E; ++I)
    575     if (I->isAssignedRegDep() &&
    576         IsReachable(TargetSU, I->getSUnit()))
    577       return true;
    578   return false;
    579 }
    580 
    581 /// IsReachable - Checks if SU is reachable from TargetSU.
    582 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
    583                                              const SUnit *TargetSU) {
    584   // If insertion of the edge SU->TargetSU would create a cycle
    585   // then there is a path from TargetSU to SU.
    586   int UpperBound, LowerBound;
    587   LowerBound = Node2Index[TargetSU->NodeNum];
    588   UpperBound = Node2Index[SU->NodeNum];
    589   bool HasLoop = false;
    590   // Is Ord(TargetSU) < Ord(SU) ?
    591   if (LowerBound < UpperBound) {
    592     Visited.reset();
    593     // There may be a path from TargetSU to SU. Check for it.
    594     DFS(TargetSU, UpperBound, HasLoop);
    595   }
    596   return HasLoop;
    597 }
    598 
    599 /// Allocate - assign the topological index to the node n.
    600 void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
    601   Node2Index[n] = index;
    602   Index2Node[index] = n;
    603 }
    604 
    605 ScheduleDAGTopologicalSort::
    606 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits) : SUnits(sunits) {}
    607 
    608 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}
    609