Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- X86MCTargetDesc.cpp - X86 Target Descriptions -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides X86 specific target descriptions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86MCTargetDesc.h"
     15 #include "X86MCAsmInfo.h"
     16 #include "InstPrinter/X86ATTInstPrinter.h"
     17 #include "InstPrinter/X86IntelInstPrinter.h"
     18 #include "llvm/MC/MachineLocation.h"
     19 #include "llvm/MC/MCCodeGenInfo.h"
     20 #include "llvm/MC/MCInstrAnalysis.h"
     21 #include "llvm/MC/MCInstrInfo.h"
     22 #include "llvm/MC/MCRegisterInfo.h"
     23 #include "llvm/MC/MCStreamer.h"
     24 #include "llvm/MC/MCSubtargetInfo.h"
     25 #include "llvm/ADT/Triple.h"
     26 #include "llvm/Support/Host.h"
     27 #include "llvm/Support/TargetRegistry.h"
     28 
     29 #define GET_REGINFO_MC_DESC
     30 #include "X86GenRegisterInfo.inc"
     31 
     32 #define GET_INSTRINFO_MC_DESC
     33 #include "X86GenInstrInfo.inc"
     34 
     35 #define GET_SUBTARGETINFO_MC_DESC
     36 #include "X86GenSubtargetInfo.inc"
     37 
     38 #ifdef _MSC_VER
     39 #include <intrin.h>
     40 #endif
     41 
     42 using namespace llvm;
     43 
     44 
     45 std::string X86_MC::ParseX86Triple(StringRef TT) {
     46   Triple TheTriple(TT);
     47   std::string FS;
     48   if (TheTriple.getArch() == Triple::x86_64)
     49     FS = "+64bit-mode";
     50   else
     51     FS = "-64bit-mode";
     52   if (TheTriple.getOS() == Triple::NativeClient)
     53     FS += ",+nacl-mode";
     54   else
     55     FS += ",-nacl-mode";
     56   return FS;
     57 }
     58 
     59 /// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
     60 /// specified arguments.  If we can't run cpuid on the host, return true.
     61 bool X86_MC::GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
     62                              unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
     63 #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
     64   #if defined(__GNUC__)
     65     // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
     66     asm ("movq\t%%rbx, %%rsi\n\t"
     67          "cpuid\n\t"
     68          "xchgq\t%%rbx, %%rsi\n\t"
     69          : "=a" (*rEAX),
     70            "=S" (*rEBX),
     71            "=c" (*rECX),
     72            "=d" (*rEDX)
     73          :  "a" (value));
     74     return false;
     75   #elif defined(_MSC_VER)
     76     int registers[4];
     77     __cpuid(registers, value);
     78     *rEAX = registers[0];
     79     *rEBX = registers[1];
     80     *rECX = registers[2];
     81     *rEDX = registers[3];
     82     return false;
     83   #endif
     84 #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
     85   #if defined(__GNUC__)
     86     asm ("movl\t%%ebx, %%esi\n\t"
     87          "cpuid\n\t"
     88          "xchgl\t%%ebx, %%esi\n\t"
     89          : "=a" (*rEAX),
     90            "=S" (*rEBX),
     91            "=c" (*rECX),
     92            "=d" (*rEDX)
     93          :  "a" (value));
     94     return false;
     95   #elif defined(_MSC_VER)
     96     __asm {
     97       mov   eax,value
     98       cpuid
     99       mov   esi,rEAX
    100       mov   dword ptr [esi],eax
    101       mov   esi,rEBX
    102       mov   dword ptr [esi],ebx
    103       mov   esi,rECX
    104       mov   dword ptr [esi],ecx
    105       mov   esi,rEDX
    106       mov   dword ptr [esi],edx
    107     }
    108     return false;
    109   #endif
    110 #endif
    111   return true;
    112 }
    113 
    114 void X86_MC::DetectFamilyModel(unsigned EAX, unsigned &Family,
    115                                unsigned &Model) {
    116   Family = (EAX >> 8) & 0xf; // Bits 8 - 11
    117   Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
    118   if (Family == 6 || Family == 0xf) {
    119     if (Family == 0xf)
    120       // Examine extended family ID if family ID is F.
    121       Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
    122     // Examine extended model ID if family ID is 6 or F.
    123     Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
    124   }
    125 }
    126 
    127 unsigned X86_MC::getDwarfRegFlavour(StringRef TT, bool isEH) {
    128   Triple TheTriple(TT);
    129   if (TheTriple.getArch() == Triple::x86_64)
    130     return DWARFFlavour::X86_64;
    131 
    132   if (TheTriple.isOSDarwin())
    133     return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
    134   if (TheTriple.getOS() == Triple::MinGW32 ||
    135       TheTriple.getOS() == Triple::Cygwin)
    136     // Unsupported by now, just quick fallback
    137     return DWARFFlavour::X86_32_Generic;
    138   return DWARFFlavour::X86_32_Generic;
    139 }
    140 
    141 /// getX86RegNum - This function maps LLVM register identifiers to their X86
    142 /// specific numbering, which is used in various places encoding instructions.
    143 unsigned X86_MC::getX86RegNum(unsigned RegNo) {
    144   switch(RegNo) {
    145   case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
    146   case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
    147   case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
    148   case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
    149   case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
    150     return N86::ESP;
    151   case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
    152     return N86::EBP;
    153   case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
    154     return N86::ESI;
    155   case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
    156     return N86::EDI;
    157 
    158   case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
    159     return N86::EAX;
    160   case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
    161     return N86::ECX;
    162   case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
    163     return N86::EDX;
    164   case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
    165     return N86::EBX;
    166   case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
    167     return N86::ESP;
    168   case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
    169     return N86::EBP;
    170   case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
    171     return N86::ESI;
    172   case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
    173     return N86::EDI;
    174 
    175   case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
    176   case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
    177     return RegNo-X86::ST0;
    178 
    179   case X86::XMM0: case X86::XMM8:
    180   case X86::YMM0: case X86::YMM8: case X86::MM0:
    181     return 0;
    182   case X86::XMM1: case X86::XMM9:
    183   case X86::YMM1: case X86::YMM9: case X86::MM1:
    184     return 1;
    185   case X86::XMM2: case X86::XMM10:
    186   case X86::YMM2: case X86::YMM10: case X86::MM2:
    187     return 2;
    188   case X86::XMM3: case X86::XMM11:
    189   case X86::YMM3: case X86::YMM11: case X86::MM3:
    190     return 3;
    191   case X86::XMM4: case X86::XMM12:
    192   case X86::YMM4: case X86::YMM12: case X86::MM4:
    193     return 4;
    194   case X86::XMM5: case X86::XMM13:
    195   case X86::YMM5: case X86::YMM13: case X86::MM5:
    196     return 5;
    197   case X86::XMM6: case X86::XMM14:
    198   case X86::YMM6: case X86::YMM14: case X86::MM6:
    199     return 6;
    200   case X86::XMM7: case X86::XMM15:
    201   case X86::YMM7: case X86::YMM15: case X86::MM7:
    202     return 7;
    203 
    204   case X86::ES: return 0;
    205   case X86::CS: return 1;
    206   case X86::SS: return 2;
    207   case X86::DS: return 3;
    208   case X86::FS: return 4;
    209   case X86::GS: return 5;
    210 
    211   case X86::CR0: case X86::CR8 : case X86::DR0: return 0;
    212   case X86::CR1: case X86::CR9 : case X86::DR1: return 1;
    213   case X86::CR2: case X86::CR10: case X86::DR2: return 2;
    214   case X86::CR3: case X86::CR11: case X86::DR3: return 3;
    215   case X86::CR4: case X86::CR12: case X86::DR4: return 4;
    216   case X86::CR5: case X86::CR13: case X86::DR5: return 5;
    217   case X86::CR6: case X86::CR14: case X86::DR6: return 6;
    218   case X86::CR7: case X86::CR15: case X86::DR7: return 7;
    219 
    220   // Pseudo index registers are equivalent to a "none"
    221   // scaled index (See Intel Manual 2A, table 2-3)
    222   case X86::EIZ:
    223   case X86::RIZ:
    224     return 4;
    225 
    226   default:
    227     assert((int(RegNo) > 0) && "Unknown physical register!");
    228     return 0;
    229   }
    230 }
    231 
    232 void X86_MC::InitLLVM2SEHRegisterMapping(MCRegisterInfo *MRI) {
    233   // FIXME: TableGen these.
    234   for (unsigned Reg = X86::NoRegister+1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
    235     int SEH = X86_MC::getX86RegNum(Reg);
    236     switch (Reg) {
    237     case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
    238     case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
    239     case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
    240     case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
    241     case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
    242     case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
    243     case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
    244     case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
    245     case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
    246     case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
    247     case X86::YMM8:  case X86::YMM9:  case X86::YMM10: case X86::YMM11:
    248     case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
    249       SEH += 8;
    250       break;
    251     }
    252     MRI->mapLLVMRegToSEHReg(Reg, SEH);
    253   }
    254 }
    255 
    256 MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(StringRef TT, StringRef CPU,
    257                                                   StringRef FS) {
    258   std::string ArchFS = X86_MC::ParseX86Triple(TT);
    259   if (!FS.empty()) {
    260     if (!ArchFS.empty())
    261       ArchFS = ArchFS + "," + FS.str();
    262     else
    263       ArchFS = FS;
    264   }
    265 
    266   std::string CPUName = CPU;
    267   if (CPUName.empty()) {
    268 #if defined (__x86_64__) || defined(__i386__)
    269     CPUName = sys::getHostCPUName();
    270 #else
    271     CPUName = "generic";
    272 #endif
    273   }
    274 
    275   MCSubtargetInfo *X = new MCSubtargetInfo();
    276   InitX86MCSubtargetInfo(X, TT, CPUName, ArchFS);
    277   return X;
    278 }
    279 
    280 static MCInstrInfo *createX86MCInstrInfo() {
    281   MCInstrInfo *X = new MCInstrInfo();
    282   InitX86MCInstrInfo(X);
    283   return X;
    284 }
    285 
    286 static MCRegisterInfo *createX86MCRegisterInfo(StringRef TT) {
    287   Triple TheTriple(TT);
    288   unsigned RA = (TheTriple.getArch() == Triple::x86_64)
    289     ? X86::RIP     // Should have dwarf #16.
    290     : X86::EIP;    // Should have dwarf #8.
    291 
    292   MCRegisterInfo *X = new MCRegisterInfo();
    293   InitX86MCRegisterInfo(X, RA,
    294                         X86_MC::getDwarfRegFlavour(TT, false),
    295                         X86_MC::getDwarfRegFlavour(TT, true));
    296   X86_MC::InitLLVM2SEHRegisterMapping(X);
    297   return X;
    298 }
    299 
    300 static MCAsmInfo *createX86MCAsmInfo(const Target &T, StringRef TT) {
    301   Triple TheTriple(TT);
    302   bool is64Bit = TheTriple.getArch() == Triple::x86_64;
    303 
    304   MCAsmInfo *MAI;
    305   if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) {
    306     if (is64Bit)
    307       MAI = new X86_64MCAsmInfoDarwin(TheTriple);
    308     else
    309       MAI = new X86MCAsmInfoDarwin(TheTriple);
    310   } else if (TheTriple.isOSWindows()) {
    311     MAI = new X86MCAsmInfoCOFF(TheTriple);
    312   } else {
    313     MAI = new X86ELFMCAsmInfo(TheTriple);
    314   }
    315 
    316   // Initialize initial frame state.
    317   // Calculate amount of bytes used for return address storing
    318   int stackGrowth = is64Bit ? -8 : -4;
    319 
    320   // Initial state of the frame pointer is esp+stackGrowth.
    321   MachineLocation Dst(MachineLocation::VirtualFP);
    322   MachineLocation Src(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
    323   MAI->addInitialFrameState(0, Dst, Src);
    324 
    325   // Add return address to move list
    326   MachineLocation CSDst(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
    327   MachineLocation CSSrc(is64Bit ? X86::RIP : X86::EIP);
    328   MAI->addInitialFrameState(0, CSDst, CSSrc);
    329 
    330   return MAI;
    331 }
    332 
    333 static MCCodeGenInfo *createX86MCCodeGenInfo(StringRef TT, Reloc::Model RM,
    334                                              CodeModel::Model CM) {
    335   MCCodeGenInfo *X = new MCCodeGenInfo();
    336 
    337   Triple T(TT);
    338   bool is64Bit = T.getArch() == Triple::x86_64;
    339 
    340   if (RM == Reloc::Default) {
    341     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
    342     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
    343     // use static relocation model by default.
    344     if (T.isOSDarwin()) {
    345       if (is64Bit)
    346         RM = Reloc::PIC_;
    347       else
    348         RM = Reloc::DynamicNoPIC;
    349     } else if (T.isOSWindows() && is64Bit)
    350       RM = Reloc::PIC_;
    351     else
    352       RM = Reloc::Static;
    353   }
    354 
    355   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
    356   // is defined as a model for code which may be used in static or dynamic
    357   // executables but not necessarily a shared library. On X86-32 we just
    358   // compile in -static mode, in x86-64 we use PIC.
    359   if (RM == Reloc::DynamicNoPIC) {
    360     if (is64Bit)
    361       RM = Reloc::PIC_;
    362     else if (!T.isOSDarwin())
    363       RM = Reloc::Static;
    364   }
    365 
    366   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
    367   // the Mach-O file format doesn't support it.
    368   if (RM == Reloc::Static && T.isOSDarwin() && is64Bit)
    369     RM = Reloc::PIC_;
    370 
    371   // For static codegen, if we're not already set, use Small codegen.
    372   if (CM == CodeModel::Default)
    373     CM = CodeModel::Small;
    374   else if (CM == CodeModel::JITDefault)
    375     // 64-bit JIT places everything in the same buffer except external funcs.
    376     CM = is64Bit ? CodeModel::Large : CodeModel::Small;
    377 
    378   X->InitMCCodeGenInfo(RM, CM);
    379   return X;
    380 }
    381 
    382 static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
    383                                     MCContext &Ctx, MCAsmBackend &MAB,
    384                                     raw_ostream &_OS,
    385                                     MCCodeEmitter *_Emitter,
    386                                     bool RelaxAll,
    387                                     bool NoExecStack) {
    388   Triple TheTriple(TT);
    389 
    390   if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
    391     return createMachOStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll);
    392 
    393   if (TheTriple.isOSWindows())
    394     return createWinCOFFStreamer(Ctx, MAB, *_Emitter, _OS, RelaxAll);
    395 
    396   return createELFStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll, NoExecStack);
    397 }
    398 
    399 static MCInstPrinter *createX86MCInstPrinter(const Target &T,
    400                                              unsigned SyntaxVariant,
    401                                              const MCAsmInfo &MAI,
    402                                              const MCSubtargetInfo &STI) {
    403   if (SyntaxVariant == 0)
    404     return new X86ATTInstPrinter(MAI);
    405   if (SyntaxVariant == 1)
    406     return new X86IntelInstPrinter(MAI);
    407   return 0;
    408 }
    409 
    410 static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
    411   return new MCInstrAnalysis(Info);
    412 }
    413 
    414 // Force static initialization.
    415 extern "C" void LLVMInitializeX86TargetMC() {
    416   // Register the MC asm info.
    417   RegisterMCAsmInfoFn A(TheX86_32Target, createX86MCAsmInfo);
    418   RegisterMCAsmInfoFn B(TheX86_64Target, createX86MCAsmInfo);
    419 
    420   // Register the MC codegen info.
    421   RegisterMCCodeGenInfoFn C(TheX86_32Target, createX86MCCodeGenInfo);
    422   RegisterMCCodeGenInfoFn D(TheX86_64Target, createX86MCCodeGenInfo);
    423 
    424   // Register the MC instruction info.
    425   TargetRegistry::RegisterMCInstrInfo(TheX86_32Target, createX86MCInstrInfo);
    426   TargetRegistry::RegisterMCInstrInfo(TheX86_64Target, createX86MCInstrInfo);
    427 
    428   // Register the MC register info.
    429   TargetRegistry::RegisterMCRegInfo(TheX86_32Target, createX86MCRegisterInfo);
    430   TargetRegistry::RegisterMCRegInfo(TheX86_64Target, createX86MCRegisterInfo);
    431 
    432   // Register the MC subtarget info.
    433   TargetRegistry::RegisterMCSubtargetInfo(TheX86_32Target,
    434                                           X86_MC::createX86MCSubtargetInfo);
    435   TargetRegistry::RegisterMCSubtargetInfo(TheX86_64Target,
    436                                           X86_MC::createX86MCSubtargetInfo);
    437 
    438   // Register the MC instruction analyzer.
    439   TargetRegistry::RegisterMCInstrAnalysis(TheX86_32Target,
    440                                           createX86MCInstrAnalysis);
    441   TargetRegistry::RegisterMCInstrAnalysis(TheX86_64Target,
    442                                           createX86MCInstrAnalysis);
    443 
    444   // Register the code emitter.
    445   TargetRegistry::RegisterMCCodeEmitter(TheX86_32Target,
    446                                         createX86MCCodeEmitter);
    447   TargetRegistry::RegisterMCCodeEmitter(TheX86_64Target,
    448                                         createX86MCCodeEmitter);
    449 
    450   // Register the asm backend.
    451   TargetRegistry::RegisterMCAsmBackend(TheX86_32Target,
    452                                        createX86_32AsmBackend);
    453   TargetRegistry::RegisterMCAsmBackend(TheX86_64Target,
    454                                        createX86_64AsmBackend);
    455 
    456   // Register the object streamer.
    457   TargetRegistry::RegisterMCObjectStreamer(TheX86_32Target,
    458                                            createMCStreamer);
    459   TargetRegistry::RegisterMCObjectStreamer(TheX86_64Target,
    460                                            createMCStreamer);
    461 
    462   // Register the MCInstPrinter.
    463   TargetRegistry::RegisterMCInstPrinter(TheX86_32Target,
    464                                         createX86MCInstPrinter);
    465   TargetRegistry::RegisterMCInstPrinter(TheX86_64Target,
    466                                         createX86MCInstPrinter);
    467 }
    468