Home | History | Annotate | Download | only in X86
      1 //=======- X86FrameLowering.cpp - X86 Frame Information --------*- C++ -*-====//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of TargetFrameLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86FrameLowering.h"
     15 #include "X86InstrBuilder.h"
     16 #include "X86InstrInfo.h"
     17 #include "X86MachineFunctionInfo.h"
     18 #include "X86Subtarget.h"
     19 #include "X86TargetMachine.h"
     20 #include "llvm/Function.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineFunction.h"
     23 #include "llvm/CodeGen/MachineInstrBuilder.h"
     24 #include "llvm/CodeGen/MachineModuleInfo.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/MC/MCAsmInfo.h"
     27 #include "llvm/MC/MCSymbol.h"
     28 #include "llvm/Target/TargetData.h"
     29 #include "llvm/Target/TargetOptions.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/ADT/SmallSet.h"
     32 
     33 using namespace llvm;
     34 
     35 // FIXME: completely move here.
     36 extern cl::opt<bool> ForceStackAlign;
     37 
     38 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
     39   return !MF.getFrameInfo()->hasVarSizedObjects();
     40 }
     41 
     42 /// hasFP - Return true if the specified function should have a dedicated frame
     43 /// pointer register.  This is true if the function has variable sized allocas
     44 /// or if frame pointer elimination is disabled.
     45 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
     46   const MachineFrameInfo *MFI = MF.getFrameInfo();
     47   const MachineModuleInfo &MMI = MF.getMMI();
     48   const TargetRegisterInfo *RI = TM.getRegisterInfo();
     49 
     50   return (DisableFramePointerElim(MF) ||
     51           RI->needsStackRealignment(MF) ||
     52           MFI->hasVarSizedObjects() ||
     53           MFI->isFrameAddressTaken() ||
     54           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
     55           MMI.callsUnwindInit());
     56 }
     57 
     58 static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) {
     59   if (is64Bit) {
     60     if (isInt<8>(Imm))
     61       return X86::SUB64ri8;
     62     return X86::SUB64ri32;
     63   } else {
     64     if (isInt<8>(Imm))
     65       return X86::SUB32ri8;
     66     return X86::SUB32ri;
     67   }
     68 }
     69 
     70 static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) {
     71   if (is64Bit) {
     72     if (isInt<8>(Imm))
     73       return X86::ADD64ri8;
     74     return X86::ADD64ri32;
     75   } else {
     76     if (isInt<8>(Imm))
     77       return X86::ADD32ri8;
     78     return X86::ADD32ri;
     79   }
     80 }
     81 
     82 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
     83 /// when it reaches the "return" instruction. We can then pop a stack object
     84 /// to this register without worry about clobbering it.
     85 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
     86                                        MachineBasicBlock::iterator &MBBI,
     87                                        const TargetRegisterInfo &TRI,
     88                                        bool Is64Bit) {
     89   const MachineFunction *MF = MBB.getParent();
     90   const Function *F = MF->getFunction();
     91   if (!F || MF->getMMI().callsEHReturn())
     92     return 0;
     93 
     94   static const unsigned CallerSavedRegs32Bit[] = {
     95     X86::EAX, X86::EDX, X86::ECX, 0
     96   };
     97 
     98   static const unsigned CallerSavedRegs64Bit[] = {
     99     X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI,
    100     X86::R8,  X86::R9,  X86::R10, X86::R11, 0
    101   };
    102 
    103   unsigned Opc = MBBI->getOpcode();
    104   switch (Opc) {
    105   default: return 0;
    106   case X86::RET:
    107   case X86::RETI:
    108   case X86::TCRETURNdi:
    109   case X86::TCRETURNri:
    110   case X86::TCRETURNmi:
    111   case X86::TCRETURNdi64:
    112   case X86::TCRETURNri64:
    113   case X86::TCRETURNmi64:
    114   case X86::EH_RETURN:
    115   case X86::EH_RETURN64: {
    116     SmallSet<unsigned, 8> Uses;
    117     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
    118       MachineOperand &MO = MBBI->getOperand(i);
    119       if (!MO.isReg() || MO.isDef())
    120         continue;
    121       unsigned Reg = MO.getReg();
    122       if (!Reg)
    123         continue;
    124       for (const unsigned *AsI = TRI.getOverlaps(Reg); *AsI; ++AsI)
    125         Uses.insert(*AsI);
    126     }
    127 
    128     const unsigned *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit;
    129     for (; *CS; ++CS)
    130       if (!Uses.count(*CS))
    131         return *CS;
    132   }
    133   }
    134 
    135   return 0;
    136 }
    137 
    138 
    139 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
    140 /// stack pointer by a constant value.
    141 static
    142 void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
    143                   unsigned StackPtr, int64_t NumBytes,
    144                   bool Is64Bit, const TargetInstrInfo &TII,
    145                   const TargetRegisterInfo &TRI) {
    146   bool isSub = NumBytes < 0;
    147   uint64_t Offset = isSub ? -NumBytes : NumBytes;
    148   unsigned Opc = isSub ?
    149     getSUBriOpcode(Is64Bit, Offset) :
    150     getADDriOpcode(Is64Bit, Offset);
    151   uint64_t Chunk = (1LL << 31) - 1;
    152   DebugLoc DL = MBB.findDebugLoc(MBBI);
    153 
    154   while (Offset) {
    155     uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
    156     if (ThisVal == (Is64Bit ? 8 : 4)) {
    157       // Use push / pop instead.
    158       unsigned Reg = isSub
    159         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
    160         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
    161       if (Reg) {
    162         Opc = isSub
    163           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
    164           : (Is64Bit ? X86::POP64r  : X86::POP32r);
    165         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
    166           .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
    167         if (isSub)
    168           MI->setFlag(MachineInstr::FrameSetup);
    169         Offset -= ThisVal;
    170         continue;
    171       }
    172     }
    173 
    174     MachineInstr *MI =
    175       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
    176       .addReg(StackPtr)
    177       .addImm(ThisVal);
    178     if (isSub)
    179       MI->setFlag(MachineInstr::FrameSetup);
    180     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
    181     Offset -= ThisVal;
    182   }
    183 }
    184 
    185 /// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
    186 static
    187 void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
    188                       unsigned StackPtr, uint64_t *NumBytes = NULL) {
    189   if (MBBI == MBB.begin()) return;
    190 
    191   MachineBasicBlock::iterator PI = prior(MBBI);
    192   unsigned Opc = PI->getOpcode();
    193   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
    194        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
    195       PI->getOperand(0).getReg() == StackPtr) {
    196     if (NumBytes)
    197       *NumBytes += PI->getOperand(2).getImm();
    198     MBB.erase(PI);
    199   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    200               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
    201              PI->getOperand(0).getReg() == StackPtr) {
    202     if (NumBytes)
    203       *NumBytes -= PI->getOperand(2).getImm();
    204     MBB.erase(PI);
    205   }
    206 }
    207 
    208 /// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower iterator.
    209 static
    210 void mergeSPUpdatesDown(MachineBasicBlock &MBB,
    211                         MachineBasicBlock::iterator &MBBI,
    212                         unsigned StackPtr, uint64_t *NumBytes = NULL) {
    213   // FIXME: THIS ISN'T RUN!!!
    214   return;
    215 
    216   if (MBBI == MBB.end()) return;
    217 
    218   MachineBasicBlock::iterator NI = llvm::next(MBBI);
    219   if (NI == MBB.end()) return;
    220 
    221   unsigned Opc = NI->getOpcode();
    222   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
    223        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
    224       NI->getOperand(0).getReg() == StackPtr) {
    225     if (NumBytes)
    226       *NumBytes -= NI->getOperand(2).getImm();
    227     MBB.erase(NI);
    228     MBBI = NI;
    229   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    230               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
    231              NI->getOperand(0).getReg() == StackPtr) {
    232     if (NumBytes)
    233       *NumBytes += NI->getOperand(2).getImm();
    234     MBB.erase(NI);
    235     MBBI = NI;
    236   }
    237 }
    238 
    239 /// mergeSPUpdates - Checks the instruction before/after the passed
    240 /// instruction. If it is an ADD/SUB instruction it is deleted argument and the
    241 /// stack adjustment is returned as a positive value for ADD and a negative for
    242 /// SUB.
    243 static int mergeSPUpdates(MachineBasicBlock &MBB,
    244                            MachineBasicBlock::iterator &MBBI,
    245                            unsigned StackPtr,
    246                            bool doMergeWithPrevious) {
    247   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
    248       (!doMergeWithPrevious && MBBI == MBB.end()))
    249     return 0;
    250 
    251   MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
    252   MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI);
    253   unsigned Opc = PI->getOpcode();
    254   int Offset = 0;
    255 
    256   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
    257        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
    258       PI->getOperand(0).getReg() == StackPtr){
    259     Offset += PI->getOperand(2).getImm();
    260     MBB.erase(PI);
    261     if (!doMergeWithPrevious) MBBI = NI;
    262   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    263               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
    264              PI->getOperand(0).getReg() == StackPtr) {
    265     Offset -= PI->getOperand(2).getImm();
    266     MBB.erase(PI);
    267     if (!doMergeWithPrevious) MBBI = NI;
    268   }
    269 
    270   return Offset;
    271 }
    272 
    273 static bool isEAXLiveIn(MachineFunction &MF) {
    274   for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
    275        EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
    276     unsigned Reg = II->first;
    277 
    278     if (Reg == X86::EAX || Reg == X86::AX ||
    279         Reg == X86::AH || Reg == X86::AL)
    280       return true;
    281   }
    282 
    283   return false;
    284 }
    285 
    286 void X86FrameLowering::emitCalleeSavedFrameMoves(MachineFunction &MF,
    287                                                  MCSymbol *Label,
    288                                                  unsigned FramePtr) const {
    289   MachineFrameInfo *MFI = MF.getFrameInfo();
    290   MachineModuleInfo &MMI = MF.getMMI();
    291 
    292   // Add callee saved registers to move list.
    293   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
    294   if (CSI.empty()) return;
    295 
    296   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
    297   const TargetData *TD = TM.getTargetData();
    298   bool HasFP = hasFP(MF);
    299 
    300   // Calculate amount of bytes used for return address storing.
    301   int stackGrowth = -TD->getPointerSize();
    302 
    303   // FIXME: This is dirty hack. The code itself is pretty mess right now.
    304   // It should be rewritten from scratch and generalized sometimes.
    305 
    306   // Determine maximum offset (minimum due to stack growth).
    307   int64_t MaxOffset = 0;
    308   for (std::vector<CalleeSavedInfo>::const_iterator
    309          I = CSI.begin(), E = CSI.end(); I != E; ++I)
    310     MaxOffset = std::min(MaxOffset,
    311                          MFI->getObjectOffset(I->getFrameIdx()));
    312 
    313   // Calculate offsets.
    314   int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
    315   for (std::vector<CalleeSavedInfo>::const_iterator
    316          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
    317     int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
    318     unsigned Reg = I->getReg();
    319     Offset = MaxOffset - Offset + saveAreaOffset;
    320 
    321     // Don't output a new machine move if we're re-saving the frame
    322     // pointer. This happens when the PrologEpilogInserter has inserted an extra
    323     // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
    324     // generates one when frame pointers are used. If we generate a "machine
    325     // move" for this extra "PUSH", the linker will lose track of the fact that
    326     // the frame pointer should have the value of the first "PUSH" when it's
    327     // trying to unwind.
    328     //
    329     // FIXME: This looks inelegant. It's possibly correct, but it's covering up
    330     //        another bug. I.e., one where we generate a prolog like this:
    331     //
    332     //          pushl  %ebp
    333     //          movl   %esp, %ebp
    334     //          pushl  %ebp
    335     //          pushl  %esi
    336     //           ...
    337     //
    338     //        The immediate re-push of EBP is unnecessary. At the least, it's an
    339     //        optimization bug. EBP can be used as a scratch register in certain
    340     //        cases, but probably not when we have a frame pointer.
    341     if (HasFP && FramePtr == Reg)
    342       continue;
    343 
    344     MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
    345     MachineLocation CSSrc(Reg);
    346     Moves.push_back(MachineMove(Label, CSDst, CSSrc));
    347   }
    348 }
    349 
    350 /// getCompactUnwindRegNum - Get the compact unwind number for a given
    351 /// register. The number corresponds to the enum lists in
    352 /// compact_unwind_encoding.h.
    353 static int getCompactUnwindRegNum(const unsigned *CURegs, unsigned Reg) {
    354   int Idx = 1;
    355   for (; *CURegs; ++CURegs, ++Idx)
    356     if (*CURegs == Reg)
    357       return Idx;
    358 
    359   return -1;
    360 }
    361 
    362 /// encodeCompactUnwindRegistersWithoutFrame - Create the permutation encoding
    363 /// used with frameless stacks. It is passed the number of registers to be saved
    364 /// and an array of the registers saved.
    365 static uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[6],
    366                                                          unsigned RegCount,
    367                                                          bool Is64Bit) {
    368   // The saved registers are numbered from 1 to 6. In order to encode the order
    369   // in which they were saved, we re-number them according to their place in the
    370   // register order. The re-numbering is relative to the last re-numbered
    371   // register. E.g., if we have registers {6, 2, 4, 5} saved in that order:
    372   //
    373   //    Orig  Re-Num
    374   //    ----  ------
    375   //     6       6
    376   //     2       2
    377   //     4       3
    378   //     5       3
    379   //
    380   static const unsigned CU32BitRegs[] = {
    381     X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
    382   };
    383   static const unsigned CU64BitRegs[] = {
    384     X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
    385   };
    386   const unsigned *CURegs = (Is64Bit ? CU64BitRegs : CU32BitRegs);
    387 
    388   uint32_t RenumRegs[6];
    389   for (unsigned i = 6 - RegCount; i < 6; ++i) {
    390     int CUReg = getCompactUnwindRegNum(CURegs, SavedRegs[i]);
    391     if (CUReg == -1) return ~0U;
    392     SavedRegs[i] = CUReg;
    393 
    394     unsigned Countless = 0;
    395     for (unsigned j = 6 - RegCount; j < i; ++j)
    396       if (SavedRegs[j] < SavedRegs[i])
    397         ++Countless;
    398 
    399     RenumRegs[i] = SavedRegs[i] - Countless - 1;
    400   }
    401 
    402   // Take the renumbered values and encode them into a 10-bit number.
    403   uint32_t permutationEncoding = 0;
    404   switch (RegCount) {
    405   case 6:
    406     permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
    407                            + 6 * RenumRegs[2] +  2 * RenumRegs[3]
    408                            +     RenumRegs[4];
    409     break;
    410   case 5:
    411     permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
    412                            + 6 * RenumRegs[3] +  2 * RenumRegs[4]
    413                            +     RenumRegs[5];
    414     break;
    415   case 4:
    416     permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
    417                            + 3 * RenumRegs[4] +      RenumRegs[5];
    418     break;
    419   case 3:
    420     permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
    421                            +     RenumRegs[5];
    422     break;
    423   case 2:
    424     permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
    425     break;
    426   case 1:
    427     permutationEncoding |=       RenumRegs[5];
    428     break;
    429   }
    430 
    431   assert((permutationEncoding & 0x3FF) == permutationEncoding &&
    432          "Invalid compact register encoding!");
    433   return permutationEncoding;
    434 }
    435 
    436 /// encodeCompactUnwindRegistersWithFrame - Return the registers encoded for a
    437 /// compact encoding with a frame pointer.
    438 static uint32_t encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[6],
    439                                                       bool Is64Bit) {
    440   static const unsigned CU32BitRegs[] = {
    441     X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
    442   };
    443   static const unsigned CU64BitRegs[] = {
    444     X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
    445   };
    446   const unsigned *CURegs = (Is64Bit ? CU64BitRegs : CU32BitRegs);
    447 
    448   // Encode the registers in the order they were saved, 3-bits per register. The
    449   // registers are numbered from 1 to 6.
    450   uint32_t RegEnc = 0;
    451   for (int I = 5; I >= 0; --I) {
    452     unsigned Reg = SavedRegs[I];
    453     if (Reg == 0) break;
    454     int CURegNum = getCompactUnwindRegNum(CURegs, Reg);
    455     if (CURegNum == -1)
    456       return ~0U;
    457     RegEnc |= (CURegNum & 0x7) << (5 - I);
    458   }
    459 
    460   assert((RegEnc & 0x7FFF) == RegEnc && "Invalid compact register encoding!");
    461   return RegEnc;
    462 }
    463 
    464 uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
    465   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
    466   unsigned FramePtr = RegInfo->getFrameRegister(MF);
    467   unsigned StackPtr = RegInfo->getStackRegister();
    468 
    469   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    470   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
    471 
    472   bool Is64Bit = STI.is64Bit();
    473   bool HasFP = hasFP(MF);
    474 
    475   unsigned SavedRegs[6] = { 0, 0, 0, 0, 0, 0 };
    476   int SavedRegIdx = 6;
    477 
    478   unsigned OffsetSize = (Is64Bit ? 8 : 4);
    479 
    480   unsigned PushInstr = (Is64Bit ? X86::PUSH64r : X86::PUSH32r);
    481   unsigned PushInstrSize = 1;
    482   unsigned MoveInstr = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
    483   unsigned MoveInstrSize = (Is64Bit ? 3 : 2);
    484   unsigned SubtractInstr = getSUBriOpcode(Is64Bit, -TailCallReturnAddrDelta);
    485   unsigned SubtractInstrIdx = (Is64Bit ? 3 : 2);
    486 
    487   unsigned StackDivide = (Is64Bit ? 8 : 4);
    488 
    489   unsigned InstrOffset = 0;
    490   unsigned CFAOffset = 0;
    491   unsigned StackAdjust = 0;
    492 
    493   MachineBasicBlock &MBB = MF.front(); // Prologue is in entry BB.
    494   bool ExpectEnd = false;
    495   for (MachineBasicBlock::iterator
    496          MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ++MBBI) {
    497     MachineInstr &MI = *MBBI;
    498     unsigned Opc = MI.getOpcode();
    499     if (Opc == X86::PROLOG_LABEL) continue;
    500     if (!MI.getFlag(MachineInstr::FrameSetup)) break;
    501 
    502     // We don't exect any more prolog instructions.
    503     if (ExpectEnd) return 0;
    504 
    505     if (Opc == PushInstr) {
    506       // If there are too many saved registers, we cannot use compact encoding.
    507       if (--SavedRegIdx < 0) return 0;
    508 
    509       SavedRegs[SavedRegIdx] = MI.getOperand(0).getReg();
    510       CFAOffset += OffsetSize;
    511       InstrOffset += PushInstrSize;
    512     } else if (Opc == MoveInstr) {
    513       unsigned SrcReg = MI.getOperand(1).getReg();
    514       unsigned DstReg = MI.getOperand(0).getReg();
    515 
    516       if (DstReg != FramePtr || SrcReg != StackPtr)
    517         return 0;
    518 
    519       CFAOffset = 0;
    520       memset(SavedRegs, 0, sizeof(SavedRegs));
    521       InstrOffset += MoveInstrSize;
    522     } else if (Opc == SubtractInstr) {
    523       if (StackAdjust)
    524         // We all ready have a stack pointer adjustment.
    525         return 0;
    526 
    527       if (!MI.getOperand(0).isReg() ||
    528           MI.getOperand(0).getReg() != MI.getOperand(1).getReg() ||
    529           MI.getOperand(0).getReg() != StackPtr || !MI.getOperand(2).isImm())
    530         // We need this to be a stack adjustment pointer. Something like:
    531         //
    532         //   %RSP<def> = SUB64ri8 %RSP, 48
    533         return 0;
    534 
    535       StackAdjust = MI.getOperand(2).getImm() / StackDivide;
    536       SubtractInstrIdx += InstrOffset;
    537       ExpectEnd = true;
    538     }
    539   }
    540 
    541   // Encode that we are using EBP/RBP as the frame pointer.
    542   uint32_t CompactUnwindEncoding = 0;
    543   CFAOffset /= StackDivide;
    544   if (HasFP) {
    545     if ((CFAOffset & 0xFF) != CFAOffset)
    546       // Offset was too big for compact encoding.
    547       return 0;
    548 
    549     // Get the encoding of the saved registers when we have a frame pointer.
    550     uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(SavedRegs, Is64Bit);
    551     if (RegEnc == ~0U)
    552       return 0;
    553 
    554     CompactUnwindEncoding |= 0x01000000;
    555     CompactUnwindEncoding |= (CFAOffset & 0xFF) << 16;
    556     CompactUnwindEncoding |= RegEnc & 0x7FFF;
    557   } else {
    558     unsigned FullOffset = CFAOffset + StackAdjust;
    559     if ((FullOffset & 0xFF) == FullOffset) {
    560       // Frameless stack.
    561       CompactUnwindEncoding |= 0x02000000;
    562       CompactUnwindEncoding |= (FullOffset & 0xFF) << 16;
    563     } else {
    564       if ((CFAOffset & 0x7) != CFAOffset)
    565         // The extra stack adjustments are too big for us to handle.
    566         return 0;
    567 
    568       // Frameless stack with an offset too large for us to encode compactly.
    569       CompactUnwindEncoding |= 0x03000000;
    570 
    571       // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
    572       // instruction.
    573       CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
    574 
    575       // Encode any extra stack stack changes (done via push instructions).
    576       CompactUnwindEncoding |= (CFAOffset & 0x7) << 13;
    577     }
    578 
    579     // Get the encoding of the saved registers when we don't have a frame
    580     // pointer.
    581     uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegs,
    582                                                                6 - SavedRegIdx,
    583                                                                Is64Bit);
    584     if (RegEnc == ~0U) return 0;
    585     CompactUnwindEncoding |= RegEnc & 0x3FF;
    586   }
    587 
    588   return CompactUnwindEncoding;
    589 }
    590 
    591 /// emitPrologue - Push callee-saved registers onto the stack, which
    592 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
    593 /// space for local variables. Also emit labels used by the exception handler to
    594 /// generate the exception handling frames.
    595 void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
    596   MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
    597   MachineBasicBlock::iterator MBBI = MBB.begin();
    598   MachineFrameInfo *MFI = MF.getFrameInfo();
    599   const Function *Fn = MF.getFunction();
    600   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
    601   const X86InstrInfo &TII = *TM.getInstrInfo();
    602   MachineModuleInfo &MMI = MF.getMMI();
    603   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    604   bool needsFrameMoves = MMI.hasDebugInfo() ||
    605     Fn->needsUnwindTableEntry();
    606   uint64_t MaxAlign  = MFI->getMaxAlignment(); // Desired stack alignment.
    607   uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
    608   bool HasFP = hasFP(MF);
    609   bool Is64Bit = STI.is64Bit();
    610   bool IsWin64 = STI.isTargetWin64();
    611   unsigned StackAlign = getStackAlignment();
    612   unsigned SlotSize = RegInfo->getSlotSize();
    613   unsigned FramePtr = RegInfo->getFrameRegister(MF);
    614   unsigned StackPtr = RegInfo->getStackRegister();
    615   DebugLoc DL;
    616 
    617   // If we're forcing a stack realignment we can't rely on just the frame
    618   // info, we need to know the ABI stack alignment as well in case we
    619   // have a call out.  Otherwise just make sure we have some alignment - we'll
    620   // go with the minimum SlotSize.
    621   if (ForceStackAlign) {
    622     if (MFI->hasCalls())
    623       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
    624     else if (MaxAlign < SlotSize)
    625       MaxAlign = SlotSize;
    626   }
    627 
    628   // Add RETADDR move area to callee saved frame size.
    629   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
    630   if (TailCallReturnAddrDelta < 0)
    631     X86FI->setCalleeSavedFrameSize(
    632       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
    633 
    634   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
    635   // function, and use up to 128 bytes of stack space, don't have a frame
    636   // pointer, calls, or dynamic alloca then we do not need to adjust the
    637   // stack pointer (we fit in the Red Zone).
    638   if (Is64Bit && !Fn->hasFnAttr(Attribute::NoRedZone) &&
    639       !RegInfo->needsStackRealignment(MF) &&
    640       !MFI->hasVarSizedObjects() &&                // No dynamic alloca.
    641       !MFI->adjustsStack() &&                      // No calls.
    642       !IsWin64 &&                                  // Win64 has no Red Zone
    643       !EnableSegmentedStacks) {                    // Regular stack
    644     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
    645     if (HasFP) MinSize += SlotSize;
    646     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
    647     MFI->setStackSize(StackSize);
    648   }
    649 
    650   // Insert stack pointer adjustment for later moving of return addr.  Only
    651   // applies to tail call optimized functions where the callee argument stack
    652   // size is bigger than the callers.
    653   if (TailCallReturnAddrDelta < 0) {
    654     MachineInstr *MI =
    655       BuildMI(MBB, MBBI, DL,
    656               TII.get(getSUBriOpcode(Is64Bit, -TailCallReturnAddrDelta)),
    657               StackPtr)
    658         .addReg(StackPtr)
    659         .addImm(-TailCallReturnAddrDelta)
    660         .setMIFlag(MachineInstr::FrameSetup);
    661     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
    662   }
    663 
    664   // Mapping for machine moves:
    665   //
    666   //   DST: VirtualFP AND
    667   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
    668   //        ELSE                        => DW_CFA_def_cfa
    669   //
    670   //   SRC: VirtualFP AND
    671   //        DST: Register               => DW_CFA_def_cfa_register
    672   //
    673   //   ELSE
    674   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
    675   //        REG < 64                    => DW_CFA_offset + Reg
    676   //        ELSE                        => DW_CFA_offset_extended
    677 
    678   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
    679   const TargetData *TD = MF.getTarget().getTargetData();
    680   uint64_t NumBytes = 0;
    681   int stackGrowth = -TD->getPointerSize();
    682 
    683   if (HasFP) {
    684     // Calculate required stack adjustment.
    685     uint64_t FrameSize = StackSize - SlotSize;
    686     if (RegInfo->needsStackRealignment(MF))
    687       FrameSize = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
    688 
    689     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
    690 
    691     // Get the offset of the stack slot for the EBP register, which is
    692     // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
    693     // Update the frame offset adjustment.
    694     MFI->setOffsetAdjustment(-NumBytes);
    695 
    696     // Save EBP/RBP into the appropriate stack slot.
    697     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
    698       .addReg(FramePtr, RegState::Kill)
    699       .setMIFlag(MachineInstr::FrameSetup);
    700 
    701     if (needsFrameMoves) {
    702       // Mark the place where EBP/RBP was saved.
    703       MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
    704       BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
    705         .addSym(FrameLabel);
    706 
    707       // Define the current CFA rule to use the provided offset.
    708       if (StackSize) {
    709         MachineLocation SPDst(MachineLocation::VirtualFP);
    710         MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth);
    711         Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
    712       } else {
    713         MachineLocation SPDst(StackPtr);
    714         MachineLocation SPSrc(StackPtr, stackGrowth);
    715         Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
    716       }
    717 
    718       // Change the rule for the FramePtr to be an "offset" rule.
    719       MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth);
    720       MachineLocation FPSrc(FramePtr);
    721       Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
    722     }
    723 
    724     // Update EBP with the new base value.
    725     BuildMI(MBB, MBBI, DL,
    726             TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
    727         .addReg(StackPtr)
    728         .setMIFlag(MachineInstr::FrameSetup);
    729 
    730     if (needsFrameMoves) {
    731       // Mark effective beginning of when frame pointer becomes valid.
    732       MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
    733       BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
    734         .addSym(FrameLabel);
    735 
    736       // Define the current CFA to use the EBP/RBP register.
    737       MachineLocation FPDst(FramePtr);
    738       MachineLocation FPSrc(MachineLocation::VirtualFP);
    739       Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
    740     }
    741 
    742     // Mark the FramePtr as live-in in every block except the entry.
    743     for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end();
    744          I != E; ++I)
    745       I->addLiveIn(FramePtr);
    746 
    747     // Realign stack
    748     if (RegInfo->needsStackRealignment(MF)) {
    749       MachineInstr *MI =
    750         BuildMI(MBB, MBBI, DL,
    751                 TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr)
    752         .addReg(StackPtr)
    753         .addImm(-MaxAlign)
    754         .setMIFlag(MachineInstr::FrameSetup);
    755 
    756       // The EFLAGS implicit def is dead.
    757       MI->getOperand(3).setIsDead();
    758     }
    759   } else {
    760     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
    761   }
    762 
    763   // Skip the callee-saved push instructions.
    764   bool PushedRegs = false;
    765   int StackOffset = 2 * stackGrowth;
    766 
    767   while (MBBI != MBB.end() &&
    768          (MBBI->getOpcode() == X86::PUSH32r ||
    769           MBBI->getOpcode() == X86::PUSH64r)) {
    770     PushedRegs = true;
    771     MBBI->setFlag(MachineInstr::FrameSetup);
    772     ++MBBI;
    773 
    774     if (!HasFP && needsFrameMoves) {
    775       // Mark callee-saved push instruction.
    776       MCSymbol *Label = MMI.getContext().CreateTempSymbol();
    777       BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label);
    778 
    779       // Define the current CFA rule to use the provided offset.
    780       unsigned Ptr = StackSize ? MachineLocation::VirtualFP : StackPtr;
    781       MachineLocation SPDst(Ptr);
    782       MachineLocation SPSrc(Ptr, StackOffset);
    783       Moves.push_back(MachineMove(Label, SPDst, SPSrc));
    784       StackOffset += stackGrowth;
    785     }
    786   }
    787 
    788   DL = MBB.findDebugLoc(MBBI);
    789 
    790   // If there is an SUB32ri of ESP immediately before this instruction, merge
    791   // the two. This can be the case when tail call elimination is enabled and
    792   // the callee has more arguments then the caller.
    793   NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
    794 
    795   // If there is an ADD32ri or SUB32ri of ESP immediately after this
    796   // instruction, merge the two instructions.
    797   mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
    798 
    799   // Adjust stack pointer: ESP -= numbytes.
    800 
    801   // Windows and cygwin/mingw require a prologue helper routine when allocating
    802   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
    803   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
    804   // stack and adjust the stack pointer in one go.  The 64-bit version of
    805   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
    806   // responsible for adjusting the stack pointer.  Touching the stack at 4K
    807   // increments is necessary to ensure that the guard pages used by the OS
    808   // virtual memory manager are allocated in correct sequence.
    809   if (NumBytes >= 4096 && STI.isTargetCOFF() && !STI.isTargetEnvMacho()) {
    810     const char *StackProbeSymbol;
    811     bool isSPUpdateNeeded = false;
    812 
    813     if (Is64Bit) {
    814       if (STI.isTargetCygMing())
    815         StackProbeSymbol = "___chkstk";
    816       else {
    817         StackProbeSymbol = "__chkstk";
    818         isSPUpdateNeeded = true;
    819       }
    820     } else if (STI.isTargetCygMing())
    821       StackProbeSymbol = "_alloca";
    822     else
    823       StackProbeSymbol = "_chkstk";
    824 
    825     // Check whether EAX is livein for this function.
    826     bool isEAXAlive = isEAXLiveIn(MF);
    827 
    828     if (isEAXAlive) {
    829       // Sanity check that EAX is not livein for this function.
    830       // It should not be, so throw an assert.
    831       assert(!Is64Bit && "EAX is livein in x64 case!");
    832 
    833       // Save EAX
    834       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
    835         .addReg(X86::EAX, RegState::Kill)
    836         .setMIFlag(MachineInstr::FrameSetup);
    837     }
    838 
    839     if (Is64Bit) {
    840       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
    841       // Function prologue is responsible for adjusting the stack pointer.
    842       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
    843         .addImm(NumBytes)
    844         .setMIFlag(MachineInstr::FrameSetup);
    845     } else {
    846       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
    847       // We'll also use 4 already allocated bytes for EAX.
    848       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
    849         .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
    850         .setMIFlag(MachineInstr::FrameSetup);
    851     }
    852 
    853     if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
    854       // For the large code model, we have to call through a register. Use R11,
    855       // as it is unused and clobbered by all probe functions.
    856       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
    857           .addExternalSymbol(StackProbeSymbol);
    858       BuildMI(MBB, MBBI, DL, TII.get(X86::CALL64r))
    859           .addReg(X86::R11)
    860           .addReg(StackPtr, RegState::Define | RegState::Implicit)
    861           .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
    862           .setMIFlag(MachineInstr::FrameSetup);
    863     } else {
    864       BuildMI(MBB, MBBI, DL,
    865               TII.get(STI.is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32))
    866           .addExternalSymbol(StackProbeSymbol)
    867           .addReg(StackPtr, RegState::Define | RegState::Implicit)
    868           .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
    869           .setMIFlag(MachineInstr::FrameSetup);
    870     }
    871 
    872     // MSVC x64's __chkstk needs to adjust %rsp.
    873     // FIXME: %rax preserves the offset and should be available.
    874     if (isSPUpdateNeeded)
    875       emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit,
    876                    TII, *RegInfo);
    877 
    878     if (isEAXAlive) {
    879         // Restore EAX
    880         MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
    881                                                 X86::EAX),
    882                                         StackPtr, false, NumBytes - 4);
    883         MI->setFlag(MachineInstr::FrameSetup);
    884         MBB.insert(MBBI, MI);
    885     }
    886   } else if (NumBytes)
    887     emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit,
    888                  TII, *RegInfo);
    889 
    890   if (( (!HasFP && NumBytes) || PushedRegs) && needsFrameMoves) {
    891     // Mark end of stack pointer adjustment.
    892     MCSymbol *Label = MMI.getContext().CreateTempSymbol();
    893     BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
    894       .addSym(Label);
    895 
    896     if (!HasFP && NumBytes) {
    897       // Define the current CFA rule to use the provided offset.
    898       if (StackSize) {
    899         MachineLocation SPDst(MachineLocation::VirtualFP);
    900         MachineLocation SPSrc(MachineLocation::VirtualFP,
    901                               -StackSize + stackGrowth);
    902         Moves.push_back(MachineMove(Label, SPDst, SPSrc));
    903       } else {
    904         MachineLocation SPDst(StackPtr);
    905         MachineLocation SPSrc(StackPtr, stackGrowth);
    906         Moves.push_back(MachineMove(Label, SPDst, SPSrc));
    907       }
    908     }
    909 
    910     // Emit DWARF info specifying the offsets of the callee-saved registers.
    911     if (PushedRegs)
    912       emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr);
    913   }
    914 
    915   // Darwin 10.7 and greater has support for compact unwind encoding.
    916   if (STI.getTargetTriple().isMacOSX() &&
    917       !STI.getTargetTriple().isMacOSXVersionLT(10, 7))
    918     MMI.setCompactUnwindEncoding(getCompactUnwindEncoding(MF));
    919 }
    920 
    921 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
    922                                     MachineBasicBlock &MBB) const {
    923   const MachineFrameInfo *MFI = MF.getFrameInfo();
    924   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    925   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
    926   const X86InstrInfo &TII = *TM.getInstrInfo();
    927   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
    928   assert(MBBI != MBB.end() && "Returning block has no instructions");
    929   unsigned RetOpcode = MBBI->getOpcode();
    930   DebugLoc DL = MBBI->getDebugLoc();
    931   bool Is64Bit = STI.is64Bit();
    932   unsigned StackAlign = getStackAlignment();
    933   unsigned SlotSize = RegInfo->getSlotSize();
    934   unsigned FramePtr = RegInfo->getFrameRegister(MF);
    935   unsigned StackPtr = RegInfo->getStackRegister();
    936 
    937   switch (RetOpcode) {
    938   default:
    939     llvm_unreachable("Can only insert epilog into returning blocks");
    940   case X86::RET:
    941   case X86::RETI:
    942   case X86::TCRETURNdi:
    943   case X86::TCRETURNri:
    944   case X86::TCRETURNmi:
    945   case X86::TCRETURNdi64:
    946   case X86::TCRETURNri64:
    947   case X86::TCRETURNmi64:
    948   case X86::EH_RETURN:
    949   case X86::EH_RETURN64:
    950     break;  // These are ok
    951   }
    952 
    953   // Get the number of bytes to allocate from the FrameInfo.
    954   uint64_t StackSize = MFI->getStackSize();
    955   uint64_t MaxAlign  = MFI->getMaxAlignment();
    956   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
    957   uint64_t NumBytes = 0;
    958 
    959   // If we're forcing a stack realignment we can't rely on just the frame
    960   // info, we need to know the ABI stack alignment as well in case we
    961   // have a call out.  Otherwise just make sure we have some alignment - we'll
    962   // go with the minimum.
    963   if (ForceStackAlign) {
    964     if (MFI->hasCalls())
    965       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
    966     else
    967       MaxAlign = MaxAlign ? MaxAlign : 4;
    968   }
    969 
    970   if (hasFP(MF)) {
    971     // Calculate required stack adjustment.
    972     uint64_t FrameSize = StackSize - SlotSize;
    973     if (RegInfo->needsStackRealignment(MF))
    974       FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
    975 
    976     NumBytes = FrameSize - CSSize;
    977 
    978     // Pop EBP.
    979     BuildMI(MBB, MBBI, DL,
    980             TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
    981   } else {
    982     NumBytes = StackSize - CSSize;
    983   }
    984 
    985   // Skip the callee-saved pop instructions.
    986   MachineBasicBlock::iterator LastCSPop = MBBI;
    987   while (MBBI != MBB.begin()) {
    988     MachineBasicBlock::iterator PI = prior(MBBI);
    989     unsigned Opc = PI->getOpcode();
    990 
    991     if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE &&
    992         !PI->getDesc().isTerminator())
    993       break;
    994 
    995     --MBBI;
    996   }
    997 
    998   DL = MBBI->getDebugLoc();
    999 
   1000   // If there is an ADD32ri or SUB32ri of ESP immediately before this
   1001   // instruction, merge the two instructions.
   1002   if (NumBytes || MFI->hasVarSizedObjects())
   1003     mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
   1004 
   1005   // If dynamic alloca is used, then reset esp to point to the last callee-saved
   1006   // slot before popping them off! Same applies for the case, when stack was
   1007   // realigned.
   1008   if (RegInfo->needsStackRealignment(MF)) {
   1009     // We cannot use LEA here, because stack pointer was realigned. We need to
   1010     // deallocate local frame back.
   1011     if (CSSize) {
   1012       emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII, *RegInfo);
   1013       MBBI = prior(LastCSPop);
   1014     }
   1015 
   1016     BuildMI(MBB, MBBI, DL,
   1017             TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
   1018             StackPtr).addReg(FramePtr);
   1019   } else if (MFI->hasVarSizedObjects()) {
   1020     if (CSSize) {
   1021       unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
   1022       MachineInstr *MI =
   1023         addRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr),
   1024                      FramePtr, false, -CSSize);
   1025       MBB.insert(MBBI, MI);
   1026     } else {
   1027       BuildMI(MBB, MBBI, DL,
   1028               TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr)
   1029         .addReg(FramePtr);
   1030     }
   1031   } else if (NumBytes) {
   1032     // Adjust stack pointer back: ESP += numbytes.
   1033     emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII, *RegInfo);
   1034   }
   1035 
   1036   // We're returning from function via eh_return.
   1037   if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
   1038     MBBI = MBB.getLastNonDebugInstr();
   1039     MachineOperand &DestAddr  = MBBI->getOperand(0);
   1040     assert(DestAddr.isReg() && "Offset should be in register!");
   1041     BuildMI(MBB, MBBI, DL,
   1042             TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
   1043             StackPtr).addReg(DestAddr.getReg());
   1044   } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
   1045              RetOpcode == X86::TCRETURNmi ||
   1046              RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 ||
   1047              RetOpcode == X86::TCRETURNmi64) {
   1048     bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64;
   1049     // Tail call return: adjust the stack pointer and jump to callee.
   1050     MBBI = MBB.getLastNonDebugInstr();
   1051     MachineOperand &JumpTarget = MBBI->getOperand(0);
   1052     MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
   1053     assert(StackAdjust.isImm() && "Expecting immediate value.");
   1054 
   1055     // Adjust stack pointer.
   1056     int StackAdj = StackAdjust.getImm();
   1057     int MaxTCDelta = X86FI->getTCReturnAddrDelta();
   1058     int Offset = 0;
   1059     assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
   1060 
   1061     // Incoporate the retaddr area.
   1062     Offset = StackAdj-MaxTCDelta;
   1063     assert(Offset >= 0 && "Offset should never be negative");
   1064 
   1065     if (Offset) {
   1066       // Check for possible merge with preceding ADD instruction.
   1067       Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
   1068       emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII, *RegInfo);
   1069     }
   1070 
   1071     // Jump to label or value in register.
   1072     if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) {
   1073       MachineInstrBuilder MIB =
   1074         BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi)
   1075                                        ? X86::TAILJMPd : X86::TAILJMPd64));
   1076       if (JumpTarget.isGlobal())
   1077         MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
   1078                              JumpTarget.getTargetFlags());
   1079       else {
   1080         assert(JumpTarget.isSymbol());
   1081         MIB.addExternalSymbol(JumpTarget.getSymbolName(),
   1082                               JumpTarget.getTargetFlags());
   1083       }
   1084     } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) {
   1085       MachineInstrBuilder MIB =
   1086         BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi)
   1087                                        ? X86::TAILJMPm : X86::TAILJMPm64));
   1088       for (unsigned i = 0; i != 5; ++i)
   1089         MIB.addOperand(MBBI->getOperand(i));
   1090     } else if (RetOpcode == X86::TCRETURNri64) {
   1091       BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)).
   1092         addReg(JumpTarget.getReg(), RegState::Kill);
   1093     } else {
   1094       BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)).
   1095         addReg(JumpTarget.getReg(), RegState::Kill);
   1096     }
   1097 
   1098     MachineInstr *NewMI = prior(MBBI);
   1099     for (unsigned i = 2, e = MBBI->getNumOperands(); i != e; ++i)
   1100       NewMI->addOperand(MBBI->getOperand(i));
   1101 
   1102     // Delete the pseudo instruction TCRETURN.
   1103     MBB.erase(MBBI);
   1104   } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
   1105              (X86FI->getTCReturnAddrDelta() < 0)) {
   1106     // Add the return addr area delta back since we are not tail calling.
   1107     int delta = -1*X86FI->getTCReturnAddrDelta();
   1108     MBBI = MBB.getLastNonDebugInstr();
   1109 
   1110     // Check for possible merge with preceding ADD instruction.
   1111     delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
   1112     emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII, *RegInfo);
   1113   }
   1114 }
   1115 
   1116 int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const {
   1117   const X86RegisterInfo *RI =
   1118     static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
   1119   const MachineFrameInfo *MFI = MF.getFrameInfo();
   1120   int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
   1121   uint64_t StackSize = MFI->getStackSize();
   1122 
   1123   if (RI->needsStackRealignment(MF)) {
   1124     if (FI < 0) {
   1125       // Skip the saved EBP.
   1126       Offset += RI->getSlotSize();
   1127     } else {
   1128       assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
   1129       return Offset + StackSize;
   1130     }
   1131     // FIXME: Support tail calls
   1132   } else {
   1133     if (!hasFP(MF))
   1134       return Offset + StackSize;
   1135 
   1136     // Skip the saved EBP.
   1137     Offset += RI->getSlotSize();
   1138 
   1139     // Skip the RETADDR move area
   1140     const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1141     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
   1142     if (TailCallReturnAddrDelta < 0)
   1143       Offset -= TailCallReturnAddrDelta;
   1144   }
   1145 
   1146   return Offset;
   1147 }
   1148 
   1149 bool X86FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
   1150                                              MachineBasicBlock::iterator MI,
   1151                                         const std::vector<CalleeSavedInfo> &CSI,
   1152                                           const TargetRegisterInfo *TRI) const {
   1153   if (CSI.empty())
   1154     return false;
   1155 
   1156   DebugLoc DL = MBB.findDebugLoc(MI);
   1157 
   1158   MachineFunction &MF = *MBB.getParent();
   1159 
   1160   unsigned SlotSize = STI.is64Bit() ? 8 : 4;
   1161   unsigned FPReg = TRI->getFrameRegister(MF);
   1162   unsigned CalleeFrameSize = 0;
   1163 
   1164   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
   1165   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1166 
   1167   // Push GPRs. It increases frame size.
   1168   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
   1169   for (unsigned i = CSI.size(); i != 0; --i) {
   1170     unsigned Reg = CSI[i-1].getReg();
   1171     if (!X86::GR64RegClass.contains(Reg) &&
   1172         !X86::GR32RegClass.contains(Reg))
   1173       continue;
   1174     // Add the callee-saved register as live-in. It's killed at the spill.
   1175     MBB.addLiveIn(Reg);
   1176     if (Reg == FPReg)
   1177       // X86RegisterInfo::emitPrologue will handle spilling of frame register.
   1178       continue;
   1179     CalleeFrameSize += SlotSize;
   1180     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
   1181       .setMIFlag(MachineInstr::FrameSetup);
   1182   }
   1183 
   1184   X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
   1185 
   1186   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
   1187   // It can be done by spilling XMMs to stack frame.
   1188   // Note that only Win64 ABI might spill XMMs.
   1189   for (unsigned i = CSI.size(); i != 0; --i) {
   1190     unsigned Reg = CSI[i-1].getReg();
   1191     if (X86::GR64RegClass.contains(Reg) ||
   1192         X86::GR32RegClass.contains(Reg))
   1193       continue;
   1194     // Add the callee-saved register as live-in. It's killed at the spill.
   1195     MBB.addLiveIn(Reg);
   1196     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
   1197     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
   1198                             RC, TRI);
   1199   }
   1200 
   1201   return true;
   1202 }
   1203 
   1204 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
   1205                                                MachineBasicBlock::iterator MI,
   1206                                         const std::vector<CalleeSavedInfo> &CSI,
   1207                                           const TargetRegisterInfo *TRI) const {
   1208   if (CSI.empty())
   1209     return false;
   1210 
   1211   DebugLoc DL = MBB.findDebugLoc(MI);
   1212 
   1213   MachineFunction &MF = *MBB.getParent();
   1214   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
   1215 
   1216   // Reload XMMs from stack frame.
   1217   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
   1218     unsigned Reg = CSI[i].getReg();
   1219     if (X86::GR64RegClass.contains(Reg) ||
   1220         X86::GR32RegClass.contains(Reg))
   1221       continue;
   1222     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
   1223     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
   1224                              RC, TRI);
   1225   }
   1226 
   1227   // POP GPRs.
   1228   unsigned FPReg = TRI->getFrameRegister(MF);
   1229   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
   1230   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
   1231     unsigned Reg = CSI[i].getReg();
   1232     if (!X86::GR64RegClass.contains(Reg) &&
   1233         !X86::GR32RegClass.contains(Reg))
   1234       continue;
   1235     if (Reg == FPReg)
   1236       // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
   1237       continue;
   1238     BuildMI(MBB, MI, DL, TII.get(Opc), Reg);
   1239   }
   1240   return true;
   1241 }
   1242 
   1243 void
   1244 X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
   1245                                                    RegScavenger *RS) const {
   1246   MachineFrameInfo *MFI = MF.getFrameInfo();
   1247   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
   1248   unsigned SlotSize = RegInfo->getSlotSize();
   1249 
   1250   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1251   int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
   1252 
   1253   if (TailCallReturnAddrDelta < 0) {
   1254     // create RETURNADDR area
   1255     //   arg
   1256     //   arg
   1257     //   RETADDR
   1258     //   { ...
   1259     //     RETADDR area
   1260     //     ...
   1261     //   }
   1262     //   [EBP]
   1263     MFI->CreateFixedObject(-TailCallReturnAddrDelta,
   1264                            (-1U*SlotSize)+TailCallReturnAddrDelta, true);
   1265   }
   1266 
   1267   if (hasFP(MF)) {
   1268     assert((TailCallReturnAddrDelta <= 0) &&
   1269            "The Delta should always be zero or negative");
   1270     const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
   1271 
   1272     // Create a frame entry for the EBP register that must be saved.
   1273     int FrameIdx = MFI->CreateFixedObject(SlotSize,
   1274                                           -(int)SlotSize +
   1275                                           TFI.getOffsetOfLocalArea() +
   1276                                           TailCallReturnAddrDelta,
   1277                                           true);
   1278     assert(FrameIdx == MFI->getObjectIndexBegin() &&
   1279            "Slot for EBP register must be last in order to be found!");
   1280     (void)FrameIdx;
   1281   }
   1282 }
   1283 
   1284 static bool
   1285 HasNestArgument(const MachineFunction *MF) {
   1286   const Function *F = MF->getFunction();
   1287   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   1288        I != E; I++) {
   1289     if (I->hasNestAttr())
   1290       return true;
   1291   }
   1292   return false;
   1293 }
   1294 
   1295 static unsigned
   1296 GetScratchRegister(bool Is64Bit, const MachineFunction &MF) {
   1297   if (Is64Bit) {
   1298     return X86::R11;
   1299   } else {
   1300     CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
   1301     bool IsNested = HasNestArgument(&MF);
   1302 
   1303     if (CallingConvention == CallingConv::X86_FastCall) {
   1304       if (IsNested) {
   1305         report_fatal_error("Segmented stacks does not support fastcall with "
   1306                            "nested function.");
   1307         return -1;
   1308       } else {
   1309         return X86::EAX;
   1310       }
   1311     } else {
   1312       if (IsNested)
   1313         return X86::EDX;
   1314       else
   1315         return X86::ECX;
   1316     }
   1317   }
   1318 }
   1319 
   1320 void
   1321 X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
   1322   MachineBasicBlock &prologueMBB = MF.front();
   1323   MachineFrameInfo *MFI = MF.getFrameInfo();
   1324   const X86InstrInfo &TII = *TM.getInstrInfo();
   1325   uint64_t StackSize;
   1326   bool Is64Bit = STI.is64Bit();
   1327   unsigned TlsReg, TlsOffset;
   1328   DebugLoc DL;
   1329   const X86Subtarget *ST = &MF.getTarget().getSubtarget<X86Subtarget>();
   1330 
   1331   unsigned ScratchReg = GetScratchRegister(Is64Bit, MF);
   1332   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
   1333          "Scratch register is live-in");
   1334 
   1335   if (MF.getFunction()->isVarArg())
   1336     report_fatal_error("Segmented stacks do not support vararg functions.");
   1337   if (!ST->isTargetLinux())
   1338     report_fatal_error("Segmented stacks supported only on linux.");
   1339 
   1340   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
   1341   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
   1342   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1343   bool IsNested = false;
   1344 
   1345   // We need to know if the function has a nest argument only in 64 bit mode.
   1346   if (Is64Bit)
   1347     IsNested = HasNestArgument(&MF);
   1348 
   1349   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
   1350   // allocMBB needs to be last (terminating) instruction.
   1351   MachineBasicBlock *restoreR10MBB = NULL;
   1352   if (IsNested)
   1353     restoreR10MBB = MF.CreateMachineBasicBlock();
   1354 
   1355   for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(),
   1356          e = prologueMBB.livein_end(); i != e; i++) {
   1357     allocMBB->addLiveIn(*i);
   1358     checkMBB->addLiveIn(*i);
   1359 
   1360     if (IsNested)
   1361       restoreR10MBB->addLiveIn(*i);
   1362   }
   1363 
   1364   if (IsNested) {
   1365     allocMBB->addLiveIn(X86::R10);
   1366     restoreR10MBB->addLiveIn(X86::RAX);
   1367   }
   1368 
   1369   if (IsNested)
   1370     MF.push_front(restoreR10MBB);
   1371   MF.push_front(allocMBB);
   1372   MF.push_front(checkMBB);
   1373 
   1374   // Eventually StackSize will be calculated by a link-time pass; which will
   1375   // also decide whether checking code needs to be injected into this particular
   1376   // prologue.
   1377   StackSize = MFI->getStackSize();
   1378 
   1379   // Read the limit off the current stacklet off the stack_guard location.
   1380   if (Is64Bit) {
   1381     TlsReg = X86::FS;
   1382     TlsOffset = 0x70;
   1383 
   1384     BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP)
   1385       .addImm(0).addReg(0).addImm(-StackSize).addReg(0);
   1386     BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg)
   1387       .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
   1388   } else {
   1389     TlsReg = X86::GS;
   1390     TlsOffset = 0x30;
   1391 
   1392     BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
   1393       .addImm(0).addReg(0).addImm(-StackSize).addReg(0);
   1394     BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
   1395       .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
   1396   }
   1397 
   1398   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
   1399   // It jumps to normal execution of the function body.
   1400   BuildMI(checkMBB, DL, TII.get(X86::JG_4)).addMBB(&prologueMBB);
   1401 
   1402   // On 32 bit we first push the arguments size and then the frame size. On 64
   1403   // bit, we pass the stack frame size in r10 and the argument size in r11.
   1404   if (Is64Bit) {
   1405     // Functions with nested arguments use R10, so it needs to be saved across
   1406     // the call to _morestack
   1407 
   1408     if (IsNested)
   1409       BuildMI(allocMBB, DL, TII.get(X86::MOV64rr), X86::RAX).addReg(X86::R10);
   1410 
   1411     BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R10)
   1412       .addImm(StackSize);
   1413     BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R11)
   1414       .addImm(X86FI->getArgumentStackSize());
   1415     MF.getRegInfo().setPhysRegUsed(X86::R10);
   1416     MF.getRegInfo().setPhysRegUsed(X86::R11);
   1417   } else {
   1418     // Since we'll call __morestack, stack alignment needs to be preserved.
   1419     BuildMI(allocMBB, DL, TII.get(X86::SUB32ri), X86::ESP).addReg(X86::ESP)
   1420       .addImm(8);
   1421     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
   1422       .addImm(X86FI->getArgumentStackSize());
   1423     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
   1424       .addImm(StackSize);
   1425   }
   1426 
   1427   // __morestack is in libgcc
   1428   if (Is64Bit)
   1429     BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
   1430       .addExternalSymbol("__morestack");
   1431   else
   1432     BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
   1433       .addExternalSymbol("__morestack");
   1434 
   1435   // __morestack only seems to remove 8 bytes off the stack. Add back the
   1436   // additional 8 bytes we added before pushing the arguments.
   1437   if (!Is64Bit)
   1438     BuildMI(allocMBB, DL, TII.get(X86::ADD32ri), X86::ESP).addReg(X86::ESP)
   1439       .addImm(8);
   1440   BuildMI(allocMBB, DL, TII.get(X86::RET));
   1441 
   1442   if (IsNested)
   1443     BuildMI(restoreR10MBB, DL, TII.get(X86::MOV64rr), X86::R10)
   1444       .addReg(X86::RAX);
   1445 
   1446   if (IsNested) {
   1447     allocMBB->addSuccessor(restoreR10MBB);
   1448     restoreR10MBB->addSuccessor(&prologueMBB);
   1449   } else {
   1450     allocMBB->addSuccessor(&prologueMBB);
   1451   }
   1452 
   1453   checkMBB->addSuccessor(allocMBB);
   1454   checkMBB->addSuccessor(&prologueMBB);
   1455 
   1456 #ifdef XDEBUG
   1457   MF.verify();
   1458 #endif
   1459 }
   1460