Home | History | Annotate | Download | only in arm
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #if V8_TARGET_ARCH_ARM
      6 
      7 #include "src/code-stubs.h"
      8 #include "src/api-arguments.h"
      9 #include "src/base/bits.h"
     10 #include "src/bootstrapper.h"
     11 #include "src/codegen.h"
     12 #include "src/ic/handler-compiler.h"
     13 #include "src/ic/ic.h"
     14 #include "src/ic/stub-cache.h"
     15 #include "src/isolate.h"
     16 #include "src/regexp/jsregexp.h"
     17 #include "src/regexp/regexp-macro-assembler.h"
     18 #include "src/runtime/runtime.h"
     19 
     20 #include "src/arm/code-stubs-arm.h"
     21 
     22 namespace v8 {
     23 namespace internal {
     24 
     25 #define __ ACCESS_MASM(masm)
     26 
     27 void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
     28   __ lsl(r5, r0, Operand(kPointerSizeLog2));
     29   __ str(r1, MemOperand(sp, r5));
     30   __ Push(r1);
     31   __ Push(r2);
     32   __ add(r0, r0, Operand(3));
     33   __ TailCallRuntime(Runtime::kNewArray);
     34 }
     35 
     36 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
     37                                           Condition cond);
     38 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
     39                                     Register lhs,
     40                                     Register rhs,
     41                                     Label* lhs_not_nan,
     42                                     Label* slow,
     43                                     bool strict);
     44 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
     45                                            Register lhs,
     46                                            Register rhs);
     47 
     48 
     49 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
     50                                                ExternalReference miss) {
     51   // Update the static counter each time a new code stub is generated.
     52   isolate()->counters()->code_stubs()->Increment();
     53 
     54   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
     55   int param_count = descriptor.GetRegisterParameterCount();
     56   {
     57     // Call the runtime system in a fresh internal frame.
     58     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
     59     DCHECK(param_count == 0 ||
     60            r0.is(descriptor.GetRegisterParameter(param_count - 1)));
     61     // Push arguments
     62     for (int i = 0; i < param_count; ++i) {
     63       __ push(descriptor.GetRegisterParameter(i));
     64     }
     65     __ CallExternalReference(miss, param_count);
     66   }
     67 
     68   __ Ret();
     69 }
     70 
     71 
     72 void DoubleToIStub::Generate(MacroAssembler* masm) {
     73   Label out_of_range, only_low, negate, done;
     74   Register input_reg = source();
     75   Register result_reg = destination();
     76   DCHECK(is_truncating());
     77 
     78   int double_offset = offset();
     79   // Account for saved regs if input is sp.
     80   if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
     81 
     82   Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
     83   Register scratch_low =
     84       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
     85   Register scratch_high =
     86       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
     87   LowDwVfpRegister double_scratch = kScratchDoubleReg;
     88 
     89   __ Push(scratch_high, scratch_low, scratch);
     90 
     91   if (!skip_fastpath()) {
     92     // Load double input.
     93     __ vldr(double_scratch, MemOperand(input_reg, double_offset));
     94     __ vmov(scratch_low, scratch_high, double_scratch);
     95 
     96     // Do fast-path convert from double to int.
     97     __ vcvt_s32_f64(double_scratch.low(), double_scratch);
     98     __ vmov(result_reg, double_scratch.low());
     99 
    100     // If result is not saturated (0x7fffffff or 0x80000000), we are done.
    101     __ sub(scratch, result_reg, Operand(1));
    102     __ cmp(scratch, Operand(0x7ffffffe));
    103     __ b(lt, &done);
    104   } else {
    105     // We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we
    106     // know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate.
    107     if (double_offset == 0) {
    108       __ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit());
    109     } else {
    110       __ ldr(scratch_low, MemOperand(input_reg, double_offset));
    111       __ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize));
    112     }
    113   }
    114 
    115   __ Ubfx(scratch, scratch_high,
    116          HeapNumber::kExponentShift, HeapNumber::kExponentBits);
    117   // Load scratch with exponent - 1. This is faster than loading
    118   // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value.
    119   STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
    120   __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
    121   // If exponent is greater than or equal to 84, the 32 less significant
    122   // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
    123   // the result is 0.
    124   // Compare exponent with 84 (compare exponent - 1 with 83).
    125   __ cmp(scratch, Operand(83));
    126   __ b(ge, &out_of_range);
    127 
    128   // If we reach this code, 31 <= exponent <= 83.
    129   // So, we don't have to handle cases where 0 <= exponent <= 20 for
    130   // which we would need to shift right the high part of the mantissa.
    131   // Scratch contains exponent - 1.
    132   // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
    133   __ rsb(scratch, scratch, Operand(51), SetCC);
    134   __ b(ls, &only_low);
    135   // 21 <= exponent <= 51, shift scratch_low and scratch_high
    136   // to generate the result.
    137   __ mov(scratch_low, Operand(scratch_low, LSR, scratch));
    138   // Scratch contains: 52 - exponent.
    139   // We needs: exponent - 20.
    140   // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
    141   __ rsb(scratch, scratch, Operand(32));
    142   __ Ubfx(result_reg, scratch_high,
    143           0, HeapNumber::kMantissaBitsInTopWord);
    144   // Set the implicit 1 before the mantissa part in scratch_high.
    145   __ orr(result_reg, result_reg,
    146          Operand(1 << HeapNumber::kMantissaBitsInTopWord));
    147   __ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch));
    148   __ b(&negate);
    149 
    150   __ bind(&out_of_range);
    151   __ mov(result_reg, Operand::Zero());
    152   __ b(&done);
    153 
    154   __ bind(&only_low);
    155   // 52 <= exponent <= 83, shift only scratch_low.
    156   // On entry, scratch contains: 52 - exponent.
    157   __ rsb(scratch, scratch, Operand::Zero());
    158   __ mov(result_reg, Operand(scratch_low, LSL, scratch));
    159 
    160   __ bind(&negate);
    161   // If input was positive, scratch_high ASR 31 equals 0 and
    162   // scratch_high LSR 31 equals zero.
    163   // New result = (result eor 0) + 0 = result.
    164   // If the input was negative, we have to negate the result.
    165   // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
    166   // New result = (result eor 0xffffffff) + 1 = 0 - result.
    167   __ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31));
    168   __ add(result_reg, result_reg, Operand(scratch_high, LSR, 31));
    169 
    170   __ bind(&done);
    171 
    172   __ Pop(scratch_high, scratch_low, scratch);
    173   __ Ret();
    174 }
    175 
    176 
    177 // Handle the case where the lhs and rhs are the same object.
    178 // Equality is almost reflexive (everything but NaN), so this is a test
    179 // for "identity and not NaN".
    180 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
    181                                           Condition cond) {
    182   Label not_identical;
    183   Label heap_number, return_equal;
    184   __ cmp(r0, r1);
    185   __ b(ne, &not_identical);
    186 
    187   // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
    188   // so we do the second best thing - test it ourselves.
    189   // They are both equal and they are not both Smis so both of them are not
    190   // Smis.  If it's not a heap number, then return equal.
    191   if (cond == lt || cond == gt) {
    192     // Call runtime on identical JSObjects.
    193     __ CompareObjectType(r0, r4, r4, FIRST_JS_RECEIVER_TYPE);
    194     __ b(ge, slow);
    195     // Call runtime on identical symbols since we need to throw a TypeError.
    196     __ cmp(r4, Operand(SYMBOL_TYPE));
    197     __ b(eq, slow);
    198   } else {
    199     __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
    200     __ b(eq, &heap_number);
    201     // Comparing JS objects with <=, >= is complicated.
    202     if (cond != eq) {
    203       __ cmp(r4, Operand(FIRST_JS_RECEIVER_TYPE));
    204       __ b(ge, slow);
    205       // Call runtime on identical symbols since we need to throw a TypeError.
    206       __ cmp(r4, Operand(SYMBOL_TYPE));
    207       __ b(eq, slow);
    208       // Normally here we fall through to return_equal, but undefined is
    209       // special: (undefined == undefined) == true, but
    210       // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
    211       if (cond == le || cond == ge) {
    212         __ cmp(r4, Operand(ODDBALL_TYPE));
    213         __ b(ne, &return_equal);
    214         __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
    215         __ cmp(r0, r2);
    216         __ b(ne, &return_equal);
    217         if (cond == le) {
    218           // undefined <= undefined should fail.
    219           __ mov(r0, Operand(GREATER));
    220         } else  {
    221           // undefined >= undefined should fail.
    222           __ mov(r0, Operand(LESS));
    223         }
    224         __ Ret();
    225       }
    226     }
    227   }
    228 
    229   __ bind(&return_equal);
    230   if (cond == lt) {
    231     __ mov(r0, Operand(GREATER));  // Things aren't less than themselves.
    232   } else if (cond == gt) {
    233     __ mov(r0, Operand(LESS));     // Things aren't greater than themselves.
    234   } else {
    235     __ mov(r0, Operand(EQUAL));    // Things are <=, >=, ==, === themselves.
    236   }
    237   __ Ret();
    238 
    239   // For less and greater we don't have to check for NaN since the result of
    240   // x < x is false regardless.  For the others here is some code to check
    241   // for NaN.
    242   if (cond != lt && cond != gt) {
    243     __ bind(&heap_number);
    244     // It is a heap number, so return non-equal if it's NaN and equal if it's
    245     // not NaN.
    246 
    247     // The representation of NaN values has all exponent bits (52..62) set,
    248     // and not all mantissa bits (0..51) clear.
    249     // Read top bits of double representation (second word of value).
    250     __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
    251     // Test that exponent bits are all set.
    252     __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
    253     // NaNs have all-one exponents so they sign extend to -1.
    254     __ cmp(r3, Operand(-1));
    255     __ b(ne, &return_equal);
    256 
    257     // Shift out flag and all exponent bits, retaining only mantissa.
    258     __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
    259     // Or with all low-bits of mantissa.
    260     __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
    261     __ orr(r0, r3, Operand(r2), SetCC);
    262     // For equal we already have the right value in r0:  Return zero (equal)
    263     // if all bits in mantissa are zero (it's an Infinity) and non-zero if
    264     // not (it's a NaN).  For <= and >= we need to load r0 with the failing
    265     // value if it's a NaN.
    266     if (cond != eq) {
    267       // All-zero means Infinity means equal.
    268       __ Ret(eq);
    269       if (cond == le) {
    270         __ mov(r0, Operand(GREATER));  // NaN <= NaN should fail.
    271       } else {
    272         __ mov(r0, Operand(LESS));     // NaN >= NaN should fail.
    273       }
    274     }
    275     __ Ret();
    276   }
    277   // No fall through here.
    278 
    279   __ bind(&not_identical);
    280 }
    281 
    282 
    283 // See comment at call site.
    284 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
    285                                     Register lhs,
    286                                     Register rhs,
    287                                     Label* lhs_not_nan,
    288                                     Label* slow,
    289                                     bool strict) {
    290   DCHECK((lhs.is(r0) && rhs.is(r1)) ||
    291          (lhs.is(r1) && rhs.is(r0)));
    292 
    293   Label rhs_is_smi;
    294   __ JumpIfSmi(rhs, &rhs_is_smi);
    295 
    296   // Lhs is a Smi.  Check whether the rhs is a heap number.
    297   __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
    298   if (strict) {
    299     // If rhs is not a number and lhs is a Smi then strict equality cannot
    300     // succeed.  Return non-equal
    301     // If rhs is r0 then there is already a non zero value in it.
    302     if (!rhs.is(r0)) {
    303       __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
    304     }
    305     __ Ret(ne);
    306   } else {
    307     // Smi compared non-strictly with a non-Smi non-heap-number.  Call
    308     // the runtime.
    309     __ b(ne, slow);
    310   }
    311 
    312   // Lhs is a smi, rhs is a number.
    313   // Convert lhs to a double in d7.
    314   __ SmiToDouble(d7, lhs);
    315   // Load the double from rhs, tagged HeapNumber r0, to d6.
    316   __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
    317 
    318   // We now have both loaded as doubles but we can skip the lhs nan check
    319   // since it's a smi.
    320   __ jmp(lhs_not_nan);
    321 
    322   __ bind(&rhs_is_smi);
    323   // Rhs is a smi.  Check whether the non-smi lhs is a heap number.
    324   __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
    325   if (strict) {
    326     // If lhs is not a number and rhs is a smi then strict equality cannot
    327     // succeed.  Return non-equal.
    328     // If lhs is r0 then there is already a non zero value in it.
    329     if (!lhs.is(r0)) {
    330       __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
    331     }
    332     __ Ret(ne);
    333   } else {
    334     // Smi compared non-strictly with a non-smi non-heap-number.  Call
    335     // the runtime.
    336     __ b(ne, slow);
    337   }
    338 
    339   // Rhs is a smi, lhs is a heap number.
    340   // Load the double from lhs, tagged HeapNumber r1, to d7.
    341   __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
    342   // Convert rhs to a double in d6              .
    343   __ SmiToDouble(d6, rhs);
    344   // Fall through to both_loaded_as_doubles.
    345 }
    346 
    347 
    348 // See comment at call site.
    349 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
    350                                            Register lhs,
    351                                            Register rhs) {
    352     DCHECK((lhs.is(r0) && rhs.is(r1)) ||
    353            (lhs.is(r1) && rhs.is(r0)));
    354 
    355     // If either operand is a JS object or an oddball value, then they are
    356     // not equal since their pointers are different.
    357     // There is no test for undetectability in strict equality.
    358     STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
    359     Label first_non_object;
    360     // Get the type of the first operand into r2 and compare it with
    361     // FIRST_JS_RECEIVER_TYPE.
    362     __ CompareObjectType(rhs, r2, r2, FIRST_JS_RECEIVER_TYPE);
    363     __ b(lt, &first_non_object);
    364 
    365     // Return non-zero (r0 is not zero)
    366     Label return_not_equal;
    367     __ bind(&return_not_equal);
    368     __ Ret();
    369 
    370     __ bind(&first_non_object);
    371     // Check for oddballs: true, false, null, undefined.
    372     __ cmp(r2, Operand(ODDBALL_TYPE));
    373     __ b(eq, &return_not_equal);
    374 
    375     __ CompareObjectType(lhs, r3, r3, FIRST_JS_RECEIVER_TYPE);
    376     __ b(ge, &return_not_equal);
    377 
    378     // Check for oddballs: true, false, null, undefined.
    379     __ cmp(r3, Operand(ODDBALL_TYPE));
    380     __ b(eq, &return_not_equal);
    381 
    382     // Now that we have the types we might as well check for
    383     // internalized-internalized.
    384     STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
    385     __ orr(r2, r2, Operand(r3));
    386     __ tst(r2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
    387     __ b(eq, &return_not_equal);
    388 }
    389 
    390 
    391 // See comment at call site.
    392 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
    393                                        Register lhs,
    394                                        Register rhs,
    395                                        Label* both_loaded_as_doubles,
    396                                        Label* not_heap_numbers,
    397                                        Label* slow) {
    398   DCHECK((lhs.is(r0) && rhs.is(r1)) ||
    399          (lhs.is(r1) && rhs.is(r0)));
    400 
    401   __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
    402   __ b(ne, not_heap_numbers);
    403   __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
    404   __ cmp(r2, r3);
    405   __ b(ne, slow);  // First was a heap number, second wasn't.  Go slow case.
    406 
    407   // Both are heap numbers.  Load them up then jump to the code we have
    408   // for that.
    409   __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
    410   __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
    411   __ jmp(both_loaded_as_doubles);
    412 }
    413 
    414 
    415 // Fast negative check for internalized-to-internalized equality or receiver
    416 // equality. Also handles the undetectable receiver to null/undefined
    417 // comparison.
    418 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
    419                                                      Register lhs, Register rhs,
    420                                                      Label* possible_strings,
    421                                                      Label* runtime_call) {
    422   DCHECK((lhs.is(r0) && rhs.is(r1)) ||
    423          (lhs.is(r1) && rhs.is(r0)));
    424 
    425   // r2 is object type of rhs.
    426   Label object_test, return_equal, return_unequal, undetectable;
    427   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
    428   __ tst(r2, Operand(kIsNotStringMask));
    429   __ b(ne, &object_test);
    430   __ tst(r2, Operand(kIsNotInternalizedMask));
    431   __ b(ne, possible_strings);
    432   __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
    433   __ b(ge, runtime_call);
    434   __ tst(r3, Operand(kIsNotInternalizedMask));
    435   __ b(ne, possible_strings);
    436 
    437   // Both are internalized. We already checked they weren't the same pointer so
    438   // they are not equal. Return non-equal by returning the non-zero object
    439   // pointer in r0.
    440   __ Ret();
    441 
    442   __ bind(&object_test);
    443   __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
    444   __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
    445   __ ldrb(r4, FieldMemOperand(r2, Map::kBitFieldOffset));
    446   __ ldrb(r5, FieldMemOperand(r3, Map::kBitFieldOffset));
    447   __ tst(r4, Operand(1 << Map::kIsUndetectable));
    448   __ b(ne, &undetectable);
    449   __ tst(r5, Operand(1 << Map::kIsUndetectable));
    450   __ b(ne, &return_unequal);
    451 
    452   __ CompareInstanceType(r2, r2, FIRST_JS_RECEIVER_TYPE);
    453   __ b(lt, runtime_call);
    454   __ CompareInstanceType(r3, r3, FIRST_JS_RECEIVER_TYPE);
    455   __ b(lt, runtime_call);
    456 
    457   __ bind(&return_unequal);
    458   // Return non-equal by returning the non-zero object pointer in r0.
    459   __ Ret();
    460 
    461   __ bind(&undetectable);
    462   __ tst(r5, Operand(1 << Map::kIsUndetectable));
    463   __ b(eq, &return_unequal);
    464 
    465   // If both sides are JSReceivers, then the result is false according to
    466   // the HTML specification, which says that only comparisons with null or
    467   // undefined are affected by special casing for document.all.
    468   __ CompareInstanceType(r2, r2, ODDBALL_TYPE);
    469   __ b(eq, &return_equal);
    470   __ CompareInstanceType(r3, r3, ODDBALL_TYPE);
    471   __ b(ne, &return_unequal);
    472 
    473   __ bind(&return_equal);
    474   __ mov(r0, Operand(EQUAL));
    475   __ Ret();
    476 }
    477 
    478 
    479 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
    480                                          Register scratch,
    481                                          CompareICState::State expected,
    482                                          Label* fail) {
    483   Label ok;
    484   if (expected == CompareICState::SMI) {
    485     __ JumpIfNotSmi(input, fail);
    486   } else if (expected == CompareICState::NUMBER) {
    487     __ JumpIfSmi(input, &ok);
    488     __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
    489                 DONT_DO_SMI_CHECK);
    490   }
    491   // We could be strict about internalized/non-internalized here, but as long as
    492   // hydrogen doesn't care, the stub doesn't have to care either.
    493   __ bind(&ok);
    494 }
    495 
    496 
    497 // On entry r1 and r2 are the values to be compared.
    498 // On exit r0 is 0, positive or negative to indicate the result of
    499 // the comparison.
    500 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
    501   Register lhs = r1;
    502   Register rhs = r0;
    503   Condition cc = GetCondition();
    504 
    505   Label miss;
    506   CompareICStub_CheckInputType(masm, lhs, r2, left(), &miss);
    507   CompareICStub_CheckInputType(masm, rhs, r3, right(), &miss);
    508 
    509   Label slow;  // Call builtin.
    510   Label not_smis, both_loaded_as_doubles, lhs_not_nan;
    511 
    512   Label not_two_smis, smi_done;
    513   __ orr(r2, r1, r0);
    514   __ JumpIfNotSmi(r2, &not_two_smis);
    515   __ mov(r1, Operand(r1, ASR, 1));
    516   __ sub(r0, r1, Operand(r0, ASR, 1));
    517   __ Ret();
    518   __ bind(&not_two_smis);
    519 
    520   // NOTICE! This code is only reached after a smi-fast-case check, so
    521   // it is certain that at least one operand isn't a smi.
    522 
    523   // Handle the case where the objects are identical.  Either returns the answer
    524   // or goes to slow.  Only falls through if the objects were not identical.
    525   EmitIdenticalObjectComparison(masm, &slow, cc);
    526 
    527   // If either is a Smi (we know that not both are), then they can only
    528   // be strictly equal if the other is a HeapNumber.
    529   STATIC_ASSERT(kSmiTag == 0);
    530   DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
    531   __ and_(r2, lhs, Operand(rhs));
    532   __ JumpIfNotSmi(r2, &not_smis);
    533   // One operand is a smi.  EmitSmiNonsmiComparison generates code that can:
    534   // 1) Return the answer.
    535   // 2) Go to slow.
    536   // 3) Fall through to both_loaded_as_doubles.
    537   // 4) Jump to lhs_not_nan.
    538   // In cases 3 and 4 we have found out we were dealing with a number-number
    539   // comparison. The double values of the numbers have been loaded into d7 (lhs)
    540   // and d6 (rhs).
    541   EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
    542 
    543   __ bind(&both_loaded_as_doubles);
    544   // The arguments have been converted to doubles and stored in d6 and d7.
    545   __ bind(&lhs_not_nan);
    546   Label no_nan;
    547   __ VFPCompareAndSetFlags(d7, d6);
    548   Label nan;
    549   __ b(vs, &nan);
    550   __ mov(r0, Operand(EQUAL), LeaveCC, eq);
    551   __ mov(r0, Operand(LESS), LeaveCC, lt);
    552   __ mov(r0, Operand(GREATER), LeaveCC, gt);
    553   __ Ret();
    554 
    555   __ bind(&nan);
    556   // If one of the sides was a NaN then the v flag is set.  Load r0 with
    557   // whatever it takes to make the comparison fail, since comparisons with NaN
    558   // always fail.
    559   if (cc == lt || cc == le) {
    560     __ mov(r0, Operand(GREATER));
    561   } else {
    562     __ mov(r0, Operand(LESS));
    563   }
    564   __ Ret();
    565 
    566   __ bind(&not_smis);
    567   // At this point we know we are dealing with two different objects,
    568   // and neither of them is a Smi.  The objects are in rhs_ and lhs_.
    569   if (strict()) {
    570     // This returns non-equal for some object types, or falls through if it
    571     // was not lucky.
    572     EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
    573   }
    574 
    575   Label check_for_internalized_strings;
    576   Label flat_string_check;
    577   // Check for heap-number-heap-number comparison.  Can jump to slow case,
    578   // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
    579   // that case.  If the inputs are not doubles then jumps to
    580   // check_for_internalized_strings.
    581   // In this case r2 will contain the type of rhs_.  Never falls through.
    582   EmitCheckForTwoHeapNumbers(masm,
    583                              lhs,
    584                              rhs,
    585                              &both_loaded_as_doubles,
    586                              &check_for_internalized_strings,
    587                              &flat_string_check);
    588 
    589   __ bind(&check_for_internalized_strings);
    590   // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
    591   // internalized strings.
    592   if (cc == eq && !strict()) {
    593     // Returns an answer for two internalized strings or two detectable objects.
    594     // Otherwise jumps to string case or not both strings case.
    595     // Assumes that r2 is the type of rhs_ on entry.
    596     EmitCheckForInternalizedStringsOrObjects(
    597         masm, lhs, rhs, &flat_string_check, &slow);
    598   }
    599 
    600   // Check for both being sequential one-byte strings,
    601   // and inline if that is the case.
    602   __ bind(&flat_string_check);
    603 
    604   __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r2, r3, &slow);
    605 
    606   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r2,
    607                       r3);
    608   if (cc == eq) {
    609     StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r2, r3, r4);
    610   } else {
    611     StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r2, r3, r4,
    612                                                     r5);
    613   }
    614   // Never falls through to here.
    615 
    616   __ bind(&slow);
    617 
    618   if (cc == eq) {
    619     {
    620       FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
    621       __ Push(cp);
    622       __ Call(strict() ? isolate()->builtins()->StrictEqual()
    623                        : isolate()->builtins()->Equal(),
    624               RelocInfo::CODE_TARGET);
    625       __ Pop(cp);
    626     }
    627     // Turn true into 0 and false into some non-zero value.
    628     STATIC_ASSERT(EQUAL == 0);
    629     __ LoadRoot(r1, Heap::kTrueValueRootIndex);
    630     __ sub(r0, r0, r1);
    631     __ Ret();
    632   } else {
    633     __ Push(lhs, rhs);
    634     int ncr;  // NaN compare result
    635     if (cc == lt || cc == le) {
    636       ncr = GREATER;
    637     } else {
    638       DCHECK(cc == gt || cc == ge);  // remaining cases
    639       ncr = LESS;
    640     }
    641     __ mov(r0, Operand(Smi::FromInt(ncr)));
    642     __ push(r0);
    643 
    644     // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
    645     // tagged as a small integer.
    646     __ TailCallRuntime(Runtime::kCompare);
    647   }
    648 
    649   __ bind(&miss);
    650   GenerateMiss(masm);
    651 }
    652 
    653 
    654 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
    655   // We don't allow a GC during a store buffer overflow so there is no need to
    656   // store the registers in any particular way, but we do have to store and
    657   // restore them.
    658   __ stm(db_w, sp, kCallerSaved | lr.bit());
    659 
    660   const Register scratch = r1;
    661 
    662   if (save_doubles()) {
    663     __ SaveFPRegs(sp, scratch);
    664   }
    665   const int argument_count = 1;
    666   const int fp_argument_count = 0;
    667 
    668   AllowExternalCallThatCantCauseGC scope(masm);
    669   __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
    670   __ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
    671   __ CallCFunction(
    672       ExternalReference::store_buffer_overflow_function(isolate()),
    673       argument_count);
    674   if (save_doubles()) {
    675     __ RestoreFPRegs(sp, scratch);
    676   }
    677   __ ldm(ia_w, sp, kCallerSaved | pc.bit());  // Also pop pc to get Ret(0).
    678 }
    679 
    680 void MathPowStub::Generate(MacroAssembler* masm) {
    681   const Register exponent = MathPowTaggedDescriptor::exponent();
    682   DCHECK(exponent.is(r2));
    683   const LowDwVfpRegister double_base = d0;
    684   const LowDwVfpRegister double_exponent = d1;
    685   const LowDwVfpRegister double_result = d2;
    686   const LowDwVfpRegister double_scratch = d3;
    687   const SwVfpRegister single_scratch = s6;
    688   const Register scratch = r9;
    689   const Register scratch2 = r4;
    690 
    691   Label call_runtime, done, int_exponent;
    692   if (exponent_type() == TAGGED) {
    693     // Base is already in double_base.
    694     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
    695 
    696     __ vldr(double_exponent,
    697             FieldMemOperand(exponent, HeapNumber::kValueOffset));
    698   }
    699 
    700   if (exponent_type() != INTEGER) {
    701     // Detect integer exponents stored as double.
    702     __ TryDoubleToInt32Exact(scratch, double_exponent, double_scratch);
    703     __ b(eq, &int_exponent);
    704 
    705     __ push(lr);
    706     {
    707       AllowExternalCallThatCantCauseGC scope(masm);
    708       __ PrepareCallCFunction(0, 2, scratch);
    709       __ MovToFloatParameters(double_base, double_exponent);
    710       __ CallCFunction(
    711           ExternalReference::power_double_double_function(isolate()), 0, 2);
    712     }
    713     __ pop(lr);
    714     __ MovFromFloatResult(double_result);
    715     __ b(&done);
    716   }
    717 
    718   // Calculate power with integer exponent.
    719   __ bind(&int_exponent);
    720 
    721   // Get two copies of exponent in the registers scratch and exponent.
    722   if (exponent_type() == INTEGER) {
    723     __ mov(scratch, exponent);
    724   } else {
    725     // Exponent has previously been stored into scratch as untagged integer.
    726     __ mov(exponent, scratch);
    727   }
    728   __ vmov(double_scratch, double_base);  // Back up base.
    729   __ vmov(double_result, 1.0, scratch2);
    730 
    731   // Get absolute value of exponent.
    732   __ cmp(scratch, Operand::Zero());
    733   __ rsb(scratch, scratch, Operand::Zero(), LeaveCC, mi);
    734 
    735   Label while_true;
    736   __ bind(&while_true);
    737   __ mov(scratch, Operand(scratch, LSR, 1), SetCC);
    738   __ vmul(double_result, double_result, double_scratch, cs);
    739   __ vmul(double_scratch, double_scratch, double_scratch, ne);
    740   __ b(ne, &while_true);
    741 
    742   __ cmp(exponent, Operand::Zero());
    743   __ b(ge, &done);
    744   __ vmov(double_scratch, 1.0, scratch);
    745   __ vdiv(double_result, double_scratch, double_result);
    746   // Test whether result is zero.  Bail out to check for subnormal result.
    747   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
    748   __ VFPCompareAndSetFlags(double_result, 0.0);
    749   __ b(ne, &done);
    750   // double_exponent may not containe the exponent value if the input was a
    751   // smi.  We set it with exponent value before bailing out.
    752   __ vmov(single_scratch, exponent);
    753   __ vcvt_f64_s32(double_exponent, single_scratch);
    754 
    755   // Returning or bailing out.
    756   __ push(lr);
    757   {
    758     AllowExternalCallThatCantCauseGC scope(masm);
    759     __ PrepareCallCFunction(0, 2, scratch);
    760     __ MovToFloatParameters(double_base, double_exponent);
    761     __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
    762                      0, 2);
    763   }
    764   __ pop(lr);
    765   __ MovFromFloatResult(double_result);
    766 
    767   __ bind(&done);
    768   __ Ret();
    769 }
    770 
    771 bool CEntryStub::NeedsImmovableCode() {
    772   return true;
    773 }
    774 
    775 
    776 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
    777   CEntryStub::GenerateAheadOfTime(isolate);
    778   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
    779   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
    780   CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
    781   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
    782   CreateWeakCellStub::GenerateAheadOfTime(isolate);
    783   BinaryOpICStub::GenerateAheadOfTime(isolate);
    784   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
    785   StoreFastElementStub::GenerateAheadOfTime(isolate);
    786 }
    787 
    788 
    789 void CodeStub::GenerateFPStubs(Isolate* isolate) {
    790   // Generate if not already in cache.
    791   SaveFPRegsMode mode = kSaveFPRegs;
    792   CEntryStub(isolate, 1, mode).GetCode();
    793   StoreBufferOverflowStub(isolate, mode).GetCode();
    794 }
    795 
    796 
    797 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
    798   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
    799   stub.GetCode();
    800 }
    801 
    802 
    803 void CEntryStub::Generate(MacroAssembler* masm) {
    804   // Called from JavaScript; parameters are on stack as if calling JS function.
    805   // r0: number of arguments including receiver
    806   // r1: pointer to builtin function
    807   // fp: frame pointer  (restored after C call)
    808   // sp: stack pointer  (restored as callee's sp after C call)
    809   // cp: current context  (C callee-saved)
    810   //
    811   // If argv_in_register():
    812   // r2: pointer to the first argument
    813   ProfileEntryHookStub::MaybeCallEntryHook(masm);
    814 
    815   __ mov(r5, Operand(r1));
    816 
    817   if (argv_in_register()) {
    818     // Move argv into the correct register.
    819     __ mov(r1, Operand(r2));
    820   } else {
    821     // Compute the argv pointer in a callee-saved register.
    822     __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2));
    823     __ sub(r1, r1, Operand(kPointerSize));
    824   }
    825 
    826   // Enter the exit frame that transitions from JavaScript to C++.
    827   FrameScope scope(masm, StackFrame::MANUAL);
    828   __ EnterExitFrame(save_doubles(), 0, is_builtin_exit()
    829                                            ? StackFrame::BUILTIN_EXIT
    830                                            : StackFrame::EXIT);
    831 
    832   // Store a copy of argc in callee-saved registers for later.
    833   __ mov(r4, Operand(r0));
    834 
    835   // r0, r4: number of arguments including receiver  (C callee-saved)
    836   // r1: pointer to the first argument (C callee-saved)
    837   // r5: pointer to builtin function  (C callee-saved)
    838 
    839   int frame_alignment = MacroAssembler::ActivationFrameAlignment();
    840   int frame_alignment_mask = frame_alignment - 1;
    841 #if V8_HOST_ARCH_ARM
    842   if (FLAG_debug_code) {
    843     if (frame_alignment > kPointerSize) {
    844       Label alignment_as_expected;
    845       DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
    846       __ tst(sp, Operand(frame_alignment_mask));
    847       __ b(eq, &alignment_as_expected);
    848       // Don't use Check here, as it will call Runtime_Abort re-entering here.
    849       __ stop("Unexpected alignment");
    850       __ bind(&alignment_as_expected);
    851     }
    852   }
    853 #endif
    854 
    855   // Call C built-in.
    856   int result_stack_size;
    857   if (result_size() <= 2) {
    858     // r0 = argc, r1 = argv, r2 = isolate
    859     __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
    860     result_stack_size = 0;
    861   } else {
    862     DCHECK_EQ(3, result_size());
    863     // Allocate additional space for the result.
    864     result_stack_size =
    865         ((result_size() * kPointerSize) + frame_alignment_mask) &
    866         ~frame_alignment_mask;
    867     __ sub(sp, sp, Operand(result_stack_size));
    868 
    869     // r0 = hidden result argument, r1 = argc, r2 = argv, r3 = isolate.
    870     __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
    871     __ mov(r2, Operand(r1));
    872     __ mov(r1, Operand(r0));
    873     __ mov(r0, Operand(sp));
    874   }
    875 
    876   // To let the GC traverse the return address of the exit frames, we need to
    877   // know where the return address is. The CEntryStub is unmovable, so
    878   // we can store the address on the stack to be able to find it again and
    879   // we never have to restore it, because it will not change.
    880   // Compute the return address in lr to return to after the jump below. Pc is
    881   // already at '+ 8' from the current instruction but return is after three
    882   // instructions so add another 4 to pc to get the return address.
    883   {
    884     // Prevent literal pool emission before return address.
    885     Assembler::BlockConstPoolScope block_const_pool(masm);
    886     __ add(lr, pc, Operand(4));
    887     __ str(lr, MemOperand(sp, result_stack_size));
    888     __ Call(r5);
    889   }
    890   if (result_size() > 2) {
    891     DCHECK_EQ(3, result_size());
    892     // Read result values stored on stack.
    893     __ ldr(r2, MemOperand(sp, 2 * kPointerSize));
    894     __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
    895     __ ldr(r0, MemOperand(sp, 0 * kPointerSize));
    896   }
    897   // Result returned in r0, r1:r0 or r2:r1:r0 - do not destroy these registers!
    898 
    899   // Check result for exception sentinel.
    900   Label exception_returned;
    901   __ CompareRoot(r0, Heap::kExceptionRootIndex);
    902   __ b(eq, &exception_returned);
    903 
    904   // Check that there is no pending exception, otherwise we
    905   // should have returned the exception sentinel.
    906   if (FLAG_debug_code) {
    907     Label okay;
    908     ExternalReference pending_exception_address(
    909         Isolate::kPendingExceptionAddress, isolate());
    910     __ mov(r3, Operand(pending_exception_address));
    911     __ ldr(r3, MemOperand(r3));
    912     __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
    913     // Cannot use check here as it attempts to generate call into runtime.
    914     __ b(eq, &okay);
    915     __ stop("Unexpected pending exception");
    916     __ bind(&okay);
    917   }
    918 
    919   // Exit C frame and return.
    920   // r0:r1: result
    921   // sp: stack pointer
    922   // fp: frame pointer
    923   Register argc;
    924   if (argv_in_register()) {
    925     // We don't want to pop arguments so set argc to no_reg.
    926     argc = no_reg;
    927   } else {
    928     // Callee-saved register r4 still holds argc.
    929     argc = r4;
    930   }
    931   __ LeaveExitFrame(save_doubles(), argc, true);
    932   __ mov(pc, lr);
    933 
    934   // Handling of exception.
    935   __ bind(&exception_returned);
    936 
    937   ExternalReference pending_handler_context_address(
    938       Isolate::kPendingHandlerContextAddress, isolate());
    939   ExternalReference pending_handler_code_address(
    940       Isolate::kPendingHandlerCodeAddress, isolate());
    941   ExternalReference pending_handler_offset_address(
    942       Isolate::kPendingHandlerOffsetAddress, isolate());
    943   ExternalReference pending_handler_fp_address(
    944       Isolate::kPendingHandlerFPAddress, isolate());
    945   ExternalReference pending_handler_sp_address(
    946       Isolate::kPendingHandlerSPAddress, isolate());
    947 
    948   // Ask the runtime for help to determine the handler. This will set r0 to
    949   // contain the current pending exception, don't clobber it.
    950   ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
    951                                  isolate());
    952   {
    953     FrameScope scope(masm, StackFrame::MANUAL);
    954     __ PrepareCallCFunction(3, 0, r0);
    955     __ mov(r0, Operand(0));
    956     __ mov(r1, Operand(0));
    957     __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
    958     __ CallCFunction(find_handler, 3);
    959   }
    960 
    961   // Retrieve the handler context, SP and FP.
    962   __ mov(cp, Operand(pending_handler_context_address));
    963   __ ldr(cp, MemOperand(cp));
    964   __ mov(sp, Operand(pending_handler_sp_address));
    965   __ ldr(sp, MemOperand(sp));
    966   __ mov(fp, Operand(pending_handler_fp_address));
    967   __ ldr(fp, MemOperand(fp));
    968 
    969   // If the handler is a JS frame, restore the context to the frame. Note that
    970   // the context will be set to (cp == 0) for non-JS frames.
    971   __ cmp(cp, Operand(0));
    972   __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
    973 
    974   // Compute the handler entry address and jump to it.
    975   ConstantPoolUnavailableScope constant_pool_unavailable(masm);
    976   __ mov(r1, Operand(pending_handler_code_address));
    977   __ ldr(r1, MemOperand(r1));
    978   __ mov(r2, Operand(pending_handler_offset_address));
    979   __ ldr(r2, MemOperand(r2));
    980   __ add(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start
    981   if (FLAG_enable_embedded_constant_pool) {
    982     __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r1);
    983   }
    984   __ add(pc, r1, r2);
    985 }
    986 
    987 
    988 void JSEntryStub::Generate(MacroAssembler* masm) {
    989   // r0: code entry
    990   // r1: function
    991   // r2: receiver
    992   // r3: argc
    993   // [sp+0]: argv
    994 
    995   Label invoke, handler_entry, exit;
    996 
    997   ProfileEntryHookStub::MaybeCallEntryHook(masm);
    998 
    999   // Called from C, so do not pop argc and args on exit (preserve sp)
   1000   // No need to save register-passed args
   1001   // Save callee-saved registers (incl. cp and fp), sp, and lr
   1002   __ stm(db_w, sp, kCalleeSaved | lr.bit());
   1003 
   1004   // Save callee-saved vfp registers.
   1005   __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
   1006   // Set up the reserved register for 0.0.
   1007   __ vmov(kDoubleRegZero, 0.0);
   1008 
   1009   // Get address of argv, see stm above.
   1010   // r0: code entry
   1011   // r1: function
   1012   // r2: receiver
   1013   // r3: argc
   1014 
   1015   // Set up argv in r4.
   1016   int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
   1017   offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
   1018   __ ldr(r4, MemOperand(sp, offset_to_argv));
   1019 
   1020   // Push a frame with special values setup to mark it as an entry frame.
   1021   // r0: code entry
   1022   // r1: function
   1023   // r2: receiver
   1024   // r3: argc
   1025   // r4: argv
   1026   StackFrame::Type marker = type();
   1027   if (FLAG_enable_embedded_constant_pool) {
   1028     __ mov(r8, Operand::Zero());
   1029   }
   1030   __ mov(r7, Operand(StackFrame::TypeToMarker(marker)));
   1031   __ mov(r6, Operand(StackFrame::TypeToMarker(marker)));
   1032   __ mov(r5,
   1033          Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
   1034   __ ldr(r5, MemOperand(r5));
   1035   __ mov(ip, Operand(-1));  // Push a bad frame pointer to fail if it is used.
   1036   __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() |
   1037                        (FLAG_enable_embedded_constant_pool ? r8.bit() : 0) |
   1038                        ip.bit());
   1039 
   1040   // Set up frame pointer for the frame to be pushed.
   1041   __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
   1042 
   1043   // If this is the outermost JS call, set js_entry_sp value.
   1044   Label non_outermost_js;
   1045   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
   1046   __ mov(r5, Operand(ExternalReference(js_entry_sp)));
   1047   __ ldr(r6, MemOperand(r5));
   1048   __ cmp(r6, Operand::Zero());
   1049   __ b(ne, &non_outermost_js);
   1050   __ str(fp, MemOperand(r5));
   1051   __ mov(ip, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
   1052   Label cont;
   1053   __ b(&cont);
   1054   __ bind(&non_outermost_js);
   1055   __ mov(ip, Operand(StackFrame::INNER_JSENTRY_FRAME));
   1056   __ bind(&cont);
   1057   __ push(ip);
   1058 
   1059   // Jump to a faked try block that does the invoke, with a faked catch
   1060   // block that sets the pending exception.
   1061   __ jmp(&invoke);
   1062 
   1063   // Block literal pool emission whilst taking the position of the handler
   1064   // entry. This avoids making the assumption that literal pools are always
   1065   // emitted after an instruction is emitted, rather than before.
   1066   {
   1067     Assembler::BlockConstPoolScope block_const_pool(masm);
   1068     __ bind(&handler_entry);
   1069     handler_offset_ = handler_entry.pos();
   1070     // Caught exception: Store result (exception) in the pending exception
   1071     // field in the JSEnv and return a failure sentinel.  Coming in here the
   1072     // fp will be invalid because the PushStackHandler below sets it to 0 to
   1073     // signal the existence of the JSEntry frame.
   1074     __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   1075                                          isolate())));
   1076   }
   1077   __ str(r0, MemOperand(ip));
   1078   __ LoadRoot(r0, Heap::kExceptionRootIndex);
   1079   __ b(&exit);
   1080 
   1081   // Invoke: Link this frame into the handler chain.
   1082   __ bind(&invoke);
   1083   // Must preserve r0-r4, r5-r6 are available.
   1084   __ PushStackHandler();
   1085   // If an exception not caught by another handler occurs, this handler
   1086   // returns control to the code after the bl(&invoke) above, which
   1087   // restores all kCalleeSaved registers (including cp and fp) to their
   1088   // saved values before returning a failure to C.
   1089 
   1090   // Invoke the function by calling through JS entry trampoline builtin.
   1091   // Notice that we cannot store a reference to the trampoline code directly in
   1092   // this stub, because runtime stubs are not traversed when doing GC.
   1093 
   1094   // Expected registers by Builtins::JSEntryTrampoline
   1095   // r0: code entry
   1096   // r1: function
   1097   // r2: receiver
   1098   // r3: argc
   1099   // r4: argv
   1100   if (type() == StackFrame::ENTRY_CONSTRUCT) {
   1101     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
   1102                                       isolate());
   1103     __ mov(ip, Operand(construct_entry));
   1104   } else {
   1105     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
   1106     __ mov(ip, Operand(entry));
   1107   }
   1108   __ ldr(ip, MemOperand(ip));  // deref address
   1109   __ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
   1110 
   1111   // Branch and link to JSEntryTrampoline.
   1112   __ Call(ip);
   1113 
   1114   // Unlink this frame from the handler chain.
   1115   __ PopStackHandler();
   1116 
   1117   __ bind(&exit);  // r0 holds result
   1118   // Check if the current stack frame is marked as the outermost JS frame.
   1119   Label non_outermost_js_2;
   1120   __ pop(r5);
   1121   __ cmp(r5, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
   1122   __ b(ne, &non_outermost_js_2);
   1123   __ mov(r6, Operand::Zero());
   1124   __ mov(r5, Operand(ExternalReference(js_entry_sp)));
   1125   __ str(r6, MemOperand(r5));
   1126   __ bind(&non_outermost_js_2);
   1127 
   1128   // Restore the top frame descriptors from the stack.
   1129   __ pop(r3);
   1130   __ mov(ip,
   1131          Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
   1132   __ str(r3, MemOperand(ip));
   1133 
   1134   // Reset the stack to the callee saved registers.
   1135   __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
   1136 
   1137   // Restore callee-saved registers and return.
   1138 #ifdef DEBUG
   1139   if (FLAG_debug_code) {
   1140     __ mov(lr, Operand(pc));
   1141   }
   1142 #endif
   1143 
   1144   // Restore callee-saved vfp registers.
   1145   __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
   1146 
   1147   __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
   1148 }
   1149 
   1150 void RegExpExecStub::Generate(MacroAssembler* masm) {
   1151   // Just jump directly to runtime if native RegExp is not selected at compile
   1152   // time or if regexp entry in generated code is turned off runtime switch or
   1153   // at compilation.
   1154 #ifdef V8_INTERPRETED_REGEXP
   1155   __ TailCallRuntime(Runtime::kRegExpExec);
   1156 #else  // V8_INTERPRETED_REGEXP
   1157 
   1158   // Stack frame on entry.
   1159   //  sp[0]: last_match_info (expected JSArray)
   1160   //  sp[4]: previous index
   1161   //  sp[8]: subject string
   1162   //  sp[12]: JSRegExp object
   1163 
   1164   const int kLastMatchInfoOffset = 0 * kPointerSize;
   1165   const int kPreviousIndexOffset = 1 * kPointerSize;
   1166   const int kSubjectOffset = 2 * kPointerSize;
   1167   const int kJSRegExpOffset = 3 * kPointerSize;
   1168 
   1169   Label runtime;
   1170   // Allocation of registers for this function. These are in callee save
   1171   // registers and will be preserved by the call to the native RegExp code, as
   1172   // this code is called using the normal C calling convention. When calling
   1173   // directly from generated code the native RegExp code will not do a GC and
   1174   // therefore the content of these registers are safe to use after the call.
   1175   Register subject = r4;
   1176   Register regexp_data = r5;
   1177   Register last_match_info_elements = no_reg;  // will be r6;
   1178 
   1179   // Ensure that a RegExp stack is allocated.
   1180   ExternalReference address_of_regexp_stack_memory_address =
   1181       ExternalReference::address_of_regexp_stack_memory_address(isolate());
   1182   ExternalReference address_of_regexp_stack_memory_size =
   1183       ExternalReference::address_of_regexp_stack_memory_size(isolate());
   1184   __ mov(r0, Operand(address_of_regexp_stack_memory_size));
   1185   __ ldr(r0, MemOperand(r0, 0));
   1186   __ cmp(r0, Operand::Zero());
   1187   __ b(eq, &runtime);
   1188 
   1189   // Check that the first argument is a JSRegExp object.
   1190   __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
   1191   __ JumpIfSmi(r0, &runtime);
   1192   __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
   1193   __ b(ne, &runtime);
   1194 
   1195   // Check that the RegExp has been compiled (data contains a fixed array).
   1196   __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
   1197   if (FLAG_debug_code) {
   1198     __ SmiTst(regexp_data);
   1199     __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
   1200     __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
   1201     __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
   1202   }
   1203 
   1204   // regexp_data: RegExp data (FixedArray)
   1205   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
   1206   __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
   1207   __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
   1208   __ b(ne, &runtime);
   1209 
   1210   // regexp_data: RegExp data (FixedArray)
   1211   // Check that the number of captures fit in the static offsets vector buffer.
   1212   __ ldr(r2,
   1213          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
   1214   // Check (number_of_captures + 1) * 2 <= offsets vector size
   1215   // Or          number_of_captures * 2 <= offsets vector size - 2
   1216   // Multiplying by 2 comes for free since r2 is smi-tagged.
   1217   STATIC_ASSERT(kSmiTag == 0);
   1218   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   1219   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
   1220   __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
   1221   __ b(hi, &runtime);
   1222 
   1223   // Reset offset for possibly sliced string.
   1224   __ mov(r9, Operand::Zero());
   1225   __ ldr(subject, MemOperand(sp, kSubjectOffset));
   1226   __ JumpIfSmi(subject, &runtime);
   1227   __ mov(r3, subject);  // Make a copy of the original subject string.
   1228   // subject: subject string
   1229   // r3: subject string
   1230   // regexp_data: RegExp data (FixedArray)
   1231   // Handle subject string according to its encoding and representation:
   1232   // (1) Sequential string?  If yes, go to (4).
   1233   // (2) Sequential or cons?  If not, go to (5).
   1234   // (3) Cons string.  If the string is flat, replace subject with first string
   1235   //     and go to (1). Otherwise bail out to runtime.
   1236   // (4) Sequential string.  Load regexp code according to encoding.
   1237   // (E) Carry on.
   1238   /// [...]
   1239 
   1240   // Deferred code at the end of the stub:
   1241   // (5) Long external string?  If not, go to (7).
   1242   // (6) External string.  Make it, offset-wise, look like a sequential string.
   1243   //     Go to (4).
   1244   // (7) Short external string or not a string?  If yes, bail out to runtime.
   1245   // (8) Sliced or thin string.  Replace subject with parent.  Go to (1).
   1246 
   1247   Label seq_string /* 4 */, external_string /* 6 */, check_underlying /* 1 */,
   1248       not_seq_nor_cons /* 5 */, not_long_external /* 7 */;
   1249 
   1250   __ bind(&check_underlying);
   1251   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
   1252   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
   1253 
   1254   // (1) Sequential string?  If yes, go to (4).
   1255   __ and_(r1,
   1256           r0,
   1257           Operand(kIsNotStringMask |
   1258                   kStringRepresentationMask |
   1259                   kShortExternalStringMask),
   1260           SetCC);
   1261   STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
   1262   __ b(eq, &seq_string);  // Go to (4).
   1263 
   1264   // (2) Sequential or cons?  If not, go to (5).
   1265   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
   1266   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
   1267   STATIC_ASSERT(kThinStringTag > kExternalStringTag);
   1268   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
   1269   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
   1270   __ cmp(r1, Operand(kExternalStringTag));
   1271   __ b(ge, &not_seq_nor_cons);  // Go to (5).
   1272 
   1273   // (3) Cons string.  Check that it's flat.
   1274   // Replace subject with first string and reload instance type.
   1275   __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
   1276   __ CompareRoot(r0, Heap::kempty_stringRootIndex);
   1277   __ b(ne, &runtime);
   1278   __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
   1279   __ jmp(&check_underlying);
   1280 
   1281   // (4) Sequential string.  Load regexp code according to encoding.
   1282   __ bind(&seq_string);
   1283   // subject: sequential subject string (or look-alike, external string)
   1284   // r3: original subject string
   1285   // Load previous index and check range before r3 is overwritten.  We have to
   1286   // use r3 instead of subject here because subject might have been only made
   1287   // to look like a sequential string when it actually is an external string.
   1288   __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
   1289   __ JumpIfNotSmi(r1, &runtime);
   1290   __ ldr(r3, FieldMemOperand(r3, String::kLengthOffset));
   1291   __ cmp(r3, Operand(r1));
   1292   __ b(ls, &runtime);
   1293   __ SmiUntag(r1);
   1294 
   1295   STATIC_ASSERT(8 == kOneByteStringTag);
   1296   STATIC_ASSERT(kTwoByteStringTag == 0);
   1297   __ and_(r0, r0, Operand(kStringEncodingMask));
   1298   __ mov(r3, Operand(r0, ASR, 3), SetCC);
   1299   __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset),
   1300          ne);
   1301   __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
   1302 
   1303   // (E) Carry on.  String handling is done.
   1304   // r6: irregexp code
   1305   // Check that the irregexp code has been generated for the actual string
   1306   // encoding. If it has, the field contains a code object otherwise it contains
   1307   // a smi (code flushing support).
   1308   __ JumpIfSmi(r6, &runtime);
   1309 
   1310   // r1: previous index
   1311   // r3: encoding of subject string (1 if one_byte, 0 if two_byte);
   1312   // r6: code
   1313   // subject: Subject string
   1314   // regexp_data: RegExp data (FixedArray)
   1315   // All checks done. Now push arguments for native regexp code.
   1316   __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r0, r2);
   1317 
   1318   // Isolates: note we add an additional parameter here (isolate pointer).
   1319   const int kRegExpExecuteArguments = 9;
   1320   const int kParameterRegisters = 4;
   1321   __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
   1322 
   1323   // Stack pointer now points to cell where return address is to be written.
   1324   // Arguments are before that on the stack or in registers.
   1325 
   1326   // Argument 9 (sp[20]): Pass current isolate address.
   1327   __ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
   1328   __ str(r0, MemOperand(sp, 5 * kPointerSize));
   1329 
   1330   // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript.
   1331   __ mov(r0, Operand(1));
   1332   __ str(r0, MemOperand(sp, 4 * kPointerSize));
   1333 
   1334   // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area.
   1335   __ mov(r0, Operand(address_of_regexp_stack_memory_address));
   1336   __ ldr(r0, MemOperand(r0, 0));
   1337   __ mov(r2, Operand(address_of_regexp_stack_memory_size));
   1338   __ ldr(r2, MemOperand(r2, 0));
   1339   __ add(r0, r0, Operand(r2));
   1340   __ str(r0, MemOperand(sp, 3 * kPointerSize));
   1341 
   1342   // Argument 6: Set the number of capture registers to zero to force global
   1343   // regexps to behave as non-global.  This does not affect non-global regexps.
   1344   __ mov(r0, Operand::Zero());
   1345   __ str(r0, MemOperand(sp, 2 * kPointerSize));
   1346 
   1347   // Argument 5 (sp[4]): static offsets vector buffer.
   1348   __ mov(r0,
   1349          Operand(ExternalReference::address_of_static_offsets_vector(
   1350              isolate())));
   1351   __ str(r0, MemOperand(sp, 1 * kPointerSize));
   1352 
   1353   // For arguments 4 and 3 get string length, calculate start of string data and
   1354   // calculate the shift of the index (0 for one-byte and 1 for two-byte).
   1355   __ add(r7, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
   1356   __ eor(r3, r3, Operand(1));
   1357   // Load the length from the original subject string from the previous stack
   1358   // frame. Therefore we have to use fp, which points exactly to two pointer
   1359   // sizes below the previous sp. (Because creating a new stack frame pushes
   1360   // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
   1361   __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
   1362   // If slice offset is not 0, load the length from the original sliced string.
   1363   // Argument 4, r3: End of string data
   1364   // Argument 3, r2: Start of string data
   1365   // Prepare start and end index of the input.
   1366   __ add(r9, r7, Operand(r9, LSL, r3));
   1367   __ add(r2, r9, Operand(r1, LSL, r3));
   1368 
   1369   __ ldr(r7, FieldMemOperand(subject, String::kLengthOffset));
   1370   __ SmiUntag(r7);
   1371   __ add(r3, r9, Operand(r7, LSL, r3));
   1372 
   1373   // Argument 2 (r1): Previous index.
   1374   // Already there
   1375 
   1376   // Argument 1 (r0): Subject string.
   1377   __ mov(r0, subject);
   1378 
   1379   // Locate the code entry and call it.
   1380   __ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
   1381   DirectCEntryStub stub(isolate());
   1382   stub.GenerateCall(masm, r6);
   1383 
   1384   __ LeaveExitFrame(false, no_reg, true);
   1385 
   1386   last_match_info_elements = r6;
   1387 
   1388   // r0: result
   1389   // subject: subject string (callee saved)
   1390   // regexp_data: RegExp data (callee saved)
   1391   // last_match_info_elements: Last match info elements (callee saved)
   1392   // Check the result.
   1393   Label success;
   1394   __ cmp(r0, Operand(1));
   1395   // We expect exactly one result since we force the called regexp to behave
   1396   // as non-global.
   1397   __ b(eq, &success);
   1398   Label failure;
   1399   __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
   1400   __ b(eq, &failure);
   1401   __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
   1402   // If not exception it can only be retry. Handle that in the runtime system.
   1403   __ b(ne, &runtime);
   1404   // Result must now be exception. If there is no pending exception already a
   1405   // stack overflow (on the backtrack stack) was detected in RegExp code but
   1406   // haven't created the exception yet. Handle that in the runtime system.
   1407   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
   1408   __ mov(r1, Operand(isolate()->factory()->the_hole_value()));
   1409   __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   1410                                        isolate())));
   1411   __ ldr(r0, MemOperand(r2, 0));
   1412   __ cmp(r0, r1);
   1413   __ b(eq, &runtime);
   1414 
   1415   // For exception, throw the exception again.
   1416   __ TailCallRuntime(Runtime::kRegExpExecReThrow);
   1417 
   1418   __ bind(&failure);
   1419   // For failure and exception return null.
   1420   __ mov(r0, Operand(isolate()->factory()->null_value()));
   1421   __ add(sp, sp, Operand(4 * kPointerSize));
   1422   __ Ret();
   1423 
   1424   // Process the result from the native regexp code.
   1425   __ bind(&success);
   1426   __ ldr(r1,
   1427          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
   1428   // Calculate number of capture registers (number_of_captures + 1) * 2.
   1429   // Multiplying by 2 comes for free since r1 is smi-tagged.
   1430   STATIC_ASSERT(kSmiTag == 0);
   1431   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   1432   __ add(r1, r1, Operand(2));  // r1 was a smi.
   1433 
   1434   // Check that the last match info is a FixedArray.
   1435   __ ldr(last_match_info_elements, MemOperand(sp, kLastMatchInfoOffset));
   1436   __ JumpIfSmi(last_match_info_elements, &runtime);
   1437   // Check that the object has fast elements.
   1438   __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
   1439   __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
   1440   __ b(ne, &runtime);
   1441   // Check that the last match info has space for the capture registers and the
   1442   // additional information.
   1443   __ ldr(r0,
   1444          FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
   1445   __ add(r2, r1, Operand(RegExpMatchInfo::kLastMatchOverhead));
   1446   __ cmp(r2, Operand::SmiUntag(r0));
   1447   __ b(gt, &runtime);
   1448 
   1449   // r1: number of capture registers
   1450   // r4: subject string
   1451   // Store the capture count.
   1452   __ SmiTag(r2, r1);
   1453   __ str(r2, FieldMemOperand(last_match_info_elements,
   1454                              RegExpMatchInfo::kNumberOfCapturesOffset));
   1455   // Store last subject and last input.
   1456   __ str(subject, FieldMemOperand(last_match_info_elements,
   1457                                   RegExpMatchInfo::kLastSubjectOffset));
   1458   __ mov(r2, subject);
   1459   __ RecordWriteField(last_match_info_elements,
   1460                       RegExpMatchInfo::kLastSubjectOffset, subject, r3,
   1461                       kLRHasNotBeenSaved, kDontSaveFPRegs);
   1462   __ mov(subject, r2);
   1463   __ str(subject, FieldMemOperand(last_match_info_elements,
   1464                                   RegExpMatchInfo::kLastInputOffset));
   1465   __ RecordWriteField(last_match_info_elements,
   1466                       RegExpMatchInfo::kLastInputOffset, subject, r3,
   1467                       kLRHasNotBeenSaved, kDontSaveFPRegs);
   1468 
   1469   // Get the static offsets vector filled by the native regexp code.
   1470   ExternalReference address_of_static_offsets_vector =
   1471       ExternalReference::address_of_static_offsets_vector(isolate());
   1472   __ mov(r2, Operand(address_of_static_offsets_vector));
   1473 
   1474   // r1: number of capture registers
   1475   // r2: offsets vector
   1476   Label next_capture, done;
   1477   // Capture register counter starts from number of capture registers and
   1478   // counts down until wrapping after zero.
   1479   __ add(r0, last_match_info_elements,
   1480          Operand(RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag));
   1481   __ bind(&next_capture);
   1482   __ sub(r1, r1, Operand(1), SetCC);
   1483   __ b(mi, &done);
   1484   // Read the value from the static offsets vector buffer.
   1485   __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
   1486   // Store the smi value in the last match info.
   1487   __ SmiTag(r3);
   1488   __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
   1489   __ jmp(&next_capture);
   1490   __ bind(&done);
   1491 
   1492   // Return last match info.
   1493   __ mov(r0, last_match_info_elements);
   1494   __ add(sp, sp, Operand(4 * kPointerSize));
   1495   __ Ret();
   1496 
   1497   // Do the runtime call to execute the regexp.
   1498   __ bind(&runtime);
   1499   __ TailCallRuntime(Runtime::kRegExpExec);
   1500 
   1501   // Deferred code for string handling.
   1502   // (5) Long external string?  If not, go to (7).
   1503   __ bind(&not_seq_nor_cons);
   1504   // Compare flags are still set.
   1505   __ b(gt, &not_long_external);  // Go to (7).
   1506 
   1507   // (6) External string.  Make it, offset-wise, look like a sequential string.
   1508   __ bind(&external_string);
   1509   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
   1510   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
   1511   if (FLAG_debug_code) {
   1512     // Assert that we do not have a cons or slice (indirect strings) here.
   1513     // Sequential strings have already been ruled out.
   1514     __ tst(r0, Operand(kIsIndirectStringMask));
   1515     __ Assert(eq, kExternalStringExpectedButNotFound);
   1516   }
   1517   __ ldr(subject,
   1518          FieldMemOperand(subject, ExternalString::kResourceDataOffset));
   1519   // Move the pointer so that offset-wise, it looks like a sequential string.
   1520   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   1521   __ sub(subject,
   1522          subject,
   1523          Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   1524   __ jmp(&seq_string);  // Go to (4).
   1525 
   1526   // (7) Short external string or not a string?  If yes, bail out to runtime.
   1527   __ bind(&not_long_external);
   1528   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
   1529   __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
   1530   __ b(ne, &runtime);
   1531 
   1532   // (8) Sliced or thin string.  Replace subject with parent.  Go to (4).
   1533   Label thin_string;
   1534   __ cmp(r1, Operand(kThinStringTag));
   1535   __ b(eq, &thin_string);
   1536   // Load offset into r9 and replace subject string with parent.
   1537   __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
   1538   __ SmiUntag(r9);
   1539   __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
   1540   __ jmp(&check_underlying);  // Go to (4).
   1541 
   1542   __ bind(&thin_string);
   1543   __ ldr(subject, FieldMemOperand(subject, ThinString::kActualOffset));
   1544   __ jmp(&check_underlying);  // Go to (4).
   1545 #endif  // V8_INTERPRETED_REGEXP
   1546 }
   1547 
   1548 
   1549 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
   1550   // r0 : number of arguments to the construct function
   1551   // r1 : the function to call
   1552   // r2 : feedback vector
   1553   // r3 : slot in feedback vector (Smi)
   1554   FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
   1555 
   1556   // Number-of-arguments register must be smi-tagged to call out.
   1557   __ SmiTag(r0);
   1558   __ Push(r3, r2, r1, r0);
   1559   __ Push(cp);
   1560 
   1561   __ CallStub(stub);
   1562 
   1563   __ Pop(cp);
   1564   __ Pop(r3, r2, r1, r0);
   1565   __ SmiUntag(r0);
   1566 }
   1567 
   1568 
   1569 static void GenerateRecordCallTarget(MacroAssembler* masm) {
   1570   // Cache the called function in a feedback vector slot.  Cache states
   1571   // are uninitialized, monomorphic (indicated by a JSFunction), and
   1572   // megamorphic.
   1573   // r0 : number of arguments to the construct function
   1574   // r1 : the function to call
   1575   // r2 : feedback vector
   1576   // r3 : slot in feedback vector (Smi)
   1577   Label initialize, done, miss, megamorphic, not_array_function;
   1578 
   1579   DCHECK_EQ(*FeedbackVector::MegamorphicSentinel(masm->isolate()),
   1580             masm->isolate()->heap()->megamorphic_symbol());
   1581   DCHECK_EQ(*FeedbackVector::UninitializedSentinel(masm->isolate()),
   1582             masm->isolate()->heap()->uninitialized_symbol());
   1583 
   1584   // Load the cache state into r5.
   1585   __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
   1586   __ ldr(r5, FieldMemOperand(r5, FixedArray::kHeaderSize));
   1587 
   1588   // A monomorphic cache hit or an already megamorphic state: invoke the
   1589   // function without changing the state.
   1590   // We don't know if r5 is a WeakCell or a Symbol, but it's harmless to read at
   1591   // this position in a symbol (see static asserts in feedback-vector.h).
   1592   Label check_allocation_site;
   1593   Register feedback_map = r6;
   1594   Register weak_value = r9;
   1595   __ ldr(weak_value, FieldMemOperand(r5, WeakCell::kValueOffset));
   1596   __ cmp(r1, weak_value);
   1597   __ b(eq, &done);
   1598   __ CompareRoot(r5, Heap::kmegamorphic_symbolRootIndex);
   1599   __ b(eq, &done);
   1600   __ ldr(feedback_map, FieldMemOperand(r5, HeapObject::kMapOffset));
   1601   __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex);
   1602   __ b(ne, &check_allocation_site);
   1603 
   1604   // If the weak cell is cleared, we have a new chance to become monomorphic.
   1605   __ JumpIfSmi(weak_value, &initialize);
   1606   __ jmp(&megamorphic);
   1607 
   1608   __ bind(&check_allocation_site);
   1609   // If we came here, we need to see if we are the array function.
   1610   // If we didn't have a matching function, and we didn't find the megamorph
   1611   // sentinel, then we have in the slot either some other function or an
   1612   // AllocationSite.
   1613   __ CompareRoot(feedback_map, Heap::kAllocationSiteMapRootIndex);
   1614   __ b(ne, &miss);
   1615 
   1616   // Make sure the function is the Array() function
   1617   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r5);
   1618   __ cmp(r1, r5);
   1619   __ b(ne, &megamorphic);
   1620   __ jmp(&done);
   1621 
   1622   __ bind(&miss);
   1623 
   1624   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
   1625   // megamorphic.
   1626   __ CompareRoot(r5, Heap::kuninitialized_symbolRootIndex);
   1627   __ b(eq, &initialize);
   1628   // MegamorphicSentinel is an immortal immovable object (undefined) so no
   1629   // write-barrier is needed.
   1630   __ bind(&megamorphic);
   1631   __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
   1632   __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
   1633   __ str(ip, FieldMemOperand(r5, FixedArray::kHeaderSize));
   1634   __ jmp(&done);
   1635 
   1636   // An uninitialized cache is patched with the function
   1637   __ bind(&initialize);
   1638 
   1639   // Make sure the function is the Array() function
   1640   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r5);
   1641   __ cmp(r1, r5);
   1642   __ b(ne, &not_array_function);
   1643 
   1644   // The target function is the Array constructor,
   1645   // Create an AllocationSite if we don't already have it, store it in the
   1646   // slot.
   1647   CreateAllocationSiteStub create_stub(masm->isolate());
   1648   CallStubInRecordCallTarget(masm, &create_stub);
   1649   __ b(&done);
   1650 
   1651   __ bind(&not_array_function);
   1652   CreateWeakCellStub weak_cell_stub(masm->isolate());
   1653   CallStubInRecordCallTarget(masm, &weak_cell_stub);
   1654 
   1655   __ bind(&done);
   1656 
   1657   // Increment the call count for all function calls.
   1658   __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
   1659   __ add(r5, r5, Operand(FixedArray::kHeaderSize + kPointerSize));
   1660   __ ldr(r4, FieldMemOperand(r5, 0));
   1661   __ add(r4, r4, Operand(Smi::FromInt(1)));
   1662   __ str(r4, FieldMemOperand(r5, 0));
   1663 }
   1664 
   1665 void CallConstructStub::Generate(MacroAssembler* masm) {
   1666   // r0 : number of arguments
   1667   // r1 : the function to call
   1668   // r2 : feedback vector
   1669   // r3 : slot in feedback vector (Smi, for RecordCallTarget)
   1670 
   1671   Label non_function;
   1672   // Check that the function is not a smi.
   1673   __ JumpIfSmi(r1, &non_function);
   1674   // Check that the function is a JSFunction.
   1675   __ CompareObjectType(r1, r5, r5, JS_FUNCTION_TYPE);
   1676   __ b(ne, &non_function);
   1677 
   1678   GenerateRecordCallTarget(masm);
   1679 
   1680   __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
   1681   Label feedback_register_initialized;
   1682   // Put the AllocationSite from the feedback vector into r2, or undefined.
   1683   __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize));
   1684   __ ldr(r5, FieldMemOperand(r2, AllocationSite::kMapOffset));
   1685   __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
   1686   __ b(eq, &feedback_register_initialized);
   1687   __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
   1688   __ bind(&feedback_register_initialized);
   1689 
   1690   __ AssertUndefinedOrAllocationSite(r2, r5);
   1691 
   1692   // Pass function as new target.
   1693   __ mov(r3, r1);
   1694 
   1695   // Tail call to the function-specific construct stub (still in the caller
   1696   // context at this point).
   1697   __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
   1698   __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kConstructStubOffset));
   1699   __ add(pc, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
   1700 
   1701   __ bind(&non_function);
   1702   __ mov(r3, r1);
   1703   __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
   1704 }
   1705 
   1706 // StringCharCodeAtGenerator
   1707 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
   1708   // If the receiver is a smi trigger the non-string case.
   1709   if (check_mode_ == RECEIVER_IS_UNKNOWN) {
   1710     __ JumpIfSmi(object_, receiver_not_string_);
   1711 
   1712     // Fetch the instance type of the receiver into result register.
   1713     __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
   1714     __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
   1715     // If the receiver is not a string trigger the non-string case.
   1716     __ tst(result_, Operand(kIsNotStringMask));
   1717     __ b(ne, receiver_not_string_);
   1718   }
   1719 
   1720   // If the index is non-smi trigger the non-smi case.
   1721   __ JumpIfNotSmi(index_, &index_not_smi_);
   1722   __ bind(&got_smi_index_);
   1723 
   1724   // Check for index out of range.
   1725   __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
   1726   __ cmp(ip, Operand(index_));
   1727   __ b(ls, index_out_of_range_);
   1728 
   1729   __ SmiUntag(index_);
   1730 
   1731   StringCharLoadGenerator::Generate(masm,
   1732                                     object_,
   1733                                     index_,
   1734                                     result_,
   1735                                     &call_runtime_);
   1736 
   1737   __ SmiTag(result_);
   1738   __ bind(&exit_);
   1739 }
   1740 
   1741 
   1742 void StringCharCodeAtGenerator::GenerateSlow(
   1743     MacroAssembler* masm, EmbedMode embed_mode,
   1744     const RuntimeCallHelper& call_helper) {
   1745   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
   1746 
   1747   // Index is not a smi.
   1748   __ bind(&index_not_smi_);
   1749   // If index is a heap number, try converting it to an integer.
   1750   __ CheckMap(index_,
   1751               result_,
   1752               Heap::kHeapNumberMapRootIndex,
   1753               index_not_number_,
   1754               DONT_DO_SMI_CHECK);
   1755   call_helper.BeforeCall(masm);
   1756   if (embed_mode == PART_OF_IC_HANDLER) {
   1757     __ Push(LoadWithVectorDescriptor::VectorRegister(),
   1758             LoadWithVectorDescriptor::SlotRegister(), object_, index_);
   1759   } else {
   1760     // index_ is consumed by runtime conversion function.
   1761     __ Push(object_, index_);
   1762   }
   1763   __ CallRuntime(Runtime::kNumberToSmi);
   1764   // Save the conversion result before the pop instructions below
   1765   // have a chance to overwrite it.
   1766   __ Move(index_, r0);
   1767   if (embed_mode == PART_OF_IC_HANDLER) {
   1768     __ Pop(LoadWithVectorDescriptor::VectorRegister(),
   1769            LoadWithVectorDescriptor::SlotRegister(), object_);
   1770   } else {
   1771     __ pop(object_);
   1772   }
   1773   // Reload the instance type.
   1774   __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
   1775   __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
   1776   call_helper.AfterCall(masm);
   1777   // If index is still not a smi, it must be out of range.
   1778   __ JumpIfNotSmi(index_, index_out_of_range_);
   1779   // Otherwise, return to the fast path.
   1780   __ jmp(&got_smi_index_);
   1781 
   1782   // Call runtime. We get here when the receiver is a string and the
   1783   // index is a number, but the code of getting the actual character
   1784   // is too complex (e.g., when the string needs to be flattened).
   1785   __ bind(&call_runtime_);
   1786   call_helper.BeforeCall(masm);
   1787   __ SmiTag(index_);
   1788   __ Push(object_, index_);
   1789   __ CallRuntime(Runtime::kStringCharCodeAtRT);
   1790   __ Move(result_, r0);
   1791   call_helper.AfterCall(masm);
   1792   __ jmp(&exit_);
   1793 
   1794   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
   1795 }
   1796 
   1797 void StringHelper::GenerateFlatOneByteStringEquals(
   1798     MacroAssembler* masm, Register left, Register right, Register scratch1,
   1799     Register scratch2, Register scratch3) {
   1800   Register length = scratch1;
   1801 
   1802   // Compare lengths.
   1803   Label strings_not_equal, check_zero_length;
   1804   __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
   1805   __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
   1806   __ cmp(length, scratch2);
   1807   __ b(eq, &check_zero_length);
   1808   __ bind(&strings_not_equal);
   1809   __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
   1810   __ Ret();
   1811 
   1812   // Check if the length is zero.
   1813   Label compare_chars;
   1814   __ bind(&check_zero_length);
   1815   STATIC_ASSERT(kSmiTag == 0);
   1816   __ cmp(length, Operand::Zero());
   1817   __ b(ne, &compare_chars);
   1818   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
   1819   __ Ret();
   1820 
   1821   // Compare characters.
   1822   __ bind(&compare_chars);
   1823   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
   1824                                   &strings_not_equal);
   1825 
   1826   // Characters are equal.
   1827   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
   1828   __ Ret();
   1829 }
   1830 
   1831 
   1832 void StringHelper::GenerateCompareFlatOneByteStrings(
   1833     MacroAssembler* masm, Register left, Register right, Register scratch1,
   1834     Register scratch2, Register scratch3, Register scratch4) {
   1835   Label result_not_equal, compare_lengths;
   1836   // Find minimum length and length difference.
   1837   __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
   1838   __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
   1839   __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
   1840   Register length_delta = scratch3;
   1841   __ mov(scratch1, scratch2, LeaveCC, gt);
   1842   Register min_length = scratch1;
   1843   STATIC_ASSERT(kSmiTag == 0);
   1844   __ cmp(min_length, Operand::Zero());
   1845   __ b(eq, &compare_lengths);
   1846 
   1847   // Compare loop.
   1848   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
   1849                                   scratch4, &result_not_equal);
   1850 
   1851   // Compare lengths - strings up to min-length are equal.
   1852   __ bind(&compare_lengths);
   1853   DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
   1854   // Use length_delta as result if it's zero.
   1855   __ mov(r0, Operand(length_delta), SetCC);
   1856   __ bind(&result_not_equal);
   1857   // Conditionally update the result based either on length_delta or
   1858   // the last comparion performed in the loop above.
   1859   __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
   1860   __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
   1861   __ Ret();
   1862 }
   1863 
   1864 
   1865 void StringHelper::GenerateOneByteCharsCompareLoop(
   1866     MacroAssembler* masm, Register left, Register right, Register length,
   1867     Register scratch1, Register scratch2, Label* chars_not_equal) {
   1868   // Change index to run from -length to -1 by adding length to string
   1869   // start. This means that loop ends when index reaches zero, which
   1870   // doesn't need an additional compare.
   1871   __ SmiUntag(length);
   1872   __ add(scratch1, length,
   1873          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   1874   __ add(left, left, Operand(scratch1));
   1875   __ add(right, right, Operand(scratch1));
   1876   __ rsb(length, length, Operand::Zero());
   1877   Register index = length;  // index = -length;
   1878 
   1879   // Compare loop.
   1880   Label loop;
   1881   __ bind(&loop);
   1882   __ ldrb(scratch1, MemOperand(left, index));
   1883   __ ldrb(scratch2, MemOperand(right, index));
   1884   __ cmp(scratch1, scratch2);
   1885   __ b(ne, chars_not_equal);
   1886   __ add(index, index, Operand(1), SetCC);
   1887   __ b(ne, &loop);
   1888 }
   1889 
   1890 
   1891 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
   1892   // ----------- S t a t e -------------
   1893   //  -- r1    : left
   1894   //  -- r0    : right
   1895   //  -- lr    : return address
   1896   // -----------------------------------
   1897 
   1898   // Load r2 with the allocation site.  We stick an undefined dummy value here
   1899   // and replace it with the real allocation site later when we instantiate this
   1900   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
   1901   __ Move(r2, isolate()->factory()->undefined_value());
   1902 
   1903   // Make sure that we actually patched the allocation site.
   1904   if (FLAG_debug_code) {
   1905     __ tst(r2, Operand(kSmiTagMask));
   1906     __ Assert(ne, kExpectedAllocationSite);
   1907     __ push(r2);
   1908     __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
   1909     __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex);
   1910     __ cmp(r2, ip);
   1911     __ pop(r2);
   1912     __ Assert(eq, kExpectedAllocationSite);
   1913   }
   1914 
   1915   // Tail call into the stub that handles binary operations with allocation
   1916   // sites.
   1917   BinaryOpWithAllocationSiteStub stub(isolate(), state());
   1918   __ TailCallStub(&stub);
   1919 }
   1920 
   1921 
   1922 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
   1923   DCHECK_EQ(CompareICState::BOOLEAN, state());
   1924   Label miss;
   1925 
   1926   __ CheckMap(r1, r2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
   1927   __ CheckMap(r0, r3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
   1928   if (!Token::IsEqualityOp(op())) {
   1929     __ ldr(r1, FieldMemOperand(r1, Oddball::kToNumberOffset));
   1930     __ AssertSmi(r1);
   1931     __ ldr(r0, FieldMemOperand(r0, Oddball::kToNumberOffset));
   1932     __ AssertSmi(r0);
   1933   }
   1934   __ sub(r0, r1, r0);
   1935   __ Ret();
   1936 
   1937   __ bind(&miss);
   1938   GenerateMiss(masm);
   1939 }
   1940 
   1941 
   1942 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
   1943   DCHECK(state() == CompareICState::SMI);
   1944   Label miss;
   1945   __ orr(r2, r1, r0);
   1946   __ JumpIfNotSmi(r2, &miss);
   1947 
   1948   if (GetCondition() == eq) {
   1949     // For equality we do not care about the sign of the result.
   1950     __ sub(r0, r0, r1, SetCC);
   1951   } else {
   1952     // Untag before subtracting to avoid handling overflow.
   1953     __ SmiUntag(r1);
   1954     __ sub(r0, r1, Operand::SmiUntag(r0));
   1955   }
   1956   __ Ret();
   1957 
   1958   __ bind(&miss);
   1959   GenerateMiss(masm);
   1960 }
   1961 
   1962 
   1963 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
   1964   DCHECK(state() == CompareICState::NUMBER);
   1965 
   1966   Label generic_stub;
   1967   Label unordered, maybe_undefined1, maybe_undefined2;
   1968   Label miss;
   1969 
   1970   if (left() == CompareICState::SMI) {
   1971     __ JumpIfNotSmi(r1, &miss);
   1972   }
   1973   if (right() == CompareICState::SMI) {
   1974     __ JumpIfNotSmi(r0, &miss);
   1975   }
   1976 
   1977   // Inlining the double comparison and falling back to the general compare
   1978   // stub if NaN is involved.
   1979   // Load left and right operand.
   1980   Label done, left, left_smi, right_smi;
   1981   __ JumpIfSmi(r0, &right_smi);
   1982   __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
   1983               DONT_DO_SMI_CHECK);
   1984   __ sub(r2, r0, Operand(kHeapObjectTag));
   1985   __ vldr(d1, r2, HeapNumber::kValueOffset);
   1986   __ b(&left);
   1987   __ bind(&right_smi);
   1988   __ SmiToDouble(d1, r0);
   1989 
   1990   __ bind(&left);
   1991   __ JumpIfSmi(r1, &left_smi);
   1992   __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
   1993               DONT_DO_SMI_CHECK);
   1994   __ sub(r2, r1, Operand(kHeapObjectTag));
   1995   __ vldr(d0, r2, HeapNumber::kValueOffset);
   1996   __ b(&done);
   1997   __ bind(&left_smi);
   1998   __ SmiToDouble(d0, r1);
   1999 
   2000   __ bind(&done);
   2001   // Compare operands.
   2002   __ VFPCompareAndSetFlags(d0, d1);
   2003 
   2004   // Don't base result on status bits when a NaN is involved.
   2005   __ b(vs, &unordered);
   2006 
   2007   // Return a result of -1, 0, or 1, based on status bits.
   2008   __ mov(r0, Operand(EQUAL), LeaveCC, eq);
   2009   __ mov(r0, Operand(LESS), LeaveCC, lt);
   2010   __ mov(r0, Operand(GREATER), LeaveCC, gt);
   2011   __ Ret();
   2012 
   2013   __ bind(&unordered);
   2014   __ bind(&generic_stub);
   2015   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
   2016                      CompareICState::GENERIC, CompareICState::GENERIC);
   2017   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
   2018 
   2019   __ bind(&maybe_undefined1);
   2020   if (Token::IsOrderedRelationalCompareOp(op())) {
   2021     __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
   2022     __ b(ne, &miss);
   2023     __ JumpIfSmi(r1, &unordered);
   2024     __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
   2025     __ b(ne, &maybe_undefined2);
   2026     __ jmp(&unordered);
   2027   }
   2028 
   2029   __ bind(&maybe_undefined2);
   2030   if (Token::IsOrderedRelationalCompareOp(op())) {
   2031     __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
   2032     __ b(eq, &unordered);
   2033   }
   2034 
   2035   __ bind(&miss);
   2036   GenerateMiss(masm);
   2037 }
   2038 
   2039 
   2040 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
   2041   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
   2042   Label miss;
   2043 
   2044   // Registers containing left and right operands respectively.
   2045   Register left = r1;
   2046   Register right = r0;
   2047   Register tmp1 = r2;
   2048   Register tmp2 = r3;
   2049 
   2050   // Check that both operands are heap objects.
   2051   __ JumpIfEitherSmi(left, right, &miss);
   2052 
   2053   // Check that both operands are internalized strings.
   2054   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   2055   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   2056   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   2057   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   2058   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   2059   __ orr(tmp1, tmp1, Operand(tmp2));
   2060   __ tst(tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
   2061   __ b(ne, &miss);
   2062 
   2063   // Internalized strings are compared by identity.
   2064   __ cmp(left, right);
   2065   // Make sure r0 is non-zero. At this point input operands are
   2066   // guaranteed to be non-zero.
   2067   DCHECK(right.is(r0));
   2068   STATIC_ASSERT(EQUAL == 0);
   2069   STATIC_ASSERT(kSmiTag == 0);
   2070   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
   2071   __ Ret();
   2072 
   2073   __ bind(&miss);
   2074   GenerateMiss(masm);
   2075 }
   2076 
   2077 
   2078 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
   2079   DCHECK(state() == CompareICState::UNIQUE_NAME);
   2080   DCHECK(GetCondition() == eq);
   2081   Label miss;
   2082 
   2083   // Registers containing left and right operands respectively.
   2084   Register left = r1;
   2085   Register right = r0;
   2086   Register tmp1 = r2;
   2087   Register tmp2 = r3;
   2088 
   2089   // Check that both operands are heap objects.
   2090   __ JumpIfEitherSmi(left, right, &miss);
   2091 
   2092   // Check that both operands are unique names. This leaves the instance
   2093   // types loaded in tmp1 and tmp2.
   2094   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   2095   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   2096   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   2097   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   2098 
   2099   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
   2100   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
   2101 
   2102   // Unique names are compared by identity.
   2103   __ cmp(left, right);
   2104   // Make sure r0 is non-zero. At this point input operands are
   2105   // guaranteed to be non-zero.
   2106   DCHECK(right.is(r0));
   2107   STATIC_ASSERT(EQUAL == 0);
   2108   STATIC_ASSERT(kSmiTag == 0);
   2109   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
   2110   __ Ret();
   2111 
   2112   __ bind(&miss);
   2113   GenerateMiss(masm);
   2114 }
   2115 
   2116 
   2117 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
   2118   DCHECK(state() == CompareICState::STRING);
   2119   Label miss;
   2120 
   2121   bool equality = Token::IsEqualityOp(op());
   2122 
   2123   // Registers containing left and right operands respectively.
   2124   Register left = r1;
   2125   Register right = r0;
   2126   Register tmp1 = r2;
   2127   Register tmp2 = r3;
   2128   Register tmp3 = r4;
   2129   Register tmp4 = r5;
   2130 
   2131   // Check that both operands are heap objects.
   2132   __ JumpIfEitherSmi(left, right, &miss);
   2133 
   2134   // Check that both operands are strings. This leaves the instance
   2135   // types loaded in tmp1 and tmp2.
   2136   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   2137   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   2138   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   2139   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   2140   STATIC_ASSERT(kNotStringTag != 0);
   2141   __ orr(tmp3, tmp1, tmp2);
   2142   __ tst(tmp3, Operand(kIsNotStringMask));
   2143   __ b(ne, &miss);
   2144 
   2145   // Fast check for identical strings.
   2146   __ cmp(left, right);
   2147   STATIC_ASSERT(EQUAL == 0);
   2148   STATIC_ASSERT(kSmiTag == 0);
   2149   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
   2150   __ Ret(eq);
   2151 
   2152   // Handle not identical strings.
   2153 
   2154   // Check that both strings are internalized strings. If they are, we're done
   2155   // because we already know they are not identical. We know they are both
   2156   // strings.
   2157   if (equality) {
   2158     DCHECK(GetCondition() == eq);
   2159     STATIC_ASSERT(kInternalizedTag == 0);
   2160     __ orr(tmp3, tmp1, Operand(tmp2));
   2161     __ tst(tmp3, Operand(kIsNotInternalizedMask));
   2162     // Make sure r0 is non-zero. At this point input operands are
   2163     // guaranteed to be non-zero.
   2164     DCHECK(right.is(r0));
   2165     __ Ret(eq);
   2166   }
   2167 
   2168   // Check that both strings are sequential one-byte.
   2169   Label runtime;
   2170   __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
   2171                                                     &runtime);
   2172 
   2173   // Compare flat one-byte strings. Returns when done.
   2174   if (equality) {
   2175     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
   2176                                                   tmp3);
   2177   } else {
   2178     StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
   2179                                                     tmp2, tmp3, tmp4);
   2180   }
   2181 
   2182   // Handle more complex cases in runtime.
   2183   __ bind(&runtime);
   2184   if (equality) {
   2185     {
   2186       FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
   2187       __ Push(left, right);
   2188       __ CallRuntime(Runtime::kStringEqual);
   2189     }
   2190     __ LoadRoot(r1, Heap::kTrueValueRootIndex);
   2191     __ sub(r0, r0, r1);
   2192     __ Ret();
   2193   } else {
   2194     __ Push(left, right);
   2195     __ TailCallRuntime(Runtime::kStringCompare);
   2196   }
   2197 
   2198   __ bind(&miss);
   2199   GenerateMiss(masm);
   2200 }
   2201 
   2202 
   2203 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
   2204   DCHECK_EQ(CompareICState::RECEIVER, state());
   2205   Label miss;
   2206   __ and_(r2, r1, Operand(r0));
   2207   __ JumpIfSmi(r2, &miss);
   2208 
   2209   STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
   2210   __ CompareObjectType(r0, r2, r2, FIRST_JS_RECEIVER_TYPE);
   2211   __ b(lt, &miss);
   2212   __ CompareObjectType(r1, r2, r2, FIRST_JS_RECEIVER_TYPE);
   2213   __ b(lt, &miss);
   2214 
   2215   DCHECK(GetCondition() == eq);
   2216   __ sub(r0, r0, Operand(r1));
   2217   __ Ret();
   2218 
   2219   __ bind(&miss);
   2220   GenerateMiss(masm);
   2221 }
   2222 
   2223 
   2224 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
   2225   Label miss;
   2226   Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
   2227   __ and_(r2, r1, Operand(r0));
   2228   __ JumpIfSmi(r2, &miss);
   2229   __ GetWeakValue(r4, cell);
   2230   __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
   2231   __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
   2232   __ cmp(r2, r4);
   2233   __ b(ne, &miss);
   2234   __ cmp(r3, r4);
   2235   __ b(ne, &miss);
   2236 
   2237   if (Token::IsEqualityOp(op())) {
   2238     __ sub(r0, r0, Operand(r1));
   2239     __ Ret();
   2240   } else {
   2241     if (op() == Token::LT || op() == Token::LTE) {
   2242       __ mov(r2, Operand(Smi::FromInt(GREATER)));
   2243     } else {
   2244       __ mov(r2, Operand(Smi::FromInt(LESS)));
   2245     }
   2246     __ Push(r1, r0, r2);
   2247     __ TailCallRuntime(Runtime::kCompare);
   2248   }
   2249 
   2250   __ bind(&miss);
   2251   GenerateMiss(masm);
   2252 }
   2253 
   2254 
   2255 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
   2256   {
   2257     // Call the runtime system in a fresh internal frame.
   2258     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
   2259     __ Push(r1, r0);
   2260     __ Push(lr, r1, r0);
   2261     __ mov(ip, Operand(Smi::FromInt(op())));
   2262     __ push(ip);
   2263     __ CallRuntime(Runtime::kCompareIC_Miss);
   2264     // Compute the entry point of the rewritten stub.
   2265     __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
   2266     // Restore registers.
   2267     __ pop(lr);
   2268     __ Pop(r1, r0);
   2269   }
   2270 
   2271   __ Jump(r2);
   2272 }
   2273 
   2274 
   2275 void DirectCEntryStub::Generate(MacroAssembler* masm) {
   2276   // Place the return address on the stack, making the call
   2277   // GC safe. The RegExp backend also relies on this.
   2278   __ str(lr, MemOperand(sp, 0));
   2279   __ blx(ip);  // Call the C++ function.
   2280   __ ldr(pc, MemOperand(sp, 0));
   2281 }
   2282 
   2283 
   2284 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
   2285                                     Register target) {
   2286   intptr_t code =
   2287       reinterpret_cast<intptr_t>(GetCode().location());
   2288   __ Move(ip, target);
   2289   __ mov(lr, Operand(code, RelocInfo::CODE_TARGET));
   2290   __ blx(lr);  // Call the stub.
   2291 }
   2292 
   2293 
   2294 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
   2295                                                       Label* miss,
   2296                                                       Label* done,
   2297                                                       Register receiver,
   2298                                                       Register properties,
   2299                                                       Handle<Name> name,
   2300                                                       Register scratch0) {
   2301   DCHECK(name->IsUniqueName());
   2302   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   2303   // not equal to the name and kProbes-th slot is not used (its name is the
   2304   // undefined value), it guarantees the hash table doesn't contain the
   2305   // property. It's true even if some slots represent deleted properties
   2306   // (their names are the hole value).
   2307   for (int i = 0; i < kInlinedProbes; i++) {
   2308     // scratch0 points to properties hash.
   2309     // Compute the masked index: (hash + i + i * i) & mask.
   2310     Register index = scratch0;
   2311     // Capacity is smi 2^n.
   2312     __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
   2313     __ sub(index, index, Operand(1));
   2314     __ and_(index, index, Operand(
   2315         Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))));
   2316 
   2317     // Scale the index by multiplying by the entry size.
   2318     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   2319     __ add(index, index, Operand(index, LSL, 1));  // index *= 3.
   2320 
   2321     Register entity_name = scratch0;
   2322     // Having undefined at this place means the name is not contained.
   2323     STATIC_ASSERT(kSmiTagSize == 1);
   2324     Register tmp = properties;
   2325     __ add(tmp, properties, Operand(index, LSL, 1));
   2326     __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
   2327 
   2328     DCHECK(!tmp.is(entity_name));
   2329     __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
   2330     __ cmp(entity_name, tmp);
   2331     __ b(eq, done);
   2332 
   2333     // Load the hole ready for use below:
   2334     __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
   2335 
   2336     // Stop if found the property.
   2337     __ cmp(entity_name, Operand(Handle<Name>(name)));
   2338     __ b(eq, miss);
   2339 
   2340     Label good;
   2341     __ cmp(entity_name, tmp);
   2342     __ b(eq, &good);
   2343 
   2344     // Check if the entry name is not a unique name.
   2345     __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
   2346     __ ldrb(entity_name,
   2347             FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
   2348     __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
   2349     __ bind(&good);
   2350 
   2351     // Restore the properties.
   2352     __ ldr(properties,
   2353            FieldMemOperand(receiver, JSObject::kPropertiesOffset));
   2354   }
   2355 
   2356   const int spill_mask =
   2357       (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
   2358        r2.bit() | r1.bit() | r0.bit());
   2359 
   2360   __ stm(db_w, sp, spill_mask);
   2361   __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
   2362   __ mov(r1, Operand(Handle<Name>(name)));
   2363   NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
   2364   __ CallStub(&stub);
   2365   __ cmp(r0, Operand::Zero());
   2366   __ ldm(ia_w, sp, spill_mask);
   2367 
   2368   __ b(eq, done);
   2369   __ b(ne, miss);
   2370 }
   2371 
   2372 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
   2373   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
   2374   // we cannot call anything that could cause a GC from this stub.
   2375   // Registers:
   2376   //  result: NameDictionary to probe
   2377   //  r1: key
   2378   //  dictionary: NameDictionary to probe.
   2379   //  index: will hold an index of entry if lookup is successful.
   2380   //         might alias with result_.
   2381   // Returns:
   2382   //  result_ is zero if lookup failed, non zero otherwise.
   2383 
   2384   Register result = r0;
   2385   Register dictionary = r0;
   2386   Register key = r1;
   2387   Register index = r2;
   2388   Register mask = r3;
   2389   Register hash = r4;
   2390   Register undefined = r5;
   2391   Register entry_key = r6;
   2392 
   2393   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
   2394 
   2395   __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
   2396   __ SmiUntag(mask);
   2397   __ sub(mask, mask, Operand(1));
   2398 
   2399   __ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
   2400 
   2401   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
   2402 
   2403   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
   2404     // Compute the masked index: (hash + i + i * i) & mask.
   2405     // Capacity is smi 2^n.
   2406     if (i > 0) {
   2407       // Add the probe offset (i + i * i) left shifted to avoid right shifting
   2408       // the hash in a separate instruction. The value hash + i + i * i is right
   2409       // shifted in the following and instruction.
   2410       DCHECK(NameDictionary::GetProbeOffset(i) <
   2411              1 << (32 - Name::kHashFieldOffset));
   2412       __ add(index, hash, Operand(
   2413           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
   2414     } else {
   2415       __ mov(index, Operand(hash));
   2416     }
   2417     __ and_(index, mask, Operand(index, LSR, Name::kHashShift));
   2418 
   2419     // Scale the index by multiplying by the entry size.
   2420     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   2421     __ add(index, index, Operand(index, LSL, 1));  // index *= 3.
   2422 
   2423     STATIC_ASSERT(kSmiTagSize == 1);
   2424     __ add(index, dictionary, Operand(index, LSL, 2));
   2425     __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
   2426 
   2427     // Having undefined at this place means the name is not contained.
   2428     __ cmp(entry_key, Operand(undefined));
   2429     __ b(eq, &not_in_dictionary);
   2430 
   2431     // Stop if found the property.
   2432     __ cmp(entry_key, Operand(key));
   2433     __ b(eq, &in_dictionary);
   2434 
   2435     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
   2436       // Check if the entry name is not a unique name.
   2437       __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
   2438       __ ldrb(entry_key,
   2439               FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
   2440       __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
   2441     }
   2442   }
   2443 
   2444   __ bind(&maybe_in_dictionary);
   2445   // If we are doing negative lookup then probing failure should be
   2446   // treated as a lookup success. For positive lookup probing failure
   2447   // should be treated as lookup failure.
   2448   if (mode() == POSITIVE_LOOKUP) {
   2449     __ mov(result, Operand::Zero());
   2450     __ Ret();
   2451   }
   2452 
   2453   __ bind(&in_dictionary);
   2454   __ mov(result, Operand(1));
   2455   __ Ret();
   2456 
   2457   __ bind(&not_in_dictionary);
   2458   __ mov(result, Operand::Zero());
   2459   __ Ret();
   2460 }
   2461 
   2462 
   2463 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
   2464     Isolate* isolate) {
   2465   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
   2466   stub1.GetCode();
   2467   // Hydrogen code stubs need stub2 at snapshot time.
   2468   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
   2469   stub2.GetCode();
   2470 }
   2471 
   2472 
   2473 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
   2474 // the value has just been written into the object, now this stub makes sure
   2475 // we keep the GC informed.  The word in the object where the value has been
   2476 // written is in the address register.
   2477 void RecordWriteStub::Generate(MacroAssembler* masm) {
   2478   Label skip_to_incremental_noncompacting;
   2479   Label skip_to_incremental_compacting;
   2480 
   2481   // The first two instructions are generated with labels so as to get the
   2482   // offset fixed up correctly by the bind(Label*) call.  We patch it back and
   2483   // forth between a compare instructions (a nop in this position) and the
   2484   // real branch when we start and stop incremental heap marking.
   2485   // See RecordWriteStub::Patch for details.
   2486   {
   2487     // Block literal pool emission, as the position of these two instructions
   2488     // is assumed by the patching code.
   2489     Assembler::BlockConstPoolScope block_const_pool(masm);
   2490     __ b(&skip_to_incremental_noncompacting);
   2491     __ b(&skip_to_incremental_compacting);
   2492   }
   2493 
   2494   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   2495     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   2496                            MacroAssembler::kReturnAtEnd);
   2497   }
   2498   __ Ret();
   2499 
   2500   __ bind(&skip_to_incremental_noncompacting);
   2501   GenerateIncremental(masm, INCREMENTAL);
   2502 
   2503   __ bind(&skip_to_incremental_compacting);
   2504   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
   2505 
   2506   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
   2507   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
   2508   DCHECK(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
   2509   DCHECK(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
   2510   PatchBranchIntoNop(masm, 0);
   2511   PatchBranchIntoNop(masm, Assembler::kInstrSize);
   2512 }
   2513 
   2514 
   2515 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
   2516   regs_.Save(masm);
   2517 
   2518   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   2519     Label dont_need_remembered_set;
   2520 
   2521     __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
   2522     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
   2523                            regs_.scratch0(),
   2524                            &dont_need_remembered_set);
   2525 
   2526     __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
   2527                         &dont_need_remembered_set);
   2528 
   2529     // First notify the incremental marker if necessary, then update the
   2530     // remembered set.
   2531     CheckNeedsToInformIncrementalMarker(
   2532         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
   2533     InformIncrementalMarker(masm);
   2534     regs_.Restore(masm);
   2535     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   2536                            MacroAssembler::kReturnAtEnd);
   2537 
   2538     __ bind(&dont_need_remembered_set);
   2539   }
   2540 
   2541   CheckNeedsToInformIncrementalMarker(
   2542       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
   2543   InformIncrementalMarker(masm);
   2544   regs_.Restore(masm);
   2545   __ Ret();
   2546 }
   2547 
   2548 
   2549 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
   2550   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
   2551   int argument_count = 3;
   2552   __ PrepareCallCFunction(argument_count, regs_.scratch0());
   2553   Register address =
   2554       r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
   2555   DCHECK(!address.is(regs_.object()));
   2556   DCHECK(!address.is(r0));
   2557   __ Move(address, regs_.address());
   2558   __ Move(r0, regs_.object());
   2559   __ Move(r1, address);
   2560   __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
   2561 
   2562   AllowExternalCallThatCantCauseGC scope(masm);
   2563   __ CallCFunction(
   2564       ExternalReference::incremental_marking_record_write_function(isolate()),
   2565       argument_count);
   2566   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
   2567 }
   2568 
   2569 
   2570 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
   2571     MacroAssembler* masm,
   2572     OnNoNeedToInformIncrementalMarker on_no_need,
   2573     Mode mode) {
   2574   Label on_black;
   2575   Label need_incremental;
   2576   Label need_incremental_pop_scratch;
   2577 
   2578   // Let's look at the color of the object:  If it is not black we don't have
   2579   // to inform the incremental marker.
   2580   __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
   2581 
   2582   regs_.Restore(masm);
   2583   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   2584     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   2585                            MacroAssembler::kReturnAtEnd);
   2586   } else {
   2587     __ Ret();
   2588   }
   2589 
   2590   __ bind(&on_black);
   2591 
   2592   // Get the value from the slot.
   2593   __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
   2594 
   2595   if (mode == INCREMENTAL_COMPACTION) {
   2596     Label ensure_not_white;
   2597 
   2598     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
   2599                      regs_.scratch1(),  // Scratch.
   2600                      MemoryChunk::kEvacuationCandidateMask,
   2601                      eq,
   2602                      &ensure_not_white);
   2603 
   2604     __ CheckPageFlag(regs_.object(),
   2605                      regs_.scratch1(),  // Scratch.
   2606                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
   2607                      eq,
   2608                      &need_incremental);
   2609 
   2610     __ bind(&ensure_not_white);
   2611   }
   2612 
   2613   // We need extra registers for this, so we push the object and the address
   2614   // register temporarily.
   2615   __ Push(regs_.object(), regs_.address());
   2616   __ JumpIfWhite(regs_.scratch0(),  // The value.
   2617                  regs_.scratch1(),  // Scratch.
   2618                  regs_.object(),    // Scratch.
   2619                  regs_.address(),   // Scratch.
   2620                  &need_incremental_pop_scratch);
   2621   __ Pop(regs_.object(), regs_.address());
   2622 
   2623   regs_.Restore(masm);
   2624   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   2625     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   2626                            MacroAssembler::kReturnAtEnd);
   2627   } else {
   2628     __ Ret();
   2629   }
   2630 
   2631   __ bind(&need_incremental_pop_scratch);
   2632   __ Pop(regs_.object(), regs_.address());
   2633 
   2634   __ bind(&need_incremental);
   2635 
   2636   // Fall through when we need to inform the incremental marker.
   2637 }
   2638 
   2639 
   2640 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
   2641   CEntryStub ces(isolate(), 1, kSaveFPRegs);
   2642   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
   2643   int parameter_count_offset =
   2644       StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
   2645   __ ldr(r1, MemOperand(fp, parameter_count_offset));
   2646   if (function_mode() == JS_FUNCTION_STUB_MODE) {
   2647     __ add(r1, r1, Operand(1));
   2648   }
   2649   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
   2650   __ mov(r1, Operand(r1, LSL, kPointerSizeLog2));
   2651   __ add(sp, sp, r1);
   2652   __ Ret();
   2653 }
   2654 
   2655 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
   2656   if (masm->isolate()->function_entry_hook() != NULL) {
   2657     ProfileEntryHookStub stub(masm->isolate());
   2658     PredictableCodeSizeScope predictable(masm);
   2659     predictable.ExpectSize(masm->CallStubSize(&stub) +
   2660                            2 * Assembler::kInstrSize);
   2661     __ push(lr);
   2662     __ CallStub(&stub);
   2663     __ pop(lr);
   2664   }
   2665 }
   2666 
   2667 
   2668 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
   2669   // The entry hook is a "push lr" instruction, followed by a call.
   2670   const int32_t kReturnAddressDistanceFromFunctionStart =
   2671       3 * Assembler::kInstrSize;
   2672 
   2673   // This should contain all kCallerSaved registers.
   2674   const RegList kSavedRegs =
   2675       1 <<  0 |  // r0
   2676       1 <<  1 |  // r1
   2677       1 <<  2 |  // r2
   2678       1 <<  3 |  // r3
   2679       1 <<  5 |  // r5
   2680       1 <<  9;   // r9
   2681   // We also save lr, so the count here is one higher than the mask indicates.
   2682   const int32_t kNumSavedRegs = 7;
   2683 
   2684   DCHECK((kCallerSaved & kSavedRegs) == kCallerSaved);
   2685 
   2686   // Save all caller-save registers as this may be called from anywhere.
   2687   __ stm(db_w, sp, kSavedRegs | lr.bit());
   2688 
   2689   // Compute the function's address for the first argument.
   2690   __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart));
   2691 
   2692   // The caller's return address is above the saved temporaries.
   2693   // Grab that for the second argument to the hook.
   2694   __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize));
   2695 
   2696   // Align the stack if necessary.
   2697   int frame_alignment = masm->ActivationFrameAlignment();
   2698   if (frame_alignment > kPointerSize) {
   2699     __ mov(r5, sp);
   2700     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
   2701     __ and_(sp, sp, Operand(-frame_alignment));
   2702   }
   2703 
   2704 #if V8_HOST_ARCH_ARM
   2705   int32_t entry_hook =
   2706       reinterpret_cast<int32_t>(isolate()->function_entry_hook());
   2707   __ mov(ip, Operand(entry_hook));
   2708 #else
   2709   // Under the simulator we need to indirect the entry hook through a
   2710   // trampoline function at a known address.
   2711   // It additionally takes an isolate as a third parameter
   2712   __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
   2713 
   2714   ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
   2715   __ mov(ip, Operand(ExternalReference(&dispatcher,
   2716                                        ExternalReference::BUILTIN_CALL,
   2717                                        isolate())));
   2718 #endif
   2719   __ Call(ip);
   2720 
   2721   // Restore the stack pointer if needed.
   2722   if (frame_alignment > kPointerSize) {
   2723     __ mov(sp, r5);
   2724   }
   2725 
   2726   // Also pop pc to get Ret(0).
   2727   __ ldm(ia_w, sp, kSavedRegs | pc.bit());
   2728 }
   2729 
   2730 
   2731 template<class T>
   2732 static void CreateArrayDispatch(MacroAssembler* masm,
   2733                                 AllocationSiteOverrideMode mode) {
   2734   if (mode == DISABLE_ALLOCATION_SITES) {
   2735     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
   2736     __ TailCallStub(&stub);
   2737   } else if (mode == DONT_OVERRIDE) {
   2738     int last_index = GetSequenceIndexFromFastElementsKind(
   2739         TERMINAL_FAST_ELEMENTS_KIND);
   2740     for (int i = 0; i <= last_index; ++i) {
   2741       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   2742       __ cmp(r3, Operand(kind));
   2743       T stub(masm->isolate(), kind);
   2744       __ TailCallStub(&stub, eq);
   2745     }
   2746 
   2747     // If we reached this point there is a problem.
   2748     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   2749   } else {
   2750     UNREACHABLE();
   2751   }
   2752 }
   2753 
   2754 
   2755 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
   2756                                            AllocationSiteOverrideMode mode) {
   2757   // r2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
   2758   // r3 - kind (if mode != DISABLE_ALLOCATION_SITES)
   2759   // r0 - number of arguments
   2760   // r1 - constructor?
   2761   // sp[0] - last argument
   2762   Label normal_sequence;
   2763   if (mode == DONT_OVERRIDE) {
   2764     STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
   2765     STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
   2766     STATIC_ASSERT(FAST_ELEMENTS == 2);
   2767     STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
   2768     STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
   2769     STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
   2770 
   2771     // is the low bit set? If so, we are holey and that is good.
   2772     __ tst(r3, Operand(1));
   2773     __ b(ne, &normal_sequence);
   2774   }
   2775 
   2776   // look at the first argument
   2777   __ ldr(r5, MemOperand(sp, 0));
   2778   __ cmp(r5, Operand::Zero());
   2779   __ b(eq, &normal_sequence);
   2780 
   2781   if (mode == DISABLE_ALLOCATION_SITES) {
   2782     ElementsKind initial = GetInitialFastElementsKind();
   2783     ElementsKind holey_initial = GetHoleyElementsKind(initial);
   2784 
   2785     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
   2786                                                   holey_initial,
   2787                                                   DISABLE_ALLOCATION_SITES);
   2788     __ TailCallStub(&stub_holey);
   2789 
   2790     __ bind(&normal_sequence);
   2791     ArraySingleArgumentConstructorStub stub(masm->isolate(),
   2792                                             initial,
   2793                                             DISABLE_ALLOCATION_SITES);
   2794     __ TailCallStub(&stub);
   2795   } else if (mode == DONT_OVERRIDE) {
   2796     // We are going to create a holey array, but our kind is non-holey.
   2797     // Fix kind and retry (only if we have an allocation site in the slot).
   2798     __ add(r3, r3, Operand(1));
   2799 
   2800     if (FLAG_debug_code) {
   2801       __ ldr(r5, FieldMemOperand(r2, 0));
   2802       __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
   2803       __ Assert(eq, kExpectedAllocationSite);
   2804     }
   2805 
   2806     // Save the resulting elements kind in type info. We can't just store r3
   2807     // in the AllocationSite::transition_info field because elements kind is
   2808     // restricted to a portion of the field...upper bits need to be left alone.
   2809     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   2810     __ ldr(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
   2811     __ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
   2812     __ str(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
   2813 
   2814     __ bind(&normal_sequence);
   2815     int last_index = GetSequenceIndexFromFastElementsKind(
   2816         TERMINAL_FAST_ELEMENTS_KIND);
   2817     for (int i = 0; i <= last_index; ++i) {
   2818       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   2819       __ cmp(r3, Operand(kind));
   2820       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
   2821       __ TailCallStub(&stub, eq);
   2822     }
   2823 
   2824     // If we reached this point there is a problem.
   2825     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   2826   } else {
   2827     UNREACHABLE();
   2828   }
   2829 }
   2830 
   2831 
   2832 template<class T>
   2833 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
   2834   int to_index = GetSequenceIndexFromFastElementsKind(
   2835       TERMINAL_FAST_ELEMENTS_KIND);
   2836   for (int i = 0; i <= to_index; ++i) {
   2837     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   2838     T stub(isolate, kind);
   2839     stub.GetCode();
   2840     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
   2841       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
   2842       stub1.GetCode();
   2843     }
   2844   }
   2845 }
   2846 
   2847 void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
   2848   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
   2849       isolate);
   2850   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
   2851       isolate);
   2852   ArrayNArgumentsConstructorStub stub(isolate);
   2853   stub.GetCode();
   2854   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
   2855   for (int i = 0; i < 2; i++) {
   2856     // For internal arrays we only need a few things
   2857     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
   2858     stubh1.GetCode();
   2859     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
   2860     stubh2.GetCode();
   2861   }
   2862 }
   2863 
   2864 
   2865 void ArrayConstructorStub::GenerateDispatchToArrayStub(
   2866     MacroAssembler* masm,
   2867     AllocationSiteOverrideMode mode) {
   2868   Label not_zero_case, not_one_case;
   2869   __ tst(r0, r0);
   2870   __ b(ne, &not_zero_case);
   2871   CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   2872 
   2873   __ bind(&not_zero_case);
   2874   __ cmp(r0, Operand(1));
   2875   __ b(gt, &not_one_case);
   2876   CreateArrayDispatchOneArgument(masm, mode);
   2877 
   2878   __ bind(&not_one_case);
   2879   ArrayNArgumentsConstructorStub stub(masm->isolate());
   2880   __ TailCallStub(&stub);
   2881 }
   2882 
   2883 
   2884 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
   2885   // ----------- S t a t e -------------
   2886   //  -- r0 : argc (only if argument_count() == ANY)
   2887   //  -- r1 : constructor
   2888   //  -- r2 : AllocationSite or undefined
   2889   //  -- r3 : new target
   2890   //  -- sp[0] : return address
   2891   //  -- sp[4] : last argument
   2892   // -----------------------------------
   2893 
   2894   if (FLAG_debug_code) {
   2895     // The array construct code is only set for the global and natives
   2896     // builtin Array functions which always have maps.
   2897 
   2898     // Initial map for the builtin Array function should be a map.
   2899     __ ldr(r4, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
   2900     // Will both indicate a NULL and a Smi.
   2901     __ tst(r4, Operand(kSmiTagMask));
   2902     __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
   2903     __ CompareObjectType(r4, r4, r5, MAP_TYPE);
   2904     __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
   2905 
   2906     // We should either have undefined in r2 or a valid AllocationSite
   2907     __ AssertUndefinedOrAllocationSite(r2, r4);
   2908   }
   2909 
   2910   // Enter the context of the Array function.
   2911   __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
   2912 
   2913   Label subclassing;
   2914   __ cmp(r3, r1);
   2915   __ b(ne, &subclassing);
   2916 
   2917   Label no_info;
   2918   // Get the elements kind and case on that.
   2919   __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
   2920   __ b(eq, &no_info);
   2921 
   2922   __ ldr(r3, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
   2923   __ SmiUntag(r3);
   2924   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   2925   __ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask));
   2926   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
   2927 
   2928   __ bind(&no_info);
   2929   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
   2930 
   2931   __ bind(&subclassing);
   2932   __ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
   2933   __ add(r0, r0, Operand(3));
   2934   __ Push(r3, r2);
   2935   __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
   2936 }
   2937 
   2938 
   2939 void InternalArrayConstructorStub::GenerateCase(
   2940     MacroAssembler* masm, ElementsKind kind) {
   2941   __ cmp(r0, Operand(1));
   2942 
   2943   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
   2944   __ TailCallStub(&stub0, lo);
   2945 
   2946   ArrayNArgumentsConstructorStub stubN(isolate());
   2947   __ TailCallStub(&stubN, hi);
   2948 
   2949   if (IsFastPackedElementsKind(kind)) {
   2950     // We might need to create a holey array
   2951     // look at the first argument
   2952     __ ldr(r3, MemOperand(sp, 0));
   2953     __ cmp(r3, Operand::Zero());
   2954 
   2955     InternalArraySingleArgumentConstructorStub
   2956         stub1_holey(isolate(), GetHoleyElementsKind(kind));
   2957     __ TailCallStub(&stub1_holey, ne);
   2958   }
   2959 
   2960   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
   2961   __ TailCallStub(&stub1);
   2962 }
   2963 
   2964 
   2965 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
   2966   // ----------- S t a t e -------------
   2967   //  -- r0 : argc
   2968   //  -- r1 : constructor
   2969   //  -- sp[0] : return address
   2970   //  -- sp[4] : last argument
   2971   // -----------------------------------
   2972 
   2973   if (FLAG_debug_code) {
   2974     // The array construct code is only set for the global and natives
   2975     // builtin Array functions which always have maps.
   2976 
   2977     // Initial map for the builtin Array function should be a map.
   2978     __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
   2979     // Will both indicate a NULL and a Smi.
   2980     __ tst(r3, Operand(kSmiTagMask));
   2981     __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
   2982     __ CompareObjectType(r3, r3, r4, MAP_TYPE);
   2983     __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
   2984   }
   2985 
   2986   // Figure out the right elements kind
   2987   __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
   2988   // Load the map's "bit field 2" into |result|. We only need the first byte,
   2989   // but the following bit field extraction takes care of that anyway.
   2990   __ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset));
   2991   // Retrieve elements_kind from bit field 2.
   2992   __ DecodeField<Map::ElementsKindBits>(r3);
   2993 
   2994   if (FLAG_debug_code) {
   2995     Label done;
   2996     __ cmp(r3, Operand(FAST_ELEMENTS));
   2997     __ b(eq, &done);
   2998     __ cmp(r3, Operand(FAST_HOLEY_ELEMENTS));
   2999     __ Assert(eq,
   3000               kInvalidElementsKindForInternalArrayOrInternalPackedArray);
   3001     __ bind(&done);
   3002   }
   3003 
   3004   Label fast_elements_case;
   3005   __ cmp(r3, Operand(FAST_ELEMENTS));
   3006   __ b(eq, &fast_elements_case);
   3007   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
   3008 
   3009   __ bind(&fast_elements_case);
   3010   GenerateCase(masm, FAST_ELEMENTS);
   3011 }
   3012 
   3013 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
   3014   return ref0.address() - ref1.address();
   3015 }
   3016 
   3017 
   3018 // Calls an API function.  Allocates HandleScope, extracts returned value
   3019 // from handle and propagates exceptions.  Restores context.  stack_space
   3020 // - space to be unwound on exit (includes the call JS arguments space and
   3021 // the additional space allocated for the fast call).
   3022 static void CallApiFunctionAndReturn(MacroAssembler* masm,
   3023                                      Register function_address,
   3024                                      ExternalReference thunk_ref,
   3025                                      int stack_space,
   3026                                      MemOperand* stack_space_operand,
   3027                                      MemOperand return_value_operand,
   3028                                      MemOperand* context_restore_operand) {
   3029   Isolate* isolate = masm->isolate();
   3030   ExternalReference next_address =
   3031       ExternalReference::handle_scope_next_address(isolate);
   3032   const int kNextOffset = 0;
   3033   const int kLimitOffset = AddressOffset(
   3034       ExternalReference::handle_scope_limit_address(isolate), next_address);
   3035   const int kLevelOffset = AddressOffset(
   3036       ExternalReference::handle_scope_level_address(isolate), next_address);
   3037 
   3038   DCHECK(function_address.is(r1) || function_address.is(r2));
   3039 
   3040   Label profiler_disabled;
   3041   Label end_profiler_check;
   3042   __ mov(r9, Operand(ExternalReference::is_profiling_address(isolate)));
   3043   __ ldrb(r9, MemOperand(r9, 0));
   3044   __ cmp(r9, Operand(0));
   3045   __ b(eq, &profiler_disabled);
   3046 
   3047   // Additional parameter is the address of the actual callback.
   3048   __ mov(r3, Operand(thunk_ref));
   3049   __ jmp(&end_profiler_check);
   3050 
   3051   __ bind(&profiler_disabled);
   3052   __ Move(r3, function_address);
   3053   __ bind(&end_profiler_check);
   3054 
   3055   // Allocate HandleScope in callee-save registers.
   3056   __ mov(r9, Operand(next_address));
   3057   __ ldr(r4, MemOperand(r9, kNextOffset));
   3058   __ ldr(r5, MemOperand(r9, kLimitOffset));
   3059   __ ldr(r6, MemOperand(r9, kLevelOffset));
   3060   __ add(r6, r6, Operand(1));
   3061   __ str(r6, MemOperand(r9, kLevelOffset));
   3062 
   3063   if (FLAG_log_timer_events) {
   3064     FrameScope frame(masm, StackFrame::MANUAL);
   3065     __ PushSafepointRegisters();
   3066     __ PrepareCallCFunction(1, r0);
   3067     __ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
   3068     __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
   3069                      1);
   3070     __ PopSafepointRegisters();
   3071   }
   3072 
   3073   // Native call returns to the DirectCEntry stub which redirects to the
   3074   // return address pushed on stack (could have moved after GC).
   3075   // DirectCEntry stub itself is generated early and never moves.
   3076   DirectCEntryStub stub(isolate);
   3077   stub.GenerateCall(masm, r3);
   3078 
   3079   if (FLAG_log_timer_events) {
   3080     FrameScope frame(masm, StackFrame::MANUAL);
   3081     __ PushSafepointRegisters();
   3082     __ PrepareCallCFunction(1, r0);
   3083     __ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
   3084     __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
   3085                      1);
   3086     __ PopSafepointRegisters();
   3087   }
   3088 
   3089   Label promote_scheduled_exception;
   3090   Label delete_allocated_handles;
   3091   Label leave_exit_frame;
   3092   Label return_value_loaded;
   3093 
   3094   // load value from ReturnValue
   3095   __ ldr(r0, return_value_operand);
   3096   __ bind(&return_value_loaded);
   3097   // No more valid handles (the result handle was the last one). Restore
   3098   // previous handle scope.
   3099   __ str(r4, MemOperand(r9, kNextOffset));
   3100   if (__ emit_debug_code()) {
   3101     __ ldr(r1, MemOperand(r9, kLevelOffset));
   3102     __ cmp(r1, r6);
   3103     __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
   3104   }
   3105   __ sub(r6, r6, Operand(1));
   3106   __ str(r6, MemOperand(r9, kLevelOffset));
   3107   __ ldr(ip, MemOperand(r9, kLimitOffset));
   3108   __ cmp(r5, ip);
   3109   __ b(ne, &delete_allocated_handles);
   3110 
   3111   // Leave the API exit frame.
   3112   __ bind(&leave_exit_frame);
   3113   bool restore_context = context_restore_operand != NULL;
   3114   if (restore_context) {
   3115     __ ldr(cp, *context_restore_operand);
   3116   }
   3117   // LeaveExitFrame expects unwind space to be in a register.
   3118   if (stack_space_operand != NULL) {
   3119     __ ldr(r4, *stack_space_operand);
   3120   } else {
   3121     __ mov(r4, Operand(stack_space));
   3122   }
   3123   __ LeaveExitFrame(false, r4, !restore_context, stack_space_operand != NULL);
   3124 
   3125   // Check if the function scheduled an exception.
   3126   __ LoadRoot(r4, Heap::kTheHoleValueRootIndex);
   3127   __ mov(ip, Operand(ExternalReference::scheduled_exception_address(isolate)));
   3128   __ ldr(r5, MemOperand(ip));
   3129   __ cmp(r4, r5);
   3130   __ b(ne, &promote_scheduled_exception);
   3131 
   3132   __ mov(pc, lr);
   3133 
   3134   // Re-throw by promoting a scheduled exception.
   3135   __ bind(&promote_scheduled_exception);
   3136   __ TailCallRuntime(Runtime::kPromoteScheduledException);
   3137 
   3138   // HandleScope limit has changed. Delete allocated extensions.
   3139   __ bind(&delete_allocated_handles);
   3140   __ str(r5, MemOperand(r9, kLimitOffset));
   3141   __ mov(r4, r0);
   3142   __ PrepareCallCFunction(1, r5);
   3143   __ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
   3144   __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
   3145                    1);
   3146   __ mov(r0, r4);
   3147   __ jmp(&leave_exit_frame);
   3148 }
   3149 
   3150 void CallApiCallbackStub::Generate(MacroAssembler* masm) {
   3151   // ----------- S t a t e -------------
   3152   //  -- r0                  : callee
   3153   //  -- r4                  : call_data
   3154   //  -- r2                  : holder
   3155   //  -- r1                  : api_function_address
   3156   //  -- cp                  : context
   3157   //  --
   3158   //  -- sp[0]               : last argument
   3159   //  -- ...
   3160   //  -- sp[(argc - 1)* 4]   : first argument
   3161   //  -- sp[argc * 4]        : receiver
   3162   // -----------------------------------
   3163 
   3164   Register callee = r0;
   3165   Register call_data = r4;
   3166   Register holder = r2;
   3167   Register api_function_address = r1;
   3168   Register context = cp;
   3169 
   3170   typedef FunctionCallbackArguments FCA;
   3171 
   3172   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
   3173   STATIC_ASSERT(FCA::kCalleeIndex == 5);
   3174   STATIC_ASSERT(FCA::kDataIndex == 4);
   3175   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
   3176   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
   3177   STATIC_ASSERT(FCA::kIsolateIndex == 1);
   3178   STATIC_ASSERT(FCA::kHolderIndex == 0);
   3179   STATIC_ASSERT(FCA::kNewTargetIndex == 7);
   3180   STATIC_ASSERT(FCA::kArgsLength == 8);
   3181 
   3182   // new target
   3183   __ PushRoot(Heap::kUndefinedValueRootIndex);
   3184 
   3185   // context save
   3186   __ push(context);
   3187   if (!is_lazy()) {
   3188     // load context from callee
   3189     __ ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
   3190   }
   3191 
   3192   // callee
   3193   __ push(callee);
   3194 
   3195   // call data
   3196   __ push(call_data);
   3197 
   3198   Register scratch = call_data;
   3199   if (!call_data_undefined()) {
   3200     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
   3201   }
   3202   // return value
   3203   __ push(scratch);
   3204   // return value default
   3205   __ push(scratch);
   3206   // isolate
   3207   __ mov(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
   3208   __ push(scratch);
   3209   // holder
   3210   __ push(holder);
   3211 
   3212   // Prepare arguments.
   3213   __ mov(scratch, sp);
   3214 
   3215   // Allocate the v8::Arguments structure in the arguments' space since
   3216   // it's not controlled by GC.
   3217   const int kApiStackSpace = 3;
   3218 
   3219   FrameScope frame_scope(masm, StackFrame::MANUAL);
   3220   __ EnterExitFrame(false, kApiStackSpace);
   3221 
   3222   DCHECK(!api_function_address.is(r0) && !scratch.is(r0));
   3223   // r0 = FunctionCallbackInfo&
   3224   // Arguments is after the return address.
   3225   __ add(r0, sp, Operand(1 * kPointerSize));
   3226   // FunctionCallbackInfo::implicit_args_
   3227   __ str(scratch, MemOperand(r0, 0 * kPointerSize));
   3228   // FunctionCallbackInfo::values_
   3229   __ add(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
   3230   __ str(ip, MemOperand(r0, 1 * kPointerSize));
   3231   // FunctionCallbackInfo::length_ = argc
   3232   __ mov(ip, Operand(argc()));
   3233   __ str(ip, MemOperand(r0, 2 * kPointerSize));
   3234 
   3235   ExternalReference thunk_ref =
   3236       ExternalReference::invoke_function_callback(masm->isolate());
   3237 
   3238   AllowExternalCallThatCantCauseGC scope(masm);
   3239   MemOperand context_restore_operand(
   3240       fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
   3241   // Stores return the first js argument
   3242   int return_value_offset = 0;
   3243   if (is_store()) {
   3244     return_value_offset = 2 + FCA::kArgsLength;
   3245   } else {
   3246     return_value_offset = 2 + FCA::kReturnValueOffset;
   3247   }
   3248   MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
   3249   int stack_space = 0;
   3250   MemOperand length_operand = MemOperand(sp, 3 * kPointerSize);
   3251   MemOperand* stack_space_operand = &length_operand;
   3252   stack_space = argc() + FCA::kArgsLength + 1;
   3253   stack_space_operand = NULL;
   3254 
   3255   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
   3256                            stack_space_operand, return_value_operand,
   3257                            &context_restore_operand);
   3258 }
   3259 
   3260 
   3261 void CallApiGetterStub::Generate(MacroAssembler* masm) {
   3262   // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
   3263   // name below the exit frame to make GC aware of them.
   3264   STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
   3265   STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
   3266   STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
   3267   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
   3268   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
   3269   STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
   3270   STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
   3271   STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
   3272 
   3273   Register receiver = ApiGetterDescriptor::ReceiverRegister();
   3274   Register holder = ApiGetterDescriptor::HolderRegister();
   3275   Register callback = ApiGetterDescriptor::CallbackRegister();
   3276   Register scratch = r4;
   3277   DCHECK(!AreAliased(receiver, holder, callback, scratch));
   3278 
   3279   Register api_function_address = r2;
   3280 
   3281   __ push(receiver);
   3282   // Push data from AccessorInfo.
   3283   __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
   3284   __ push(scratch);
   3285   __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
   3286   __ Push(scratch, scratch);
   3287   __ mov(scratch, Operand(ExternalReference::isolate_address(isolate())));
   3288   __ Push(scratch, holder);
   3289   __ Push(Smi::kZero);  // should_throw_on_error -> false
   3290   __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
   3291   __ push(scratch);
   3292   // v8::PropertyCallbackInfo::args_ array and name handle.
   3293   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
   3294 
   3295   // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
   3296   __ mov(r0, sp);                             // r0 = Handle<Name>
   3297   __ add(r1, r0, Operand(1 * kPointerSize));  // r1 = v8::PCI::args_
   3298 
   3299   const int kApiStackSpace = 1;
   3300   FrameScope frame_scope(masm, StackFrame::MANUAL);
   3301   __ EnterExitFrame(false, kApiStackSpace);
   3302 
   3303   // Create v8::PropertyCallbackInfo object on the stack and initialize
   3304   // it's args_ field.
   3305   __ str(r1, MemOperand(sp, 1 * kPointerSize));
   3306   __ add(r1, sp, Operand(1 * kPointerSize));  // r1 = v8::PropertyCallbackInfo&
   3307 
   3308   ExternalReference thunk_ref =
   3309       ExternalReference::invoke_accessor_getter_callback(isolate());
   3310 
   3311   __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
   3312   __ ldr(api_function_address,
   3313          FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
   3314 
   3315   // +3 is to skip prolog, return address and name handle.
   3316   MemOperand return_value_operand(
   3317       fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
   3318   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
   3319                            kStackUnwindSpace, NULL, return_value_operand, NULL);
   3320 }
   3321 
   3322 #undef __
   3323 
   3324 }  // namespace internal
   3325 }  // namespace v8
   3326 
   3327 #endif  // V8_TARGET_ARCH_ARM
   3328