Home | History | Annotate | Download | only in x64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
      6 #define V8_X64_MACRO_ASSEMBLER_X64_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/bailout-reason.h"
     10 #include "src/base/flags.h"
     11 #include "src/frames.h"
     12 #include "src/globals.h"
     13 #include "src/x64/assembler-x64.h"
     14 #include "src/x64/frames-x64.h"
     15 
     16 namespace v8 {
     17 namespace internal {
     18 
     19 // Give alias names to registers for calling conventions.
     20 const Register kReturnRegister0 = {Register::kCode_rax};
     21 const Register kReturnRegister1 = {Register::kCode_rdx};
     22 const Register kReturnRegister2 = {Register::kCode_r8};
     23 const Register kJSFunctionRegister = {Register::kCode_rdi};
     24 const Register kContextRegister = {Register::kCode_rsi};
     25 const Register kAllocateSizeRegister = {Register::kCode_rdx};
     26 const Register kInterpreterAccumulatorRegister = {Register::kCode_rax};
     27 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r12};
     28 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r14};
     29 const Register kInterpreterDispatchTableRegister = {Register::kCode_r15};
     30 const Register kJavaScriptCallArgCountRegister = {Register::kCode_rax};
     31 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_rdx};
     32 const Register kRuntimeCallFunctionRegister = {Register::kCode_rbx};
     33 const Register kRuntimeCallArgCountRegister = {Register::kCode_rax};
     34 
     35 // Default scratch register used by MacroAssembler (and other code that needs
     36 // a spare register). The register isn't callee save, and not used by the
     37 // function calling convention.
     38 const Register kScratchRegister = {10};      // r10.
     39 const XMMRegister kScratchDoubleReg = {15};  // xmm15.
     40 const Register kRootRegister = {13};         // r13 (callee save).
     41 // Actual value of root register is offset from the root array's start
     42 // to take advantage of negitive 8-bit displacement values.
     43 const int kRootRegisterBias = 128;
     44 
     45 // Convenience for platform-independent signatures.
     46 typedef Operand MemOperand;
     47 
     48 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     49 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     50 enum PointersToHereCheck {
     51   kPointersToHereMaybeInteresting,
     52   kPointersToHereAreAlwaysInteresting
     53 };
     54 
     55 enum class SmiOperationConstraint {
     56   kPreserveSourceRegister = 1 << 0,
     57   kBailoutOnNoOverflow = 1 << 1,
     58   kBailoutOnOverflow = 1 << 2
     59 };
     60 
     61 enum class ReturnAddressState { kOnStack, kNotOnStack };
     62 
     63 typedef base::Flags<SmiOperationConstraint> SmiOperationConstraints;
     64 
     65 DEFINE_OPERATORS_FOR_FLAGS(SmiOperationConstraints)
     66 
     67 #ifdef DEBUG
     68 bool AreAliased(Register reg1,
     69                 Register reg2,
     70                 Register reg3 = no_reg,
     71                 Register reg4 = no_reg,
     72                 Register reg5 = no_reg,
     73                 Register reg6 = no_reg,
     74                 Register reg7 = no_reg,
     75                 Register reg8 = no_reg);
     76 #endif
     77 
     78 // Forward declaration.
     79 class JumpTarget;
     80 
     81 struct SmiIndex {
     82   SmiIndex(Register index_register, ScaleFactor scale)
     83       : reg(index_register),
     84         scale(scale) {}
     85   Register reg;
     86   ScaleFactor scale;
     87 };
     88 
     89 
     90 // MacroAssembler implements a collection of frequently used macros.
     91 class MacroAssembler: public Assembler {
     92  public:
     93   MacroAssembler(Isolate* isolate, void* buffer, int size,
     94                  CodeObjectRequired create_code_object);
     95 
     96   // Prevent the use of the RootArray during the lifetime of this
     97   // scope object.
     98   class NoRootArrayScope BASE_EMBEDDED {
     99    public:
    100     explicit NoRootArrayScope(MacroAssembler* assembler)
    101         : variable_(&assembler->root_array_available_),
    102           old_value_(assembler->root_array_available_) {
    103       assembler->root_array_available_ = false;
    104     }
    105     ~NoRootArrayScope() {
    106       *variable_ = old_value_;
    107     }
    108    private:
    109     bool* variable_;
    110     bool old_value_;
    111   };
    112 
    113   // Operand pointing to an external reference.
    114   // May emit code to set up the scratch register. The operand is
    115   // only guaranteed to be correct as long as the scratch register
    116   // isn't changed.
    117   // If the operand is used more than once, use a scratch register
    118   // that is guaranteed not to be clobbered.
    119   Operand ExternalOperand(ExternalReference reference,
    120                           Register scratch = kScratchRegister);
    121   // Loads and stores the value of an external reference.
    122   // Special case code for load and store to take advantage of
    123   // load_rax/store_rax if possible/necessary.
    124   // For other operations, just use:
    125   //   Operand operand = ExternalOperand(extref);
    126   //   operation(operand, ..);
    127   void Load(Register destination, ExternalReference source);
    128   void Store(ExternalReference destination, Register source);
    129   // Loads the address of the external reference into the destination
    130   // register.
    131   void LoadAddress(Register destination, ExternalReference source);
    132   // Returns the size of the code generated by LoadAddress.
    133   // Used by CallSize(ExternalReference) to find the size of a call.
    134   int LoadAddressSize(ExternalReference source);
    135   // Pushes the address of the external reference onto the stack.
    136   void PushAddress(ExternalReference source);
    137 
    138   // Operations on roots in the root-array.
    139   void LoadRoot(Register destination, Heap::RootListIndex index);
    140   void LoadRoot(const Operand& destination, Heap::RootListIndex index) {
    141     LoadRoot(kScratchRegister, index);
    142     movp(destination, kScratchRegister);
    143   }
    144   void StoreRoot(Register source, Heap::RootListIndex index);
    145   // Load a root value where the index (or part of it) is variable.
    146   // The variable_offset register is added to the fixed_offset value
    147   // to get the index into the root-array.
    148   void LoadRootIndexed(Register destination,
    149                        Register variable_offset,
    150                        int fixed_offset);
    151   void CompareRoot(Register with, Heap::RootListIndex index);
    152   void CompareRoot(const Operand& with, Heap::RootListIndex index);
    153   void PushRoot(Heap::RootListIndex index);
    154 
    155   // Compare the object in a register to a value and jump if they are equal.
    156   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
    157                   Label::Distance if_equal_distance = Label::kFar) {
    158     CompareRoot(with, index);
    159     j(equal, if_equal, if_equal_distance);
    160   }
    161   void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
    162                   Label* if_equal,
    163                   Label::Distance if_equal_distance = Label::kFar) {
    164     CompareRoot(with, index);
    165     j(equal, if_equal, if_equal_distance);
    166   }
    167 
    168   // Compare the object in a register to a value and jump if they are not equal.
    169   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
    170                      Label* if_not_equal,
    171                      Label::Distance if_not_equal_distance = Label::kFar) {
    172     CompareRoot(with, index);
    173     j(not_equal, if_not_equal, if_not_equal_distance);
    174   }
    175   void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
    176                      Label* if_not_equal,
    177                      Label::Distance if_not_equal_distance = Label::kFar) {
    178     CompareRoot(with, index);
    179     j(not_equal, if_not_equal, if_not_equal_distance);
    180   }
    181 
    182   // These functions do not arrange the registers in any particular order so
    183   // they are not useful for calls that can cause a GC.  The caller can
    184   // exclude up to 3 registers that do not need to be saved and restored.
    185   void PushCallerSaved(SaveFPRegsMode fp_mode,
    186                        Register exclusion1 = no_reg,
    187                        Register exclusion2 = no_reg,
    188                        Register exclusion3 = no_reg);
    189   void PopCallerSaved(SaveFPRegsMode fp_mode,
    190                       Register exclusion1 = no_reg,
    191                       Register exclusion2 = no_reg,
    192                       Register exclusion3 = no_reg);
    193 
    194 // ---------------------------------------------------------------------------
    195 // GC Support
    196 
    197 
    198   enum RememberedSetFinalAction {
    199     kReturnAtEnd,
    200     kFallThroughAtEnd
    201   };
    202 
    203   // Record in the remembered set the fact that we have a pointer to new space
    204   // at the address pointed to by the addr register.  Only works if addr is not
    205   // in new space.
    206   void RememberedSetHelper(Register object,  // Used for debug code.
    207                            Register addr,
    208                            Register scratch,
    209                            SaveFPRegsMode save_fp,
    210                            RememberedSetFinalAction and_then);
    211 
    212   void CheckPageFlag(Register object,
    213                      Register scratch,
    214                      int mask,
    215                      Condition cc,
    216                      Label* condition_met,
    217                      Label::Distance condition_met_distance = Label::kFar);
    218 
    219   // Check if object is in new space.  Jumps if the object is not in new space.
    220   // The register scratch can be object itself, but scratch will be clobbered.
    221   void JumpIfNotInNewSpace(Register object,
    222                            Register scratch,
    223                            Label* branch,
    224                            Label::Distance distance = Label::kFar) {
    225     InNewSpace(object, scratch, zero, branch, distance);
    226   }
    227 
    228   // Check if object is in new space.  Jumps if the object is in new space.
    229   // The register scratch can be object itself, but it will be clobbered.
    230   void JumpIfInNewSpace(Register object,
    231                         Register scratch,
    232                         Label* branch,
    233                         Label::Distance distance = Label::kFar) {
    234     InNewSpace(object, scratch, not_zero, branch, distance);
    235   }
    236 
    237   // Check if an object has the black incremental marking color.  Also uses rcx!
    238   void JumpIfBlack(Register object, Register bitmap_scratch,
    239                    Register mask_scratch, Label* on_black,
    240                    Label::Distance on_black_distance);
    241 
    242   // Checks the color of an object.  If the object is white we jump to the
    243   // incremental marker.
    244   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
    245                    Label* value_is_white, Label::Distance distance);
    246 
    247   // Notify the garbage collector that we wrote a pointer into an object.
    248   // |object| is the object being stored into, |value| is the object being
    249   // stored.  value and scratch registers are clobbered by the operation.
    250   // The offset is the offset from the start of the object, not the offset from
    251   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
    252   void RecordWriteField(
    253       Register object,
    254       int offset,
    255       Register value,
    256       Register scratch,
    257       SaveFPRegsMode save_fp,
    258       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    259       SmiCheck smi_check = INLINE_SMI_CHECK,
    260       PointersToHereCheck pointers_to_here_check_for_value =
    261           kPointersToHereMaybeInteresting);
    262 
    263   // As above, but the offset has the tag presubtracted.  For use with
    264   // Operand(reg, off).
    265   void RecordWriteContextSlot(
    266       Register context,
    267       int offset,
    268       Register value,
    269       Register scratch,
    270       SaveFPRegsMode save_fp,
    271       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    272       SmiCheck smi_check = INLINE_SMI_CHECK,
    273       PointersToHereCheck pointers_to_here_check_for_value =
    274           kPointersToHereMaybeInteresting) {
    275     RecordWriteField(context,
    276                      offset + kHeapObjectTag,
    277                      value,
    278                      scratch,
    279                      save_fp,
    280                      remembered_set_action,
    281                      smi_check,
    282                      pointers_to_here_check_for_value);
    283   }
    284 
    285   // Notify the garbage collector that we wrote a pointer into a fixed array.
    286   // |array| is the array being stored into, |value| is the
    287   // object being stored.  |index| is the array index represented as a non-smi.
    288   // All registers are clobbered by the operation RecordWriteArray
    289   // filters out smis so it does not update the write barrier if the
    290   // value is a smi.
    291   void RecordWriteArray(
    292       Register array,
    293       Register value,
    294       Register index,
    295       SaveFPRegsMode save_fp,
    296       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    297       SmiCheck smi_check = INLINE_SMI_CHECK,
    298       PointersToHereCheck pointers_to_here_check_for_value =
    299           kPointersToHereMaybeInteresting);
    300 
    301   // Notify the garbage collector that we wrote a code entry into a
    302   // JSFunction. Only scratch is clobbered by the operation.
    303   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
    304                                  Register scratch);
    305 
    306   void RecordWriteForMap(
    307       Register object,
    308       Register map,
    309       Register dst,
    310       SaveFPRegsMode save_fp);
    311 
    312   // For page containing |object| mark region covering |address|
    313   // dirty. |object| is the object being stored into, |value| is the
    314   // object being stored. The address and value registers are clobbered by the
    315   // operation.  RecordWrite filters out smis so it does not update
    316   // the write barrier if the value is a smi.
    317   void RecordWrite(
    318       Register object,
    319       Register address,
    320       Register value,
    321       SaveFPRegsMode save_fp,
    322       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    323       SmiCheck smi_check = INLINE_SMI_CHECK,
    324       PointersToHereCheck pointers_to_here_check_for_value =
    325           kPointersToHereMaybeInteresting);
    326 
    327   // Frame restart support.
    328   void MaybeDropFrames();
    329 
    330   // Generates function and stub prologue code.
    331   void StubPrologue(StackFrame::Type type);
    332   void Prologue(bool code_pre_aging);
    333 
    334   // Enter specific kind of exit frame; either in normal or
    335   // debug mode. Expects the number of arguments in register rax and
    336   // sets up the number of arguments in register rdi and the pointer
    337   // to the first argument in register rsi.
    338   //
    339   // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
    340   // accessible via StackSpaceOperand.
    341   void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false,
    342                       StackFrame::Type frame_type = StackFrame::EXIT);
    343 
    344   // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
    345   // memory (not GCed) on the stack accessible via StackSpaceOperand.
    346   void EnterApiExitFrame(int arg_stack_space);
    347 
    348   // Leave the current exit frame. Expects/provides the return value in
    349   // register rax:rdx (untouched) and the pointer to the first
    350   // argument in register rsi (if pop_arguments == true).
    351   void LeaveExitFrame(bool save_doubles = false, bool pop_arguments = true);
    352 
    353   // Leave the current exit frame. Expects/provides the return value in
    354   // register rax (untouched).
    355   void LeaveApiExitFrame(bool restore_context);
    356 
    357   // Push and pop the registers that can hold pointers.
    358   void PushSafepointRegisters() { Pushad(); }
    359   void PopSafepointRegisters() { Popad(); }
    360   // Store the value in register src in the safepoint register stack
    361   // slot for register dst.
    362   void StoreToSafepointRegisterSlot(Register dst, const Immediate& imm);
    363   void StoreToSafepointRegisterSlot(Register dst, Register src);
    364   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    365 
    366   void InitializeRootRegister() {
    367     ExternalReference roots_array_start =
    368         ExternalReference::roots_array_start(isolate());
    369     Move(kRootRegister, roots_array_start);
    370     addp(kRootRegister, Immediate(kRootRegisterBias));
    371   }
    372 
    373   // ---------------------------------------------------------------------------
    374   // JavaScript invokes
    375 
    376   // Removes current frame and its arguments from the stack preserving
    377   // the arguments and a return address pushed to the stack for the next call.
    378   // |ra_state| defines whether return address is already pushed to stack or
    379   // not. Both |callee_args_count| and |caller_args_count_reg| do not include
    380   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
    381   // is trashed.
    382   void PrepareForTailCall(const ParameterCount& callee_args_count,
    383                           Register caller_args_count_reg, Register scratch0,
    384                           Register scratch1, ReturnAddressState ra_state);
    385 
    386   // Invoke the JavaScript function code by either calling or jumping.
    387   void InvokeFunctionCode(Register function, Register new_target,
    388                           const ParameterCount& expected,
    389                           const ParameterCount& actual, InvokeFlag flag,
    390                           const CallWrapper& call_wrapper);
    391 
    392   // On function call, call into the debugger if necessary.
    393   void CheckDebugHook(Register fun, Register new_target,
    394                       const ParameterCount& expected,
    395                       const ParameterCount& actual);
    396 
    397   // Invoke the JavaScript function in the given register. Changes the
    398   // current context to the context in the function before invoking.
    399   void InvokeFunction(Register function,
    400                       Register new_target,
    401                       const ParameterCount& actual,
    402                       InvokeFlag flag,
    403                       const CallWrapper& call_wrapper);
    404 
    405   void InvokeFunction(Register function,
    406                       Register new_target,
    407                       const ParameterCount& expected,
    408                       const ParameterCount& actual,
    409                       InvokeFlag flag,
    410                       const CallWrapper& call_wrapper);
    411 
    412   void InvokeFunction(Handle<JSFunction> function,
    413                       const ParameterCount& expected,
    414                       const ParameterCount& actual,
    415                       InvokeFlag flag,
    416                       const CallWrapper& call_wrapper);
    417 
    418   // ---------------------------------------------------------------------------
    419   // Smi tagging, untagging and operations on tagged smis.
    420 
    421   // Support for constant splitting.
    422   bool IsUnsafeInt(const int32_t x);
    423   void SafeMove(Register dst, Smi* src);
    424   void SafePush(Smi* src);
    425 
    426   // Conversions between tagged smi values and non-tagged integer values.
    427 
    428   // Tag an integer value. The result must be known to be a valid smi value.
    429   // Only uses the low 32 bits of the src register. Sets the N and Z flags
    430   // based on the value of the resulting smi.
    431   void Integer32ToSmi(Register dst, Register src);
    432 
    433   // Stores an integer32 value into a memory field that already holds a smi.
    434   void Integer32ToSmiField(const Operand& dst, Register src);
    435 
    436   // Adds constant to src and tags the result as a smi.
    437   // Result must be a valid smi.
    438   void Integer64PlusConstantToSmi(Register dst, Register src, int constant);
    439 
    440   // Convert smi to 32-bit integer. I.e., not sign extended into
    441   // high 32 bits of destination.
    442   void SmiToInteger32(Register dst, Register src);
    443   void SmiToInteger32(Register dst, const Operand& src);
    444 
    445   // Convert smi to 64-bit integer (sign extended if necessary).
    446   void SmiToInteger64(Register dst, Register src);
    447   void SmiToInteger64(Register dst, const Operand& src);
    448 
    449   // Convert smi to double.
    450   void SmiToDouble(XMMRegister dst, Register src) {
    451     SmiToInteger32(kScratchRegister, src);
    452     Cvtlsi2sd(dst, kScratchRegister);
    453   }
    454 
    455   // Multiply a positive smi's integer value by a power of two.
    456   // Provides result as 64-bit integer value.
    457   void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
    458                                              Register src,
    459                                              int power);
    460 
    461   // Divide a positive smi's integer value by a power of two.
    462   // Provides result as 32-bit integer value.
    463   void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
    464                                            Register src,
    465                                            int power);
    466 
    467   // Perform the logical or of two smi values and return a smi value.
    468   // If either argument is not a smi, jump to on_not_smis and retain
    469   // the original values of source registers. The destination register
    470   // may be changed if it's not one of the source registers.
    471   void SmiOrIfSmis(Register dst,
    472                    Register src1,
    473                    Register src2,
    474                    Label* on_not_smis,
    475                    Label::Distance near_jump = Label::kFar);
    476 
    477 
    478   // Simple comparison of smis.  Both sides must be known smis to use these,
    479   // otherwise use Cmp.
    480   void SmiCompare(Register smi1, Register smi2);
    481   void SmiCompare(Register dst, Smi* src);
    482   void SmiCompare(Register dst, const Operand& src);
    483   void SmiCompare(const Operand& dst, Register src);
    484   void SmiCompare(const Operand& dst, Smi* src);
    485   // Compare the int32 in src register to the value of the smi stored at dst.
    486   void SmiCompareInteger32(const Operand& dst, Register src);
    487   // Sets sign and zero flags depending on value of smi in register.
    488   void SmiTest(Register src);
    489 
    490   // Functions performing a check on a known or potential smi. Returns
    491   // a condition that is satisfied if the check is successful.
    492 
    493   // Is the value a tagged smi.
    494   Condition CheckSmi(Register src);
    495   Condition CheckSmi(const Operand& src);
    496 
    497   // Is the value a non-negative tagged smi.
    498   Condition CheckNonNegativeSmi(Register src);
    499 
    500   // Are both values tagged smis.
    501   Condition CheckBothSmi(Register first, Register second);
    502 
    503   // Are both values non-negative tagged smis.
    504   Condition CheckBothNonNegativeSmi(Register first, Register second);
    505 
    506   // Are either value a tagged smi.
    507   Condition CheckEitherSmi(Register first,
    508                            Register second,
    509                            Register scratch = kScratchRegister);
    510 
    511   // Checks whether an 32-bit integer value is a valid for conversion
    512   // to a smi.
    513   Condition CheckInteger32ValidSmiValue(Register src);
    514 
    515   // Checks whether an 32-bit unsigned integer value is a valid for
    516   // conversion to a smi.
    517   Condition CheckUInteger32ValidSmiValue(Register src);
    518 
    519   // Check whether src is a Smi, and set dst to zero if it is a smi,
    520   // and to one if it isn't.
    521   void CheckSmiToIndicator(Register dst, Register src);
    522   void CheckSmiToIndicator(Register dst, const Operand& src);
    523 
    524   // Test-and-jump functions. Typically combines a check function
    525   // above with a conditional jump.
    526 
    527   // Jump if the value can be represented by a smi.
    528   void JumpIfValidSmiValue(Register src, Label* on_valid,
    529                            Label::Distance near_jump = Label::kFar);
    530 
    531   // Jump if the value cannot be represented by a smi.
    532   void JumpIfNotValidSmiValue(Register src, Label* on_invalid,
    533                               Label::Distance near_jump = Label::kFar);
    534 
    535   // Jump if the unsigned integer value can be represented by a smi.
    536   void JumpIfUIntValidSmiValue(Register src, Label* on_valid,
    537                                Label::Distance near_jump = Label::kFar);
    538 
    539   // Jump if the unsigned integer value cannot be represented by a smi.
    540   void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid,
    541                                   Label::Distance near_jump = Label::kFar);
    542 
    543   // Jump to label if the value is a tagged smi.
    544   void JumpIfSmi(Register src,
    545                  Label* on_smi,
    546                  Label::Distance near_jump = Label::kFar);
    547 
    548   // Jump to label if the value is not a tagged smi.
    549   void JumpIfNotSmi(Register src,
    550                     Label* on_not_smi,
    551                     Label::Distance near_jump = Label::kFar);
    552 
    553   // Jump to label if the value is not a tagged smi.
    554   void JumpIfNotSmi(Operand src, Label* on_not_smi,
    555                     Label::Distance near_jump = Label::kFar);
    556 
    557   // Jump to label if the value is not a non-negative tagged smi.
    558   void JumpUnlessNonNegativeSmi(Register src,
    559                                 Label* on_not_smi,
    560                                 Label::Distance near_jump = Label::kFar);
    561 
    562   // Jump to label if the value, which must be a tagged smi, has value equal
    563   // to the constant.
    564   void JumpIfSmiEqualsConstant(Register src,
    565                                Smi* constant,
    566                                Label* on_equals,
    567                                Label::Distance near_jump = Label::kFar);
    568 
    569   // Jump if either or both register are not smi values.
    570   void JumpIfNotBothSmi(Register src1,
    571                         Register src2,
    572                         Label* on_not_both_smi,
    573                         Label::Distance near_jump = Label::kFar);
    574 
    575   // Jump if either or both register are not non-negative smi values.
    576   void JumpUnlessBothNonNegativeSmi(Register src1, Register src2,
    577                                     Label* on_not_both_smi,
    578                                     Label::Distance near_jump = Label::kFar);
    579 
    580   // Operations on tagged smi values.
    581 
    582   // Smis represent a subset of integers. The subset is always equivalent to
    583   // a two's complement interpretation of a fixed number of bits.
    584 
    585   // Add an integer constant to a tagged smi, giving a tagged smi as result.
    586   // No overflow testing on the result is done.
    587   void SmiAddConstant(Register dst, Register src, Smi* constant);
    588 
    589   // Add an integer constant to a tagged smi, giving a tagged smi as result.
    590   // No overflow testing on the result is done.
    591   void SmiAddConstant(const Operand& dst, Smi* constant);
    592 
    593   // Add an integer constant to a tagged smi, giving a tagged smi as result,
    594   // or jumping to a label if the result cannot be represented by a smi.
    595   void SmiAddConstant(Register dst, Register src, Smi* constant,
    596                       SmiOperationConstraints constraints, Label* bailout_label,
    597                       Label::Distance near_jump = Label::kFar);
    598 
    599   // Subtract an integer constant from a tagged smi, giving a tagged smi as
    600   // result. No testing on the result is done. Sets the N and Z flags
    601   // based on the value of the resulting integer.
    602   void SmiSubConstant(Register dst, Register src, Smi* constant);
    603 
    604   // Subtract an integer constant from a tagged smi, giving a tagged smi as
    605   // result, or jumping to a label if the result cannot be represented by a smi.
    606   void SmiSubConstant(Register dst, Register src, Smi* constant,
    607                       SmiOperationConstraints constraints, Label* bailout_label,
    608                       Label::Distance near_jump = Label::kFar);
    609 
    610   // Negating a smi can give a negative zero or too large positive value.
    611   // NOTICE: This operation jumps on success, not failure!
    612   void SmiNeg(Register dst,
    613               Register src,
    614               Label* on_smi_result,
    615               Label::Distance near_jump = Label::kFar);
    616 
    617   // Adds smi values and return the result as a smi.
    618   // If dst is src1, then src1 will be destroyed if the operation is
    619   // successful, otherwise kept intact.
    620   void SmiAdd(Register dst,
    621               Register src1,
    622               Register src2,
    623               Label* on_not_smi_result,
    624               Label::Distance near_jump = Label::kFar);
    625   void SmiAdd(Register dst,
    626               Register src1,
    627               const Operand& src2,
    628               Label* on_not_smi_result,
    629               Label::Distance near_jump = Label::kFar);
    630 
    631   void SmiAdd(Register dst,
    632               Register src1,
    633               Register src2);
    634 
    635   // Subtracts smi values and return the result as a smi.
    636   // If dst is src1, then src1 will be destroyed if the operation is
    637   // successful, otherwise kept intact.
    638   void SmiSub(Register dst,
    639               Register src1,
    640               Register src2,
    641               Label* on_not_smi_result,
    642               Label::Distance near_jump = Label::kFar);
    643   void SmiSub(Register dst,
    644               Register src1,
    645               const Operand& src2,
    646               Label* on_not_smi_result,
    647               Label::Distance near_jump = Label::kFar);
    648 
    649   void SmiSub(Register dst,
    650               Register src1,
    651               Register src2);
    652 
    653   void SmiSub(Register dst,
    654               Register src1,
    655               const Operand& src2);
    656 
    657   // Multiplies smi values and return the result as a smi,
    658   // if possible.
    659   // If dst is src1, then src1 will be destroyed, even if
    660   // the operation is unsuccessful.
    661   void SmiMul(Register dst,
    662               Register src1,
    663               Register src2,
    664               Label* on_not_smi_result,
    665               Label::Distance near_jump = Label::kFar);
    666 
    667   // Divides one smi by another and returns the quotient.
    668   // Clobbers rax and rdx registers.
    669   void SmiDiv(Register dst,
    670               Register src1,
    671               Register src2,
    672               Label* on_not_smi_result,
    673               Label::Distance near_jump = Label::kFar);
    674 
    675   // Divides one smi by another and returns the remainder.
    676   // Clobbers rax and rdx registers.
    677   void SmiMod(Register dst,
    678               Register src1,
    679               Register src2,
    680               Label* on_not_smi_result,
    681               Label::Distance near_jump = Label::kFar);
    682 
    683   // Bitwise operations.
    684   void SmiNot(Register dst, Register src);
    685   void SmiAnd(Register dst, Register src1, Register src2);
    686   void SmiOr(Register dst, Register src1, Register src2);
    687   void SmiXor(Register dst, Register src1, Register src2);
    688   void SmiAndConstant(Register dst, Register src1, Smi* constant);
    689   void SmiOrConstant(Register dst, Register src1, Smi* constant);
    690   void SmiXorConstant(Register dst, Register src1, Smi* constant);
    691 
    692   void SmiShiftLeftConstant(Register dst,
    693                             Register src,
    694                             int shift_value,
    695                             Label* on_not_smi_result = NULL,
    696                             Label::Distance near_jump = Label::kFar);
    697   void SmiShiftLogicalRightConstant(Register dst,
    698                                     Register src,
    699                                     int shift_value,
    700                                     Label* on_not_smi_result,
    701                                     Label::Distance near_jump = Label::kFar);
    702   void SmiShiftArithmeticRightConstant(Register dst,
    703                                        Register src,
    704                                        int shift_value);
    705 
    706   // Shifts a smi value to the left, and returns the result if that is a smi.
    707   // Uses and clobbers rcx, so dst may not be rcx.
    708   void SmiShiftLeft(Register dst,
    709                     Register src1,
    710                     Register src2,
    711                     Label* on_not_smi_result = NULL,
    712                     Label::Distance near_jump = Label::kFar);
    713   // Shifts a smi value to the right, shifting in zero bits at the top, and
    714   // returns the unsigned intepretation of the result if that is a smi.
    715   // Uses and clobbers rcx, so dst may not be rcx.
    716   void SmiShiftLogicalRight(Register dst,
    717                             Register src1,
    718                             Register src2,
    719                             Label* on_not_smi_result,
    720                             Label::Distance near_jump = Label::kFar);
    721   // Shifts a smi value to the right, sign extending the top, and
    722   // returns the signed intepretation of the result. That will always
    723   // be a valid smi value, since it's numerically smaller than the
    724   // original.
    725   // Uses and clobbers rcx, so dst may not be rcx.
    726   void SmiShiftArithmeticRight(Register dst,
    727                                Register src1,
    728                                Register src2);
    729 
    730   // Specialized operations
    731 
    732   // Select the non-smi register of two registers where exactly one is a
    733   // smi. If neither are smis, jump to the failure label.
    734   void SelectNonSmi(Register dst,
    735                     Register src1,
    736                     Register src2,
    737                     Label* on_not_smis,
    738                     Label::Distance near_jump = Label::kFar);
    739 
    740   // Converts, if necessary, a smi to a combination of number and
    741   // multiplier to be used as a scaled index.
    742   // The src register contains a *positive* smi value. The shift is the
    743   // power of two to multiply the index value by (e.g.
    744   // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
    745   // The returned index register may be either src or dst, depending
    746   // on what is most efficient. If src and dst are different registers,
    747   // src is always unchanged.
    748   SmiIndex SmiToIndex(Register dst, Register src, int shift);
    749 
    750   // Converts a positive smi to a negative index.
    751   SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);
    752 
    753   // Add the value of a smi in memory to an int32 register.
    754   // Sets flags as a normal add.
    755   void AddSmiField(Register dst, const Operand& src);
    756 
    757   // Basic Smi operations.
    758   void Move(Register dst, Smi* source) {
    759     LoadSmiConstant(dst, source);
    760   }
    761 
    762   void Move(const Operand& dst, Smi* source) {
    763     Register constant = GetSmiConstant(source);
    764     movp(dst, constant);
    765   }
    766 
    767   void Push(Smi* smi);
    768 
    769   // Save away a raw integer with pointer size on the stack as two integers
    770   // masquerading as smis so that the garbage collector skips visiting them.
    771   void PushRegisterAsTwoSmis(Register src, Register scratch = kScratchRegister);
    772   // Reconstruct a raw integer with pointer size from two integers masquerading
    773   // as smis on the top of stack.
    774   void PopRegisterAsTwoSmis(Register dst, Register scratch = kScratchRegister);
    775 
    776   void Test(const Operand& dst, Smi* source);
    777 
    778 
    779   // ---------------------------------------------------------------------------
    780   // String macros.
    781 
    782   // If object is a string, its map is loaded into object_map.
    783   void JumpIfNotString(Register object,
    784                        Register object_map,
    785                        Label* not_string,
    786                        Label::Distance near_jump = Label::kFar);
    787 
    788 
    789   void JumpIfNotBothSequentialOneByteStrings(
    790       Register first_object, Register second_object, Register scratch1,
    791       Register scratch2, Label* on_not_both_flat_one_byte,
    792       Label::Distance near_jump = Label::kFar);
    793 
    794   // Check whether the instance type represents a flat one-byte string. Jump
    795   // to the label if not. If the instance type can be scratched specify same
    796   // register for both instance type and scratch.
    797   void JumpIfInstanceTypeIsNotSequentialOneByte(
    798       Register instance_type, Register scratch,
    799       Label* on_not_flat_one_byte_string,
    800       Label::Distance near_jump = Label::kFar);
    801 
    802   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
    803       Register first_object_instance_type, Register second_object_instance_type,
    804       Register scratch1, Register scratch2, Label* on_fail,
    805       Label::Distance near_jump = Label::kFar);
    806 
    807   void EmitSeqStringSetCharCheck(Register string,
    808                                  Register index,
    809                                  Register value,
    810                                  uint32_t encoding_mask);
    811 
    812   // Checks if the given register or operand is a unique name
    813   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
    814                                        Label::Distance distance = Label::kFar);
    815   void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
    816                                        Label::Distance distance = Label::kFar);
    817 
    818   // ---------------------------------------------------------------------------
    819   // Macro instructions.
    820 
    821   // Load/store with specific representation.
    822   void Load(Register dst, const Operand& src, Representation r);
    823   void Store(const Operand& dst, Register src, Representation r);
    824 
    825   // Load a register with a long value as efficiently as possible.
    826   void Set(Register dst, int64_t x);
    827   void Set(const Operand& dst, intptr_t x);
    828 
    829   void Cvtss2sd(XMMRegister dst, XMMRegister src);
    830   void Cvtss2sd(XMMRegister dst, const Operand& src);
    831   void Cvtsd2ss(XMMRegister dst, XMMRegister src);
    832   void Cvtsd2ss(XMMRegister dst, const Operand& src);
    833 
    834   // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
    835   // hinders register renaming and makes dependence chains longer. So we use
    836   // xorpd to clear the dst register before cvtsi2sd to solve this issue.
    837   void Cvtlsi2sd(XMMRegister dst, Register src);
    838   void Cvtlsi2sd(XMMRegister dst, const Operand& src);
    839 
    840   void Cvtlsi2ss(XMMRegister dst, Register src);
    841   void Cvtlsi2ss(XMMRegister dst, const Operand& src);
    842   void Cvtqsi2ss(XMMRegister dst, Register src);
    843   void Cvtqsi2ss(XMMRegister dst, const Operand& src);
    844 
    845   void Cvtqsi2sd(XMMRegister dst, Register src);
    846   void Cvtqsi2sd(XMMRegister dst, const Operand& src);
    847 
    848   void Cvtqui2ss(XMMRegister dst, Register src, Register tmp);
    849   void Cvtqui2sd(XMMRegister dst, Register src, Register tmp);
    850 
    851   void Cvtsd2si(Register dst, XMMRegister src);
    852 
    853   void Cvttss2si(Register dst, XMMRegister src);
    854   void Cvttss2si(Register dst, const Operand& src);
    855   void Cvttsd2si(Register dst, XMMRegister src);
    856   void Cvttsd2si(Register dst, const Operand& src);
    857   void Cvttss2siq(Register dst, XMMRegister src);
    858   void Cvttss2siq(Register dst, const Operand& src);
    859   void Cvttsd2siq(Register dst, XMMRegister src);
    860   void Cvttsd2siq(Register dst, const Operand& src);
    861 
    862   // Move if the registers are not identical.
    863   void Move(Register target, Register source);
    864 
    865   // TestBit and Load SharedFunctionInfo special field.
    866   void TestBitSharedFunctionInfoSpecialField(Register base,
    867                                              int offset,
    868                                              int bit_index);
    869   void LoadSharedFunctionInfoSpecialField(Register dst,
    870                                           Register base,
    871                                           int offset);
    872 
    873   // Handle support
    874   void Move(Register dst, Handle<Object> source);
    875   void Move(const Operand& dst, Handle<Object> source);
    876   void Cmp(Register dst, Handle<Object> source);
    877   void Cmp(const Operand& dst, Handle<Object> source);
    878   void Cmp(Register dst, Smi* src);
    879   void Cmp(const Operand& dst, Smi* src);
    880   void Push(Handle<Object> source);
    881 
    882   // Load a heap object and handle the case of new-space objects by
    883   // indirecting via a global cell.
    884   void MoveHeapObject(Register result, Handle<Object> object);
    885 
    886   // Load a global cell into a register.
    887   void LoadGlobalCell(Register dst, Handle<Cell> cell);
    888 
    889   // Compare the given value and the value of weak cell.
    890   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
    891 
    892   void GetWeakValue(Register value, Handle<WeakCell> cell);
    893 
    894   // Load the value of the weak cell in the value register. Branch to the given
    895   // miss label if the weak cell was cleared.
    896   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
    897 
    898   // Emit code that loads |parameter_index|'th parameter from the stack to
    899   // the register according to the CallInterfaceDescriptor definition.
    900   // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
    901   // below the caller's sp (on x64 it's at least return address).
    902   template <class Descriptor>
    903   void LoadParameterFromStack(
    904       Register reg, typename Descriptor::ParameterIndices parameter_index,
    905       int sp_to_ra_offset_in_words = 1) {
    906     DCHECK(Descriptor::kPassLastArgsOnStack);
    907     UNIMPLEMENTED();
    908   }
    909 
    910   // Emit code to discard a non-negative number of pointer-sized elements
    911   // from the stack, clobbering only the rsp register.
    912   void Drop(int stack_elements);
    913   // Emit code to discard a positive number of pointer-sized elements
    914   // from the stack under the return address which remains on the top,
    915   // clobbering the rsp register.
    916   void DropUnderReturnAddress(int stack_elements,
    917                               Register scratch = kScratchRegister);
    918 
    919   void Call(Label* target) { call(target); }
    920   void Push(Register src);
    921   void Push(const Operand& src);
    922   void PushQuad(const Operand& src);
    923   void Push(Immediate value);
    924   void PushImm32(int32_t imm32);
    925   void Pop(Register dst);
    926   void Pop(const Operand& dst);
    927   void PopQuad(const Operand& dst);
    928   void PushReturnAddressFrom(Register src) { pushq(src); }
    929   void PopReturnAddressTo(Register dst) { popq(dst); }
    930   void Move(Register dst, ExternalReference ext) {
    931     movp(dst, reinterpret_cast<void*>(ext.address()),
    932          RelocInfo::EXTERNAL_REFERENCE);
    933   }
    934 
    935   // Loads a pointer into a register with a relocation mode.
    936   void Move(Register dst, void* ptr, RelocInfo::Mode rmode) {
    937     // This method must not be used with heap object references. The stored
    938     // address is not GC safe. Use the handle version instead.
    939     DCHECK(rmode > RelocInfo::LAST_GCED_ENUM);
    940     movp(dst, ptr, rmode);
    941   }
    942 
    943   void Move(Register dst, Handle<Object> value, RelocInfo::Mode rmode) {
    944     AllowDeferredHandleDereference using_raw_address;
    945     DCHECK(!RelocInfo::IsNone(rmode));
    946     DCHECK(value->IsHeapObject());
    947     movp(dst, reinterpret_cast<void*>(value.location()), rmode);
    948   }
    949 
    950   void Move(XMMRegister dst, uint32_t src);
    951   void Move(XMMRegister dst, uint64_t src);
    952   void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
    953   void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
    954 
    955 #define AVX_OP2_WITH_TYPE(macro_name, name, src_type) \
    956   void macro_name(XMMRegister dst, src_type src) {    \
    957     if (CpuFeatures::IsSupported(AVX)) {              \
    958       CpuFeatureScope scope(this, AVX);               \
    959       v##name(dst, dst, src);                         \
    960     } else {                                          \
    961       name(dst, src);                                 \
    962     }                                                 \
    963   }
    964 #define AVX_OP2_X(macro_name, name) \
    965   AVX_OP2_WITH_TYPE(macro_name, name, XMMRegister)
    966 #define AVX_OP2_O(macro_name, name) \
    967   AVX_OP2_WITH_TYPE(macro_name, name, const Operand&)
    968 #define AVX_OP2_XO(macro_name, name) \
    969   AVX_OP2_X(macro_name, name)        \
    970   AVX_OP2_O(macro_name, name)
    971 
    972   AVX_OP2_XO(Addsd, addsd)
    973   AVX_OP2_XO(Subsd, subsd)
    974   AVX_OP2_XO(Mulsd, mulsd)
    975   AVX_OP2_XO(Divss, divss)
    976   AVX_OP2_XO(Divsd, divsd)
    977   AVX_OP2_XO(Andps, andps)
    978   AVX_OP2_XO(Andpd, andpd)
    979   AVX_OP2_XO(Orpd, orpd)
    980   AVX_OP2_XO(Xorpd, xorpd)
    981   AVX_OP2_XO(Cmpeqps, cmpeqps)
    982   AVX_OP2_XO(Cmpltps, cmpltps)
    983   AVX_OP2_XO(Cmpleps, cmpleps)
    984   AVX_OP2_XO(Cmpneqps, cmpneqps)
    985   AVX_OP2_XO(Cmpnltps, cmpnltps)
    986   AVX_OP2_XO(Cmpnleps, cmpnleps)
    987   AVX_OP2_XO(Cmpeqpd, cmpeqpd)
    988   AVX_OP2_XO(Cmpltpd, cmpltpd)
    989   AVX_OP2_XO(Cmplepd, cmplepd)
    990   AVX_OP2_XO(Cmpneqpd, cmpneqpd)
    991   AVX_OP2_XO(Cmpnltpd, cmpnltpd)
    992   AVX_OP2_XO(Cmpnlepd, cmpnlepd)
    993   AVX_OP2_X(Pcmpeqd, pcmpeqd)
    994   AVX_OP2_WITH_TYPE(Psllq, psllq, byte)
    995   AVX_OP2_WITH_TYPE(Psrlq, psrlq, byte)
    996 
    997 #undef AVX_OP2_O
    998 #undef AVX_OP2_X
    999 #undef AVX_OP2_XO
   1000 #undef AVX_OP2_WITH_TYPE
   1001 
   1002   void Movsd(XMMRegister dst, XMMRegister src);
   1003   void Movsd(XMMRegister dst, const Operand& src);
   1004   void Movsd(const Operand& dst, XMMRegister src);
   1005   void Movss(XMMRegister dst, XMMRegister src);
   1006   void Movss(XMMRegister dst, const Operand& src);
   1007   void Movss(const Operand& dst, XMMRegister src);
   1008 
   1009   void Movd(XMMRegister dst, Register src);
   1010   void Movd(XMMRegister dst, const Operand& src);
   1011   void Movd(Register dst, XMMRegister src);
   1012   void Movq(XMMRegister dst, Register src);
   1013   void Movq(Register dst, XMMRegister src);
   1014 
   1015   void Movaps(XMMRegister dst, XMMRegister src);
   1016   void Movups(XMMRegister dst, XMMRegister src);
   1017   void Movups(XMMRegister dst, const Operand& src);
   1018   void Movups(const Operand& dst, XMMRegister src);
   1019   void Movmskps(Register dst, XMMRegister src);
   1020   void Movapd(XMMRegister dst, XMMRegister src);
   1021   void Movupd(XMMRegister dst, const Operand& src);
   1022   void Movupd(const Operand& dst, XMMRegister src);
   1023   void Movmskpd(Register dst, XMMRegister src);
   1024 
   1025   void Xorps(XMMRegister dst, XMMRegister src);
   1026   void Xorps(XMMRegister dst, const Operand& src);
   1027 
   1028   void Roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
   1029   void Roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
   1030   void Sqrtsd(XMMRegister dst, XMMRegister src);
   1031   void Sqrtsd(XMMRegister dst, const Operand& src);
   1032 
   1033   void Ucomiss(XMMRegister src1, XMMRegister src2);
   1034   void Ucomiss(XMMRegister src1, const Operand& src2);
   1035   void Ucomisd(XMMRegister src1, XMMRegister src2);
   1036   void Ucomisd(XMMRegister src1, const Operand& src2);
   1037 
   1038   // ---------------------------------------------------------------------------
   1039   // SIMD macros.
   1040   void Absps(XMMRegister dst);
   1041   void Negps(XMMRegister dst);
   1042   void Abspd(XMMRegister dst);
   1043   void Negpd(XMMRegister dst);
   1044 
   1045   // Control Flow
   1046   void Jump(Address destination, RelocInfo::Mode rmode);
   1047   void Jump(ExternalReference ext);
   1048   void Jump(const Operand& op);
   1049   void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
   1050 
   1051   void Call(Address destination, RelocInfo::Mode rmode);
   1052   void Call(ExternalReference ext);
   1053   void Call(const Operand& op);
   1054   void Call(Handle<Code> code_object,
   1055             RelocInfo::Mode rmode,
   1056             TypeFeedbackId ast_id = TypeFeedbackId::None());
   1057 
   1058   // The size of the code generated for different call instructions.
   1059   int CallSize(Address destination) {
   1060     return kCallSequenceLength;
   1061   }
   1062   int CallSize(ExternalReference ext);
   1063   int CallSize(Handle<Code> code_object) {
   1064     // Code calls use 32-bit relative addressing.
   1065     return kShortCallInstructionLength;
   1066   }
   1067   int CallSize(Register target) {
   1068     // Opcode: REX_opt FF /2 m64
   1069     return (target.high_bit() != 0) ? 3 : 2;
   1070   }
   1071   int CallSize(const Operand& target) {
   1072     // Opcode: REX_opt FF /2 m64
   1073     return (target.requires_rex() ? 2 : 1) + target.operand_size();
   1074   }
   1075 
   1076   // Non-SSE2 instructions.
   1077   void Pextrd(Register dst, XMMRegister src, int8_t imm8);
   1078   void Pinsrd(XMMRegister dst, Register src, int8_t imm8);
   1079   void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
   1080 
   1081   void Lzcntq(Register dst, Register src);
   1082   void Lzcntq(Register dst, const Operand& src);
   1083 
   1084   void Lzcntl(Register dst, Register src);
   1085   void Lzcntl(Register dst, const Operand& src);
   1086 
   1087   void Tzcntq(Register dst, Register src);
   1088   void Tzcntq(Register dst, const Operand& src);
   1089 
   1090   void Tzcntl(Register dst, Register src);
   1091   void Tzcntl(Register dst, const Operand& src);
   1092 
   1093   void Popcntl(Register dst, Register src);
   1094   void Popcntl(Register dst, const Operand& src);
   1095 
   1096   void Popcntq(Register dst, Register src);
   1097   void Popcntq(Register dst, const Operand& src);
   1098 
   1099   // Non-x64 instructions.
   1100   // Push/pop all general purpose registers.
   1101   // Does not push rsp/rbp nor any of the assembler's special purpose registers
   1102   // (kScratchRegister, kRootRegister).
   1103   void Pushad();
   1104   void Popad();
   1105   // Sets the stack as after performing Popad, without actually loading the
   1106   // registers.
   1107   void Dropad();
   1108 
   1109   // Compare object type for heap object.
   1110   // Always use unsigned comparisons: above and below, not less and greater.
   1111   // Incoming register is heap_object and outgoing register is map.
   1112   // They may be the same register, and may be kScratchRegister.
   1113   void CmpObjectType(Register heap_object, InstanceType type, Register map);
   1114 
   1115   // Compare instance type for map.
   1116   // Always use unsigned comparisons: above and below, not less and greater.
   1117   void CmpInstanceType(Register map, InstanceType type);
   1118 
   1119   // Compare an object's map with the specified map.
   1120   void CompareMap(Register obj, Handle<Map> map);
   1121 
   1122   // Check if the map of an object is equal to a specified map and branch to
   1123   // label if not. Skip the smi check if not required (object is known to be a
   1124   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
   1125   // against maps that are ElementsKind transition maps of the specified map.
   1126   void CheckMap(Register obj,
   1127                 Handle<Map> map,
   1128                 Label* fail,
   1129                 SmiCheckType smi_check_type);
   1130 
   1131   // Check if the map of an object is equal to a specified weak map and branch
   1132   // to a specified target if equal. Skip the smi check if not required
   1133   // (object is known to be a heap object)
   1134   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
   1135                        Handle<WeakCell> cell, Handle<Code> success,
   1136                        SmiCheckType smi_check_type);
   1137 
   1138   // Check if the object in register heap_object is a string. Afterwards the
   1139   // register map contains the object map and the register instance_type
   1140   // contains the instance_type. The registers map and instance_type can be the
   1141   // same in which case it contains the instance type afterwards. Either of the
   1142   // registers map and instance_type can be the same as heap_object.
   1143   Condition IsObjectStringType(Register heap_object,
   1144                                Register map,
   1145                                Register instance_type);
   1146 
   1147   // Check if the object in register heap_object is a name. Afterwards the
   1148   // register map contains the object map and the register instance_type
   1149   // contains the instance_type. The registers map and instance_type can be the
   1150   // same in which case it contains the instance type afterwards. Either of the
   1151   // registers map and instance_type can be the same as heap_object.
   1152   Condition IsObjectNameType(Register heap_object,
   1153                              Register map,
   1154                              Register instance_type);
   1155 
   1156   // FCmp compares and pops the two values on top of the FPU stack.
   1157   // The flag results are similar to integer cmp, but requires unsigned
   1158   // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
   1159   void FCmp();
   1160 
   1161   void ClampUint8(Register reg);
   1162 
   1163   void ClampDoubleToUint8(XMMRegister input_reg,
   1164                           XMMRegister temp_xmm_reg,
   1165                           Register result_reg);
   1166 
   1167   void SlowTruncateToI(Register result_reg, Register input_reg,
   1168       int offset = HeapNumber::kValueOffset - kHeapObjectTag);
   1169 
   1170   void TruncateHeapNumberToI(Register result_reg, Register input_reg);
   1171   void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
   1172 
   1173   void DoubleToI(Register result_reg, XMMRegister input_reg,
   1174                  XMMRegister scratch, MinusZeroMode minus_zero_mode,
   1175                  Label* lost_precision, Label* is_nan, Label* minus_zero,
   1176                  Label::Distance dst = Label::kFar);
   1177 
   1178   void LoadUint32(XMMRegister dst, Register src);
   1179 
   1180   void LoadInstanceDescriptors(Register map, Register descriptors);
   1181   void EnumLength(Register dst, Register map);
   1182   void NumberOfOwnDescriptors(Register dst, Register map);
   1183   void LoadAccessor(Register dst, Register holder, int accessor_index,
   1184                     AccessorComponent accessor);
   1185 
   1186   template<typename Field>
   1187   void DecodeField(Register reg) {
   1188     static const int shift = Field::kShift;
   1189     static const int mask = Field::kMask >> Field::kShift;
   1190     if (shift != 0) {
   1191       shrp(reg, Immediate(shift));
   1192     }
   1193     andp(reg, Immediate(mask));
   1194   }
   1195 
   1196   template<typename Field>
   1197   void DecodeFieldToSmi(Register reg) {
   1198     if (SmiValuesAre32Bits()) {
   1199       andp(reg, Immediate(Field::kMask));
   1200       shlp(reg, Immediate(kSmiShift - Field::kShift));
   1201     } else {
   1202       static const int shift = Field::kShift;
   1203       static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
   1204       DCHECK(SmiValuesAre31Bits());
   1205       DCHECK(kSmiShift == kSmiTagSize);
   1206       DCHECK((mask & 0x80000000u) == 0);
   1207       if (shift < kSmiShift) {
   1208         shlp(reg, Immediate(kSmiShift - shift));
   1209       } else if (shift > kSmiShift) {
   1210         sarp(reg, Immediate(shift - kSmiShift));
   1211       }
   1212       andp(reg, Immediate(mask));
   1213     }
   1214   }
   1215 
   1216   // Abort execution if argument is not a number, enabled via --debug-code.
   1217   void AssertNumber(Register object);
   1218   void AssertNotNumber(Register object);
   1219 
   1220   // Abort execution if argument is a smi, enabled via --debug-code.
   1221   void AssertNotSmi(Register object);
   1222 
   1223   // Abort execution if argument is not a smi, enabled via --debug-code.
   1224   void AssertSmi(Register object);
   1225   void AssertSmi(const Operand& object);
   1226 
   1227   // Abort execution if a 64 bit register containing a 32 bit payload does not
   1228   // have zeros in the top 32 bits, enabled via --debug-code.
   1229   void AssertZeroExtended(Register reg);
   1230 
   1231   // Abort execution if argument is not a string, enabled via --debug-code.
   1232   void AssertString(Register object);
   1233 
   1234   // Abort execution if argument is not a name, enabled via --debug-code.
   1235   void AssertName(Register object);
   1236 
   1237   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
   1238   void AssertFunction(Register object);
   1239 
   1240   // Abort execution if argument is not a JSBoundFunction,
   1241   // enabled via --debug-code.
   1242   void AssertBoundFunction(Register object);
   1243 
   1244   // Abort execution if argument is not a JSGeneratorObject,
   1245   // enabled via --debug-code.
   1246   void AssertGeneratorObject(Register object);
   1247 
   1248   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
   1249   void AssertReceiver(Register object);
   1250 
   1251   // Abort execution if argument is not undefined or an AllocationSite, enabled
   1252   // via --debug-code.
   1253   void AssertUndefinedOrAllocationSite(Register object);
   1254 
   1255   // Abort execution if argument is not the root value with the given index,
   1256   // enabled via --debug-code.
   1257   void AssertRootValue(Register src,
   1258                        Heap::RootListIndex root_value_index,
   1259                        BailoutReason reason);
   1260 
   1261   // ---------------------------------------------------------------------------
   1262   // Exception handling
   1263 
   1264   // Push a new stack handler and link it into stack handler chain.
   1265   void PushStackHandler();
   1266 
   1267   // Unlink the stack handler on top of the stack from the stack handler chain.
   1268   void PopStackHandler();
   1269 
   1270   // ---------------------------------------------------------------------------
   1271   // Inline caching support
   1272 
   1273   void GetNumberHash(Register r0, Register scratch);
   1274 
   1275   // ---------------------------------------------------------------------------
   1276   // Allocation support
   1277 
   1278   // Allocate an object in new space or old space. If the given space
   1279   // is exhausted control continues at the gc_required label. The allocated
   1280   // object is returned in result and end of the new object is returned in
   1281   // result_end. The register scratch can be passed as no_reg in which case
   1282   // an additional object reference will be added to the reloc info. The
   1283   // returned pointers in result and result_end have not yet been tagged as
   1284   // heap objects. If result_contains_top_on_entry is true the content of
   1285   // result is known to be the allocation top on entry (could be result_end
   1286   // from a previous call). If result_contains_top_on_entry is true scratch
   1287   // should be no_reg as it is never used.
   1288   void Allocate(int object_size,
   1289                 Register result,
   1290                 Register result_end,
   1291                 Register scratch,
   1292                 Label* gc_required,
   1293                 AllocationFlags flags);
   1294 
   1295   void Allocate(int header_size,
   1296                 ScaleFactor element_size,
   1297                 Register element_count,
   1298                 Register result,
   1299                 Register result_end,
   1300                 Register scratch,
   1301                 Label* gc_required,
   1302                 AllocationFlags flags);
   1303 
   1304   void Allocate(Register object_size,
   1305                 Register result,
   1306                 Register result_end,
   1307                 Register scratch,
   1308                 Label* gc_required,
   1309                 AllocationFlags flags);
   1310 
   1311   // FastAllocate is right now only used for folded allocations. It just
   1312   // increments the top pointer without checking against limit. This can only
   1313   // be done if it was proved earlier that the allocation will succeed.
   1314   void FastAllocate(int object_size, Register result, Register result_end,
   1315                     AllocationFlags flags);
   1316 
   1317   void FastAllocate(Register object_size, Register result, Register result_end,
   1318                     AllocationFlags flags);
   1319 
   1320   // Allocate a heap number in new space with undefined value. Returns
   1321   // tagged pointer in result register, or jumps to gc_required if new
   1322   // space is full.
   1323   void AllocateHeapNumber(Register result,
   1324                           Register scratch,
   1325                           Label* gc_required,
   1326                           MutableMode mode = IMMUTABLE);
   1327 
   1328   // Allocate and initialize a JSValue wrapper with the specified {constructor}
   1329   // and {value}.
   1330   void AllocateJSValue(Register result, Register constructor, Register value,
   1331                        Register scratch, Label* gc_required);
   1332 
   1333   // ---------------------------------------------------------------------------
   1334   // Support functions.
   1335 
   1336   // Check if result is zero and op is negative.
   1337   void NegativeZeroTest(Register result, Register op, Label* then_label);
   1338 
   1339   // Check if result is zero and op is negative in code using jump targets.
   1340   void NegativeZeroTest(CodeGenerator* cgen,
   1341                         Register result,
   1342                         Register op,
   1343                         JumpTarget* then_target);
   1344 
   1345   // Check if result is zero and any of op1 and op2 are negative.
   1346   // Register scratch is destroyed, and it must be different from op2.
   1347   void NegativeZeroTest(Register result, Register op1, Register op2,
   1348                         Register scratch, Label* then_label);
   1349 
   1350   // Machine code version of Map::GetConstructor().
   1351   // |temp| holds |result|'s map when done.
   1352   void GetMapConstructor(Register result, Register map, Register temp);
   1353 
   1354   // Find the function context up the context chain.
   1355   void LoadContext(Register dst, int context_chain_length);
   1356 
   1357   // Load the global object from the current context.
   1358   void LoadGlobalObject(Register dst) {
   1359     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
   1360   }
   1361 
   1362   // Load the global proxy from the current context.
   1363   void LoadGlobalProxy(Register dst) {
   1364     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
   1365   }
   1366 
   1367   // Load the native context slot with the current index.
   1368   void LoadNativeContextSlot(int index, Register dst);
   1369 
   1370   // Load the initial map from the global function. The registers
   1371   // function and map can be the same.
   1372   void LoadGlobalFunctionInitialMap(Register function, Register map);
   1373 
   1374   // ---------------------------------------------------------------------------
   1375   // Runtime calls
   1376 
   1377   // Call a code stub.
   1378   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
   1379 
   1380   // Tail call a code stub (jump).
   1381   void TailCallStub(CodeStub* stub);
   1382 
   1383   // Return from a code stub after popping its arguments.
   1384   void StubReturn(int argc);
   1385 
   1386   // Call a runtime routine.
   1387   void CallRuntime(const Runtime::Function* f,
   1388                    int num_arguments,
   1389                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
   1390 
   1391   // Call a runtime function and save the value of XMM registers.
   1392   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
   1393     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1394     CallRuntime(function, function->nargs, kSaveFPRegs);
   1395   }
   1396 
   1397   // Convenience function: Same as above, but takes the fid instead.
   1398   void CallRuntime(Runtime::FunctionId fid,
   1399                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1400     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1401     CallRuntime(function, function->nargs, save_doubles);
   1402   }
   1403 
   1404   // Convenience function: Same as above, but takes the fid instead.
   1405   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
   1406                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1407     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
   1408   }
   1409 
   1410   // Convenience function: call an external reference.
   1411   void CallExternalReference(const ExternalReference& ext,
   1412                              int num_arguments);
   1413 
   1414   // Convenience function: tail call a runtime routine (jump)
   1415   void TailCallRuntime(Runtime::FunctionId fid);
   1416 
   1417   // Jump to a runtime routines
   1418   void JumpToExternalReference(const ExternalReference& ext,
   1419                                bool builtin_exit_frame = false);
   1420 
   1421   // Before calling a C-function from generated code, align arguments on stack.
   1422   // After aligning the frame, arguments must be stored in rsp[0], rsp[8],
   1423   // etc., not pushed. The argument count assumes all arguments are word sized.
   1424   // The number of slots reserved for arguments depends on platform. On Windows
   1425   // stack slots are reserved for the arguments passed in registers. On other
   1426   // platforms stack slots are only reserved for the arguments actually passed
   1427   // on the stack.
   1428   void PrepareCallCFunction(int num_arguments);
   1429 
   1430   // Calls a C function and cleans up the space for arguments allocated
   1431   // by PrepareCallCFunction. The called function is not allowed to trigger a
   1432   // garbage collection, since that might move the code and invalidate the
   1433   // return address (unless this is somehow accounted for by the called
   1434   // function).
   1435   void CallCFunction(ExternalReference function, int num_arguments);
   1436   void CallCFunction(Register function, int num_arguments);
   1437 
   1438   // Calculate the number of stack slots to reserve for arguments when calling a
   1439   // C function.
   1440   int ArgumentStackSlotsForCFunctionCall(int num_arguments);
   1441 
   1442   // ---------------------------------------------------------------------------
   1443   // Utilities
   1444 
   1445   void Ret();
   1446 
   1447   // Return and drop arguments from stack, where the number of arguments
   1448   // may be bigger than 2^16 - 1.  Requires a scratch register.
   1449   void Ret(int bytes_dropped, Register scratch);
   1450 
   1451   Handle<Object> CodeObject() {
   1452     DCHECK(!code_object_.is_null());
   1453     return code_object_;
   1454   }
   1455 
   1456   // Initialize fields with filler values.  Fields starting at |current_address|
   1457   // not including |end_address| are overwritten with the value in |filler|.  At
   1458   // the end the loop, |current_address| takes the value of |end_address|.
   1459   void InitializeFieldsWithFiller(Register current_address,
   1460                                   Register end_address, Register filler);
   1461 
   1462 
   1463   // Emit code for a truncating division by a constant. The dividend register is
   1464   // unchanged, the result is in rdx, and rax gets clobbered.
   1465   void TruncatingDiv(Register dividend, int32_t divisor);
   1466 
   1467   // ---------------------------------------------------------------------------
   1468   // StatsCounter support
   1469 
   1470   void SetCounter(StatsCounter* counter, int value);
   1471   void IncrementCounter(StatsCounter* counter, int value);
   1472   void DecrementCounter(StatsCounter* counter, int value);
   1473 
   1474 
   1475   // ---------------------------------------------------------------------------
   1476   // Debugging
   1477 
   1478   // Calls Abort(msg) if the condition cc is not satisfied.
   1479   // Use --debug_code to enable.
   1480   void Assert(Condition cc, BailoutReason reason);
   1481 
   1482   void AssertFastElements(Register elements);
   1483 
   1484   // Like Assert(), but always enabled.
   1485   void Check(Condition cc, BailoutReason reason);
   1486 
   1487   // Print a message to stdout and abort execution.
   1488   void Abort(BailoutReason msg);
   1489 
   1490   // Check that the stack is aligned.
   1491   void CheckStackAlignment();
   1492 
   1493   // Verify restrictions about code generated in stubs.
   1494   void set_generating_stub(bool value) { generating_stub_ = value; }
   1495   bool generating_stub() { return generating_stub_; }
   1496   void set_has_frame(bool value) { has_frame_ = value; }
   1497   bool has_frame() { return has_frame_; }
   1498   inline bool AllowThisStubCall(CodeStub* stub);
   1499 
   1500   static int SafepointRegisterStackIndex(Register reg) {
   1501     return SafepointRegisterStackIndex(reg.code());
   1502   }
   1503 
   1504   // Load the type feedback vector from a JavaScript frame.
   1505   void EmitLoadFeedbackVector(Register vector);
   1506 
   1507   // Activation support.
   1508   void EnterFrame(StackFrame::Type type);
   1509   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
   1510   void LeaveFrame(StackFrame::Type type);
   1511 
   1512   void EnterBuiltinFrame(Register context, Register target, Register argc);
   1513   void LeaveBuiltinFrame(Register context, Register target, Register argc);
   1514 
   1515   // Expects object in rax and returns map with validated enum cache
   1516   // in rax.  Assumes that any other register can be used as a scratch.
   1517   void CheckEnumCache(Label* call_runtime);
   1518 
   1519   // AllocationMemento support. Arrays may have an associated
   1520   // AllocationMemento object that can be checked for in order to pretransition
   1521   // to another type.
   1522   // On entry, receiver_reg should point to the array object.
   1523   // scratch_reg gets clobbered.
   1524   // If allocation info is present, condition flags are set to equal.
   1525   void TestJSArrayForAllocationMemento(Register receiver_reg,
   1526                                        Register scratch_reg,
   1527                                        Label* no_memento_found);
   1528 
   1529  private:
   1530   // Order general registers are pushed by Pushad.
   1531   // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r12, r14, r15.
   1532   static const int kSafepointPushRegisterIndices[Register::kNumRegisters];
   1533   static const int kNumSafepointSavedRegisters = 12;
   1534   static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
   1535 
   1536   bool generating_stub_;
   1537   bool has_frame_;
   1538   bool root_array_available_;
   1539 
   1540   // Returns a register holding the smi value. The register MUST NOT be
   1541   // modified. It may be the "smi 1 constant" register.
   1542   Register GetSmiConstant(Smi* value);
   1543 
   1544   int64_t RootRegisterDelta(ExternalReference other);
   1545 
   1546   // Moves the smi value to the destination register.
   1547   void LoadSmiConstant(Register dst, Smi* value);
   1548 
   1549   // This handle will be patched with the code object on installation.
   1550   Handle<Object> code_object_;
   1551 
   1552   // Helper functions for generating invokes.
   1553   void InvokePrologue(const ParameterCount& expected,
   1554                       const ParameterCount& actual,
   1555                       Label* done,
   1556                       bool* definitely_mismatches,
   1557                       InvokeFlag flag,
   1558                       Label::Distance near_jump,
   1559                       const CallWrapper& call_wrapper);
   1560 
   1561   void EnterExitFramePrologue(bool save_rax, StackFrame::Type frame_type);
   1562 
   1563   // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
   1564   // accessible via StackSpaceOperand.
   1565   void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
   1566 
   1567   void LeaveExitFrameEpilogue(bool restore_context);
   1568 
   1569   // Allocation support helpers.
   1570   // Loads the top of new-space into the result register.
   1571   // Otherwise the address of the new-space top is loaded into scratch (if
   1572   // scratch is valid), and the new-space top is loaded into result.
   1573   void LoadAllocationTopHelper(Register result,
   1574                                Register scratch,
   1575                                AllocationFlags flags);
   1576 
   1577   void MakeSureDoubleAlignedHelper(Register result,
   1578                                    Register scratch,
   1579                                    Label* gc_required,
   1580                                    AllocationFlags flags);
   1581 
   1582   // Update allocation top with value in result_end register.
   1583   // If scratch is valid, it contains the address of the allocation top.
   1584   void UpdateAllocationTopHelper(Register result_end,
   1585                                  Register scratch,
   1586                                  AllocationFlags flags);
   1587 
   1588   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
   1589   void InNewSpace(Register object,
   1590                   Register scratch,
   1591                   Condition cc,
   1592                   Label* branch,
   1593                   Label::Distance distance = Label::kFar);
   1594 
   1595   // Helper for finding the mark bits for an address.  Afterwards, the
   1596   // bitmap register points at the word with the mark bits and the mask
   1597   // the position of the first bit.  Uses rcx as scratch and leaves addr_reg
   1598   // unchanged.
   1599   inline void GetMarkBits(Register addr_reg,
   1600                           Register bitmap_reg,
   1601                           Register mask_reg);
   1602 
   1603   // Compute memory operands for safepoint stack slots.
   1604   Operand SafepointRegisterSlot(Register reg);
   1605   static int SafepointRegisterStackIndex(int reg_code) {
   1606     return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
   1607   }
   1608 
   1609   // Needs access to SafepointRegisterStackIndex for compiled frame
   1610   // traversal.
   1611   friend class StandardFrame;
   1612 };
   1613 
   1614 
   1615 // The code patcher is used to patch (typically) small parts of code e.g. for
   1616 // debugging and other types of instrumentation. When using the code patcher
   1617 // the exact number of bytes specified must be emitted. Is not legal to emit
   1618 // relocation information. If any of these constraints are violated it causes
   1619 // an assertion.
   1620 class CodePatcher {
   1621  public:
   1622   CodePatcher(Isolate* isolate, byte* address, int size);
   1623   ~CodePatcher();
   1624 
   1625   // Macro assembler to emit code.
   1626   MacroAssembler* masm() { return &masm_; }
   1627 
   1628  private:
   1629   byte* address_;  // The address of the code being patched.
   1630   int size_;  // Number of bytes of the expected patch size.
   1631   MacroAssembler masm_;  // Macro assembler used to generate the code.
   1632 };
   1633 
   1634 
   1635 // -----------------------------------------------------------------------------
   1636 // Static helper functions.
   1637 
   1638 // Generate an Operand for loading a field from an object.
   1639 inline Operand FieldOperand(Register object, int offset) {
   1640   return Operand(object, offset - kHeapObjectTag);
   1641 }
   1642 
   1643 
   1644 // Generate an Operand for loading an indexed field from an object.
   1645 inline Operand FieldOperand(Register object,
   1646                             Register index,
   1647                             ScaleFactor scale,
   1648                             int offset) {
   1649   return Operand(object, index, scale, offset - kHeapObjectTag);
   1650 }
   1651 
   1652 
   1653 inline Operand ContextOperand(Register context, int index) {
   1654   return Operand(context, Context::SlotOffset(index));
   1655 }
   1656 
   1657 
   1658 inline Operand ContextOperand(Register context, Register index) {
   1659   return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
   1660 }
   1661 
   1662 
   1663 inline Operand NativeContextOperand() {
   1664   return ContextOperand(rsi, Context::NATIVE_CONTEXT_INDEX);
   1665 }
   1666 
   1667 
   1668 // Provides access to exit frame stack space (not GCed).
   1669 inline Operand StackSpaceOperand(int index) {
   1670 #ifdef _WIN64
   1671   const int kShaddowSpace = 4;
   1672   return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
   1673 #else
   1674   return Operand(rsp, index * kPointerSize);
   1675 #endif
   1676 }
   1677 
   1678 
   1679 inline Operand StackOperandForReturnAddress(int32_t disp) {
   1680   return Operand(rsp, disp);
   1681 }
   1682 
   1683 #define ACCESS_MASM(masm) masm->
   1684 
   1685 }  // namespace internal
   1686 }  // namespace v8
   1687 
   1688 #endif  // V8_X64_MACRO_ASSEMBLER_X64_H_
   1689