Home | History | Annotate | Download | only in hwui
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 // The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
     18 #define CASTER_Z_CAP_RATIO 0.95f
     19 
     20 // When there is no umbra, then just fake the umbra using
     21 // centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
     22 #define FAKE_UMBRA_SIZE_RATIO 0.05f
     23 
     24 // When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
     25 // That is consider pretty fine tessllated polygon so far.
     26 // This is just to prevent using too much some memory when edge slicing is not
     27 // needed any more.
     28 #define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
     29 /**
     30  * Extra vertices for the corner for smoother corner.
     31  * Only for outer loop.
     32  * Note that we use such extra memory to avoid an extra loop.
     33  */
     34 // For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
     35 // Set to 1 if we don't want to have any.
     36 #define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
     37 
     38 // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
     39 // therefore, the maximum number of extra vertices will be twice bigger.
     40 #define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
     41 
     42 // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
     43 #define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
     44 
     45 #define PENUMBRA_ALPHA 0.0f
     46 #define UMBRA_ALPHA 1.0f
     47 
     48 #include "SpotShadow.h"
     49 
     50 #include "ShadowTessellator.h"
     51 #include "Vertex.h"
     52 #include "VertexBuffer.h"
     53 #include "utils/MathUtils.h"
     54 
     55 #include <math.h>
     56 #include <stdlib.h>
     57 #include <utils/Log.h>
     58 #include <algorithm>
     59 
     60 // TODO: After we settle down the new algorithm, we can remove the old one and
     61 // its utility functions.
     62 // Right now, we still need to keep it for comparison purpose and future expansion.
     63 namespace android {
     64 namespace uirenderer {
     65 
     66 static const float EPSILON = 1e-7;
     67 
     68 /**
     69  * For each polygon's vertex, the light center will project it to the receiver
     70  * as one of the outline vertex.
     71  * For each outline vertex, we need to store the position and normal.
     72  * Normal here is defined against the edge by the current vertex and the next vertex.
     73  */
     74 struct OutlineData {
     75     Vector2 position;
     76     Vector2 normal;
     77     float radius;
     78 };
     79 
     80 /**
     81  * For each vertex, we need to keep track of its angle, whether it is penumbra or
     82  * umbra, and its corresponding vertex index.
     83  */
     84 struct SpotShadow::VertexAngleData {
     85     // The angle to the vertex from the centroid.
     86     float mAngle;
     87     // True is the vertex comes from penumbra, otherwise it comes from umbra.
     88     bool mIsPenumbra;
     89     // The index of the vertex described by this data.
     90     int mVertexIndex;
     91     void set(float angle, bool isPenumbra, int index) {
     92         mAngle = angle;
     93         mIsPenumbra = isPenumbra;
     94         mVertexIndex = index;
     95     }
     96 };
     97 
     98 /**
     99  * Calculate the angle between and x and a y coordinate.
    100  * The atan2 range from -PI to PI.
    101  */
    102 static float angle(const Vector2& point, const Vector2& center) {
    103     return atan2(point.y - center.y, point.x - center.x);
    104 }
    105 
    106 /**
    107  * Calculate the intersection of a ray with the line segment defined by two points.
    108  *
    109  * Returns a negative value in error conditions.
    110 
    111  * @param rayOrigin The start of the ray
    112  * @param dx The x vector of the ray
    113  * @param dy The y vector of the ray
    114  * @param p1 The first point defining the line segment
    115  * @param p2 The second point defining the line segment
    116  * @return The distance along the ray if it intersects with the line segment, negative if otherwise
    117  */
    118 static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy, const Vector2& p1,
    119                                 const Vector2& p2) {
    120     // The math below is derived from solving this formula, basically the
    121     // intersection point should stay on both the ray and the edge of (p1, p2).
    122     // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
    123 
    124     float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
    125     if (divisor == 0) return -1.0f;  // error, invalid divisor
    126 
    127 #if DEBUG_SHADOW
    128     float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
    129     if (interpVal < 0 || interpVal > 1) {
    130         ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
    131     }
    132 #endif
    133 
    134     float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
    135                       rayOrigin.x * (p2.y - p1.y)) /
    136                      divisor;
    137 
    138     return distance;  // may be negative in error cases
    139 }
    140 
    141 /**
    142  * Sort points by their X coordinates
    143  *
    144  * @param points the points as a Vector2 array.
    145  * @param pointsLength the number of vertices of the polygon.
    146  */
    147 void SpotShadow::xsort(Vector2* points, int pointsLength) {
    148     auto cmp = [](const Vector2& a, const Vector2& b) -> bool { return a.x < b.x; };
    149     std::sort(points, points + pointsLength, cmp);
    150 }
    151 
    152 /**
    153  * compute the convex hull of a collection of Points
    154  *
    155  * @param points the points as a Vector2 array.
    156  * @param pointsLength the number of vertices of the polygon.
    157  * @param retPoly pre allocated array of floats to put the vertices
    158  * @return the number of points in the polygon 0 if no intersection
    159  */
    160 int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
    161     xsort(points, pointsLength);
    162     int n = pointsLength;
    163     Vector2 lUpper[n];
    164     lUpper[0] = points[0];
    165     lUpper[1] = points[1];
    166 
    167     int lUpperSize = 2;
    168 
    169     for (int i = 2; i < n; i++) {
    170         lUpper[lUpperSize] = points[i];
    171         lUpperSize++;
    172 
    173         while (lUpperSize > 2 &&
    174                !ccw(lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y, lUpper[lUpperSize - 2].x,
    175                     lUpper[lUpperSize - 2].y, lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
    176             // Remove the middle point of the three last
    177             lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
    178             lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
    179             lUpperSize--;
    180         }
    181     }
    182 
    183     Vector2 lLower[n];
    184     lLower[0] = points[n - 1];
    185     lLower[1] = points[n - 2];
    186 
    187     int lLowerSize = 2;
    188 
    189     for (int i = n - 3; i >= 0; i--) {
    190         lLower[lLowerSize] = points[i];
    191         lLowerSize++;
    192 
    193         while (lLowerSize > 2 &&
    194                !ccw(lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y, lLower[lLowerSize - 2].x,
    195                     lLower[lLowerSize - 2].y, lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
    196             // Remove the middle point of the three last
    197             lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
    198             lLowerSize--;
    199         }
    200     }
    201 
    202     // output points in CW ordering
    203     const int total = lUpperSize + lLowerSize - 2;
    204     int outIndex = total - 1;
    205     for (int i = 0; i < lUpperSize; i++) {
    206         retPoly[outIndex] = lUpper[i];
    207         outIndex--;
    208     }
    209 
    210     for (int i = 1; i < lLowerSize - 1; i++) {
    211         retPoly[outIndex] = lLower[i];
    212         outIndex--;
    213     }
    214     // TODO: Add test harness which verify that all the points are inside the hull.
    215     return total;
    216 }
    217 
    218 /**
    219  * Test whether the 3 points form a counter clockwise turn.
    220  *
    221  * @return true if a right hand turn
    222  */
    223 bool SpotShadow::ccw(float ax, float ay, float bx, float by, float cx, float cy) {
    224     return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
    225 }
    226 
    227 /**
    228  * Sort points about a center point
    229  *
    230  * @param poly The in and out polyogon as a Vector2 array.
    231  * @param polyLength The number of vertices of the polygon.
    232  * @param center the center ctr[0] = x , ctr[1] = y to sort around.
    233  */
    234 void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
    235     quicksortCirc(poly, 0, polyLength - 1, center);
    236 }
    237 
    238 /**
    239  * Swap points pointed to by i and j
    240  */
    241 void SpotShadow::swap(Vector2* points, int i, int j) {
    242     Vector2 temp = points[i];
    243     points[i] = points[j];
    244     points[j] = temp;
    245 }
    246 
    247 /**
    248  * quick sort implementation about the center.
    249  */
    250 void SpotShadow::quicksortCirc(Vector2* points, int low, int high, const Vector2& center) {
    251     int i = low, j = high;
    252     int p = low + (high - low) / 2;
    253     float pivot = angle(points[p], center);
    254     while (i <= j) {
    255         while (angle(points[i], center) > pivot) {
    256             i++;
    257         }
    258         while (angle(points[j], center) < pivot) {
    259             j--;
    260         }
    261 
    262         if (i <= j) {
    263             swap(points, i, j);
    264             i++;
    265             j--;
    266         }
    267     }
    268     if (low < j) quicksortCirc(points, low, j, center);
    269     if (i < high) quicksortCirc(points, i, high, center);
    270 }
    271 
    272 /**
    273  * Test whether a point is inside the polygon.
    274  *
    275  * @param testPoint the point to test
    276  * @param poly the polygon
    277  * @return true if the testPoint is inside the poly.
    278  */
    279 bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint, const Vector2* poly, int len) {
    280     bool c = false;
    281     float testx = testPoint.x;
    282     float testy = testPoint.y;
    283     for (int i = 0, j = len - 1; i < len; j = i++) {
    284         float startX = poly[j].x;
    285         float startY = poly[j].y;
    286         float endX = poly[i].x;
    287         float endY = poly[i].y;
    288 
    289         if (((endY > testy) != (startY > testy)) &&
    290             (testx < (startX - endX) * (testy - endY) / (startY - endY) + endX)) {
    291             c = !c;
    292         }
    293     }
    294     return c;
    295 }
    296 
    297 /**
    298  * Reverse the polygon
    299  *
    300  * @param polygon the polygon as a Vector2 array
    301  * @param len the number of points of the polygon
    302  */
    303 void SpotShadow::reverse(Vector2* polygon, int len) {
    304     int n = len / 2;
    305     for (int i = 0; i < n; i++) {
    306         Vector2 tmp = polygon[i];
    307         int k = len - 1 - i;
    308         polygon[i] = polygon[k];
    309         polygon[k] = tmp;
    310     }
    311 }
    312 
    313 /**
    314  * Compute a horizontal circular polygon about point (x , y , height) of radius
    315  * (size)
    316  *
    317  * @param points number of the points of the output polygon.
    318  * @param lightCenter the center of the light.
    319  * @param size the light size.
    320  * @param ret result polygon.
    321  */
    322 void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter, float size,
    323                                      Vector3* ret) {
    324     // TODO: Caching all the sin / cos values and store them in a look up table.
    325     for (int i = 0; i < points; i++) {
    326         float angle = 2 * i * M_PI / points;
    327         ret[i].x = cosf(angle) * size + lightCenter.x;
    328         ret[i].y = sinf(angle) * size + lightCenter.y;
    329         ret[i].z = lightCenter.z;
    330     }
    331 }
    332 
    333 /**
    334  * From light center, project one vertex to the z=0 surface and get the outline.
    335  *
    336  * @param outline The result which is the outline position.
    337  * @param lightCenter The center of light.
    338  * @param polyVertex The input polygon's vertex.
    339  *
    340  * @return float The ratio of (polygon.z / light.z - polygon.z)
    341  */
    342 float SpotShadow::projectCasterToOutline(Vector2& outline, const Vector3& lightCenter,
    343                                          const Vector3& polyVertex) {
    344     float lightToPolyZ = lightCenter.z - polyVertex.z;
    345     float ratioZ = CASTER_Z_CAP_RATIO;
    346     if (lightToPolyZ != 0) {
    347         // If any caster's vertex is almost above the light, we just keep it as 95%
    348         // of the height of the light.
    349         ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
    350     }
    351 
    352     outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
    353     outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
    354     return ratioZ;
    355 }
    356 
    357 /**
    358  * Generate the shadow spot light of shape lightPoly and a object poly
    359  *
    360  * @param isCasterOpaque whether the caster is opaque
    361  * @param lightCenter the center of the light
    362  * @param lightSize the radius of the light
    363  * @param poly x,y,z vertexes of a convex polygon that occludes the light source
    364  * @param polyLength number of vertexes of the occluding polygon
    365  * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
    366  *                            empty strip if error.
    367  */
    368 void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter, float lightSize,
    369                                   const Vector3* poly, int polyLength, const Vector3& polyCentroid,
    370                                   VertexBuffer& shadowTriangleStrip) {
    371     if (CC_UNLIKELY(lightCenter.z <= 0)) {
    372         ALOGW("Relative Light Z is not positive. No spot shadow!");
    373         return;
    374     }
    375     if (CC_UNLIKELY(polyLength < 3)) {
    376 #if DEBUG_SHADOW
    377         ALOGW("Invalid polygon length. No spot shadow!");
    378 #endif
    379         return;
    380     }
    381     OutlineData outlineData[polyLength];
    382     Vector2 outlineCentroid;
    383     // Calculate the projected outline for each polygon's vertices from the light center.
    384     //
    385     //                       O     Light
    386     //                      /
    387     //                    /
    388     //                   .     Polygon vertex
    389     //                 /
    390     //               /
    391     //              O     Outline vertices
    392     //
    393     // Ratio = (Poly - Outline) / (Light - Poly)
    394     // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
    395     // Outline's radius / Light's radius = Ratio
    396 
    397     // Compute the last outline vertex to make sure we can get the normal and outline
    398     // in one single loop.
    399     projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter, poly[polyLength - 1]);
    400 
    401     // Take the outline's polygon, calculate the normal for each outline edge.
    402     int currentNormalIndex = polyLength - 1;
    403     int nextNormalIndex = 0;
    404 
    405     for (int i = 0; i < polyLength; i++) {
    406         float ratioZ = projectCasterToOutline(outlineData[i].position, lightCenter, poly[i]);
    407         outlineData[i].radius = ratioZ * lightSize;
    408 
    409         outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
    410                 outlineData[currentNormalIndex].position, outlineData[nextNormalIndex].position);
    411         currentNormalIndex = (currentNormalIndex + 1) % polyLength;
    412         nextNormalIndex++;
    413     }
    414 
    415     projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
    416 
    417     int penumbraIndex = 0;
    418     // Then each polygon's vertex produce at minmal 2 penumbra vertices.
    419     // Since the size can be dynamic here, we keep track of the size and update
    420     // the real size at the end.
    421     int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
    422     Vector2 penumbra[allocatedPenumbraLength];
    423     int totalExtraCornerSliceNumber = 0;
    424 
    425     Vector2 umbra[polyLength];
    426 
    427     // When centroid is covered by all circles from outline, then we consider
    428     // the umbra is invalid, and we will tune down the shadow strength.
    429     bool hasValidUmbra = true;
    430     // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
    431     float minRaitoVI = FLT_MAX;
    432 
    433     for (int i = 0; i < polyLength; i++) {
    434         // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
    435         // There is no guarantee that the penumbra is still convex, but for
    436         // each outline vertex, it will connect to all its corresponding penumbra vertices as
    437         // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
    438         //
    439         // Penumbra Vertices marked as Pi
    440         // Outline Vertices marked as Vi
    441         //                                            (P3)
    442         //          (P2)                               |     ' (P4)
    443         //   (P1)'   |                                 |   '
    444         //         ' |                                 | '
    445         // (P0)  ------------------------------------------------(P5)
    446         //           | (V0)                            |(V1)
    447         //           |                                 |
    448         //           |                                 |
    449         //           |                                 |
    450         //           |                                 |
    451         //           |                                 |
    452         //           |                                 |
    453         //           |                                 |
    454         //           |                                 |
    455         //       (V3)-----------------------------------(V2)
    456         int preNormalIndex = (i + polyLength - 1) % polyLength;
    457 
    458         const Vector2& previousNormal = outlineData[preNormalIndex].normal;
    459         const Vector2& currentNormal = outlineData[i].normal;
    460 
    461         // Depending on how roundness we want for each corner, we can subdivide
    462         // further here and/or introduce some heuristic to decide how much the
    463         // subdivision should be.
    464         int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
    465                 previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
    466 
    467         int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
    468         totalExtraCornerSliceNumber += currentExtraSliceNumber;
    469 #if DEBUG_SHADOW
    470         ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
    471         ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
    472         ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
    473 #endif
    474         if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
    475             currentCornerSliceNumber = 1;
    476         }
    477         for (int k = 0; k <= currentCornerSliceNumber; k++) {
    478             Vector2 avgNormal =
    479                     (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
    480                     currentCornerSliceNumber;
    481             avgNormal.normalize();
    482             penumbra[penumbraIndex++] = outlineData[i].position + avgNormal * outlineData[i].radius;
    483         }
    484 
    485         // Compute the umbra by the intersection from the outline's centroid!
    486         //
    487         //       (V) ------------------------------------
    488         //           |          '                       |
    489         //           |         '                        |
    490         //           |       ' (I)                      |
    491         //           |    '                             |
    492         //           | '             (C)                |
    493         //           |                                  |
    494         //           |                                  |
    495         //           |                                  |
    496         //           |                                  |
    497         //           ------------------------------------
    498         //
    499         // Connect a line b/t the outline vertex (V) and the centroid (C), it will
    500         // intersect with the outline vertex's circle at point (I).
    501         // Now, ratioVI = VI / VC, ratioIC = IC / VC
    502         // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
    503         //
    504         // When all of the outline circles cover the the outline centroid, (like I is
    505         // on the other side of C), there is no real umbra any more, so we just fake
    506         // a small area around the centroid as the umbra, and tune down the spot
    507         // shadow's umbra strength to simulate the effect the whole shadow will
    508         // become lighter in this case.
    509         // The ratio can be simulated by using the inverse of maximum of ratioVI for
    510         // all (V).
    511         float distOutline = (outlineData[i].position - outlineCentroid).length();
    512         if (CC_UNLIKELY(distOutline == 0)) {
    513             // If the outline has 0 area, then there is no spot shadow anyway.
    514             ALOGW("Outline has 0 area, no spot shadow!");
    515             return;
    516         }
    517 
    518         float ratioVI = outlineData[i].radius / distOutline;
    519         minRaitoVI = std::min(minRaitoVI, ratioVI);
    520         if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
    521             ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
    522         }
    523         // When we know we don't have valid umbra, don't bother to compute the
    524         // values below. But we can't skip the loop yet since we want to know the
    525         // maximum ratio.
    526         float ratioIC = 1 - ratioVI;
    527         umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
    528     }
    529 
    530     hasValidUmbra = (minRaitoVI <= 1.0);
    531     float shadowStrengthScale = 1.0;
    532     if (!hasValidUmbra) {
    533 #if DEBUG_SHADOW
    534         ALOGW("The object is too close to the light or too small, no real umbra!");
    535 #endif
    536         for (int i = 0; i < polyLength; i++) {
    537             umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
    538                        outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
    539         }
    540         shadowStrengthScale = 1.0 / minRaitoVI;
    541     }
    542 
    543     int penumbraLength = penumbraIndex;
    544     int umbraLength = polyLength;
    545 
    546 #if DEBUG_SHADOW
    547     ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength,
    548           allocatedPenumbraLength);
    549     dumpPolygon(poly, polyLength, "input poly");
    550     dumpPolygon(penumbra, penumbraLength, "penumbra");
    551     dumpPolygon(umbra, umbraLength, "umbra");
    552     ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
    553 #endif
    554 
    555     // The penumbra and umbra needs to be in convex shape to keep consistency
    556     // and quality.
    557     // Since we are still shooting rays to penumbra, it needs to be convex.
    558     // Umbra can be represented as a fan from the centroid, but visually umbra
    559     // looks nicer when it is convex.
    560     Vector2 finalUmbra[umbraLength];
    561     Vector2 finalPenumbra[penumbraLength];
    562     int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
    563     int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
    564 
    565     generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra, finalPenumbraLength,
    566                           finalUmbra, finalUmbraLength, poly, polyLength, shadowTriangleStrip,
    567                           outlineCentroid);
    568 }
    569 
    570 /**
    571  * This is only for experimental purpose.
    572  * After intersections are calculated, we could smooth the polygon if needed.
    573  * So far, we don't think it is more appealing yet.
    574  *
    575  * @param level The level of smoothness.
    576  * @param rays The total number of rays.
    577  * @param rayDist (In and Out) The distance for each ray.
    578  *
    579  */
    580 void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
    581     for (int k = 0; k < level; k++) {
    582         for (int i = 0; i < rays; i++) {
    583             float p1 = rayDist[(rays - 1 + i) % rays];
    584             float p2 = rayDist[i];
    585             float p3 = rayDist[(i + 1) % rays];
    586             rayDist[i] = (p1 + p2 * 2 + p3) / 4;
    587         }
    588     }
    589 }
    590 
    591 // Index pair is meant for storing the tessellation information for the penumbra
    592 // area. One index must come from exterior tangent of the circles, the other one
    593 // must come from the interior tangent of the circles.
    594 struct IndexPair {
    595     int outerIndex;
    596     int innerIndex;
    597 };
    598 
    599 // For one penumbra vertex, find the cloest umbra vertex and return its index.
    600 inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) {
    601     float minLengthSquared = FLT_MAX;
    602     int resultIndex = -1;
    603     bool hasDecreased = false;
    604     // Starting with some negative offset, assuming both umbra and penumbra are starting
    605     // at the same angle, this can help to find the result faster.
    606     // Normally, loop 3 times, we can find the closest point.
    607     int offset = polygonLength - 2;
    608     for (int i = 0; i < polygonLength; i++) {
    609         int currentIndex = (i + offset) % polygonLength;
    610         float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared();
    611         if (currentLengthSquared < minLengthSquared) {
    612             if (minLengthSquared != FLT_MAX) {
    613                 hasDecreased = true;
    614             }
    615             minLengthSquared = currentLengthSquared;
    616             resultIndex = currentIndex;
    617         } else if (currentLengthSquared > minLengthSquared && hasDecreased) {
    618             // Early break b/c we have found the closet one and now the length
    619             // is increasing again.
    620             break;
    621         }
    622     }
    623     if (resultIndex == -1) {
    624         ALOGE("resultIndex is -1, the polygon must be invalid!");
    625         resultIndex = 0;
    626     }
    627     return resultIndex;
    628 }
    629 
    630 // Allow some epsilon here since the later ray intersection did allow for some small
    631 // floating point error, when the intersection point is slightly outside the segment.
    632 inline bool sameDirections(bool isPositiveCross, float a, float b) {
    633     if (isPositiveCross) {
    634         return a >= -EPSILON && b >= -EPSILON;
    635     } else {
    636         return a <= EPSILON && b <= EPSILON;
    637     }
    638 }
    639 
    640 // Find the right polygon edge to shoot the ray at.
    641 inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir,
    642                          const Vector2* polyToCentroid, int polyLength) {
    643     // Make sure we loop with a bound.
    644     for (int i = 0; i < polyLength; i++) {
    645         int currentIndex = (i + startPolyIndex) % polyLength;
    646         const Vector2& currentToCentroid = polyToCentroid[currentIndex];
    647         const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength];
    648 
    649         float currentCrossUmbra = currentToCentroid.cross(umbraDir);
    650         float umbraCrossNext = umbraDir.cross(nextToCentroid);
    651         if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) {
    652 #if DEBUG_SHADOW
    653             ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex);
    654 #endif
    655             return currentIndex;
    656         }
    657     }
    658     LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex);
    659     return -1;
    660 }
    661 
    662 // Generate the index pair for penumbra / umbra vertices, and more penumbra vertices
    663 // if needed.
    664 inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength,
    665                                            const Vector2* umbra, int umbraLength,
    666                                            Vector2* newPenumbra, int& newPenumbraIndex,
    667                                            IndexPair* verticesPair, int& verticesPairIndex) {
    668     // In order to keep everything in just one loop, we need to pre-compute the
    669     // closest umbra vertex for the last penumbra vertex.
    670     int previousClosestUmbraIndex =
    671             getClosestUmbraIndex(penumbra[penumbraLength - 1], umbra, umbraLength);
    672     for (int i = 0; i < penumbraLength; i++) {
    673         const Vector2& currentPenumbraVertex = penumbra[i];
    674         // For current penumbra vertex, starting from previousClosestUmbraIndex,
    675         // then check the next one until the distance increase.
    676         // The last one before the increase is the umbra vertex we need to pair with.
    677         float currentLengthSquared =
    678                 (currentPenumbraVertex - umbra[previousClosestUmbraIndex]).lengthSquared();
    679         int currentClosestUmbraIndex = previousClosestUmbraIndex;
    680         int indexDelta = 0;
    681         for (int j = 1; j < umbraLength; j++) {
    682             int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength;
    683             float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared();
    684             if (newLengthSquared > currentLengthSquared) {
    685                 // currentClosestUmbraIndex is the umbra vertex's index which has
    686                 // currently found smallest distance, so we can simply break here.
    687                 break;
    688             } else {
    689                 currentLengthSquared = newLengthSquared;
    690                 indexDelta++;
    691                 currentClosestUmbraIndex = newUmbraIndex;
    692             }
    693         }
    694 
    695         if (indexDelta > 1) {
    696             // For those umbra don't have  penumbra, generate new penumbra vertices by
    697             // interpolation.
    698             //
    699             // Assuming Pi for penumbra vertices, and Ui for umbra vertices.
    700             // In the case like below P1 paired with U1 and P2 paired with  U5.
    701             // U2 to U4 are unpaired umbra vertices.
    702             //
    703             // P1                                        P2
    704             // |                                          |
    705             // U1     U2                   U3     U4     U5
    706             //
    707             // We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3
    708             // to pair with U2 to U4.
    709             //
    710             // P1     P1.1                P1.2   P1.3    P2
    711             // |       |                   |      |      |
    712             // U1     U2                   U3     U4     U5
    713             //
    714             // That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra
    715             // vertex's location.
    716             int newPenumbraNumber = indexDelta - 1;
    717 
    718             float accumulatedDeltaLength[indexDelta];
    719             float totalDeltaLength = 0;
    720 
    721             // To save time, cache the previous umbra vertex info outside the loop
    722             // and update each loop.
    723             Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex];
    724             Vector2 skippedUmbra;
    725             // Use umbra data to precompute the length b/t unpaired umbra vertices,
    726             // and its ratio against the total length.
    727             for (int k = 0; k < indexDelta; k++) {
    728                 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
    729                 skippedUmbra = umbra[skippedUmbraIndex];
    730                 float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length();
    731 
    732                 totalDeltaLength += currentDeltaLength;
    733                 accumulatedDeltaLength[k] = totalDeltaLength;
    734 
    735                 previousClosestUmbra = skippedUmbra;
    736             }
    737 
    738             const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength];
    739             // Then for each unpaired umbra vertex, create a new penumbra by the ratio,
    740             // and pair them togehter.
    741             for (int k = 0; k < newPenumbraNumber; k++) {
    742                 float weightForCurrentPenumbra = 1.0f;
    743                 if (totalDeltaLength != 0.0f) {
    744                     weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength;
    745                 }
    746                 float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra;
    747 
    748                 Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra +
    749                                                previousPenumbra * weightForPreviousPenumbra;
    750 
    751                 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
    752                 verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
    753                 verticesPair[verticesPairIndex].innerIndex = skippedUmbraIndex;
    754                 verticesPairIndex++;
    755                 newPenumbra[newPenumbraIndex++] = interpolatedPenumbra;
    756             }
    757         }
    758         verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
    759         verticesPair[verticesPairIndex].innerIndex = currentClosestUmbraIndex;
    760         verticesPairIndex++;
    761         newPenumbra[newPenumbraIndex++] = currentPenumbraVertex;
    762 
    763         previousClosestUmbraIndex = currentClosestUmbraIndex;
    764     }
    765 }
    766 
    767 // Precompute all the polygon's vector, return true if the reference cross product is positive.
    768 inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength, const Vector2& centroid,
    769                               Vector2* polyToCentroid) {
    770     for (int j = 0; j < polyLength; j++) {
    771         polyToCentroid[j] = poly2d[j] - centroid;
    772         // Normalize these vectors such that we can use epsilon comparison after
    773         // computing their cross products with another normalized vector.
    774         polyToCentroid[j].normalize();
    775     }
    776     float refCrossProduct = 0;
    777     for (int j = 0; j < polyLength; j++) {
    778         refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]);
    779         if (refCrossProduct != 0) {
    780             break;
    781         }
    782     }
    783 
    784     return refCrossProduct > 0;
    785 }
    786 
    787 // For one umbra vertex, shoot an ray from centroid to it.
    788 // If the ray hit the polygon first, then return the intersection point as the
    789 // closer vertex.
    790 inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid,
    791                                const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid,
    792                                bool isPositiveCross, int& previousPolyIndex) {
    793     Vector2 umbraToCentroid = umbraVertex - centroid;
    794     float distanceToUmbra = umbraToCentroid.length();
    795     umbraToCentroid = umbraToCentroid / distanceToUmbra;
    796 
    797     // previousPolyIndex is updated for each item such that we can minimize the
    798     // looping inside findPolyIndex();
    799     previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex, umbraToCentroid,
    800                                       polyToCentroid, polyLength);
    801 
    802     float dx = umbraToCentroid.x;
    803     float dy = umbraToCentroid.y;
    804     float distanceToIntersectPoly =
    805             rayIntersectPoints(centroid, dx, dy, poly2d[previousPolyIndex],
    806                                poly2d[(previousPolyIndex + 1) % polyLength]);
    807     if (distanceToIntersectPoly < 0) {
    808         distanceToIntersectPoly = 0;
    809     }
    810 
    811     // Pick the closer one as the occluded area vertex.
    812     Vector2 closerVertex;
    813     if (distanceToIntersectPoly < distanceToUmbra) {
    814         closerVertex.x = centroid.x + dx * distanceToIntersectPoly;
    815         closerVertex.y = centroid.y + dy * distanceToIntersectPoly;
    816     } else {
    817         closerVertex = umbraVertex;
    818     }
    819 
    820     return closerVertex;
    821 }
    822 
    823 /**
    824  * Generate a triangle strip given two convex polygon
    825 **/
    826 void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
    827                                        Vector2* penumbra, int penumbraLength, Vector2* umbra,
    828                                        int umbraLength, const Vector3* poly, int polyLength,
    829                                        VertexBuffer& shadowTriangleStrip, const Vector2& centroid) {
    830     bool hasOccludedUmbraArea = false;
    831     Vector2 poly2d[polyLength];
    832 
    833     if (isCasterOpaque) {
    834         for (int i = 0; i < polyLength; i++) {
    835             poly2d[i].x = poly[i].x;
    836             poly2d[i].y = poly[i].y;
    837         }
    838         // Make sure the centroid is inside the umbra, otherwise, fall back to the
    839         // approach as if there is no occluded umbra area.
    840         if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
    841             hasOccludedUmbraArea = true;
    842         }
    843     }
    844 
    845     // For each penumbra vertex, find its corresponding closest umbra vertex index.
    846     //
    847     // Penumbra Vertices marked as Pi
    848     // Umbra Vertices marked as Ui
    849     //                                            (P3)
    850     //          (P2)                               |     ' (P4)
    851     //   (P1)'   |                                 |   '
    852     //         ' |                                 | '
    853     // (P0)  ------------------------------------------------(P5)
    854     //           | (U0)                            |(U1)
    855     //           |                                 |
    856     //           |                                 |(U2)     (P5.1)
    857     //           |                                 |
    858     //           |                                 |
    859     //           |                                 |
    860     //           |                                 |
    861     //           |                                 |
    862     //           |                                 |
    863     //       (U4)-----------------------------------(U3)      (P6)
    864     //
    865     // At least, like P0, P1, P2, they will find the matching umbra as U0.
    866     // If we jump over some umbra vertex without matching penumbra vertex, then
    867     // we will generate some new penumbra vertex by interpolation. Like P6 is
    868     // matching U3, but U2 is not matched with any penumbra vertex.
    869     // So interpolate P5.1 out and match U2.
    870     // In this way, every umbra vertex will have a matching penumbra vertex.
    871     //
    872     // The total pair number can be as high as umbraLength + penumbraLength.
    873     const int maxNewPenumbraLength = umbraLength + penumbraLength;
    874     IndexPair verticesPair[maxNewPenumbraLength];
    875     int verticesPairIndex = 0;
    876 
    877     // Cache all the existing penumbra vertices and newly interpolated vertices into a
    878     // a new array.
    879     Vector2 newPenumbra[maxNewPenumbraLength];
    880     int newPenumbraIndex = 0;
    881 
    882     // For each penumbra vertex, find its closet umbra vertex by comparing the
    883     // neighbor umbra vertices.
    884     genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra,
    885                                    newPenumbraIndex, verticesPair, verticesPairIndex);
    886     ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair");
    887     ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra");
    888 #if DEBUG_SHADOW
    889     for (int i = 0; i < umbraLength; i++) {
    890         ALOGD("umbra i %d,  [%f, %f]", i, umbra[i].x, umbra[i].y);
    891     }
    892     for (int i = 0; i < newPenumbraIndex; i++) {
    893         ALOGD("new penumbra i %d,  [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y);
    894     }
    895     for (int i = 0; i < verticesPairIndex; i++) {
    896         ALOGD("index i %d,  [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex);
    897     }
    898 #endif
    899 
    900     // For the size of vertex buffer, we need 3 rings, one has newPenumbraSize,
    901     // one has umbraLength, the last one has at most umbraLength.
    902     //
    903     // For the size of index buffer, the umbra area needs (2 * umbraLength + 2).
    904     // The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2).
    905     // And 2 more for jumping between penumbra to umbra.
    906     const int newPenumbraLength = newPenumbraIndex;
    907     const int totalVertexCount = newPenumbraLength + umbraLength * 2;
    908     const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6;
    909     AlphaVertex* shadowVertices = shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
    910     uint16_t* indexBuffer = shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
    911     int vertexBufferIndex = 0;
    912     int indexBufferIndex = 0;
    913 
    914     // Fill the IB and VB for the penumbra area.
    915     for (int i = 0; i < newPenumbraLength; i++) {
    916         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x, newPenumbra[i].y,
    917                          PENUMBRA_ALPHA);
    918     }
    919     // Since the umbra can be a faked one when the occluder is too high, the umbra should be lighter
    920     // in this case.
    921     float scaledUmbraAlpha = UMBRA_ALPHA * shadowStrengthScale;
    922 
    923     for (int i = 0; i < umbraLength; i++) {
    924         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y,
    925                          scaledUmbraAlpha);
    926     }
    927 
    928     for (int i = 0; i < verticesPairIndex; i++) {
    929         indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex;
    930         // All umbra index need to be offseted by newPenumbraSize.
    931         indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength;
    932     }
    933     indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex;
    934     indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength;
    935 
    936     // Now fill the IB and VB for the umbra area.
    937     // First duplicated the index from previous strip and the first one for the
    938     // degenerated triangles.
    939     indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1];
    940     indexBufferIndex++;
    941     indexBuffer[indexBufferIndex++] = newPenumbraLength + 0;
    942     // Save the first VB index for umbra area in order to close the loop.
    943     int savedStartIndex = vertexBufferIndex;
    944 
    945     if (hasOccludedUmbraArea) {
    946         // Precompute all the polygon's vector, and the reference cross product,
    947         // in order to find the right polygon edge for the ray to intersect.
    948         Vector2 polyToCentroid[polyLength];
    949         bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid);
    950 
    951         // Because both the umbra and polygon are going in the same direction,
    952         // we can save the previous polygon index to make sure we have less polygon
    953         // vertex to compute for each ray.
    954         int previousPolyIndex = 0;
    955         for (int i = 0; i < umbraLength; i++) {
    956             // Shoot a ray from centroid to each umbra vertices and pick the one with
    957             // shorter distance to the centroid, b/t the umbra vertex or the intersection point.
    958             Vector2 closerVertex =
    959                     getCloserVertex(umbra[i], centroid, poly2d, polyLength, polyToCentroid,
    960                                     isPositiveCross, previousPolyIndex);
    961 
    962             // We already stored the umbra vertices, just need to add the occlued umbra's ones.
    963             indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
    964             indexBuffer[indexBufferIndex++] = vertexBufferIndex;
    965             AlphaVertex::set(&shadowVertices[vertexBufferIndex++], closerVertex.x, closerVertex.y,
    966                              scaledUmbraAlpha);
    967         }
    968     } else {
    969         // If there is no occluded umbra at all, then draw the triangle fan
    970         // starting from the centroid to all umbra vertices.
    971         int lastCentroidIndex = vertexBufferIndex;
    972         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x, centroid.y,
    973                          scaledUmbraAlpha);
    974         for (int i = 0; i < umbraLength; i++) {
    975             indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
    976             indexBuffer[indexBufferIndex++] = lastCentroidIndex;
    977         }
    978     }
    979     // Closing the umbra area triangle's loop here.
    980     indexBuffer[indexBufferIndex++] = newPenumbraLength;
    981     indexBuffer[indexBufferIndex++] = savedStartIndex;
    982 
    983     // At the end, update the real index and vertex buffer size.
    984     shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
    985     shadowTriangleStrip.updateIndexCount(indexBufferIndex);
    986     ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
    987     ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
    988 
    989     shadowTriangleStrip.setMeshFeatureFlags(VertexBuffer::kAlpha | VertexBuffer::kIndices);
    990     shadowTriangleStrip.computeBounds<AlphaVertex>();
    991 }
    992 
    993 #if DEBUG_SHADOW
    994 
    995 #define TEST_POINT_NUMBER 128
    996 /**
    997  * Calculate the bounds for generating random test points.
    998  */
    999 void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound, Vector2& upperBound) {
   1000     if (inVector.x < lowerBound.x) {
   1001         lowerBound.x = inVector.x;
   1002     }
   1003 
   1004     if (inVector.y < lowerBound.y) {
   1005         lowerBound.y = inVector.y;
   1006     }
   1007 
   1008     if (inVector.x > upperBound.x) {
   1009         upperBound.x = inVector.x;
   1010     }
   1011 
   1012     if (inVector.y > upperBound.y) {
   1013         upperBound.y = inVector.y;
   1014     }
   1015 }
   1016 
   1017 /**
   1018  * For debug purpose, when things go wrong, dump the whole polygon data.
   1019  */
   1020 void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
   1021     for (int i = 0; i < polyLength; i++) {
   1022         ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
   1023     }
   1024 }
   1025 
   1026 /**
   1027  * For debug purpose, when things go wrong, dump the whole polygon data.
   1028  */
   1029 void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
   1030     for (int i = 0; i < polyLength; i++) {
   1031         ALOGD("polygon %s i %d x %f y %f z %f", polyName, i, poly[i].x, poly[i].y, poly[i].z);
   1032     }
   1033 }
   1034 
   1035 /**
   1036  * Test whether the polygon is convex.
   1037  */
   1038 bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength, const char* name) {
   1039     bool isConvex = true;
   1040     for (int i = 0; i < polygonLength; i++) {
   1041         Vector2 start = polygon[i];
   1042         Vector2 middle = polygon[(i + 1) % polygonLength];
   1043         Vector2 end = polygon[(i + 2) % polygonLength];
   1044 
   1045         float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
   1046                       (float(middle.y) - start.y) * (float(end.x) - start.x);
   1047         bool isCCWOrCoLinear = (delta >= EPSILON);
   1048 
   1049         if (isCCWOrCoLinear) {
   1050             ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
   1051                   "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
   1052                   name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
   1053             isConvex = false;
   1054             break;
   1055         }
   1056     }
   1057     return isConvex;
   1058 }
   1059 
   1060 /**
   1061  * Test whether or not the polygon (intersection) is within the 2 input polygons.
   1062  * Using Marte Carlo method, we generate a random point, and if it is inside the
   1063  * intersection, then it must be inside both source polygons.
   1064  */
   1065 void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length, const Vector2* poly2,
   1066                                   int poly2Length, const Vector2* intersection,
   1067                                   int intersectionLength) {
   1068     // Find the min and max of x and y.
   1069     Vector2 lowerBound = {FLT_MAX, FLT_MAX};
   1070     Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
   1071     for (int i = 0; i < poly1Length; i++) {
   1072         updateBound(poly1[i], lowerBound, upperBound);
   1073     }
   1074     for (int i = 0; i < poly2Length; i++) {
   1075         updateBound(poly2[i], lowerBound, upperBound);
   1076     }
   1077 
   1078     bool dumpPoly = false;
   1079     for (int k = 0; k < TEST_POINT_NUMBER; k++) {
   1080         // Generate a random point between minX, minY and maxX, maxY.
   1081         float randomX = rand() / float(RAND_MAX);
   1082         float randomY = rand() / float(RAND_MAX);
   1083 
   1084         Vector2 testPoint;
   1085         testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
   1086         testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
   1087 
   1088         // If the random point is in both poly 1 and 2, then it must be intersection.
   1089         if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
   1090             if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
   1091                 dumpPoly = true;
   1092                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
   1093                       " not in the poly1",
   1094                       testPoint.x, testPoint.y);
   1095             }
   1096 
   1097             if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
   1098                 dumpPoly = true;
   1099                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
   1100                       " not in the poly2",
   1101                       testPoint.x, testPoint.y);
   1102             }
   1103         }
   1104     }
   1105 
   1106     if (dumpPoly) {
   1107         dumpPolygon(intersection, intersectionLength, "intersection");
   1108         for (int i = 1; i < intersectionLength; i++) {
   1109             Vector2 delta = intersection[i] - intersection[i - 1];
   1110             ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
   1111         }
   1112 
   1113         dumpPolygon(poly1, poly1Length, "poly 1");
   1114         dumpPolygon(poly2, poly2Length, "poly 2");
   1115     }
   1116 }
   1117 #endif
   1118 
   1119 };  // namespace uirenderer
   1120 };  // namespace android
   1121