Home | History | Annotate | Download | only in AST
      1 //===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// \brief C Language Family Type Representation
     11 ///
     12 /// This file defines the clang::Type interface and subclasses, used to
     13 /// represent types for languages in the C family.
     14 ///
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_CLANG_AST_TYPE_H
     18 #define LLVM_CLANG_AST_TYPE_H
     19 
     20 #include "clang/AST/NestedNameSpecifier.h"
     21 #include "clang/AST/TemplateName.h"
     22 #include "clang/Basic/AddressSpaces.h"
     23 #include "clang/Basic/Diagnostic.h"
     24 #include "clang/Basic/ExceptionSpecificationType.h"
     25 #include "clang/Basic/LLVM.h"
     26 #include "clang/Basic/Linkage.h"
     27 #include "clang/Basic/PartialDiagnostic.h"
     28 #include "clang/Basic/Specifiers.h"
     29 #include "clang/Basic/Visibility.h"
     30 #include "llvm/ADT/APInt.h"
     31 #include "llvm/ADT/FoldingSet.h"
     32 #include "llvm/ADT/Optional.h"
     33 #include "llvm/ADT/PointerIntPair.h"
     34 #include "llvm/ADT/PointerUnion.h"
     35 #include "llvm/ADT/Twine.h"
     36 #include "llvm/ADT/iterator_range.h"
     37 #include "llvm/Support/ErrorHandling.h"
     38 
     39 namespace clang {
     40   enum {
     41     TypeAlignmentInBits = 4,
     42     TypeAlignment = 1 << TypeAlignmentInBits
     43   };
     44   class Type;
     45   class ExtQuals;
     46   class QualType;
     47 }
     48 
     49 namespace llvm {
     50   template <typename T>
     51   class PointerLikeTypeTraits;
     52   template<>
     53   class PointerLikeTypeTraits< ::clang::Type*> {
     54   public:
     55     static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
     56     static inline ::clang::Type *getFromVoidPointer(void *P) {
     57       return static_cast< ::clang::Type*>(P);
     58     }
     59     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     60   };
     61   template<>
     62   class PointerLikeTypeTraits< ::clang::ExtQuals*> {
     63   public:
     64     static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
     65     static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
     66       return static_cast< ::clang::ExtQuals*>(P);
     67     }
     68     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     69   };
     70 
     71   template <>
     72   struct isPodLike<clang::QualType> { static const bool value = true; };
     73 }
     74 
     75 namespace clang {
     76   class ASTContext;
     77   class TypedefNameDecl;
     78   class TemplateDecl;
     79   class TemplateTypeParmDecl;
     80   class NonTypeTemplateParmDecl;
     81   class TemplateTemplateParmDecl;
     82   class TagDecl;
     83   class RecordDecl;
     84   class CXXRecordDecl;
     85   class EnumDecl;
     86   class FieldDecl;
     87   class FunctionDecl;
     88   class ObjCInterfaceDecl;
     89   class ObjCProtocolDecl;
     90   class ObjCMethodDecl;
     91   class ObjCTypeParamDecl;
     92   class UnresolvedUsingTypenameDecl;
     93   class Expr;
     94   class Stmt;
     95   class SourceLocation;
     96   class StmtIteratorBase;
     97   class TemplateArgument;
     98   class TemplateArgumentLoc;
     99   class TemplateArgumentListInfo;
    100   class ElaboratedType;
    101   class ExtQuals;
    102   class ExtQualsTypeCommonBase;
    103   struct PrintingPolicy;
    104 
    105   template <typename> class CanQual;
    106   typedef CanQual<Type> CanQualType;
    107 
    108   // Provide forward declarations for all of the *Type classes
    109 #define TYPE(Class, Base) class Class##Type;
    110 #include "clang/AST/TypeNodes.def"
    111 
    112 /// The collection of all-type qualifiers we support.
    113 /// Clang supports five independent qualifiers:
    114 /// * C99: const, volatile, and restrict
    115 /// * MS: __unaligned
    116 /// * Embedded C (TR18037): address spaces
    117 /// * Objective C: the GC attributes (none, weak, or strong)
    118 class Qualifiers {
    119 public:
    120   enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
    121     Const    = 0x1,
    122     Restrict = 0x2,
    123     Volatile = 0x4,
    124     CVRMask = Const | Volatile | Restrict
    125   };
    126 
    127   enum GC {
    128     GCNone = 0,
    129     Weak,
    130     Strong
    131   };
    132 
    133   enum ObjCLifetime {
    134     /// There is no lifetime qualification on this type.
    135     OCL_None,
    136 
    137     /// This object can be modified without requiring retains or
    138     /// releases.
    139     OCL_ExplicitNone,
    140 
    141     /// Assigning into this object requires the old value to be
    142     /// released and the new value to be retained.  The timing of the
    143     /// release of the old value is inexact: it may be moved to
    144     /// immediately after the last known point where the value is
    145     /// live.
    146     OCL_Strong,
    147 
    148     /// Reading or writing from this object requires a barrier call.
    149     OCL_Weak,
    150 
    151     /// Assigning into this object requires a lifetime extension.
    152     OCL_Autoreleasing
    153   };
    154 
    155   enum {
    156     /// The maximum supported address space number.
    157     /// 23 bits should be enough for anyone.
    158     MaxAddressSpace = 0x7fffffu,
    159 
    160     /// The width of the "fast" qualifier mask.
    161     FastWidth = 3,
    162 
    163     /// The fast qualifier mask.
    164     FastMask = (1 << FastWidth) - 1
    165   };
    166 
    167   Qualifiers() : Mask(0) {}
    168 
    169   /// Returns the common set of qualifiers while removing them from
    170   /// the given sets.
    171   static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
    172     // If both are only CVR-qualified, bit operations are sufficient.
    173     if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
    174       Qualifiers Q;
    175       Q.Mask = L.Mask & R.Mask;
    176       L.Mask &= ~Q.Mask;
    177       R.Mask &= ~Q.Mask;
    178       return Q;
    179     }
    180 
    181     Qualifiers Q;
    182     unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
    183     Q.addCVRQualifiers(CommonCRV);
    184     L.removeCVRQualifiers(CommonCRV);
    185     R.removeCVRQualifiers(CommonCRV);
    186 
    187     if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
    188       Q.setObjCGCAttr(L.getObjCGCAttr());
    189       L.removeObjCGCAttr();
    190       R.removeObjCGCAttr();
    191     }
    192 
    193     if (L.getObjCLifetime() == R.getObjCLifetime()) {
    194       Q.setObjCLifetime(L.getObjCLifetime());
    195       L.removeObjCLifetime();
    196       R.removeObjCLifetime();
    197     }
    198 
    199     if (L.getAddressSpace() == R.getAddressSpace()) {
    200       Q.setAddressSpace(L.getAddressSpace());
    201       L.removeAddressSpace();
    202       R.removeAddressSpace();
    203     }
    204     return Q;
    205   }
    206 
    207   static Qualifiers fromFastMask(unsigned Mask) {
    208     Qualifiers Qs;
    209     Qs.addFastQualifiers(Mask);
    210     return Qs;
    211   }
    212 
    213   static Qualifiers fromCVRMask(unsigned CVR) {
    214     Qualifiers Qs;
    215     Qs.addCVRQualifiers(CVR);
    216     return Qs;
    217   }
    218 
    219   static Qualifiers fromCVRUMask(unsigned CVRU) {
    220     Qualifiers Qs;
    221     Qs.addCVRUQualifiers(CVRU);
    222     return Qs;
    223   }
    224 
    225   // Deserialize qualifiers from an opaque representation.
    226   static Qualifiers fromOpaqueValue(unsigned opaque) {
    227     Qualifiers Qs;
    228     Qs.Mask = opaque;
    229     return Qs;
    230   }
    231 
    232   // Serialize these qualifiers into an opaque representation.
    233   unsigned getAsOpaqueValue() const {
    234     return Mask;
    235   }
    236 
    237   bool hasConst() const { return Mask & Const; }
    238   void setConst(bool flag) {
    239     Mask = (Mask & ~Const) | (flag ? Const : 0);
    240   }
    241   void removeConst() { Mask &= ~Const; }
    242   void addConst() { Mask |= Const; }
    243 
    244   bool hasVolatile() const { return Mask & Volatile; }
    245   void setVolatile(bool flag) {
    246     Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
    247   }
    248   void removeVolatile() { Mask &= ~Volatile; }
    249   void addVolatile() { Mask |= Volatile; }
    250 
    251   bool hasRestrict() const { return Mask & Restrict; }
    252   void setRestrict(bool flag) {
    253     Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
    254   }
    255   void removeRestrict() { Mask &= ~Restrict; }
    256   void addRestrict() { Mask |= Restrict; }
    257 
    258   bool hasCVRQualifiers() const { return getCVRQualifiers(); }
    259   unsigned getCVRQualifiers() const { return Mask & CVRMask; }
    260   void setCVRQualifiers(unsigned mask) {
    261     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    262     Mask = (Mask & ~CVRMask) | mask;
    263   }
    264   void removeCVRQualifiers(unsigned mask) {
    265     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    266     Mask &= ~mask;
    267   }
    268   void removeCVRQualifiers() {
    269     removeCVRQualifiers(CVRMask);
    270   }
    271   void addCVRQualifiers(unsigned mask) {
    272     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    273     Mask |= mask;
    274   }
    275   void addCVRUQualifiers(unsigned mask) {
    276     assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits");
    277     Mask |= mask;
    278   }
    279 
    280   bool hasUnaligned() const { return Mask & UMask; }
    281   void setUnaligned(bool flag) {
    282     Mask = (Mask & ~UMask) | (flag ? UMask : 0);
    283   }
    284   void removeUnaligned() { Mask &= ~UMask; }
    285   void addUnaligned() { Mask |= UMask; }
    286 
    287   bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
    288   GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
    289   void setObjCGCAttr(GC type) {
    290     Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
    291   }
    292   void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
    293   void addObjCGCAttr(GC type) {
    294     assert(type);
    295     setObjCGCAttr(type);
    296   }
    297   Qualifiers withoutObjCGCAttr() const {
    298     Qualifiers qs = *this;
    299     qs.removeObjCGCAttr();
    300     return qs;
    301   }
    302   Qualifiers withoutObjCLifetime() const {
    303     Qualifiers qs = *this;
    304     qs.removeObjCLifetime();
    305     return qs;
    306   }
    307 
    308   bool hasObjCLifetime() const { return Mask & LifetimeMask; }
    309   ObjCLifetime getObjCLifetime() const {
    310     return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
    311   }
    312   void setObjCLifetime(ObjCLifetime type) {
    313     Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
    314   }
    315   void removeObjCLifetime() { setObjCLifetime(OCL_None); }
    316   void addObjCLifetime(ObjCLifetime type) {
    317     assert(type);
    318     assert(!hasObjCLifetime());
    319     Mask |= (type << LifetimeShift);
    320   }
    321 
    322   /// True if the lifetime is neither None or ExplicitNone.
    323   bool hasNonTrivialObjCLifetime() const {
    324     ObjCLifetime lifetime = getObjCLifetime();
    325     return (lifetime > OCL_ExplicitNone);
    326   }
    327 
    328   /// True if the lifetime is either strong or weak.
    329   bool hasStrongOrWeakObjCLifetime() const {
    330     ObjCLifetime lifetime = getObjCLifetime();
    331     return (lifetime == OCL_Strong || lifetime == OCL_Weak);
    332   }
    333 
    334   bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
    335   unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
    336   bool hasTargetSpecificAddressSpace() const {
    337     return getAddressSpace() >= LangAS::FirstTargetAddressSpace;
    338   }
    339   /// Get the address space attribute value to be printed by diagnostics.
    340   unsigned getAddressSpaceAttributePrintValue() const {
    341     auto Addr = getAddressSpace();
    342     // This function is not supposed to be used with language specific
    343     // address spaces. If that happens, the diagnostic message should consider
    344     // printing the QualType instead of the address space value.
    345     assert(Addr == 0 || hasTargetSpecificAddressSpace());
    346     if (Addr)
    347       return Addr - LangAS::FirstTargetAddressSpace;
    348     // TODO: The diagnostic messages where Addr may be 0 should be fixed
    349     // since it cannot differentiate the situation where 0 denotes the default
    350     // address space or user specified __attribute__((address_space(0))).
    351     return 0;
    352   }
    353   void setAddressSpace(unsigned space) {
    354     assert(space <= MaxAddressSpace);
    355     Mask = (Mask & ~AddressSpaceMask)
    356          | (((uint32_t) space) << AddressSpaceShift);
    357   }
    358   void removeAddressSpace() { setAddressSpace(0); }
    359   void addAddressSpace(unsigned space) {
    360     assert(space);
    361     setAddressSpace(space);
    362   }
    363 
    364   // Fast qualifiers are those that can be allocated directly
    365   // on a QualType object.
    366   bool hasFastQualifiers() const { return getFastQualifiers(); }
    367   unsigned getFastQualifiers() const { return Mask & FastMask; }
    368   void setFastQualifiers(unsigned mask) {
    369     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    370     Mask = (Mask & ~FastMask) | mask;
    371   }
    372   void removeFastQualifiers(unsigned mask) {
    373     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    374     Mask &= ~mask;
    375   }
    376   void removeFastQualifiers() {
    377     removeFastQualifiers(FastMask);
    378   }
    379   void addFastQualifiers(unsigned mask) {
    380     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    381     Mask |= mask;
    382   }
    383 
    384   /// Return true if the set contains any qualifiers which require an ExtQuals
    385   /// node to be allocated.
    386   bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
    387   Qualifiers getNonFastQualifiers() const {
    388     Qualifiers Quals = *this;
    389     Quals.setFastQualifiers(0);
    390     return Quals;
    391   }
    392 
    393   /// Return true if the set contains any qualifiers.
    394   bool hasQualifiers() const { return Mask; }
    395   bool empty() const { return !Mask; }
    396 
    397   /// Add the qualifiers from the given set to this set.
    398   void addQualifiers(Qualifiers Q) {
    399     // If the other set doesn't have any non-boolean qualifiers, just
    400     // bit-or it in.
    401     if (!(Q.Mask & ~CVRMask))
    402       Mask |= Q.Mask;
    403     else {
    404       Mask |= (Q.Mask & CVRMask);
    405       if (Q.hasAddressSpace())
    406         addAddressSpace(Q.getAddressSpace());
    407       if (Q.hasObjCGCAttr())
    408         addObjCGCAttr(Q.getObjCGCAttr());
    409       if (Q.hasObjCLifetime())
    410         addObjCLifetime(Q.getObjCLifetime());
    411     }
    412   }
    413 
    414   /// \brief Remove the qualifiers from the given set from this set.
    415   void removeQualifiers(Qualifiers Q) {
    416     // If the other set doesn't have any non-boolean qualifiers, just
    417     // bit-and the inverse in.
    418     if (!(Q.Mask & ~CVRMask))
    419       Mask &= ~Q.Mask;
    420     else {
    421       Mask &= ~(Q.Mask & CVRMask);
    422       if (getObjCGCAttr() == Q.getObjCGCAttr())
    423         removeObjCGCAttr();
    424       if (getObjCLifetime() == Q.getObjCLifetime())
    425         removeObjCLifetime();
    426       if (getAddressSpace() == Q.getAddressSpace())
    427         removeAddressSpace();
    428     }
    429   }
    430 
    431   /// Add the qualifiers from the given set to this set, given that
    432   /// they don't conflict.
    433   void addConsistentQualifiers(Qualifiers qs) {
    434     assert(getAddressSpace() == qs.getAddressSpace() ||
    435            !hasAddressSpace() || !qs.hasAddressSpace());
    436     assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
    437            !hasObjCGCAttr() || !qs.hasObjCGCAttr());
    438     assert(getObjCLifetime() == qs.getObjCLifetime() ||
    439            !hasObjCLifetime() || !qs.hasObjCLifetime());
    440     Mask |= qs.Mask;
    441   }
    442 
    443   /// Returns true if this address space is a superset of the other one.
    444   /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
    445   /// overlapping address spaces.
    446   /// CL1.1 or CL1.2:
    447   ///   every address space is a superset of itself.
    448   /// CL2.0 adds:
    449   ///   __generic is a superset of any address space except for __constant.
    450   bool isAddressSpaceSupersetOf(Qualifiers other) const {
    451     return
    452         // Address spaces must match exactly.
    453         getAddressSpace() == other.getAddressSpace() ||
    454         // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
    455         // for __constant can be used as __generic.
    456         (getAddressSpace() == LangAS::opencl_generic &&
    457          other.getAddressSpace() != LangAS::opencl_constant);
    458   }
    459 
    460   /// Determines if these qualifiers compatibly include another set.
    461   /// Generally this answers the question of whether an object with the other
    462   /// qualifiers can be safely used as an object with these qualifiers.
    463   bool compatiblyIncludes(Qualifiers other) const {
    464     return isAddressSpaceSupersetOf(other) &&
    465            // ObjC GC qualifiers can match, be added, or be removed, but can't
    466            // be changed.
    467            (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
    468             !other.hasObjCGCAttr()) &&
    469            // ObjC lifetime qualifiers must match exactly.
    470            getObjCLifetime() == other.getObjCLifetime() &&
    471            // CVR qualifiers may subset.
    472            (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
    473            // U qualifier may superset.
    474            (!other.hasUnaligned() || hasUnaligned());
    475   }
    476 
    477   /// \brief Determines if these qualifiers compatibly include another set of
    478   /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
    479   ///
    480   /// One set of Objective-C lifetime qualifiers compatibly includes the other
    481   /// if the lifetime qualifiers match, or if both are non-__weak and the
    482   /// including set also contains the 'const' qualifier, or both are non-__weak
    483   /// and one is None (which can only happen in non-ARC modes).
    484   bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
    485     if (getObjCLifetime() == other.getObjCLifetime())
    486       return true;
    487 
    488     if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
    489       return false;
    490 
    491     if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
    492       return true;
    493 
    494     return hasConst();
    495   }
    496 
    497   /// \brief Determine whether this set of qualifiers is a strict superset of
    498   /// another set of qualifiers, not considering qualifier compatibility.
    499   bool isStrictSupersetOf(Qualifiers Other) const;
    500 
    501   bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
    502   bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
    503 
    504   explicit operator bool() const { return hasQualifiers(); }
    505 
    506   Qualifiers &operator+=(Qualifiers R) {
    507     addQualifiers(R);
    508     return *this;
    509   }
    510 
    511   // Union two qualifier sets.  If an enumerated qualifier appears
    512   // in both sets, use the one from the right.
    513   friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
    514     L += R;
    515     return L;
    516   }
    517 
    518   Qualifiers &operator-=(Qualifiers R) {
    519     removeQualifiers(R);
    520     return *this;
    521   }
    522 
    523   /// \brief Compute the difference between two qualifier sets.
    524   friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
    525     L -= R;
    526     return L;
    527   }
    528 
    529   std::string getAsString() const;
    530   std::string getAsString(const PrintingPolicy &Policy) const;
    531 
    532   bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
    533   void print(raw_ostream &OS, const PrintingPolicy &Policy,
    534              bool appendSpaceIfNonEmpty = false) const;
    535 
    536   void Profile(llvm::FoldingSetNodeID &ID) const {
    537     ID.AddInteger(Mask);
    538   }
    539 
    540 private:
    541 
    542   // bits:     |0 1 2|3|4 .. 5|6  ..  8|9   ...   31|
    543   //           |C R V|U|GCAttr|Lifetime|AddressSpace|
    544   uint32_t Mask;
    545 
    546   static const uint32_t UMask = 0x8;
    547   static const uint32_t UShift = 3;
    548   static const uint32_t GCAttrMask = 0x30;
    549   static const uint32_t GCAttrShift = 4;
    550   static const uint32_t LifetimeMask = 0x1C0;
    551   static const uint32_t LifetimeShift = 6;
    552   static const uint32_t AddressSpaceMask =
    553       ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
    554   static const uint32_t AddressSpaceShift = 9;
    555 };
    556 
    557 /// A std::pair-like structure for storing a qualified type split
    558 /// into its local qualifiers and its locally-unqualified type.
    559 struct SplitQualType {
    560   /// The locally-unqualified type.
    561   const Type *Ty;
    562 
    563   /// The local qualifiers.
    564   Qualifiers Quals;
    565 
    566   SplitQualType() : Ty(nullptr), Quals() {}
    567   SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
    568 
    569   SplitQualType getSingleStepDesugaredType() const; // end of this file
    570 
    571   // Make std::tie work.
    572   std::pair<const Type *,Qualifiers> asPair() const {
    573     return std::pair<const Type *, Qualifiers>(Ty, Quals);
    574   }
    575 
    576   friend bool operator==(SplitQualType a, SplitQualType b) {
    577     return a.Ty == b.Ty && a.Quals == b.Quals;
    578   }
    579   friend bool operator!=(SplitQualType a, SplitQualType b) {
    580     return a.Ty != b.Ty || a.Quals != b.Quals;
    581   }
    582 };
    583 
    584 /// The kind of type we are substituting Objective-C type arguments into.
    585 ///
    586 /// The kind of substitution affects the replacement of type parameters when
    587 /// no concrete type information is provided, e.g., when dealing with an
    588 /// unspecialized type.
    589 enum class ObjCSubstitutionContext {
    590   /// An ordinary type.
    591   Ordinary,
    592   /// The result type of a method or function.
    593   Result,
    594   /// The parameter type of a method or function.
    595   Parameter,
    596   /// The type of a property.
    597   Property,
    598   /// The superclass of a type.
    599   Superclass,
    600 };
    601 
    602 /// A (possibly-)qualified type.
    603 ///
    604 /// For efficiency, we don't store CV-qualified types as nodes on their
    605 /// own: instead each reference to a type stores the qualifiers.  This
    606 /// greatly reduces the number of nodes we need to allocate for types (for
    607 /// example we only need one for 'int', 'const int', 'volatile int',
    608 /// 'const volatile int', etc).
    609 ///
    610 /// As an added efficiency bonus, instead of making this a pair, we
    611 /// just store the two bits we care about in the low bits of the
    612 /// pointer.  To handle the packing/unpacking, we make QualType be a
    613 /// simple wrapper class that acts like a smart pointer.  A third bit
    614 /// indicates whether there are extended qualifiers present, in which
    615 /// case the pointer points to a special structure.
    616 class QualType {
    617   // Thankfully, these are efficiently composable.
    618   llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
    619                        Qualifiers::FastWidth> Value;
    620 
    621   const ExtQuals *getExtQualsUnsafe() const {
    622     return Value.getPointer().get<const ExtQuals*>();
    623   }
    624 
    625   const Type *getTypePtrUnsafe() const {
    626     return Value.getPointer().get<const Type*>();
    627   }
    628 
    629   const ExtQualsTypeCommonBase *getCommonPtr() const {
    630     assert(!isNull() && "Cannot retrieve a NULL type pointer");
    631     uintptr_t CommonPtrVal
    632       = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
    633     CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
    634     return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
    635   }
    636 
    637   friend class QualifierCollector;
    638 public:
    639   QualType() {}
    640 
    641   QualType(const Type *Ptr, unsigned Quals)
    642     : Value(Ptr, Quals) {}
    643   QualType(const ExtQuals *Ptr, unsigned Quals)
    644     : Value(Ptr, Quals) {}
    645 
    646   unsigned getLocalFastQualifiers() const { return Value.getInt(); }
    647   void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
    648 
    649   /// Retrieves a pointer to the underlying (unqualified) type.
    650   ///
    651   /// This function requires that the type not be NULL. If the type might be
    652   /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
    653   const Type *getTypePtr() const;
    654 
    655   const Type *getTypePtrOrNull() const;
    656 
    657   /// Retrieves a pointer to the name of the base type.
    658   const IdentifierInfo *getBaseTypeIdentifier() const;
    659 
    660   /// Divides a QualType into its unqualified type and a set of local
    661   /// qualifiers.
    662   SplitQualType split() const;
    663 
    664   void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
    665   static QualType getFromOpaquePtr(const void *Ptr) {
    666     QualType T;
    667     T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
    668     return T;
    669   }
    670 
    671   const Type &operator*() const {
    672     return *getTypePtr();
    673   }
    674 
    675   const Type *operator->() const {
    676     return getTypePtr();
    677   }
    678 
    679   bool isCanonical() const;
    680   bool isCanonicalAsParam() const;
    681 
    682   /// Return true if this QualType doesn't point to a type yet.
    683   bool isNull() const {
    684     return Value.getPointer().isNull();
    685   }
    686 
    687   /// \brief Determine whether this particular QualType instance has the
    688   /// "const" qualifier set, without looking through typedefs that may have
    689   /// added "const" at a different level.
    690   bool isLocalConstQualified() const {
    691     return (getLocalFastQualifiers() & Qualifiers::Const);
    692   }
    693 
    694   /// \brief Determine whether this type is const-qualified.
    695   bool isConstQualified() const;
    696 
    697   /// \brief Determine whether this particular QualType instance has the
    698   /// "restrict" qualifier set, without looking through typedefs that may have
    699   /// added "restrict" at a different level.
    700   bool isLocalRestrictQualified() const {
    701     return (getLocalFastQualifiers() & Qualifiers::Restrict);
    702   }
    703 
    704   /// \brief Determine whether this type is restrict-qualified.
    705   bool isRestrictQualified() const;
    706 
    707   /// \brief Determine whether this particular QualType instance has the
    708   /// "volatile" qualifier set, without looking through typedefs that may have
    709   /// added "volatile" at a different level.
    710   bool isLocalVolatileQualified() const {
    711     return (getLocalFastQualifiers() & Qualifiers::Volatile);
    712   }
    713 
    714   /// \brief Determine whether this type is volatile-qualified.
    715   bool isVolatileQualified() const;
    716 
    717   /// \brief Determine whether this particular QualType instance has any
    718   /// qualifiers, without looking through any typedefs that might add
    719   /// qualifiers at a different level.
    720   bool hasLocalQualifiers() const {
    721     return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
    722   }
    723 
    724   /// \brief Determine whether this type has any qualifiers.
    725   bool hasQualifiers() const;
    726 
    727   /// \brief Determine whether this particular QualType instance has any
    728   /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
    729   /// instance.
    730   bool hasLocalNonFastQualifiers() const {
    731     return Value.getPointer().is<const ExtQuals*>();
    732   }
    733 
    734   /// \brief Retrieve the set of qualifiers local to this particular QualType
    735   /// instance, not including any qualifiers acquired through typedefs or
    736   /// other sugar.
    737   Qualifiers getLocalQualifiers() const;
    738 
    739   /// \brief Retrieve the set of qualifiers applied to this type.
    740   Qualifiers getQualifiers() const;
    741 
    742   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    743   /// local to this particular QualType instance, not including any qualifiers
    744   /// acquired through typedefs or other sugar.
    745   unsigned getLocalCVRQualifiers() const {
    746     return getLocalFastQualifiers();
    747   }
    748 
    749   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    750   /// applied to this type.
    751   unsigned getCVRQualifiers() const;
    752 
    753   bool isConstant(const ASTContext& Ctx) const {
    754     return QualType::isConstant(*this, Ctx);
    755   }
    756 
    757   /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
    758   bool isPODType(const ASTContext &Context) const;
    759 
    760   /// Return true if this is a POD type according to the rules of the C++98
    761   /// standard, regardless of the current compilation's language.
    762   bool isCXX98PODType(const ASTContext &Context) const;
    763 
    764   /// Return true if this is a POD type according to the more relaxed rules
    765   /// of the C++11 standard, regardless of the current compilation's language.
    766   /// (C++0x [basic.types]p9)
    767   bool isCXX11PODType(const ASTContext &Context) const;
    768 
    769   /// Return true if this is a trivial type per (C++0x [basic.types]p9)
    770   bool isTrivialType(const ASTContext &Context) const;
    771 
    772   /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
    773   bool isTriviallyCopyableType(const ASTContext &Context) const;
    774 
    775   // Don't promise in the API that anything besides 'const' can be
    776   // easily added.
    777 
    778   /// Add the `const` type qualifier to this QualType.
    779   void addConst() {
    780     addFastQualifiers(Qualifiers::Const);
    781   }
    782   QualType withConst() const {
    783     return withFastQualifiers(Qualifiers::Const);
    784   }
    785 
    786   /// Add the `volatile` type qualifier to this QualType.
    787   void addVolatile() {
    788     addFastQualifiers(Qualifiers::Volatile);
    789   }
    790   QualType withVolatile() const {
    791     return withFastQualifiers(Qualifiers::Volatile);
    792   }
    793 
    794   /// Add the `restrict` qualifier to this QualType.
    795   void addRestrict() {
    796     addFastQualifiers(Qualifiers::Restrict);
    797   }
    798   QualType withRestrict() const {
    799     return withFastQualifiers(Qualifiers::Restrict);
    800   }
    801 
    802   QualType withCVRQualifiers(unsigned CVR) const {
    803     return withFastQualifiers(CVR);
    804   }
    805 
    806   void addFastQualifiers(unsigned TQs) {
    807     assert(!(TQs & ~Qualifiers::FastMask)
    808            && "non-fast qualifier bits set in mask!");
    809     Value.setInt(Value.getInt() | TQs);
    810   }
    811 
    812   void removeLocalConst();
    813   void removeLocalVolatile();
    814   void removeLocalRestrict();
    815   void removeLocalCVRQualifiers(unsigned Mask);
    816 
    817   void removeLocalFastQualifiers() { Value.setInt(0); }
    818   void removeLocalFastQualifiers(unsigned Mask) {
    819     assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
    820     Value.setInt(Value.getInt() & ~Mask);
    821   }
    822 
    823   // Creates a type with the given qualifiers in addition to any
    824   // qualifiers already on this type.
    825   QualType withFastQualifiers(unsigned TQs) const {
    826     QualType T = *this;
    827     T.addFastQualifiers(TQs);
    828     return T;
    829   }
    830 
    831   // Creates a type with exactly the given fast qualifiers, removing
    832   // any existing fast qualifiers.
    833   QualType withExactLocalFastQualifiers(unsigned TQs) const {
    834     return withoutLocalFastQualifiers().withFastQualifiers(TQs);
    835   }
    836 
    837   // Removes fast qualifiers, but leaves any extended qualifiers in place.
    838   QualType withoutLocalFastQualifiers() const {
    839     QualType T = *this;
    840     T.removeLocalFastQualifiers();
    841     return T;
    842   }
    843 
    844   QualType getCanonicalType() const;
    845 
    846   /// \brief Return this type with all of the instance-specific qualifiers
    847   /// removed, but without removing any qualifiers that may have been applied
    848   /// through typedefs.
    849   QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
    850 
    851   /// \brief Retrieve the unqualified variant of the given type,
    852   /// removing as little sugar as possible.
    853   ///
    854   /// This routine looks through various kinds of sugar to find the
    855   /// least-desugared type that is unqualified. For example, given:
    856   ///
    857   /// \code
    858   /// typedef int Integer;
    859   /// typedef const Integer CInteger;
    860   /// typedef CInteger DifferenceType;
    861   /// \endcode
    862   ///
    863   /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
    864   /// desugar until we hit the type \c Integer, which has no qualifiers on it.
    865   ///
    866   /// The resulting type might still be qualified if it's sugar for an array
    867   /// type.  To strip qualifiers even from within a sugared array type, use
    868   /// ASTContext::getUnqualifiedArrayType.
    869   inline QualType getUnqualifiedType() const;
    870 
    871   /// Retrieve the unqualified variant of the given type, removing as little
    872   /// sugar as possible.
    873   ///
    874   /// Like getUnqualifiedType(), but also returns the set of
    875   /// qualifiers that were built up.
    876   ///
    877   /// The resulting type might still be qualified if it's sugar for an array
    878   /// type.  To strip qualifiers even from within a sugared array type, use
    879   /// ASTContext::getUnqualifiedArrayType.
    880   inline SplitQualType getSplitUnqualifiedType() const;
    881 
    882   /// \brief Determine whether this type is more qualified than the other
    883   /// given type, requiring exact equality for non-CVR qualifiers.
    884   bool isMoreQualifiedThan(QualType Other) const;
    885 
    886   /// \brief Determine whether this type is at least as qualified as the other
    887   /// given type, requiring exact equality for non-CVR qualifiers.
    888   bool isAtLeastAsQualifiedAs(QualType Other) const;
    889 
    890   QualType getNonReferenceType() const;
    891 
    892   /// \brief Determine the type of a (typically non-lvalue) expression with the
    893   /// specified result type.
    894   ///
    895   /// This routine should be used for expressions for which the return type is
    896   /// explicitly specified (e.g., in a cast or call) and isn't necessarily
    897   /// an lvalue. It removes a top-level reference (since there are no
    898   /// expressions of reference type) and deletes top-level cvr-qualifiers
    899   /// from non-class types (in C++) or all types (in C).
    900   QualType getNonLValueExprType(const ASTContext &Context) const;
    901 
    902   /// Return the specified type with any "sugar" removed from
    903   /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
    904   /// the type is already concrete, it returns it unmodified.  This is similar
    905   /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
    906   /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
    907   /// concrete.
    908   ///
    909   /// Qualifiers are left in place.
    910   QualType getDesugaredType(const ASTContext &Context) const {
    911     return getDesugaredType(*this, Context);
    912   }
    913 
    914   SplitQualType getSplitDesugaredType() const {
    915     return getSplitDesugaredType(*this);
    916   }
    917 
    918   /// \brief Return the specified type with one level of "sugar" removed from
    919   /// the type.
    920   ///
    921   /// This routine takes off the first typedef, typeof, etc. If the outer level
    922   /// of the type is already concrete, it returns it unmodified.
    923   QualType getSingleStepDesugaredType(const ASTContext &Context) const {
    924     return getSingleStepDesugaredTypeImpl(*this, Context);
    925   }
    926 
    927   /// Returns the specified type after dropping any
    928   /// outer-level parentheses.
    929   QualType IgnoreParens() const {
    930     if (isa<ParenType>(*this))
    931       return QualType::IgnoreParens(*this);
    932     return *this;
    933   }
    934 
    935   /// Indicate whether the specified types and qualifiers are identical.
    936   friend bool operator==(const QualType &LHS, const QualType &RHS) {
    937     return LHS.Value == RHS.Value;
    938   }
    939   friend bool operator!=(const QualType &LHS, const QualType &RHS) {
    940     return LHS.Value != RHS.Value;
    941   }
    942   std::string getAsString() const {
    943     return getAsString(split());
    944   }
    945   static std::string getAsString(SplitQualType split) {
    946     return getAsString(split.Ty, split.Quals);
    947   }
    948   static std::string getAsString(const Type *ty, Qualifiers qs);
    949 
    950   std::string getAsString(const PrintingPolicy &Policy) const;
    951 
    952   void print(raw_ostream &OS, const PrintingPolicy &Policy,
    953              const Twine &PlaceHolder = Twine(),
    954              unsigned Indentation = 0) const {
    955     print(split(), OS, Policy, PlaceHolder, Indentation);
    956   }
    957   static void print(SplitQualType split, raw_ostream &OS,
    958                     const PrintingPolicy &policy, const Twine &PlaceHolder,
    959                     unsigned Indentation = 0) {
    960     return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
    961   }
    962   static void print(const Type *ty, Qualifiers qs,
    963                     raw_ostream &OS, const PrintingPolicy &policy,
    964                     const Twine &PlaceHolder,
    965                     unsigned Indentation = 0);
    966 
    967   void getAsStringInternal(std::string &Str,
    968                            const PrintingPolicy &Policy) const {
    969     return getAsStringInternal(split(), Str, Policy);
    970   }
    971   static void getAsStringInternal(SplitQualType split, std::string &out,
    972                                   const PrintingPolicy &policy) {
    973     return getAsStringInternal(split.Ty, split.Quals, out, policy);
    974   }
    975   static void getAsStringInternal(const Type *ty, Qualifiers qs,
    976                                   std::string &out,
    977                                   const PrintingPolicy &policy);
    978 
    979   class StreamedQualTypeHelper {
    980     const QualType &T;
    981     const PrintingPolicy &Policy;
    982     const Twine &PlaceHolder;
    983     unsigned Indentation;
    984   public:
    985     StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
    986                            const Twine &PlaceHolder, unsigned Indentation)
    987       : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
    988         Indentation(Indentation) { }
    989 
    990     friend raw_ostream &operator<<(raw_ostream &OS,
    991                                    const StreamedQualTypeHelper &SQT) {
    992       SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
    993       return OS;
    994     }
    995   };
    996 
    997   StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
    998                                 const Twine &PlaceHolder = Twine(),
    999                                 unsigned Indentation = 0) const {
   1000     return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
   1001   }
   1002 
   1003   void dump(const char *s) const;
   1004   void dump() const;
   1005   void dump(llvm::raw_ostream &OS) const;
   1006 
   1007   void Profile(llvm::FoldingSetNodeID &ID) const {
   1008     ID.AddPointer(getAsOpaquePtr());
   1009   }
   1010 
   1011   /// Return the address space of this type.
   1012   inline unsigned getAddressSpace() const;
   1013 
   1014   /// Returns gc attribute of this type.
   1015   inline Qualifiers::GC getObjCGCAttr() const;
   1016 
   1017   /// true when Type is objc's weak.
   1018   bool isObjCGCWeak() const {
   1019     return getObjCGCAttr() == Qualifiers::Weak;
   1020   }
   1021 
   1022   /// true when Type is objc's strong.
   1023   bool isObjCGCStrong() const {
   1024     return getObjCGCAttr() == Qualifiers::Strong;
   1025   }
   1026 
   1027   /// Returns lifetime attribute of this type.
   1028   Qualifiers::ObjCLifetime getObjCLifetime() const {
   1029     return getQualifiers().getObjCLifetime();
   1030   }
   1031 
   1032   bool hasNonTrivialObjCLifetime() const {
   1033     return getQualifiers().hasNonTrivialObjCLifetime();
   1034   }
   1035 
   1036   bool hasStrongOrWeakObjCLifetime() const {
   1037     return getQualifiers().hasStrongOrWeakObjCLifetime();
   1038   }
   1039 
   1040   // true when Type is objc's weak and weak is enabled but ARC isn't.
   1041   bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
   1042 
   1043   enum DestructionKind {
   1044     DK_none,
   1045     DK_cxx_destructor,
   1046     DK_objc_strong_lifetime,
   1047     DK_objc_weak_lifetime
   1048   };
   1049 
   1050   /// Returns a nonzero value if objects of this type require
   1051   /// non-trivial work to clean up after.  Non-zero because it's
   1052   /// conceivable that qualifiers (objc_gc(weak)?) could make
   1053   /// something require destruction.
   1054   DestructionKind isDestructedType() const {
   1055     return isDestructedTypeImpl(*this);
   1056   }
   1057 
   1058   /// Determine whether expressions of the given type are forbidden
   1059   /// from being lvalues in C.
   1060   ///
   1061   /// The expression types that are forbidden to be lvalues are:
   1062   ///   - 'void', but not qualified void
   1063   ///   - function types
   1064   ///
   1065   /// The exact rule here is C99 6.3.2.1:
   1066   ///   An lvalue is an expression with an object type or an incomplete
   1067   ///   type other than void.
   1068   bool isCForbiddenLValueType() const;
   1069 
   1070   /// Substitute type arguments for the Objective-C type parameters used in the
   1071   /// subject type.
   1072   ///
   1073   /// \param ctx ASTContext in which the type exists.
   1074   ///
   1075   /// \param typeArgs The type arguments that will be substituted for the
   1076   /// Objective-C type parameters in the subject type, which are generally
   1077   /// computed via \c Type::getObjCSubstitutions. If empty, the type
   1078   /// parameters will be replaced with their bounds or id/Class, as appropriate
   1079   /// for the context.
   1080   ///
   1081   /// \param context The context in which the subject type was written.
   1082   ///
   1083   /// \returns the resulting type.
   1084   QualType substObjCTypeArgs(ASTContext &ctx,
   1085                              ArrayRef<QualType> typeArgs,
   1086                              ObjCSubstitutionContext context) const;
   1087 
   1088   /// Substitute type arguments from an object type for the Objective-C type
   1089   /// parameters used in the subject type.
   1090   ///
   1091   /// This operation combines the computation of type arguments for
   1092   /// substitution (\c Type::getObjCSubstitutions) with the actual process of
   1093   /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
   1094   /// callers that need to perform a single substitution in isolation.
   1095   ///
   1096   /// \param objectType The type of the object whose member type we're
   1097   /// substituting into. For example, this might be the receiver of a message
   1098   /// or the base of a property access.
   1099   ///
   1100   /// \param dc The declaration context from which the subject type was
   1101   /// retrieved, which indicates (for example) which type parameters should
   1102   /// be substituted.
   1103   ///
   1104   /// \param context The context in which the subject type was written.
   1105   ///
   1106   /// \returns the subject type after replacing all of the Objective-C type
   1107   /// parameters with their corresponding arguments.
   1108   QualType substObjCMemberType(QualType objectType,
   1109                                const DeclContext *dc,
   1110                                ObjCSubstitutionContext context) const;
   1111 
   1112   /// Strip Objective-C "__kindof" types from the given type.
   1113   QualType stripObjCKindOfType(const ASTContext &ctx) const;
   1114 
   1115   /// Remove all qualifiers including _Atomic.
   1116   QualType getAtomicUnqualifiedType() const;
   1117 
   1118 private:
   1119   // These methods are implemented in a separate translation unit;
   1120   // "static"-ize them to avoid creating temporary QualTypes in the
   1121   // caller.
   1122   static bool isConstant(QualType T, const ASTContext& Ctx);
   1123   static QualType getDesugaredType(QualType T, const ASTContext &Context);
   1124   static SplitQualType getSplitDesugaredType(QualType T);
   1125   static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
   1126   static QualType getSingleStepDesugaredTypeImpl(QualType type,
   1127                                                  const ASTContext &C);
   1128   static QualType IgnoreParens(QualType T);
   1129   static DestructionKind isDestructedTypeImpl(QualType type);
   1130 };
   1131 
   1132 } // end clang.
   1133 
   1134 namespace llvm {
   1135 /// Implement simplify_type for QualType, so that we can dyn_cast from QualType
   1136 /// to a specific Type class.
   1137 template<> struct simplify_type< ::clang::QualType> {
   1138   typedef const ::clang::Type *SimpleType;
   1139   static SimpleType getSimplifiedValue(::clang::QualType Val) {
   1140     return Val.getTypePtr();
   1141   }
   1142 };
   1143 
   1144 // Teach SmallPtrSet that QualType is "basically a pointer".
   1145 template<>
   1146 class PointerLikeTypeTraits<clang::QualType> {
   1147 public:
   1148   static inline void *getAsVoidPointer(clang::QualType P) {
   1149     return P.getAsOpaquePtr();
   1150   }
   1151   static inline clang::QualType getFromVoidPointer(void *P) {
   1152     return clang::QualType::getFromOpaquePtr(P);
   1153   }
   1154   // Various qualifiers go in low bits.
   1155   enum { NumLowBitsAvailable = 0 };
   1156 };
   1157 
   1158 } // end namespace llvm
   1159 
   1160 namespace clang {
   1161 
   1162 /// \brief Base class that is common to both the \c ExtQuals and \c Type
   1163 /// classes, which allows \c QualType to access the common fields between the
   1164 /// two.
   1165 ///
   1166 class ExtQualsTypeCommonBase {
   1167   ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
   1168     : BaseType(baseType), CanonicalType(canon) {}
   1169 
   1170   /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
   1171   /// a self-referential pointer (for \c Type).
   1172   ///
   1173   /// This pointer allows an efficient mapping from a QualType to its
   1174   /// underlying type pointer.
   1175   const Type *const BaseType;
   1176 
   1177   /// \brief The canonical type of this type.  A QualType.
   1178   QualType CanonicalType;
   1179 
   1180   friend class QualType;
   1181   friend class Type;
   1182   friend class ExtQuals;
   1183 };
   1184 
   1185 /// We can encode up to four bits in the low bits of a
   1186 /// type pointer, but there are many more type qualifiers that we want
   1187 /// to be able to apply to an arbitrary type.  Therefore we have this
   1188 /// struct, intended to be heap-allocated and used by QualType to
   1189 /// store qualifiers.
   1190 ///
   1191 /// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
   1192 /// in three low bits on the QualType pointer; a fourth bit records whether
   1193 /// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
   1194 /// Objective-C GC attributes) are much more rare.
   1195 class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
   1196   // NOTE: changing the fast qualifiers should be straightforward as
   1197   // long as you don't make 'const' non-fast.
   1198   // 1. Qualifiers:
   1199   //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
   1200   //       Fast qualifiers must occupy the low-order bits.
   1201   //    b) Update Qualifiers::FastWidth and FastMask.
   1202   // 2. QualType:
   1203   //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
   1204   //    b) Update remove{Volatile,Restrict}, defined near the end of
   1205   //       this header.
   1206   // 3. ASTContext:
   1207   //    a) Update get{Volatile,Restrict}Type.
   1208 
   1209   /// The immutable set of qualifiers applied by this node. Always contains
   1210   /// extended qualifiers.
   1211   Qualifiers Quals;
   1212 
   1213   ExtQuals *this_() { return this; }
   1214 
   1215 public:
   1216   ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
   1217     : ExtQualsTypeCommonBase(baseType,
   1218                              canon.isNull() ? QualType(this_(), 0) : canon),
   1219       Quals(quals)
   1220   {
   1221     assert(Quals.hasNonFastQualifiers()
   1222            && "ExtQuals created with no fast qualifiers");
   1223     assert(!Quals.hasFastQualifiers()
   1224            && "ExtQuals created with fast qualifiers");
   1225   }
   1226 
   1227   Qualifiers getQualifiers() const { return Quals; }
   1228 
   1229   bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
   1230   Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
   1231 
   1232   bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
   1233   Qualifiers::ObjCLifetime getObjCLifetime() const {
   1234     return Quals.getObjCLifetime();
   1235   }
   1236 
   1237   bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
   1238   unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
   1239 
   1240   const Type *getBaseType() const { return BaseType; }
   1241 
   1242 public:
   1243   void Profile(llvm::FoldingSetNodeID &ID) const {
   1244     Profile(ID, getBaseType(), Quals);
   1245   }
   1246   static void Profile(llvm::FoldingSetNodeID &ID,
   1247                       const Type *BaseType,
   1248                       Qualifiers Quals) {
   1249     assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
   1250     ID.AddPointer(BaseType);
   1251     Quals.Profile(ID);
   1252   }
   1253 };
   1254 
   1255 /// The kind of C++11 ref-qualifier associated with a function type.
   1256 /// This determines whether a member function's "this" object can be an
   1257 /// lvalue, rvalue, or neither.
   1258 enum RefQualifierKind {
   1259   /// \brief No ref-qualifier was provided.
   1260   RQ_None = 0,
   1261   /// \brief An lvalue ref-qualifier was provided (\c &).
   1262   RQ_LValue,
   1263   /// \brief An rvalue ref-qualifier was provided (\c &&).
   1264   RQ_RValue
   1265 };
   1266 
   1267 /// Which keyword(s) were used to create an AutoType.
   1268 enum class AutoTypeKeyword {
   1269   /// \brief auto
   1270   Auto,
   1271   /// \brief decltype(auto)
   1272   DecltypeAuto,
   1273   /// \brief __auto_type (GNU extension)
   1274   GNUAutoType
   1275 };
   1276 
   1277 /// The base class of the type hierarchy.
   1278 ///
   1279 /// A central concept with types is that each type always has a canonical
   1280 /// type.  A canonical type is the type with any typedef names stripped out
   1281 /// of it or the types it references.  For example, consider:
   1282 ///
   1283 ///  typedef int  foo;
   1284 ///  typedef foo* bar;
   1285 ///    'int *'    'foo *'    'bar'
   1286 ///
   1287 /// There will be a Type object created for 'int'.  Since int is canonical, its
   1288 /// CanonicalType pointer points to itself.  There is also a Type for 'foo' (a
   1289 /// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
   1290 /// there is a PointerType that represents 'int*', which, like 'int', is
   1291 /// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
   1292 /// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
   1293 /// is also 'int*'.
   1294 ///
   1295 /// Non-canonical types are useful for emitting diagnostics, without losing
   1296 /// information about typedefs being used.  Canonical types are useful for type
   1297 /// comparisons (they allow by-pointer equality tests) and useful for reasoning
   1298 /// about whether something has a particular form (e.g. is a function type),
   1299 /// because they implicitly, recursively, strip all typedefs out of a type.
   1300 ///
   1301 /// Types, once created, are immutable.
   1302 ///
   1303 class Type : public ExtQualsTypeCommonBase {
   1304 public:
   1305   enum TypeClass {
   1306 #define TYPE(Class, Base) Class,
   1307 #define LAST_TYPE(Class) TypeLast = Class,
   1308 #define ABSTRACT_TYPE(Class, Base)
   1309 #include "clang/AST/TypeNodes.def"
   1310     TagFirst = Record, TagLast = Enum
   1311   };
   1312 
   1313 private:
   1314   Type(const Type &) = delete;
   1315   void operator=(const Type &) = delete;
   1316 
   1317   /// Bitfields required by the Type class.
   1318   class TypeBitfields {
   1319     friend class Type;
   1320     template <class T> friend class TypePropertyCache;
   1321 
   1322     /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
   1323     unsigned TC : 8;
   1324 
   1325     /// Whether this type is a dependent type (C++ [temp.dep.type]).
   1326     unsigned Dependent : 1;
   1327 
   1328     /// Whether this type somehow involves a template parameter, even
   1329     /// if the resolution of the type does not depend on a template parameter.
   1330     unsigned InstantiationDependent : 1;
   1331 
   1332     /// Whether this type is a variably-modified type (C99 6.7.5).
   1333     unsigned VariablyModified : 1;
   1334 
   1335     /// \brief Whether this type contains an unexpanded parameter pack
   1336     /// (for C++11 variadic templates).
   1337     unsigned ContainsUnexpandedParameterPack : 1;
   1338 
   1339     /// \brief True if the cache (i.e. the bitfields here starting with
   1340     /// 'Cache') is valid.
   1341     mutable unsigned CacheValid : 1;
   1342 
   1343     /// \brief Linkage of this type.
   1344     mutable unsigned CachedLinkage : 3;
   1345 
   1346     /// \brief Whether this type involves and local or unnamed types.
   1347     mutable unsigned CachedLocalOrUnnamed : 1;
   1348 
   1349     /// \brief Whether this type comes from an AST file.
   1350     mutable unsigned FromAST : 1;
   1351 
   1352     bool isCacheValid() const {
   1353       return CacheValid;
   1354     }
   1355     Linkage getLinkage() const {
   1356       assert(isCacheValid() && "getting linkage from invalid cache");
   1357       return static_cast<Linkage>(CachedLinkage);
   1358     }
   1359     bool hasLocalOrUnnamedType() const {
   1360       assert(isCacheValid() && "getting linkage from invalid cache");
   1361       return CachedLocalOrUnnamed;
   1362     }
   1363   };
   1364   enum { NumTypeBits = 18 };
   1365 
   1366 protected:
   1367   // These classes allow subclasses to somewhat cleanly pack bitfields
   1368   // into Type.
   1369 
   1370   class ArrayTypeBitfields {
   1371     friend class ArrayType;
   1372 
   1373     unsigned : NumTypeBits;
   1374 
   1375     /// CVR qualifiers from declarations like
   1376     /// 'int X[static restrict 4]'. For function parameters only.
   1377     unsigned IndexTypeQuals : 3;
   1378 
   1379     /// Storage class qualifiers from declarations like
   1380     /// 'int X[static restrict 4]'. For function parameters only.
   1381     /// Actually an ArrayType::ArraySizeModifier.
   1382     unsigned SizeModifier : 3;
   1383   };
   1384 
   1385   class BuiltinTypeBitfields {
   1386     friend class BuiltinType;
   1387 
   1388     unsigned : NumTypeBits;
   1389 
   1390     /// The kind (BuiltinType::Kind) of builtin type this is.
   1391     unsigned Kind : 8;
   1392   };
   1393 
   1394   class FunctionTypeBitfields {
   1395     friend class FunctionType;
   1396     friend class FunctionProtoType;
   1397 
   1398     unsigned : NumTypeBits;
   1399 
   1400     /// Extra information which affects how the function is called, like
   1401     /// regparm and the calling convention.
   1402     unsigned ExtInfo : 11;
   1403 
   1404     /// Used only by FunctionProtoType, put here to pack with the
   1405     /// other bitfields.
   1406     /// The qualifiers are part of FunctionProtoType because...
   1407     ///
   1408     /// C++ 8.3.5p4: The return type, the parameter type list and the
   1409     /// cv-qualifier-seq, [...], are part of the function type.
   1410     unsigned TypeQuals : 4;
   1411 
   1412     /// \brief The ref-qualifier associated with a \c FunctionProtoType.
   1413     ///
   1414     /// This is a value of type \c RefQualifierKind.
   1415     unsigned RefQualifier : 2;
   1416   };
   1417 
   1418   class ObjCObjectTypeBitfields {
   1419     friend class ObjCObjectType;
   1420 
   1421     unsigned : NumTypeBits;
   1422 
   1423     /// The number of type arguments stored directly on this object type.
   1424     unsigned NumTypeArgs : 7;
   1425 
   1426     /// The number of protocols stored directly on this object type.
   1427     unsigned NumProtocols : 6;
   1428 
   1429     /// Whether this is a "kindof" type.
   1430     unsigned IsKindOf : 1;
   1431   };
   1432   static_assert(NumTypeBits + 7 + 6 + 1 <= 32, "Does not fit in an unsigned");
   1433 
   1434   class ReferenceTypeBitfields {
   1435     friend class ReferenceType;
   1436 
   1437     unsigned : NumTypeBits;
   1438 
   1439     /// True if the type was originally spelled with an lvalue sigil.
   1440     /// This is never true of rvalue references but can also be false
   1441     /// on lvalue references because of C++0x [dcl.typedef]p9,
   1442     /// as follows:
   1443     ///
   1444     ///   typedef int &ref;    // lvalue, spelled lvalue
   1445     ///   typedef int &&rvref; // rvalue
   1446     ///   ref &a;              // lvalue, inner ref, spelled lvalue
   1447     ///   ref &&a;             // lvalue, inner ref
   1448     ///   rvref &a;            // lvalue, inner ref, spelled lvalue
   1449     ///   rvref &&a;           // rvalue, inner ref
   1450     unsigned SpelledAsLValue : 1;
   1451 
   1452     /// True if the inner type is a reference type.  This only happens
   1453     /// in non-canonical forms.
   1454     unsigned InnerRef : 1;
   1455   };
   1456 
   1457   class TypeWithKeywordBitfields {
   1458     friend class TypeWithKeyword;
   1459 
   1460     unsigned : NumTypeBits;
   1461 
   1462     /// An ElaboratedTypeKeyword.  8 bits for efficient access.
   1463     unsigned Keyword : 8;
   1464   };
   1465 
   1466   class VectorTypeBitfields {
   1467     friend class VectorType;
   1468 
   1469     unsigned : NumTypeBits;
   1470 
   1471     /// The kind of vector, either a generic vector type or some
   1472     /// target-specific vector type such as for AltiVec or Neon.
   1473     unsigned VecKind : 3;
   1474 
   1475     /// The number of elements in the vector.
   1476     unsigned NumElements : 29 - NumTypeBits;
   1477 
   1478     enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
   1479   };
   1480 
   1481   class AttributedTypeBitfields {
   1482     friend class AttributedType;
   1483 
   1484     unsigned : NumTypeBits;
   1485 
   1486     /// An AttributedType::Kind
   1487     unsigned AttrKind : 32 - NumTypeBits;
   1488   };
   1489 
   1490   class AutoTypeBitfields {
   1491     friend class AutoType;
   1492 
   1493     unsigned : NumTypeBits;
   1494 
   1495     /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
   1496     /// or '__auto_type'?  AutoTypeKeyword value.
   1497     unsigned Keyword : 2;
   1498   };
   1499 
   1500   union {
   1501     TypeBitfields TypeBits;
   1502     ArrayTypeBitfields ArrayTypeBits;
   1503     AttributedTypeBitfields AttributedTypeBits;
   1504     AutoTypeBitfields AutoTypeBits;
   1505     BuiltinTypeBitfields BuiltinTypeBits;
   1506     FunctionTypeBitfields FunctionTypeBits;
   1507     ObjCObjectTypeBitfields ObjCObjectTypeBits;
   1508     ReferenceTypeBitfields ReferenceTypeBits;
   1509     TypeWithKeywordBitfields TypeWithKeywordBits;
   1510     VectorTypeBitfields VectorTypeBits;
   1511   };
   1512 
   1513 private:
   1514   /// \brief Set whether this type comes from an AST file.
   1515   void setFromAST(bool V = true) const {
   1516     TypeBits.FromAST = V;
   1517   }
   1518 
   1519   template <class T> friend class TypePropertyCache;
   1520 
   1521 protected:
   1522   // silence VC++ warning C4355: 'this' : used in base member initializer list
   1523   Type *this_() { return this; }
   1524   Type(TypeClass tc, QualType canon, bool Dependent,
   1525        bool InstantiationDependent, bool VariablyModified,
   1526        bool ContainsUnexpandedParameterPack)
   1527     : ExtQualsTypeCommonBase(this,
   1528                              canon.isNull() ? QualType(this_(), 0) : canon) {
   1529     TypeBits.TC = tc;
   1530     TypeBits.Dependent = Dependent;
   1531     TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
   1532     TypeBits.VariablyModified = VariablyModified;
   1533     TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
   1534     TypeBits.CacheValid = false;
   1535     TypeBits.CachedLocalOrUnnamed = false;
   1536     TypeBits.CachedLinkage = NoLinkage;
   1537     TypeBits.FromAST = false;
   1538   }
   1539   friend class ASTContext;
   1540 
   1541   void setDependent(bool D = true) {
   1542     TypeBits.Dependent = D;
   1543     if (D)
   1544       TypeBits.InstantiationDependent = true;
   1545   }
   1546   void setInstantiationDependent(bool D = true) {
   1547     TypeBits.InstantiationDependent = D; }
   1548   void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
   1549   }
   1550   void setContainsUnexpandedParameterPack(bool PP = true) {
   1551     TypeBits.ContainsUnexpandedParameterPack = PP;
   1552   }
   1553 
   1554 public:
   1555   TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
   1556 
   1557   /// \brief Whether this type comes from an AST file.
   1558   bool isFromAST() const { return TypeBits.FromAST; }
   1559 
   1560   /// \brief Whether this type is or contains an unexpanded parameter
   1561   /// pack, used to support C++0x variadic templates.
   1562   ///
   1563   /// A type that contains a parameter pack shall be expanded by the
   1564   /// ellipsis operator at some point. For example, the typedef in the
   1565   /// following example contains an unexpanded parameter pack 'T':
   1566   ///
   1567   /// \code
   1568   /// template<typename ...T>
   1569   /// struct X {
   1570   ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
   1571   /// };
   1572   /// \endcode
   1573   ///
   1574   /// Note that this routine does not specify which
   1575   bool containsUnexpandedParameterPack() const {
   1576     return TypeBits.ContainsUnexpandedParameterPack;
   1577   }
   1578 
   1579   /// Determines if this type would be canonical if it had no further
   1580   /// qualification.
   1581   bool isCanonicalUnqualified() const {
   1582     return CanonicalType == QualType(this, 0);
   1583   }
   1584 
   1585   /// Pull a single level of sugar off of this locally-unqualified type.
   1586   /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
   1587   /// or QualType::getSingleStepDesugaredType(const ASTContext&).
   1588   QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
   1589 
   1590   /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
   1591   /// object types, function types, and incomplete types.
   1592 
   1593   /// Return true if this is an incomplete type.
   1594   /// A type that can describe objects, but which lacks information needed to
   1595   /// determine its size (e.g. void, or a fwd declared struct). Clients of this
   1596   /// routine will need to determine if the size is actually required.
   1597   ///
   1598   /// \brief Def If non-null, and the type refers to some kind of declaration
   1599   /// that can be completed (such as a C struct, C++ class, or Objective-C
   1600   /// class), will be set to the declaration.
   1601   bool isIncompleteType(NamedDecl **Def = nullptr) const;
   1602 
   1603   /// Return true if this is an incomplete or object
   1604   /// type, in other words, not a function type.
   1605   bool isIncompleteOrObjectType() const {
   1606     return !isFunctionType();
   1607   }
   1608 
   1609   /// \brief Determine whether this type is an object type.
   1610   bool isObjectType() const {
   1611     // C++ [basic.types]p8:
   1612     //   An object type is a (possibly cv-qualified) type that is not a
   1613     //   function type, not a reference type, and not a void type.
   1614     return !isReferenceType() && !isFunctionType() && !isVoidType();
   1615   }
   1616 
   1617   /// Return true if this is a literal type
   1618   /// (C++11 [basic.types]p10)
   1619   bool isLiteralType(const ASTContext &Ctx) const;
   1620 
   1621   /// Test if this type is a standard-layout type.
   1622   /// (C++0x [basic.type]p9)
   1623   bool isStandardLayoutType() const;
   1624 
   1625   /// Helper methods to distinguish type categories. All type predicates
   1626   /// operate on the canonical type, ignoring typedefs and qualifiers.
   1627 
   1628   /// Returns true if the type is a builtin type.
   1629   bool isBuiltinType() const;
   1630 
   1631   /// Test for a particular builtin type.
   1632   bool isSpecificBuiltinType(unsigned K) const;
   1633 
   1634   /// Test for a type which does not represent an actual type-system type but
   1635   /// is instead used as a placeholder for various convenient purposes within
   1636   /// Clang.  All such types are BuiltinTypes.
   1637   bool isPlaceholderType() const;
   1638   const BuiltinType *getAsPlaceholderType() const;
   1639 
   1640   /// Test for a specific placeholder type.
   1641   bool isSpecificPlaceholderType(unsigned K) const;
   1642 
   1643   /// Test for a placeholder type other than Overload; see
   1644   /// BuiltinType::isNonOverloadPlaceholderType.
   1645   bool isNonOverloadPlaceholderType() const;
   1646 
   1647   /// isIntegerType() does *not* include complex integers (a GCC extension).
   1648   /// isComplexIntegerType() can be used to test for complex integers.
   1649   bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
   1650   bool isEnumeralType() const;
   1651   bool isBooleanType() const;
   1652   bool isCharType() const;
   1653   bool isWideCharType() const;
   1654   bool isChar16Type() const;
   1655   bool isChar32Type() const;
   1656   bool isAnyCharacterType() const;
   1657   bool isIntegralType(const ASTContext &Ctx) const;
   1658 
   1659   /// Determine whether this type is an integral or enumeration type.
   1660   bool isIntegralOrEnumerationType() const;
   1661   /// Determine whether this type is an integral or unscoped enumeration type.
   1662   bool isIntegralOrUnscopedEnumerationType() const;
   1663 
   1664   /// Floating point categories.
   1665   bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
   1666   /// isComplexType() does *not* include complex integers (a GCC extension).
   1667   /// isComplexIntegerType() can be used to test for complex integers.
   1668   bool isComplexType() const;      // C99 6.2.5p11 (complex)
   1669   bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
   1670   bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
   1671   bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
   1672   bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
   1673   bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
   1674   bool isVoidType() const;         // C99 6.2.5p19
   1675   bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
   1676   bool isAggregateType() const;
   1677   bool isFundamentalType() const;
   1678   bool isCompoundType() const;
   1679 
   1680   // Type Predicates: Check to see if this type is structurally the specified
   1681   // type, ignoring typedefs and qualifiers.
   1682   bool isFunctionType() const;
   1683   bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
   1684   bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
   1685   bool isPointerType() const;
   1686   bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
   1687   bool isBlockPointerType() const;
   1688   bool isVoidPointerType() const;
   1689   bool isReferenceType() const;
   1690   bool isLValueReferenceType() const;
   1691   bool isRValueReferenceType() const;
   1692   bool isFunctionPointerType() const;
   1693   bool isMemberPointerType() const;
   1694   bool isMemberFunctionPointerType() const;
   1695   bool isMemberDataPointerType() const;
   1696   bool isArrayType() const;
   1697   bool isConstantArrayType() const;
   1698   bool isIncompleteArrayType() const;
   1699   bool isVariableArrayType() const;
   1700   bool isDependentSizedArrayType() const;
   1701   bool isRecordType() const;
   1702   bool isClassType() const;
   1703   bool isStructureType() const;
   1704   bool isObjCBoxableRecordType() const;
   1705   bool isInterfaceType() const;
   1706   bool isStructureOrClassType() const;
   1707   bool isUnionType() const;
   1708   bool isComplexIntegerType() const;            // GCC _Complex integer type.
   1709   bool isVectorType() const;                    // GCC vector type.
   1710   bool isExtVectorType() const;                 // Extended vector type.
   1711   bool isObjCObjectPointerType() const;         // pointer to ObjC object
   1712   bool isObjCRetainableType() const;            // ObjC object or block pointer
   1713   bool isObjCLifetimeType() const;              // (array of)* retainable type
   1714   bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
   1715   bool isObjCNSObjectType() const;              // __attribute__((NSObject))
   1716   bool isObjCIndependentClassType() const;      // __attribute__((objc_independent_class))
   1717   // FIXME: change this to 'raw' interface type, so we can used 'interface' type
   1718   // for the common case.
   1719   bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
   1720   bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
   1721   bool isObjCQualifiedIdType() const;           // id<foo>
   1722   bool isObjCQualifiedClassType() const;        // Class<foo>
   1723   bool isObjCObjectOrInterfaceType() const;
   1724   bool isObjCIdType() const;                    // id
   1725   bool isObjCInertUnsafeUnretainedType() const;
   1726 
   1727   /// Whether the type is Objective-C 'id' or a __kindof type of an
   1728   /// object type, e.g., __kindof NSView * or __kindof id
   1729   /// <NSCopying>.
   1730   ///
   1731   /// \param bound Will be set to the bound on non-id subtype types,
   1732   /// which will be (possibly specialized) Objective-C class type, or
   1733   /// null for 'id.
   1734   bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
   1735                                   const ObjCObjectType *&bound) const;
   1736 
   1737   bool isObjCClassType() const;                 // Class
   1738 
   1739   /// Whether the type is Objective-C 'Class' or a __kindof type of an
   1740   /// Class type, e.g., __kindof Class <NSCopying>.
   1741   ///
   1742   /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
   1743   /// here because Objective-C's type system cannot express "a class
   1744   /// object for a subclass of NSFoo".
   1745   bool isObjCClassOrClassKindOfType() const;
   1746 
   1747   bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
   1748   bool isObjCSelType() const;                 // Class
   1749   bool isObjCBuiltinType() const;               // 'id' or 'Class'
   1750   bool isObjCARCBridgableType() const;
   1751   bool isCARCBridgableType() const;
   1752   bool isTemplateTypeParmType() const;          // C++ template type parameter
   1753   bool isNullPtrType() const;                   // C++11 std::nullptr_t
   1754   bool isAlignValT() const;                     // C++17 std::align_val_t
   1755   bool isAtomicType() const;                    // C11 _Atomic()
   1756 
   1757 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
   1758   bool is##Id##Type() const;
   1759 #include "clang/Basic/OpenCLImageTypes.def"
   1760 
   1761   bool isImageType() const;                     // Any OpenCL image type
   1762 
   1763   bool isSamplerT() const;                      // OpenCL sampler_t
   1764   bool isEventT() const;                        // OpenCL event_t
   1765   bool isClkEventT() const;                     // OpenCL clk_event_t
   1766   bool isQueueT() const;                        // OpenCL queue_t
   1767   bool isReserveIDT() const;                    // OpenCL reserve_id_t
   1768 
   1769   bool isPipeType() const;                      // OpenCL pipe type
   1770   bool isOpenCLSpecificType() const;            // Any OpenCL specific type
   1771 
   1772   /// Determines if this type, which must satisfy
   1773   /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
   1774   /// than implicitly __strong.
   1775   bool isObjCARCImplicitlyUnretainedType() const;
   1776 
   1777   /// Return the implicit lifetime for this type, which must not be dependent.
   1778   Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
   1779 
   1780   enum ScalarTypeKind {
   1781     STK_CPointer,
   1782     STK_BlockPointer,
   1783     STK_ObjCObjectPointer,
   1784     STK_MemberPointer,
   1785     STK_Bool,
   1786     STK_Integral,
   1787     STK_Floating,
   1788     STK_IntegralComplex,
   1789     STK_FloatingComplex
   1790   };
   1791   /// Given that this is a scalar type, classify it.
   1792   ScalarTypeKind getScalarTypeKind() const;
   1793 
   1794   /// Whether this type is a dependent type, meaning that its definition
   1795   /// somehow depends on a template parameter (C++ [temp.dep.type]).
   1796   bool isDependentType() const { return TypeBits.Dependent; }
   1797 
   1798   /// \brief Determine whether this type is an instantiation-dependent type,
   1799   /// meaning that the type involves a template parameter (even if the
   1800   /// definition does not actually depend on the type substituted for that
   1801   /// template parameter).
   1802   bool isInstantiationDependentType() const {
   1803     return TypeBits.InstantiationDependent;
   1804   }
   1805 
   1806   /// \brief Determine whether this type is an undeduced type, meaning that
   1807   /// it somehow involves a C++11 'auto' type or similar which has not yet been
   1808   /// deduced.
   1809   bool isUndeducedType() const;
   1810 
   1811   /// \brief Whether this type is a variably-modified type (C99 6.7.5).
   1812   bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
   1813 
   1814   /// \brief Whether this type involves a variable-length array type
   1815   /// with a definite size.
   1816   bool hasSizedVLAType() const;
   1817 
   1818   /// \brief Whether this type is or contains a local or unnamed type.
   1819   bool hasUnnamedOrLocalType() const;
   1820 
   1821   bool isOverloadableType() const;
   1822 
   1823   /// \brief Determine wither this type is a C++ elaborated-type-specifier.
   1824   bool isElaboratedTypeSpecifier() const;
   1825 
   1826   bool canDecayToPointerType() const;
   1827 
   1828   /// Whether this type is represented natively as a pointer.  This includes
   1829   /// pointers, references, block pointers, and Objective-C interface,
   1830   /// qualified id, and qualified interface types, as well as nullptr_t.
   1831   bool hasPointerRepresentation() const;
   1832 
   1833   /// Whether this type can represent an objective pointer type for the
   1834   /// purpose of GC'ability
   1835   bool hasObjCPointerRepresentation() const;
   1836 
   1837   /// \brief Determine whether this type has an integer representation
   1838   /// of some sort, e.g., it is an integer type or a vector.
   1839   bool hasIntegerRepresentation() const;
   1840 
   1841   /// \brief Determine whether this type has an signed integer representation
   1842   /// of some sort, e.g., it is an signed integer type or a vector.
   1843   bool hasSignedIntegerRepresentation() const;
   1844 
   1845   /// \brief Determine whether this type has an unsigned integer representation
   1846   /// of some sort, e.g., it is an unsigned integer type or a vector.
   1847   bool hasUnsignedIntegerRepresentation() const;
   1848 
   1849   /// \brief Determine whether this type has a floating-point representation
   1850   /// of some sort, e.g., it is a floating-point type or a vector thereof.
   1851   bool hasFloatingRepresentation() const;
   1852 
   1853   // Type Checking Functions: Check to see if this type is structurally the
   1854   // specified type, ignoring typedefs and qualifiers, and return a pointer to
   1855   // the best type we can.
   1856   const RecordType *getAsStructureType() const;
   1857   /// NOTE: getAs*ArrayType are methods on ASTContext.
   1858   const RecordType *getAsUnionType() const;
   1859   const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
   1860   const ObjCObjectType *getAsObjCInterfaceType() const;
   1861   // The following is a convenience method that returns an ObjCObjectPointerType
   1862   // for object declared using an interface.
   1863   const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
   1864   const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
   1865   const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
   1866   const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
   1867 
   1868   /// \brief Retrieves the CXXRecordDecl that this type refers to, either
   1869   /// because the type is a RecordType or because it is the injected-class-name
   1870   /// type of a class template or class template partial specialization.
   1871   CXXRecordDecl *getAsCXXRecordDecl() const;
   1872 
   1873   /// \brief Retrieves the TagDecl that this type refers to, either
   1874   /// because the type is a TagType or because it is the injected-class-name
   1875   /// type of a class template or class template partial specialization.
   1876   TagDecl *getAsTagDecl() const;
   1877 
   1878   /// If this is a pointer or reference to a RecordType, return the
   1879   /// CXXRecordDecl that that type refers to.
   1880   ///
   1881   /// If this is not a pointer or reference, or the type being pointed to does
   1882   /// not refer to a CXXRecordDecl, returns NULL.
   1883   const CXXRecordDecl *getPointeeCXXRecordDecl() const;
   1884 
   1885   /// Get the DeducedType whose type will be deduced for a variable with
   1886   /// an initializer of this type. This looks through declarators like pointer
   1887   /// types, but not through decltype or typedefs.
   1888   DeducedType *getContainedDeducedType() const;
   1889 
   1890   /// Get the AutoType whose type will be deduced for a variable with
   1891   /// an initializer of this type. This looks through declarators like pointer
   1892   /// types, but not through decltype or typedefs.
   1893   AutoType *getContainedAutoType() const {
   1894     return dyn_cast_or_null<AutoType>(getContainedDeducedType());
   1895   }
   1896 
   1897   /// Determine whether this type was written with a leading 'auto'
   1898   /// corresponding to a trailing return type (possibly for a nested
   1899   /// function type within a pointer to function type or similar).
   1900   bool hasAutoForTrailingReturnType() const;
   1901 
   1902   /// Member-template getAs<specific type>'.  Look through sugar for
   1903   /// an instance of \<specific type>.   This scheme will eventually
   1904   /// replace the specific getAsXXXX methods above.
   1905   ///
   1906   /// There are some specializations of this member template listed
   1907   /// immediately following this class.
   1908   template <typename T> const T *getAs() const;
   1909 
   1910   /// Member-template getAsAdjusted<specific type>. Look through specific kinds
   1911   /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
   1912   /// This is used when you need to walk over sugar nodes that represent some
   1913   /// kind of type adjustment from a type that was written as a \<specific type>
   1914   /// to another type that is still canonically a \<specific type>.
   1915   template <typename T> const T *getAsAdjusted() const;
   1916 
   1917   /// A variant of getAs<> for array types which silently discards
   1918   /// qualifiers from the outermost type.
   1919   const ArrayType *getAsArrayTypeUnsafe() const;
   1920 
   1921   /// Member-template castAs<specific type>.  Look through sugar for
   1922   /// the underlying instance of \<specific type>.
   1923   ///
   1924   /// This method has the same relationship to getAs<T> as cast<T> has
   1925   /// to dyn_cast<T>; which is to say, the underlying type *must*
   1926   /// have the intended type, and this method will never return null.
   1927   template <typename T> const T *castAs() const;
   1928 
   1929   /// A variant of castAs<> for array type which silently discards
   1930   /// qualifiers from the outermost type.
   1931   const ArrayType *castAsArrayTypeUnsafe() const;
   1932 
   1933   /// Get the base element type of this type, potentially discarding type
   1934   /// qualifiers.  This should never be used when type qualifiers
   1935   /// are meaningful.
   1936   const Type *getBaseElementTypeUnsafe() const;
   1937 
   1938   /// If this is an array type, return the element type of the array,
   1939   /// potentially with type qualifiers missing.
   1940   /// This should never be used when type qualifiers are meaningful.
   1941   const Type *getArrayElementTypeNoTypeQual() const;
   1942 
   1943   /// If this is a pointer type, return the pointee type.
   1944   /// If this is an array type, return the array element type.
   1945   /// This should never be used when type qualifiers are meaningful.
   1946   const Type *getPointeeOrArrayElementType() const;
   1947 
   1948   /// If this is a pointer, ObjC object pointer, or block
   1949   /// pointer, this returns the respective pointee.
   1950   QualType getPointeeType() const;
   1951 
   1952   /// Return the specified type with any "sugar" removed from the type,
   1953   /// removing any typedefs, typeofs, etc., as well as any qualifiers.
   1954   const Type *getUnqualifiedDesugaredType() const;
   1955 
   1956   /// More type predicates useful for type checking/promotion
   1957   bool isPromotableIntegerType() const; // C99 6.3.1.1p2
   1958 
   1959   /// Return true if this is an integer type that is
   1960   /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
   1961   /// or an enum decl which has a signed representation.
   1962   bool isSignedIntegerType() const;
   1963 
   1964   /// Return true if this is an integer type that is
   1965   /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
   1966   /// or an enum decl which has an unsigned representation.
   1967   bool isUnsignedIntegerType() const;
   1968 
   1969   /// Determines whether this is an integer type that is signed or an
   1970   /// enumeration types whose underlying type is a signed integer type.
   1971   bool isSignedIntegerOrEnumerationType() const;
   1972 
   1973   /// Determines whether this is an integer type that is unsigned or an
   1974   /// enumeration types whose underlying type is a unsigned integer type.
   1975   bool isUnsignedIntegerOrEnumerationType() const;
   1976 
   1977   /// Return true if this is not a variable sized type,
   1978   /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
   1979   /// incomplete types.
   1980   bool isConstantSizeType() const;
   1981 
   1982   /// Returns true if this type can be represented by some
   1983   /// set of type specifiers.
   1984   bool isSpecifierType() const;
   1985 
   1986   /// Determine the linkage of this type.
   1987   Linkage getLinkage() const;
   1988 
   1989   /// Determine the visibility of this type.
   1990   Visibility getVisibility() const {
   1991     return getLinkageAndVisibility().getVisibility();
   1992   }
   1993 
   1994   /// Return true if the visibility was explicitly set is the code.
   1995   bool isVisibilityExplicit() const {
   1996     return getLinkageAndVisibility().isVisibilityExplicit();
   1997   }
   1998 
   1999   /// Determine the linkage and visibility of this type.
   2000   LinkageInfo getLinkageAndVisibility() const;
   2001 
   2002   /// True if the computed linkage is valid. Used for consistency
   2003   /// checking. Should always return true.
   2004   bool isLinkageValid() const;
   2005 
   2006   /// Determine the nullability of the given type.
   2007   ///
   2008   /// Note that nullability is only captured as sugar within the type
   2009   /// system, not as part of the canonical type, so nullability will
   2010   /// be lost by canonicalization and desugaring.
   2011   Optional<NullabilityKind> getNullability(const ASTContext &context) const;
   2012 
   2013   /// Determine whether the given type can have a nullability
   2014   /// specifier applied to it, i.e., if it is any kind of pointer type.
   2015   ///
   2016   /// \param ResultIfUnknown The value to return if we don't yet know whether
   2017   ///        this type can have nullability because it is dependent.
   2018   bool canHaveNullability(bool ResultIfUnknown = true) const;
   2019 
   2020   /// Retrieve the set of substitutions required when accessing a member
   2021   /// of the Objective-C receiver type that is declared in the given context.
   2022   ///
   2023   /// \c *this is the type of the object we're operating on, e.g., the
   2024   /// receiver for a message send or the base of a property access, and is
   2025   /// expected to be of some object or object pointer type.
   2026   ///
   2027   /// \param dc The declaration context for which we are building up a
   2028   /// substitution mapping, which should be an Objective-C class, extension,
   2029   /// category, or method within.
   2030   ///
   2031   /// \returns an array of type arguments that can be substituted for
   2032   /// the type parameters of the given declaration context in any type described
   2033   /// within that context, or an empty optional to indicate that no
   2034   /// substitution is required.
   2035   Optional<ArrayRef<QualType>>
   2036   getObjCSubstitutions(const DeclContext *dc) const;
   2037 
   2038   /// Determines if this is an ObjC interface type that may accept type
   2039   /// parameters.
   2040   bool acceptsObjCTypeParams() const;
   2041 
   2042   const char *getTypeClassName() const;
   2043 
   2044   QualType getCanonicalTypeInternal() const {
   2045     return CanonicalType;
   2046   }
   2047   CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
   2048   void dump() const;
   2049   void dump(llvm::raw_ostream &OS) const;
   2050 
   2051   friend class ASTReader;
   2052   friend class ASTWriter;
   2053 };
   2054 
   2055 /// \brief This will check for a TypedefType by removing any existing sugar
   2056 /// until it reaches a TypedefType or a non-sugared type.
   2057 template <> const TypedefType *Type::getAs() const;
   2058 
   2059 /// \brief This will check for a TemplateSpecializationType by removing any
   2060 /// existing sugar until it reaches a TemplateSpecializationType or a
   2061 /// non-sugared type.
   2062 template <> const TemplateSpecializationType *Type::getAs() const;
   2063 
   2064 /// \brief This will check for an AttributedType by removing any existing sugar
   2065 /// until it reaches an AttributedType or a non-sugared type.
   2066 template <> const AttributedType *Type::getAs() const;
   2067 
   2068 // We can do canonical leaf types faster, because we don't have to
   2069 // worry about preserving child type decoration.
   2070 #define TYPE(Class, Base)
   2071 #define LEAF_TYPE(Class) \
   2072 template <> inline const Class##Type *Type::getAs() const { \
   2073   return dyn_cast<Class##Type>(CanonicalType); \
   2074 } \
   2075 template <> inline const Class##Type *Type::castAs() const { \
   2076   return cast<Class##Type>(CanonicalType); \
   2077 }
   2078 #include "clang/AST/TypeNodes.def"
   2079 
   2080 
   2081 /// This class is used for builtin types like 'int'.  Builtin
   2082 /// types are always canonical and have a literal name field.
   2083 class BuiltinType : public Type {
   2084 public:
   2085   enum Kind {
   2086 // OpenCL image types
   2087 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
   2088 #include "clang/Basic/OpenCLImageTypes.def"
   2089 // All other builtin types
   2090 #define BUILTIN_TYPE(Id, SingletonId) Id,
   2091 #define LAST_BUILTIN_TYPE(Id) LastKind = Id
   2092 #include "clang/AST/BuiltinTypes.def"
   2093   };
   2094 
   2095 public:
   2096   BuiltinType(Kind K)
   2097     : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
   2098            /*InstantiationDependent=*/(K == Dependent),
   2099            /*VariablyModified=*/false,
   2100            /*Unexpanded parameter pack=*/false) {
   2101     BuiltinTypeBits.Kind = K;
   2102   }
   2103 
   2104   Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
   2105   StringRef getName(const PrintingPolicy &Policy) const;
   2106   const char *getNameAsCString(const PrintingPolicy &Policy) const {
   2107     // The StringRef is null-terminated.
   2108     StringRef str = getName(Policy);
   2109     assert(!str.empty() && str.data()[str.size()] == '\0');
   2110     return str.data();
   2111   }
   2112 
   2113   bool isSugared() const { return false; }
   2114   QualType desugar() const { return QualType(this, 0); }
   2115 
   2116   bool isInteger() const {
   2117     return getKind() >= Bool && getKind() <= Int128;
   2118   }
   2119 
   2120   bool isSignedInteger() const {
   2121     return getKind() >= Char_S && getKind() <= Int128;
   2122   }
   2123 
   2124   bool isUnsignedInteger() const {
   2125     return getKind() >= Bool && getKind() <= UInt128;
   2126   }
   2127 
   2128   bool isFloatingPoint() const {
   2129     return getKind() >= Half && getKind() <= Float128;
   2130   }
   2131 
   2132   /// Determines whether the given kind corresponds to a placeholder type.
   2133   static bool isPlaceholderTypeKind(Kind K) {
   2134     return K >= Overload;
   2135   }
   2136 
   2137   /// Determines whether this type is a placeholder type, i.e. a type
   2138   /// which cannot appear in arbitrary positions in a fully-formed
   2139   /// expression.
   2140   bool isPlaceholderType() const {
   2141     return isPlaceholderTypeKind(getKind());
   2142   }
   2143 
   2144   /// Determines whether this type is a placeholder type other than
   2145   /// Overload.  Most placeholder types require only syntactic
   2146   /// information about their context in order to be resolved (e.g.
   2147   /// whether it is a call expression), which means they can (and
   2148   /// should) be resolved in an earlier "phase" of analysis.
   2149   /// Overload expressions sometimes pick up further information
   2150   /// from their context, like whether the context expects a
   2151   /// specific function-pointer type, and so frequently need
   2152   /// special treatment.
   2153   bool isNonOverloadPlaceholderType() const {
   2154     return getKind() > Overload;
   2155   }
   2156 
   2157   static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
   2158 };
   2159 
   2160 /// Complex values, per C99 6.2.5p11.  This supports the C99 complex
   2161 /// types (_Complex float etc) as well as the GCC integer complex extensions.
   2162 ///
   2163 class ComplexType : public Type, public llvm::FoldingSetNode {
   2164   QualType ElementType;
   2165   ComplexType(QualType Element, QualType CanonicalPtr) :
   2166     Type(Complex, CanonicalPtr, Element->isDependentType(),
   2167          Element->isInstantiationDependentType(),
   2168          Element->isVariablyModifiedType(),
   2169          Element->containsUnexpandedParameterPack()),
   2170     ElementType(Element) {
   2171   }
   2172   friend class ASTContext;  // ASTContext creates these.
   2173 
   2174 public:
   2175   QualType getElementType() const { return ElementType; }
   2176 
   2177   bool isSugared() const { return false; }
   2178   QualType desugar() const { return QualType(this, 0); }
   2179 
   2180   void Profile(llvm::FoldingSetNodeID &ID) {
   2181     Profile(ID, getElementType());
   2182   }
   2183   static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
   2184     ID.AddPointer(Element.getAsOpaquePtr());
   2185   }
   2186 
   2187   static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
   2188 };
   2189 
   2190 /// Sugar for parentheses used when specifying types.
   2191 ///
   2192 class ParenType : public Type, public llvm::FoldingSetNode {
   2193   QualType Inner;
   2194 
   2195   ParenType(QualType InnerType, QualType CanonType) :
   2196     Type(Paren, CanonType, InnerType->isDependentType(),
   2197          InnerType->isInstantiationDependentType(),
   2198          InnerType->isVariablyModifiedType(),
   2199          InnerType->containsUnexpandedParameterPack()),
   2200     Inner(InnerType) {
   2201   }
   2202   friend class ASTContext;  // ASTContext creates these.
   2203 
   2204 public:
   2205 
   2206   QualType getInnerType() const { return Inner; }
   2207 
   2208   bool isSugared() const { return true; }
   2209   QualType desugar() const { return getInnerType(); }
   2210 
   2211   void Profile(llvm::FoldingSetNodeID &ID) {
   2212     Profile(ID, getInnerType());
   2213   }
   2214   static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
   2215     Inner.Profile(ID);
   2216   }
   2217 
   2218   static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
   2219 };
   2220 
   2221 /// PointerType - C99 6.7.5.1 - Pointer Declarators.
   2222 ///
   2223 class PointerType : public Type, public llvm::FoldingSetNode {
   2224   QualType PointeeType;
   2225 
   2226   PointerType(QualType Pointee, QualType CanonicalPtr) :
   2227     Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
   2228          Pointee->isInstantiationDependentType(),
   2229          Pointee->isVariablyModifiedType(),
   2230          Pointee->containsUnexpandedParameterPack()),
   2231     PointeeType(Pointee) {
   2232   }
   2233   friend class ASTContext;  // ASTContext creates these.
   2234 
   2235 public:
   2236 
   2237   QualType getPointeeType() const { return PointeeType; }
   2238 
   2239   /// Returns true if address spaces of pointers overlap.
   2240   /// OpenCL v2.0 defines conversion rules for pointers to different
   2241   /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
   2242   /// address spaces.
   2243   /// CL1.1 or CL1.2:
   2244   ///   address spaces overlap iff they are they same.
   2245   /// CL2.0 adds:
   2246   ///   __generic overlaps with any address space except for __constant.
   2247   bool isAddressSpaceOverlapping(const PointerType &other) const {
   2248     Qualifiers thisQuals = PointeeType.getQualifiers();
   2249     Qualifiers otherQuals = other.getPointeeType().getQualifiers();
   2250     // Address spaces overlap if at least one of them is a superset of another
   2251     return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
   2252            otherQuals.isAddressSpaceSupersetOf(thisQuals);
   2253   }
   2254 
   2255   bool isSugared() const { return false; }
   2256   QualType desugar() const { return QualType(this, 0); }
   2257 
   2258   void Profile(llvm::FoldingSetNodeID &ID) {
   2259     Profile(ID, getPointeeType());
   2260   }
   2261   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   2262     ID.AddPointer(Pointee.getAsOpaquePtr());
   2263   }
   2264 
   2265   static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
   2266 };
   2267 
   2268 /// Represents a type which was implicitly adjusted by the semantic
   2269 /// engine for arbitrary reasons.  For example, array and function types can
   2270 /// decay, and function types can have their calling conventions adjusted.
   2271 class AdjustedType : public Type, public llvm::FoldingSetNode {
   2272   QualType OriginalTy;
   2273   QualType AdjustedTy;
   2274 
   2275 protected:
   2276   AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
   2277                QualType CanonicalPtr)
   2278       : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
   2279              OriginalTy->isInstantiationDependentType(),
   2280              OriginalTy->isVariablyModifiedType(),
   2281              OriginalTy->containsUnexpandedParameterPack()),
   2282         OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
   2283 
   2284   friend class ASTContext;  // ASTContext creates these.
   2285 
   2286 public:
   2287   QualType getOriginalType() const { return OriginalTy; }
   2288   QualType getAdjustedType() const { return AdjustedTy; }
   2289 
   2290   bool isSugared() const { return true; }
   2291   QualType desugar() const { return AdjustedTy; }
   2292 
   2293   void Profile(llvm::FoldingSetNodeID &ID) {
   2294     Profile(ID, OriginalTy, AdjustedTy);
   2295   }
   2296   static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
   2297     ID.AddPointer(Orig.getAsOpaquePtr());
   2298     ID.AddPointer(New.getAsOpaquePtr());
   2299   }
   2300 
   2301   static bool classof(const Type *T) {
   2302     return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
   2303   }
   2304 };
   2305 
   2306 /// Represents a pointer type decayed from an array or function type.
   2307 class DecayedType : public AdjustedType {
   2308 
   2309   inline
   2310   DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
   2311 
   2312   friend class ASTContext;  // ASTContext creates these.
   2313 
   2314 public:
   2315   QualType getDecayedType() const { return getAdjustedType(); }
   2316 
   2317   inline QualType getPointeeType() const;
   2318 
   2319   static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
   2320 };
   2321 
   2322 /// Pointer to a block type.
   2323 /// This type is to represent types syntactically represented as
   2324 /// "void (^)(int)", etc. Pointee is required to always be a function type.
   2325 ///
   2326 class BlockPointerType : public Type, public llvm::FoldingSetNode {
   2327   QualType PointeeType;  // Block is some kind of pointer type
   2328   BlockPointerType(QualType Pointee, QualType CanonicalCls) :
   2329     Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
   2330          Pointee->isInstantiationDependentType(),
   2331          Pointee->isVariablyModifiedType(),
   2332          Pointee->containsUnexpandedParameterPack()),
   2333     PointeeType(Pointee) {
   2334   }
   2335   friend class ASTContext;  // ASTContext creates these.
   2336 
   2337 public:
   2338 
   2339   // Get the pointee type. Pointee is required to always be a function type.
   2340   QualType getPointeeType() const { return PointeeType; }
   2341 
   2342   bool isSugared() const { return false; }
   2343   QualType desugar() const { return QualType(this, 0); }
   2344 
   2345   void Profile(llvm::FoldingSetNodeID &ID) {
   2346       Profile(ID, getPointeeType());
   2347   }
   2348   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   2349       ID.AddPointer(Pointee.getAsOpaquePtr());
   2350   }
   2351 
   2352   static bool classof(const Type *T) {
   2353     return T->getTypeClass() == BlockPointer;
   2354   }
   2355 };
   2356 
   2357 /// Base for LValueReferenceType and RValueReferenceType
   2358 ///
   2359 class ReferenceType : public Type, public llvm::FoldingSetNode {
   2360   QualType PointeeType;
   2361 
   2362 protected:
   2363   ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
   2364                 bool SpelledAsLValue) :
   2365     Type(tc, CanonicalRef, Referencee->isDependentType(),
   2366          Referencee->isInstantiationDependentType(),
   2367          Referencee->isVariablyModifiedType(),
   2368          Referencee->containsUnexpandedParameterPack()),
   2369     PointeeType(Referencee)
   2370   {
   2371     ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
   2372     ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
   2373   }
   2374 
   2375 public:
   2376   bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
   2377   bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
   2378 
   2379   QualType getPointeeTypeAsWritten() const { return PointeeType; }
   2380   QualType getPointeeType() const {
   2381     // FIXME: this might strip inner qualifiers; okay?
   2382     const ReferenceType *T = this;
   2383     while (T->isInnerRef())
   2384       T = T->PointeeType->castAs<ReferenceType>();
   2385     return T->PointeeType;
   2386   }
   2387 
   2388   void Profile(llvm::FoldingSetNodeID &ID) {
   2389     Profile(ID, PointeeType, isSpelledAsLValue());
   2390   }
   2391   static void Profile(llvm::FoldingSetNodeID &ID,
   2392                       QualType Referencee,
   2393                       bool SpelledAsLValue) {
   2394     ID.AddPointer(Referencee.getAsOpaquePtr());
   2395     ID.AddBoolean(SpelledAsLValue);
   2396   }
   2397 
   2398   static bool classof(const Type *T) {
   2399     return T->getTypeClass() == LValueReference ||
   2400            T->getTypeClass() == RValueReference;
   2401   }
   2402 };
   2403 
   2404 /// An lvalue reference type, per C++11 [dcl.ref].
   2405 ///
   2406 class LValueReferenceType : public ReferenceType {
   2407   LValueReferenceType(QualType Referencee, QualType CanonicalRef,
   2408                       bool SpelledAsLValue) :
   2409     ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
   2410   {}
   2411   friend class ASTContext; // ASTContext creates these
   2412 public:
   2413   bool isSugared() const { return false; }
   2414   QualType desugar() const { return QualType(this, 0); }
   2415 
   2416   static bool classof(const Type *T) {
   2417     return T->getTypeClass() == LValueReference;
   2418   }
   2419 };
   2420 
   2421 /// An rvalue reference type, per C++11 [dcl.ref].
   2422 ///
   2423 class RValueReferenceType : public ReferenceType {
   2424   RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
   2425     ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
   2426   }
   2427   friend class ASTContext; // ASTContext creates these
   2428 public:
   2429   bool isSugared() const { return false; }
   2430   QualType desugar() const { return QualType(this, 0); }
   2431 
   2432   static bool classof(const Type *T) {
   2433     return T->getTypeClass() == RValueReference;
   2434   }
   2435 };
   2436 
   2437 /// A pointer to member type per C++ 8.3.3 - Pointers to members.
   2438 ///
   2439 /// This includes both pointers to data members and pointer to member functions.
   2440 ///
   2441 class MemberPointerType : public Type, public llvm::FoldingSetNode {
   2442   QualType PointeeType;
   2443   /// The class of which the pointee is a member. Must ultimately be a
   2444   /// RecordType, but could be a typedef or a template parameter too.
   2445   const Type *Class;
   2446 
   2447   MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
   2448     Type(MemberPointer, CanonicalPtr,
   2449          Cls->isDependentType() || Pointee->isDependentType(),
   2450          (Cls->isInstantiationDependentType() ||
   2451           Pointee->isInstantiationDependentType()),
   2452          Pointee->isVariablyModifiedType(),
   2453          (Cls->containsUnexpandedParameterPack() ||
   2454           Pointee->containsUnexpandedParameterPack())),
   2455     PointeeType(Pointee), Class(Cls) {
   2456   }
   2457   friend class ASTContext; // ASTContext creates these.
   2458 
   2459 public:
   2460   QualType getPointeeType() const { return PointeeType; }
   2461 
   2462   /// Returns true if the member type (i.e. the pointee type) is a
   2463   /// function type rather than a data-member type.
   2464   bool isMemberFunctionPointer() const {
   2465     return PointeeType->isFunctionProtoType();
   2466   }
   2467 
   2468   /// Returns true if the member type (i.e. the pointee type) is a
   2469   /// data type rather than a function type.
   2470   bool isMemberDataPointer() const {
   2471     return !PointeeType->isFunctionProtoType();
   2472   }
   2473 
   2474   const Type *getClass() const { return Class; }
   2475   CXXRecordDecl *getMostRecentCXXRecordDecl() const;
   2476 
   2477   bool isSugared() const { return false; }
   2478   QualType desugar() const { return QualType(this, 0); }
   2479 
   2480   void Profile(llvm::FoldingSetNodeID &ID) {
   2481     Profile(ID, getPointeeType(), getClass());
   2482   }
   2483   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
   2484                       const Type *Class) {
   2485     ID.AddPointer(Pointee.getAsOpaquePtr());
   2486     ID.AddPointer(Class);
   2487   }
   2488 
   2489   static bool classof(const Type *T) {
   2490     return T->getTypeClass() == MemberPointer;
   2491   }
   2492 };
   2493 
   2494 /// Represents an array type, per C99 6.7.5.2 - Array Declarators.
   2495 ///
   2496 class ArrayType : public Type, public llvm::FoldingSetNode {
   2497 public:
   2498   /// Capture whether this is a normal array (e.g. int X[4])
   2499   /// an array with a static size (e.g. int X[static 4]), or an array
   2500   /// with a star size (e.g. int X[*]).
   2501   /// 'static' is only allowed on function parameters.
   2502   enum ArraySizeModifier {
   2503     Normal, Static, Star
   2504   };
   2505 private:
   2506   /// The element type of the array.
   2507   QualType ElementType;
   2508 
   2509 protected:
   2510   // C++ [temp.dep.type]p1:
   2511   //   A type is dependent if it is...
   2512   //     - an array type constructed from any dependent type or whose
   2513   //       size is specified by a constant expression that is
   2514   //       value-dependent,
   2515   ArrayType(TypeClass tc, QualType et, QualType can,
   2516             ArraySizeModifier sm, unsigned tq,
   2517             bool ContainsUnexpandedParameterPack)
   2518     : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
   2519            et->isInstantiationDependentType() || tc == DependentSizedArray,
   2520            (tc == VariableArray || et->isVariablyModifiedType()),
   2521            ContainsUnexpandedParameterPack),
   2522       ElementType(et) {
   2523     ArrayTypeBits.IndexTypeQuals = tq;
   2524     ArrayTypeBits.SizeModifier = sm;
   2525   }
   2526 
   2527   friend class ASTContext;  // ASTContext creates these.
   2528 
   2529 public:
   2530   QualType getElementType() const { return ElementType; }
   2531   ArraySizeModifier getSizeModifier() const {
   2532     return ArraySizeModifier(ArrayTypeBits.SizeModifier);
   2533   }
   2534   Qualifiers getIndexTypeQualifiers() const {
   2535     return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
   2536   }
   2537   unsigned getIndexTypeCVRQualifiers() const {
   2538     return ArrayTypeBits.IndexTypeQuals;
   2539   }
   2540 
   2541   static bool classof(const Type *T) {
   2542     return T->getTypeClass() == ConstantArray ||
   2543            T->getTypeClass() == VariableArray ||
   2544            T->getTypeClass() == IncompleteArray ||
   2545            T->getTypeClass() == DependentSizedArray;
   2546   }
   2547 };
   2548 
   2549 /// Represents the canonical version of C arrays with a specified constant size.
   2550 /// For example, the canonical type for 'int A[4 + 4*100]' is a
   2551 /// ConstantArrayType where the element type is 'int' and the size is 404.
   2552 class ConstantArrayType : public ArrayType {
   2553   llvm::APInt Size; // Allows us to unique the type.
   2554 
   2555   ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
   2556                     ArraySizeModifier sm, unsigned tq)
   2557     : ArrayType(ConstantArray, et, can, sm, tq,
   2558                 et->containsUnexpandedParameterPack()),
   2559       Size(size) {}
   2560 protected:
   2561   ConstantArrayType(TypeClass tc, QualType et, QualType can,
   2562                     const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
   2563     : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
   2564       Size(size) {}
   2565   friend class ASTContext;  // ASTContext creates these.
   2566 public:
   2567   const llvm::APInt &getSize() const { return Size; }
   2568   bool isSugared() const { return false; }
   2569   QualType desugar() const { return QualType(this, 0); }
   2570 
   2571 
   2572   /// \brief Determine the number of bits required to address a member of
   2573   // an array with the given element type and number of elements.
   2574   static unsigned getNumAddressingBits(const ASTContext &Context,
   2575                                        QualType ElementType,
   2576                                        const llvm::APInt &NumElements);
   2577 
   2578   /// \brief Determine the maximum number of active bits that an array's size
   2579   /// can require, which limits the maximum size of the array.
   2580   static unsigned getMaxSizeBits(const ASTContext &Context);
   2581 
   2582   void Profile(llvm::FoldingSetNodeID &ID) {
   2583     Profile(ID, getElementType(), getSize(),
   2584             getSizeModifier(), getIndexTypeCVRQualifiers());
   2585   }
   2586   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2587                       const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
   2588                       unsigned TypeQuals) {
   2589     ID.AddPointer(ET.getAsOpaquePtr());
   2590     ID.AddInteger(ArraySize.getZExtValue());
   2591     ID.AddInteger(SizeMod);
   2592     ID.AddInteger(TypeQuals);
   2593   }
   2594   static bool classof(const Type *T) {
   2595     return T->getTypeClass() == ConstantArray;
   2596   }
   2597 };
   2598 
   2599 /// Represents a C array with an unspecified size.  For example 'int A[]' has
   2600 /// an IncompleteArrayType where the element type is 'int' and the size is
   2601 /// unspecified.
   2602 class IncompleteArrayType : public ArrayType {
   2603 
   2604   IncompleteArrayType(QualType et, QualType can,
   2605                       ArraySizeModifier sm, unsigned tq)
   2606     : ArrayType(IncompleteArray, et, can, sm, tq,
   2607                 et->containsUnexpandedParameterPack()) {}
   2608   friend class ASTContext;  // ASTContext creates these.
   2609 public:
   2610   bool isSugared() const { return false; }
   2611   QualType desugar() const { return QualType(this, 0); }
   2612 
   2613   static bool classof(const Type *T) {
   2614     return T->getTypeClass() == IncompleteArray;
   2615   }
   2616 
   2617   friend class StmtIteratorBase;
   2618 
   2619   void Profile(llvm::FoldingSetNodeID &ID) {
   2620     Profile(ID, getElementType(), getSizeModifier(),
   2621             getIndexTypeCVRQualifiers());
   2622   }
   2623 
   2624   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2625                       ArraySizeModifier SizeMod, unsigned TypeQuals) {
   2626     ID.AddPointer(ET.getAsOpaquePtr());
   2627     ID.AddInteger(SizeMod);
   2628     ID.AddInteger(TypeQuals);
   2629   }
   2630 };
   2631 
   2632 /// Represents a C array with a specified size that is not an
   2633 /// integer-constant-expression.  For example, 'int s[x+foo()]'.
   2634 /// Since the size expression is an arbitrary expression, we store it as such.
   2635 ///
   2636 /// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
   2637 /// should not be: two lexically equivalent variable array types could mean
   2638 /// different things, for example, these variables do not have the same type
   2639 /// dynamically:
   2640 ///
   2641 /// void foo(int x) {
   2642 ///   int Y[x];
   2643 ///   ++x;
   2644 ///   int Z[x];
   2645 /// }
   2646 ///
   2647 class VariableArrayType : public ArrayType {
   2648   /// An assignment-expression. VLA's are only permitted within
   2649   /// a function block.
   2650   Stmt *SizeExpr;
   2651   /// The range spanned by the left and right array brackets.
   2652   SourceRange Brackets;
   2653 
   2654   VariableArrayType(QualType et, QualType can, Expr *e,
   2655                     ArraySizeModifier sm, unsigned tq,
   2656                     SourceRange brackets)
   2657     : ArrayType(VariableArray, et, can, sm, tq,
   2658                 et->containsUnexpandedParameterPack()),
   2659       SizeExpr((Stmt*) e), Brackets(brackets) {}
   2660   friend class ASTContext;  // ASTContext creates these.
   2661 
   2662 public:
   2663   Expr *getSizeExpr() const {
   2664     // We use C-style casts instead of cast<> here because we do not wish
   2665     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2666     return (Expr*) SizeExpr;
   2667   }
   2668   SourceRange getBracketsRange() const { return Brackets; }
   2669   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2670   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2671 
   2672   bool isSugared() const { return false; }
   2673   QualType desugar() const { return QualType(this, 0); }
   2674 
   2675   static bool classof(const Type *T) {
   2676     return T->getTypeClass() == VariableArray;
   2677   }
   2678 
   2679   friend class StmtIteratorBase;
   2680 
   2681   void Profile(llvm::FoldingSetNodeID &ID) {
   2682     llvm_unreachable("Cannot unique VariableArrayTypes.");
   2683   }
   2684 };
   2685 
   2686 /// Represents an array type in C++ whose size is a value-dependent expression.
   2687 ///
   2688 /// For example:
   2689 /// \code
   2690 /// template<typename T, int Size>
   2691 /// class array {
   2692 ///   T data[Size];
   2693 /// };
   2694 /// \endcode
   2695 ///
   2696 /// For these types, we won't actually know what the array bound is
   2697 /// until template instantiation occurs, at which point this will
   2698 /// become either a ConstantArrayType or a VariableArrayType.
   2699 class DependentSizedArrayType : public ArrayType {
   2700   const ASTContext &Context;
   2701 
   2702   /// \brief An assignment expression that will instantiate to the
   2703   /// size of the array.
   2704   ///
   2705   /// The expression itself might be null, in which case the array
   2706   /// type will have its size deduced from an initializer.
   2707   Stmt *SizeExpr;
   2708 
   2709   /// The range spanned by the left and right array brackets.
   2710   SourceRange Brackets;
   2711 
   2712   DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
   2713                           Expr *e, ArraySizeModifier sm, unsigned tq,
   2714                           SourceRange brackets);
   2715 
   2716   friend class ASTContext;  // ASTContext creates these.
   2717 
   2718 public:
   2719   Expr *getSizeExpr() const {
   2720     // We use C-style casts instead of cast<> here because we do not wish
   2721     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2722     return (Expr*) SizeExpr;
   2723   }
   2724   SourceRange getBracketsRange() const { return Brackets; }
   2725   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2726   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2727 
   2728   bool isSugared() const { return false; }
   2729   QualType desugar() const { return QualType(this, 0); }
   2730 
   2731   static bool classof(const Type *T) {
   2732     return T->getTypeClass() == DependentSizedArray;
   2733   }
   2734 
   2735   friend class StmtIteratorBase;
   2736 
   2737 
   2738   void Profile(llvm::FoldingSetNodeID &ID) {
   2739     Profile(ID, Context, getElementType(),
   2740             getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
   2741   }
   2742 
   2743   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2744                       QualType ET, ArraySizeModifier SizeMod,
   2745                       unsigned TypeQuals, Expr *E);
   2746 };
   2747 
   2748 /// Represents an extended vector type where either the type or size is
   2749 /// dependent.
   2750 ///
   2751 /// For example:
   2752 /// \code
   2753 /// template<typename T, int Size>
   2754 /// class vector {
   2755 ///   typedef T __attribute__((ext_vector_type(Size))) type;
   2756 /// }
   2757 /// \endcode
   2758 class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
   2759   const ASTContext &Context;
   2760   Expr *SizeExpr;
   2761   /// The element type of the array.
   2762   QualType ElementType;
   2763   SourceLocation loc;
   2764 
   2765   DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
   2766                               QualType can, Expr *SizeExpr, SourceLocation loc);
   2767 
   2768   friend class ASTContext;
   2769 
   2770 public:
   2771   Expr *getSizeExpr() const { return SizeExpr; }
   2772   QualType getElementType() const { return ElementType; }
   2773   SourceLocation getAttributeLoc() const { return loc; }
   2774 
   2775   bool isSugared() const { return false; }
   2776   QualType desugar() const { return QualType(this, 0); }
   2777 
   2778   static bool classof(const Type *T) {
   2779     return T->getTypeClass() == DependentSizedExtVector;
   2780   }
   2781 
   2782   void Profile(llvm::FoldingSetNodeID &ID) {
   2783     Profile(ID, Context, getElementType(), getSizeExpr());
   2784   }
   2785 
   2786   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2787                       QualType ElementType, Expr *SizeExpr);
   2788 };
   2789 
   2790 
   2791 /// Represents a GCC generic vector type. This type is created using
   2792 /// __attribute__((vector_size(n)), where "n" specifies the vector size in
   2793 /// bytes; or from an Altivec __vector or vector declaration.
   2794 /// Since the constructor takes the number of vector elements, the
   2795 /// client is responsible for converting the size into the number of elements.
   2796 class VectorType : public Type, public llvm::FoldingSetNode {
   2797 public:
   2798   enum VectorKind {
   2799     GenericVector,  ///< not a target-specific vector type
   2800     AltiVecVector,  ///< is AltiVec vector
   2801     AltiVecPixel,   ///< is AltiVec 'vector Pixel'
   2802     AltiVecBool,    ///< is AltiVec 'vector bool ...'
   2803     NeonVector,     ///< is ARM Neon vector
   2804     NeonPolyVector  ///< is ARM Neon polynomial vector
   2805   };
   2806 protected:
   2807   /// The element type of the vector.
   2808   QualType ElementType;
   2809 
   2810   VectorType(QualType vecType, unsigned nElements, QualType canonType,
   2811              VectorKind vecKind);
   2812 
   2813   VectorType(TypeClass tc, QualType vecType, unsigned nElements,
   2814              QualType canonType, VectorKind vecKind);
   2815 
   2816   friend class ASTContext;  // ASTContext creates these.
   2817 
   2818 public:
   2819 
   2820   QualType getElementType() const { return ElementType; }
   2821   unsigned getNumElements() const { return VectorTypeBits.NumElements; }
   2822   static bool isVectorSizeTooLarge(unsigned NumElements) {
   2823     return NumElements > VectorTypeBitfields::MaxNumElements;
   2824   }
   2825 
   2826   bool isSugared() const { return false; }
   2827   QualType desugar() const { return QualType(this, 0); }
   2828 
   2829   VectorKind getVectorKind() const {
   2830     return VectorKind(VectorTypeBits.VecKind);
   2831   }
   2832 
   2833   void Profile(llvm::FoldingSetNodeID &ID) {
   2834     Profile(ID, getElementType(), getNumElements(),
   2835             getTypeClass(), getVectorKind());
   2836   }
   2837   static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
   2838                       unsigned NumElements, TypeClass TypeClass,
   2839                       VectorKind VecKind) {
   2840     ID.AddPointer(ElementType.getAsOpaquePtr());
   2841     ID.AddInteger(NumElements);
   2842     ID.AddInteger(TypeClass);
   2843     ID.AddInteger(VecKind);
   2844   }
   2845 
   2846   static bool classof(const Type *T) {
   2847     return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
   2848   }
   2849 };
   2850 
   2851 /// ExtVectorType - Extended vector type. This type is created using
   2852 /// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
   2853 /// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
   2854 /// class enables syntactic extensions, like Vector Components for accessing
   2855 /// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
   2856 /// Shading Language).
   2857 class ExtVectorType : public VectorType {
   2858   ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
   2859     VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
   2860   friend class ASTContext;  // ASTContext creates these.
   2861 public:
   2862   static int getPointAccessorIdx(char c) {
   2863     switch (c) {
   2864     default: return -1;
   2865     case 'x': case 'r': return 0;
   2866     case 'y': case 'g': return 1;
   2867     case 'z': case 'b': return 2;
   2868     case 'w': case 'a': return 3;
   2869     }
   2870   }
   2871   static int getNumericAccessorIdx(char c) {
   2872     switch (c) {
   2873       default: return -1;
   2874       case '0': return 0;
   2875       case '1': return 1;
   2876       case '2': return 2;
   2877       case '3': return 3;
   2878       case '4': return 4;
   2879       case '5': return 5;
   2880       case '6': return 6;
   2881       case '7': return 7;
   2882       case '8': return 8;
   2883       case '9': return 9;
   2884       case 'A':
   2885       case 'a': return 10;
   2886       case 'B':
   2887       case 'b': return 11;
   2888       case 'C':
   2889       case 'c': return 12;
   2890       case 'D':
   2891       case 'd': return 13;
   2892       case 'E':
   2893       case 'e': return 14;
   2894       case 'F':
   2895       case 'f': return 15;
   2896     }
   2897   }
   2898 
   2899   static int getAccessorIdx(char c, bool isNumericAccessor) {
   2900     if (isNumericAccessor)
   2901       return getNumericAccessorIdx(c);
   2902     else
   2903       return getPointAccessorIdx(c);
   2904   }
   2905 
   2906   bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
   2907     if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
   2908       return unsigned(idx-1) < getNumElements();
   2909     return false;
   2910   }
   2911   bool isSugared() const { return false; }
   2912   QualType desugar() const { return QualType(this, 0); }
   2913 
   2914   static bool classof(const Type *T) {
   2915     return T->getTypeClass() == ExtVector;
   2916   }
   2917 };
   2918 
   2919 /// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
   2920 /// class of FunctionNoProtoType and FunctionProtoType.
   2921 ///
   2922 class FunctionType : public Type {
   2923   // The type returned by the function.
   2924   QualType ResultType;
   2925 
   2926  public:
   2927   /// A class which abstracts out some details necessary for
   2928   /// making a call.
   2929   ///
   2930   /// It is not actually used directly for storing this information in
   2931   /// a FunctionType, although FunctionType does currently use the
   2932   /// same bit-pattern.
   2933   ///
   2934   // If you add a field (say Foo), other than the obvious places (both,
   2935   // constructors, compile failures), what you need to update is
   2936   // * Operator==
   2937   // * getFoo
   2938   // * withFoo
   2939   // * functionType. Add Foo, getFoo.
   2940   // * ASTContext::getFooType
   2941   // * ASTContext::mergeFunctionTypes
   2942   // * FunctionNoProtoType::Profile
   2943   // * FunctionProtoType::Profile
   2944   // * TypePrinter::PrintFunctionProto
   2945   // * AST read and write
   2946   // * Codegen
   2947   class ExtInfo {
   2948     // Feel free to rearrange or add bits, but if you go over 11,
   2949     // you'll need to adjust both the Bits field below and
   2950     // Type::FunctionTypeBitfields.
   2951 
   2952     //   |  CC  |noreturn|produces|nocallersavedregs|regparm|
   2953     //   |0 .. 4|   5    |    6   |       7         |8 .. 10|
   2954     //
   2955     // regparm is either 0 (no regparm attribute) or the regparm value+1.
   2956     enum { CallConvMask = 0x1F };
   2957     enum { NoReturnMask = 0x20 };
   2958     enum { ProducesResultMask = 0x40 };
   2959     enum { NoCallerSavedRegsMask = 0x80 };
   2960     enum {
   2961       RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask |
   2962                       NoCallerSavedRegsMask),
   2963       RegParmOffset = 8
   2964     }; // Assumed to be the last field
   2965 
   2966     uint16_t Bits;
   2967 
   2968     ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
   2969 
   2970     friend class FunctionType;
   2971 
   2972    public:
   2973     // Constructor with no defaults. Use this when you know that you
   2974     // have all the elements (when reading an AST file for example).
   2975      ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
   2976              bool producesResult, bool noCallerSavedRegs) {
   2977        assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
   2978        Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
   2979               (producesResult ? ProducesResultMask : 0) |
   2980               (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
   2981               (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
   2982     }
   2983 
   2984     // Constructor with all defaults. Use when for example creating a
   2985     // function known to use defaults.
   2986     ExtInfo() : Bits(CC_C) { }
   2987 
   2988     // Constructor with just the calling convention, which is an important part
   2989     // of the canonical type.
   2990     ExtInfo(CallingConv CC) : Bits(CC) { }
   2991 
   2992     bool getNoReturn() const { return Bits & NoReturnMask; }
   2993     bool getProducesResult() const { return Bits & ProducesResultMask; }
   2994     bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
   2995     bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
   2996     unsigned getRegParm() const {
   2997       unsigned RegParm = Bits >> RegParmOffset;
   2998       if (RegParm > 0)
   2999         --RegParm;
   3000       return RegParm;
   3001     }
   3002     CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
   3003 
   3004     bool operator==(ExtInfo Other) const {
   3005       return Bits == Other.Bits;
   3006     }
   3007     bool operator!=(ExtInfo Other) const {
   3008       return Bits != Other.Bits;
   3009     }
   3010 
   3011     // Note that we don't have setters. That is by design, use
   3012     // the following with methods instead of mutating these objects.
   3013 
   3014     ExtInfo withNoReturn(bool noReturn) const {
   3015       if (noReturn)
   3016         return ExtInfo(Bits | NoReturnMask);
   3017       else
   3018         return ExtInfo(Bits & ~NoReturnMask);
   3019     }
   3020 
   3021     ExtInfo withProducesResult(bool producesResult) const {
   3022       if (producesResult)
   3023         return ExtInfo(Bits | ProducesResultMask);
   3024       else
   3025         return ExtInfo(Bits & ~ProducesResultMask);
   3026     }
   3027 
   3028     ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
   3029       if (noCallerSavedRegs)
   3030         return ExtInfo(Bits | NoCallerSavedRegsMask);
   3031       else
   3032         return ExtInfo(Bits & ~NoCallerSavedRegsMask);
   3033     }
   3034 
   3035     ExtInfo withRegParm(unsigned RegParm) const {
   3036       assert(RegParm < 7 && "Invalid regparm value");
   3037       return ExtInfo((Bits & ~RegParmMask) |
   3038                      ((RegParm + 1) << RegParmOffset));
   3039     }
   3040 
   3041     ExtInfo withCallingConv(CallingConv cc) const {
   3042       return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
   3043     }
   3044 
   3045     void Profile(llvm::FoldingSetNodeID &ID) const {
   3046       ID.AddInteger(Bits);
   3047     }
   3048   };
   3049 
   3050 protected:
   3051   FunctionType(TypeClass tc, QualType res,
   3052                QualType Canonical, bool Dependent,
   3053                bool InstantiationDependent,
   3054                bool VariablyModified, bool ContainsUnexpandedParameterPack,
   3055                ExtInfo Info)
   3056     : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   3057            ContainsUnexpandedParameterPack),
   3058       ResultType(res) {
   3059     FunctionTypeBits.ExtInfo = Info.Bits;
   3060   }
   3061   unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
   3062 
   3063 public:
   3064   QualType getReturnType() const { return ResultType; }
   3065 
   3066   bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
   3067   unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
   3068   /// Determine whether this function type includes the GNU noreturn
   3069   /// attribute. The C++11 [[noreturn]] attribute does not affect the function
   3070   /// type.
   3071   bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
   3072   CallingConv getCallConv() const { return getExtInfo().getCC(); }
   3073   ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
   3074   bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
   3075   bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
   3076   bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
   3077 
   3078   /// \brief Determine the type of an expression that calls a function of
   3079   /// this type.
   3080   QualType getCallResultType(const ASTContext &Context) const {
   3081     return getReturnType().getNonLValueExprType(Context);
   3082   }
   3083 
   3084   static StringRef getNameForCallConv(CallingConv CC);
   3085 
   3086   static bool classof(const Type *T) {
   3087     return T->getTypeClass() == FunctionNoProto ||
   3088            T->getTypeClass() == FunctionProto;
   3089   }
   3090 };
   3091 
   3092 /// Represents a K&R-style 'int foo()' function, which has
   3093 /// no information available about its arguments.
   3094 class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
   3095   FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
   3096     : FunctionType(FunctionNoProto, Result, Canonical,
   3097                    /*Dependent=*/false, /*InstantiationDependent=*/false,
   3098                    Result->isVariablyModifiedType(),
   3099                    /*ContainsUnexpandedParameterPack=*/false, Info) {}
   3100 
   3101   friend class ASTContext;  // ASTContext creates these.
   3102 
   3103 public:
   3104   // No additional state past what FunctionType provides.
   3105 
   3106   bool isSugared() const { return false; }
   3107   QualType desugar() const { return QualType(this, 0); }
   3108 
   3109   void Profile(llvm::FoldingSetNodeID &ID) {
   3110     Profile(ID, getReturnType(), getExtInfo());
   3111   }
   3112   static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
   3113                       ExtInfo Info) {
   3114     Info.Profile(ID);
   3115     ID.AddPointer(ResultType.getAsOpaquePtr());
   3116   }
   3117 
   3118   static bool classof(const Type *T) {
   3119     return T->getTypeClass() == FunctionNoProto;
   3120   }
   3121 };
   3122 
   3123 /// Represents a prototype with parameter type info, e.g.
   3124 /// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
   3125 /// parameters, not as having a single void parameter. Such a type can have an
   3126 /// exception specification, but this specification is not part of the canonical
   3127 /// type.
   3128 class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
   3129 public:
   3130   /// Interesting information about a specific parameter that can't simply
   3131   /// be reflected in parameter's type.
   3132   ///
   3133   /// It makes sense to model language features this way when there's some
   3134   /// sort of parameter-specific override (such as an attribute) that
   3135   /// affects how the function is called.  For example, the ARC ns_consumed
   3136   /// attribute changes whether a parameter is passed at +0 (the default)
   3137   /// or +1 (ns_consumed).  This must be reflected in the function type,
   3138   /// but isn't really a change to the parameter type.
   3139   ///
   3140   /// One serious disadvantage of modelling language features this way is
   3141   /// that they generally do not work with language features that attempt
   3142   /// to destructure types.  For example, template argument deduction will
   3143   /// not be able to match a parameter declared as
   3144   ///   T (*)(U)
   3145   /// against an argument of type
   3146   ///   void (*)(__attribute__((ns_consumed)) id)
   3147   /// because the substitution of T=void, U=id into the former will
   3148   /// not produce the latter.
   3149   class ExtParameterInfo {
   3150     enum {
   3151       ABIMask         = 0x0F,
   3152       IsConsumed      = 0x10,
   3153       HasPassObjSize  = 0x20,
   3154     };
   3155     unsigned char Data;
   3156 
   3157   public:
   3158     ExtParameterInfo() : Data(0) {}
   3159 
   3160     /// Return the ABI treatment of this parameter.
   3161     ParameterABI getABI() const {
   3162       return ParameterABI(Data & ABIMask);
   3163     }
   3164     ExtParameterInfo withABI(ParameterABI kind) const {
   3165       ExtParameterInfo copy = *this;
   3166       copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
   3167       return copy;
   3168     }
   3169 
   3170     /// Is this parameter considered "consumed" by Objective-C ARC?
   3171     /// Consumed parameters must have retainable object type.
   3172     bool isConsumed() const {
   3173       return (Data & IsConsumed);
   3174     }
   3175     ExtParameterInfo withIsConsumed(bool consumed) const {
   3176       ExtParameterInfo copy = *this;
   3177       if (consumed) {
   3178         copy.Data |= IsConsumed;
   3179       } else {
   3180         copy.Data &= ~IsConsumed;
   3181       }
   3182       return copy;
   3183     }
   3184 
   3185     bool hasPassObjectSize() const {
   3186       return Data & HasPassObjSize;
   3187     }
   3188     ExtParameterInfo withHasPassObjectSize() const {
   3189       ExtParameterInfo Copy = *this;
   3190       Copy.Data |= HasPassObjSize;
   3191       return Copy;
   3192     }
   3193 
   3194     unsigned char getOpaqueValue() const { return Data; }
   3195     static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
   3196       ExtParameterInfo result;
   3197       result.Data = data;
   3198       return result;
   3199     }
   3200 
   3201     friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
   3202       return lhs.Data == rhs.Data;
   3203     }
   3204     friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
   3205       return lhs.Data != rhs.Data;
   3206     }
   3207   };
   3208 
   3209   struct ExceptionSpecInfo {
   3210     ExceptionSpecInfo()
   3211         : Type(EST_None), NoexceptExpr(nullptr),
   3212           SourceDecl(nullptr), SourceTemplate(nullptr) {}
   3213 
   3214     ExceptionSpecInfo(ExceptionSpecificationType EST)
   3215         : Type(EST), NoexceptExpr(nullptr), SourceDecl(nullptr),
   3216           SourceTemplate(nullptr) {}
   3217 
   3218     /// The kind of exception specification this is.
   3219     ExceptionSpecificationType Type;
   3220     /// Explicitly-specified list of exception types.
   3221     ArrayRef<QualType> Exceptions;
   3222     /// Noexcept expression, if this is EST_ComputedNoexcept.
   3223     Expr *NoexceptExpr;
   3224     /// The function whose exception specification this is, for
   3225     /// EST_Unevaluated and EST_Uninstantiated.
   3226     FunctionDecl *SourceDecl;
   3227     /// The function template whose exception specification this is instantiated
   3228     /// from, for EST_Uninstantiated.
   3229     FunctionDecl *SourceTemplate;
   3230   };
   3231 
   3232   /// Extra information about a function prototype.
   3233   struct ExtProtoInfo {
   3234     ExtProtoInfo()
   3235         : Variadic(false), HasTrailingReturn(false), TypeQuals(0),
   3236           RefQualifier(RQ_None), ExtParameterInfos(nullptr) {}
   3237 
   3238     ExtProtoInfo(CallingConv CC)
   3239         : ExtInfo(CC), Variadic(false), HasTrailingReturn(false), TypeQuals(0),
   3240           RefQualifier(RQ_None), ExtParameterInfos(nullptr) {}
   3241 
   3242     ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &O) {
   3243       ExtProtoInfo Result(*this);
   3244       Result.ExceptionSpec = O;
   3245       return Result;
   3246     }
   3247 
   3248     FunctionType::ExtInfo ExtInfo;
   3249     bool Variadic : 1;
   3250     bool HasTrailingReturn : 1;
   3251     unsigned char TypeQuals;
   3252     RefQualifierKind RefQualifier;
   3253     ExceptionSpecInfo ExceptionSpec;
   3254     const ExtParameterInfo *ExtParameterInfos;
   3255   };
   3256 
   3257 private:
   3258   /// \brief Determine whether there are any argument types that
   3259   /// contain an unexpanded parameter pack.
   3260   static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
   3261                                                  unsigned numArgs) {
   3262     for (unsigned Idx = 0; Idx < numArgs; ++Idx)
   3263       if (ArgArray[Idx]->containsUnexpandedParameterPack())
   3264         return true;
   3265 
   3266     return false;
   3267   }
   3268 
   3269   FunctionProtoType(QualType result, ArrayRef<QualType> params,
   3270                     QualType canonical, const ExtProtoInfo &epi);
   3271 
   3272   /// The number of parameters this function has, not counting '...'.
   3273   unsigned NumParams : 15;
   3274 
   3275   /// The number of types in the exception spec, if any.
   3276   unsigned NumExceptions : 9;
   3277 
   3278   /// The type of exception specification this function has.
   3279   unsigned ExceptionSpecType : 4;
   3280 
   3281   /// Whether this function has extended parameter information.
   3282   unsigned HasExtParameterInfos : 1;
   3283 
   3284   /// Whether the function is variadic.
   3285   unsigned Variadic : 1;
   3286 
   3287   /// Whether this function has a trailing return type.
   3288   unsigned HasTrailingReturn : 1;
   3289 
   3290   // ParamInfo - There is an variable size array after the class in memory that
   3291   // holds the parameter types.
   3292 
   3293   // Exceptions - There is another variable size array after ArgInfo that
   3294   // holds the exception types.
   3295 
   3296   // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
   3297   // to the expression in the noexcept() specifier.
   3298 
   3299   // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
   3300   // be a pair of FunctionDecl* pointing to the function which should be used to
   3301   // instantiate this function type's exception specification, and the function
   3302   // from which it should be instantiated.
   3303 
   3304   // ExtParameterInfos - A variable size array, following the exception
   3305   // specification and of length NumParams, holding an ExtParameterInfo
   3306   // for each of the parameters.  This only appears if HasExtParameterInfos
   3307   // is true.
   3308 
   3309   friend class ASTContext;  // ASTContext creates these.
   3310 
   3311   const ExtParameterInfo *getExtParameterInfosBuffer() const {
   3312     assert(hasExtParameterInfos());
   3313 
   3314     // Find the end of the exception specification.
   3315     const char *ptr = reinterpret_cast<const char *>(exception_begin());
   3316     ptr += getExceptionSpecSize();
   3317 
   3318     return reinterpret_cast<const ExtParameterInfo *>(ptr);
   3319   }
   3320 
   3321   size_t getExceptionSpecSize() const {
   3322     switch (getExceptionSpecType()) {
   3323     case EST_None:             return 0;
   3324     case EST_DynamicNone:      return 0;
   3325     case EST_MSAny:            return 0;
   3326     case EST_BasicNoexcept:    return 0;
   3327     case EST_Unparsed:         return 0;
   3328     case EST_Dynamic:          return getNumExceptions() * sizeof(QualType);
   3329     case EST_ComputedNoexcept: return sizeof(Expr*);
   3330     case EST_Uninstantiated:   return 2 * sizeof(FunctionDecl*);
   3331     case EST_Unevaluated:      return sizeof(FunctionDecl*);
   3332     }
   3333     llvm_unreachable("bad exception specification kind");
   3334   }
   3335 
   3336 public:
   3337   unsigned getNumParams() const { return NumParams; }
   3338   QualType getParamType(unsigned i) const {
   3339     assert(i < NumParams && "invalid parameter index");
   3340     return param_type_begin()[i];
   3341   }
   3342   ArrayRef<QualType> getParamTypes() const {
   3343     return llvm::makeArrayRef(param_type_begin(), param_type_end());
   3344   }
   3345 
   3346   ExtProtoInfo getExtProtoInfo() const {
   3347     ExtProtoInfo EPI;
   3348     EPI.ExtInfo = getExtInfo();
   3349     EPI.Variadic = isVariadic();
   3350     EPI.HasTrailingReturn = hasTrailingReturn();
   3351     EPI.ExceptionSpec.Type = getExceptionSpecType();
   3352     EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
   3353     EPI.RefQualifier = getRefQualifier();
   3354     if (EPI.ExceptionSpec.Type == EST_Dynamic) {
   3355       EPI.ExceptionSpec.Exceptions = exceptions();
   3356     } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
   3357       EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
   3358     } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
   3359       EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
   3360       EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
   3361     } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
   3362       EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
   3363     }
   3364     if (hasExtParameterInfos())
   3365       EPI.ExtParameterInfos = getExtParameterInfosBuffer();
   3366     return EPI;
   3367   }
   3368 
   3369   /// Get the kind of exception specification on this function.
   3370   ExceptionSpecificationType getExceptionSpecType() const {
   3371     return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
   3372   }
   3373   /// Return whether this function has any kind of exception spec.
   3374   bool hasExceptionSpec() const {
   3375     return getExceptionSpecType() != EST_None;
   3376   }
   3377   /// Return whether this function has a dynamic (throw) exception spec.
   3378   bool hasDynamicExceptionSpec() const {
   3379     return isDynamicExceptionSpec(getExceptionSpecType());
   3380   }
   3381   /// Return whether this function has a noexcept exception spec.
   3382   bool hasNoexceptExceptionSpec() const {
   3383     return isNoexceptExceptionSpec(getExceptionSpecType());
   3384   }
   3385   /// Return whether this function has a dependent exception spec.
   3386   bool hasDependentExceptionSpec() const;
   3387   /// Return whether this function has an instantiation-dependent exception
   3388   /// spec.
   3389   bool hasInstantiationDependentExceptionSpec() const;
   3390   /// Result type of getNoexceptSpec().
   3391   enum NoexceptResult {
   3392     NR_NoNoexcept,  ///< There is no noexcept specifier.
   3393     NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
   3394     NR_Dependent,   ///< The noexcept specifier is dependent.
   3395     NR_Throw,       ///< The noexcept specifier evaluates to false.
   3396     NR_Nothrow      ///< The noexcept specifier evaluates to true.
   3397   };
   3398   /// Get the meaning of the noexcept spec on this function, if any.
   3399   NoexceptResult getNoexceptSpec(const ASTContext &Ctx) const;
   3400   unsigned getNumExceptions() const { return NumExceptions; }
   3401   QualType getExceptionType(unsigned i) const {
   3402     assert(i < NumExceptions && "Invalid exception number!");
   3403     return exception_begin()[i];
   3404   }
   3405   Expr *getNoexceptExpr() const {
   3406     if (getExceptionSpecType() != EST_ComputedNoexcept)
   3407       return nullptr;
   3408     // NoexceptExpr sits where the arguments end.
   3409     return *reinterpret_cast<Expr *const *>(param_type_end());
   3410   }
   3411   /// \brief If this function type has an exception specification which hasn't
   3412   /// been determined yet (either because it has not been evaluated or because
   3413   /// it has not been instantiated), this is the function whose exception
   3414   /// specification is represented by this type.
   3415   FunctionDecl *getExceptionSpecDecl() const {
   3416     if (getExceptionSpecType() != EST_Uninstantiated &&
   3417         getExceptionSpecType() != EST_Unevaluated)
   3418       return nullptr;
   3419     return reinterpret_cast<FunctionDecl *const *>(param_type_end())[0];
   3420   }
   3421   /// \brief If this function type has an uninstantiated exception
   3422   /// specification, this is the function whose exception specification
   3423   /// should be instantiated to find the exception specification for
   3424   /// this type.
   3425   FunctionDecl *getExceptionSpecTemplate() const {
   3426     if (getExceptionSpecType() != EST_Uninstantiated)
   3427       return nullptr;
   3428     return reinterpret_cast<FunctionDecl *const *>(param_type_end())[1];
   3429   }
   3430   /// Determine whether this function type has a non-throwing exception
   3431   /// specification.
   3432   CanThrowResult canThrow(const ASTContext &Ctx) const;
   3433   /// Determine whether this function type has a non-throwing exception
   3434   /// specification. If this depends on template arguments, returns
   3435   /// \c ResultIfDependent.
   3436   bool isNothrow(const ASTContext &Ctx, bool ResultIfDependent = false) const {
   3437     return ResultIfDependent ? canThrow(Ctx) != CT_Can
   3438                              : canThrow(Ctx) == CT_Cannot;
   3439   }
   3440 
   3441   bool isVariadic() const { return Variadic; }
   3442 
   3443   /// Determines whether this function prototype contains a
   3444   /// parameter pack at the end.
   3445   ///
   3446   /// A function template whose last parameter is a parameter pack can be
   3447   /// called with an arbitrary number of arguments, much like a variadic
   3448   /// function.
   3449   bool isTemplateVariadic() const;
   3450 
   3451   bool hasTrailingReturn() const { return HasTrailingReturn; }
   3452 
   3453   unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
   3454 
   3455 
   3456   /// Retrieve the ref-qualifier associated with this function type.
   3457   RefQualifierKind getRefQualifier() const {
   3458     return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
   3459   }
   3460 
   3461   typedef const QualType *param_type_iterator;
   3462   typedef llvm::iterator_range<param_type_iterator> param_type_range;
   3463 
   3464   param_type_range param_types() const {
   3465     return param_type_range(param_type_begin(), param_type_end());
   3466   }
   3467   param_type_iterator param_type_begin() const {
   3468     return reinterpret_cast<const QualType *>(this+1);
   3469   }
   3470   param_type_iterator param_type_end() const {
   3471     return param_type_begin() + NumParams;
   3472   }
   3473 
   3474   typedef const QualType *exception_iterator;
   3475 
   3476   ArrayRef<QualType> exceptions() const {
   3477     return llvm::makeArrayRef(exception_begin(), exception_end());
   3478   }
   3479   exception_iterator exception_begin() const {
   3480     // exceptions begin where arguments end
   3481     return param_type_end();
   3482   }
   3483   exception_iterator exception_end() const {
   3484     if (getExceptionSpecType() != EST_Dynamic)
   3485       return exception_begin();
   3486     return exception_begin() + NumExceptions;
   3487   }
   3488 
   3489   /// Is there any interesting extra information for any of the parameters
   3490   /// of this function type?
   3491   bool hasExtParameterInfos() const { return HasExtParameterInfos; }
   3492   ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
   3493     assert(hasExtParameterInfos());
   3494     return ArrayRef<ExtParameterInfo>(getExtParameterInfosBuffer(),
   3495                                       getNumParams());
   3496   }
   3497   /// Return a pointer to the beginning of the array of extra parameter
   3498   /// information, if present, or else null if none of the parameters
   3499   /// carry it.  This is equivalent to getExtProtoInfo().ExtParameterInfos.
   3500   const ExtParameterInfo *getExtParameterInfosOrNull() const {
   3501     if (!hasExtParameterInfos())
   3502       return nullptr;
   3503     return getExtParameterInfosBuffer();
   3504   }
   3505 
   3506   ExtParameterInfo getExtParameterInfo(unsigned I) const {
   3507     assert(I < getNumParams() && "parameter index out of range");
   3508     if (hasExtParameterInfos())
   3509       return getExtParameterInfosBuffer()[I];
   3510     return ExtParameterInfo();
   3511   }
   3512 
   3513   ParameterABI getParameterABI(unsigned I) const {
   3514     assert(I < getNumParams() && "parameter index out of range");
   3515     if (hasExtParameterInfos())
   3516       return getExtParameterInfosBuffer()[I].getABI();
   3517     return ParameterABI::Ordinary;
   3518   }
   3519 
   3520   bool isParamConsumed(unsigned I) const {
   3521     assert(I < getNumParams() && "parameter index out of range");
   3522     if (hasExtParameterInfos())
   3523       return getExtParameterInfosBuffer()[I].isConsumed();
   3524     return false;
   3525   }
   3526 
   3527   bool isSugared() const { return false; }
   3528   QualType desugar() const { return QualType(this, 0); }
   3529 
   3530   void printExceptionSpecification(raw_ostream &OS,
   3531                                    const PrintingPolicy &Policy) const;
   3532 
   3533   static bool classof(const Type *T) {
   3534     return T->getTypeClass() == FunctionProto;
   3535   }
   3536 
   3537   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
   3538   static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
   3539                       param_type_iterator ArgTys, unsigned NumArgs,
   3540                       const ExtProtoInfo &EPI, const ASTContext &Context,
   3541                       bool Canonical);
   3542 };
   3543 
   3544 /// \brief Represents the dependent type named by a dependently-scoped
   3545 /// typename using declaration, e.g.
   3546 ///   using typename Base<T>::foo;
   3547 ///
   3548 /// Template instantiation turns these into the underlying type.
   3549 class UnresolvedUsingType : public Type {
   3550   UnresolvedUsingTypenameDecl *Decl;
   3551 
   3552   UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
   3553     : Type(UnresolvedUsing, QualType(), true, true, false,
   3554            /*ContainsUnexpandedParameterPack=*/false),
   3555       Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
   3556   friend class ASTContext; // ASTContext creates these.
   3557 public:
   3558 
   3559   UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
   3560 
   3561   bool isSugared() const { return false; }
   3562   QualType desugar() const { return QualType(this, 0); }
   3563 
   3564   static bool classof(const Type *T) {
   3565     return T->getTypeClass() == UnresolvedUsing;
   3566   }
   3567 
   3568   void Profile(llvm::FoldingSetNodeID &ID) {
   3569     return Profile(ID, Decl);
   3570   }
   3571   static void Profile(llvm::FoldingSetNodeID &ID,
   3572                       UnresolvedUsingTypenameDecl *D) {
   3573     ID.AddPointer(D);
   3574   }
   3575 };
   3576 
   3577 
   3578 class TypedefType : public Type {
   3579   TypedefNameDecl *Decl;
   3580 protected:
   3581   TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
   3582     : Type(tc, can, can->isDependentType(),
   3583            can->isInstantiationDependentType(),
   3584            can->isVariablyModifiedType(),
   3585            /*ContainsUnexpandedParameterPack=*/false),
   3586       Decl(const_cast<TypedefNameDecl*>(D)) {
   3587     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   3588   }
   3589   friend class ASTContext;  // ASTContext creates these.
   3590 public:
   3591 
   3592   TypedefNameDecl *getDecl() const { return Decl; }
   3593 
   3594   bool isSugared() const { return true; }
   3595   QualType desugar() const;
   3596 
   3597   static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
   3598 };
   3599 
   3600 /// Represents a `typeof` (or __typeof__) expression (a GCC extension).
   3601 class TypeOfExprType : public Type {
   3602   Expr *TOExpr;
   3603 
   3604 protected:
   3605   TypeOfExprType(Expr *E, QualType can = QualType());
   3606   friend class ASTContext;  // ASTContext creates these.
   3607 public:
   3608   Expr *getUnderlyingExpr() const { return TOExpr; }
   3609 
   3610   /// \brief Remove a single level of sugar.
   3611   QualType desugar() const;
   3612 
   3613   /// \brief Returns whether this type directly provides sugar.
   3614   bool isSugared() const;
   3615 
   3616   static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
   3617 };
   3618 
   3619 /// \brief Internal representation of canonical, dependent
   3620 /// `typeof(expr)` types.
   3621 ///
   3622 /// This class is used internally by the ASTContext to manage
   3623 /// canonical, dependent types, only. Clients will only see instances
   3624 /// of this class via TypeOfExprType nodes.
   3625 class DependentTypeOfExprType
   3626   : public TypeOfExprType, public llvm::FoldingSetNode {
   3627   const ASTContext &Context;
   3628 
   3629 public:
   3630   DependentTypeOfExprType(const ASTContext &Context, Expr *E)
   3631     : TypeOfExprType(E), Context(Context) { }
   3632 
   3633   void Profile(llvm::FoldingSetNodeID &ID) {
   3634     Profile(ID, Context, getUnderlyingExpr());
   3635   }
   3636 
   3637   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   3638                       Expr *E);
   3639 };
   3640 
   3641 /// Represents `typeof(type)`, a GCC extension.
   3642 class TypeOfType : public Type {
   3643   QualType TOType;
   3644   TypeOfType(QualType T, QualType can)
   3645     : Type(TypeOf, can, T->isDependentType(),
   3646            T->isInstantiationDependentType(),
   3647            T->isVariablyModifiedType(),
   3648            T->containsUnexpandedParameterPack()),
   3649       TOType(T) {
   3650     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   3651   }
   3652   friend class ASTContext;  // ASTContext creates these.
   3653 public:
   3654   QualType getUnderlyingType() const { return TOType; }
   3655 
   3656   /// \brief Remove a single level of sugar.
   3657   QualType desugar() const { return getUnderlyingType(); }
   3658 
   3659   /// \brief Returns whether this type directly provides sugar.
   3660   bool isSugared() const { return true; }
   3661 
   3662   static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
   3663 };
   3664 
   3665 /// Represents the type `decltype(expr)` (C++11).
   3666 class DecltypeType : public Type {
   3667   Expr *E;
   3668   QualType UnderlyingType;
   3669 
   3670 protected:
   3671   DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
   3672   friend class ASTContext;  // ASTContext creates these.
   3673 public:
   3674   Expr *getUnderlyingExpr() const { return E; }
   3675   QualType getUnderlyingType() const { return UnderlyingType; }
   3676 
   3677   /// \brief Remove a single level of sugar.
   3678   QualType desugar() const;
   3679 
   3680   /// \brief Returns whether this type directly provides sugar.
   3681   bool isSugared() const;
   3682 
   3683   static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
   3684 };
   3685 
   3686 /// \brief Internal representation of canonical, dependent
   3687 /// decltype(expr) types.
   3688 ///
   3689 /// This class is used internally by the ASTContext to manage
   3690 /// canonical, dependent types, only. Clients will only see instances
   3691 /// of this class via DecltypeType nodes.
   3692 class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
   3693   const ASTContext &Context;
   3694 
   3695 public:
   3696   DependentDecltypeType(const ASTContext &Context, Expr *E);
   3697 
   3698   void Profile(llvm::FoldingSetNodeID &ID) {
   3699     Profile(ID, Context, getUnderlyingExpr());
   3700   }
   3701 
   3702   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   3703                       Expr *E);
   3704 };
   3705 
   3706 /// A unary type transform, which is a type constructed from another.
   3707 class UnaryTransformType : public Type {
   3708 public:
   3709   enum UTTKind {
   3710     EnumUnderlyingType
   3711   };
   3712 
   3713 private:
   3714   /// The untransformed type.
   3715   QualType BaseType;
   3716   /// The transformed type if not dependent, otherwise the same as BaseType.
   3717   QualType UnderlyingType;
   3718 
   3719   UTTKind UKind;
   3720 protected:
   3721   UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
   3722                      QualType CanonicalTy);
   3723   friend class ASTContext;
   3724 public:
   3725   bool isSugared() const { return !isDependentType(); }
   3726   QualType desugar() const { return UnderlyingType; }
   3727 
   3728   QualType getUnderlyingType() const { return UnderlyingType; }
   3729   QualType getBaseType() const { return BaseType; }
   3730 
   3731   UTTKind getUTTKind() const { return UKind; }
   3732 
   3733   static bool classof(const Type *T) {
   3734     return T->getTypeClass() == UnaryTransform;
   3735   }
   3736 };
   3737 
   3738 /// \brief Internal representation of canonical, dependent
   3739 /// __underlying_type(type) types.
   3740 ///
   3741 /// This class is used internally by the ASTContext to manage
   3742 /// canonical, dependent types, only. Clients will only see instances
   3743 /// of this class via UnaryTransformType nodes.
   3744 class DependentUnaryTransformType : public UnaryTransformType,
   3745                                     public llvm::FoldingSetNode {
   3746 public:
   3747   DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
   3748                               UTTKind UKind);
   3749   void Profile(llvm::FoldingSetNodeID &ID) {
   3750     Profile(ID, getBaseType(), getUTTKind());
   3751   }
   3752 
   3753   static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
   3754                       UTTKind UKind) {
   3755     ID.AddPointer(BaseType.getAsOpaquePtr());
   3756     ID.AddInteger((unsigned)UKind);
   3757   }
   3758 };
   3759 
   3760 class TagType : public Type {
   3761   /// Stores the TagDecl associated with this type. The decl may point to any
   3762   /// TagDecl that declares the entity.
   3763   TagDecl * decl;
   3764 
   3765   friend class ASTReader;
   3766 
   3767 protected:
   3768   TagType(TypeClass TC, const TagDecl *D, QualType can);
   3769 
   3770 public:
   3771   TagDecl *getDecl() const;
   3772 
   3773   /// Determines whether this type is in the process of being defined.
   3774   bool isBeingDefined() const;
   3775 
   3776   static bool classof(const Type *T) {
   3777     return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
   3778   }
   3779 };
   3780 
   3781 /// A helper class that allows the use of isa/cast/dyncast
   3782 /// to detect TagType objects of structs/unions/classes.
   3783 class RecordType : public TagType {
   3784 protected:
   3785   explicit RecordType(const RecordDecl *D)
   3786     : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3787   explicit RecordType(TypeClass TC, RecordDecl *D)
   3788     : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3789   friend class ASTContext;   // ASTContext creates these.
   3790 public:
   3791 
   3792   RecordDecl *getDecl() const {
   3793     return reinterpret_cast<RecordDecl*>(TagType::getDecl());
   3794   }
   3795 
   3796   // FIXME: This predicate is a helper to QualType/Type. It needs to
   3797   // recursively check all fields for const-ness. If any field is declared
   3798   // const, it needs to return false.
   3799   bool hasConstFields() const { return false; }
   3800 
   3801   bool isSugared() const { return false; }
   3802   QualType desugar() const { return QualType(this, 0); }
   3803 
   3804   static bool classof(const Type *T) { return T->getTypeClass() == Record; }
   3805 };
   3806 
   3807 /// A helper class that allows the use of isa/cast/dyncast
   3808 /// to detect TagType objects of enums.
   3809 class EnumType : public TagType {
   3810   explicit EnumType(const EnumDecl *D)
   3811     : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3812   friend class ASTContext;   // ASTContext creates these.
   3813 public:
   3814 
   3815   EnumDecl *getDecl() const {
   3816     return reinterpret_cast<EnumDecl*>(TagType::getDecl());
   3817   }
   3818 
   3819   bool isSugared() const { return false; }
   3820   QualType desugar() const { return QualType(this, 0); }
   3821 
   3822   static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
   3823 };
   3824 
   3825 /// An attributed type is a type to which a type attribute has been applied.
   3826 ///
   3827 /// The "modified type" is the fully-sugared type to which the attributed
   3828 /// type was applied; generally it is not canonically equivalent to the
   3829 /// attributed type. The "equivalent type" is the minimally-desugared type
   3830 /// which the type is canonically equivalent to.
   3831 ///
   3832 /// For example, in the following attributed type:
   3833 ///     int32_t __attribute__((vector_size(16)))
   3834 ///   - the modified type is the TypedefType for int32_t
   3835 ///   - the equivalent type is VectorType(16, int32_t)
   3836 ///   - the canonical type is VectorType(16, int)
   3837 class AttributedType : public Type, public llvm::FoldingSetNode {
   3838 public:
   3839   // It is really silly to have yet another attribute-kind enum, but
   3840   // clang::attr::Kind doesn't currently cover the pure type attrs.
   3841   enum Kind {
   3842     // Expression operand.
   3843     attr_address_space,
   3844     attr_regparm,
   3845     attr_vector_size,
   3846     attr_neon_vector_type,
   3847     attr_neon_polyvector_type,
   3848 
   3849     FirstExprOperandKind = attr_address_space,
   3850     LastExprOperandKind = attr_neon_polyvector_type,
   3851 
   3852     // Enumerated operand (string or keyword).
   3853     attr_objc_gc,
   3854     attr_objc_ownership,
   3855     attr_pcs,
   3856     attr_pcs_vfp,
   3857 
   3858     FirstEnumOperandKind = attr_objc_gc,
   3859     LastEnumOperandKind = attr_pcs_vfp,
   3860 
   3861     // No operand.
   3862     attr_noreturn,
   3863     attr_cdecl,
   3864     attr_fastcall,
   3865     attr_stdcall,
   3866     attr_thiscall,
   3867     attr_regcall,
   3868     attr_pascal,
   3869     attr_swiftcall,
   3870     attr_vectorcall,
   3871     attr_inteloclbicc,
   3872     attr_ms_abi,
   3873     attr_sysv_abi,
   3874     attr_preserve_most,
   3875     attr_preserve_all,
   3876     attr_ptr32,
   3877     attr_ptr64,
   3878     attr_sptr,
   3879     attr_uptr,
   3880     attr_nonnull,
   3881     attr_nullable,
   3882     attr_null_unspecified,
   3883     attr_objc_kindof,
   3884     attr_objc_inert_unsafe_unretained,
   3885   };
   3886 
   3887 private:
   3888   QualType ModifiedType;
   3889   QualType EquivalentType;
   3890 
   3891   friend class ASTContext; // creates these
   3892 
   3893   AttributedType(QualType canon, Kind attrKind, QualType modified,
   3894                  QualType equivalent)
   3895       : Type(Attributed, canon, equivalent->isDependentType(),
   3896              equivalent->isInstantiationDependentType(),
   3897              equivalent->isVariablyModifiedType(),
   3898              equivalent->containsUnexpandedParameterPack()),
   3899         ModifiedType(modified), EquivalentType(equivalent) {
   3900     AttributedTypeBits.AttrKind = attrKind;
   3901   }
   3902 
   3903 public:
   3904   Kind getAttrKind() const {
   3905     return static_cast<Kind>(AttributedTypeBits.AttrKind);
   3906   }
   3907 
   3908   QualType getModifiedType() const { return ModifiedType; }
   3909   QualType getEquivalentType() const { return EquivalentType; }
   3910 
   3911   bool isSugared() const { return true; }
   3912   QualType desugar() const { return getEquivalentType(); }
   3913 
   3914   /// Does this attribute behave like a type qualifier?
   3915   ///
   3916   /// A type qualifier adjusts a type to provide specialized rules for
   3917   /// a specific object, like the standard const and volatile qualifiers.
   3918   /// This includes attributes controlling things like nullability,
   3919   /// address spaces, and ARC ownership.  The value of the object is still
   3920   /// largely described by the modified type.
   3921   ///
   3922   /// In contrast, many type attributes "rewrite" their modified type to
   3923   /// produce a fundamentally different type, not necessarily related in any
   3924   /// formalizable way to the original type.  For example, calling convention
   3925   /// and vector attributes are not simple type qualifiers.
   3926   ///
   3927   /// Type qualifiers are often, but not always, reflected in the canonical
   3928   /// type.
   3929   bool isQualifier() const;
   3930 
   3931   bool isMSTypeSpec() const;
   3932 
   3933   bool isCallingConv() const;
   3934 
   3935   llvm::Optional<NullabilityKind> getImmediateNullability() const;
   3936 
   3937   /// Retrieve the attribute kind corresponding to the given
   3938   /// nullability kind.
   3939   static Kind getNullabilityAttrKind(NullabilityKind kind) {
   3940     switch (kind) {
   3941     case NullabilityKind::NonNull:
   3942       return attr_nonnull;
   3943 
   3944     case NullabilityKind::Nullable:
   3945       return attr_nullable;
   3946 
   3947     case NullabilityKind::Unspecified:
   3948       return attr_null_unspecified;
   3949     }
   3950     llvm_unreachable("Unknown nullability kind.");
   3951   }
   3952 
   3953   /// Strip off the top-level nullability annotation on the given
   3954   /// type, if it's there.
   3955   ///
   3956   /// \param T The type to strip. If the type is exactly an
   3957   /// AttributedType specifying nullability (without looking through
   3958   /// type sugar), the nullability is returned and this type changed
   3959   /// to the underlying modified type.
   3960   ///
   3961   /// \returns the top-level nullability, if present.
   3962   static Optional<NullabilityKind> stripOuterNullability(QualType &T);
   3963 
   3964   void Profile(llvm::FoldingSetNodeID &ID) {
   3965     Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
   3966   }
   3967 
   3968   static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
   3969                       QualType modified, QualType equivalent) {
   3970     ID.AddInteger(attrKind);
   3971     ID.AddPointer(modified.getAsOpaquePtr());
   3972     ID.AddPointer(equivalent.getAsOpaquePtr());
   3973   }
   3974 
   3975   static bool classof(const Type *T) {
   3976     return T->getTypeClass() == Attributed;
   3977   }
   3978 };
   3979 
   3980 class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   3981   // Helper data collector for canonical types.
   3982   struct CanonicalTTPTInfo {
   3983     unsigned Depth : 15;
   3984     unsigned ParameterPack : 1;
   3985     unsigned Index : 16;
   3986   };
   3987 
   3988   union {
   3989     // Info for the canonical type.
   3990     CanonicalTTPTInfo CanTTPTInfo;
   3991     // Info for the non-canonical type.
   3992     TemplateTypeParmDecl *TTPDecl;
   3993   };
   3994 
   3995   /// Build a non-canonical type.
   3996   TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
   3997     : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
   3998            /*InstantiationDependent=*/true,
   3999            /*VariablyModified=*/false,
   4000            Canon->containsUnexpandedParameterPack()),
   4001       TTPDecl(TTPDecl) { }
   4002 
   4003   /// Build the canonical type.
   4004   TemplateTypeParmType(unsigned D, unsigned I, bool PP)
   4005     : Type(TemplateTypeParm, QualType(this, 0),
   4006            /*Dependent=*/true,
   4007            /*InstantiationDependent=*/true,
   4008            /*VariablyModified=*/false, PP) {
   4009     CanTTPTInfo.Depth = D;
   4010     CanTTPTInfo.Index = I;
   4011     CanTTPTInfo.ParameterPack = PP;
   4012   }
   4013 
   4014   friend class ASTContext;  // ASTContext creates these
   4015 
   4016   const CanonicalTTPTInfo& getCanTTPTInfo() const {
   4017     QualType Can = getCanonicalTypeInternal();
   4018     return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
   4019   }
   4020 
   4021 public:
   4022   unsigned getDepth() const { return getCanTTPTInfo().Depth; }
   4023   unsigned getIndex() const { return getCanTTPTInfo().Index; }
   4024   bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
   4025 
   4026   TemplateTypeParmDecl *getDecl() const {
   4027     return isCanonicalUnqualified() ? nullptr : TTPDecl;
   4028   }
   4029 
   4030   IdentifierInfo *getIdentifier() const;
   4031 
   4032   bool isSugared() const { return false; }
   4033   QualType desugar() const { return QualType(this, 0); }
   4034 
   4035   void Profile(llvm::FoldingSetNodeID &ID) {
   4036     Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
   4037   }
   4038 
   4039   static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
   4040                       unsigned Index, bool ParameterPack,
   4041                       TemplateTypeParmDecl *TTPDecl) {
   4042     ID.AddInteger(Depth);
   4043     ID.AddInteger(Index);
   4044     ID.AddBoolean(ParameterPack);
   4045     ID.AddPointer(TTPDecl);
   4046   }
   4047 
   4048   static bool classof(const Type *T) {
   4049     return T->getTypeClass() == TemplateTypeParm;
   4050   }
   4051 };
   4052 
   4053 /// \brief Represents the result of substituting a type for a template
   4054 /// type parameter.
   4055 ///
   4056 /// Within an instantiated template, all template type parameters have
   4057 /// been replaced with these.  They are used solely to record that a
   4058 /// type was originally written as a template type parameter;
   4059 /// therefore they are never canonical.
   4060 class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   4061   // The original type parameter.
   4062   const TemplateTypeParmType *Replaced;
   4063 
   4064   SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
   4065     : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
   4066            Canon->isInstantiationDependentType(),
   4067            Canon->isVariablyModifiedType(),
   4068            Canon->containsUnexpandedParameterPack()),
   4069       Replaced(Param) { }
   4070 
   4071   friend class ASTContext;
   4072 
   4073 public:
   4074   /// Gets the template parameter that was substituted for.
   4075   const TemplateTypeParmType *getReplacedParameter() const {
   4076     return Replaced;
   4077   }
   4078 
   4079   /// Gets the type that was substituted for the template
   4080   /// parameter.
   4081   QualType getReplacementType() const {
   4082     return getCanonicalTypeInternal();
   4083   }
   4084 
   4085   bool isSugared() const { return true; }
   4086   QualType desugar() const { return getReplacementType(); }
   4087 
   4088   void Profile(llvm::FoldingSetNodeID &ID) {
   4089     Profile(ID, getReplacedParameter(), getReplacementType());
   4090   }
   4091   static void Profile(llvm::FoldingSetNodeID &ID,
   4092                       const TemplateTypeParmType *Replaced,
   4093                       QualType Replacement) {
   4094     ID.AddPointer(Replaced);
   4095     ID.AddPointer(Replacement.getAsOpaquePtr());
   4096   }
   4097 
   4098   static bool classof(const Type *T) {
   4099     return T->getTypeClass() == SubstTemplateTypeParm;
   4100   }
   4101 };
   4102 
   4103 /// \brief Represents the result of substituting a set of types for a template
   4104 /// type parameter pack.
   4105 ///
   4106 /// When a pack expansion in the source code contains multiple parameter packs
   4107 /// and those parameter packs correspond to different levels of template
   4108 /// parameter lists, this type node is used to represent a template type
   4109 /// parameter pack from an outer level, which has already had its argument pack
   4110 /// substituted but that still lives within a pack expansion that itself
   4111 /// could not be instantiated. When actually performing a substitution into
   4112 /// that pack expansion (e.g., when all template parameters have corresponding
   4113 /// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
   4114 /// at the current pack substitution index.
   4115 class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
   4116   /// \brief The original type parameter.
   4117   const TemplateTypeParmType *Replaced;
   4118 
   4119   /// \brief A pointer to the set of template arguments that this
   4120   /// parameter pack is instantiated with.
   4121   const TemplateArgument *Arguments;
   4122 
   4123   /// \brief The number of template arguments in \c Arguments.
   4124   unsigned NumArguments;
   4125 
   4126   SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
   4127                                 QualType Canon,
   4128                                 const TemplateArgument &ArgPack);
   4129 
   4130   friend class ASTContext;
   4131 
   4132 public:
   4133   IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
   4134 
   4135   /// Gets the template parameter that was substituted for.
   4136   const TemplateTypeParmType *getReplacedParameter() const {
   4137     return Replaced;
   4138   }
   4139 
   4140   bool isSugared() const { return false; }
   4141   QualType desugar() const { return QualType(this, 0); }
   4142 
   4143   TemplateArgument getArgumentPack() const;
   4144 
   4145   void Profile(llvm::FoldingSetNodeID &ID);
   4146   static void Profile(llvm::FoldingSetNodeID &ID,
   4147                       const TemplateTypeParmType *Replaced,
   4148                       const TemplateArgument &ArgPack);
   4149 
   4150   static bool classof(const Type *T) {
   4151     return T->getTypeClass() == SubstTemplateTypeParmPack;
   4152   }
   4153 };
   4154 
   4155 /// \brief Common base class for placeholders for types that get replaced by
   4156 /// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
   4157 /// class template types, and (eventually) constrained type names from the C++
   4158 /// Concepts TS.
   4159 ///
   4160 /// These types are usually a placeholder for a deduced type. However, before
   4161 /// the initializer is attached, or (usually) if the initializer is
   4162 /// type-dependent, there is no deduced type and the type is canonical. In
   4163 /// the latter case, it is also a dependent type.
   4164 class DeducedType : public Type {
   4165 protected:
   4166   DeducedType(TypeClass TC, QualType DeducedAsType, bool IsDependent,
   4167               bool IsInstantiationDependent, bool ContainsParameterPack)
   4168       : Type(TC,
   4169              // FIXME: Retain the sugared deduced type?
   4170              DeducedAsType.isNull() ? QualType(this, 0)
   4171                                     : DeducedAsType.getCanonicalType(),
   4172              IsDependent, IsInstantiationDependent,
   4173              /*VariablyModified=*/false, ContainsParameterPack) {
   4174     if (!DeducedAsType.isNull()) {
   4175       if (DeducedAsType->isDependentType())
   4176         setDependent();
   4177       if (DeducedAsType->isInstantiationDependentType())
   4178         setInstantiationDependent();
   4179       if (DeducedAsType->containsUnexpandedParameterPack())
   4180         setContainsUnexpandedParameterPack();
   4181     }
   4182   }
   4183 
   4184 public:
   4185   bool isSugared() const { return !isCanonicalUnqualified(); }
   4186   QualType desugar() const { return getCanonicalTypeInternal(); }
   4187 
   4188   /// \brief Get the type deduced for this placeholder type, or null if it's
   4189   /// either not been deduced or was deduced to a dependent type.
   4190   QualType getDeducedType() const {
   4191     return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
   4192   }
   4193   bool isDeduced() const {
   4194     return !isCanonicalUnqualified() || isDependentType();
   4195   }
   4196 
   4197   static bool classof(const Type *T) {
   4198     return T->getTypeClass() == Auto ||
   4199            T->getTypeClass() == DeducedTemplateSpecialization;
   4200   }
   4201 };
   4202 
   4203 /// \brief Represents a C++11 auto or C++14 decltype(auto) type.
   4204 class AutoType : public DeducedType, public llvm::FoldingSetNode {
   4205   AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
   4206            bool IsDeducedAsDependent)
   4207       : DeducedType(Auto, DeducedAsType, IsDeducedAsDependent,
   4208                     IsDeducedAsDependent, /*ContainsPack=*/false) {
   4209     AutoTypeBits.Keyword = (unsigned)Keyword;
   4210   }
   4211 
   4212   friend class ASTContext;  // ASTContext creates these
   4213 
   4214 public:
   4215   bool isDecltypeAuto() const {
   4216     return getKeyword() == AutoTypeKeyword::DecltypeAuto;
   4217   }
   4218   AutoTypeKeyword getKeyword() const {
   4219     return (AutoTypeKeyword)AutoTypeBits.Keyword;
   4220   }
   4221 
   4222   void Profile(llvm::FoldingSetNodeID &ID) {
   4223     Profile(ID, getDeducedType(), getKeyword(), isDependentType());
   4224   }
   4225 
   4226   static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
   4227                       AutoTypeKeyword Keyword, bool IsDependent) {
   4228     ID.AddPointer(Deduced.getAsOpaquePtr());
   4229     ID.AddInteger((unsigned)Keyword);
   4230     ID.AddBoolean(IsDependent);
   4231   }
   4232 
   4233   static bool classof(const Type *T) {
   4234     return T->getTypeClass() == Auto;
   4235   }
   4236 };
   4237 
   4238 /// \brief Represents a C++17 deduced template specialization type.
   4239 class DeducedTemplateSpecializationType : public DeducedType,
   4240                                           public llvm::FoldingSetNode {
   4241   /// The name of the template whose arguments will be deduced.
   4242   TemplateName Template;
   4243 
   4244   DeducedTemplateSpecializationType(TemplateName Template,
   4245                                     QualType DeducedAsType,
   4246                                     bool IsDeducedAsDependent)
   4247       : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
   4248                     IsDeducedAsDependent || Template.isDependent(),
   4249                     IsDeducedAsDependent || Template.isInstantiationDependent(),
   4250                     Template.containsUnexpandedParameterPack()),
   4251         Template(Template) {}
   4252 
   4253   friend class ASTContext;  // ASTContext creates these
   4254 
   4255 public:
   4256   /// Retrieve the name of the template that we are deducing.
   4257   TemplateName getTemplateName() const { return Template;}
   4258 
   4259   void Profile(llvm::FoldingSetNodeID &ID) {
   4260     Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
   4261   }
   4262 
   4263   static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
   4264                       QualType Deduced, bool IsDependent) {
   4265     Template.Profile(ID);
   4266     ID.AddPointer(Deduced.getAsOpaquePtr());
   4267     ID.AddBoolean(IsDependent);
   4268   }
   4269 
   4270   static bool classof(const Type *T) {
   4271     return T->getTypeClass() == DeducedTemplateSpecialization;
   4272   }
   4273 };
   4274 
   4275 /// \brief Represents a type template specialization; the template
   4276 /// must be a class template, a type alias template, or a template
   4277 /// template parameter.  A template which cannot be resolved to one of
   4278 /// these, e.g. because it is written with a dependent scope
   4279 /// specifier, is instead represented as a
   4280 /// @c DependentTemplateSpecializationType.
   4281 ///
   4282 /// A non-dependent template specialization type is always "sugar",
   4283 /// typically for a \c RecordType.  For example, a class template
   4284 /// specialization type of \c vector<int> will refer to a tag type for
   4285 /// the instantiation \c std::vector<int, std::allocator<int>>
   4286 ///
   4287 /// Template specializations are dependent if either the template or
   4288 /// any of the template arguments are dependent, in which case the
   4289 /// type may also be canonical.
   4290 ///
   4291 /// Instances of this type are allocated with a trailing array of
   4292 /// TemplateArguments, followed by a QualType representing the
   4293 /// non-canonical aliased type when the template is a type alias
   4294 /// template.
   4295 class LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) TemplateSpecializationType
   4296     : public Type,
   4297       public llvm::FoldingSetNode {
   4298   /// The name of the template being specialized.  This is
   4299   /// either a TemplateName::Template (in which case it is a
   4300   /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
   4301   /// TypeAliasTemplateDecl*), a
   4302   /// TemplateName::SubstTemplateTemplateParmPack, or a
   4303   /// TemplateName::SubstTemplateTemplateParm (in which case the
   4304   /// replacement must, recursively, be one of these).
   4305   TemplateName Template;
   4306 
   4307   /// The number of template arguments named in this class template
   4308   /// specialization.
   4309   unsigned NumArgs : 31;
   4310 
   4311   /// Whether this template specialization type is a substituted type alias.
   4312   unsigned TypeAlias : 1;
   4313 
   4314   TemplateSpecializationType(TemplateName T,
   4315                              ArrayRef<TemplateArgument> Args,
   4316                              QualType Canon,
   4317                              QualType Aliased);
   4318 
   4319   friend class ASTContext;  // ASTContext creates these
   4320 
   4321 public:
   4322   /// Determine whether any of the given template arguments are dependent.
   4323   static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
   4324                                             bool &InstantiationDependent);
   4325 
   4326   static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
   4327                                             bool &InstantiationDependent);
   4328 
   4329   /// \brief Print a template argument list, including the '<' and '>'
   4330   /// enclosing the template arguments.
   4331   static void PrintTemplateArgumentList(raw_ostream &OS,
   4332                                         ArrayRef<TemplateArgument> Args,
   4333                                         const PrintingPolicy &Policy,
   4334                                         bool SkipBrackets = false);
   4335 
   4336   static void PrintTemplateArgumentList(raw_ostream &OS,
   4337                                         ArrayRef<TemplateArgumentLoc> Args,
   4338                                         const PrintingPolicy &Policy);
   4339 
   4340   static void PrintTemplateArgumentList(raw_ostream &OS,
   4341                                         const TemplateArgumentListInfo &,
   4342                                         const PrintingPolicy &Policy);
   4343 
   4344   /// True if this template specialization type matches a current
   4345   /// instantiation in the context in which it is found.
   4346   bool isCurrentInstantiation() const {
   4347     return isa<InjectedClassNameType>(getCanonicalTypeInternal());
   4348   }
   4349 
   4350   /// \brief Determine if this template specialization type is for a type alias
   4351   /// template that has been substituted.
   4352   ///
   4353   /// Nearly every template specialization type whose template is an alias
   4354   /// template will be substituted. However, this is not the case when
   4355   /// the specialization contains a pack expansion but the template alias
   4356   /// does not have a corresponding parameter pack, e.g.,
   4357   ///
   4358   /// \code
   4359   /// template<typename T, typename U, typename V> struct S;
   4360   /// template<typename T, typename U> using A = S<T, int, U>;
   4361   /// template<typename... Ts> struct X {
   4362   ///   typedef A<Ts...> type; // not a type alias
   4363   /// };
   4364   /// \endcode
   4365   bool isTypeAlias() const { return TypeAlias; }
   4366 
   4367   /// Get the aliased type, if this is a specialization of a type alias
   4368   /// template.
   4369   QualType getAliasedType() const {
   4370     assert(isTypeAlias() && "not a type alias template specialization");
   4371     return *reinterpret_cast<const QualType*>(end());
   4372   }
   4373 
   4374   typedef const TemplateArgument * iterator;
   4375 
   4376   iterator begin() const { return getArgs(); }
   4377   iterator end() const; // defined inline in TemplateBase.h
   4378 
   4379   /// Retrieve the name of the template that we are specializing.
   4380   TemplateName getTemplateName() const { return Template; }
   4381 
   4382   /// Retrieve the template arguments.
   4383   const TemplateArgument *getArgs() const {
   4384     return reinterpret_cast<const TemplateArgument *>(this + 1);
   4385   }
   4386 
   4387   /// Retrieve the number of template arguments.
   4388   unsigned getNumArgs() const { return NumArgs; }
   4389 
   4390   /// Retrieve a specific template argument as a type.
   4391   /// \pre \c isArgType(Arg)
   4392   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   4393 
   4394   ArrayRef<TemplateArgument> template_arguments() const {
   4395     return {getArgs(), NumArgs};
   4396   }
   4397 
   4398   bool isSugared() const {
   4399     return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
   4400   }
   4401   QualType desugar() const { return getCanonicalTypeInternal(); }
   4402 
   4403   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
   4404     Profile(ID, Template, template_arguments(), Ctx);
   4405     if (isTypeAlias())
   4406       getAliasedType().Profile(ID);
   4407   }
   4408 
   4409   static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
   4410                       ArrayRef<TemplateArgument> Args,
   4411                       const ASTContext &Context);
   4412 
   4413   static bool classof(const Type *T) {
   4414     return T->getTypeClass() == TemplateSpecialization;
   4415   }
   4416 };
   4417 
   4418 /// The injected class name of a C++ class template or class
   4419 /// template partial specialization.  Used to record that a type was
   4420 /// spelled with a bare identifier rather than as a template-id; the
   4421 /// equivalent for non-templated classes is just RecordType.
   4422 ///
   4423 /// Injected class name types are always dependent.  Template
   4424 /// instantiation turns these into RecordTypes.
   4425 ///
   4426 /// Injected class name types are always canonical.  This works
   4427 /// because it is impossible to compare an injected class name type
   4428 /// with the corresponding non-injected template type, for the same
   4429 /// reason that it is impossible to directly compare template
   4430 /// parameters from different dependent contexts: injected class name
   4431 /// types can only occur within the scope of a particular templated
   4432 /// declaration, and within that scope every template specialization
   4433 /// will canonicalize to the injected class name (when appropriate
   4434 /// according to the rules of the language).
   4435 class InjectedClassNameType : public Type {
   4436   CXXRecordDecl *Decl;
   4437 
   4438   /// The template specialization which this type represents.
   4439   /// For example, in
   4440   ///   template <class T> class A { ... };
   4441   /// this is A<T>, whereas in
   4442   ///   template <class X, class Y> class A<B<X,Y> > { ... };
   4443   /// this is A<B<X,Y> >.
   4444   ///
   4445   /// It is always unqualified, always a template specialization type,
   4446   /// and always dependent.
   4447   QualType InjectedType;
   4448 
   4449   friend class ASTContext; // ASTContext creates these.
   4450   friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
   4451                           // currently suitable for AST reading, too much
   4452                           // interdependencies.
   4453   friend class ASTNodeImporter;
   4454 
   4455   InjectedClassNameType(CXXRecordDecl *D, QualType TST)
   4456     : Type(InjectedClassName, QualType(), /*Dependent=*/true,
   4457            /*InstantiationDependent=*/true,
   4458            /*VariablyModified=*/false,
   4459            /*ContainsUnexpandedParameterPack=*/false),
   4460       Decl(D), InjectedType(TST) {
   4461     assert(isa<TemplateSpecializationType>(TST));
   4462     assert(!TST.hasQualifiers());
   4463     assert(TST->isDependentType());
   4464   }
   4465 
   4466 public:
   4467   QualType getInjectedSpecializationType() const { return InjectedType; }
   4468   const TemplateSpecializationType *getInjectedTST() const {
   4469     return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
   4470   }
   4471   TemplateName getTemplateName() const {
   4472     return getInjectedTST()->getTemplateName();
   4473   }
   4474 
   4475   CXXRecordDecl *getDecl() const;
   4476 
   4477   bool isSugared() const { return false; }
   4478   QualType desugar() const { return QualType(this, 0); }
   4479 
   4480   static bool classof(const Type *T) {
   4481     return T->getTypeClass() == InjectedClassName;
   4482   }
   4483 };
   4484 
   4485 /// \brief The kind of a tag type.
   4486 enum TagTypeKind {
   4487   /// \brief The "struct" keyword.
   4488   TTK_Struct,
   4489   /// \brief The "__interface" keyword.
   4490   TTK_Interface,
   4491   /// \brief The "union" keyword.
   4492   TTK_Union,
   4493   /// \brief The "class" keyword.
   4494   TTK_Class,
   4495   /// \brief The "enum" keyword.
   4496   TTK_Enum
   4497 };
   4498 
   4499 /// \brief The elaboration keyword that precedes a qualified type name or
   4500 /// introduces an elaborated-type-specifier.
   4501 enum ElaboratedTypeKeyword {
   4502   /// \brief The "struct" keyword introduces the elaborated-type-specifier.
   4503   ETK_Struct,
   4504   /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
   4505   ETK_Interface,
   4506   /// \brief The "union" keyword introduces the elaborated-type-specifier.
   4507   ETK_Union,
   4508   /// \brief The "class" keyword introduces the elaborated-type-specifier.
   4509   ETK_Class,
   4510   /// \brief The "enum" keyword introduces the elaborated-type-specifier.
   4511   ETK_Enum,
   4512   /// \brief The "typename" keyword precedes the qualified type name, e.g.,
   4513   /// \c typename T::type.
   4514   ETK_Typename,
   4515   /// \brief No keyword precedes the qualified type name.
   4516   ETK_None
   4517 };
   4518 
   4519 /// A helper class for Type nodes having an ElaboratedTypeKeyword.
   4520 /// The keyword in stored in the free bits of the base class.
   4521 /// Also provides a few static helpers for converting and printing
   4522 /// elaborated type keyword and tag type kind enumerations.
   4523 class TypeWithKeyword : public Type {
   4524 protected:
   4525   TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
   4526                   QualType Canonical, bool Dependent,
   4527                   bool InstantiationDependent, bool VariablyModified,
   4528                   bool ContainsUnexpandedParameterPack)
   4529   : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   4530          ContainsUnexpandedParameterPack) {
   4531     TypeWithKeywordBits.Keyword = Keyword;
   4532   }
   4533 
   4534 public:
   4535   ElaboratedTypeKeyword getKeyword() const {
   4536     return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
   4537   }
   4538 
   4539   /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
   4540   static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
   4541 
   4542   /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
   4543   /// It is an error to provide a type specifier which *isn't* a tag kind here.
   4544   static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
   4545 
   4546   /// Converts a TagTypeKind into an elaborated type keyword.
   4547   static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
   4548 
   4549   /// Converts an elaborated type keyword into a TagTypeKind.
   4550   /// It is an error to provide an elaborated type keyword
   4551   /// which *isn't* a tag kind here.
   4552   static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
   4553 
   4554   static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
   4555 
   4556   static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
   4557 
   4558   static StringRef getTagTypeKindName(TagTypeKind Kind) {
   4559     return getKeywordName(getKeywordForTagTypeKind(Kind));
   4560   }
   4561 
   4562   class CannotCastToThisType {};
   4563   static CannotCastToThisType classof(const Type *);
   4564 };
   4565 
   4566 /// \brief Represents a type that was referred to using an elaborated type
   4567 /// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
   4568 /// or both.
   4569 ///
   4570 /// This type is used to keep track of a type name as written in the
   4571 /// source code, including tag keywords and any nested-name-specifiers.
   4572 /// The type itself is always "sugar", used to express what was written
   4573 /// in the source code but containing no additional semantic information.
   4574 class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
   4575 
   4576   /// The nested name specifier containing the qualifier.
   4577   NestedNameSpecifier *NNS;
   4578 
   4579   /// The type that this qualified name refers to.
   4580   QualType NamedType;
   4581 
   4582   ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   4583                  QualType NamedType, QualType CanonType)
   4584     : TypeWithKeyword(Keyword, Elaborated, CanonType,
   4585                       NamedType->isDependentType(),
   4586                       NamedType->isInstantiationDependentType(),
   4587                       NamedType->isVariablyModifiedType(),
   4588                       NamedType->containsUnexpandedParameterPack()),
   4589       NNS(NNS), NamedType(NamedType) {
   4590     assert(!(Keyword == ETK_None && NNS == nullptr) &&
   4591            "ElaboratedType cannot have elaborated type keyword "
   4592            "and name qualifier both null.");
   4593   }
   4594 
   4595   friend class ASTContext;  // ASTContext creates these
   4596 
   4597 public:
   4598   ~ElaboratedType();
   4599 
   4600   /// Retrieve the qualification on this type.
   4601   NestedNameSpecifier *getQualifier() const { return NNS; }
   4602 
   4603   /// Retrieve the type named by the qualified-id.
   4604   QualType getNamedType() const { return NamedType; }
   4605 
   4606   /// Remove a single level of sugar.
   4607   QualType desugar() const { return getNamedType(); }
   4608 
   4609   /// Returns whether this type directly provides sugar.
   4610   bool isSugared() const { return true; }
   4611 
   4612   void Profile(llvm::FoldingSetNodeID &ID) {
   4613     Profile(ID, getKeyword(), NNS, NamedType);
   4614   }
   4615 
   4616   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   4617                       NestedNameSpecifier *NNS, QualType NamedType) {
   4618     ID.AddInteger(Keyword);
   4619     ID.AddPointer(NNS);
   4620     NamedType.Profile(ID);
   4621   }
   4622 
   4623   static bool classof(const Type *T) {
   4624     return T->getTypeClass() == Elaborated;
   4625   }
   4626 };
   4627 
   4628 /// \brief Represents a qualified type name for which the type name is
   4629 /// dependent.
   4630 ///
   4631 /// DependentNameType represents a class of dependent types that involve a
   4632 /// possibly dependent nested-name-specifier (e.g., "T::") followed by a
   4633 /// name of a type. The DependentNameType may start with a "typename" (for a
   4634 /// typename-specifier), "class", "struct", "union", or "enum" (for a
   4635 /// dependent elaborated-type-specifier), or nothing (in contexts where we
   4636 /// know that we must be referring to a type, e.g., in a base class specifier).
   4637 /// Typically the nested-name-specifier is dependent, but in MSVC compatibility
   4638 /// mode, this type is used with non-dependent names to delay name lookup until
   4639 /// instantiation.
   4640 class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
   4641 
   4642   /// \brief The nested name specifier containing the qualifier.
   4643   NestedNameSpecifier *NNS;
   4644 
   4645   /// \brief The type that this typename specifier refers to.
   4646   const IdentifierInfo *Name;
   4647 
   4648   DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   4649                     const IdentifierInfo *Name, QualType CanonType)
   4650     : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
   4651                       /*InstantiationDependent=*/true,
   4652                       /*VariablyModified=*/false,
   4653                       NNS->containsUnexpandedParameterPack()),
   4654       NNS(NNS), Name(Name) {}
   4655 
   4656   friend class ASTContext;  // ASTContext creates these
   4657 
   4658 public:
   4659   /// Retrieve the qualification on this type.
   4660   NestedNameSpecifier *getQualifier() const { return NNS; }
   4661 
   4662   /// Retrieve the type named by the typename specifier as an identifier.
   4663   ///
   4664   /// This routine will return a non-NULL identifier pointer when the
   4665   /// form of the original typename was terminated by an identifier,
   4666   /// e.g., "typename T::type".
   4667   const IdentifierInfo *getIdentifier() const {
   4668     return Name;
   4669   }
   4670 
   4671   bool isSugared() const { return false; }
   4672   QualType desugar() const { return QualType(this, 0); }
   4673 
   4674   void Profile(llvm::FoldingSetNodeID &ID) {
   4675     Profile(ID, getKeyword(), NNS, Name);
   4676   }
   4677 
   4678   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   4679                       NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
   4680     ID.AddInteger(Keyword);
   4681     ID.AddPointer(NNS);
   4682     ID.AddPointer(Name);
   4683   }
   4684 
   4685   static bool classof(const Type *T) {
   4686     return T->getTypeClass() == DependentName;
   4687   }
   4688 };
   4689 
   4690 /// Represents a template specialization type whose template cannot be
   4691 /// resolved, e.g.
   4692 ///   A<T>::template B<T>
   4693 class LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) DependentTemplateSpecializationType
   4694     : public TypeWithKeyword,
   4695       public llvm::FoldingSetNode {
   4696 
   4697   /// The nested name specifier containing the qualifier.
   4698   NestedNameSpecifier *NNS;
   4699 
   4700   /// The identifier of the template.
   4701   const IdentifierInfo *Name;
   4702 
   4703   /// \brief The number of template arguments named in this class template
   4704   /// specialization.
   4705   unsigned NumArgs;
   4706 
   4707   const TemplateArgument *getArgBuffer() const {
   4708     return reinterpret_cast<const TemplateArgument*>(this+1);
   4709   }
   4710   TemplateArgument *getArgBuffer() {
   4711     return reinterpret_cast<TemplateArgument*>(this+1);
   4712   }
   4713 
   4714   DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
   4715                                       NestedNameSpecifier *NNS,
   4716                                       const IdentifierInfo *Name,
   4717                                       ArrayRef<TemplateArgument> Args,
   4718                                       QualType Canon);
   4719 
   4720   friend class ASTContext;  // ASTContext creates these
   4721 
   4722 public:
   4723   NestedNameSpecifier *getQualifier() const { return NNS; }
   4724   const IdentifierInfo *getIdentifier() const { return Name; }
   4725 
   4726   /// \brief Retrieve the template arguments.
   4727   const TemplateArgument *getArgs() const {
   4728     return getArgBuffer();
   4729   }
   4730 
   4731   /// \brief Retrieve the number of template arguments.
   4732   unsigned getNumArgs() const { return NumArgs; }
   4733 
   4734   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   4735 
   4736   ArrayRef<TemplateArgument> template_arguments() const {
   4737     return {getArgs(), NumArgs};
   4738   }
   4739 
   4740   typedef const TemplateArgument * iterator;
   4741   iterator begin() const { return getArgs(); }
   4742   iterator end() const; // inline in TemplateBase.h
   4743 
   4744   bool isSugared() const { return false; }
   4745   QualType desugar() const { return QualType(this, 0); }
   4746 
   4747   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
   4748     Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), NumArgs});
   4749   }
   4750 
   4751   static void Profile(llvm::FoldingSetNodeID &ID,
   4752                       const ASTContext &Context,
   4753                       ElaboratedTypeKeyword Keyword,
   4754                       NestedNameSpecifier *Qualifier,
   4755                       const IdentifierInfo *Name,
   4756                       ArrayRef<TemplateArgument> Args);
   4757 
   4758   static bool classof(const Type *T) {
   4759     return T->getTypeClass() == DependentTemplateSpecialization;
   4760   }
   4761 };
   4762 
   4763 /// \brief Represents a pack expansion of types.
   4764 ///
   4765 /// Pack expansions are part of C++11 variadic templates. A pack
   4766 /// expansion contains a pattern, which itself contains one or more
   4767 /// "unexpanded" parameter packs. When instantiated, a pack expansion
   4768 /// produces a series of types, each instantiated from the pattern of
   4769 /// the expansion, where the Ith instantiation of the pattern uses the
   4770 /// Ith arguments bound to each of the unexpanded parameter packs. The
   4771 /// pack expansion is considered to "expand" these unexpanded
   4772 /// parameter packs.
   4773 ///
   4774 /// \code
   4775 /// template<typename ...Types> struct tuple;
   4776 ///
   4777 /// template<typename ...Types>
   4778 /// struct tuple_of_references {
   4779 ///   typedef tuple<Types&...> type;
   4780 /// };
   4781 /// \endcode
   4782 ///
   4783 /// Here, the pack expansion \c Types&... is represented via a
   4784 /// PackExpansionType whose pattern is Types&.
   4785 class PackExpansionType : public Type, public llvm::FoldingSetNode {
   4786   /// \brief The pattern of the pack expansion.
   4787   QualType Pattern;
   4788 
   4789   /// \brief The number of expansions that this pack expansion will
   4790   /// generate when substituted (+1), or indicates that
   4791   ///
   4792   /// This field will only have a non-zero value when some of the parameter
   4793   /// packs that occur within the pattern have been substituted but others have
   4794   /// not.
   4795   unsigned NumExpansions;
   4796 
   4797   PackExpansionType(QualType Pattern, QualType Canon,
   4798                     Optional<unsigned> NumExpansions)
   4799     : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
   4800            /*InstantiationDependent=*/true,
   4801            /*VariablyModified=*/Pattern->isVariablyModifiedType(),
   4802            /*ContainsUnexpandedParameterPack=*/false),
   4803       Pattern(Pattern),
   4804       NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
   4805 
   4806   friend class ASTContext;  // ASTContext creates these
   4807 
   4808 public:
   4809   /// \brief Retrieve the pattern of this pack expansion, which is the
   4810   /// type that will be repeatedly instantiated when instantiating the
   4811   /// pack expansion itself.
   4812   QualType getPattern() const { return Pattern; }
   4813 
   4814   /// \brief Retrieve the number of expansions that this pack expansion will
   4815   /// generate, if known.
   4816   Optional<unsigned> getNumExpansions() const {
   4817     if (NumExpansions)
   4818       return NumExpansions - 1;
   4819 
   4820     return None;
   4821   }
   4822 
   4823   bool isSugared() const { return !Pattern->isDependentType(); }
   4824   QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
   4825 
   4826   void Profile(llvm::FoldingSetNodeID &ID) {
   4827     Profile(ID, getPattern(), getNumExpansions());
   4828   }
   4829 
   4830   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
   4831                       Optional<unsigned> NumExpansions) {
   4832     ID.AddPointer(Pattern.getAsOpaquePtr());
   4833     ID.AddBoolean(NumExpansions.hasValue());
   4834     if (NumExpansions)
   4835       ID.AddInteger(*NumExpansions);
   4836   }
   4837 
   4838   static bool classof(const Type *T) {
   4839     return T->getTypeClass() == PackExpansion;
   4840   }
   4841 };
   4842 
   4843 /// This class wraps the list of protocol qualifiers. For types that can
   4844 /// take ObjC protocol qualifers, they can subclass this class.
   4845 template <class T>
   4846 class ObjCProtocolQualifiers {
   4847 protected:
   4848   ObjCProtocolQualifiers() {}
   4849   ObjCProtocolDecl * const *getProtocolStorage() const {
   4850     return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
   4851   }
   4852 
   4853   ObjCProtocolDecl **getProtocolStorage() {
   4854     return static_cast<T*>(this)->getProtocolStorageImpl();
   4855   }
   4856   void setNumProtocols(unsigned N) {
   4857     static_cast<T*>(this)->setNumProtocolsImpl(N);
   4858   }
   4859   void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
   4860     setNumProtocols(protocols.size());
   4861     assert(getNumProtocols() == protocols.size() &&
   4862            "bitfield overflow in protocol count");
   4863     if (!protocols.empty())
   4864       memcpy(getProtocolStorage(), protocols.data(),
   4865              protocols.size() * sizeof(ObjCProtocolDecl*));
   4866   }
   4867 
   4868 public:
   4869   typedef ObjCProtocolDecl * const *qual_iterator;
   4870   typedef llvm::iterator_range<qual_iterator> qual_range;
   4871 
   4872   qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
   4873   qual_iterator qual_begin() const { return getProtocolStorage(); }
   4874   qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
   4875 
   4876   bool qual_empty() const { return getNumProtocols() == 0; }
   4877 
   4878   /// Return the number of qualifying protocols in this type, or 0 if
   4879   /// there are none.
   4880   unsigned getNumProtocols() const {
   4881     return static_cast<const T*>(this)->getNumProtocolsImpl();
   4882   }
   4883 
   4884   /// Fetch a protocol by index.
   4885   ObjCProtocolDecl *getProtocol(unsigned I) const {
   4886     assert(I < getNumProtocols() && "Out-of-range protocol access");
   4887     return qual_begin()[I];
   4888   }
   4889 
   4890   /// Retrieve all of the protocol qualifiers.
   4891   ArrayRef<ObjCProtocolDecl *> getProtocols() const {
   4892     return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
   4893   }
   4894 };
   4895 
   4896 /// Represents a type parameter type in Objective C. It can take
   4897 /// a list of protocols.
   4898 class ObjCTypeParamType : public Type,
   4899                           public ObjCProtocolQualifiers<ObjCTypeParamType>,
   4900                           public llvm::FoldingSetNode {
   4901   friend class ASTContext;
   4902   friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
   4903 
   4904   /// The number of protocols stored on this type.
   4905   unsigned NumProtocols : 6;
   4906 
   4907   ObjCTypeParamDecl *OTPDecl;
   4908   /// The protocols are stored after the ObjCTypeParamType node. In the
   4909   /// canonical type, the list of protocols are sorted alphabetically
   4910   /// and uniqued.
   4911   ObjCProtocolDecl **getProtocolStorageImpl();
   4912   /// Return the number of qualifying protocols in this interface type,
   4913   /// or 0 if there are none.
   4914   unsigned getNumProtocolsImpl() const {
   4915     return NumProtocols;
   4916   }
   4917   void setNumProtocolsImpl(unsigned N) {
   4918     NumProtocols = N;
   4919   }
   4920   ObjCTypeParamType(const ObjCTypeParamDecl *D,
   4921                     QualType can,
   4922                     ArrayRef<ObjCProtocolDecl *> protocols);
   4923 public:
   4924   bool isSugared() const { return true; }
   4925   QualType desugar() const { return getCanonicalTypeInternal(); }
   4926 
   4927   static bool classof(const Type *T) {
   4928     return T->getTypeClass() == ObjCTypeParam;
   4929   }
   4930 
   4931   void Profile(llvm::FoldingSetNodeID &ID);
   4932   static void Profile(llvm::FoldingSetNodeID &ID,
   4933                       const ObjCTypeParamDecl *OTPDecl,
   4934                       ArrayRef<ObjCProtocolDecl *> protocols);
   4935 
   4936   ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
   4937 };
   4938 
   4939 /// Represents a class type in Objective C.
   4940 ///
   4941 /// Every Objective C type is a combination of a base type, a set of
   4942 /// type arguments (optional, for parameterized classes) and a list of
   4943 /// protocols.
   4944 ///
   4945 /// Given the following declarations:
   4946 /// \code
   4947 ///   \@class C<T>;
   4948 ///   \@protocol P;
   4949 /// \endcode
   4950 ///
   4951 /// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
   4952 /// with base C and no protocols.
   4953 ///
   4954 /// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
   4955 /// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
   4956 /// protocol list.
   4957 /// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
   4958 /// and protocol list [P].
   4959 ///
   4960 /// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
   4961 /// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
   4962 /// and no protocols.
   4963 ///
   4964 /// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
   4965 /// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
   4966 /// this should get its own sugar class to better represent the source.
   4967 class ObjCObjectType : public Type,
   4968                        public ObjCProtocolQualifiers<ObjCObjectType> {
   4969   friend class ObjCProtocolQualifiers<ObjCObjectType>;
   4970   // ObjCObjectType.NumTypeArgs - the number of type arguments stored
   4971   // after the ObjCObjectPointerType node.
   4972   // ObjCObjectType.NumProtocols - the number of protocols stored
   4973   // after the type arguments of ObjCObjectPointerType node.
   4974   //
   4975   // These protocols are those written directly on the type.  If
   4976   // protocol qualifiers ever become additive, the iterators will need
   4977   // to get kindof complicated.
   4978   //
   4979   // In the canonical object type, these are sorted alphabetically
   4980   // and uniqued.
   4981 
   4982   /// Either a BuiltinType or an InterfaceType or sugar for either.
   4983   QualType BaseType;
   4984 
   4985   /// Cached superclass type.
   4986   mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
   4987     CachedSuperClassType;
   4988 
   4989   QualType *getTypeArgStorage();
   4990   const QualType *getTypeArgStorage() const {
   4991     return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
   4992   }
   4993 
   4994   ObjCProtocolDecl **getProtocolStorageImpl();
   4995   /// Return the number of qualifying protocols in this interface type,
   4996   /// or 0 if there are none.
   4997   unsigned getNumProtocolsImpl() const {
   4998     return ObjCObjectTypeBits.NumProtocols;
   4999   }
   5000   void setNumProtocolsImpl(unsigned N) {
   5001     ObjCObjectTypeBits.NumProtocols = N;
   5002   }
   5003 
   5004 protected:
   5005   ObjCObjectType(QualType Canonical, QualType Base,
   5006                  ArrayRef<QualType> typeArgs,
   5007                  ArrayRef<ObjCProtocolDecl *> protocols,
   5008                  bool isKindOf);
   5009 
   5010   enum Nonce_ObjCInterface { Nonce_ObjCInterface };
   5011   ObjCObjectType(enum Nonce_ObjCInterface)
   5012         : Type(ObjCInterface, QualType(), false, false, false, false),
   5013       BaseType(QualType(this_(), 0)) {
   5014     ObjCObjectTypeBits.NumProtocols = 0;
   5015     ObjCObjectTypeBits.NumTypeArgs = 0;
   5016     ObjCObjectTypeBits.IsKindOf = 0;
   5017   }
   5018 
   5019   void computeSuperClassTypeSlow() const;
   5020 
   5021 public:
   5022   /// Gets the base type of this object type.  This is always (possibly
   5023   /// sugar for) one of:
   5024   ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
   5025   ///    user, which is a typedef for an ObjCObjectPointerType)
   5026   ///  - the 'Class' builtin type (same caveat)
   5027   ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
   5028   QualType getBaseType() const { return BaseType; }
   5029 
   5030   bool isObjCId() const {
   5031     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
   5032   }
   5033   bool isObjCClass() const {
   5034     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
   5035   }
   5036   bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
   5037   bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
   5038   bool isObjCUnqualifiedIdOrClass() const {
   5039     if (!qual_empty()) return false;
   5040     if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
   5041       return T->getKind() == BuiltinType::ObjCId ||
   5042              T->getKind() == BuiltinType::ObjCClass;
   5043     return false;
   5044   }
   5045   bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
   5046   bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
   5047 
   5048   /// Gets the interface declaration for this object type, if the base type
   5049   /// really is an interface.
   5050   ObjCInterfaceDecl *getInterface() const;
   5051 
   5052   /// Determine whether this object type is "specialized", meaning
   5053   /// that it has type arguments.
   5054   bool isSpecialized() const;
   5055 
   5056   /// Determine whether this object type was written with type arguments.
   5057   bool isSpecializedAsWritten() const {
   5058     return ObjCObjectTypeBits.NumTypeArgs > 0;
   5059   }
   5060 
   5061   /// Determine whether this object type is "unspecialized", meaning
   5062   /// that it has no type arguments.
   5063   bool isUnspecialized() const { return !isSpecialized(); }
   5064 
   5065   /// Determine whether this object type is "unspecialized" as
   5066   /// written, meaning that it has no type arguments.
   5067   bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
   5068 
   5069   /// Retrieve the type arguments of this object type (semantically).
   5070   ArrayRef<QualType> getTypeArgs() const;
   5071 
   5072   /// Retrieve the type arguments of this object type as they were
   5073   /// written.
   5074   ArrayRef<QualType> getTypeArgsAsWritten() const {
   5075     return llvm::makeArrayRef(getTypeArgStorage(),
   5076                               ObjCObjectTypeBits.NumTypeArgs);
   5077   }
   5078 
   5079   /// Whether this is a "__kindof" type as written.
   5080   bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
   5081 
   5082   /// Whether this ia a "__kindof" type (semantically).
   5083   bool isKindOfType() const;
   5084 
   5085   /// Retrieve the type of the superclass of this object type.
   5086   ///
   5087   /// This operation substitutes any type arguments into the
   5088   /// superclass of the current class type, potentially producing a
   5089   /// specialization of the superclass type. Produces a null type if
   5090   /// there is no superclass.
   5091   QualType getSuperClassType() const {
   5092     if (!CachedSuperClassType.getInt())
   5093       computeSuperClassTypeSlow();
   5094 
   5095     assert(CachedSuperClassType.getInt() && "Superclass not set?");
   5096     return QualType(CachedSuperClassType.getPointer(), 0);
   5097   }
   5098 
   5099   /// Strip off the Objective-C "kindof" type and (with it) any
   5100   /// protocol qualifiers.
   5101   QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
   5102 
   5103   bool isSugared() const { return false; }
   5104   QualType desugar() const { return QualType(this, 0); }
   5105 
   5106   static bool classof(const Type *T) {
   5107     return T->getTypeClass() == ObjCObject ||
   5108            T->getTypeClass() == ObjCInterface;
   5109   }
   5110 };
   5111 
   5112 /// A class providing a concrete implementation
   5113 /// of ObjCObjectType, so as to not increase the footprint of
   5114 /// ObjCInterfaceType.  Code outside of ASTContext and the core type
   5115 /// system should not reference this type.
   5116 class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
   5117   friend class ASTContext;
   5118 
   5119   // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
   5120   // will need to be modified.
   5121 
   5122   ObjCObjectTypeImpl(QualType Canonical, QualType Base,
   5123                      ArrayRef<QualType> typeArgs,
   5124                      ArrayRef<ObjCProtocolDecl *> protocols,
   5125                      bool isKindOf)
   5126     : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
   5127 
   5128 public:
   5129   void Profile(llvm::FoldingSetNodeID &ID);
   5130   static void Profile(llvm::FoldingSetNodeID &ID,
   5131                       QualType Base,
   5132                       ArrayRef<QualType> typeArgs,
   5133                       ArrayRef<ObjCProtocolDecl *> protocols,
   5134                       bool isKindOf);
   5135 };
   5136 
   5137 inline QualType *ObjCObjectType::getTypeArgStorage() {
   5138   return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
   5139 }
   5140 
   5141 inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
   5142     return reinterpret_cast<ObjCProtocolDecl**>(
   5143              getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
   5144 }
   5145 
   5146 inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
   5147     return reinterpret_cast<ObjCProtocolDecl**>(
   5148              static_cast<ObjCTypeParamType*>(this)+1);
   5149 }
   5150 
   5151 /// Interfaces are the core concept in Objective-C for object oriented design.
   5152 /// They basically correspond to C++ classes.  There are two kinds of interface
   5153 /// types: normal interfaces like `NSString`, and qualified interfaces, which
   5154 /// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
   5155 ///
   5156 /// ObjCInterfaceType guarantees the following properties when considered
   5157 /// as a subtype of its superclass, ObjCObjectType:
   5158 ///   - There are no protocol qualifiers.  To reinforce this, code which
   5159 ///     tries to invoke the protocol methods via an ObjCInterfaceType will
   5160 ///     fail to compile.
   5161 ///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
   5162 ///     T->getBaseType() == QualType(T, 0).
   5163 class ObjCInterfaceType : public ObjCObjectType {
   5164   mutable ObjCInterfaceDecl *Decl;
   5165 
   5166   ObjCInterfaceType(const ObjCInterfaceDecl *D)
   5167     : ObjCObjectType(Nonce_ObjCInterface),
   5168       Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
   5169   friend class ASTContext;  // ASTContext creates these.
   5170   friend class ASTReader;
   5171   friend class ObjCInterfaceDecl;
   5172 
   5173 public:
   5174   /// Get the declaration of this interface.
   5175   ObjCInterfaceDecl *getDecl() const { return Decl; }
   5176 
   5177   bool isSugared() const { return false; }
   5178   QualType desugar() const { return QualType(this, 0); }
   5179 
   5180   static bool classof(const Type *T) {
   5181     return T->getTypeClass() == ObjCInterface;
   5182   }
   5183 
   5184   // Nonsense to "hide" certain members of ObjCObjectType within this
   5185   // class.  People asking for protocols on an ObjCInterfaceType are
   5186   // not going to get what they want: ObjCInterfaceTypes are
   5187   // guaranteed to have no protocols.
   5188   enum {
   5189     qual_iterator,
   5190     qual_begin,
   5191     qual_end,
   5192     getNumProtocols,
   5193     getProtocol
   5194   };
   5195 };
   5196 
   5197 inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
   5198   QualType baseType = getBaseType();
   5199   while (const ObjCObjectType *ObjT = baseType->getAs<ObjCObjectType>()) {
   5200     if (const ObjCInterfaceType *T = dyn_cast<ObjCInterfaceType>(ObjT))
   5201       return T->getDecl();
   5202 
   5203     baseType = ObjT->getBaseType();
   5204   }
   5205 
   5206   return nullptr;
   5207 }
   5208 
   5209 /// Represents a pointer to an Objective C object.
   5210 ///
   5211 /// These are constructed from pointer declarators when the pointee type is
   5212 /// an ObjCObjectType (or sugar for one).  In addition, the 'id' and 'Class'
   5213 /// types are typedefs for these, and the protocol-qualified types 'id<P>'
   5214 /// and 'Class<P>' are translated into these.
   5215 ///
   5216 /// Pointers to pointers to Objective C objects are still PointerTypes;
   5217 /// only the first level of pointer gets it own type implementation.
   5218 class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
   5219   QualType PointeeType;
   5220 
   5221   ObjCObjectPointerType(QualType Canonical, QualType Pointee)
   5222     : Type(ObjCObjectPointer, Canonical,
   5223            Pointee->isDependentType(),
   5224            Pointee->isInstantiationDependentType(),
   5225            Pointee->isVariablyModifiedType(),
   5226            Pointee->containsUnexpandedParameterPack()),
   5227       PointeeType(Pointee) {}
   5228   friend class ASTContext;  // ASTContext creates these.
   5229 
   5230 public:
   5231   /// Gets the type pointed to by this ObjC pointer.
   5232   /// The result will always be an ObjCObjectType or sugar thereof.
   5233   QualType getPointeeType() const { return PointeeType; }
   5234 
   5235   /// Gets the type pointed to by this ObjC pointer.  Always returns non-null.
   5236   ///
   5237   /// This method is equivalent to getPointeeType() except that
   5238   /// it discards any typedefs (or other sugar) between this
   5239   /// type and the "outermost" object type.  So for:
   5240   /// \code
   5241   ///   \@class A; \@protocol P; \@protocol Q;
   5242   ///   typedef A<P> AP;
   5243   ///   typedef A A1;
   5244   ///   typedef A1<P> A1P;
   5245   ///   typedef A1P<Q> A1PQ;
   5246   /// \endcode
   5247   /// For 'A*', getObjectType() will return 'A'.
   5248   /// For 'A<P>*', getObjectType() will return 'A<P>'.
   5249   /// For 'AP*', getObjectType() will return 'A<P>'.
   5250   /// For 'A1*', getObjectType() will return 'A'.
   5251   /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
   5252   /// For 'A1P*', getObjectType() will return 'A1<P>'.
   5253   /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
   5254   ///   adding protocols to a protocol-qualified base discards the
   5255   ///   old qualifiers (for now).  But if it didn't, getObjectType()
   5256   ///   would return 'A1P<Q>' (and we'd have to make iterating over
   5257   ///   qualifiers more complicated).
   5258   const ObjCObjectType *getObjectType() const {
   5259     return PointeeType->castAs<ObjCObjectType>();
   5260   }
   5261 
   5262   /// If this pointer points to an Objective C
   5263   /// \@interface type, gets the type for that interface.  Any protocol
   5264   /// qualifiers on the interface are ignored.
   5265   ///
   5266   /// \return null if the base type for this pointer is 'id' or 'Class'
   5267   const ObjCInterfaceType *getInterfaceType() const;
   5268 
   5269   /// If this pointer points to an Objective \@interface
   5270   /// type, gets the declaration for that interface.
   5271   ///
   5272   /// \return null if the base type for this pointer is 'id' or 'Class'
   5273   ObjCInterfaceDecl *getInterfaceDecl() const {
   5274     return getObjectType()->getInterface();
   5275   }
   5276 
   5277   /// True if this is equivalent to the 'id' type, i.e. if
   5278   /// its object type is the primitive 'id' type with no protocols.
   5279   bool isObjCIdType() const {
   5280     return getObjectType()->isObjCUnqualifiedId();
   5281   }
   5282 
   5283   /// True if this is equivalent to the 'Class' type,
   5284   /// i.e. if its object tive is the primitive 'Class' type with no protocols.
   5285   bool isObjCClassType() const {
   5286     return getObjectType()->isObjCUnqualifiedClass();
   5287   }
   5288 
   5289   /// True if this is equivalent to the 'id' or 'Class' type,
   5290   bool isObjCIdOrClassType() const {
   5291     return getObjectType()->isObjCUnqualifiedIdOrClass();
   5292   }
   5293 
   5294   /// True if this is equivalent to 'id<P>' for some non-empty set of
   5295   /// protocols.
   5296   bool isObjCQualifiedIdType() const {
   5297     return getObjectType()->isObjCQualifiedId();
   5298   }
   5299 
   5300   /// True if this is equivalent to 'Class<P>' for some non-empty set of
   5301   /// protocols.
   5302   bool isObjCQualifiedClassType() const {
   5303     return getObjectType()->isObjCQualifiedClass();
   5304   }
   5305 
   5306   /// Whether this is a "__kindof" type.
   5307   bool isKindOfType() const { return getObjectType()->isKindOfType(); }
   5308 
   5309   /// Whether this type is specialized, meaning that it has type arguments.
   5310   bool isSpecialized() const { return getObjectType()->isSpecialized(); }
   5311 
   5312   /// Whether this type is specialized, meaning that it has type arguments.
   5313   bool isSpecializedAsWritten() const {
   5314     return getObjectType()->isSpecializedAsWritten();
   5315   }
   5316 
   5317   /// Whether this type is unspecialized, meaning that is has no type arguments.
   5318   bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
   5319 
   5320   /// Determine whether this object type is "unspecialized" as
   5321   /// written, meaning that it has no type arguments.
   5322   bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
   5323 
   5324   /// Retrieve the type arguments for this type.
   5325   ArrayRef<QualType> getTypeArgs() const {
   5326     return getObjectType()->getTypeArgs();
   5327   }
   5328 
   5329   /// Retrieve the type arguments for this type.
   5330   ArrayRef<QualType> getTypeArgsAsWritten() const {
   5331     return getObjectType()->getTypeArgsAsWritten();
   5332   }
   5333 
   5334   /// An iterator over the qualifiers on the object type.  Provided
   5335   /// for convenience.  This will always iterate over the full set of
   5336   /// protocols on a type, not just those provided directly.
   5337   typedef ObjCObjectType::qual_iterator qual_iterator;
   5338   typedef llvm::iterator_range<qual_iterator> qual_range;
   5339 
   5340   qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
   5341   qual_iterator qual_begin() const {
   5342     return getObjectType()->qual_begin();
   5343   }
   5344   qual_iterator qual_end() const {
   5345     return getObjectType()->qual_end();
   5346   }
   5347   bool qual_empty() const { return getObjectType()->qual_empty(); }
   5348 
   5349   /// Return the number of qualifying protocols on the object type.
   5350   unsigned getNumProtocols() const {
   5351     return getObjectType()->getNumProtocols();
   5352   }
   5353 
   5354   /// Retrieve a qualifying protocol by index on the object type.
   5355   ObjCProtocolDecl *getProtocol(unsigned I) const {
   5356     return getObjectType()->getProtocol(I);
   5357   }
   5358 
   5359   bool isSugared() const { return false; }
   5360   QualType desugar() const { return QualType(this, 0); }
   5361 
   5362   /// Retrieve the type of the superclass of this object pointer type.
   5363   ///
   5364   /// This operation substitutes any type arguments into the
   5365   /// superclass of the current class type, potentially producing a
   5366   /// pointer to a specialization of the superclass type. Produces a
   5367   /// null type if there is no superclass.
   5368   QualType getSuperClassType() const;
   5369 
   5370   /// Strip off the Objective-C "kindof" type and (with it) any
   5371   /// protocol qualifiers.
   5372   const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
   5373                                  const ASTContext &ctx) const;
   5374 
   5375   void Profile(llvm::FoldingSetNodeID &ID) {
   5376     Profile(ID, getPointeeType());
   5377   }
   5378   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
   5379     ID.AddPointer(T.getAsOpaquePtr());
   5380   }
   5381   static bool classof(const Type *T) {
   5382     return T->getTypeClass() == ObjCObjectPointer;
   5383   }
   5384 };
   5385 
   5386 class AtomicType : public Type, public llvm::FoldingSetNode {
   5387   QualType ValueType;
   5388 
   5389   AtomicType(QualType ValTy, QualType Canonical)
   5390     : Type(Atomic, Canonical, ValTy->isDependentType(),
   5391            ValTy->isInstantiationDependentType(),
   5392            ValTy->isVariablyModifiedType(),
   5393            ValTy->containsUnexpandedParameterPack()),
   5394       ValueType(ValTy) {}
   5395   friend class ASTContext;  // ASTContext creates these.
   5396 
   5397   public:
   5398   /// Gets the type contained by this atomic type, i.e.
   5399   /// the type returned by performing an atomic load of this atomic type.
   5400   QualType getValueType() const { return ValueType; }
   5401 
   5402   bool isSugared() const { return false; }
   5403   QualType desugar() const { return QualType(this, 0); }
   5404 
   5405   void Profile(llvm::FoldingSetNodeID &ID) {
   5406     Profile(ID, getValueType());
   5407   }
   5408   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
   5409     ID.AddPointer(T.getAsOpaquePtr());
   5410   }
   5411   static bool classof(const Type *T) {
   5412     return T->getTypeClass() == Atomic;
   5413   }
   5414 };
   5415 
   5416 /// PipeType - OpenCL20.
   5417 class PipeType : public Type, public llvm::FoldingSetNode {
   5418   QualType ElementType;
   5419   bool isRead;
   5420 
   5421   PipeType(QualType elemType, QualType CanonicalPtr, bool isRead) :
   5422     Type(Pipe, CanonicalPtr, elemType->isDependentType(),
   5423          elemType->isInstantiationDependentType(),
   5424          elemType->isVariablyModifiedType(),
   5425          elemType->containsUnexpandedParameterPack()),
   5426     ElementType(elemType), isRead(isRead) {}
   5427   friend class ASTContext;  // ASTContext creates these.
   5428 
   5429 public:
   5430   QualType getElementType() const { return ElementType; }
   5431 
   5432   bool isSugared() const { return false; }
   5433 
   5434   QualType desugar() const { return QualType(this, 0); }
   5435 
   5436   void Profile(llvm::FoldingSetNodeID &ID) {
   5437     Profile(ID, getElementType(), isReadOnly());
   5438   }
   5439 
   5440   static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
   5441     ID.AddPointer(T.getAsOpaquePtr());
   5442     ID.AddBoolean(isRead);
   5443   }
   5444 
   5445   static bool classof(const Type *T) {
   5446     return T->getTypeClass() == Pipe;
   5447   }
   5448 
   5449   bool isReadOnly() const { return isRead; }
   5450 };
   5451 
   5452 /// A qualifier set is used to build a set of qualifiers.
   5453 class QualifierCollector : public Qualifiers {
   5454 public:
   5455   QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
   5456 
   5457   /// Collect any qualifiers on the given type and return an
   5458   /// unqualified type.  The qualifiers are assumed to be consistent
   5459   /// with those already in the type.
   5460   const Type *strip(QualType type) {
   5461     addFastQualifiers(type.getLocalFastQualifiers());
   5462     if (!type.hasLocalNonFastQualifiers())
   5463       return type.getTypePtrUnsafe();
   5464 
   5465     const ExtQuals *extQuals = type.getExtQualsUnsafe();
   5466     addConsistentQualifiers(extQuals->getQualifiers());
   5467     return extQuals->getBaseType();
   5468   }
   5469 
   5470   /// Apply the collected qualifiers to the given type.
   5471   QualType apply(const ASTContext &Context, QualType QT) const;
   5472 
   5473   /// Apply the collected qualifiers to the given type.
   5474   QualType apply(const ASTContext &Context, const Type* T) const;
   5475 };
   5476 
   5477 
   5478 // Inline function definitions.
   5479 
   5480 inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
   5481   SplitQualType desugar =
   5482     Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
   5483   desugar.Quals.addConsistentQualifiers(Quals);
   5484   return desugar;
   5485 }
   5486 
   5487 inline const Type *QualType::getTypePtr() const {
   5488   return getCommonPtr()->BaseType;
   5489 }
   5490 
   5491 inline const Type *QualType::getTypePtrOrNull() const {
   5492   return (isNull() ? nullptr : getCommonPtr()->BaseType);
   5493 }
   5494 
   5495 inline SplitQualType QualType::split() const {
   5496   if (!hasLocalNonFastQualifiers())
   5497     return SplitQualType(getTypePtrUnsafe(),
   5498                          Qualifiers::fromFastMask(getLocalFastQualifiers()));
   5499 
   5500   const ExtQuals *eq = getExtQualsUnsafe();
   5501   Qualifiers qs = eq->getQualifiers();
   5502   qs.addFastQualifiers(getLocalFastQualifiers());
   5503   return SplitQualType(eq->getBaseType(), qs);
   5504 }
   5505 
   5506 inline Qualifiers QualType::getLocalQualifiers() const {
   5507   Qualifiers Quals;
   5508   if (hasLocalNonFastQualifiers())
   5509     Quals = getExtQualsUnsafe()->getQualifiers();
   5510   Quals.addFastQualifiers(getLocalFastQualifiers());
   5511   return Quals;
   5512 }
   5513 
   5514 inline Qualifiers QualType::getQualifiers() const {
   5515   Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
   5516   quals.addFastQualifiers(getLocalFastQualifiers());
   5517   return quals;
   5518 }
   5519 
   5520 inline unsigned QualType::getCVRQualifiers() const {
   5521   unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
   5522   cvr |= getLocalCVRQualifiers();
   5523   return cvr;
   5524 }
   5525 
   5526 inline QualType QualType::getCanonicalType() const {
   5527   QualType canon = getCommonPtr()->CanonicalType;
   5528   return canon.withFastQualifiers(getLocalFastQualifiers());
   5529 }
   5530 
   5531 inline bool QualType::isCanonical() const {
   5532   return getTypePtr()->isCanonicalUnqualified();
   5533 }
   5534 
   5535 inline bool QualType::isCanonicalAsParam() const {
   5536   if (!isCanonical()) return false;
   5537   if (hasLocalQualifiers()) return false;
   5538 
   5539   const Type *T = getTypePtr();
   5540   if (T->isVariablyModifiedType() && T->hasSizedVLAType())
   5541     return false;
   5542 
   5543   return !isa<FunctionType>(T) && !isa<ArrayType>(T);
   5544 }
   5545 
   5546 inline bool QualType::isConstQualified() const {
   5547   return isLocalConstQualified() ||
   5548          getCommonPtr()->CanonicalType.isLocalConstQualified();
   5549 }
   5550 
   5551 inline bool QualType::isRestrictQualified() const {
   5552   return isLocalRestrictQualified() ||
   5553          getCommonPtr()->CanonicalType.isLocalRestrictQualified();
   5554 }
   5555 
   5556 
   5557 inline bool QualType::isVolatileQualified() const {
   5558   return isLocalVolatileQualified() ||
   5559          getCommonPtr()->CanonicalType.isLocalVolatileQualified();
   5560 }
   5561 
   5562 inline bool QualType::hasQualifiers() const {
   5563   return hasLocalQualifiers() ||
   5564          getCommonPtr()->CanonicalType.hasLocalQualifiers();
   5565 }
   5566 
   5567 inline QualType QualType::getUnqualifiedType() const {
   5568   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   5569     return QualType(getTypePtr(), 0);
   5570 
   5571   return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
   5572 }
   5573 
   5574 inline SplitQualType QualType::getSplitUnqualifiedType() const {
   5575   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   5576     return split();
   5577 
   5578   return getSplitUnqualifiedTypeImpl(*this);
   5579 }
   5580 
   5581 inline void QualType::removeLocalConst() {
   5582   removeLocalFastQualifiers(Qualifiers::Const);
   5583 }
   5584 
   5585 inline void QualType::removeLocalRestrict() {
   5586   removeLocalFastQualifiers(Qualifiers::Restrict);
   5587 }
   5588 
   5589 inline void QualType::removeLocalVolatile() {
   5590   removeLocalFastQualifiers(Qualifiers::Volatile);
   5591 }
   5592 
   5593 inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
   5594   assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
   5595   static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
   5596                 "Fast bits differ from CVR bits!");
   5597 
   5598   // Fast path: we don't need to touch the slow qualifiers.
   5599   removeLocalFastQualifiers(Mask);
   5600 }
   5601 
   5602 /// Return the address space of this type.
   5603 inline unsigned QualType::getAddressSpace() const {
   5604   return getQualifiers().getAddressSpace();
   5605 }
   5606 
   5607 /// Return the gc attribute of this type.
   5608 inline Qualifiers::GC QualType::getObjCGCAttr() const {
   5609   return getQualifiers().getObjCGCAttr();
   5610 }
   5611 
   5612 inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
   5613   if (const PointerType *PT = t.getAs<PointerType>()) {
   5614     if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
   5615       return FT->getExtInfo();
   5616   } else if (const FunctionType *FT = t.getAs<FunctionType>())
   5617     return FT->getExtInfo();
   5618 
   5619   return FunctionType::ExtInfo();
   5620 }
   5621 
   5622 inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
   5623   return getFunctionExtInfo(*t);
   5624 }
   5625 
   5626 /// Determine whether this type is more
   5627 /// qualified than the Other type. For example, "const volatile int"
   5628 /// is more qualified than "const int", "volatile int", and
   5629 /// "int". However, it is not more qualified than "const volatile
   5630 /// int".
   5631 inline bool QualType::isMoreQualifiedThan(QualType other) const {
   5632   Qualifiers MyQuals = getQualifiers();
   5633   Qualifiers OtherQuals = other.getQualifiers();
   5634   return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
   5635 }
   5636 
   5637 /// Determine whether this type is at last
   5638 /// as qualified as the Other type. For example, "const volatile
   5639 /// int" is at least as qualified as "const int", "volatile int",
   5640 /// "int", and "const volatile int".
   5641 inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
   5642   Qualifiers OtherQuals = other.getQualifiers();
   5643 
   5644   // Ignore __unaligned qualifier if this type is a void.
   5645   if (getUnqualifiedType()->isVoidType())
   5646     OtherQuals.removeUnaligned();
   5647 
   5648   return getQualifiers().compatiblyIncludes(OtherQuals);
   5649 }
   5650 
   5651 /// If Type is a reference type (e.g., const
   5652 /// int&), returns the type that the reference refers to ("const
   5653 /// int"). Otherwise, returns the type itself. This routine is used
   5654 /// throughout Sema to implement C++ 5p6:
   5655 ///
   5656 ///   If an expression initially has the type "reference to T" (8.3.2,
   5657 ///   8.5.3), the type is adjusted to "T" prior to any further
   5658 ///   analysis, the expression designates the object or function
   5659 ///   denoted by the reference, and the expression is an lvalue.
   5660 inline QualType QualType::getNonReferenceType() const {
   5661   if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
   5662     return RefType->getPointeeType();
   5663   else
   5664     return *this;
   5665 }
   5666 
   5667 inline bool QualType::isCForbiddenLValueType() const {
   5668   return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
   5669           getTypePtr()->isFunctionType());
   5670 }
   5671 
   5672 /// Tests whether the type is categorized as a fundamental type.
   5673 ///
   5674 /// \returns True for types specified in C++0x [basic.fundamental].
   5675 inline bool Type::isFundamentalType() const {
   5676   return isVoidType() ||
   5677          // FIXME: It's really annoying that we don't have an
   5678          // 'isArithmeticType()' which agrees with the standard definition.
   5679          (isArithmeticType() && !isEnumeralType());
   5680 }
   5681 
   5682 /// Tests whether the type is categorized as a compound type.
   5683 ///
   5684 /// \returns True for types specified in C++0x [basic.compound].
   5685 inline bool Type::isCompoundType() const {
   5686   // C++0x [basic.compound]p1:
   5687   //   Compound types can be constructed in the following ways:
   5688   //    -- arrays of objects of a given type [...];
   5689   return isArrayType() ||
   5690   //    -- functions, which have parameters of given types [...];
   5691          isFunctionType() ||
   5692   //    -- pointers to void or objects or functions [...];
   5693          isPointerType() ||
   5694   //    -- references to objects or functions of a given type. [...]
   5695          isReferenceType() ||
   5696   //    -- classes containing a sequence of objects of various types, [...];
   5697          isRecordType() ||
   5698   //    -- unions, which are classes capable of containing objects of different
   5699   //               types at different times;
   5700          isUnionType() ||
   5701   //    -- enumerations, which comprise a set of named constant values. [...];
   5702          isEnumeralType() ||
   5703   //    -- pointers to non-static class members, [...].
   5704          isMemberPointerType();
   5705 }
   5706 
   5707 inline bool Type::isFunctionType() const {
   5708   return isa<FunctionType>(CanonicalType);
   5709 }
   5710 inline bool Type::isPointerType() const {
   5711   return isa<PointerType>(CanonicalType);
   5712 }
   5713 inline bool Type::isAnyPointerType() const {
   5714   return isPointerType() || isObjCObjectPointerType();
   5715 }
   5716 inline bool Type::isBlockPointerType() const {
   5717   return isa<BlockPointerType>(CanonicalType);
   5718 }
   5719 inline bool Type::isReferenceType() const {
   5720   return isa<ReferenceType>(CanonicalType);
   5721 }
   5722 inline bool Type::isLValueReferenceType() const {
   5723   return isa<LValueReferenceType>(CanonicalType);
   5724 }
   5725 inline bool Type::isRValueReferenceType() const {
   5726   return isa<RValueReferenceType>(CanonicalType);
   5727 }
   5728 inline bool Type::isFunctionPointerType() const {
   5729   if (const PointerType *T = getAs<PointerType>())
   5730     return T->getPointeeType()->isFunctionType();
   5731   else
   5732     return false;
   5733 }
   5734 inline bool Type::isMemberPointerType() const {
   5735   return isa<MemberPointerType>(CanonicalType);
   5736 }
   5737 inline bool Type::isMemberFunctionPointerType() const {
   5738   if (const MemberPointerType* T = getAs<MemberPointerType>())
   5739     return T->isMemberFunctionPointer();
   5740   else
   5741     return false;
   5742 }
   5743 inline bool Type::isMemberDataPointerType() const {
   5744   if (const MemberPointerType* T = getAs<MemberPointerType>())
   5745     return T->isMemberDataPointer();
   5746   else
   5747     return false;
   5748 }
   5749 inline bool Type::isArrayType() const {
   5750   return isa<ArrayType>(CanonicalType);
   5751 }
   5752 inline bool Type::isConstantArrayType() const {
   5753   return isa<ConstantArrayType>(CanonicalType);
   5754 }
   5755 inline bool Type::isIncompleteArrayType() const {
   5756   return isa<IncompleteArrayType>(CanonicalType);
   5757 }
   5758 inline bool Type::isVariableArrayType() const {
   5759   return isa<VariableArrayType>(CanonicalType);
   5760 }
   5761 inline bool Type::isDependentSizedArrayType() const {
   5762   return isa<DependentSizedArrayType>(CanonicalType);
   5763 }
   5764 inline bool Type::isBuiltinType() const {
   5765   return isa<BuiltinType>(CanonicalType);
   5766 }
   5767 inline bool Type::isRecordType() const {
   5768   return isa<RecordType>(CanonicalType);
   5769 }
   5770 inline bool Type::isEnumeralType() const {
   5771   return isa<EnumType>(CanonicalType);
   5772 }
   5773 inline bool Type::isAnyComplexType() const {
   5774   return isa<ComplexType>(CanonicalType);
   5775 }
   5776 inline bool Type::isVectorType() const {
   5777   return isa<VectorType>(CanonicalType);
   5778 }
   5779 inline bool Type::isExtVectorType() const {
   5780   return isa<ExtVectorType>(CanonicalType);
   5781 }
   5782 inline bool Type::isObjCObjectPointerType() const {
   5783   return isa<ObjCObjectPointerType>(CanonicalType);
   5784 }
   5785 inline bool Type::isObjCObjectType() const {
   5786   return isa<ObjCObjectType>(CanonicalType);
   5787 }
   5788 inline bool Type::isObjCObjectOrInterfaceType() const {
   5789   return isa<ObjCInterfaceType>(CanonicalType) ||
   5790     isa<ObjCObjectType>(CanonicalType);
   5791 }
   5792 inline bool Type::isAtomicType() const {
   5793   return isa<AtomicType>(CanonicalType);
   5794 }
   5795 
   5796 inline bool Type::isObjCQualifiedIdType() const {
   5797   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   5798     return OPT->isObjCQualifiedIdType();
   5799   return false;
   5800 }
   5801 inline bool Type::isObjCQualifiedClassType() const {
   5802   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   5803     return OPT->isObjCQualifiedClassType();
   5804   return false;
   5805 }
   5806 inline bool Type::isObjCIdType() const {
   5807   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   5808     return OPT->isObjCIdType();
   5809   return false;
   5810 }
   5811 inline bool Type::isObjCClassType() const {
   5812   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   5813     return OPT->isObjCClassType();
   5814   return false;
   5815 }
   5816 inline bool Type::isObjCSelType() const {
   5817   if (const PointerType *OPT = getAs<PointerType>())
   5818     return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
   5819   return false;
   5820 }
   5821 inline bool Type::isObjCBuiltinType() const {
   5822   return isObjCIdType() || isObjCClassType() || isObjCSelType();
   5823 }
   5824 
   5825 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
   5826   inline bool Type::is##Id##Type() const { \
   5827     return isSpecificBuiltinType(BuiltinType::Id); \
   5828   }
   5829 #include "clang/Basic/OpenCLImageTypes.def"
   5830 
   5831 inline bool Type::isSamplerT() const {
   5832   return isSpecificBuiltinType(BuiltinType::OCLSampler);
   5833 }
   5834 
   5835 inline bool Type::isEventT() const {
   5836   return isSpecificBuiltinType(BuiltinType::OCLEvent);
   5837 }
   5838 
   5839 inline bool Type::isClkEventT() const {
   5840   return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
   5841 }
   5842 
   5843 inline bool Type::isQueueT() const {
   5844   return isSpecificBuiltinType(BuiltinType::OCLQueue);
   5845 }
   5846 
   5847 inline bool Type::isReserveIDT() const {
   5848   return isSpecificBuiltinType(BuiltinType::OCLReserveID);
   5849 }
   5850 
   5851 inline bool Type::isImageType() const {
   5852 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
   5853   return
   5854 #include "clang/Basic/OpenCLImageTypes.def"
   5855       0; // end boolean or operation
   5856 }
   5857 
   5858 inline bool Type::isPipeType() const {
   5859   return isa<PipeType>(CanonicalType);
   5860 }
   5861 
   5862 inline bool Type::isOpenCLSpecificType() const {
   5863   return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
   5864          isQueueT() || isReserveIDT() || isPipeType();
   5865 }
   5866 
   5867 inline bool Type::isTemplateTypeParmType() const {
   5868   return isa<TemplateTypeParmType>(CanonicalType);
   5869 }
   5870 
   5871 inline bool Type::isSpecificBuiltinType(unsigned K) const {
   5872   if (const BuiltinType *BT = getAs<BuiltinType>())
   5873     if (BT->getKind() == (BuiltinType::Kind) K)
   5874       return true;
   5875   return false;
   5876 }
   5877 
   5878 inline bool Type::isPlaceholderType() const {
   5879   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5880     return BT->isPlaceholderType();
   5881   return false;
   5882 }
   5883 
   5884 inline const BuiltinType *Type::getAsPlaceholderType() const {
   5885   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5886     if (BT->isPlaceholderType())
   5887       return BT;
   5888   return nullptr;
   5889 }
   5890 
   5891 inline bool Type::isSpecificPlaceholderType(unsigned K) const {
   5892   assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
   5893   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5894     return (BT->getKind() == (BuiltinType::Kind) K);
   5895   return false;
   5896 }
   5897 
   5898 inline bool Type::isNonOverloadPlaceholderType() const {
   5899   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5900     return BT->isNonOverloadPlaceholderType();
   5901   return false;
   5902 }
   5903 
   5904 inline bool Type::isVoidType() const {
   5905   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5906     return BT->getKind() == BuiltinType::Void;
   5907   return false;
   5908 }
   5909 
   5910 inline bool Type::isHalfType() const {
   5911   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5912     return BT->getKind() == BuiltinType::Half;
   5913   // FIXME: Should we allow complex __fp16? Probably not.
   5914   return false;
   5915 }
   5916 
   5917 inline bool Type::isNullPtrType() const {
   5918   if (const BuiltinType *BT = getAs<BuiltinType>())
   5919     return BT->getKind() == BuiltinType::NullPtr;
   5920   return false;
   5921 }
   5922 
   5923 bool IsEnumDeclComplete(EnumDecl *);
   5924 bool IsEnumDeclScoped(EnumDecl *);
   5925 
   5926 inline bool Type::isIntegerType() const {
   5927   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5928     return BT->getKind() >= BuiltinType::Bool &&
   5929            BT->getKind() <= BuiltinType::Int128;
   5930   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
   5931     // Incomplete enum types are not treated as integer types.
   5932     // FIXME: In C++, enum types are never integer types.
   5933     return IsEnumDeclComplete(ET->getDecl()) &&
   5934       !IsEnumDeclScoped(ET->getDecl());
   5935   }
   5936   return false;
   5937 }
   5938 
   5939 inline bool Type::isScalarType() const {
   5940   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5941     return BT->getKind() > BuiltinType::Void &&
   5942            BT->getKind() <= BuiltinType::NullPtr;
   5943   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   5944     // Enums are scalar types, but only if they are defined.  Incomplete enums
   5945     // are not treated as scalar types.
   5946     return IsEnumDeclComplete(ET->getDecl());
   5947   return isa<PointerType>(CanonicalType) ||
   5948          isa<BlockPointerType>(CanonicalType) ||
   5949          isa<MemberPointerType>(CanonicalType) ||
   5950          isa<ComplexType>(CanonicalType) ||
   5951          isa<ObjCObjectPointerType>(CanonicalType);
   5952 }
   5953 
   5954 inline bool Type::isIntegralOrEnumerationType() const {
   5955   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5956     return BT->getKind() >= BuiltinType::Bool &&
   5957            BT->getKind() <= BuiltinType::Int128;
   5958 
   5959   // Check for a complete enum type; incomplete enum types are not properly an
   5960   // enumeration type in the sense required here.
   5961   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   5962     return IsEnumDeclComplete(ET->getDecl());
   5963 
   5964   return false;
   5965 }
   5966 
   5967 inline bool Type::isBooleanType() const {
   5968   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5969     return BT->getKind() == BuiltinType::Bool;
   5970   return false;
   5971 }
   5972 
   5973 inline bool Type::isUndeducedType() const {
   5974   auto *DT = getContainedDeducedType();
   5975   return DT && !DT->isDeduced();
   5976 }
   5977 
   5978 /// \brief Determines whether this is a type for which one can define
   5979 /// an overloaded operator.
   5980 inline bool Type::isOverloadableType() const {
   5981   return isDependentType() || isRecordType() || isEnumeralType();
   5982 }
   5983 
   5984 /// \brief Determines whether this type can decay to a pointer type.
   5985 inline bool Type::canDecayToPointerType() const {
   5986   return isFunctionType() || isArrayType();
   5987 }
   5988 
   5989 inline bool Type::hasPointerRepresentation() const {
   5990   return (isPointerType() || isReferenceType() || isBlockPointerType() ||
   5991           isObjCObjectPointerType() || isNullPtrType());
   5992 }
   5993 
   5994 inline bool Type::hasObjCPointerRepresentation() const {
   5995   return isObjCObjectPointerType();
   5996 }
   5997 
   5998 inline const Type *Type::getBaseElementTypeUnsafe() const {
   5999   const Type *type = this;
   6000   while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
   6001     type = arrayType->getElementType().getTypePtr();
   6002   return type;
   6003 }
   6004 
   6005 inline const Type *Type::getPointeeOrArrayElementType() const {
   6006   const Type *type = this;
   6007   if (type->isAnyPointerType())
   6008     return type->getPointeeType().getTypePtr();
   6009   else if (type->isArrayType())
   6010     return type->getBaseElementTypeUnsafe();
   6011   return type;
   6012 }
   6013 
   6014 /// Insertion operator for diagnostics.  This allows sending QualType's into a
   6015 /// diagnostic with <<.
   6016 inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
   6017                                            QualType T) {
   6018   DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   6019                   DiagnosticsEngine::ak_qualtype);
   6020   return DB;
   6021 }
   6022 
   6023 /// Insertion operator for partial diagnostics.  This allows sending QualType's
   6024 /// into a diagnostic with <<.
   6025 inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
   6026                                            QualType T) {
   6027   PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   6028                   DiagnosticsEngine::ak_qualtype);
   6029   return PD;
   6030 }
   6031 
   6032 // Helper class template that is used by Type::getAs to ensure that one does
   6033 // not try to look through a qualified type to get to an array type.
   6034 template <typename T>
   6035 using TypeIsArrayType =
   6036     std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
   6037                                      std::is_base_of<ArrayType, T>::value>;
   6038 
   6039 // Member-template getAs<specific type>'.
   6040 template <typename T> const T *Type::getAs() const {
   6041   static_assert(!TypeIsArrayType<T>::value,
   6042                 "ArrayType cannot be used with getAs!");
   6043 
   6044   // If this is directly a T type, return it.
   6045   if (const T *Ty = dyn_cast<T>(this))
   6046     return Ty;
   6047 
   6048   // If the canonical form of this type isn't the right kind, reject it.
   6049   if (!isa<T>(CanonicalType))
   6050     return nullptr;
   6051 
   6052   // If this is a typedef for the type, strip the typedef off without
   6053   // losing all typedef information.
   6054   return cast<T>(getUnqualifiedDesugaredType());
   6055 }
   6056 
   6057 template <typename T> const T *Type::getAsAdjusted() const {
   6058   static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
   6059 
   6060   // If this is directly a T type, return it.
   6061   if (const T *Ty = dyn_cast<T>(this))
   6062     return Ty;
   6063 
   6064   // If the canonical form of this type isn't the right kind, reject it.
   6065   if (!isa<T>(CanonicalType))
   6066     return nullptr;
   6067 
   6068   // Strip off type adjustments that do not modify the underlying nature of the
   6069   // type.
   6070   const Type *Ty = this;
   6071   while (Ty) {
   6072     if (const auto *A = dyn_cast<AttributedType>(Ty))
   6073       Ty = A->getModifiedType().getTypePtr();
   6074     else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
   6075       Ty = E->desugar().getTypePtr();
   6076     else if (const auto *P = dyn_cast<ParenType>(Ty))
   6077       Ty = P->desugar().getTypePtr();
   6078     else if (const auto *A = dyn_cast<AdjustedType>(Ty))
   6079       Ty = A->desugar().getTypePtr();
   6080     else
   6081       break;
   6082   }
   6083 
   6084   // Just because the canonical type is correct does not mean we can use cast<>,
   6085   // since we may not have stripped off all the sugar down to the base type.
   6086   return dyn_cast<T>(Ty);
   6087 }
   6088 
   6089 inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
   6090   // If this is directly an array type, return it.
   6091   if (const ArrayType *arr = dyn_cast<ArrayType>(this))
   6092     return arr;
   6093 
   6094   // If the canonical form of this type isn't the right kind, reject it.
   6095   if (!isa<ArrayType>(CanonicalType))
   6096     return nullptr;
   6097 
   6098   // If this is a typedef for the type, strip the typedef off without
   6099   // losing all typedef information.
   6100   return cast<ArrayType>(getUnqualifiedDesugaredType());
   6101 }
   6102 
   6103 template <typename T> const T *Type::castAs() const {
   6104   static_assert(!TypeIsArrayType<T>::value,
   6105                 "ArrayType cannot be used with castAs!");
   6106 
   6107   if (const T *ty = dyn_cast<T>(this)) return ty;
   6108   assert(isa<T>(CanonicalType));
   6109   return cast<T>(getUnqualifiedDesugaredType());
   6110 }
   6111 
   6112 inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
   6113   assert(isa<ArrayType>(CanonicalType));
   6114   if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
   6115   return cast<ArrayType>(getUnqualifiedDesugaredType());
   6116 }
   6117 
   6118 DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
   6119                          QualType CanonicalPtr)
   6120     : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
   6121 #ifndef NDEBUG
   6122   QualType Adjusted = getAdjustedType();
   6123   (void)AttributedType::stripOuterNullability(Adjusted);
   6124   assert(isa<PointerType>(Adjusted));
   6125 #endif
   6126 }
   6127 
   6128 QualType DecayedType::getPointeeType() const {
   6129   QualType Decayed = getDecayedType();
   6130   (void)AttributedType::stripOuterNullability(Decayed);
   6131   return cast<PointerType>(Decayed)->getPointeeType();
   6132 }
   6133 
   6134 
   6135 }  // end namespace clang
   6136 
   6137 #endif
   6138