Home | History | Annotate | Download | only in AST
      1 //===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// \brief C Language Family Type Representation
     11 ///
     12 /// This file defines the clang::Type interface and subclasses, used to
     13 /// represent types for languages in the C family.
     14 ///
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_CLANG_AST_TYPE_H
     18 #define LLVM_CLANG_AST_TYPE_H
     19 
     20 #include "clang/AST/NestedNameSpecifier.h"
     21 #include "clang/AST/TemplateName.h"
     22 #include "clang/Basic/AddressSpaces.h"
     23 #include "clang/Basic/Diagnostic.h"
     24 #include "clang/Basic/ExceptionSpecificationType.h"
     25 #include "clang/Basic/LLVM.h"
     26 #include "clang/Basic/Linkage.h"
     27 #include "clang/Basic/PartialDiagnostic.h"
     28 #include "clang/Basic/Specifiers.h"
     29 #include "clang/Basic/Visibility.h"
     30 #include "llvm/ADT/APInt.h"
     31 #include "llvm/ADT/FoldingSet.h"
     32 #include "llvm/ADT/Optional.h"
     33 #include "llvm/ADT/PointerIntPair.h"
     34 #include "llvm/ADT/PointerUnion.h"
     35 #include "llvm/ADT/Twine.h"
     36 #include "llvm/ADT/iterator_range.h"
     37 #include "llvm/Support/ErrorHandling.h"
     38 
     39 namespace clang {
     40   enum {
     41     TypeAlignmentInBits = 4,
     42     TypeAlignment = 1 << TypeAlignmentInBits
     43   };
     44   class Type;
     45   class ExtQuals;
     46   class QualType;
     47 }
     48 
     49 namespace llvm {
     50   template <typename T>
     51   struct PointerLikeTypeTraits;
     52   template<>
     53   struct PointerLikeTypeTraits< ::clang::Type*> {
     54     static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
     55     static inline ::clang::Type *getFromVoidPointer(void *P) {
     56       return static_cast< ::clang::Type*>(P);
     57     }
     58     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     59   };
     60   template<>
     61   struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
     62     static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
     63     static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
     64       return static_cast< ::clang::ExtQuals*>(P);
     65     }
     66     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     67   };
     68 
     69   template <>
     70   struct isPodLike<clang::QualType> { static const bool value = true; };
     71 }
     72 
     73 namespace clang {
     74   class ASTContext;
     75   class TypedefNameDecl;
     76   class TemplateDecl;
     77   class TemplateTypeParmDecl;
     78   class NonTypeTemplateParmDecl;
     79   class TemplateTemplateParmDecl;
     80   class TagDecl;
     81   class RecordDecl;
     82   class CXXRecordDecl;
     83   class EnumDecl;
     84   class FieldDecl;
     85   class FunctionDecl;
     86   class ObjCInterfaceDecl;
     87   class ObjCProtocolDecl;
     88   class ObjCMethodDecl;
     89   class ObjCTypeParamDecl;
     90   class UnresolvedUsingTypenameDecl;
     91   class Expr;
     92   class Stmt;
     93   class SourceLocation;
     94   class StmtIteratorBase;
     95   class TemplateArgument;
     96   class TemplateArgumentLoc;
     97   class TemplateArgumentListInfo;
     98   class ElaboratedType;
     99   class ExtQuals;
    100   class ExtQualsTypeCommonBase;
    101   struct PrintingPolicy;
    102 
    103   template <typename> class CanQual;
    104   typedef CanQual<Type> CanQualType;
    105 
    106   // Provide forward declarations for all of the *Type classes
    107 #define TYPE(Class, Base) class Class##Type;
    108 #include "clang/AST/TypeNodes.def"
    109 
    110 /// The collection of all-type qualifiers we support.
    111 /// Clang supports five independent qualifiers:
    112 /// * C99: const, volatile, and restrict
    113 /// * MS: __unaligned
    114 /// * Embedded C (TR18037): address spaces
    115 /// * Objective C: the GC attributes (none, weak, or strong)
    116 class Qualifiers {
    117 public:
    118   enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
    119     Const    = 0x1,
    120     Restrict = 0x2,
    121     Volatile = 0x4,
    122     CVRMask = Const | Volatile | Restrict
    123   };
    124 
    125   enum GC {
    126     GCNone = 0,
    127     Weak,
    128     Strong
    129   };
    130 
    131   enum ObjCLifetime {
    132     /// There is no lifetime qualification on this type.
    133     OCL_None,
    134 
    135     /// This object can be modified without requiring retains or
    136     /// releases.
    137     OCL_ExplicitNone,
    138 
    139     /// Assigning into this object requires the old value to be
    140     /// released and the new value to be retained.  The timing of the
    141     /// release of the old value is inexact: it may be moved to
    142     /// immediately after the last known point where the value is
    143     /// live.
    144     OCL_Strong,
    145 
    146     /// Reading or writing from this object requires a barrier call.
    147     OCL_Weak,
    148 
    149     /// Assigning into this object requires a lifetime extension.
    150     OCL_Autoreleasing
    151   };
    152 
    153   enum {
    154     /// The maximum supported address space number.
    155     /// 23 bits should be enough for anyone.
    156     MaxAddressSpace = 0x7fffffu,
    157 
    158     /// The width of the "fast" qualifier mask.
    159     FastWidth = 3,
    160 
    161     /// The fast qualifier mask.
    162     FastMask = (1 << FastWidth) - 1
    163   };
    164 
    165   /// Returns the common set of qualifiers while removing them from
    166   /// the given sets.
    167   static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
    168     // If both are only CVR-qualified, bit operations are sufficient.
    169     if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
    170       Qualifiers Q;
    171       Q.Mask = L.Mask & R.Mask;
    172       L.Mask &= ~Q.Mask;
    173       R.Mask &= ~Q.Mask;
    174       return Q;
    175     }
    176 
    177     Qualifiers Q;
    178     unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
    179     Q.addCVRQualifiers(CommonCRV);
    180     L.removeCVRQualifiers(CommonCRV);
    181     R.removeCVRQualifiers(CommonCRV);
    182 
    183     if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
    184       Q.setObjCGCAttr(L.getObjCGCAttr());
    185       L.removeObjCGCAttr();
    186       R.removeObjCGCAttr();
    187     }
    188 
    189     if (L.getObjCLifetime() == R.getObjCLifetime()) {
    190       Q.setObjCLifetime(L.getObjCLifetime());
    191       L.removeObjCLifetime();
    192       R.removeObjCLifetime();
    193     }
    194 
    195     if (L.getAddressSpace() == R.getAddressSpace()) {
    196       Q.setAddressSpace(L.getAddressSpace());
    197       L.removeAddressSpace();
    198       R.removeAddressSpace();
    199     }
    200     return Q;
    201   }
    202 
    203   static Qualifiers fromFastMask(unsigned Mask) {
    204     Qualifiers Qs;
    205     Qs.addFastQualifiers(Mask);
    206     return Qs;
    207   }
    208 
    209   static Qualifiers fromCVRMask(unsigned CVR) {
    210     Qualifiers Qs;
    211     Qs.addCVRQualifiers(CVR);
    212     return Qs;
    213   }
    214 
    215   static Qualifiers fromCVRUMask(unsigned CVRU) {
    216     Qualifiers Qs;
    217     Qs.addCVRUQualifiers(CVRU);
    218     return Qs;
    219   }
    220 
    221   // Deserialize qualifiers from an opaque representation.
    222   static Qualifiers fromOpaqueValue(unsigned opaque) {
    223     Qualifiers Qs;
    224     Qs.Mask = opaque;
    225     return Qs;
    226   }
    227 
    228   // Serialize these qualifiers into an opaque representation.
    229   unsigned getAsOpaqueValue() const {
    230     return Mask;
    231   }
    232 
    233   bool hasConst() const { return Mask & Const; }
    234   void setConst(bool flag) {
    235     Mask = (Mask & ~Const) | (flag ? Const : 0);
    236   }
    237   void removeConst() { Mask &= ~Const; }
    238   void addConst() { Mask |= Const; }
    239 
    240   bool hasVolatile() const { return Mask & Volatile; }
    241   void setVolatile(bool flag) {
    242     Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
    243   }
    244   void removeVolatile() { Mask &= ~Volatile; }
    245   void addVolatile() { Mask |= Volatile; }
    246 
    247   bool hasRestrict() const { return Mask & Restrict; }
    248   void setRestrict(bool flag) {
    249     Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
    250   }
    251   void removeRestrict() { Mask &= ~Restrict; }
    252   void addRestrict() { Mask |= Restrict; }
    253 
    254   bool hasCVRQualifiers() const { return getCVRQualifiers(); }
    255   unsigned getCVRQualifiers() const { return Mask & CVRMask; }
    256   void setCVRQualifiers(unsigned mask) {
    257     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    258     Mask = (Mask & ~CVRMask) | mask;
    259   }
    260   void removeCVRQualifiers(unsigned mask) {
    261     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    262     Mask &= ~mask;
    263   }
    264   void removeCVRQualifiers() {
    265     removeCVRQualifiers(CVRMask);
    266   }
    267   void addCVRQualifiers(unsigned mask) {
    268     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    269     Mask |= mask;
    270   }
    271   void addCVRUQualifiers(unsigned mask) {
    272     assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits");
    273     Mask |= mask;
    274   }
    275 
    276   bool hasUnaligned() const { return Mask & UMask; }
    277   void setUnaligned(bool flag) {
    278     Mask = (Mask & ~UMask) | (flag ? UMask : 0);
    279   }
    280   void removeUnaligned() { Mask &= ~UMask; }
    281   void addUnaligned() { Mask |= UMask; }
    282 
    283   bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
    284   GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
    285   void setObjCGCAttr(GC type) {
    286     Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
    287   }
    288   void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
    289   void addObjCGCAttr(GC type) {
    290     assert(type);
    291     setObjCGCAttr(type);
    292   }
    293   Qualifiers withoutObjCGCAttr() const {
    294     Qualifiers qs = *this;
    295     qs.removeObjCGCAttr();
    296     return qs;
    297   }
    298   Qualifiers withoutObjCLifetime() const {
    299     Qualifiers qs = *this;
    300     qs.removeObjCLifetime();
    301     return qs;
    302   }
    303 
    304   bool hasObjCLifetime() const { return Mask & LifetimeMask; }
    305   ObjCLifetime getObjCLifetime() const {
    306     return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
    307   }
    308   void setObjCLifetime(ObjCLifetime type) {
    309     Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
    310   }
    311   void removeObjCLifetime() { setObjCLifetime(OCL_None); }
    312   void addObjCLifetime(ObjCLifetime type) {
    313     assert(type);
    314     assert(!hasObjCLifetime());
    315     Mask |= (type << LifetimeShift);
    316   }
    317 
    318   /// True if the lifetime is neither None or ExplicitNone.
    319   bool hasNonTrivialObjCLifetime() const {
    320     ObjCLifetime lifetime = getObjCLifetime();
    321     return (lifetime > OCL_ExplicitNone);
    322   }
    323 
    324   /// True if the lifetime is either strong or weak.
    325   bool hasStrongOrWeakObjCLifetime() const {
    326     ObjCLifetime lifetime = getObjCLifetime();
    327     return (lifetime == OCL_Strong || lifetime == OCL_Weak);
    328   }
    329 
    330   bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
    331   LangAS getAddressSpace() const {
    332     return static_cast<LangAS>(Mask >> AddressSpaceShift);
    333   }
    334   bool hasTargetSpecificAddressSpace() const {
    335     return isTargetAddressSpace(getAddressSpace());
    336   }
    337   /// Get the address space attribute value to be printed by diagnostics.
    338   unsigned getAddressSpaceAttributePrintValue() const {
    339     auto Addr = getAddressSpace();
    340     // This function is not supposed to be used with language specific
    341     // address spaces. If that happens, the diagnostic message should consider
    342     // printing the QualType instead of the address space value.
    343     assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace());
    344     if (Addr != LangAS::Default)
    345       return toTargetAddressSpace(Addr);
    346     // TODO: The diagnostic messages where Addr may be 0 should be fixed
    347     // since it cannot differentiate the situation where 0 denotes the default
    348     // address space or user specified __attribute__((address_space(0))).
    349     return 0;
    350   }
    351   void setAddressSpace(LangAS space) {
    352     assert((unsigned)space <= MaxAddressSpace);
    353     Mask = (Mask & ~AddressSpaceMask)
    354          | (((uint32_t) space) << AddressSpaceShift);
    355   }
    356   void removeAddressSpace() { setAddressSpace(LangAS::Default); }
    357   void addAddressSpace(LangAS space) {
    358     assert(space != LangAS::Default);
    359     setAddressSpace(space);
    360   }
    361 
    362   // Fast qualifiers are those that can be allocated directly
    363   // on a QualType object.
    364   bool hasFastQualifiers() const { return getFastQualifiers(); }
    365   unsigned getFastQualifiers() const { return Mask & FastMask; }
    366   void setFastQualifiers(unsigned mask) {
    367     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    368     Mask = (Mask & ~FastMask) | mask;
    369   }
    370   void removeFastQualifiers(unsigned mask) {
    371     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    372     Mask &= ~mask;
    373   }
    374   void removeFastQualifiers() {
    375     removeFastQualifiers(FastMask);
    376   }
    377   void addFastQualifiers(unsigned mask) {
    378     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    379     Mask |= mask;
    380   }
    381 
    382   /// Return true if the set contains any qualifiers which require an ExtQuals
    383   /// node to be allocated.
    384   bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
    385   Qualifiers getNonFastQualifiers() const {
    386     Qualifiers Quals = *this;
    387     Quals.setFastQualifiers(0);
    388     return Quals;
    389   }
    390 
    391   /// Return true if the set contains any qualifiers.
    392   bool hasQualifiers() const { return Mask; }
    393   bool empty() const { return !Mask; }
    394 
    395   /// Add the qualifiers from the given set to this set.
    396   void addQualifiers(Qualifiers Q) {
    397     // If the other set doesn't have any non-boolean qualifiers, just
    398     // bit-or it in.
    399     if (!(Q.Mask & ~CVRMask))
    400       Mask |= Q.Mask;
    401     else {
    402       Mask |= (Q.Mask & CVRMask);
    403       if (Q.hasAddressSpace())
    404         addAddressSpace(Q.getAddressSpace());
    405       if (Q.hasObjCGCAttr())
    406         addObjCGCAttr(Q.getObjCGCAttr());
    407       if (Q.hasObjCLifetime())
    408         addObjCLifetime(Q.getObjCLifetime());
    409     }
    410   }
    411 
    412   /// \brief Remove the qualifiers from the given set from this set.
    413   void removeQualifiers(Qualifiers Q) {
    414     // If the other set doesn't have any non-boolean qualifiers, just
    415     // bit-and the inverse in.
    416     if (!(Q.Mask & ~CVRMask))
    417       Mask &= ~Q.Mask;
    418     else {
    419       Mask &= ~(Q.Mask & CVRMask);
    420       if (getObjCGCAttr() == Q.getObjCGCAttr())
    421         removeObjCGCAttr();
    422       if (getObjCLifetime() == Q.getObjCLifetime())
    423         removeObjCLifetime();
    424       if (getAddressSpace() == Q.getAddressSpace())
    425         removeAddressSpace();
    426     }
    427   }
    428 
    429   /// Add the qualifiers from the given set to this set, given that
    430   /// they don't conflict.
    431   void addConsistentQualifiers(Qualifiers qs) {
    432     assert(getAddressSpace() == qs.getAddressSpace() ||
    433            !hasAddressSpace() || !qs.hasAddressSpace());
    434     assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
    435            !hasObjCGCAttr() || !qs.hasObjCGCAttr());
    436     assert(getObjCLifetime() == qs.getObjCLifetime() ||
    437            !hasObjCLifetime() || !qs.hasObjCLifetime());
    438     Mask |= qs.Mask;
    439   }
    440 
    441   /// Returns true if this address space is a superset of the other one.
    442   /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
    443   /// overlapping address spaces.
    444   /// CL1.1 or CL1.2:
    445   ///   every address space is a superset of itself.
    446   /// CL2.0 adds:
    447   ///   __generic is a superset of any address space except for __constant.
    448   bool isAddressSpaceSupersetOf(Qualifiers other) const {
    449     return
    450         // Address spaces must match exactly.
    451         getAddressSpace() == other.getAddressSpace() ||
    452         // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
    453         // for __constant can be used as __generic.
    454         (getAddressSpace() == LangAS::opencl_generic &&
    455          other.getAddressSpace() != LangAS::opencl_constant);
    456   }
    457 
    458   /// Determines if these qualifiers compatibly include another set.
    459   /// Generally this answers the question of whether an object with the other
    460   /// qualifiers can be safely used as an object with these qualifiers.
    461   bool compatiblyIncludes(Qualifiers other) const {
    462     return isAddressSpaceSupersetOf(other) &&
    463            // ObjC GC qualifiers can match, be added, or be removed, but can't
    464            // be changed.
    465            (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
    466             !other.hasObjCGCAttr()) &&
    467            // ObjC lifetime qualifiers must match exactly.
    468            getObjCLifetime() == other.getObjCLifetime() &&
    469            // CVR qualifiers may subset.
    470            (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
    471            // U qualifier may superset.
    472            (!other.hasUnaligned() || hasUnaligned());
    473   }
    474 
    475   /// \brief Determines if these qualifiers compatibly include another set of
    476   /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
    477   ///
    478   /// One set of Objective-C lifetime qualifiers compatibly includes the other
    479   /// if the lifetime qualifiers match, or if both are non-__weak and the
    480   /// including set also contains the 'const' qualifier, or both are non-__weak
    481   /// and one is None (which can only happen in non-ARC modes).
    482   bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
    483     if (getObjCLifetime() == other.getObjCLifetime())
    484       return true;
    485 
    486     if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
    487       return false;
    488 
    489     if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
    490       return true;
    491 
    492     return hasConst();
    493   }
    494 
    495   /// \brief Determine whether this set of qualifiers is a strict superset of
    496   /// another set of qualifiers, not considering qualifier compatibility.
    497   bool isStrictSupersetOf(Qualifiers Other) const;
    498 
    499   bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
    500   bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
    501 
    502   explicit operator bool() const { return hasQualifiers(); }
    503 
    504   Qualifiers &operator+=(Qualifiers R) {
    505     addQualifiers(R);
    506     return *this;
    507   }
    508 
    509   // Union two qualifier sets.  If an enumerated qualifier appears
    510   // in both sets, use the one from the right.
    511   friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
    512     L += R;
    513     return L;
    514   }
    515 
    516   Qualifiers &operator-=(Qualifiers R) {
    517     removeQualifiers(R);
    518     return *this;
    519   }
    520 
    521   /// \brief Compute the difference between two qualifier sets.
    522   friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
    523     L -= R;
    524     return L;
    525   }
    526 
    527   std::string getAsString() const;
    528   std::string getAsString(const PrintingPolicy &Policy) const;
    529 
    530   bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
    531   void print(raw_ostream &OS, const PrintingPolicy &Policy,
    532              bool appendSpaceIfNonEmpty = false) const;
    533 
    534   void Profile(llvm::FoldingSetNodeID &ID) const {
    535     ID.AddInteger(Mask);
    536   }
    537 
    538 private:
    539 
    540   // bits:     |0 1 2|3|4 .. 5|6  ..  8|9   ...   31|
    541   //           |C R V|U|GCAttr|Lifetime|AddressSpace|
    542   uint32_t Mask = 0;
    543 
    544   static const uint32_t UMask = 0x8;
    545   static const uint32_t UShift = 3;
    546   static const uint32_t GCAttrMask = 0x30;
    547   static const uint32_t GCAttrShift = 4;
    548   static const uint32_t LifetimeMask = 0x1C0;
    549   static const uint32_t LifetimeShift = 6;
    550   static const uint32_t AddressSpaceMask =
    551       ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
    552   static const uint32_t AddressSpaceShift = 9;
    553 };
    554 
    555 /// A std::pair-like structure for storing a qualified type split
    556 /// into its local qualifiers and its locally-unqualified type.
    557 struct SplitQualType {
    558   /// The locally-unqualified type.
    559   const Type *Ty;
    560 
    561   /// The local qualifiers.
    562   Qualifiers Quals;
    563 
    564   SplitQualType() : Ty(nullptr), Quals() {}
    565   SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
    566 
    567   SplitQualType getSingleStepDesugaredType() const; // end of this file
    568 
    569   // Make std::tie work.
    570   std::pair<const Type *,Qualifiers> asPair() const {
    571     return std::pair<const Type *, Qualifiers>(Ty, Quals);
    572   }
    573 
    574   friend bool operator==(SplitQualType a, SplitQualType b) {
    575     return a.Ty == b.Ty && a.Quals == b.Quals;
    576   }
    577   friend bool operator!=(SplitQualType a, SplitQualType b) {
    578     return a.Ty != b.Ty || a.Quals != b.Quals;
    579   }
    580 };
    581 
    582 /// The kind of type we are substituting Objective-C type arguments into.
    583 ///
    584 /// The kind of substitution affects the replacement of type parameters when
    585 /// no concrete type information is provided, e.g., when dealing with an
    586 /// unspecialized type.
    587 enum class ObjCSubstitutionContext {
    588   /// An ordinary type.
    589   Ordinary,
    590   /// The result type of a method or function.
    591   Result,
    592   /// The parameter type of a method or function.
    593   Parameter,
    594   /// The type of a property.
    595   Property,
    596   /// The superclass of a type.
    597   Superclass,
    598 };
    599 
    600 /// A (possibly-)qualified type.
    601 ///
    602 /// For efficiency, we don't store CV-qualified types as nodes on their
    603 /// own: instead each reference to a type stores the qualifiers.  This
    604 /// greatly reduces the number of nodes we need to allocate for types (for
    605 /// example we only need one for 'int', 'const int', 'volatile int',
    606 /// 'const volatile int', etc).
    607 ///
    608 /// As an added efficiency bonus, instead of making this a pair, we
    609 /// just store the two bits we care about in the low bits of the
    610 /// pointer.  To handle the packing/unpacking, we make QualType be a
    611 /// simple wrapper class that acts like a smart pointer.  A third bit
    612 /// indicates whether there are extended qualifiers present, in which
    613 /// case the pointer points to a special structure.
    614 class QualType {
    615   // Thankfully, these are efficiently composable.
    616   llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
    617                        Qualifiers::FastWidth> Value;
    618 
    619   const ExtQuals *getExtQualsUnsafe() const {
    620     return Value.getPointer().get<const ExtQuals*>();
    621   }
    622 
    623   const Type *getTypePtrUnsafe() const {
    624     return Value.getPointer().get<const Type*>();
    625   }
    626 
    627   const ExtQualsTypeCommonBase *getCommonPtr() const {
    628     assert(!isNull() && "Cannot retrieve a NULL type pointer");
    629     uintptr_t CommonPtrVal
    630       = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
    631     CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
    632     return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
    633   }
    634 
    635   friend class QualifierCollector;
    636 public:
    637   QualType() = default;
    638 
    639   QualType(const Type *Ptr, unsigned Quals)
    640     : Value(Ptr, Quals) {}
    641   QualType(const ExtQuals *Ptr, unsigned Quals)
    642     : Value(Ptr, Quals) {}
    643 
    644   unsigned getLocalFastQualifiers() const { return Value.getInt(); }
    645   void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
    646 
    647   /// Retrieves a pointer to the underlying (unqualified) type.
    648   ///
    649   /// This function requires that the type not be NULL. If the type might be
    650   /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
    651   const Type *getTypePtr() const;
    652 
    653   const Type *getTypePtrOrNull() const;
    654 
    655   /// Retrieves a pointer to the name of the base type.
    656   const IdentifierInfo *getBaseTypeIdentifier() const;
    657 
    658   /// Divides a QualType into its unqualified type and a set of local
    659   /// qualifiers.
    660   SplitQualType split() const;
    661 
    662   void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
    663   static QualType getFromOpaquePtr(const void *Ptr) {
    664     QualType T;
    665     T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
    666     return T;
    667   }
    668 
    669   const Type &operator*() const {
    670     return *getTypePtr();
    671   }
    672 
    673   const Type *operator->() const {
    674     return getTypePtr();
    675   }
    676 
    677   bool isCanonical() const;
    678   bool isCanonicalAsParam() const;
    679 
    680   /// Return true if this QualType doesn't point to a type yet.
    681   bool isNull() const {
    682     return Value.getPointer().isNull();
    683   }
    684 
    685   /// \brief Determine whether this particular QualType instance has the
    686   /// "const" qualifier set, without looking through typedefs that may have
    687   /// added "const" at a different level.
    688   bool isLocalConstQualified() const {
    689     return (getLocalFastQualifiers() & Qualifiers::Const);
    690   }
    691 
    692   /// \brief Determine whether this type is const-qualified.
    693   bool isConstQualified() const;
    694 
    695   /// \brief Determine whether this particular QualType instance has the
    696   /// "restrict" qualifier set, without looking through typedefs that may have
    697   /// added "restrict" at a different level.
    698   bool isLocalRestrictQualified() const {
    699     return (getLocalFastQualifiers() & Qualifiers::Restrict);
    700   }
    701 
    702   /// \brief Determine whether this type is restrict-qualified.
    703   bool isRestrictQualified() const;
    704 
    705   /// \brief Determine whether this particular QualType instance has the
    706   /// "volatile" qualifier set, without looking through typedefs that may have
    707   /// added "volatile" at a different level.
    708   bool isLocalVolatileQualified() const {
    709     return (getLocalFastQualifiers() & Qualifiers::Volatile);
    710   }
    711 
    712   /// \brief Determine whether this type is volatile-qualified.
    713   bool isVolatileQualified() const;
    714 
    715   /// \brief Determine whether this particular QualType instance has any
    716   /// qualifiers, without looking through any typedefs that might add
    717   /// qualifiers at a different level.
    718   bool hasLocalQualifiers() const {
    719     return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
    720   }
    721 
    722   /// \brief Determine whether this type has any qualifiers.
    723   bool hasQualifiers() const;
    724 
    725   /// \brief Determine whether this particular QualType instance has any
    726   /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
    727   /// instance.
    728   bool hasLocalNonFastQualifiers() const {
    729     return Value.getPointer().is<const ExtQuals*>();
    730   }
    731 
    732   /// \brief Retrieve the set of qualifiers local to this particular QualType
    733   /// instance, not including any qualifiers acquired through typedefs or
    734   /// other sugar.
    735   Qualifiers getLocalQualifiers() const;
    736 
    737   /// \brief Retrieve the set of qualifiers applied to this type.
    738   Qualifiers getQualifiers() const;
    739 
    740   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    741   /// local to this particular QualType instance, not including any qualifiers
    742   /// acquired through typedefs or other sugar.
    743   unsigned getLocalCVRQualifiers() const {
    744     return getLocalFastQualifiers();
    745   }
    746 
    747   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    748   /// applied to this type.
    749   unsigned getCVRQualifiers() const;
    750 
    751   bool isConstant(const ASTContext& Ctx) const {
    752     return QualType::isConstant(*this, Ctx);
    753   }
    754 
    755   /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
    756   bool isPODType(const ASTContext &Context) const;
    757 
    758   /// Return true if this is a POD type according to the rules of the C++98
    759   /// standard, regardless of the current compilation's language.
    760   bool isCXX98PODType(const ASTContext &Context) const;
    761 
    762   /// Return true if this is a POD type according to the more relaxed rules
    763   /// of the C++11 standard, regardless of the current compilation's language.
    764   /// (C++0x [basic.types]p9)
    765   bool isCXX11PODType(const ASTContext &Context) const;
    766 
    767   /// Return true if this is a trivial type per (C++0x [basic.types]p9)
    768   bool isTrivialType(const ASTContext &Context) const;
    769 
    770   /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
    771   bool isTriviallyCopyableType(const ASTContext &Context) const;
    772 
    773   // Don't promise in the API that anything besides 'const' can be
    774   // easily added.
    775 
    776   /// Add the `const` type qualifier to this QualType.
    777   void addConst() {
    778     addFastQualifiers(Qualifiers::Const);
    779   }
    780   QualType withConst() const {
    781     return withFastQualifiers(Qualifiers::Const);
    782   }
    783 
    784   /// Add the `volatile` type qualifier to this QualType.
    785   void addVolatile() {
    786     addFastQualifiers(Qualifiers::Volatile);
    787   }
    788   QualType withVolatile() const {
    789     return withFastQualifiers(Qualifiers::Volatile);
    790   }
    791 
    792   /// Add the `restrict` qualifier to this QualType.
    793   void addRestrict() {
    794     addFastQualifiers(Qualifiers::Restrict);
    795   }
    796   QualType withRestrict() const {
    797     return withFastQualifiers(Qualifiers::Restrict);
    798   }
    799 
    800   QualType withCVRQualifiers(unsigned CVR) const {
    801     return withFastQualifiers(CVR);
    802   }
    803 
    804   void addFastQualifiers(unsigned TQs) {
    805     assert(!(TQs & ~Qualifiers::FastMask)
    806            && "non-fast qualifier bits set in mask!");
    807     Value.setInt(Value.getInt() | TQs);
    808   }
    809 
    810   void removeLocalConst();
    811   void removeLocalVolatile();
    812   void removeLocalRestrict();
    813   void removeLocalCVRQualifiers(unsigned Mask);
    814 
    815   void removeLocalFastQualifiers() { Value.setInt(0); }
    816   void removeLocalFastQualifiers(unsigned Mask) {
    817     assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
    818     Value.setInt(Value.getInt() & ~Mask);
    819   }
    820 
    821   // Creates a type with the given qualifiers in addition to any
    822   // qualifiers already on this type.
    823   QualType withFastQualifiers(unsigned TQs) const {
    824     QualType T = *this;
    825     T.addFastQualifiers(TQs);
    826     return T;
    827   }
    828 
    829   // Creates a type with exactly the given fast qualifiers, removing
    830   // any existing fast qualifiers.
    831   QualType withExactLocalFastQualifiers(unsigned TQs) const {
    832     return withoutLocalFastQualifiers().withFastQualifiers(TQs);
    833   }
    834 
    835   // Removes fast qualifiers, but leaves any extended qualifiers in place.
    836   QualType withoutLocalFastQualifiers() const {
    837     QualType T = *this;
    838     T.removeLocalFastQualifiers();
    839     return T;
    840   }
    841 
    842   QualType getCanonicalType() const;
    843 
    844   /// \brief Return this type with all of the instance-specific qualifiers
    845   /// removed, but without removing any qualifiers that may have been applied
    846   /// through typedefs.
    847   QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
    848 
    849   /// \brief Retrieve the unqualified variant of the given type,
    850   /// removing as little sugar as possible.
    851   ///
    852   /// This routine looks through various kinds of sugar to find the
    853   /// least-desugared type that is unqualified. For example, given:
    854   ///
    855   /// \code
    856   /// typedef int Integer;
    857   /// typedef const Integer CInteger;
    858   /// typedef CInteger DifferenceType;
    859   /// \endcode
    860   ///
    861   /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
    862   /// desugar until we hit the type \c Integer, which has no qualifiers on it.
    863   ///
    864   /// The resulting type might still be qualified if it's sugar for an array
    865   /// type.  To strip qualifiers even from within a sugared array type, use
    866   /// ASTContext::getUnqualifiedArrayType.
    867   inline QualType getUnqualifiedType() const;
    868 
    869   /// Retrieve the unqualified variant of the given type, removing as little
    870   /// sugar as possible.
    871   ///
    872   /// Like getUnqualifiedType(), but also returns the set of
    873   /// qualifiers that were built up.
    874   ///
    875   /// The resulting type might still be qualified if it's sugar for an array
    876   /// type.  To strip qualifiers even from within a sugared array type, use
    877   /// ASTContext::getUnqualifiedArrayType.
    878   inline SplitQualType getSplitUnqualifiedType() const;
    879 
    880   /// \brief Determine whether this type is more qualified than the other
    881   /// given type, requiring exact equality for non-CVR qualifiers.
    882   bool isMoreQualifiedThan(QualType Other) const;
    883 
    884   /// \brief Determine whether this type is at least as qualified as the other
    885   /// given type, requiring exact equality for non-CVR qualifiers.
    886   bool isAtLeastAsQualifiedAs(QualType Other) const;
    887 
    888   QualType getNonReferenceType() const;
    889 
    890   /// \brief Determine the type of a (typically non-lvalue) expression with the
    891   /// specified result type.
    892   ///
    893   /// This routine should be used for expressions for which the return type is
    894   /// explicitly specified (e.g., in a cast or call) and isn't necessarily
    895   /// an lvalue. It removes a top-level reference (since there are no
    896   /// expressions of reference type) and deletes top-level cvr-qualifiers
    897   /// from non-class types (in C++) or all types (in C).
    898   QualType getNonLValueExprType(const ASTContext &Context) const;
    899 
    900   /// Return the specified type with any "sugar" removed from
    901   /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
    902   /// the type is already concrete, it returns it unmodified.  This is similar
    903   /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
    904   /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
    905   /// concrete.
    906   ///
    907   /// Qualifiers are left in place.
    908   QualType getDesugaredType(const ASTContext &Context) const {
    909     return getDesugaredType(*this, Context);
    910   }
    911 
    912   SplitQualType getSplitDesugaredType() const {
    913     return getSplitDesugaredType(*this);
    914   }
    915 
    916   /// \brief Return the specified type with one level of "sugar" removed from
    917   /// the type.
    918   ///
    919   /// This routine takes off the first typedef, typeof, etc. If the outer level
    920   /// of the type is already concrete, it returns it unmodified.
    921   QualType getSingleStepDesugaredType(const ASTContext &Context) const {
    922     return getSingleStepDesugaredTypeImpl(*this, Context);
    923   }
    924 
    925   /// Returns the specified type after dropping any
    926   /// outer-level parentheses.
    927   QualType IgnoreParens() const {
    928     if (isa<ParenType>(*this))
    929       return QualType::IgnoreParens(*this);
    930     return *this;
    931   }
    932 
    933   /// Indicate whether the specified types and qualifiers are identical.
    934   friend bool operator==(const QualType &LHS, const QualType &RHS) {
    935     return LHS.Value == RHS.Value;
    936   }
    937   friend bool operator!=(const QualType &LHS, const QualType &RHS) {
    938     return LHS.Value != RHS.Value;
    939   }
    940   std::string getAsString() const {
    941     return getAsString(split());
    942   }
    943   static std::string getAsString(SplitQualType split) {
    944     return getAsString(split.Ty, split.Quals);
    945   }
    946   static std::string getAsString(const Type *ty, Qualifiers qs);
    947 
    948   std::string getAsString(const PrintingPolicy &Policy) const;
    949 
    950   void print(raw_ostream &OS, const PrintingPolicy &Policy,
    951              const Twine &PlaceHolder = Twine(),
    952              unsigned Indentation = 0) const {
    953     print(split(), OS, Policy, PlaceHolder, Indentation);
    954   }
    955   static void print(SplitQualType split, raw_ostream &OS,
    956                     const PrintingPolicy &policy, const Twine &PlaceHolder,
    957                     unsigned Indentation = 0) {
    958     return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
    959   }
    960   static void print(const Type *ty, Qualifiers qs,
    961                     raw_ostream &OS, const PrintingPolicy &policy,
    962                     const Twine &PlaceHolder,
    963                     unsigned Indentation = 0);
    964 
    965   void getAsStringInternal(std::string &Str,
    966                            const PrintingPolicy &Policy) const {
    967     return getAsStringInternal(split(), Str, Policy);
    968   }
    969   static void getAsStringInternal(SplitQualType split, std::string &out,
    970                                   const PrintingPolicy &policy) {
    971     return getAsStringInternal(split.Ty, split.Quals, out, policy);
    972   }
    973   static void getAsStringInternal(const Type *ty, Qualifiers qs,
    974                                   std::string &out,
    975                                   const PrintingPolicy &policy);
    976 
    977   class StreamedQualTypeHelper {
    978     const QualType &T;
    979     const PrintingPolicy &Policy;
    980     const Twine &PlaceHolder;
    981     unsigned Indentation;
    982   public:
    983     StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
    984                            const Twine &PlaceHolder, unsigned Indentation)
    985       : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
    986         Indentation(Indentation) { }
    987 
    988     friend raw_ostream &operator<<(raw_ostream &OS,
    989                                    const StreamedQualTypeHelper &SQT) {
    990       SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
    991       return OS;
    992     }
    993   };
    994 
    995   StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
    996                                 const Twine &PlaceHolder = Twine(),
    997                                 unsigned Indentation = 0) const {
    998     return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
    999   }
   1000 
   1001   void dump(const char *s) const;
   1002   void dump() const;
   1003   void dump(llvm::raw_ostream &OS) const;
   1004 
   1005   void Profile(llvm::FoldingSetNodeID &ID) const {
   1006     ID.AddPointer(getAsOpaquePtr());
   1007   }
   1008 
   1009   /// Return the address space of this type.
   1010   inline LangAS getAddressSpace() const;
   1011 
   1012   /// Returns gc attribute of this type.
   1013   inline Qualifiers::GC getObjCGCAttr() const;
   1014 
   1015   /// true when Type is objc's weak.
   1016   bool isObjCGCWeak() const {
   1017     return getObjCGCAttr() == Qualifiers::Weak;
   1018   }
   1019 
   1020   /// true when Type is objc's strong.
   1021   bool isObjCGCStrong() const {
   1022     return getObjCGCAttr() == Qualifiers::Strong;
   1023   }
   1024 
   1025   /// Returns lifetime attribute of this type.
   1026   Qualifiers::ObjCLifetime getObjCLifetime() const {
   1027     return getQualifiers().getObjCLifetime();
   1028   }
   1029 
   1030   bool hasNonTrivialObjCLifetime() const {
   1031     return getQualifiers().hasNonTrivialObjCLifetime();
   1032   }
   1033 
   1034   bool hasStrongOrWeakObjCLifetime() const {
   1035     return getQualifiers().hasStrongOrWeakObjCLifetime();
   1036   }
   1037 
   1038   // true when Type is objc's weak and weak is enabled but ARC isn't.
   1039   bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
   1040 
   1041   enum DestructionKind {
   1042     DK_none,
   1043     DK_cxx_destructor,
   1044     DK_objc_strong_lifetime,
   1045     DK_objc_weak_lifetime
   1046   };
   1047 
   1048   /// Returns a nonzero value if objects of this type require
   1049   /// non-trivial work to clean up after.  Non-zero because it's
   1050   /// conceivable that qualifiers (objc_gc(weak)?) could make
   1051   /// something require destruction.
   1052   DestructionKind isDestructedType() const {
   1053     return isDestructedTypeImpl(*this);
   1054   }
   1055 
   1056   /// Determine whether expressions of the given type are forbidden
   1057   /// from being lvalues in C.
   1058   ///
   1059   /// The expression types that are forbidden to be lvalues are:
   1060   ///   - 'void', but not qualified void
   1061   ///   - function types
   1062   ///
   1063   /// The exact rule here is C99 6.3.2.1:
   1064   ///   An lvalue is an expression with an object type or an incomplete
   1065   ///   type other than void.
   1066   bool isCForbiddenLValueType() const;
   1067 
   1068   /// Substitute type arguments for the Objective-C type parameters used in the
   1069   /// subject type.
   1070   ///
   1071   /// \param ctx ASTContext in which the type exists.
   1072   ///
   1073   /// \param typeArgs The type arguments that will be substituted for the
   1074   /// Objective-C type parameters in the subject type, which are generally
   1075   /// computed via \c Type::getObjCSubstitutions. If empty, the type
   1076   /// parameters will be replaced with their bounds or id/Class, as appropriate
   1077   /// for the context.
   1078   ///
   1079   /// \param context The context in which the subject type was written.
   1080   ///
   1081   /// \returns the resulting type.
   1082   QualType substObjCTypeArgs(ASTContext &ctx,
   1083                              ArrayRef<QualType> typeArgs,
   1084                              ObjCSubstitutionContext context) const;
   1085 
   1086   /// Substitute type arguments from an object type for the Objective-C type
   1087   /// parameters used in the subject type.
   1088   ///
   1089   /// This operation combines the computation of type arguments for
   1090   /// substitution (\c Type::getObjCSubstitutions) with the actual process of
   1091   /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
   1092   /// callers that need to perform a single substitution in isolation.
   1093   ///
   1094   /// \param objectType The type of the object whose member type we're
   1095   /// substituting into. For example, this might be the receiver of a message
   1096   /// or the base of a property access.
   1097   ///
   1098   /// \param dc The declaration context from which the subject type was
   1099   /// retrieved, which indicates (for example) which type parameters should
   1100   /// be substituted.
   1101   ///
   1102   /// \param context The context in which the subject type was written.
   1103   ///
   1104   /// \returns the subject type after replacing all of the Objective-C type
   1105   /// parameters with their corresponding arguments.
   1106   QualType substObjCMemberType(QualType objectType,
   1107                                const DeclContext *dc,
   1108                                ObjCSubstitutionContext context) const;
   1109 
   1110   /// Strip Objective-C "__kindof" types from the given type.
   1111   QualType stripObjCKindOfType(const ASTContext &ctx) const;
   1112 
   1113   /// Remove all qualifiers including _Atomic.
   1114   QualType getAtomicUnqualifiedType() const;
   1115 
   1116 private:
   1117   // These methods are implemented in a separate translation unit;
   1118   // "static"-ize them to avoid creating temporary QualTypes in the
   1119   // caller.
   1120   static bool isConstant(QualType T, const ASTContext& Ctx);
   1121   static QualType getDesugaredType(QualType T, const ASTContext &Context);
   1122   static SplitQualType getSplitDesugaredType(QualType T);
   1123   static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
   1124   static QualType getSingleStepDesugaredTypeImpl(QualType type,
   1125                                                  const ASTContext &C);
   1126   static QualType IgnoreParens(QualType T);
   1127   static DestructionKind isDestructedTypeImpl(QualType type);
   1128 };
   1129 
   1130 } // end clang.
   1131 
   1132 namespace llvm {
   1133 /// Implement simplify_type for QualType, so that we can dyn_cast from QualType
   1134 /// to a specific Type class.
   1135 template<> struct simplify_type< ::clang::QualType> {
   1136   typedef const ::clang::Type *SimpleType;
   1137   static SimpleType getSimplifiedValue(::clang::QualType Val) {
   1138     return Val.getTypePtr();
   1139   }
   1140 };
   1141 
   1142 // Teach SmallPtrSet that QualType is "basically a pointer".
   1143 template<>
   1144 struct PointerLikeTypeTraits<clang::QualType> {
   1145   static inline void *getAsVoidPointer(clang::QualType P) {
   1146     return P.getAsOpaquePtr();
   1147   }
   1148   static inline clang::QualType getFromVoidPointer(void *P) {
   1149     return clang::QualType::getFromOpaquePtr(P);
   1150   }
   1151   // Various qualifiers go in low bits.
   1152   enum { NumLowBitsAvailable = 0 };
   1153 };
   1154 
   1155 } // end namespace llvm
   1156 
   1157 namespace clang {
   1158 
   1159 /// \brief Base class that is common to both the \c ExtQuals and \c Type
   1160 /// classes, which allows \c QualType to access the common fields between the
   1161 /// two.
   1162 ///
   1163 class ExtQualsTypeCommonBase {
   1164   ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
   1165     : BaseType(baseType), CanonicalType(canon) {}
   1166 
   1167   /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
   1168   /// a self-referential pointer (for \c Type).
   1169   ///
   1170   /// This pointer allows an efficient mapping from a QualType to its
   1171   /// underlying type pointer.
   1172   const Type *const BaseType;
   1173 
   1174   /// \brief The canonical type of this type.  A QualType.
   1175   QualType CanonicalType;
   1176 
   1177   friend class QualType;
   1178   friend class Type;
   1179   friend class ExtQuals;
   1180 };
   1181 
   1182 /// We can encode up to four bits in the low bits of a
   1183 /// type pointer, but there are many more type qualifiers that we want
   1184 /// to be able to apply to an arbitrary type.  Therefore we have this
   1185 /// struct, intended to be heap-allocated and used by QualType to
   1186 /// store qualifiers.
   1187 ///
   1188 /// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
   1189 /// in three low bits on the QualType pointer; a fourth bit records whether
   1190 /// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
   1191 /// Objective-C GC attributes) are much more rare.
   1192 class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
   1193   // NOTE: changing the fast qualifiers should be straightforward as
   1194   // long as you don't make 'const' non-fast.
   1195   // 1. Qualifiers:
   1196   //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
   1197   //       Fast qualifiers must occupy the low-order bits.
   1198   //    b) Update Qualifiers::FastWidth and FastMask.
   1199   // 2. QualType:
   1200   //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
   1201   //    b) Update remove{Volatile,Restrict}, defined near the end of
   1202   //       this header.
   1203   // 3. ASTContext:
   1204   //    a) Update get{Volatile,Restrict}Type.
   1205 
   1206   /// The immutable set of qualifiers applied by this node. Always contains
   1207   /// extended qualifiers.
   1208   Qualifiers Quals;
   1209 
   1210   ExtQuals *this_() { return this; }
   1211 
   1212 public:
   1213   ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
   1214     : ExtQualsTypeCommonBase(baseType,
   1215                              canon.isNull() ? QualType(this_(), 0) : canon),
   1216       Quals(quals)
   1217   {
   1218     assert(Quals.hasNonFastQualifiers()
   1219            && "ExtQuals created with no fast qualifiers");
   1220     assert(!Quals.hasFastQualifiers()
   1221            && "ExtQuals created with fast qualifiers");
   1222   }
   1223 
   1224   Qualifiers getQualifiers() const { return Quals; }
   1225 
   1226   bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
   1227   Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
   1228 
   1229   bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
   1230   Qualifiers::ObjCLifetime getObjCLifetime() const {
   1231     return Quals.getObjCLifetime();
   1232   }
   1233 
   1234   bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
   1235   LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
   1236 
   1237   const Type *getBaseType() const { return BaseType; }
   1238 
   1239 public:
   1240   void Profile(llvm::FoldingSetNodeID &ID) const {
   1241     Profile(ID, getBaseType(), Quals);
   1242   }
   1243   static void Profile(llvm::FoldingSetNodeID &ID,
   1244                       const Type *BaseType,
   1245                       Qualifiers Quals) {
   1246     assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
   1247     ID.AddPointer(BaseType);
   1248     Quals.Profile(ID);
   1249   }
   1250 };
   1251 
   1252 /// The kind of C++11 ref-qualifier associated with a function type.
   1253 /// This determines whether a member function's "this" object can be an
   1254 /// lvalue, rvalue, or neither.
   1255 enum RefQualifierKind {
   1256   /// \brief No ref-qualifier was provided.
   1257   RQ_None = 0,
   1258   /// \brief An lvalue ref-qualifier was provided (\c &).
   1259   RQ_LValue,
   1260   /// \brief An rvalue ref-qualifier was provided (\c &&).
   1261   RQ_RValue
   1262 };
   1263 
   1264 /// Which keyword(s) were used to create an AutoType.
   1265 enum class AutoTypeKeyword {
   1266   /// \brief auto
   1267   Auto,
   1268   /// \brief decltype(auto)
   1269   DecltypeAuto,
   1270   /// \brief __auto_type (GNU extension)
   1271   GNUAutoType
   1272 };
   1273 
   1274 /// The base class of the type hierarchy.
   1275 ///
   1276 /// A central concept with types is that each type always has a canonical
   1277 /// type.  A canonical type is the type with any typedef names stripped out
   1278 /// of it or the types it references.  For example, consider:
   1279 ///
   1280 ///  typedef int  foo;
   1281 ///  typedef foo* bar;
   1282 ///    'int *'    'foo *'    'bar'
   1283 ///
   1284 /// There will be a Type object created for 'int'.  Since int is canonical, its
   1285 /// CanonicalType pointer points to itself.  There is also a Type for 'foo' (a
   1286 /// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
   1287 /// there is a PointerType that represents 'int*', which, like 'int', is
   1288 /// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
   1289 /// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
   1290 /// is also 'int*'.
   1291 ///
   1292 /// Non-canonical types are useful for emitting diagnostics, without losing
   1293 /// information about typedefs being used.  Canonical types are useful for type
   1294 /// comparisons (they allow by-pointer equality tests) and useful for reasoning
   1295 /// about whether something has a particular form (e.g. is a function type),
   1296 /// because they implicitly, recursively, strip all typedefs out of a type.
   1297 ///
   1298 /// Types, once created, are immutable.
   1299 ///
   1300 class Type : public ExtQualsTypeCommonBase {
   1301 public:
   1302   enum TypeClass {
   1303 #define TYPE(Class, Base) Class,
   1304 #define LAST_TYPE(Class) TypeLast = Class,
   1305 #define ABSTRACT_TYPE(Class, Base)
   1306 #include "clang/AST/TypeNodes.def"
   1307     TagFirst = Record, TagLast = Enum
   1308   };
   1309 
   1310 private:
   1311   Type(const Type &) = delete;
   1312   void operator=(const Type &) = delete;
   1313 
   1314   /// Bitfields required by the Type class.
   1315   class TypeBitfields {
   1316     friend class Type;
   1317     template <class T> friend class TypePropertyCache;
   1318 
   1319     /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
   1320     unsigned TC : 8;
   1321 
   1322     /// Whether this type is a dependent type (C++ [temp.dep.type]).
   1323     unsigned Dependent : 1;
   1324 
   1325     /// Whether this type somehow involves a template parameter, even
   1326     /// if the resolution of the type does not depend on a template parameter.
   1327     unsigned InstantiationDependent : 1;
   1328 
   1329     /// Whether this type is a variably-modified type (C99 6.7.5).
   1330     unsigned VariablyModified : 1;
   1331 
   1332     /// \brief Whether this type contains an unexpanded parameter pack
   1333     /// (for C++11 variadic templates).
   1334     unsigned ContainsUnexpandedParameterPack : 1;
   1335 
   1336     /// \brief True if the cache (i.e. the bitfields here starting with
   1337     /// 'Cache') is valid.
   1338     mutable unsigned CacheValid : 1;
   1339 
   1340     /// \brief Linkage of this type.
   1341     mutable unsigned CachedLinkage : 3;
   1342 
   1343     /// \brief Whether this type involves and local or unnamed types.
   1344     mutable unsigned CachedLocalOrUnnamed : 1;
   1345 
   1346     /// \brief Whether this type comes from an AST file.
   1347     mutable unsigned FromAST : 1;
   1348 
   1349     bool isCacheValid() const {
   1350       return CacheValid;
   1351     }
   1352     Linkage getLinkage() const {
   1353       assert(isCacheValid() && "getting linkage from invalid cache");
   1354       return static_cast<Linkage>(CachedLinkage);
   1355     }
   1356     bool hasLocalOrUnnamedType() const {
   1357       assert(isCacheValid() && "getting linkage from invalid cache");
   1358       return CachedLocalOrUnnamed;
   1359     }
   1360   };
   1361   enum { NumTypeBits = 18 };
   1362 
   1363 protected:
   1364   // These classes allow subclasses to somewhat cleanly pack bitfields
   1365   // into Type.
   1366 
   1367   class ArrayTypeBitfields {
   1368     friend class ArrayType;
   1369 
   1370     unsigned : NumTypeBits;
   1371 
   1372     /// CVR qualifiers from declarations like
   1373     /// 'int X[static restrict 4]'. For function parameters only.
   1374     unsigned IndexTypeQuals : 3;
   1375 
   1376     /// Storage class qualifiers from declarations like
   1377     /// 'int X[static restrict 4]'. For function parameters only.
   1378     /// Actually an ArrayType::ArraySizeModifier.
   1379     unsigned SizeModifier : 3;
   1380   };
   1381 
   1382   class BuiltinTypeBitfields {
   1383     friend class BuiltinType;
   1384 
   1385     unsigned : NumTypeBits;
   1386 
   1387     /// The kind (BuiltinType::Kind) of builtin type this is.
   1388     unsigned Kind : 8;
   1389   };
   1390 
   1391   class FunctionTypeBitfields {
   1392     friend class FunctionType;
   1393     friend class FunctionProtoType;
   1394 
   1395     unsigned : NumTypeBits;
   1396 
   1397     /// Extra information which affects how the function is called, like
   1398     /// regparm and the calling convention.
   1399     unsigned ExtInfo : 11;
   1400 
   1401     /// Used only by FunctionProtoType, put here to pack with the
   1402     /// other bitfields.
   1403     /// The qualifiers are part of FunctionProtoType because...
   1404     ///
   1405     /// C++ 8.3.5p4: The return type, the parameter type list and the
   1406     /// cv-qualifier-seq, [...], are part of the function type.
   1407     unsigned TypeQuals : 4;
   1408 
   1409     /// \brief The ref-qualifier associated with a \c FunctionProtoType.
   1410     ///
   1411     /// This is a value of type \c RefQualifierKind.
   1412     unsigned RefQualifier : 2;
   1413   };
   1414 
   1415   class ObjCObjectTypeBitfields {
   1416     friend class ObjCObjectType;
   1417 
   1418     unsigned : NumTypeBits;
   1419 
   1420     /// The number of type arguments stored directly on this object type.
   1421     unsigned NumTypeArgs : 7;
   1422 
   1423     /// The number of protocols stored directly on this object type.
   1424     unsigned NumProtocols : 6;
   1425 
   1426     /// Whether this is a "kindof" type.
   1427     unsigned IsKindOf : 1;
   1428   };
   1429   static_assert(NumTypeBits + 7 + 6 + 1 <= 32, "Does not fit in an unsigned");
   1430 
   1431   class ReferenceTypeBitfields {
   1432     friend class ReferenceType;
   1433 
   1434     unsigned : NumTypeBits;
   1435 
   1436     /// True if the type was originally spelled with an lvalue sigil.
   1437     /// This is never true of rvalue references but can also be false
   1438     /// on lvalue references because of C++0x [dcl.typedef]p9,
   1439     /// as follows:
   1440     ///
   1441     ///   typedef int &ref;    // lvalue, spelled lvalue
   1442     ///   typedef int &&rvref; // rvalue
   1443     ///   ref &a;              // lvalue, inner ref, spelled lvalue
   1444     ///   ref &&a;             // lvalue, inner ref
   1445     ///   rvref &a;            // lvalue, inner ref, spelled lvalue
   1446     ///   rvref &&a;           // rvalue, inner ref
   1447     unsigned SpelledAsLValue : 1;
   1448 
   1449     /// True if the inner type is a reference type.  This only happens
   1450     /// in non-canonical forms.
   1451     unsigned InnerRef : 1;
   1452   };
   1453 
   1454   class TypeWithKeywordBitfields {
   1455     friend class TypeWithKeyword;
   1456 
   1457     unsigned : NumTypeBits;
   1458 
   1459     /// An ElaboratedTypeKeyword.  8 bits for efficient access.
   1460     unsigned Keyword : 8;
   1461   };
   1462 
   1463   class VectorTypeBitfields {
   1464     friend class VectorType;
   1465 
   1466     unsigned : NumTypeBits;
   1467 
   1468     /// The kind of vector, either a generic vector type or some
   1469     /// target-specific vector type such as for AltiVec or Neon.
   1470     unsigned VecKind : 3;
   1471 
   1472     /// The number of elements in the vector.
   1473     unsigned NumElements : 29 - NumTypeBits;
   1474 
   1475     enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
   1476   };
   1477 
   1478   class AttributedTypeBitfields {
   1479     friend class AttributedType;
   1480 
   1481     unsigned : NumTypeBits;
   1482 
   1483     /// An AttributedType::Kind
   1484     unsigned AttrKind : 32 - NumTypeBits;
   1485   };
   1486 
   1487   class AutoTypeBitfields {
   1488     friend class AutoType;
   1489 
   1490     unsigned : NumTypeBits;
   1491 
   1492     /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
   1493     /// or '__auto_type'?  AutoTypeKeyword value.
   1494     unsigned Keyword : 2;
   1495   };
   1496 
   1497   union {
   1498     TypeBitfields TypeBits;
   1499     ArrayTypeBitfields ArrayTypeBits;
   1500     AttributedTypeBitfields AttributedTypeBits;
   1501     AutoTypeBitfields AutoTypeBits;
   1502     BuiltinTypeBitfields BuiltinTypeBits;
   1503     FunctionTypeBitfields FunctionTypeBits;
   1504     ObjCObjectTypeBitfields ObjCObjectTypeBits;
   1505     ReferenceTypeBitfields ReferenceTypeBits;
   1506     TypeWithKeywordBitfields TypeWithKeywordBits;
   1507     VectorTypeBitfields VectorTypeBits;
   1508   };
   1509 
   1510 private:
   1511   /// \brief Set whether this type comes from an AST file.
   1512   void setFromAST(bool V = true) const {
   1513     TypeBits.FromAST = V;
   1514   }
   1515 
   1516   template <class T> friend class TypePropertyCache;
   1517 
   1518 protected:
   1519   // silence VC++ warning C4355: 'this' : used in base member initializer list
   1520   Type *this_() { return this; }
   1521   Type(TypeClass tc, QualType canon, bool Dependent,
   1522        bool InstantiationDependent, bool VariablyModified,
   1523        bool ContainsUnexpandedParameterPack)
   1524     : ExtQualsTypeCommonBase(this,
   1525                              canon.isNull() ? QualType(this_(), 0) : canon) {
   1526     TypeBits.TC = tc;
   1527     TypeBits.Dependent = Dependent;
   1528     TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
   1529     TypeBits.VariablyModified = VariablyModified;
   1530     TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
   1531     TypeBits.CacheValid = false;
   1532     TypeBits.CachedLocalOrUnnamed = false;
   1533     TypeBits.CachedLinkage = NoLinkage;
   1534     TypeBits.FromAST = false;
   1535   }
   1536   friend class ASTContext;
   1537 
   1538   void setDependent(bool D = true) {
   1539     TypeBits.Dependent = D;
   1540     if (D)
   1541       TypeBits.InstantiationDependent = true;
   1542   }
   1543   void setInstantiationDependent(bool D = true) {
   1544     TypeBits.InstantiationDependent = D; }
   1545   void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
   1546   }
   1547   void setContainsUnexpandedParameterPack(bool PP = true) {
   1548     TypeBits.ContainsUnexpandedParameterPack = PP;
   1549   }
   1550 
   1551 public:
   1552   TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
   1553 
   1554   /// \brief Whether this type comes from an AST file.
   1555   bool isFromAST() const { return TypeBits.FromAST; }
   1556 
   1557   /// \brief Whether this type is or contains an unexpanded parameter
   1558   /// pack, used to support C++0x variadic templates.
   1559   ///
   1560   /// A type that contains a parameter pack shall be expanded by the
   1561   /// ellipsis operator at some point. For example, the typedef in the
   1562   /// following example contains an unexpanded parameter pack 'T':
   1563   ///
   1564   /// \code
   1565   /// template<typename ...T>
   1566   /// struct X {
   1567   ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
   1568   /// };
   1569   /// \endcode
   1570   ///
   1571   /// Note that this routine does not specify which
   1572   bool containsUnexpandedParameterPack() const {
   1573     return TypeBits.ContainsUnexpandedParameterPack;
   1574   }
   1575 
   1576   /// Determines if this type would be canonical if it had no further
   1577   /// qualification.
   1578   bool isCanonicalUnqualified() const {
   1579     return CanonicalType == QualType(this, 0);
   1580   }
   1581 
   1582   /// Pull a single level of sugar off of this locally-unqualified type.
   1583   /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
   1584   /// or QualType::getSingleStepDesugaredType(const ASTContext&).
   1585   QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
   1586 
   1587   /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
   1588   /// object types, function types, and incomplete types.
   1589 
   1590   /// Return true if this is an incomplete type.
   1591   /// A type that can describe objects, but which lacks information needed to
   1592   /// determine its size (e.g. void, or a fwd declared struct). Clients of this
   1593   /// routine will need to determine if the size is actually required.
   1594   ///
   1595   /// \brief Def If non-null, and the type refers to some kind of declaration
   1596   /// that can be completed (such as a C struct, C++ class, or Objective-C
   1597   /// class), will be set to the declaration.
   1598   bool isIncompleteType(NamedDecl **Def = nullptr) const;
   1599 
   1600   /// Return true if this is an incomplete or object
   1601   /// type, in other words, not a function type.
   1602   bool isIncompleteOrObjectType() const {
   1603     return !isFunctionType();
   1604   }
   1605 
   1606   /// \brief Determine whether this type is an object type.
   1607   bool isObjectType() const {
   1608     // C++ [basic.types]p8:
   1609     //   An object type is a (possibly cv-qualified) type that is not a
   1610     //   function type, not a reference type, and not a void type.
   1611     return !isReferenceType() && !isFunctionType() && !isVoidType();
   1612   }
   1613 
   1614   /// Return true if this is a literal type
   1615   /// (C++11 [basic.types]p10)
   1616   bool isLiteralType(const ASTContext &Ctx) const;
   1617 
   1618   /// Test if this type is a standard-layout type.
   1619   /// (C++0x [basic.type]p9)
   1620   bool isStandardLayoutType() const;
   1621 
   1622   /// Helper methods to distinguish type categories. All type predicates
   1623   /// operate on the canonical type, ignoring typedefs and qualifiers.
   1624 
   1625   /// Returns true if the type is a builtin type.
   1626   bool isBuiltinType() const;
   1627 
   1628   /// Test for a particular builtin type.
   1629   bool isSpecificBuiltinType(unsigned K) const;
   1630 
   1631   /// Test for a type which does not represent an actual type-system type but
   1632   /// is instead used as a placeholder for various convenient purposes within
   1633   /// Clang.  All such types are BuiltinTypes.
   1634   bool isPlaceholderType() const;
   1635   const BuiltinType *getAsPlaceholderType() const;
   1636 
   1637   /// Test for a specific placeholder type.
   1638   bool isSpecificPlaceholderType(unsigned K) const;
   1639 
   1640   /// Test for a placeholder type other than Overload; see
   1641   /// BuiltinType::isNonOverloadPlaceholderType.
   1642   bool isNonOverloadPlaceholderType() const;
   1643 
   1644   /// isIntegerType() does *not* include complex integers (a GCC extension).
   1645   /// isComplexIntegerType() can be used to test for complex integers.
   1646   bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
   1647   bool isEnumeralType() const;
   1648   bool isBooleanType() const;
   1649   bool isCharType() const;
   1650   bool isWideCharType() const;
   1651   bool isChar16Type() const;
   1652   bool isChar32Type() const;
   1653   bool isAnyCharacterType() const;
   1654   bool isIntegralType(const ASTContext &Ctx) const;
   1655 
   1656   /// Determine whether this type is an integral or enumeration type.
   1657   bool isIntegralOrEnumerationType() const;
   1658   /// Determine whether this type is an integral or unscoped enumeration type.
   1659   bool isIntegralOrUnscopedEnumerationType() const;
   1660 
   1661   /// Floating point categories.
   1662   bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
   1663   /// isComplexType() does *not* include complex integers (a GCC extension).
   1664   /// isComplexIntegerType() can be used to test for complex integers.
   1665   bool isComplexType() const;      // C99 6.2.5p11 (complex)
   1666   bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
   1667   bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
   1668   bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
   1669   bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
   1670   bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
   1671   bool isVoidType() const;         // C99 6.2.5p19
   1672   bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
   1673   bool isAggregateType() const;
   1674   bool isFundamentalType() const;
   1675   bool isCompoundType() const;
   1676 
   1677   // Type Predicates: Check to see if this type is structurally the specified
   1678   // type, ignoring typedefs and qualifiers.
   1679   bool isFunctionType() const;
   1680   bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
   1681   bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
   1682   bool isPointerType() const;
   1683   bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
   1684   bool isBlockPointerType() const;
   1685   bool isVoidPointerType() const;
   1686   bool isReferenceType() const;
   1687   bool isLValueReferenceType() const;
   1688   bool isRValueReferenceType() const;
   1689   bool isFunctionPointerType() const;
   1690   bool isMemberPointerType() const;
   1691   bool isMemberFunctionPointerType() const;
   1692   bool isMemberDataPointerType() const;
   1693   bool isArrayType() const;
   1694   bool isConstantArrayType() const;
   1695   bool isIncompleteArrayType() const;
   1696   bool isVariableArrayType() const;
   1697   bool isDependentSizedArrayType() const;
   1698   bool isRecordType() const;
   1699   bool isClassType() const;
   1700   bool isStructureType() const;
   1701   bool isObjCBoxableRecordType() const;
   1702   bool isInterfaceType() const;
   1703   bool isStructureOrClassType() const;
   1704   bool isUnionType() const;
   1705   bool isComplexIntegerType() const;            // GCC _Complex integer type.
   1706   bool isVectorType() const;                    // GCC vector type.
   1707   bool isExtVectorType() const;                 // Extended vector type.
   1708   bool isDependentAddressSpaceType() const;     // value-dependent address space qualifier
   1709   bool isObjCObjectPointerType() const;         // pointer to ObjC object
   1710   bool isObjCRetainableType() const;            // ObjC object or block pointer
   1711   bool isObjCLifetimeType() const;              // (array of)* retainable type
   1712   bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
   1713   bool isObjCNSObjectType() const;              // __attribute__((NSObject))
   1714   bool isObjCIndependentClassType() const;      // __attribute__((objc_independent_class))
   1715   // FIXME: change this to 'raw' interface type, so we can used 'interface' type
   1716   // for the common case.
   1717   bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
   1718   bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
   1719   bool isObjCQualifiedIdType() const;           // id<foo>
   1720   bool isObjCQualifiedClassType() const;        // Class<foo>
   1721   bool isObjCObjectOrInterfaceType() const;
   1722   bool isObjCIdType() const;                    // id
   1723   bool isObjCInertUnsafeUnretainedType() const;
   1724 
   1725   /// Whether the type is Objective-C 'id' or a __kindof type of an
   1726   /// object type, e.g., __kindof NSView * or __kindof id
   1727   /// <NSCopying>.
   1728   ///
   1729   /// \param bound Will be set to the bound on non-id subtype types,
   1730   /// which will be (possibly specialized) Objective-C class type, or
   1731   /// null for 'id.
   1732   bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
   1733                                   const ObjCObjectType *&bound) const;
   1734 
   1735   bool isObjCClassType() const;                 // Class
   1736 
   1737   /// Whether the type is Objective-C 'Class' or a __kindof type of an
   1738   /// Class type, e.g., __kindof Class <NSCopying>.
   1739   ///
   1740   /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
   1741   /// here because Objective-C's type system cannot express "a class
   1742   /// object for a subclass of NSFoo".
   1743   bool isObjCClassOrClassKindOfType() const;
   1744 
   1745   bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
   1746   bool isObjCSelType() const;                 // Class
   1747   bool isObjCBuiltinType() const;               // 'id' or 'Class'
   1748   bool isObjCARCBridgableType() const;
   1749   bool isCARCBridgableType() const;
   1750   bool isTemplateTypeParmType() const;          // C++ template type parameter
   1751   bool isNullPtrType() const;                   // C++11 std::nullptr_t
   1752   bool isAlignValT() const;                     // C++17 std::align_val_t
   1753   bool isStdByteType() const;                   // C++17 std::byte
   1754   bool isAtomicType() const;                    // C11 _Atomic()
   1755 
   1756 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
   1757   bool is##Id##Type() const;
   1758 #include "clang/Basic/OpenCLImageTypes.def"
   1759 
   1760   bool isImageType() const;                     // Any OpenCL image type
   1761 
   1762   bool isSamplerT() const;                      // OpenCL sampler_t
   1763   bool isEventT() const;                        // OpenCL event_t
   1764   bool isClkEventT() const;                     // OpenCL clk_event_t
   1765   bool isQueueT() const;                        // OpenCL queue_t
   1766   bool isReserveIDT() const;                    // OpenCL reserve_id_t
   1767 
   1768   bool isPipeType() const;                      // OpenCL pipe type
   1769   bool isOpenCLSpecificType() const;            // Any OpenCL specific type
   1770 
   1771   /// Determines if this type, which must satisfy
   1772   /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
   1773   /// than implicitly __strong.
   1774   bool isObjCARCImplicitlyUnretainedType() const;
   1775 
   1776   /// Return the implicit lifetime for this type, which must not be dependent.
   1777   Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
   1778 
   1779   enum ScalarTypeKind {
   1780     STK_CPointer,
   1781     STK_BlockPointer,
   1782     STK_ObjCObjectPointer,
   1783     STK_MemberPointer,
   1784     STK_Bool,
   1785     STK_Integral,
   1786     STK_Floating,
   1787     STK_IntegralComplex,
   1788     STK_FloatingComplex
   1789   };
   1790   /// Given that this is a scalar type, classify it.
   1791   ScalarTypeKind getScalarTypeKind() const;
   1792 
   1793   /// Whether this type is a dependent type, meaning that its definition
   1794   /// somehow depends on a template parameter (C++ [temp.dep.type]).
   1795   bool isDependentType() const { return TypeBits.Dependent; }
   1796 
   1797   /// \brief Determine whether this type is an instantiation-dependent type,
   1798   /// meaning that the type involves a template parameter (even if the
   1799   /// definition does not actually depend on the type substituted for that
   1800   /// template parameter).
   1801   bool isInstantiationDependentType() const {
   1802     return TypeBits.InstantiationDependent;
   1803   }
   1804 
   1805   /// \brief Determine whether this type is an undeduced type, meaning that
   1806   /// it somehow involves a C++11 'auto' type or similar which has not yet been
   1807   /// deduced.
   1808   bool isUndeducedType() const;
   1809 
   1810   /// \brief Whether this type is a variably-modified type (C99 6.7.5).
   1811   bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
   1812 
   1813   /// \brief Whether this type involves a variable-length array type
   1814   /// with a definite size.
   1815   bool hasSizedVLAType() const;
   1816 
   1817   /// \brief Whether this type is or contains a local or unnamed type.
   1818   bool hasUnnamedOrLocalType() const;
   1819 
   1820   bool isOverloadableType() const;
   1821 
   1822   /// \brief Determine wither this type is a C++ elaborated-type-specifier.
   1823   bool isElaboratedTypeSpecifier() const;
   1824 
   1825   bool canDecayToPointerType() const;
   1826 
   1827   /// Whether this type is represented natively as a pointer.  This includes
   1828   /// pointers, references, block pointers, and Objective-C interface,
   1829   /// qualified id, and qualified interface types, as well as nullptr_t.
   1830   bool hasPointerRepresentation() const;
   1831 
   1832   /// Whether this type can represent an objective pointer type for the
   1833   /// purpose of GC'ability
   1834   bool hasObjCPointerRepresentation() const;
   1835 
   1836   /// \brief Determine whether this type has an integer representation
   1837   /// of some sort, e.g., it is an integer type or a vector.
   1838   bool hasIntegerRepresentation() const;
   1839 
   1840   /// \brief Determine whether this type has an signed integer representation
   1841   /// of some sort, e.g., it is an signed integer type or a vector.
   1842   bool hasSignedIntegerRepresentation() const;
   1843 
   1844   /// \brief Determine whether this type has an unsigned integer representation
   1845   /// of some sort, e.g., it is an unsigned integer type or a vector.
   1846   bool hasUnsignedIntegerRepresentation() const;
   1847 
   1848   /// \brief Determine whether this type has a floating-point representation
   1849   /// of some sort, e.g., it is a floating-point type or a vector thereof.
   1850   bool hasFloatingRepresentation() const;
   1851 
   1852   // Type Checking Functions: Check to see if this type is structurally the
   1853   // specified type, ignoring typedefs and qualifiers, and return a pointer to
   1854   // the best type we can.
   1855   const RecordType *getAsStructureType() const;
   1856   /// NOTE: getAs*ArrayType are methods on ASTContext.
   1857   const RecordType *getAsUnionType() const;
   1858   const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
   1859   const ObjCObjectType *getAsObjCInterfaceType() const;
   1860   // The following is a convenience method that returns an ObjCObjectPointerType
   1861   // for object declared using an interface.
   1862   const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
   1863   const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
   1864   const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
   1865   const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
   1866 
   1867   /// \brief Retrieves the CXXRecordDecl that this type refers to, either
   1868   /// because the type is a RecordType or because it is the injected-class-name
   1869   /// type of a class template or class template partial specialization.
   1870   CXXRecordDecl *getAsCXXRecordDecl() const;
   1871 
   1872   /// \brief Retrieves the TagDecl that this type refers to, either
   1873   /// because the type is a TagType or because it is the injected-class-name
   1874   /// type of a class template or class template partial specialization.
   1875   TagDecl *getAsTagDecl() const;
   1876 
   1877   /// If this is a pointer or reference to a RecordType, return the
   1878   /// CXXRecordDecl that that type refers to.
   1879   ///
   1880   /// If this is not a pointer or reference, or the type being pointed to does
   1881   /// not refer to a CXXRecordDecl, returns NULL.
   1882   const CXXRecordDecl *getPointeeCXXRecordDecl() const;
   1883 
   1884   /// Get the DeducedType whose type will be deduced for a variable with
   1885   /// an initializer of this type. This looks through declarators like pointer
   1886   /// types, but not through decltype or typedefs.
   1887   DeducedType *getContainedDeducedType() const;
   1888 
   1889   /// Get the AutoType whose type will be deduced for a variable with
   1890   /// an initializer of this type. This looks through declarators like pointer
   1891   /// types, but not through decltype or typedefs.
   1892   AutoType *getContainedAutoType() const {
   1893     return dyn_cast_or_null<AutoType>(getContainedDeducedType());
   1894   }
   1895 
   1896   /// Determine whether this type was written with a leading 'auto'
   1897   /// corresponding to a trailing return type (possibly for a nested
   1898   /// function type within a pointer to function type or similar).
   1899   bool hasAutoForTrailingReturnType() const;
   1900 
   1901   /// Member-template getAs<specific type>'.  Look through sugar for
   1902   /// an instance of \<specific type>.   This scheme will eventually
   1903   /// replace the specific getAsXXXX methods above.
   1904   ///
   1905   /// There are some specializations of this member template listed
   1906   /// immediately following this class.
   1907   template <typename T> const T *getAs() const;
   1908 
   1909   /// Member-template getAsAdjusted<specific type>. Look through specific kinds
   1910   /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
   1911   /// This is used when you need to walk over sugar nodes that represent some
   1912   /// kind of type adjustment from a type that was written as a \<specific type>
   1913   /// to another type that is still canonically a \<specific type>.
   1914   template <typename T> const T *getAsAdjusted() const;
   1915 
   1916   /// A variant of getAs<> for array types which silently discards
   1917   /// qualifiers from the outermost type.
   1918   const ArrayType *getAsArrayTypeUnsafe() const;
   1919 
   1920   /// Member-template castAs<specific type>.  Look through sugar for
   1921   /// the underlying instance of \<specific type>.
   1922   ///
   1923   /// This method has the same relationship to getAs<T> as cast<T> has
   1924   /// to dyn_cast<T>; which is to say, the underlying type *must*
   1925   /// have the intended type, and this method will never return null.
   1926   template <typename T> const T *castAs() const;
   1927 
   1928   /// A variant of castAs<> for array type which silently discards
   1929   /// qualifiers from the outermost type.
   1930   const ArrayType *castAsArrayTypeUnsafe() const;
   1931 
   1932   /// Get the base element type of this type, potentially discarding type
   1933   /// qualifiers.  This should never be used when type qualifiers
   1934   /// are meaningful.
   1935   const Type *getBaseElementTypeUnsafe() const;
   1936 
   1937   /// If this is an array type, return the element type of the array,
   1938   /// potentially with type qualifiers missing.
   1939   /// This should never be used when type qualifiers are meaningful.
   1940   const Type *getArrayElementTypeNoTypeQual() const;
   1941 
   1942   /// If this is a pointer type, return the pointee type.
   1943   /// If this is an array type, return the array element type.
   1944   /// This should never be used when type qualifiers are meaningful.
   1945   const Type *getPointeeOrArrayElementType() const;
   1946 
   1947   /// If this is a pointer, ObjC object pointer, or block
   1948   /// pointer, this returns the respective pointee.
   1949   QualType getPointeeType() const;
   1950 
   1951   /// Return the specified type with any "sugar" removed from the type,
   1952   /// removing any typedefs, typeofs, etc., as well as any qualifiers.
   1953   const Type *getUnqualifiedDesugaredType() const;
   1954 
   1955   /// More type predicates useful for type checking/promotion
   1956   bool isPromotableIntegerType() const; // C99 6.3.1.1p2
   1957 
   1958   /// Return true if this is an integer type that is
   1959   /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
   1960   /// or an enum decl which has a signed representation.
   1961   bool isSignedIntegerType() const;
   1962 
   1963   /// Return true if this is an integer type that is
   1964   /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
   1965   /// or an enum decl which has an unsigned representation.
   1966   bool isUnsignedIntegerType() const;
   1967 
   1968   /// Determines whether this is an integer type that is signed or an
   1969   /// enumeration types whose underlying type is a signed integer type.
   1970   bool isSignedIntegerOrEnumerationType() const;
   1971 
   1972   /// Determines whether this is an integer type that is unsigned or an
   1973   /// enumeration types whose underlying type is a unsigned integer type.
   1974   bool isUnsignedIntegerOrEnumerationType() const;
   1975 
   1976   /// Return true if this is not a variable sized type,
   1977   /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
   1978   /// incomplete types.
   1979   bool isConstantSizeType() const;
   1980 
   1981   /// Returns true if this type can be represented by some
   1982   /// set of type specifiers.
   1983   bool isSpecifierType() const;
   1984 
   1985   /// Determine the linkage of this type.
   1986   Linkage getLinkage() const;
   1987 
   1988   /// Determine the visibility of this type.
   1989   Visibility getVisibility() const {
   1990     return getLinkageAndVisibility().getVisibility();
   1991   }
   1992 
   1993   /// Return true if the visibility was explicitly set is the code.
   1994   bool isVisibilityExplicit() const {
   1995     return getLinkageAndVisibility().isVisibilityExplicit();
   1996   }
   1997 
   1998   /// Determine the linkage and visibility of this type.
   1999   LinkageInfo getLinkageAndVisibility() const;
   2000 
   2001   /// True if the computed linkage is valid. Used for consistency
   2002   /// checking. Should always return true.
   2003   bool isLinkageValid() const;
   2004 
   2005   /// Determine the nullability of the given type.
   2006   ///
   2007   /// Note that nullability is only captured as sugar within the type
   2008   /// system, not as part of the canonical type, so nullability will
   2009   /// be lost by canonicalization and desugaring.
   2010   Optional<NullabilityKind> getNullability(const ASTContext &context) const;
   2011 
   2012   /// Determine whether the given type can have a nullability
   2013   /// specifier applied to it, i.e., if it is any kind of pointer type.
   2014   ///
   2015   /// \param ResultIfUnknown The value to return if we don't yet know whether
   2016   ///        this type can have nullability because it is dependent.
   2017   bool canHaveNullability(bool ResultIfUnknown = true) const;
   2018 
   2019   /// Retrieve the set of substitutions required when accessing a member
   2020   /// of the Objective-C receiver type that is declared in the given context.
   2021   ///
   2022   /// \c *this is the type of the object we're operating on, e.g., the
   2023   /// receiver for a message send or the base of a property access, and is
   2024   /// expected to be of some object or object pointer type.
   2025   ///
   2026   /// \param dc The declaration context for which we are building up a
   2027   /// substitution mapping, which should be an Objective-C class, extension,
   2028   /// category, or method within.
   2029   ///
   2030   /// \returns an array of type arguments that can be substituted for
   2031   /// the type parameters of the given declaration context in any type described
   2032   /// within that context, or an empty optional to indicate that no
   2033   /// substitution is required.
   2034   Optional<ArrayRef<QualType>>
   2035   getObjCSubstitutions(const DeclContext *dc) const;
   2036 
   2037   /// Determines if this is an ObjC interface type that may accept type
   2038   /// parameters.
   2039   bool acceptsObjCTypeParams() const;
   2040 
   2041   const char *getTypeClassName() const;
   2042 
   2043   QualType getCanonicalTypeInternal() const {
   2044     return CanonicalType;
   2045   }
   2046   CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
   2047   void dump() const;
   2048   void dump(llvm::raw_ostream &OS) const;
   2049 
   2050   friend class ASTReader;
   2051   friend class ASTWriter;
   2052 };
   2053 
   2054 /// \brief This will check for a TypedefType by removing any existing sugar
   2055 /// until it reaches a TypedefType or a non-sugared type.
   2056 template <> const TypedefType *Type::getAs() const;
   2057 
   2058 /// \brief This will check for a TemplateSpecializationType by removing any
   2059 /// existing sugar until it reaches a TemplateSpecializationType or a
   2060 /// non-sugared type.
   2061 template <> const TemplateSpecializationType *Type::getAs() const;
   2062 
   2063 /// \brief This will check for an AttributedType by removing any existing sugar
   2064 /// until it reaches an AttributedType or a non-sugared type.
   2065 template <> const AttributedType *Type::getAs() const;
   2066 
   2067 // We can do canonical leaf types faster, because we don't have to
   2068 // worry about preserving child type decoration.
   2069 #define TYPE(Class, Base)
   2070 #define LEAF_TYPE(Class) \
   2071 template <> inline const Class##Type *Type::getAs() const { \
   2072   return dyn_cast<Class##Type>(CanonicalType); \
   2073 } \
   2074 template <> inline const Class##Type *Type::castAs() const { \
   2075   return cast<Class##Type>(CanonicalType); \
   2076 }
   2077 #include "clang/AST/TypeNodes.def"
   2078 
   2079 
   2080 /// This class is used for builtin types like 'int'.  Builtin
   2081 /// types are always canonical and have a literal name field.
   2082 class BuiltinType : public Type {
   2083 public:
   2084   enum Kind {
   2085 // OpenCL image types
   2086 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
   2087 #include "clang/Basic/OpenCLImageTypes.def"
   2088 // All other builtin types
   2089 #define BUILTIN_TYPE(Id, SingletonId) Id,
   2090 #define LAST_BUILTIN_TYPE(Id) LastKind = Id
   2091 #include "clang/AST/BuiltinTypes.def"
   2092   };
   2093 
   2094 public:
   2095   BuiltinType(Kind K)
   2096     : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
   2097            /*InstantiationDependent=*/(K == Dependent),
   2098            /*VariablyModified=*/false,
   2099            /*Unexpanded parameter pack=*/false) {
   2100     BuiltinTypeBits.Kind = K;
   2101   }
   2102 
   2103   Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
   2104   StringRef getName(const PrintingPolicy &Policy) const;
   2105   const char *getNameAsCString(const PrintingPolicy &Policy) const {
   2106     // The StringRef is null-terminated.
   2107     StringRef str = getName(Policy);
   2108     assert(!str.empty() && str.data()[str.size()] == '\0');
   2109     return str.data();
   2110   }
   2111 
   2112   bool isSugared() const { return false; }
   2113   QualType desugar() const { return QualType(this, 0); }
   2114 
   2115   bool isInteger() const {
   2116     return getKind() >= Bool && getKind() <= Int128;
   2117   }
   2118 
   2119   bool isSignedInteger() const {
   2120     return getKind() >= Char_S && getKind() <= Int128;
   2121   }
   2122 
   2123   bool isUnsignedInteger() const {
   2124     return getKind() >= Bool && getKind() <= UInt128;
   2125   }
   2126 
   2127   bool isFloatingPoint() const {
   2128     return getKind() >= Half && getKind() <= Float128;
   2129   }
   2130 
   2131   /// Determines whether the given kind corresponds to a placeholder type.
   2132   static bool isPlaceholderTypeKind(Kind K) {
   2133     return K >= Overload;
   2134   }
   2135 
   2136   /// Determines whether this type is a placeholder type, i.e. a type
   2137   /// which cannot appear in arbitrary positions in a fully-formed
   2138   /// expression.
   2139   bool isPlaceholderType() const {
   2140     return isPlaceholderTypeKind(getKind());
   2141   }
   2142 
   2143   /// Determines whether this type is a placeholder type other than
   2144   /// Overload.  Most placeholder types require only syntactic
   2145   /// information about their context in order to be resolved (e.g.
   2146   /// whether it is a call expression), which means they can (and
   2147   /// should) be resolved in an earlier "phase" of analysis.
   2148   /// Overload expressions sometimes pick up further information
   2149   /// from their context, like whether the context expects a
   2150   /// specific function-pointer type, and so frequently need
   2151   /// special treatment.
   2152   bool isNonOverloadPlaceholderType() const {
   2153     return getKind() > Overload;
   2154   }
   2155 
   2156   static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
   2157 };
   2158 
   2159 /// Complex values, per C99 6.2.5p11.  This supports the C99 complex
   2160 /// types (_Complex float etc) as well as the GCC integer complex extensions.
   2161 ///
   2162 class ComplexType : public Type, public llvm::FoldingSetNode {
   2163   QualType ElementType;
   2164   ComplexType(QualType Element, QualType CanonicalPtr) :
   2165     Type(Complex, CanonicalPtr, Element->isDependentType(),
   2166          Element->isInstantiationDependentType(),
   2167          Element->isVariablyModifiedType(),
   2168          Element->containsUnexpandedParameterPack()),
   2169     ElementType(Element) {
   2170   }
   2171   friend class ASTContext;  // ASTContext creates these.
   2172 
   2173 public:
   2174   QualType getElementType() const { return ElementType; }
   2175 
   2176   bool isSugared() const { return false; }
   2177   QualType desugar() const { return QualType(this, 0); }
   2178 
   2179   void Profile(llvm::FoldingSetNodeID &ID) {
   2180     Profile(ID, getElementType());
   2181   }
   2182   static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
   2183     ID.AddPointer(Element.getAsOpaquePtr());
   2184   }
   2185 
   2186   static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
   2187 };
   2188 
   2189 /// Sugar for parentheses used when specifying types.
   2190 ///
   2191 class ParenType : public Type, public llvm::FoldingSetNode {
   2192   QualType Inner;
   2193 
   2194   ParenType(QualType InnerType, QualType CanonType) :
   2195     Type(Paren, CanonType, InnerType->isDependentType(),
   2196          InnerType->isInstantiationDependentType(),
   2197          InnerType->isVariablyModifiedType(),
   2198          InnerType->containsUnexpandedParameterPack()),
   2199     Inner(InnerType) {
   2200   }
   2201   friend class ASTContext;  // ASTContext creates these.
   2202 
   2203 public:
   2204 
   2205   QualType getInnerType() const { return Inner; }
   2206 
   2207   bool isSugared() const { return true; }
   2208   QualType desugar() const { return getInnerType(); }
   2209 
   2210   void Profile(llvm::FoldingSetNodeID &ID) {
   2211     Profile(ID, getInnerType());
   2212   }
   2213   static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
   2214     Inner.Profile(ID);
   2215   }
   2216 
   2217   static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
   2218 };
   2219 
   2220 /// PointerType - C99 6.7.5.1 - Pointer Declarators.
   2221 ///
   2222 class PointerType : public Type, public llvm::FoldingSetNode {
   2223   QualType PointeeType;
   2224 
   2225   PointerType(QualType Pointee, QualType CanonicalPtr) :
   2226     Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
   2227          Pointee->isInstantiationDependentType(),
   2228          Pointee->isVariablyModifiedType(),
   2229          Pointee->containsUnexpandedParameterPack()),
   2230     PointeeType(Pointee) {
   2231   }
   2232   friend class ASTContext;  // ASTContext creates these.
   2233 
   2234 public:
   2235 
   2236   QualType getPointeeType() const { return PointeeType; }
   2237 
   2238   /// Returns true if address spaces of pointers overlap.
   2239   /// OpenCL v2.0 defines conversion rules for pointers to different
   2240   /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
   2241   /// address spaces.
   2242   /// CL1.1 or CL1.2:
   2243   ///   address spaces overlap iff they are they same.
   2244   /// CL2.0 adds:
   2245   ///   __generic overlaps with any address space except for __constant.
   2246   bool isAddressSpaceOverlapping(const PointerType &other) const {
   2247     Qualifiers thisQuals = PointeeType.getQualifiers();
   2248     Qualifiers otherQuals = other.getPointeeType().getQualifiers();
   2249     // Address spaces overlap if at least one of them is a superset of another
   2250     return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
   2251            otherQuals.isAddressSpaceSupersetOf(thisQuals);
   2252   }
   2253 
   2254   bool isSugared() const { return false; }
   2255   QualType desugar() const { return QualType(this, 0); }
   2256 
   2257   void Profile(llvm::FoldingSetNodeID &ID) {
   2258     Profile(ID, getPointeeType());
   2259   }
   2260   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   2261     ID.AddPointer(Pointee.getAsOpaquePtr());
   2262   }
   2263 
   2264   static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
   2265 };
   2266 
   2267 /// Represents a type which was implicitly adjusted by the semantic
   2268 /// engine for arbitrary reasons.  For example, array and function types can
   2269 /// decay, and function types can have their calling conventions adjusted.
   2270 class AdjustedType : public Type, public llvm::FoldingSetNode {
   2271   QualType OriginalTy;
   2272   QualType AdjustedTy;
   2273 
   2274 protected:
   2275   AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
   2276                QualType CanonicalPtr)
   2277       : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
   2278              OriginalTy->isInstantiationDependentType(),
   2279              OriginalTy->isVariablyModifiedType(),
   2280              OriginalTy->containsUnexpandedParameterPack()),
   2281         OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
   2282 
   2283   friend class ASTContext;  // ASTContext creates these.
   2284 
   2285 public:
   2286   QualType getOriginalType() const { return OriginalTy; }
   2287   QualType getAdjustedType() const { return AdjustedTy; }
   2288 
   2289   bool isSugared() const { return true; }
   2290   QualType desugar() const { return AdjustedTy; }
   2291 
   2292   void Profile(llvm::FoldingSetNodeID &ID) {
   2293     Profile(ID, OriginalTy, AdjustedTy);
   2294   }
   2295   static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
   2296     ID.AddPointer(Orig.getAsOpaquePtr());
   2297     ID.AddPointer(New.getAsOpaquePtr());
   2298   }
   2299 
   2300   static bool classof(const Type *T) {
   2301     return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
   2302   }
   2303 };
   2304 
   2305 /// Represents a pointer type decayed from an array or function type.
   2306 class DecayedType : public AdjustedType {
   2307 
   2308   inline
   2309   DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
   2310 
   2311   friend class ASTContext;  // ASTContext creates these.
   2312 
   2313 public:
   2314   QualType getDecayedType() const { return getAdjustedType(); }
   2315 
   2316   inline QualType getPointeeType() const;
   2317 
   2318   static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
   2319 };
   2320 
   2321 /// Pointer to a block type.
   2322 /// This type is to represent types syntactically represented as
   2323 /// "void (^)(int)", etc. Pointee is required to always be a function type.
   2324 ///
   2325 class BlockPointerType : public Type, public llvm::FoldingSetNode {
   2326   QualType PointeeType;  // Block is some kind of pointer type
   2327   BlockPointerType(QualType Pointee, QualType CanonicalCls) :
   2328     Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
   2329          Pointee->isInstantiationDependentType(),
   2330          Pointee->isVariablyModifiedType(),
   2331          Pointee->containsUnexpandedParameterPack()),
   2332     PointeeType(Pointee) {
   2333   }
   2334   friend class ASTContext;  // ASTContext creates these.
   2335 
   2336 public:
   2337 
   2338   // Get the pointee type. Pointee is required to always be a function type.
   2339   QualType getPointeeType() const { return PointeeType; }
   2340 
   2341   bool isSugared() const { return false; }
   2342   QualType desugar() const { return QualType(this, 0); }
   2343 
   2344   void Profile(llvm::FoldingSetNodeID &ID) {
   2345       Profile(ID, getPointeeType());
   2346   }
   2347   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   2348       ID.AddPointer(Pointee.getAsOpaquePtr());
   2349   }
   2350 
   2351   static bool classof(const Type *T) {
   2352     return T->getTypeClass() == BlockPointer;
   2353   }
   2354 };
   2355 
   2356 /// Base for LValueReferenceType and RValueReferenceType
   2357 ///
   2358 class ReferenceType : public Type, public llvm::FoldingSetNode {
   2359   QualType PointeeType;
   2360 
   2361 protected:
   2362   ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
   2363                 bool SpelledAsLValue) :
   2364     Type(tc, CanonicalRef, Referencee->isDependentType(),
   2365          Referencee->isInstantiationDependentType(),
   2366          Referencee->isVariablyModifiedType(),
   2367          Referencee->containsUnexpandedParameterPack()),
   2368     PointeeType(Referencee)
   2369   {
   2370     ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
   2371     ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
   2372   }
   2373 
   2374 public:
   2375   bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
   2376   bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
   2377 
   2378   QualType getPointeeTypeAsWritten() const { return PointeeType; }
   2379   QualType getPointeeType() const {
   2380     // FIXME: this might strip inner qualifiers; okay?
   2381     const ReferenceType *T = this;
   2382     while (T->isInnerRef())
   2383       T = T->PointeeType->castAs<ReferenceType>();
   2384     return T->PointeeType;
   2385   }
   2386 
   2387   void Profile(llvm::FoldingSetNodeID &ID) {
   2388     Profile(ID, PointeeType, isSpelledAsLValue());
   2389   }
   2390   static void Profile(llvm::FoldingSetNodeID &ID,
   2391                       QualType Referencee,
   2392                       bool SpelledAsLValue) {
   2393     ID.AddPointer(Referencee.getAsOpaquePtr());
   2394     ID.AddBoolean(SpelledAsLValue);
   2395   }
   2396 
   2397   static bool classof(const Type *T) {
   2398     return T->getTypeClass() == LValueReference ||
   2399            T->getTypeClass() == RValueReference;
   2400   }
   2401 };
   2402 
   2403 /// An lvalue reference type, per C++11 [dcl.ref].
   2404 ///
   2405 class LValueReferenceType : public ReferenceType {
   2406   LValueReferenceType(QualType Referencee, QualType CanonicalRef,
   2407                       bool SpelledAsLValue) :
   2408     ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
   2409   {}
   2410   friend class ASTContext; // ASTContext creates these
   2411 public:
   2412   bool isSugared() const { return false; }
   2413   QualType desugar() const { return QualType(this, 0); }
   2414 
   2415   static bool classof(const Type *T) {
   2416     return T->getTypeClass() == LValueReference;
   2417   }
   2418 };
   2419 
   2420 /// An rvalue reference type, per C++11 [dcl.ref].
   2421 ///
   2422 class RValueReferenceType : public ReferenceType {
   2423   RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
   2424     ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
   2425   }
   2426   friend class ASTContext; // ASTContext creates these
   2427 public:
   2428   bool isSugared() const { return false; }
   2429   QualType desugar() const { return QualType(this, 0); }
   2430 
   2431   static bool classof(const Type *T) {
   2432     return T->getTypeClass() == RValueReference;
   2433   }
   2434 };
   2435 
   2436 /// A pointer to member type per C++ 8.3.3 - Pointers to members.
   2437 ///
   2438 /// This includes both pointers to data members and pointer to member functions.
   2439 ///
   2440 class MemberPointerType : public Type, public llvm::FoldingSetNode {
   2441   QualType PointeeType;
   2442   /// The class of which the pointee is a member. Must ultimately be a
   2443   /// RecordType, but could be a typedef or a template parameter too.
   2444   const Type *Class;
   2445 
   2446   MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
   2447     Type(MemberPointer, CanonicalPtr,
   2448          Cls->isDependentType() || Pointee->isDependentType(),
   2449          (Cls->isInstantiationDependentType() ||
   2450           Pointee->isInstantiationDependentType()),
   2451          Pointee->isVariablyModifiedType(),
   2452          (Cls->containsUnexpandedParameterPack() ||
   2453           Pointee->containsUnexpandedParameterPack())),
   2454     PointeeType(Pointee), Class(Cls) {
   2455   }
   2456   friend class ASTContext; // ASTContext creates these.
   2457 
   2458 public:
   2459   QualType getPointeeType() const { return PointeeType; }
   2460 
   2461   /// Returns true if the member type (i.e. the pointee type) is a
   2462   /// function type rather than a data-member type.
   2463   bool isMemberFunctionPointer() const {
   2464     return PointeeType->isFunctionProtoType();
   2465   }
   2466 
   2467   /// Returns true if the member type (i.e. the pointee type) is a
   2468   /// data type rather than a function type.
   2469   bool isMemberDataPointer() const {
   2470     return !PointeeType->isFunctionProtoType();
   2471   }
   2472 
   2473   const Type *getClass() const { return Class; }
   2474   CXXRecordDecl *getMostRecentCXXRecordDecl() const;
   2475 
   2476   bool isSugared() const { return false; }
   2477   QualType desugar() const { return QualType(this, 0); }
   2478 
   2479   void Profile(llvm::FoldingSetNodeID &ID) {
   2480     Profile(ID, getPointeeType(), getClass());
   2481   }
   2482   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
   2483                       const Type *Class) {
   2484     ID.AddPointer(Pointee.getAsOpaquePtr());
   2485     ID.AddPointer(Class);
   2486   }
   2487 
   2488   static bool classof(const Type *T) {
   2489     return T->getTypeClass() == MemberPointer;
   2490   }
   2491 };
   2492 
   2493 /// Represents an array type, per C99 6.7.5.2 - Array Declarators.
   2494 ///
   2495 class ArrayType : public Type, public llvm::FoldingSetNode {
   2496 public:
   2497   /// Capture whether this is a normal array (e.g. int X[4])
   2498   /// an array with a static size (e.g. int X[static 4]), or an array
   2499   /// with a star size (e.g. int X[*]).
   2500   /// 'static' is only allowed on function parameters.
   2501   enum ArraySizeModifier {
   2502     Normal, Static, Star
   2503   };
   2504 private:
   2505   /// The element type of the array.
   2506   QualType ElementType;
   2507 
   2508 protected:
   2509   // C++ [temp.dep.type]p1:
   2510   //   A type is dependent if it is...
   2511   //     - an array type constructed from any dependent type or whose
   2512   //       size is specified by a constant expression that is
   2513   //       value-dependent,
   2514   ArrayType(TypeClass tc, QualType et, QualType can,
   2515             ArraySizeModifier sm, unsigned tq,
   2516             bool ContainsUnexpandedParameterPack)
   2517     : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
   2518            et->isInstantiationDependentType() || tc == DependentSizedArray,
   2519            (tc == VariableArray || et->isVariablyModifiedType()),
   2520            ContainsUnexpandedParameterPack),
   2521       ElementType(et) {
   2522     ArrayTypeBits.IndexTypeQuals = tq;
   2523     ArrayTypeBits.SizeModifier = sm;
   2524   }
   2525 
   2526   friend class ASTContext;  // ASTContext creates these.
   2527 
   2528 public:
   2529   QualType getElementType() const { return ElementType; }
   2530   ArraySizeModifier getSizeModifier() const {
   2531     return ArraySizeModifier(ArrayTypeBits.SizeModifier);
   2532   }
   2533   Qualifiers getIndexTypeQualifiers() const {
   2534     return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
   2535   }
   2536   unsigned getIndexTypeCVRQualifiers() const {
   2537     return ArrayTypeBits.IndexTypeQuals;
   2538   }
   2539 
   2540   static bool classof(const Type *T) {
   2541     return T->getTypeClass() == ConstantArray ||
   2542            T->getTypeClass() == VariableArray ||
   2543            T->getTypeClass() == IncompleteArray ||
   2544            T->getTypeClass() == DependentSizedArray;
   2545   }
   2546 };
   2547 
   2548 /// Represents the canonical version of C arrays with a specified constant size.
   2549 /// For example, the canonical type for 'int A[4 + 4*100]' is a
   2550 /// ConstantArrayType where the element type is 'int' and the size is 404.
   2551 class ConstantArrayType : public ArrayType {
   2552   llvm::APInt Size; // Allows us to unique the type.
   2553 
   2554   ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
   2555                     ArraySizeModifier sm, unsigned tq)
   2556     : ArrayType(ConstantArray, et, can, sm, tq,
   2557                 et->containsUnexpandedParameterPack()),
   2558       Size(size) {}
   2559 protected:
   2560   ConstantArrayType(TypeClass tc, QualType et, QualType can,
   2561                     const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
   2562     : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
   2563       Size(size) {}
   2564   friend class ASTContext;  // ASTContext creates these.
   2565 public:
   2566   const llvm::APInt &getSize() const { return Size; }
   2567   bool isSugared() const { return false; }
   2568   QualType desugar() const { return QualType(this, 0); }
   2569 
   2570 
   2571   /// \brief Determine the number of bits required to address a member of
   2572   // an array with the given element type and number of elements.
   2573   static unsigned getNumAddressingBits(const ASTContext &Context,
   2574                                        QualType ElementType,
   2575                                        const llvm::APInt &NumElements);
   2576 
   2577   /// \brief Determine the maximum number of active bits that an array's size
   2578   /// can require, which limits the maximum size of the array.
   2579   static unsigned getMaxSizeBits(const ASTContext &Context);
   2580 
   2581   void Profile(llvm::FoldingSetNodeID &ID) {
   2582     Profile(ID, getElementType(), getSize(),
   2583             getSizeModifier(), getIndexTypeCVRQualifiers());
   2584   }
   2585   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2586                       const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
   2587                       unsigned TypeQuals) {
   2588     ID.AddPointer(ET.getAsOpaquePtr());
   2589     ID.AddInteger(ArraySize.getZExtValue());
   2590     ID.AddInteger(SizeMod);
   2591     ID.AddInteger(TypeQuals);
   2592   }
   2593   static bool classof(const Type *T) {
   2594     return T->getTypeClass() == ConstantArray;
   2595   }
   2596 };
   2597 
   2598 /// Represents a C array with an unspecified size.  For example 'int A[]' has
   2599 /// an IncompleteArrayType where the element type is 'int' and the size is
   2600 /// unspecified.
   2601 class IncompleteArrayType : public ArrayType {
   2602 
   2603   IncompleteArrayType(QualType et, QualType can,
   2604                       ArraySizeModifier sm, unsigned tq)
   2605     : ArrayType(IncompleteArray, et, can, sm, tq,
   2606                 et->containsUnexpandedParameterPack()) {}
   2607   friend class ASTContext;  // ASTContext creates these.
   2608 public:
   2609   bool isSugared() const { return false; }
   2610   QualType desugar() const { return QualType(this, 0); }
   2611 
   2612   static bool classof(const Type *T) {
   2613     return T->getTypeClass() == IncompleteArray;
   2614   }
   2615 
   2616   friend class StmtIteratorBase;
   2617 
   2618   void Profile(llvm::FoldingSetNodeID &ID) {
   2619     Profile(ID, getElementType(), getSizeModifier(),
   2620             getIndexTypeCVRQualifiers());
   2621   }
   2622 
   2623   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2624                       ArraySizeModifier SizeMod, unsigned TypeQuals) {
   2625     ID.AddPointer(ET.getAsOpaquePtr());
   2626     ID.AddInteger(SizeMod);
   2627     ID.AddInteger(TypeQuals);
   2628   }
   2629 };
   2630 
   2631 /// Represents a C array with a specified size that is not an
   2632 /// integer-constant-expression.  For example, 'int s[x+foo()]'.
   2633 /// Since the size expression is an arbitrary expression, we store it as such.
   2634 ///
   2635 /// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
   2636 /// should not be: two lexically equivalent variable array types could mean
   2637 /// different things, for example, these variables do not have the same type
   2638 /// dynamically:
   2639 ///
   2640 /// void foo(int x) {
   2641 ///   int Y[x];
   2642 ///   ++x;
   2643 ///   int Z[x];
   2644 /// }
   2645 ///
   2646 class VariableArrayType : public ArrayType {
   2647   /// An assignment-expression. VLA's are only permitted within
   2648   /// a function block.
   2649   Stmt *SizeExpr;
   2650   /// The range spanned by the left and right array brackets.
   2651   SourceRange Brackets;
   2652 
   2653   VariableArrayType(QualType et, QualType can, Expr *e,
   2654                     ArraySizeModifier sm, unsigned tq,
   2655                     SourceRange brackets)
   2656     : ArrayType(VariableArray, et, can, sm, tq,
   2657                 et->containsUnexpandedParameterPack()),
   2658       SizeExpr((Stmt*) e), Brackets(brackets) {}
   2659   friend class ASTContext;  // ASTContext creates these.
   2660 
   2661 public:
   2662   Expr *getSizeExpr() const {
   2663     // We use C-style casts instead of cast<> here because we do not wish
   2664     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2665     return (Expr*) SizeExpr;
   2666   }
   2667   SourceRange getBracketsRange() const { return Brackets; }
   2668   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2669   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2670 
   2671   bool isSugared() const { return false; }
   2672   QualType desugar() const { return QualType(this, 0); }
   2673 
   2674   static bool classof(const Type *T) {
   2675     return T->getTypeClass() == VariableArray;
   2676   }
   2677 
   2678   friend class StmtIteratorBase;
   2679 
   2680   void Profile(llvm::FoldingSetNodeID &ID) {
   2681     llvm_unreachable("Cannot unique VariableArrayTypes.");
   2682   }
   2683 };
   2684 
   2685 /// Represents an array type in C++ whose size is a value-dependent expression.
   2686 ///
   2687 /// For example:
   2688 /// \code
   2689 /// template<typename T, int Size>
   2690 /// class array {
   2691 ///   T data[Size];
   2692 /// };
   2693 /// \endcode
   2694 ///
   2695 /// For these types, we won't actually know what the array bound is
   2696 /// until template instantiation occurs, at which point this will
   2697 /// become either a ConstantArrayType or a VariableArrayType.
   2698 class DependentSizedArrayType : public ArrayType {
   2699   const ASTContext &Context;
   2700 
   2701   /// \brief An assignment expression that will instantiate to the
   2702   /// size of the array.
   2703   ///
   2704   /// The expression itself might be null, in which case the array
   2705   /// type will have its size deduced from an initializer.
   2706   Stmt *SizeExpr;
   2707 
   2708   /// The range spanned by the left and right array brackets.
   2709   SourceRange Brackets;
   2710 
   2711   DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
   2712                           Expr *e, ArraySizeModifier sm, unsigned tq,
   2713                           SourceRange brackets);
   2714 
   2715   friend class ASTContext;  // ASTContext creates these.
   2716 
   2717 public:
   2718   Expr *getSizeExpr() const {
   2719     // We use C-style casts instead of cast<> here because we do not wish
   2720     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2721     return (Expr*) SizeExpr;
   2722   }
   2723   SourceRange getBracketsRange() const { return Brackets; }
   2724   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2725   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2726 
   2727   bool isSugared() const { return false; }
   2728   QualType desugar() const { return QualType(this, 0); }
   2729 
   2730   static bool classof(const Type *T) {
   2731     return T->getTypeClass() == DependentSizedArray;
   2732   }
   2733 
   2734   friend class StmtIteratorBase;
   2735 
   2736 
   2737   void Profile(llvm::FoldingSetNodeID &ID) {
   2738     Profile(ID, Context, getElementType(),
   2739             getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
   2740   }
   2741 
   2742   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2743                       QualType ET, ArraySizeModifier SizeMod,
   2744                       unsigned TypeQuals, Expr *E);
   2745 };
   2746 
   2747 /// Represents an extended address space qualifier where the input address space
   2748 /// value is dependent. Non-dependent address spaces are not represented with a
   2749 /// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
   2750 ///
   2751 /// For example:
   2752 /// \code
   2753 /// template<typename T, int AddrSpace>
   2754 /// class AddressSpace {
   2755 ///   typedef T __attribute__((address_space(AddrSpace))) type;
   2756 /// }
   2757 /// \endcode
   2758 class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
   2759   const ASTContext &Context;
   2760   Expr *AddrSpaceExpr;
   2761   QualType PointeeType;
   2762   SourceLocation loc;
   2763 
   2764   DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
   2765                             QualType can, Expr *AddrSpaceExpr,
   2766                             SourceLocation loc);
   2767 
   2768   friend class ASTContext;
   2769 
   2770 public:
   2771   Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
   2772   QualType getPointeeType() const { return PointeeType; }
   2773   SourceLocation getAttributeLoc() const { return loc; }
   2774 
   2775   bool isSugared() const { return false; }
   2776   QualType desugar() const { return QualType(this, 0); }
   2777 
   2778   static bool classof(const Type *T) {
   2779     return T->getTypeClass() == DependentAddressSpace;
   2780   }
   2781 
   2782   void Profile(llvm::FoldingSetNodeID &ID) {
   2783     Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
   2784   }
   2785 
   2786   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2787                       QualType PointeeType, Expr *AddrSpaceExpr);
   2788 };
   2789 
   2790 /// Represents an extended vector type where either the type or size is
   2791 /// dependent.
   2792 ///
   2793 /// For example:
   2794 /// \code
   2795 /// template<typename T, int Size>
   2796 /// class vector {
   2797 ///   typedef T __attribute__((ext_vector_type(Size))) type;
   2798 /// }
   2799 /// \endcode
   2800 class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
   2801   const ASTContext &Context;
   2802   Expr *SizeExpr;
   2803   /// The element type of the array.
   2804   QualType ElementType;
   2805   SourceLocation loc;
   2806 
   2807   DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
   2808                               QualType can, Expr *SizeExpr, SourceLocation loc);
   2809 
   2810   friend class ASTContext;
   2811 
   2812 public:
   2813   Expr *getSizeExpr() const { return SizeExpr; }
   2814   QualType getElementType() const { return ElementType; }
   2815   SourceLocation getAttributeLoc() const { return loc; }
   2816 
   2817   bool isSugared() const { return false; }
   2818   QualType desugar() const { return QualType(this, 0); }
   2819 
   2820   static bool classof(const Type *T) {
   2821     return T->getTypeClass() == DependentSizedExtVector;
   2822   }
   2823 
   2824   void Profile(llvm::FoldingSetNodeID &ID) {
   2825     Profile(ID, Context, getElementType(), getSizeExpr());
   2826   }
   2827 
   2828   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2829                       QualType ElementType, Expr *SizeExpr);
   2830 };
   2831 
   2832 
   2833 /// Represents a GCC generic vector type. This type is created using
   2834 /// __attribute__((vector_size(n)), where "n" specifies the vector size in
   2835 /// bytes; or from an Altivec __vector or vector declaration.
   2836 /// Since the constructor takes the number of vector elements, the
   2837 /// client is responsible for converting the size into the number of elements.
   2838 class VectorType : public Type, public llvm::FoldingSetNode {
   2839 public:
   2840   enum VectorKind {
   2841     GenericVector,  ///< not a target-specific vector type
   2842     AltiVecVector,  ///< is AltiVec vector
   2843     AltiVecPixel,   ///< is AltiVec 'vector Pixel'
   2844     AltiVecBool,    ///< is AltiVec 'vector bool ...'
   2845     NeonVector,     ///< is ARM Neon vector
   2846     NeonPolyVector  ///< is ARM Neon polynomial vector
   2847   };
   2848 protected:
   2849   /// The element type of the vector.
   2850   QualType ElementType;
   2851 
   2852   VectorType(QualType vecType, unsigned nElements, QualType canonType,
   2853              VectorKind vecKind);
   2854 
   2855   VectorType(TypeClass tc, QualType vecType, unsigned nElements,
   2856              QualType canonType, VectorKind vecKind);
   2857 
   2858   friend class ASTContext;  // ASTContext creates these.
   2859 
   2860 public:
   2861 
   2862   QualType getElementType() const { return ElementType; }
   2863   unsigned getNumElements() const { return VectorTypeBits.NumElements; }
   2864   static bool isVectorSizeTooLarge(unsigned NumElements) {
   2865     return NumElements > VectorTypeBitfields::MaxNumElements;
   2866   }
   2867 
   2868   bool isSugared() const { return false; }
   2869   QualType desugar() const { return QualType(this, 0); }
   2870 
   2871   VectorKind getVectorKind() const {
   2872     return VectorKind(VectorTypeBits.VecKind);
   2873   }
   2874 
   2875   void Profile(llvm::FoldingSetNodeID &ID) {
   2876     Profile(ID, getElementType(), getNumElements(),
   2877             getTypeClass(), getVectorKind());
   2878   }
   2879   static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
   2880                       unsigned NumElements, TypeClass TypeClass,
   2881                       VectorKind VecKind) {
   2882     ID.AddPointer(ElementType.getAsOpaquePtr());
   2883     ID.AddInteger(NumElements);
   2884     ID.AddInteger(TypeClass);
   2885     ID.AddInteger(VecKind);
   2886   }
   2887 
   2888   static bool classof(const Type *T) {
   2889     return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
   2890   }
   2891 };
   2892 
   2893 /// ExtVectorType - Extended vector type. This type is created using
   2894 /// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
   2895 /// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
   2896 /// class enables syntactic extensions, like Vector Components for accessing
   2897 /// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
   2898 /// Shading Language).
   2899 class ExtVectorType : public VectorType {
   2900   ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
   2901     VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
   2902   friend class ASTContext;  // ASTContext creates these.
   2903 public:
   2904   static int getPointAccessorIdx(char c) {
   2905     switch (c) {
   2906     default: return -1;
   2907     case 'x': case 'r': return 0;
   2908     case 'y': case 'g': return 1;
   2909     case 'z': case 'b': return 2;
   2910     case 'w': case 'a': return 3;
   2911     }
   2912   }
   2913   static int getNumericAccessorIdx(char c) {
   2914     switch (c) {
   2915       default: return -1;
   2916       case '0': return 0;
   2917       case '1': return 1;
   2918       case '2': return 2;
   2919       case '3': return 3;
   2920       case '4': return 4;
   2921       case '5': return 5;
   2922       case '6': return 6;
   2923       case '7': return 7;
   2924       case '8': return 8;
   2925       case '9': return 9;
   2926       case 'A':
   2927       case 'a': return 10;
   2928       case 'B':
   2929       case 'b': return 11;
   2930       case 'C':
   2931       case 'c': return 12;
   2932       case 'D':
   2933       case 'd': return 13;
   2934       case 'E':
   2935       case 'e': return 14;
   2936       case 'F':
   2937       case 'f': return 15;
   2938     }
   2939   }
   2940 
   2941   static int getAccessorIdx(char c, bool isNumericAccessor) {
   2942     if (isNumericAccessor)
   2943       return getNumericAccessorIdx(c);
   2944     else
   2945       return getPointAccessorIdx(c);
   2946   }
   2947 
   2948   bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
   2949     if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
   2950       return unsigned(idx-1) < getNumElements();
   2951     return false;
   2952   }
   2953   bool isSugared() const { return false; }
   2954   QualType desugar() const { return QualType(this, 0); }
   2955 
   2956   static bool classof(const Type *T) {
   2957     return T->getTypeClass() == ExtVector;
   2958   }
   2959 };
   2960 
   2961 /// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
   2962 /// class of FunctionNoProtoType and FunctionProtoType.
   2963 ///
   2964 class FunctionType : public Type {
   2965   // The type returned by the function.
   2966   QualType ResultType;
   2967 
   2968  public:
   2969   /// A class which abstracts out some details necessary for
   2970   /// making a call.
   2971   ///
   2972   /// It is not actually used directly for storing this information in
   2973   /// a FunctionType, although FunctionType does currently use the
   2974   /// same bit-pattern.
   2975   ///
   2976   // If you add a field (say Foo), other than the obvious places (both,
   2977   // constructors, compile failures), what you need to update is
   2978   // * Operator==
   2979   // * getFoo
   2980   // * withFoo
   2981   // * functionType. Add Foo, getFoo.
   2982   // * ASTContext::getFooType
   2983   // * ASTContext::mergeFunctionTypes
   2984   // * FunctionNoProtoType::Profile
   2985   // * FunctionProtoType::Profile
   2986   // * TypePrinter::PrintFunctionProto
   2987   // * AST read and write
   2988   // * Codegen
   2989   class ExtInfo {
   2990     // Feel free to rearrange or add bits, but if you go over 11,
   2991     // you'll need to adjust both the Bits field below and
   2992     // Type::FunctionTypeBitfields.
   2993 
   2994     //   |  CC  |noreturn|produces|nocallersavedregs|regparm|
   2995     //   |0 .. 4|   5    |    6   |       7         |8 .. 10|
   2996     //
   2997     // regparm is either 0 (no regparm attribute) or the regparm value+1.
   2998     enum { CallConvMask = 0x1F };
   2999     enum { NoReturnMask = 0x20 };
   3000     enum { ProducesResultMask = 0x40 };
   3001     enum { NoCallerSavedRegsMask = 0x80 };
   3002     enum {
   3003       RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask |
   3004                       NoCallerSavedRegsMask),
   3005       RegParmOffset = 8
   3006     }; // Assumed to be the last field
   3007 
   3008     uint16_t Bits;
   3009 
   3010     ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
   3011 
   3012     friend class FunctionType;
   3013 
   3014    public:
   3015     // Constructor with no defaults. Use this when you know that you
   3016     // have all the elements (when reading an AST file for example).
   3017      ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
   3018              bool producesResult, bool noCallerSavedRegs) {
   3019        assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
   3020        Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
   3021               (producesResult ? ProducesResultMask : 0) |
   3022               (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
   3023               (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
   3024     }
   3025 
   3026     // Constructor with all defaults. Use when for example creating a
   3027     // function known to use defaults.
   3028     ExtInfo() : Bits(CC_C) { }
   3029 
   3030     // Constructor with just the calling convention, which is an important part
   3031     // of the canonical type.
   3032     ExtInfo(CallingConv CC) : Bits(CC) { }
   3033 
   3034     bool getNoReturn() const { return Bits & NoReturnMask; }
   3035     bool getProducesResult() const { return Bits & ProducesResultMask; }
   3036     bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
   3037     bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
   3038     unsigned getRegParm() const {
   3039       unsigned RegParm = Bits >> RegParmOffset;
   3040       if (RegParm > 0)
   3041         --RegParm;
   3042       return RegParm;
   3043     }
   3044     CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
   3045 
   3046     bool operator==(ExtInfo Other) const {
   3047       return Bits == Other.Bits;
   3048     }
   3049     bool operator!=(ExtInfo Other) const {
   3050       return Bits != Other.Bits;
   3051     }
   3052 
   3053     // Note that we don't have setters. That is by design, use
   3054     // the following with methods instead of mutating these objects.
   3055 
   3056     ExtInfo withNoReturn(bool noReturn) const {
   3057       if (noReturn)
   3058         return ExtInfo(Bits | NoReturnMask);
   3059       else
   3060         return ExtInfo(Bits & ~NoReturnMask);
   3061     }
   3062 
   3063     ExtInfo withProducesResult(bool producesResult) const {
   3064       if (producesResult)
   3065         return ExtInfo(Bits | ProducesResultMask);
   3066       else
   3067         return ExtInfo(Bits & ~ProducesResultMask);
   3068     }
   3069 
   3070     ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
   3071       if (noCallerSavedRegs)
   3072         return ExtInfo(Bits | NoCallerSavedRegsMask);
   3073       else
   3074         return ExtInfo(Bits & ~NoCallerSavedRegsMask);
   3075     }
   3076 
   3077     ExtInfo withRegParm(unsigned RegParm) const {
   3078       assert(RegParm < 7 && "Invalid regparm value");
   3079       return ExtInfo((Bits & ~RegParmMask) |
   3080                      ((RegParm + 1) << RegParmOffset));
   3081     }
   3082 
   3083     ExtInfo withCallingConv(CallingConv cc) const {
   3084       return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
   3085     }
   3086 
   3087     void Profile(llvm::FoldingSetNodeID &ID) const {
   3088       ID.AddInteger(Bits);
   3089     }
   3090   };
   3091 
   3092 protected:
   3093   FunctionType(TypeClass tc, QualType res,
   3094                QualType Canonical, bool Dependent,
   3095                bool InstantiationDependent,
   3096                bool VariablyModified, bool ContainsUnexpandedParameterPack,
   3097                ExtInfo Info)
   3098     : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   3099            ContainsUnexpandedParameterPack),
   3100       ResultType(res) {
   3101     FunctionTypeBits.ExtInfo = Info.Bits;
   3102   }
   3103   unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
   3104 
   3105 public:
   3106   QualType getReturnType() const { return ResultType; }
   3107 
   3108   bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
   3109   unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
   3110   /// Determine whether this function type includes the GNU noreturn
   3111   /// attribute. The C++11 [[noreturn]] attribute does not affect the function
   3112   /// type.
   3113   bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
   3114   CallingConv getCallConv() const { return getExtInfo().getCC(); }
   3115   ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
   3116   bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
   3117   bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
   3118   bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
   3119 
   3120   /// \brief Determine the type of an expression that calls a function of
   3121   /// this type.
   3122   QualType getCallResultType(const ASTContext &Context) const {
   3123     return getReturnType().getNonLValueExprType(Context);
   3124   }
   3125 
   3126   static StringRef getNameForCallConv(CallingConv CC);
   3127 
   3128   static bool classof(const Type *T) {
   3129     return T->getTypeClass() == FunctionNoProto ||
   3130            T->getTypeClass() == FunctionProto;
   3131   }
   3132 };
   3133 
   3134 /// Represents a K&R-style 'int foo()' function, which has
   3135 /// no information available about its arguments.
   3136 class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
   3137   FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
   3138     : FunctionType(FunctionNoProto, Result, Canonical,
   3139                    /*Dependent=*/false, /*InstantiationDependent=*/false,
   3140                    Result->isVariablyModifiedType(),
   3141                    /*ContainsUnexpandedParameterPack=*/false, Info) {}
   3142 
   3143   friend class ASTContext;  // ASTContext creates these.
   3144 
   3145 public:
   3146   // No additional state past what FunctionType provides.
   3147 
   3148   bool isSugared() const { return false; }
   3149   QualType desugar() const { return QualType(this, 0); }
   3150 
   3151   void Profile(llvm::FoldingSetNodeID &ID) {
   3152     Profile(ID, getReturnType(), getExtInfo());
   3153   }
   3154   static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
   3155                       ExtInfo Info) {
   3156     Info.Profile(ID);
   3157     ID.AddPointer(ResultType.getAsOpaquePtr());
   3158   }
   3159 
   3160   static bool classof(const Type *T) {
   3161     return T->getTypeClass() == FunctionNoProto;
   3162   }
   3163 };
   3164 
   3165 /// Represents a prototype with parameter type info, e.g.
   3166 /// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
   3167 /// parameters, not as having a single void parameter. Such a type can have an
   3168 /// exception specification, but this specification is not part of the canonical
   3169 /// type.
   3170 class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
   3171 public:
   3172   /// Interesting information about a specific parameter that can't simply
   3173   /// be reflected in parameter's type.
   3174   ///
   3175   /// It makes sense to model language features this way when there's some
   3176   /// sort of parameter-specific override (such as an attribute) that
   3177   /// affects how the function is called.  For example, the ARC ns_consumed
   3178   /// attribute changes whether a parameter is passed at +0 (the default)
   3179   /// or +1 (ns_consumed).  This must be reflected in the function type,
   3180   /// but isn't really a change to the parameter type.
   3181   ///
   3182   /// One serious disadvantage of modelling language features this way is
   3183   /// that they generally do not work with language features that attempt
   3184   /// to destructure types.  For example, template argument deduction will
   3185   /// not be able to match a parameter declared as
   3186   ///   T (*)(U)
   3187   /// against an argument of type
   3188   ///   void (*)(__attribute__((ns_consumed)) id)
   3189   /// because the substitution of T=void, U=id into the former will
   3190   /// not produce the latter.
   3191   class ExtParameterInfo {
   3192     enum {
   3193       ABIMask         = 0x0F,
   3194       IsConsumed      = 0x10,
   3195       HasPassObjSize  = 0x20,
   3196       IsNoEscape      = 0x40,
   3197     };
   3198     unsigned char Data;
   3199 
   3200   public:
   3201     ExtParameterInfo() : Data(0) {}
   3202 
   3203     /// Return the ABI treatment of this parameter.
   3204     ParameterABI getABI() const {
   3205       return ParameterABI(Data & ABIMask);
   3206     }
   3207     ExtParameterInfo withABI(ParameterABI kind) const {
   3208       ExtParameterInfo copy = *this;
   3209       copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
   3210       return copy;
   3211     }
   3212 
   3213     /// Is this parameter considered "consumed" by Objective-C ARC?
   3214     /// Consumed parameters must have retainable object type.
   3215     bool isConsumed() const {
   3216       return (Data & IsConsumed);
   3217     }
   3218     ExtParameterInfo withIsConsumed(bool consumed) const {
   3219       ExtParameterInfo copy = *this;
   3220       if (consumed) {
   3221         copy.Data |= IsConsumed;
   3222       } else {
   3223         copy.Data &= ~IsConsumed;
   3224       }
   3225       return copy;
   3226     }
   3227 
   3228     bool hasPassObjectSize() const {
   3229       return Data & HasPassObjSize;
   3230     }
   3231     ExtParameterInfo withHasPassObjectSize() const {
   3232       ExtParameterInfo Copy = *this;
   3233       Copy.Data |= HasPassObjSize;
   3234       return Copy;
   3235     }
   3236 
   3237     bool isNoEscape() const {
   3238       return Data & IsNoEscape;
   3239     }
   3240 
   3241     ExtParameterInfo withIsNoEscape(bool NoEscape) const {
   3242       ExtParameterInfo Copy = *this;
   3243       if (NoEscape)
   3244         Copy.Data |= IsNoEscape;
   3245       else
   3246         Copy.Data &= ~IsNoEscape;
   3247       return Copy;
   3248     }
   3249 
   3250     unsigned char getOpaqueValue() const { return Data; }
   3251     static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
   3252       ExtParameterInfo result;
   3253       result.Data = data;
   3254       return result;
   3255     }
   3256 
   3257     friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
   3258       return lhs.Data == rhs.Data;
   3259     }
   3260     friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
   3261       return lhs.Data != rhs.Data;
   3262     }
   3263   };
   3264 
   3265   struct ExceptionSpecInfo {
   3266     ExceptionSpecInfo()
   3267         : Type(EST_None), NoexceptExpr(nullptr),
   3268           SourceDecl(nullptr), SourceTemplate(nullptr) {}
   3269 
   3270     ExceptionSpecInfo(ExceptionSpecificationType EST)
   3271         : Type(EST), NoexceptExpr(nullptr), SourceDecl(nullptr),
   3272           SourceTemplate(nullptr) {}
   3273 
   3274     /// The kind of exception specification this is.
   3275     ExceptionSpecificationType Type;
   3276     /// Explicitly-specified list of exception types.
   3277     ArrayRef<QualType> Exceptions;
   3278     /// Noexcept expression, if this is EST_ComputedNoexcept.
   3279     Expr *NoexceptExpr;
   3280     /// The function whose exception specification this is, for
   3281     /// EST_Unevaluated and EST_Uninstantiated.
   3282     FunctionDecl *SourceDecl;
   3283     /// The function template whose exception specification this is instantiated
   3284     /// from, for EST_Uninstantiated.
   3285     FunctionDecl *SourceTemplate;
   3286   };
   3287 
   3288   /// Extra information about a function prototype.
   3289   struct ExtProtoInfo {
   3290     ExtProtoInfo()
   3291         : Variadic(false), HasTrailingReturn(false), TypeQuals(0),
   3292           RefQualifier(RQ_None), ExtParameterInfos(nullptr) {}
   3293 
   3294     ExtProtoInfo(CallingConv CC)
   3295         : ExtInfo(CC), Variadic(false), HasTrailingReturn(false), TypeQuals(0),
   3296           RefQualifier(RQ_None), ExtParameterInfos(nullptr) {}
   3297 
   3298     ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &O) {
   3299       ExtProtoInfo Result(*this);
   3300       Result.ExceptionSpec = O;
   3301       return Result;
   3302     }
   3303 
   3304     FunctionType::ExtInfo ExtInfo;
   3305     bool Variadic : 1;
   3306     bool HasTrailingReturn : 1;
   3307     unsigned char TypeQuals;
   3308     RefQualifierKind RefQualifier;
   3309     ExceptionSpecInfo ExceptionSpec;
   3310     const ExtParameterInfo *ExtParameterInfos;
   3311   };
   3312 
   3313 private:
   3314   /// \brief Determine whether there are any argument types that
   3315   /// contain an unexpanded parameter pack.
   3316   static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
   3317                                                  unsigned numArgs) {
   3318     for (unsigned Idx = 0; Idx < numArgs; ++Idx)
   3319       if (ArgArray[Idx]->containsUnexpandedParameterPack())
   3320         return true;
   3321 
   3322     return false;
   3323   }
   3324 
   3325   FunctionProtoType(QualType result, ArrayRef<QualType> params,
   3326                     QualType canonical, const ExtProtoInfo &epi);
   3327 
   3328   /// The number of parameters this function has, not counting '...'.
   3329   unsigned NumParams : 15;
   3330 
   3331   /// The number of types in the exception spec, if any.
   3332   unsigned NumExceptions : 9;
   3333 
   3334   /// The type of exception specification this function has.
   3335   unsigned ExceptionSpecType : 4;
   3336 
   3337   /// Whether this function has extended parameter information.
   3338   unsigned HasExtParameterInfos : 1;
   3339 
   3340   /// Whether the function is variadic.
   3341   unsigned Variadic : 1;
   3342 
   3343   /// Whether this function has a trailing return type.
   3344   unsigned HasTrailingReturn : 1;
   3345 
   3346   // ParamInfo - There is an variable size array after the class in memory that
   3347   // holds the parameter types.
   3348 
   3349   // Exceptions - There is another variable size array after ArgInfo that
   3350   // holds the exception types.
   3351 
   3352   // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
   3353   // to the expression in the noexcept() specifier.
   3354 
   3355   // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
   3356   // be a pair of FunctionDecl* pointing to the function which should be used to
   3357   // instantiate this function type's exception specification, and the function
   3358   // from which it should be instantiated.
   3359 
   3360   // ExtParameterInfos - A variable size array, following the exception
   3361   // specification and of length NumParams, holding an ExtParameterInfo
   3362   // for each of the parameters.  This only appears if HasExtParameterInfos
   3363   // is true.
   3364 
   3365   friend class ASTContext;  // ASTContext creates these.
   3366 
   3367   const ExtParameterInfo *getExtParameterInfosBuffer() const {
   3368     assert(hasExtParameterInfos());
   3369 
   3370     // Find the end of the exception specification.
   3371     const char *ptr = reinterpret_cast<const char *>(exception_begin());
   3372     ptr += getExceptionSpecSize();
   3373 
   3374     return reinterpret_cast<const ExtParameterInfo *>(ptr);
   3375   }
   3376 
   3377   size_t getExceptionSpecSize() const {
   3378     switch (getExceptionSpecType()) {
   3379     case EST_None:             return 0;
   3380     case EST_DynamicNone:      return 0;
   3381     case EST_MSAny:            return 0;
   3382     case EST_BasicNoexcept:    return 0;
   3383     case EST_Unparsed:         return 0;
   3384     case EST_Dynamic:          return getNumExceptions() * sizeof(QualType);
   3385     case EST_ComputedNoexcept: return sizeof(Expr*);
   3386     case EST_Uninstantiated:   return 2 * sizeof(FunctionDecl*);
   3387     case EST_Unevaluated:      return sizeof(FunctionDecl*);
   3388     }
   3389     llvm_unreachable("bad exception specification kind");
   3390   }
   3391 
   3392 public:
   3393   unsigned getNumParams() const { return NumParams; }
   3394   QualType getParamType(unsigned i) const {
   3395     assert(i < NumParams && "invalid parameter index");
   3396     return param_type_begin()[i];
   3397   }
   3398   ArrayRef<QualType> getParamTypes() const {
   3399     return llvm::makeArrayRef(param_type_begin(), param_type_end());
   3400   }
   3401 
   3402   ExtProtoInfo getExtProtoInfo() const {
   3403     ExtProtoInfo EPI;
   3404     EPI.ExtInfo = getExtInfo();
   3405     EPI.Variadic = isVariadic();
   3406     EPI.HasTrailingReturn = hasTrailingReturn();
   3407     EPI.ExceptionSpec.Type = getExceptionSpecType();
   3408     EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
   3409     EPI.RefQualifier = getRefQualifier();
   3410     if (EPI.ExceptionSpec.Type == EST_Dynamic) {
   3411       EPI.ExceptionSpec.Exceptions = exceptions();
   3412     } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
   3413       EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
   3414     } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
   3415       EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
   3416       EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
   3417     } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
   3418       EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
   3419     }
   3420     if (hasExtParameterInfos())
   3421       EPI.ExtParameterInfos = getExtParameterInfosBuffer();
   3422     return EPI;
   3423   }
   3424 
   3425   /// Get the kind of exception specification on this function.
   3426   ExceptionSpecificationType getExceptionSpecType() const {
   3427     return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
   3428   }
   3429   /// Return whether this function has any kind of exception spec.
   3430   bool hasExceptionSpec() const {
   3431     return getExceptionSpecType() != EST_None;
   3432   }
   3433   /// Return whether this function has a dynamic (throw) exception spec.
   3434   bool hasDynamicExceptionSpec() const {
   3435     return isDynamicExceptionSpec(getExceptionSpecType());
   3436   }
   3437   /// Return whether this function has a noexcept exception spec.
   3438   bool hasNoexceptExceptionSpec() const {
   3439     return isNoexceptExceptionSpec(getExceptionSpecType());
   3440   }
   3441   /// Return whether this function has a dependent exception spec.
   3442   bool hasDependentExceptionSpec() const;
   3443   /// Return whether this function has an instantiation-dependent exception
   3444   /// spec.
   3445   bool hasInstantiationDependentExceptionSpec() const;
   3446   /// Result type of getNoexceptSpec().
   3447   enum NoexceptResult {
   3448     NR_NoNoexcept,  ///< There is no noexcept specifier.
   3449     NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
   3450     NR_Dependent,   ///< The noexcept specifier is dependent.
   3451     NR_Throw,       ///< The noexcept specifier evaluates to false.
   3452     NR_Nothrow      ///< The noexcept specifier evaluates to true.
   3453   };
   3454   /// Get the meaning of the noexcept spec on this function, if any.
   3455   NoexceptResult getNoexceptSpec(const ASTContext &Ctx) const;
   3456   unsigned getNumExceptions() const { return NumExceptions; }
   3457   QualType getExceptionType(unsigned i) const {
   3458     assert(i < NumExceptions && "Invalid exception number!");
   3459     return exception_begin()[i];
   3460   }
   3461   Expr *getNoexceptExpr() const {
   3462     if (getExceptionSpecType() != EST_ComputedNoexcept)
   3463       return nullptr;
   3464     // NoexceptExpr sits where the arguments end.
   3465     return *reinterpret_cast<Expr *const *>(param_type_end());
   3466   }
   3467   /// \brief If this function type has an exception specification which hasn't
   3468   /// been determined yet (either because it has not been evaluated or because
   3469   /// it has not been instantiated), this is the function whose exception
   3470   /// specification is represented by this type.
   3471   FunctionDecl *getExceptionSpecDecl() const {
   3472     if (getExceptionSpecType() != EST_Uninstantiated &&
   3473         getExceptionSpecType() != EST_Unevaluated)
   3474       return nullptr;
   3475     return reinterpret_cast<FunctionDecl *const *>(param_type_end())[0];
   3476   }
   3477   /// \brief If this function type has an uninstantiated exception
   3478   /// specification, this is the function whose exception specification
   3479   /// should be instantiated to find the exception specification for
   3480   /// this type.
   3481   FunctionDecl *getExceptionSpecTemplate() const {
   3482     if (getExceptionSpecType() != EST_Uninstantiated)
   3483       return nullptr;
   3484     return reinterpret_cast<FunctionDecl *const *>(param_type_end())[1];
   3485   }
   3486   /// Determine whether this function type has a non-throwing exception
   3487   /// specification.
   3488   CanThrowResult canThrow(const ASTContext &Ctx) const;
   3489   /// Determine whether this function type has a non-throwing exception
   3490   /// specification. If this depends on template arguments, returns
   3491   /// \c ResultIfDependent.
   3492   bool isNothrow(const ASTContext &Ctx, bool ResultIfDependent = false) const {
   3493     return ResultIfDependent ? canThrow(Ctx) != CT_Can
   3494                              : canThrow(Ctx) == CT_Cannot;
   3495   }
   3496 
   3497   bool isVariadic() const { return Variadic; }
   3498 
   3499   /// Determines whether this function prototype contains a
   3500   /// parameter pack at the end.
   3501   ///
   3502   /// A function template whose last parameter is a parameter pack can be
   3503   /// called with an arbitrary number of arguments, much like a variadic
   3504   /// function.
   3505   bool isTemplateVariadic() const;
   3506 
   3507   bool hasTrailingReturn() const { return HasTrailingReturn; }
   3508 
   3509   unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
   3510 
   3511 
   3512   /// Retrieve the ref-qualifier associated with this function type.
   3513   RefQualifierKind getRefQualifier() const {
   3514     return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
   3515   }
   3516 
   3517   typedef const QualType *param_type_iterator;
   3518   typedef llvm::iterator_range<param_type_iterator> param_type_range;
   3519 
   3520   param_type_range param_types() const {
   3521     return param_type_range(param_type_begin(), param_type_end());
   3522   }
   3523   param_type_iterator param_type_begin() const {
   3524     return reinterpret_cast<const QualType *>(this+1);
   3525   }
   3526   param_type_iterator param_type_end() const {
   3527     return param_type_begin() + NumParams;
   3528   }
   3529 
   3530   typedef const QualType *exception_iterator;
   3531 
   3532   ArrayRef<QualType> exceptions() const {
   3533     return llvm::makeArrayRef(exception_begin(), exception_end());
   3534   }
   3535   exception_iterator exception_begin() const {
   3536     // exceptions begin where arguments end
   3537     return param_type_end();
   3538   }
   3539   exception_iterator exception_end() const {
   3540     if (getExceptionSpecType() != EST_Dynamic)
   3541       return exception_begin();
   3542     return exception_begin() + NumExceptions;
   3543   }
   3544 
   3545   /// Is there any interesting extra information for any of the parameters
   3546   /// of this function type?
   3547   bool hasExtParameterInfos() const { return HasExtParameterInfos; }
   3548   ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
   3549     assert(hasExtParameterInfos());
   3550     return ArrayRef<ExtParameterInfo>(getExtParameterInfosBuffer(),
   3551                                       getNumParams());
   3552   }
   3553   /// Return a pointer to the beginning of the array of extra parameter
   3554   /// information, if present, or else null if none of the parameters
   3555   /// carry it.  This is equivalent to getExtProtoInfo().ExtParameterInfos.
   3556   const ExtParameterInfo *getExtParameterInfosOrNull() const {
   3557     if (!hasExtParameterInfos())
   3558       return nullptr;
   3559     return getExtParameterInfosBuffer();
   3560   }
   3561 
   3562   ExtParameterInfo getExtParameterInfo(unsigned I) const {
   3563     assert(I < getNumParams() && "parameter index out of range");
   3564     if (hasExtParameterInfos())
   3565       return getExtParameterInfosBuffer()[I];
   3566     return ExtParameterInfo();
   3567   }
   3568 
   3569   ParameterABI getParameterABI(unsigned I) const {
   3570     assert(I < getNumParams() && "parameter index out of range");
   3571     if (hasExtParameterInfos())
   3572       return getExtParameterInfosBuffer()[I].getABI();
   3573     return ParameterABI::Ordinary;
   3574   }
   3575 
   3576   bool isParamConsumed(unsigned I) const {
   3577     assert(I < getNumParams() && "parameter index out of range");
   3578     if (hasExtParameterInfos())
   3579       return getExtParameterInfosBuffer()[I].isConsumed();
   3580     return false;
   3581   }
   3582 
   3583   bool isSugared() const { return false; }
   3584   QualType desugar() const { return QualType(this, 0); }
   3585 
   3586   void printExceptionSpecification(raw_ostream &OS,
   3587                                    const PrintingPolicy &Policy) const;
   3588 
   3589   static bool classof(const Type *T) {
   3590     return T->getTypeClass() == FunctionProto;
   3591   }
   3592 
   3593   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
   3594   static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
   3595                       param_type_iterator ArgTys, unsigned NumArgs,
   3596                       const ExtProtoInfo &EPI, const ASTContext &Context,
   3597                       bool Canonical);
   3598 };
   3599 
   3600 /// \brief Represents the dependent type named by a dependently-scoped
   3601 /// typename using declaration, e.g.
   3602 ///   using typename Base<T>::foo;
   3603 ///
   3604 /// Template instantiation turns these into the underlying type.
   3605 class UnresolvedUsingType : public Type {
   3606   UnresolvedUsingTypenameDecl *Decl;
   3607 
   3608   UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
   3609     : Type(UnresolvedUsing, QualType(), true, true, false,
   3610            /*ContainsUnexpandedParameterPack=*/false),
   3611       Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
   3612   friend class ASTContext; // ASTContext creates these.
   3613 public:
   3614 
   3615   UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
   3616 
   3617   bool isSugared() const { return false; }
   3618   QualType desugar() const { return QualType(this, 0); }
   3619 
   3620   static bool classof(const Type *T) {
   3621     return T->getTypeClass() == UnresolvedUsing;
   3622   }
   3623 
   3624   void Profile(llvm::FoldingSetNodeID &ID) {
   3625     return Profile(ID, Decl);
   3626   }
   3627   static void Profile(llvm::FoldingSetNodeID &ID,
   3628                       UnresolvedUsingTypenameDecl *D) {
   3629     ID.AddPointer(D);
   3630   }
   3631 };
   3632 
   3633 
   3634 class TypedefType : public Type {
   3635   TypedefNameDecl *Decl;
   3636 protected:
   3637   TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
   3638     : Type(tc, can, can->isDependentType(),
   3639            can->isInstantiationDependentType(),
   3640            can->isVariablyModifiedType(),
   3641            /*ContainsUnexpandedParameterPack=*/false),
   3642       Decl(const_cast<TypedefNameDecl*>(D)) {
   3643     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   3644   }
   3645   friend class ASTContext;  // ASTContext creates these.
   3646 public:
   3647 
   3648   TypedefNameDecl *getDecl() const { return Decl; }
   3649 
   3650   bool isSugared() const { return true; }
   3651   QualType desugar() const;
   3652 
   3653   static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
   3654 };
   3655 
   3656 /// Represents a `typeof` (or __typeof__) expression (a GCC extension).
   3657 class TypeOfExprType : public Type {
   3658   Expr *TOExpr;
   3659 
   3660 protected:
   3661   TypeOfExprType(Expr *E, QualType can = QualType());
   3662   friend class ASTContext;  // ASTContext creates these.
   3663 public:
   3664   Expr *getUnderlyingExpr() const { return TOExpr; }
   3665 
   3666   /// \brief Remove a single level of sugar.
   3667   QualType desugar() const;
   3668 
   3669   /// \brief Returns whether this type directly provides sugar.
   3670   bool isSugared() const;
   3671 
   3672   static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
   3673 };
   3674 
   3675 /// \brief Internal representation of canonical, dependent
   3676 /// `typeof(expr)` types.
   3677 ///
   3678 /// This class is used internally by the ASTContext to manage
   3679 /// canonical, dependent types, only. Clients will only see instances
   3680 /// of this class via TypeOfExprType nodes.
   3681 class DependentTypeOfExprType
   3682   : public TypeOfExprType, public llvm::FoldingSetNode {
   3683   const ASTContext &Context;
   3684 
   3685 public:
   3686   DependentTypeOfExprType(const ASTContext &Context, Expr *E)
   3687     : TypeOfExprType(E), Context(Context) { }
   3688 
   3689   void Profile(llvm::FoldingSetNodeID &ID) {
   3690     Profile(ID, Context, getUnderlyingExpr());
   3691   }
   3692 
   3693   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   3694                       Expr *E);
   3695 };
   3696 
   3697 /// Represents `typeof(type)`, a GCC extension.
   3698 class TypeOfType : public Type {
   3699   QualType TOType;
   3700   TypeOfType(QualType T, QualType can)
   3701     : Type(TypeOf, can, T->isDependentType(),
   3702            T->isInstantiationDependentType(),
   3703            T->isVariablyModifiedType(),
   3704            T->containsUnexpandedParameterPack()),
   3705       TOType(T) {
   3706     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   3707   }
   3708   friend class ASTContext;  // ASTContext creates these.
   3709 public:
   3710   QualType getUnderlyingType() const { return TOType; }
   3711 
   3712   /// \brief Remove a single level of sugar.
   3713   QualType desugar() const { return getUnderlyingType(); }
   3714 
   3715   /// \brief Returns whether this type directly provides sugar.
   3716   bool isSugared() const { return true; }
   3717 
   3718   static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
   3719 };
   3720 
   3721 /// Represents the type `decltype(expr)` (C++11).
   3722 class DecltypeType : public Type {
   3723   Expr *E;
   3724   QualType UnderlyingType;
   3725 
   3726 protected:
   3727   DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
   3728   friend class ASTContext;  // ASTContext creates these.
   3729 public:
   3730   Expr *getUnderlyingExpr() const { return E; }
   3731   QualType getUnderlyingType() const { return UnderlyingType; }
   3732 
   3733   /// \brief Remove a single level of sugar.
   3734   QualType desugar() const;
   3735 
   3736   /// \brief Returns whether this type directly provides sugar.
   3737   bool isSugared() const;
   3738 
   3739   static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
   3740 };
   3741 
   3742 /// \brief Internal representation of canonical, dependent
   3743 /// decltype(expr) types.
   3744 ///
   3745 /// This class is used internally by the ASTContext to manage
   3746 /// canonical, dependent types, only. Clients will only see instances
   3747 /// of this class via DecltypeType nodes.
   3748 class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
   3749   const ASTContext &Context;
   3750 
   3751 public:
   3752   DependentDecltypeType(const ASTContext &Context, Expr *E);
   3753 
   3754   void Profile(llvm::FoldingSetNodeID &ID) {
   3755     Profile(ID, Context, getUnderlyingExpr());
   3756   }
   3757 
   3758   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   3759                       Expr *E);
   3760 };
   3761 
   3762 /// A unary type transform, which is a type constructed from another.
   3763 class UnaryTransformType : public Type {
   3764 public:
   3765   enum UTTKind {
   3766     EnumUnderlyingType
   3767   };
   3768 
   3769 private:
   3770   /// The untransformed type.
   3771   QualType BaseType;
   3772   /// The transformed type if not dependent, otherwise the same as BaseType.
   3773   QualType UnderlyingType;
   3774 
   3775   UTTKind UKind;
   3776 protected:
   3777   UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
   3778                      QualType CanonicalTy);
   3779   friend class ASTContext;
   3780 public:
   3781   bool isSugared() const { return !isDependentType(); }
   3782   QualType desugar() const { return UnderlyingType; }
   3783 
   3784   QualType getUnderlyingType() const { return UnderlyingType; }
   3785   QualType getBaseType() const { return BaseType; }
   3786 
   3787   UTTKind getUTTKind() const { return UKind; }
   3788 
   3789   static bool classof(const Type *T) {
   3790     return T->getTypeClass() == UnaryTransform;
   3791   }
   3792 };
   3793 
   3794 /// \brief Internal representation of canonical, dependent
   3795 /// __underlying_type(type) types.
   3796 ///
   3797 /// This class is used internally by the ASTContext to manage
   3798 /// canonical, dependent types, only. Clients will only see instances
   3799 /// of this class via UnaryTransformType nodes.
   3800 class DependentUnaryTransformType : public UnaryTransformType,
   3801                                     public llvm::FoldingSetNode {
   3802 public:
   3803   DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
   3804                               UTTKind UKind);
   3805   void Profile(llvm::FoldingSetNodeID &ID) {
   3806     Profile(ID, getBaseType(), getUTTKind());
   3807   }
   3808 
   3809   static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
   3810                       UTTKind UKind) {
   3811     ID.AddPointer(BaseType.getAsOpaquePtr());
   3812     ID.AddInteger((unsigned)UKind);
   3813   }
   3814 };
   3815 
   3816 class TagType : public Type {
   3817   /// Stores the TagDecl associated with this type. The decl may point to any
   3818   /// TagDecl that declares the entity.
   3819   TagDecl * decl;
   3820 
   3821   friend class ASTReader;
   3822 
   3823 protected:
   3824   TagType(TypeClass TC, const TagDecl *D, QualType can);
   3825 
   3826 public:
   3827   TagDecl *getDecl() const;
   3828 
   3829   /// Determines whether this type is in the process of being defined.
   3830   bool isBeingDefined() const;
   3831 
   3832   static bool classof(const Type *T) {
   3833     return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
   3834   }
   3835 };
   3836 
   3837 /// A helper class that allows the use of isa/cast/dyncast
   3838 /// to detect TagType objects of structs/unions/classes.
   3839 class RecordType : public TagType {
   3840 protected:
   3841   explicit RecordType(const RecordDecl *D)
   3842     : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3843   explicit RecordType(TypeClass TC, RecordDecl *D)
   3844     : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3845   friend class ASTContext;   // ASTContext creates these.
   3846 public:
   3847 
   3848   RecordDecl *getDecl() const {
   3849     return reinterpret_cast<RecordDecl*>(TagType::getDecl());
   3850   }
   3851 
   3852   /// Recursively check all fields in the record for const-ness. If any field
   3853   /// is declared const, return true. Otherwise, return false.
   3854   bool hasConstFields() const;
   3855 
   3856   bool isSugared() const { return false; }
   3857   QualType desugar() const { return QualType(this, 0); }
   3858 
   3859   static bool classof(const Type *T) { return T->getTypeClass() == Record; }
   3860 };
   3861 
   3862 /// A helper class that allows the use of isa/cast/dyncast
   3863 /// to detect TagType objects of enums.
   3864 class EnumType : public TagType {
   3865   explicit EnumType(const EnumDecl *D)
   3866     : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3867   friend class ASTContext;   // ASTContext creates these.
   3868 public:
   3869 
   3870   EnumDecl *getDecl() const {
   3871     return reinterpret_cast<EnumDecl*>(TagType::getDecl());
   3872   }
   3873 
   3874   bool isSugared() const { return false; }
   3875   QualType desugar() const { return QualType(this, 0); }
   3876 
   3877   static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
   3878 };
   3879 
   3880 /// An attributed type is a type to which a type attribute has been applied.
   3881 ///
   3882 /// The "modified type" is the fully-sugared type to which the attributed
   3883 /// type was applied; generally it is not canonically equivalent to the
   3884 /// attributed type. The "equivalent type" is the minimally-desugared type
   3885 /// which the type is canonically equivalent to.
   3886 ///
   3887 /// For example, in the following attributed type:
   3888 ///     int32_t __attribute__((vector_size(16)))
   3889 ///   - the modified type is the TypedefType for int32_t
   3890 ///   - the equivalent type is VectorType(16, int32_t)
   3891 ///   - the canonical type is VectorType(16, int)
   3892 class AttributedType : public Type, public llvm::FoldingSetNode {
   3893 public:
   3894   // It is really silly to have yet another attribute-kind enum, but
   3895   // clang::attr::Kind doesn't currently cover the pure type attrs.
   3896   enum Kind {
   3897     // Expression operand.
   3898     attr_address_space,
   3899     attr_regparm,
   3900     attr_vector_size,
   3901     attr_neon_vector_type,
   3902     attr_neon_polyvector_type,
   3903 
   3904     FirstExprOperandKind = attr_address_space,
   3905     LastExprOperandKind = attr_neon_polyvector_type,
   3906 
   3907     // Enumerated operand (string or keyword).
   3908     attr_objc_gc,
   3909     attr_objc_ownership,
   3910     attr_pcs,
   3911     attr_pcs_vfp,
   3912 
   3913     FirstEnumOperandKind = attr_objc_gc,
   3914     LastEnumOperandKind = attr_pcs_vfp,
   3915 
   3916     // No operand.
   3917     attr_noreturn,
   3918     attr_cdecl,
   3919     attr_fastcall,
   3920     attr_stdcall,
   3921     attr_thiscall,
   3922     attr_regcall,
   3923     attr_pascal,
   3924     attr_swiftcall,
   3925     attr_vectorcall,
   3926     attr_inteloclbicc,
   3927     attr_ms_abi,
   3928     attr_sysv_abi,
   3929     attr_preserve_most,
   3930     attr_preserve_all,
   3931     attr_ptr32,
   3932     attr_ptr64,
   3933     attr_sptr,
   3934     attr_uptr,
   3935     attr_nonnull,
   3936     attr_ns_returns_retained,
   3937     attr_nullable,
   3938     attr_null_unspecified,
   3939     attr_objc_kindof,
   3940     attr_objc_inert_unsafe_unretained,
   3941   };
   3942 
   3943 private:
   3944   QualType ModifiedType;
   3945   QualType EquivalentType;
   3946 
   3947   friend class ASTContext; // creates these
   3948 
   3949   AttributedType(QualType canon, Kind attrKind, QualType modified,
   3950                  QualType equivalent)
   3951       : Type(Attributed, canon, equivalent->isDependentType(),
   3952              equivalent->isInstantiationDependentType(),
   3953              equivalent->isVariablyModifiedType(),
   3954              equivalent->containsUnexpandedParameterPack()),
   3955         ModifiedType(modified), EquivalentType(equivalent) {
   3956     AttributedTypeBits.AttrKind = attrKind;
   3957   }
   3958 
   3959 public:
   3960   Kind getAttrKind() const {
   3961     return static_cast<Kind>(AttributedTypeBits.AttrKind);
   3962   }
   3963 
   3964   QualType getModifiedType() const { return ModifiedType; }
   3965   QualType getEquivalentType() const { return EquivalentType; }
   3966 
   3967   bool isSugared() const { return true; }
   3968   QualType desugar() const { return getEquivalentType(); }
   3969 
   3970   /// Does this attribute behave like a type qualifier?
   3971   ///
   3972   /// A type qualifier adjusts a type to provide specialized rules for
   3973   /// a specific object, like the standard const and volatile qualifiers.
   3974   /// This includes attributes controlling things like nullability,
   3975   /// address spaces, and ARC ownership.  The value of the object is still
   3976   /// largely described by the modified type.
   3977   ///
   3978   /// In contrast, many type attributes "rewrite" their modified type to
   3979   /// produce a fundamentally different type, not necessarily related in any
   3980   /// formalizable way to the original type.  For example, calling convention
   3981   /// and vector attributes are not simple type qualifiers.
   3982   ///
   3983   /// Type qualifiers are often, but not always, reflected in the canonical
   3984   /// type.
   3985   bool isQualifier() const;
   3986 
   3987   bool isMSTypeSpec() const;
   3988 
   3989   bool isCallingConv() const;
   3990 
   3991   llvm::Optional<NullabilityKind> getImmediateNullability() const;
   3992 
   3993   /// Retrieve the attribute kind corresponding to the given
   3994   /// nullability kind.
   3995   static Kind getNullabilityAttrKind(NullabilityKind kind) {
   3996     switch (kind) {
   3997     case NullabilityKind::NonNull:
   3998       return attr_nonnull;
   3999 
   4000     case NullabilityKind::Nullable:
   4001       return attr_nullable;
   4002 
   4003     case NullabilityKind::Unspecified:
   4004       return attr_null_unspecified;
   4005     }
   4006     llvm_unreachable("Unknown nullability kind.");
   4007   }
   4008 
   4009   /// Strip off the top-level nullability annotation on the given
   4010   /// type, if it's there.
   4011   ///
   4012   /// \param T The type to strip. If the type is exactly an
   4013   /// AttributedType specifying nullability (without looking through
   4014   /// type sugar), the nullability is returned and this type changed
   4015   /// to the underlying modified type.
   4016   ///
   4017   /// \returns the top-level nullability, if present.
   4018   static Optional<NullabilityKind> stripOuterNullability(QualType &T);
   4019 
   4020   void Profile(llvm::FoldingSetNodeID &ID) {
   4021     Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
   4022   }
   4023 
   4024   static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
   4025                       QualType modified, QualType equivalent) {
   4026     ID.AddInteger(attrKind);
   4027     ID.AddPointer(modified.getAsOpaquePtr());
   4028     ID.AddPointer(equivalent.getAsOpaquePtr());
   4029   }
   4030 
   4031   static bool classof(const Type *T) {
   4032     return T->getTypeClass() == Attributed;
   4033   }
   4034 };
   4035 
   4036 class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   4037   // Helper data collector for canonical types.
   4038   struct CanonicalTTPTInfo {
   4039     unsigned Depth : 15;
   4040     unsigned ParameterPack : 1;
   4041     unsigned Index : 16;
   4042   };
   4043 
   4044   union {
   4045     // Info for the canonical type.
   4046     CanonicalTTPTInfo CanTTPTInfo;
   4047     // Info for the non-canonical type.
   4048     TemplateTypeParmDecl *TTPDecl;
   4049   };
   4050 
   4051   /// Build a non-canonical type.
   4052   TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
   4053     : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
   4054            /*InstantiationDependent=*/true,
   4055            /*VariablyModified=*/false,
   4056            Canon->containsUnexpandedParameterPack()),
   4057       TTPDecl(TTPDecl) { }
   4058 
   4059   /// Build the canonical type.
   4060   TemplateTypeParmType(unsigned D, unsigned I, bool PP)
   4061     : Type(TemplateTypeParm, QualType(this, 0),
   4062            /*Dependent=*/true,
   4063            /*InstantiationDependent=*/true,
   4064            /*VariablyModified=*/false, PP) {
   4065     CanTTPTInfo.Depth = D;
   4066     CanTTPTInfo.Index = I;
   4067     CanTTPTInfo.ParameterPack = PP;
   4068   }
   4069 
   4070   friend class ASTContext;  // ASTContext creates these
   4071 
   4072   const CanonicalTTPTInfo& getCanTTPTInfo() const {
   4073     QualType Can = getCanonicalTypeInternal();
   4074     return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
   4075   }
   4076 
   4077 public:
   4078   unsigned getDepth() const { return getCanTTPTInfo().Depth; }
   4079   unsigned getIndex() const { return getCanTTPTInfo().Index; }
   4080   bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
   4081 
   4082   TemplateTypeParmDecl *getDecl() const {
   4083     return isCanonicalUnqualified() ? nullptr : TTPDecl;
   4084   }
   4085 
   4086   IdentifierInfo *getIdentifier() const;
   4087 
   4088   bool isSugared() const { return false; }
   4089   QualType desugar() const { return QualType(this, 0); }
   4090 
   4091   void Profile(llvm::FoldingSetNodeID &ID) {
   4092     Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
   4093   }
   4094 
   4095   static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
   4096                       unsigned Index, bool ParameterPack,
   4097                       TemplateTypeParmDecl *TTPDecl) {
   4098     ID.AddInteger(Depth);
   4099     ID.AddInteger(Index);
   4100     ID.AddBoolean(ParameterPack);
   4101     ID.AddPointer(TTPDecl);
   4102   }
   4103 
   4104   static bool classof(const Type *T) {
   4105     return T->getTypeClass() == TemplateTypeParm;
   4106   }
   4107 };
   4108 
   4109 /// \brief Represents the result of substituting a type for a template
   4110 /// type parameter.
   4111 ///
   4112 /// Within an instantiated template, all template type parameters have
   4113 /// been replaced with these.  They are used solely to record that a
   4114 /// type was originally written as a template type parameter;
   4115 /// therefore they are never canonical.
   4116 class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   4117   // The original type parameter.
   4118   const TemplateTypeParmType *Replaced;
   4119 
   4120   SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
   4121     : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
   4122            Canon->isInstantiationDependentType(),
   4123            Canon->isVariablyModifiedType(),
   4124            Canon->containsUnexpandedParameterPack()),
   4125       Replaced(Param) { }
   4126 
   4127   friend class ASTContext;
   4128 
   4129 public:
   4130   /// Gets the template parameter that was substituted for.
   4131   const TemplateTypeParmType *getReplacedParameter() const {
   4132     return Replaced;
   4133   }
   4134 
   4135   /// Gets the type that was substituted for the template
   4136   /// parameter.
   4137   QualType getReplacementType() const {
   4138     return getCanonicalTypeInternal();
   4139   }
   4140 
   4141   bool isSugared() const { return true; }
   4142   QualType desugar() const { return getReplacementType(); }
   4143 
   4144   void Profile(llvm::FoldingSetNodeID &ID) {
   4145     Profile(ID, getReplacedParameter(), getReplacementType());
   4146   }
   4147   static void Profile(llvm::FoldingSetNodeID &ID,
   4148                       const TemplateTypeParmType *Replaced,
   4149                       QualType Replacement) {
   4150     ID.AddPointer(Replaced);
   4151     ID.AddPointer(Replacement.getAsOpaquePtr());
   4152   }
   4153 
   4154   static bool classof(const Type *T) {
   4155     return T->getTypeClass() == SubstTemplateTypeParm;
   4156   }
   4157 };
   4158 
   4159 /// \brief Represents the result of substituting a set of types for a template
   4160 /// type parameter pack.
   4161 ///
   4162 /// When a pack expansion in the source code contains multiple parameter packs
   4163 /// and those parameter packs correspond to different levels of template
   4164 /// parameter lists, this type node is used to represent a template type
   4165 /// parameter pack from an outer level, which has already had its argument pack
   4166 /// substituted but that still lives within a pack expansion that itself
   4167 /// could not be instantiated. When actually performing a substitution into
   4168 /// that pack expansion (e.g., when all template parameters have corresponding
   4169 /// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
   4170 /// at the current pack substitution index.
   4171 class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
   4172   /// \brief The original type parameter.
   4173   const TemplateTypeParmType *Replaced;
   4174 
   4175   /// \brief A pointer to the set of template arguments that this
   4176   /// parameter pack is instantiated with.
   4177   const TemplateArgument *Arguments;
   4178 
   4179   /// \brief The number of template arguments in \c Arguments.
   4180   unsigned NumArguments;
   4181 
   4182   SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
   4183                                 QualType Canon,
   4184                                 const TemplateArgument &ArgPack);
   4185 
   4186   friend class ASTContext;
   4187 
   4188 public:
   4189   IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
   4190 
   4191   /// Gets the template parameter that was substituted for.
   4192   const TemplateTypeParmType *getReplacedParameter() const {
   4193     return Replaced;
   4194   }
   4195 
   4196   bool isSugared() const { return false; }
   4197   QualType desugar() const { return QualType(this, 0); }
   4198 
   4199   TemplateArgument getArgumentPack() const;
   4200 
   4201   void Profile(llvm::FoldingSetNodeID &ID);
   4202   static void Profile(llvm::FoldingSetNodeID &ID,
   4203                       const TemplateTypeParmType *Replaced,
   4204                       const TemplateArgument &ArgPack);
   4205 
   4206   static bool classof(const Type *T) {
   4207     return T->getTypeClass() == SubstTemplateTypeParmPack;
   4208   }
   4209 };
   4210 
   4211 /// \brief Common base class for placeholders for types that get replaced by
   4212 /// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
   4213 /// class template types, and (eventually) constrained type names from the C++
   4214 /// Concepts TS.
   4215 ///
   4216 /// These types are usually a placeholder for a deduced type. However, before
   4217 /// the initializer is attached, or (usually) if the initializer is
   4218 /// type-dependent, there is no deduced type and the type is canonical. In
   4219 /// the latter case, it is also a dependent type.
   4220 class DeducedType : public Type {
   4221 protected:
   4222   DeducedType(TypeClass TC, QualType DeducedAsType, bool IsDependent,
   4223               bool IsInstantiationDependent, bool ContainsParameterPack)
   4224       : Type(TC,
   4225              // FIXME: Retain the sugared deduced type?
   4226              DeducedAsType.isNull() ? QualType(this, 0)
   4227                                     : DeducedAsType.getCanonicalType(),
   4228              IsDependent, IsInstantiationDependent,
   4229              /*VariablyModified=*/false, ContainsParameterPack) {
   4230     if (!DeducedAsType.isNull()) {
   4231       if (DeducedAsType->isDependentType())
   4232         setDependent();
   4233       if (DeducedAsType->isInstantiationDependentType())
   4234         setInstantiationDependent();
   4235       if (DeducedAsType->containsUnexpandedParameterPack())
   4236         setContainsUnexpandedParameterPack();
   4237     }
   4238   }
   4239 
   4240 public:
   4241   bool isSugared() const { return !isCanonicalUnqualified(); }
   4242   QualType desugar() const { return getCanonicalTypeInternal(); }
   4243 
   4244   /// \brief Get the type deduced for this placeholder type, or null if it's
   4245   /// either not been deduced or was deduced to a dependent type.
   4246   QualType getDeducedType() const {
   4247     return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
   4248   }
   4249   bool isDeduced() const {
   4250     return !isCanonicalUnqualified() || isDependentType();
   4251   }
   4252 
   4253   static bool classof(const Type *T) {
   4254     return T->getTypeClass() == Auto ||
   4255            T->getTypeClass() == DeducedTemplateSpecialization;
   4256   }
   4257 };
   4258 
   4259 /// \brief Represents a C++11 auto or C++14 decltype(auto) type.
   4260 class AutoType : public DeducedType, public llvm::FoldingSetNode {
   4261   AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
   4262            bool IsDeducedAsDependent)
   4263       : DeducedType(Auto, DeducedAsType, IsDeducedAsDependent,
   4264                     IsDeducedAsDependent, /*ContainsPack=*/false) {
   4265     AutoTypeBits.Keyword = (unsigned)Keyword;
   4266   }
   4267 
   4268   friend class ASTContext;  // ASTContext creates these
   4269 
   4270 public:
   4271   bool isDecltypeAuto() const {
   4272     return getKeyword() == AutoTypeKeyword::DecltypeAuto;
   4273   }
   4274   AutoTypeKeyword getKeyword() const {
   4275     return (AutoTypeKeyword)AutoTypeBits.Keyword;
   4276   }
   4277 
   4278   void Profile(llvm::FoldingSetNodeID &ID) {
   4279     Profile(ID, getDeducedType(), getKeyword(), isDependentType());
   4280   }
   4281 
   4282   static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
   4283                       AutoTypeKeyword Keyword, bool IsDependent) {
   4284     ID.AddPointer(Deduced.getAsOpaquePtr());
   4285     ID.AddInteger((unsigned)Keyword);
   4286     ID.AddBoolean(IsDependent);
   4287   }
   4288 
   4289   static bool classof(const Type *T) {
   4290     return T->getTypeClass() == Auto;
   4291   }
   4292 };
   4293 
   4294 /// \brief Represents a C++17 deduced template specialization type.
   4295 class DeducedTemplateSpecializationType : public DeducedType,
   4296                                           public llvm::FoldingSetNode {
   4297   /// The name of the template whose arguments will be deduced.
   4298   TemplateName Template;
   4299 
   4300   DeducedTemplateSpecializationType(TemplateName Template,
   4301                                     QualType DeducedAsType,
   4302                                     bool IsDeducedAsDependent)
   4303       : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
   4304                     IsDeducedAsDependent || Template.isDependent(),
   4305                     IsDeducedAsDependent || Template.isInstantiationDependent(),
   4306                     Template.containsUnexpandedParameterPack()),
   4307         Template(Template) {}
   4308 
   4309   friend class ASTContext;  // ASTContext creates these
   4310 
   4311 public:
   4312   /// Retrieve the name of the template that we are deducing.
   4313   TemplateName getTemplateName() const { return Template;}
   4314 
   4315   void Profile(llvm::FoldingSetNodeID &ID) {
   4316     Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
   4317   }
   4318 
   4319   static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
   4320                       QualType Deduced, bool IsDependent) {
   4321     Template.Profile(ID);
   4322     ID.AddPointer(Deduced.getAsOpaquePtr());
   4323     ID.AddBoolean(IsDependent);
   4324   }
   4325 
   4326   static bool classof(const Type *T) {
   4327     return T->getTypeClass() == DeducedTemplateSpecialization;
   4328   }
   4329 };
   4330 
   4331 /// \brief Represents a type template specialization; the template
   4332 /// must be a class template, a type alias template, or a template
   4333 /// template parameter.  A template which cannot be resolved to one of
   4334 /// these, e.g. because it is written with a dependent scope
   4335 /// specifier, is instead represented as a
   4336 /// @c DependentTemplateSpecializationType.
   4337 ///
   4338 /// A non-dependent template specialization type is always "sugar",
   4339 /// typically for a \c RecordType.  For example, a class template
   4340 /// specialization type of \c vector<int> will refer to a tag type for
   4341 /// the instantiation \c std::vector<int, std::allocator<int>>
   4342 ///
   4343 /// Template specializations are dependent if either the template or
   4344 /// any of the template arguments are dependent, in which case the
   4345 /// type may also be canonical.
   4346 ///
   4347 /// Instances of this type are allocated with a trailing array of
   4348 /// TemplateArguments, followed by a QualType representing the
   4349 /// non-canonical aliased type when the template is a type alias
   4350 /// template.
   4351 class LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) TemplateSpecializationType
   4352     : public Type,
   4353       public llvm::FoldingSetNode {
   4354   /// The name of the template being specialized.  This is
   4355   /// either a TemplateName::Template (in which case it is a
   4356   /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
   4357   /// TypeAliasTemplateDecl*), a
   4358   /// TemplateName::SubstTemplateTemplateParmPack, or a
   4359   /// TemplateName::SubstTemplateTemplateParm (in which case the
   4360   /// replacement must, recursively, be one of these).
   4361   TemplateName Template;
   4362 
   4363   /// The number of template arguments named in this class template
   4364   /// specialization.
   4365   unsigned NumArgs : 31;
   4366 
   4367   /// Whether this template specialization type is a substituted type alias.
   4368   unsigned TypeAlias : 1;
   4369 
   4370   TemplateSpecializationType(TemplateName T,
   4371                              ArrayRef<TemplateArgument> Args,
   4372                              QualType Canon,
   4373                              QualType Aliased);
   4374 
   4375   friend class ASTContext;  // ASTContext creates these
   4376 
   4377 public:
   4378   /// Determine whether any of the given template arguments are dependent.
   4379   static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
   4380                                             bool &InstantiationDependent);
   4381 
   4382   static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
   4383                                             bool &InstantiationDependent);
   4384 
   4385   /// \brief Print a template argument list, including the '<' and '>'
   4386   /// enclosing the template arguments.
   4387   static void PrintTemplateArgumentList(raw_ostream &OS,
   4388                                         ArrayRef<TemplateArgument> Args,
   4389                                         const PrintingPolicy &Policy,
   4390                                         bool SkipBrackets = false);
   4391 
   4392   static void PrintTemplateArgumentList(raw_ostream &OS,
   4393                                         ArrayRef<TemplateArgumentLoc> Args,
   4394                                         const PrintingPolicy &Policy);
   4395 
   4396   static void PrintTemplateArgumentList(raw_ostream &OS,
   4397                                         const TemplateArgumentListInfo &,
   4398                                         const PrintingPolicy &Policy);
   4399 
   4400   /// True if this template specialization type matches a current
   4401   /// instantiation in the context in which it is found.
   4402   bool isCurrentInstantiation() const {
   4403     return isa<InjectedClassNameType>(getCanonicalTypeInternal());
   4404   }
   4405 
   4406   /// \brief Determine if this template specialization type is for a type alias
   4407   /// template that has been substituted.
   4408   ///
   4409   /// Nearly every template specialization type whose template is an alias
   4410   /// template will be substituted. However, this is not the case when
   4411   /// the specialization contains a pack expansion but the template alias
   4412   /// does not have a corresponding parameter pack, e.g.,
   4413   ///
   4414   /// \code
   4415   /// template<typename T, typename U, typename V> struct S;
   4416   /// template<typename T, typename U> using A = S<T, int, U>;
   4417   /// template<typename... Ts> struct X {
   4418   ///   typedef A<Ts...> type; // not a type alias
   4419   /// };
   4420   /// \endcode
   4421   bool isTypeAlias() const { return TypeAlias; }
   4422 
   4423   /// Get the aliased type, if this is a specialization of a type alias
   4424   /// template.
   4425   QualType getAliasedType() const {
   4426     assert(isTypeAlias() && "not a type alias template specialization");
   4427     return *reinterpret_cast<const QualType*>(end());
   4428   }
   4429 
   4430   typedef const TemplateArgument * iterator;
   4431 
   4432   iterator begin() const { return getArgs(); }
   4433   iterator end() const; // defined inline in TemplateBase.h
   4434 
   4435   /// Retrieve the name of the template that we are specializing.
   4436   TemplateName getTemplateName() const { return Template; }
   4437 
   4438   /// Retrieve the template arguments.
   4439   const TemplateArgument *getArgs() const {
   4440     return reinterpret_cast<const TemplateArgument *>(this + 1);
   4441   }
   4442 
   4443   /// Retrieve the number of template arguments.
   4444   unsigned getNumArgs() const { return NumArgs; }
   4445 
   4446   /// Retrieve a specific template argument as a type.
   4447   /// \pre \c isArgType(Arg)
   4448   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   4449 
   4450   ArrayRef<TemplateArgument> template_arguments() const {
   4451     return {getArgs(), NumArgs};
   4452   }
   4453 
   4454   bool isSugared() const {
   4455     return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
   4456   }
   4457   QualType desugar() const { return getCanonicalTypeInternal(); }
   4458 
   4459   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
   4460     Profile(ID, Template, template_arguments(), Ctx);
   4461     if (isTypeAlias())
   4462       getAliasedType().Profile(ID);
   4463   }
   4464 
   4465   static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
   4466                       ArrayRef<TemplateArgument> Args,
   4467                       const ASTContext &Context);
   4468 
   4469   static bool classof(const Type *T) {
   4470     return T->getTypeClass() == TemplateSpecialization;
   4471   }
   4472 };
   4473 
   4474 /// The injected class name of a C++ class template or class
   4475 /// template partial specialization.  Used to record that a type was
   4476 /// spelled with a bare identifier rather than as a template-id; the
   4477 /// equivalent for non-templated classes is just RecordType.
   4478 ///
   4479 /// Injected class name types are always dependent.  Template
   4480 /// instantiation turns these into RecordTypes.
   4481 ///
   4482 /// Injected class name types are always canonical.  This works
   4483 /// because it is impossible to compare an injected class name type
   4484 /// with the corresponding non-injected template type, for the same
   4485 /// reason that it is impossible to directly compare template
   4486 /// parameters from different dependent contexts: injected class name
   4487 /// types can only occur within the scope of a particular templated
   4488 /// declaration, and within that scope every template specialization
   4489 /// will canonicalize to the injected class name (when appropriate
   4490 /// according to the rules of the language).
   4491 class InjectedClassNameType : public Type {
   4492   CXXRecordDecl *Decl;
   4493 
   4494   /// The template specialization which this type represents.
   4495   /// For example, in
   4496   ///   template <class T> class A { ... };
   4497   /// this is A<T>, whereas in
   4498   ///   template <class X, class Y> class A<B<X,Y> > { ... };
   4499   /// this is A<B<X,Y> >.
   4500   ///
   4501   /// It is always unqualified, always a template specialization type,
   4502   /// and always dependent.
   4503   QualType InjectedType;
   4504 
   4505   friend class ASTContext; // ASTContext creates these.
   4506   friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
   4507                           // currently suitable for AST reading, too much
   4508                           // interdependencies.
   4509   friend class ASTNodeImporter;
   4510 
   4511   InjectedClassNameType(CXXRecordDecl *D, QualType TST)
   4512     : Type(InjectedClassName, QualType(), /*Dependent=*/true,
   4513            /*InstantiationDependent=*/true,
   4514            /*VariablyModified=*/false,
   4515            /*ContainsUnexpandedParameterPack=*/false),
   4516       Decl(D), InjectedType(TST) {
   4517     assert(isa<TemplateSpecializationType>(TST));
   4518     assert(!TST.hasQualifiers());
   4519     assert(TST->isDependentType());
   4520   }
   4521 
   4522 public:
   4523   QualType getInjectedSpecializationType() const { return InjectedType; }
   4524   const TemplateSpecializationType *getInjectedTST() const {
   4525     return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
   4526   }
   4527   TemplateName getTemplateName() const {
   4528     return getInjectedTST()->getTemplateName();
   4529   }
   4530 
   4531   CXXRecordDecl *getDecl() const;
   4532 
   4533   bool isSugared() const { return false; }
   4534   QualType desugar() const { return QualType(this, 0); }
   4535 
   4536   static bool classof(const Type *T) {
   4537     return T->getTypeClass() == InjectedClassName;
   4538   }
   4539 };
   4540 
   4541 /// \brief The kind of a tag type.
   4542 enum TagTypeKind {
   4543   /// \brief The "struct" keyword.
   4544   TTK_Struct,
   4545   /// \brief The "__interface" keyword.
   4546   TTK_Interface,
   4547   /// \brief The "union" keyword.
   4548   TTK_Union,
   4549   /// \brief The "class" keyword.
   4550   TTK_Class,
   4551   /// \brief The "enum" keyword.
   4552   TTK_Enum
   4553 };
   4554 
   4555 /// \brief The elaboration keyword that precedes a qualified type name or
   4556 /// introduces an elaborated-type-specifier.
   4557 enum ElaboratedTypeKeyword {
   4558   /// \brief The "struct" keyword introduces the elaborated-type-specifier.
   4559   ETK_Struct,
   4560   /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
   4561   ETK_Interface,
   4562   /// \brief The "union" keyword introduces the elaborated-type-specifier.
   4563   ETK_Union,
   4564   /// \brief The "class" keyword introduces the elaborated-type-specifier.
   4565   ETK_Class,
   4566   /// \brief The "enum" keyword introduces the elaborated-type-specifier.
   4567   ETK_Enum,
   4568   /// \brief The "typename" keyword precedes the qualified type name, e.g.,
   4569   /// \c typename T::type.
   4570   ETK_Typename,
   4571   /// \brief No keyword precedes the qualified type name.
   4572   ETK_None
   4573 };
   4574 
   4575 /// A helper class for Type nodes having an ElaboratedTypeKeyword.
   4576 /// The keyword in stored in the free bits of the base class.
   4577 /// Also provides a few static helpers for converting and printing
   4578 /// elaborated type keyword and tag type kind enumerations.
   4579 class TypeWithKeyword : public Type {
   4580 protected:
   4581   TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
   4582                   QualType Canonical, bool Dependent,
   4583                   bool InstantiationDependent, bool VariablyModified,
   4584                   bool ContainsUnexpandedParameterPack)
   4585   : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   4586          ContainsUnexpandedParameterPack) {
   4587     TypeWithKeywordBits.Keyword = Keyword;
   4588   }
   4589 
   4590 public:
   4591   ElaboratedTypeKeyword getKeyword() const {
   4592     return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
   4593   }
   4594 
   4595   /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
   4596   static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
   4597 
   4598   /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
   4599   /// It is an error to provide a type specifier which *isn't* a tag kind here.
   4600   static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
   4601 
   4602   /// Converts a TagTypeKind into an elaborated type keyword.
   4603   static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
   4604 
   4605   /// Converts an elaborated type keyword into a TagTypeKind.
   4606   /// It is an error to provide an elaborated type keyword
   4607   /// which *isn't* a tag kind here.
   4608   static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
   4609 
   4610   static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
   4611 
   4612   static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
   4613 
   4614   static StringRef getTagTypeKindName(TagTypeKind Kind) {
   4615     return getKeywordName(getKeywordForTagTypeKind(Kind));
   4616   }
   4617 
   4618   class CannotCastToThisType {};
   4619   static CannotCastToThisType classof(const Type *);
   4620 };
   4621 
   4622 /// \brief Represents a type that was referred to using an elaborated type
   4623 /// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
   4624 /// or both.
   4625 ///
   4626 /// This type is used to keep track of a type name as written in the
   4627 /// source code, including tag keywords and any nested-name-specifiers.
   4628 /// The type itself is always "sugar", used to express what was written
   4629 /// in the source code but containing no additional semantic information.
   4630 class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
   4631 
   4632   /// The nested name specifier containing the qualifier.
   4633   NestedNameSpecifier *NNS;
   4634 
   4635   /// The type that this qualified name refers to.
   4636   QualType NamedType;
   4637 
   4638   ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   4639                  QualType NamedType, QualType CanonType)
   4640     : TypeWithKeyword(Keyword, Elaborated, CanonType,
   4641                       NamedType->isDependentType(),
   4642                       NamedType->isInstantiationDependentType(),
   4643                       NamedType->isVariablyModifiedType(),
   4644                       NamedType->containsUnexpandedParameterPack()),
   4645       NNS(NNS), NamedType(NamedType) {
   4646     assert(!(Keyword == ETK_None && NNS == nullptr) &&
   4647            "ElaboratedType cannot have elaborated type keyword "
   4648            "and name qualifier both null.");
   4649   }
   4650 
   4651   friend class ASTContext;  // ASTContext creates these
   4652 
   4653 public:
   4654   ~ElaboratedType();
   4655 
   4656   /// Retrieve the qualification on this type.
   4657   NestedNameSpecifier *getQualifier() const { return NNS; }
   4658 
   4659   /// Retrieve the type named by the qualified-id.
   4660   QualType getNamedType() const { return NamedType; }
   4661 
   4662   /// Remove a single level of sugar.
   4663   QualType desugar() const { return getNamedType(); }
   4664 
   4665   /// Returns whether this type directly provides sugar.
   4666   bool isSugared() const { return true; }
   4667 
   4668   void Profile(llvm::FoldingSetNodeID &ID) {
   4669     Profile(ID, getKeyword(), NNS, NamedType);
   4670   }
   4671 
   4672   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   4673                       NestedNameSpecifier *NNS, QualType NamedType) {
   4674     ID.AddInteger(Keyword);
   4675     ID.AddPointer(NNS);
   4676     NamedType.Profile(ID);
   4677   }
   4678 
   4679   static bool classof(const Type *T) {
   4680     return T->getTypeClass() == Elaborated;
   4681   }
   4682 };
   4683 
   4684 /// \brief Represents a qualified type name for which the type name is
   4685 /// dependent.
   4686 ///
   4687 /// DependentNameType represents a class of dependent types that involve a
   4688 /// possibly dependent nested-name-specifier (e.g., "T::") followed by a
   4689 /// name of a type. The DependentNameType may start with a "typename" (for a
   4690 /// typename-specifier), "class", "struct", "union", or "enum" (for a
   4691 /// dependent elaborated-type-specifier), or nothing (in contexts where we
   4692 /// know that we must be referring to a type, e.g., in a base class specifier).
   4693 /// Typically the nested-name-specifier is dependent, but in MSVC compatibility
   4694 /// mode, this type is used with non-dependent names to delay name lookup until
   4695 /// instantiation.
   4696 class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
   4697 
   4698   /// \brief The nested name specifier containing the qualifier.
   4699   NestedNameSpecifier *NNS;
   4700 
   4701   /// \brief The type that this typename specifier refers to.
   4702   const IdentifierInfo *Name;
   4703 
   4704   DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   4705                     const IdentifierInfo *Name, QualType CanonType)
   4706     : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
   4707                       /*InstantiationDependent=*/true,
   4708                       /*VariablyModified=*/false,
   4709                       NNS->containsUnexpandedParameterPack()),
   4710       NNS(NNS), Name(Name) {}
   4711 
   4712   friend class ASTContext;  // ASTContext creates these
   4713 
   4714 public:
   4715   /// Retrieve the qualification on this type.
   4716   NestedNameSpecifier *getQualifier() const { return NNS; }
   4717 
   4718   /// Retrieve the type named by the typename specifier as an identifier.
   4719   ///
   4720   /// This routine will return a non-NULL identifier pointer when the
   4721   /// form of the original typename was terminated by an identifier,
   4722   /// e.g., "typename T::type".
   4723   const IdentifierInfo *getIdentifier() const {
   4724     return Name;
   4725   }
   4726 
   4727   bool isSugared() const { return false; }
   4728   QualType desugar() const { return QualType(this, 0); }
   4729 
   4730   void Profile(llvm::FoldingSetNodeID &ID) {
   4731     Profile(ID, getKeyword(), NNS, Name);
   4732   }
   4733 
   4734   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   4735                       NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
   4736     ID.AddInteger(Keyword);
   4737     ID.AddPointer(NNS);
   4738     ID.AddPointer(Name);
   4739   }
   4740 
   4741   static bool classof(const Type *T) {
   4742     return T->getTypeClass() == DependentName;
   4743   }
   4744 };
   4745 
   4746 /// Represents a template specialization type whose template cannot be
   4747 /// resolved, e.g.
   4748 ///   A<T>::template B<T>
   4749 class LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) DependentTemplateSpecializationType
   4750     : public TypeWithKeyword,
   4751       public llvm::FoldingSetNode {
   4752 
   4753   /// The nested name specifier containing the qualifier.
   4754   NestedNameSpecifier *NNS;
   4755 
   4756   /// The identifier of the template.
   4757   const IdentifierInfo *Name;
   4758 
   4759   /// \brief The number of template arguments named in this class template
   4760   /// specialization.
   4761   unsigned NumArgs;
   4762 
   4763   const TemplateArgument *getArgBuffer() const {
   4764     return reinterpret_cast<const TemplateArgument*>(this+1);
   4765   }
   4766   TemplateArgument *getArgBuffer() {
   4767     return reinterpret_cast<TemplateArgument*>(this+1);
   4768   }
   4769 
   4770   DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
   4771                                       NestedNameSpecifier *NNS,
   4772                                       const IdentifierInfo *Name,
   4773                                       ArrayRef<TemplateArgument> Args,
   4774                                       QualType Canon);
   4775 
   4776   friend class ASTContext;  // ASTContext creates these
   4777 
   4778 public:
   4779   NestedNameSpecifier *getQualifier() const { return NNS; }
   4780   const IdentifierInfo *getIdentifier() const { return Name; }
   4781 
   4782   /// \brief Retrieve the template arguments.
   4783   const TemplateArgument *getArgs() const {
   4784     return getArgBuffer();
   4785   }
   4786 
   4787   /// \brief Retrieve the number of template arguments.
   4788   unsigned getNumArgs() const { return NumArgs; }
   4789 
   4790   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   4791 
   4792   ArrayRef<TemplateArgument> template_arguments() const {
   4793     return {getArgs(), NumArgs};
   4794   }
   4795 
   4796   typedef const TemplateArgument * iterator;
   4797   iterator begin() const { return getArgs(); }
   4798   iterator end() const; // inline in TemplateBase.h
   4799 
   4800   bool isSugared() const { return false; }
   4801   QualType desugar() const { return QualType(this, 0); }
   4802 
   4803   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
   4804     Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), NumArgs});
   4805   }
   4806 
   4807   static void Profile(llvm::FoldingSetNodeID &ID,
   4808                       const ASTContext &Context,
   4809                       ElaboratedTypeKeyword Keyword,
   4810                       NestedNameSpecifier *Qualifier,
   4811                       const IdentifierInfo *Name,
   4812                       ArrayRef<TemplateArgument> Args);
   4813 
   4814   static bool classof(const Type *T) {
   4815     return T->getTypeClass() == DependentTemplateSpecialization;
   4816   }
   4817 };
   4818 
   4819 /// \brief Represents a pack expansion of types.
   4820 ///
   4821 /// Pack expansions are part of C++11 variadic templates. A pack
   4822 /// expansion contains a pattern, which itself contains one or more
   4823 /// "unexpanded" parameter packs. When instantiated, a pack expansion
   4824 /// produces a series of types, each instantiated from the pattern of
   4825 /// the expansion, where the Ith instantiation of the pattern uses the
   4826 /// Ith arguments bound to each of the unexpanded parameter packs. The
   4827 /// pack expansion is considered to "expand" these unexpanded
   4828 /// parameter packs.
   4829 ///
   4830 /// \code
   4831 /// template<typename ...Types> struct tuple;
   4832 ///
   4833 /// template<typename ...Types>
   4834 /// struct tuple_of_references {
   4835 ///   typedef tuple<Types&...> type;
   4836 /// };
   4837 /// \endcode
   4838 ///
   4839 /// Here, the pack expansion \c Types&... is represented via a
   4840 /// PackExpansionType whose pattern is Types&.
   4841 class PackExpansionType : public Type, public llvm::FoldingSetNode {
   4842   /// \brief The pattern of the pack expansion.
   4843   QualType Pattern;
   4844 
   4845   /// \brief The number of expansions that this pack expansion will
   4846   /// generate when substituted (+1), or indicates that
   4847   ///
   4848   /// This field will only have a non-zero value when some of the parameter
   4849   /// packs that occur within the pattern have been substituted but others have
   4850   /// not.
   4851   unsigned NumExpansions;
   4852 
   4853   PackExpansionType(QualType Pattern, QualType Canon,
   4854                     Optional<unsigned> NumExpansions)
   4855     : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
   4856            /*InstantiationDependent=*/true,
   4857            /*VariablyModified=*/Pattern->isVariablyModifiedType(),
   4858            /*ContainsUnexpandedParameterPack=*/false),
   4859       Pattern(Pattern),
   4860       NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
   4861 
   4862   friend class ASTContext;  // ASTContext creates these
   4863 
   4864 public:
   4865   /// \brief Retrieve the pattern of this pack expansion, which is the
   4866   /// type that will be repeatedly instantiated when instantiating the
   4867   /// pack expansion itself.
   4868   QualType getPattern() const { return Pattern; }
   4869 
   4870   /// \brief Retrieve the number of expansions that this pack expansion will
   4871   /// generate, if known.
   4872   Optional<unsigned> getNumExpansions() const {
   4873     if (NumExpansions)
   4874       return NumExpansions - 1;
   4875 
   4876     return None;
   4877   }
   4878 
   4879   bool isSugared() const { return !Pattern->isDependentType(); }
   4880   QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
   4881 
   4882   void Profile(llvm::FoldingSetNodeID &ID) {
   4883     Profile(ID, getPattern(), getNumExpansions());
   4884   }
   4885 
   4886   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
   4887                       Optional<unsigned> NumExpansions) {
   4888     ID.AddPointer(Pattern.getAsOpaquePtr());
   4889     ID.AddBoolean(NumExpansions.hasValue());
   4890     if (NumExpansions)
   4891       ID.AddInteger(*NumExpansions);
   4892   }
   4893 
   4894   static bool classof(const Type *T) {
   4895     return T->getTypeClass() == PackExpansion;
   4896   }
   4897 };
   4898 
   4899 /// This class wraps the list of protocol qualifiers. For types that can
   4900 /// take ObjC protocol qualifers, they can subclass this class.
   4901 template <class T>
   4902 class ObjCProtocolQualifiers {
   4903 protected:
   4904   ObjCProtocolQualifiers() {}
   4905   ObjCProtocolDecl * const *getProtocolStorage() const {
   4906     return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
   4907   }
   4908 
   4909   ObjCProtocolDecl **getProtocolStorage() {
   4910     return static_cast<T*>(this)->getProtocolStorageImpl();
   4911   }
   4912   void setNumProtocols(unsigned N) {
   4913     static_cast<T*>(this)->setNumProtocolsImpl(N);
   4914   }
   4915   void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
   4916     setNumProtocols(protocols.size());
   4917     assert(getNumProtocols() == protocols.size() &&
   4918            "bitfield overflow in protocol count");
   4919     if (!protocols.empty())
   4920       memcpy(getProtocolStorage(), protocols.data(),
   4921              protocols.size() * sizeof(ObjCProtocolDecl*));
   4922   }
   4923 
   4924 public:
   4925   typedef ObjCProtocolDecl * const *qual_iterator;
   4926   typedef llvm::iterator_range<qual_iterator> qual_range;
   4927 
   4928   qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
   4929   qual_iterator qual_begin() const { return getProtocolStorage(); }
   4930   qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
   4931 
   4932   bool qual_empty() const { return getNumProtocols() == 0; }
   4933 
   4934   /// Return the number of qualifying protocols in this type, or 0 if
   4935   /// there are none.
   4936   unsigned getNumProtocols() const {
   4937     return static_cast<const T*>(this)->getNumProtocolsImpl();
   4938   }
   4939 
   4940   /// Fetch a protocol by index.
   4941   ObjCProtocolDecl *getProtocol(unsigned I) const {
   4942     assert(I < getNumProtocols() && "Out-of-range protocol access");
   4943     return qual_begin()[I];
   4944   }
   4945 
   4946   /// Retrieve all of the protocol qualifiers.
   4947   ArrayRef<ObjCProtocolDecl *> getProtocols() const {
   4948     return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
   4949   }
   4950 };
   4951 
   4952 /// Represents a type parameter type in Objective C. It can take
   4953 /// a list of protocols.
   4954 class ObjCTypeParamType : public Type,
   4955                           public ObjCProtocolQualifiers<ObjCTypeParamType>,
   4956                           public llvm::FoldingSetNode {
   4957   friend class ASTContext;
   4958   friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
   4959 
   4960   /// The number of protocols stored on this type.
   4961   unsigned NumProtocols : 6;
   4962 
   4963   ObjCTypeParamDecl *OTPDecl;
   4964   /// The protocols are stored after the ObjCTypeParamType node. In the
   4965   /// canonical type, the list of protocols are sorted alphabetically
   4966   /// and uniqued.
   4967   ObjCProtocolDecl **getProtocolStorageImpl();
   4968   /// Return the number of qualifying protocols in this interface type,
   4969   /// or 0 if there are none.
   4970   unsigned getNumProtocolsImpl() const {
   4971     return NumProtocols;
   4972   }
   4973   void setNumProtocolsImpl(unsigned N) {
   4974     NumProtocols = N;
   4975   }
   4976   ObjCTypeParamType(const ObjCTypeParamDecl *D,
   4977                     QualType can,
   4978                     ArrayRef<ObjCProtocolDecl *> protocols);
   4979 public:
   4980   bool isSugared() const { return true; }
   4981   QualType desugar() const { return getCanonicalTypeInternal(); }
   4982 
   4983   static bool classof(const Type *T) {
   4984     return T->getTypeClass() == ObjCTypeParam;
   4985   }
   4986 
   4987   void Profile(llvm::FoldingSetNodeID &ID);
   4988   static void Profile(llvm::FoldingSetNodeID &ID,
   4989                       const ObjCTypeParamDecl *OTPDecl,
   4990                       ArrayRef<ObjCProtocolDecl *> protocols);
   4991 
   4992   ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
   4993 };
   4994 
   4995 /// Represents a class type in Objective C.
   4996 ///
   4997 /// Every Objective C type is a combination of a base type, a set of
   4998 /// type arguments (optional, for parameterized classes) and a list of
   4999 /// protocols.
   5000 ///
   5001 /// Given the following declarations:
   5002 /// \code
   5003 ///   \@class C<T>;
   5004 ///   \@protocol P;
   5005 /// \endcode
   5006 ///
   5007 /// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
   5008 /// with base C and no protocols.
   5009 ///
   5010 /// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
   5011 /// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
   5012 /// protocol list.
   5013 /// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
   5014 /// and protocol list [P].
   5015 ///
   5016 /// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
   5017 /// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
   5018 /// and no protocols.
   5019 ///
   5020 /// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
   5021 /// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
   5022 /// this should get its own sugar class to better represent the source.
   5023 class ObjCObjectType : public Type,
   5024                        public ObjCProtocolQualifiers<ObjCObjectType> {
   5025   friend class ObjCProtocolQualifiers<ObjCObjectType>;
   5026   // ObjCObjectType.NumTypeArgs - the number of type arguments stored
   5027   // after the ObjCObjectPointerType node.
   5028   // ObjCObjectType.NumProtocols - the number of protocols stored
   5029   // after the type arguments of ObjCObjectPointerType node.
   5030   //
   5031   // These protocols are those written directly on the type.  If
   5032   // protocol qualifiers ever become additive, the iterators will need
   5033   // to get kindof complicated.
   5034   //
   5035   // In the canonical object type, these are sorted alphabetically
   5036   // and uniqued.
   5037 
   5038   /// Either a BuiltinType or an InterfaceType or sugar for either.
   5039   QualType BaseType;
   5040 
   5041   /// Cached superclass type.
   5042   mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
   5043     CachedSuperClassType;
   5044 
   5045   QualType *getTypeArgStorage();
   5046   const QualType *getTypeArgStorage() const {
   5047     return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
   5048   }
   5049 
   5050   ObjCProtocolDecl **getProtocolStorageImpl();
   5051   /// Return the number of qualifying protocols in this interface type,
   5052   /// or 0 if there are none.
   5053   unsigned getNumProtocolsImpl() const {
   5054     return ObjCObjectTypeBits.NumProtocols;
   5055   }
   5056   void setNumProtocolsImpl(unsigned N) {
   5057     ObjCObjectTypeBits.NumProtocols = N;
   5058   }
   5059 
   5060 protected:
   5061   ObjCObjectType(QualType Canonical, QualType Base,
   5062                  ArrayRef<QualType> typeArgs,
   5063                  ArrayRef<ObjCProtocolDecl *> protocols,
   5064                  bool isKindOf);
   5065 
   5066   enum Nonce_ObjCInterface { Nonce_ObjCInterface };
   5067   ObjCObjectType(enum Nonce_ObjCInterface)
   5068         : Type(ObjCInterface, QualType(), false, false, false, false),
   5069       BaseType(QualType(this_(), 0)) {
   5070     ObjCObjectTypeBits.NumProtocols = 0;
   5071     ObjCObjectTypeBits.NumTypeArgs = 0;
   5072     ObjCObjectTypeBits.IsKindOf = 0;
   5073   }
   5074 
   5075   void computeSuperClassTypeSlow() const;
   5076 
   5077 public:
   5078   /// Gets the base type of this object type.  This is always (possibly
   5079   /// sugar for) one of:
   5080   ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
   5081   ///    user, which is a typedef for an ObjCObjectPointerType)
   5082   ///  - the 'Class' builtin type (same caveat)
   5083   ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
   5084   QualType getBaseType() const { return BaseType; }
   5085 
   5086   bool isObjCId() const {
   5087     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
   5088   }
   5089   bool isObjCClass() const {
   5090     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
   5091   }
   5092   bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
   5093   bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
   5094   bool isObjCUnqualifiedIdOrClass() const {
   5095     if (!qual_empty()) return false;
   5096     if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
   5097       return T->getKind() == BuiltinType::ObjCId ||
   5098              T->getKind() == BuiltinType::ObjCClass;
   5099     return false;
   5100   }
   5101   bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
   5102   bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
   5103 
   5104   /// Gets the interface declaration for this object type, if the base type
   5105   /// really is an interface.
   5106   ObjCInterfaceDecl *getInterface() const;
   5107 
   5108   /// Determine whether this object type is "specialized", meaning
   5109   /// that it has type arguments.
   5110   bool isSpecialized() const;
   5111 
   5112   /// Determine whether this object type was written with type arguments.
   5113   bool isSpecializedAsWritten() const {
   5114     return ObjCObjectTypeBits.NumTypeArgs > 0;
   5115   }
   5116 
   5117   /// Determine whether this object type is "unspecialized", meaning
   5118   /// that it has no type arguments.
   5119   bool isUnspecialized() const { return !isSpecialized(); }
   5120 
   5121   /// Determine whether this object type is "unspecialized" as
   5122   /// written, meaning that it has no type arguments.
   5123   bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
   5124 
   5125   /// Retrieve the type arguments of this object type (semantically).
   5126   ArrayRef<QualType> getTypeArgs() const;
   5127 
   5128   /// Retrieve the type arguments of this object type as they were
   5129   /// written.
   5130   ArrayRef<QualType> getTypeArgsAsWritten() const {
   5131     return llvm::makeArrayRef(getTypeArgStorage(),
   5132                               ObjCObjectTypeBits.NumTypeArgs);
   5133   }
   5134 
   5135   /// Whether this is a "__kindof" type as written.
   5136   bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
   5137 
   5138   /// Whether this ia a "__kindof" type (semantically).
   5139   bool isKindOfType() const;
   5140 
   5141   /// Retrieve the type of the superclass of this object type.
   5142   ///
   5143   /// This operation substitutes any type arguments into the
   5144   /// superclass of the current class type, potentially producing a
   5145   /// specialization of the superclass type. Produces a null type if
   5146   /// there is no superclass.
   5147   QualType getSuperClassType() const {
   5148     if (!CachedSuperClassType.getInt())
   5149       computeSuperClassTypeSlow();
   5150 
   5151     assert(CachedSuperClassType.getInt() && "Superclass not set?");
   5152     return QualType(CachedSuperClassType.getPointer(), 0);
   5153   }
   5154 
   5155   /// Strip off the Objective-C "kindof" type and (with it) any
   5156   /// protocol qualifiers.
   5157   QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
   5158 
   5159   bool isSugared() const { return false; }
   5160   QualType desugar() const { return QualType(this, 0); }
   5161 
   5162   static bool classof(const Type *T) {
   5163     return T->getTypeClass() == ObjCObject ||
   5164            T->getTypeClass() == ObjCInterface;
   5165   }
   5166 };
   5167 
   5168 /// A class providing a concrete implementation
   5169 /// of ObjCObjectType, so as to not increase the footprint of
   5170 /// ObjCInterfaceType.  Code outside of ASTContext and the core type
   5171 /// system should not reference this type.
   5172 class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
   5173   friend class ASTContext;
   5174 
   5175   // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
   5176   // will need to be modified.
   5177 
   5178   ObjCObjectTypeImpl(QualType Canonical, QualType Base,
   5179                      ArrayRef<QualType> typeArgs,
   5180                      ArrayRef<ObjCProtocolDecl *> protocols,
   5181                      bool isKindOf)
   5182     : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
   5183 
   5184 public:
   5185   void Profile(llvm::FoldingSetNodeID &ID);
   5186   static void Profile(llvm::FoldingSetNodeID &ID,
   5187                       QualType Base,
   5188                       ArrayRef<QualType> typeArgs,
   5189                       ArrayRef<ObjCProtocolDecl *> protocols,
   5190                       bool isKindOf);
   5191 };
   5192 
   5193 inline QualType *ObjCObjectType::getTypeArgStorage() {
   5194   return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
   5195 }
   5196 
   5197 inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
   5198     return reinterpret_cast<ObjCProtocolDecl**>(
   5199              getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
   5200 }
   5201 
   5202 inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
   5203     return reinterpret_cast<ObjCProtocolDecl**>(
   5204              static_cast<ObjCTypeParamType*>(this)+1);
   5205 }
   5206 
   5207 /// Interfaces are the core concept in Objective-C for object oriented design.
   5208 /// They basically correspond to C++ classes.  There are two kinds of interface
   5209 /// types: normal interfaces like `NSString`, and qualified interfaces, which
   5210 /// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
   5211 ///
   5212 /// ObjCInterfaceType guarantees the following properties when considered
   5213 /// as a subtype of its superclass, ObjCObjectType:
   5214 ///   - There are no protocol qualifiers.  To reinforce this, code which
   5215 ///     tries to invoke the protocol methods via an ObjCInterfaceType will
   5216 ///     fail to compile.
   5217 ///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
   5218 ///     T->getBaseType() == QualType(T, 0).
   5219 class ObjCInterfaceType : public ObjCObjectType {
   5220   mutable ObjCInterfaceDecl *Decl;
   5221 
   5222   ObjCInterfaceType(const ObjCInterfaceDecl *D)
   5223     : ObjCObjectType(Nonce_ObjCInterface),
   5224       Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
   5225   friend class ASTContext;  // ASTContext creates these.
   5226   friend class ASTReader;
   5227   friend class ObjCInterfaceDecl;
   5228 
   5229 public:
   5230   /// Get the declaration of this interface.
   5231   ObjCInterfaceDecl *getDecl() const { return Decl; }
   5232 
   5233   bool isSugared() const { return false; }
   5234   QualType desugar() const { return QualType(this, 0); }
   5235 
   5236   static bool classof(const Type *T) {
   5237     return T->getTypeClass() == ObjCInterface;
   5238   }
   5239 
   5240   // Nonsense to "hide" certain members of ObjCObjectType within this
   5241   // class.  People asking for protocols on an ObjCInterfaceType are
   5242   // not going to get what they want: ObjCInterfaceTypes are
   5243   // guaranteed to have no protocols.
   5244   enum {
   5245     qual_iterator,
   5246     qual_begin,
   5247     qual_end,
   5248     getNumProtocols,
   5249     getProtocol
   5250   };
   5251 };
   5252 
   5253 inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
   5254   QualType baseType = getBaseType();
   5255   while (const ObjCObjectType *ObjT = baseType->getAs<ObjCObjectType>()) {
   5256     if (const ObjCInterfaceType *T = dyn_cast<ObjCInterfaceType>(ObjT))
   5257       return T->getDecl();
   5258 
   5259     baseType = ObjT->getBaseType();
   5260   }
   5261 
   5262   return nullptr;
   5263 }
   5264 
   5265 /// Represents a pointer to an Objective C object.
   5266 ///
   5267 /// These are constructed from pointer declarators when the pointee type is
   5268 /// an ObjCObjectType (or sugar for one).  In addition, the 'id' and 'Class'
   5269 /// types are typedefs for these, and the protocol-qualified types 'id<P>'
   5270 /// and 'Class<P>' are translated into these.
   5271 ///
   5272 /// Pointers to pointers to Objective C objects are still PointerTypes;
   5273 /// only the first level of pointer gets it own type implementation.
   5274 class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
   5275   QualType PointeeType;
   5276 
   5277   ObjCObjectPointerType(QualType Canonical, QualType Pointee)
   5278     : Type(ObjCObjectPointer, Canonical,
   5279            Pointee->isDependentType(),
   5280            Pointee->isInstantiationDependentType(),
   5281            Pointee->isVariablyModifiedType(),
   5282            Pointee->containsUnexpandedParameterPack()),
   5283       PointeeType(Pointee) {}
   5284   friend class ASTContext;  // ASTContext creates these.
   5285 
   5286 public:
   5287   /// Gets the type pointed to by this ObjC pointer.
   5288   /// The result will always be an ObjCObjectType or sugar thereof.
   5289   QualType getPointeeType() const { return PointeeType; }
   5290 
   5291   /// Gets the type pointed to by this ObjC pointer.  Always returns non-null.
   5292   ///
   5293   /// This method is equivalent to getPointeeType() except that
   5294   /// it discards any typedefs (or other sugar) between this
   5295   /// type and the "outermost" object type.  So for:
   5296   /// \code
   5297   ///   \@class A; \@protocol P; \@protocol Q;
   5298   ///   typedef A<P> AP;
   5299   ///   typedef A A1;
   5300   ///   typedef A1<P> A1P;
   5301   ///   typedef A1P<Q> A1PQ;
   5302   /// \endcode
   5303   /// For 'A*', getObjectType() will return 'A'.
   5304   /// For 'A<P>*', getObjectType() will return 'A<P>'.
   5305   /// For 'AP*', getObjectType() will return 'A<P>'.
   5306   /// For 'A1*', getObjectType() will return 'A'.
   5307   /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
   5308   /// For 'A1P*', getObjectType() will return 'A1<P>'.
   5309   /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
   5310   ///   adding protocols to a protocol-qualified base discards the
   5311   ///   old qualifiers (for now).  But if it didn't, getObjectType()
   5312   ///   would return 'A1P<Q>' (and we'd have to make iterating over
   5313   ///   qualifiers more complicated).
   5314   const ObjCObjectType *getObjectType() const {
   5315     return PointeeType->castAs<ObjCObjectType>();
   5316   }
   5317 
   5318   /// If this pointer points to an Objective C
   5319   /// \@interface type, gets the type for that interface.  Any protocol
   5320   /// qualifiers on the interface are ignored.
   5321   ///
   5322   /// \return null if the base type for this pointer is 'id' or 'Class'
   5323   const ObjCInterfaceType *getInterfaceType() const;
   5324 
   5325   /// If this pointer points to an Objective \@interface
   5326   /// type, gets the declaration for that interface.
   5327   ///
   5328   /// \return null if the base type for this pointer is 'id' or 'Class'
   5329   ObjCInterfaceDecl *getInterfaceDecl() const {
   5330     return getObjectType()->getInterface();
   5331   }
   5332 
   5333   /// True if this is equivalent to the 'id' type, i.e. if
   5334   /// its object type is the primitive 'id' type with no protocols.
   5335   bool isObjCIdType() const {
   5336     return getObjectType()->isObjCUnqualifiedId();
   5337   }
   5338 
   5339   /// True if this is equivalent to the 'Class' type,
   5340   /// i.e. if its object tive is the primitive 'Class' type with no protocols.
   5341   bool isObjCClassType() const {
   5342     return getObjectType()->isObjCUnqualifiedClass();
   5343   }
   5344 
   5345   /// True if this is equivalent to the 'id' or 'Class' type,
   5346   bool isObjCIdOrClassType() const {
   5347     return getObjectType()->isObjCUnqualifiedIdOrClass();
   5348   }
   5349 
   5350   /// True if this is equivalent to 'id<P>' for some non-empty set of
   5351   /// protocols.
   5352   bool isObjCQualifiedIdType() const {
   5353     return getObjectType()->isObjCQualifiedId();
   5354   }
   5355 
   5356   /// True if this is equivalent to 'Class<P>' for some non-empty set of
   5357   /// protocols.
   5358   bool isObjCQualifiedClassType() const {
   5359     return getObjectType()->isObjCQualifiedClass();
   5360   }
   5361 
   5362   /// Whether this is a "__kindof" type.
   5363   bool isKindOfType() const { return getObjectType()->isKindOfType(); }
   5364 
   5365   /// Whether this type is specialized, meaning that it has type arguments.
   5366   bool isSpecialized() const { return getObjectType()->isSpecialized(); }
   5367 
   5368   /// Whether this type is specialized, meaning that it has type arguments.
   5369   bool isSpecializedAsWritten() const {
   5370     return getObjectType()->isSpecializedAsWritten();
   5371   }
   5372 
   5373   /// Whether this type is unspecialized, meaning that is has no type arguments.
   5374   bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
   5375 
   5376   /// Determine whether this object type is "unspecialized" as
   5377   /// written, meaning that it has no type arguments.
   5378   bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
   5379 
   5380   /// Retrieve the type arguments for this type.
   5381   ArrayRef<QualType> getTypeArgs() const {
   5382     return getObjectType()->getTypeArgs();
   5383   }
   5384 
   5385   /// Retrieve the type arguments for this type.
   5386   ArrayRef<QualType> getTypeArgsAsWritten() const {
   5387     return getObjectType()->getTypeArgsAsWritten();
   5388   }
   5389 
   5390   /// An iterator over the qualifiers on the object type.  Provided
   5391   /// for convenience.  This will always iterate over the full set of
   5392   /// protocols on a type, not just those provided directly.
   5393   typedef ObjCObjectType::qual_iterator qual_iterator;
   5394   typedef llvm::iterator_range<qual_iterator> qual_range;
   5395 
   5396   qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
   5397   qual_iterator qual_begin() const {
   5398     return getObjectType()->qual_begin();
   5399   }
   5400   qual_iterator qual_end() const {
   5401     return getObjectType()->qual_end();
   5402   }
   5403   bool qual_empty() const { return getObjectType()->qual_empty(); }
   5404 
   5405   /// Return the number of qualifying protocols on the object type.
   5406   unsigned getNumProtocols() const {
   5407     return getObjectType()->getNumProtocols();
   5408   }
   5409 
   5410   /// Retrieve a qualifying protocol by index on the object type.
   5411   ObjCProtocolDecl *getProtocol(unsigned I) const {
   5412     return getObjectType()->getProtocol(I);
   5413   }
   5414 
   5415   bool isSugared() const { return false; }
   5416   QualType desugar() const { return QualType(this, 0); }
   5417 
   5418   /// Retrieve the type of the superclass of this object pointer type.
   5419   ///
   5420   /// This operation substitutes any type arguments into the
   5421   /// superclass of the current class type, potentially producing a
   5422   /// pointer to a specialization of the superclass type. Produces a
   5423   /// null type if there is no superclass.
   5424   QualType getSuperClassType() const;
   5425 
   5426   /// Strip off the Objective-C "kindof" type and (with it) any
   5427   /// protocol qualifiers.
   5428   const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
   5429                                  const ASTContext &ctx) const;
   5430 
   5431   void Profile(llvm::FoldingSetNodeID &ID) {
   5432     Profile(ID, getPointeeType());
   5433   }
   5434   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
   5435     ID.AddPointer(T.getAsOpaquePtr());
   5436   }
   5437   static bool classof(const Type *T) {
   5438     return T->getTypeClass() == ObjCObjectPointer;
   5439   }
   5440 };
   5441 
   5442 class AtomicType : public Type, public llvm::FoldingSetNode {
   5443   QualType ValueType;
   5444 
   5445   AtomicType(QualType ValTy, QualType Canonical)
   5446     : Type(Atomic, Canonical, ValTy->isDependentType(),
   5447            ValTy->isInstantiationDependentType(),
   5448            ValTy->isVariablyModifiedType(),
   5449            ValTy->containsUnexpandedParameterPack()),
   5450       ValueType(ValTy) {}
   5451   friend class ASTContext;  // ASTContext creates these.
   5452 
   5453   public:
   5454   /// Gets the type contained by this atomic type, i.e.
   5455   /// the type returned by performing an atomic load of this atomic type.
   5456   QualType getValueType() const { return ValueType; }
   5457 
   5458   bool isSugared() const { return false; }
   5459   QualType desugar() const { return QualType(this, 0); }
   5460 
   5461   void Profile(llvm::FoldingSetNodeID &ID) {
   5462     Profile(ID, getValueType());
   5463   }
   5464   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
   5465     ID.AddPointer(T.getAsOpaquePtr());
   5466   }
   5467   static bool classof(const Type *T) {
   5468     return T->getTypeClass() == Atomic;
   5469   }
   5470 };
   5471 
   5472 /// PipeType - OpenCL20.
   5473 class PipeType : public Type, public llvm::FoldingSetNode {
   5474   QualType ElementType;
   5475   bool isRead;
   5476 
   5477   PipeType(QualType elemType, QualType CanonicalPtr, bool isRead) :
   5478     Type(Pipe, CanonicalPtr, elemType->isDependentType(),
   5479          elemType->isInstantiationDependentType(),
   5480          elemType->isVariablyModifiedType(),
   5481          elemType->containsUnexpandedParameterPack()),
   5482     ElementType(elemType), isRead(isRead) {}
   5483   friend class ASTContext;  // ASTContext creates these.
   5484 
   5485 public:
   5486   QualType getElementType() const { return ElementType; }
   5487 
   5488   bool isSugared() const { return false; }
   5489 
   5490   QualType desugar() const { return QualType(this, 0); }
   5491 
   5492   void Profile(llvm::FoldingSetNodeID &ID) {
   5493     Profile(ID, getElementType(), isReadOnly());
   5494   }
   5495 
   5496   static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
   5497     ID.AddPointer(T.getAsOpaquePtr());
   5498     ID.AddBoolean(isRead);
   5499   }
   5500 
   5501   static bool classof(const Type *T) {
   5502     return T->getTypeClass() == Pipe;
   5503   }
   5504 
   5505   bool isReadOnly() const { return isRead; }
   5506 };
   5507 
   5508 /// A qualifier set is used to build a set of qualifiers.
   5509 class QualifierCollector : public Qualifiers {
   5510 public:
   5511   QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
   5512 
   5513   /// Collect any qualifiers on the given type and return an
   5514   /// unqualified type.  The qualifiers are assumed to be consistent
   5515   /// with those already in the type.
   5516   const Type *strip(QualType type) {
   5517     addFastQualifiers(type.getLocalFastQualifiers());
   5518     if (!type.hasLocalNonFastQualifiers())
   5519       return type.getTypePtrUnsafe();
   5520 
   5521     const ExtQuals *extQuals = type.getExtQualsUnsafe();
   5522     addConsistentQualifiers(extQuals->getQualifiers());
   5523     return extQuals->getBaseType();
   5524   }
   5525 
   5526   /// Apply the collected qualifiers to the given type.
   5527   QualType apply(const ASTContext &Context, QualType QT) const;
   5528 
   5529   /// Apply the collected qualifiers to the given type.
   5530   QualType apply(const ASTContext &Context, const Type* T) const;
   5531 };
   5532 
   5533 
   5534 // Inline function definitions.
   5535 
   5536 inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
   5537   SplitQualType desugar =
   5538     Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
   5539   desugar.Quals.addConsistentQualifiers(Quals);
   5540   return desugar;
   5541 }
   5542 
   5543 inline const Type *QualType::getTypePtr() const {
   5544   return getCommonPtr()->BaseType;
   5545 }
   5546 
   5547 inline const Type *QualType::getTypePtrOrNull() const {
   5548   return (isNull() ? nullptr : getCommonPtr()->BaseType);
   5549 }
   5550 
   5551 inline SplitQualType QualType::split() const {
   5552   if (!hasLocalNonFastQualifiers())
   5553     return SplitQualType(getTypePtrUnsafe(),
   5554                          Qualifiers::fromFastMask(getLocalFastQualifiers()));
   5555 
   5556   const ExtQuals *eq = getExtQualsUnsafe();
   5557   Qualifiers qs = eq->getQualifiers();
   5558   qs.addFastQualifiers(getLocalFastQualifiers());
   5559   return SplitQualType(eq->getBaseType(), qs);
   5560 }
   5561 
   5562 inline Qualifiers QualType::getLocalQualifiers() const {
   5563   Qualifiers Quals;
   5564   if (hasLocalNonFastQualifiers())
   5565     Quals = getExtQualsUnsafe()->getQualifiers();
   5566   Quals.addFastQualifiers(getLocalFastQualifiers());
   5567   return Quals;
   5568 }
   5569 
   5570 inline Qualifiers QualType::getQualifiers() const {
   5571   Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
   5572   quals.addFastQualifiers(getLocalFastQualifiers());
   5573   return quals;
   5574 }
   5575 
   5576 inline unsigned QualType::getCVRQualifiers() const {
   5577   unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
   5578   cvr |= getLocalCVRQualifiers();
   5579   return cvr;
   5580 }
   5581 
   5582 inline QualType QualType::getCanonicalType() const {
   5583   QualType canon = getCommonPtr()->CanonicalType;
   5584   return canon.withFastQualifiers(getLocalFastQualifiers());
   5585 }
   5586 
   5587 inline bool QualType::isCanonical() const {
   5588   return getTypePtr()->isCanonicalUnqualified();
   5589 }
   5590 
   5591 inline bool QualType::isCanonicalAsParam() const {
   5592   if (!isCanonical()) return false;
   5593   if (hasLocalQualifiers()) return false;
   5594 
   5595   const Type *T = getTypePtr();
   5596   if (T->isVariablyModifiedType() && T->hasSizedVLAType())
   5597     return false;
   5598 
   5599   return !isa<FunctionType>(T) && !isa<ArrayType>(T);
   5600 }
   5601 
   5602 inline bool QualType::isConstQualified() const {
   5603   return isLocalConstQualified() ||
   5604          getCommonPtr()->CanonicalType.isLocalConstQualified();
   5605 }
   5606 
   5607 inline bool QualType::isRestrictQualified() const {
   5608   return isLocalRestrictQualified() ||
   5609          getCommonPtr()->CanonicalType.isLocalRestrictQualified();
   5610 }
   5611 
   5612 
   5613 inline bool QualType::isVolatileQualified() const {
   5614   return isLocalVolatileQualified() ||
   5615          getCommonPtr()->CanonicalType.isLocalVolatileQualified();
   5616 }
   5617 
   5618 inline bool QualType::hasQualifiers() const {
   5619   return hasLocalQualifiers() ||
   5620          getCommonPtr()->CanonicalType.hasLocalQualifiers();
   5621 }
   5622 
   5623 inline QualType QualType::getUnqualifiedType() const {
   5624   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   5625     return QualType(getTypePtr(), 0);
   5626 
   5627   return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
   5628 }
   5629 
   5630 inline SplitQualType QualType::getSplitUnqualifiedType() const {
   5631   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   5632     return split();
   5633 
   5634   return getSplitUnqualifiedTypeImpl(*this);
   5635 }
   5636 
   5637 inline void QualType::removeLocalConst() {
   5638   removeLocalFastQualifiers(Qualifiers::Const);
   5639 }
   5640 
   5641 inline void QualType::removeLocalRestrict() {
   5642   removeLocalFastQualifiers(Qualifiers::Restrict);
   5643 }
   5644 
   5645 inline void QualType::removeLocalVolatile() {
   5646   removeLocalFastQualifiers(Qualifiers::Volatile);
   5647 }
   5648 
   5649 inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
   5650   assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
   5651   static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
   5652                 "Fast bits differ from CVR bits!");
   5653 
   5654   // Fast path: we don't need to touch the slow qualifiers.
   5655   removeLocalFastQualifiers(Mask);
   5656 }
   5657 
   5658 /// Return the address space of this type.
   5659 inline LangAS QualType::getAddressSpace() const {
   5660   return getQualifiers().getAddressSpace();
   5661 }
   5662 
   5663 /// Return the gc attribute of this type.
   5664 inline Qualifiers::GC QualType::getObjCGCAttr() const {
   5665   return getQualifiers().getObjCGCAttr();
   5666 }
   5667 
   5668 inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
   5669   if (const PointerType *PT = t.getAs<PointerType>()) {
   5670     if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
   5671       return FT->getExtInfo();
   5672   } else if (const FunctionType *FT = t.getAs<FunctionType>())
   5673     return FT->getExtInfo();
   5674 
   5675   return FunctionType::ExtInfo();
   5676 }
   5677 
   5678 inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
   5679   return getFunctionExtInfo(*t);
   5680 }
   5681 
   5682 /// Determine whether this type is more
   5683 /// qualified than the Other type. For example, "const volatile int"
   5684 /// is more qualified than "const int", "volatile int", and
   5685 /// "int". However, it is not more qualified than "const volatile
   5686 /// int".
   5687 inline bool QualType::isMoreQualifiedThan(QualType other) const {
   5688   Qualifiers MyQuals = getQualifiers();
   5689   Qualifiers OtherQuals = other.getQualifiers();
   5690   return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
   5691 }
   5692 
   5693 /// Determine whether this type is at last
   5694 /// as qualified as the Other type. For example, "const volatile
   5695 /// int" is at least as qualified as "const int", "volatile int",
   5696 /// "int", and "const volatile int".
   5697 inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
   5698   Qualifiers OtherQuals = other.getQualifiers();
   5699 
   5700   // Ignore __unaligned qualifier if this type is a void.
   5701   if (getUnqualifiedType()->isVoidType())
   5702     OtherQuals.removeUnaligned();
   5703 
   5704   return getQualifiers().compatiblyIncludes(OtherQuals);
   5705 }
   5706 
   5707 /// If Type is a reference type (e.g., const
   5708 /// int&), returns the type that the reference refers to ("const
   5709 /// int"). Otherwise, returns the type itself. This routine is used
   5710 /// throughout Sema to implement C++ 5p6:
   5711 ///
   5712 ///   If an expression initially has the type "reference to T" (8.3.2,
   5713 ///   8.5.3), the type is adjusted to "T" prior to any further
   5714 ///   analysis, the expression designates the object or function
   5715 ///   denoted by the reference, and the expression is an lvalue.
   5716 inline QualType QualType::getNonReferenceType() const {
   5717   if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
   5718     return RefType->getPointeeType();
   5719   else
   5720     return *this;
   5721 }
   5722 
   5723 inline bool QualType::isCForbiddenLValueType() const {
   5724   return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
   5725           getTypePtr()->isFunctionType());
   5726 }
   5727 
   5728 /// Tests whether the type is categorized as a fundamental type.
   5729 ///
   5730 /// \returns True for types specified in C++0x [basic.fundamental].
   5731 inline bool Type::isFundamentalType() const {
   5732   return isVoidType() ||
   5733          // FIXME: It's really annoying that we don't have an
   5734          // 'isArithmeticType()' which agrees with the standard definition.
   5735          (isArithmeticType() && !isEnumeralType());
   5736 }
   5737 
   5738 /// Tests whether the type is categorized as a compound type.
   5739 ///
   5740 /// \returns True for types specified in C++0x [basic.compound].
   5741 inline bool Type::isCompoundType() const {
   5742   // C++0x [basic.compound]p1:
   5743   //   Compound types can be constructed in the following ways:
   5744   //    -- arrays of objects of a given type [...];
   5745   return isArrayType() ||
   5746   //    -- functions, which have parameters of given types [...];
   5747          isFunctionType() ||
   5748   //    -- pointers to void or objects or functions [...];
   5749          isPointerType() ||
   5750   //    -- references to objects or functions of a given type. [...]
   5751          isReferenceType() ||
   5752   //    -- classes containing a sequence of objects of various types, [...];
   5753          isRecordType() ||
   5754   //    -- unions, which are classes capable of containing objects of different
   5755   //               types at different times;
   5756          isUnionType() ||
   5757   //    -- enumerations, which comprise a set of named constant values. [...];
   5758          isEnumeralType() ||
   5759   //    -- pointers to non-static class members, [...].
   5760          isMemberPointerType();
   5761 }
   5762 
   5763 inline bool Type::isFunctionType() const {
   5764   return isa<FunctionType>(CanonicalType);
   5765 }
   5766 inline bool Type::isPointerType() const {
   5767   return isa<PointerType>(CanonicalType);
   5768 }
   5769 inline bool Type::isAnyPointerType() const {
   5770   return isPointerType() || isObjCObjectPointerType();
   5771 }
   5772 inline bool Type::isBlockPointerType() const {
   5773   return isa<BlockPointerType>(CanonicalType);
   5774 }
   5775 inline bool Type::isReferenceType() const {
   5776   return isa<ReferenceType>(CanonicalType);
   5777 }
   5778 inline bool Type::isLValueReferenceType() const {
   5779   return isa<LValueReferenceType>(CanonicalType);
   5780 }
   5781 inline bool Type::isRValueReferenceType() const {
   5782   return isa<RValueReferenceType>(CanonicalType);
   5783 }
   5784 inline bool Type::isFunctionPointerType() const {
   5785   if (const PointerType *T = getAs<PointerType>())
   5786     return T->getPointeeType()->isFunctionType();
   5787   else
   5788     return false;
   5789 }
   5790 inline bool Type::isMemberPointerType() const {
   5791   return isa<MemberPointerType>(CanonicalType);
   5792 }
   5793 inline bool Type::isMemberFunctionPointerType() const {
   5794   if (const MemberPointerType* T = getAs<MemberPointerType>())
   5795     return T->isMemberFunctionPointer();
   5796   else
   5797     return false;
   5798 }
   5799 inline bool Type::isMemberDataPointerType() const {
   5800   if (const MemberPointerType* T = getAs<MemberPointerType>())
   5801     return T->isMemberDataPointer();
   5802   else
   5803     return false;
   5804 }
   5805 inline bool Type::isArrayType() const {
   5806   return isa<ArrayType>(CanonicalType);
   5807 }
   5808 inline bool Type::isConstantArrayType() const {
   5809   return isa<ConstantArrayType>(CanonicalType);
   5810 }
   5811 inline bool Type::isIncompleteArrayType() const {
   5812   return isa<IncompleteArrayType>(CanonicalType);
   5813 }
   5814 inline bool Type::isVariableArrayType() const {
   5815   return isa<VariableArrayType>(CanonicalType);
   5816 }
   5817 inline bool Type::isDependentSizedArrayType() const {
   5818   return isa<DependentSizedArrayType>(CanonicalType);
   5819 }
   5820 inline bool Type::isBuiltinType() const {
   5821   return isa<BuiltinType>(CanonicalType);
   5822 }
   5823 inline bool Type::isRecordType() const {
   5824   return isa<RecordType>(CanonicalType);
   5825 }
   5826 inline bool Type::isEnumeralType() const {
   5827   return isa<EnumType>(CanonicalType);
   5828 }
   5829 inline bool Type::isAnyComplexType() const {
   5830   return isa<ComplexType>(CanonicalType);
   5831 }
   5832 inline bool Type::isVectorType() const {
   5833   return isa<VectorType>(CanonicalType);
   5834 }
   5835 inline bool Type::isExtVectorType() const {
   5836   return isa<ExtVectorType>(CanonicalType);
   5837 }
   5838 inline bool Type::isDependentAddressSpaceType() const {
   5839   return isa<DependentAddressSpaceType>(CanonicalType);
   5840 }
   5841 inline bool Type::isObjCObjectPointerType() const {
   5842   return isa<ObjCObjectPointerType>(CanonicalType);
   5843 }
   5844 inline bool Type::isObjCObjectType() const {
   5845   return isa<ObjCObjectType>(CanonicalType);
   5846 }
   5847 inline bool Type::isObjCObjectOrInterfaceType() const {
   5848   return isa<ObjCInterfaceType>(CanonicalType) ||
   5849     isa<ObjCObjectType>(CanonicalType);
   5850 }
   5851 inline bool Type::isAtomicType() const {
   5852   return isa<AtomicType>(CanonicalType);
   5853 }
   5854 
   5855 inline bool Type::isObjCQualifiedIdType() const {
   5856   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   5857     return OPT->isObjCQualifiedIdType();
   5858   return false;
   5859 }
   5860 inline bool Type::isObjCQualifiedClassType() const {
   5861   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   5862     return OPT->isObjCQualifiedClassType();
   5863   return false;
   5864 }
   5865 inline bool Type::isObjCIdType() const {
   5866   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   5867     return OPT->isObjCIdType();
   5868   return false;
   5869 }
   5870 inline bool Type::isObjCClassType() const {
   5871   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   5872     return OPT->isObjCClassType();
   5873   return false;
   5874 }
   5875 inline bool Type::isObjCSelType() const {
   5876   if (const PointerType *OPT = getAs<PointerType>())
   5877     return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
   5878   return false;
   5879 }
   5880 inline bool Type::isObjCBuiltinType() const {
   5881   return isObjCIdType() || isObjCClassType() || isObjCSelType();
   5882 }
   5883 
   5884 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
   5885   inline bool Type::is##Id##Type() const { \
   5886     return isSpecificBuiltinType(BuiltinType::Id); \
   5887   }
   5888 #include "clang/Basic/OpenCLImageTypes.def"
   5889 
   5890 inline bool Type::isSamplerT() const {
   5891   return isSpecificBuiltinType(BuiltinType::OCLSampler);
   5892 }
   5893 
   5894 inline bool Type::isEventT() const {
   5895   return isSpecificBuiltinType(BuiltinType::OCLEvent);
   5896 }
   5897 
   5898 inline bool Type::isClkEventT() const {
   5899   return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
   5900 }
   5901 
   5902 inline bool Type::isQueueT() const {
   5903   return isSpecificBuiltinType(BuiltinType::OCLQueue);
   5904 }
   5905 
   5906 inline bool Type::isReserveIDT() const {
   5907   return isSpecificBuiltinType(BuiltinType::OCLReserveID);
   5908 }
   5909 
   5910 inline bool Type::isImageType() const {
   5911 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
   5912   return
   5913 #include "clang/Basic/OpenCLImageTypes.def"
   5914       0; // end boolean or operation
   5915 }
   5916 
   5917 inline bool Type::isPipeType() const {
   5918   return isa<PipeType>(CanonicalType);
   5919 }
   5920 
   5921 inline bool Type::isOpenCLSpecificType() const {
   5922   return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
   5923          isQueueT() || isReserveIDT() || isPipeType();
   5924 }
   5925 
   5926 inline bool Type::isTemplateTypeParmType() const {
   5927   return isa<TemplateTypeParmType>(CanonicalType);
   5928 }
   5929 
   5930 inline bool Type::isSpecificBuiltinType(unsigned K) const {
   5931   if (const BuiltinType *BT = getAs<BuiltinType>())
   5932     if (BT->getKind() == (BuiltinType::Kind) K)
   5933       return true;
   5934   return false;
   5935 }
   5936 
   5937 inline bool Type::isPlaceholderType() const {
   5938   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5939     return BT->isPlaceholderType();
   5940   return false;
   5941 }
   5942 
   5943 inline const BuiltinType *Type::getAsPlaceholderType() const {
   5944   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5945     if (BT->isPlaceholderType())
   5946       return BT;
   5947   return nullptr;
   5948 }
   5949 
   5950 inline bool Type::isSpecificPlaceholderType(unsigned K) const {
   5951   assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
   5952   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5953     return (BT->getKind() == (BuiltinType::Kind) K);
   5954   return false;
   5955 }
   5956 
   5957 inline bool Type::isNonOverloadPlaceholderType() const {
   5958   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5959     return BT->isNonOverloadPlaceholderType();
   5960   return false;
   5961 }
   5962 
   5963 inline bool Type::isVoidType() const {
   5964   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5965     return BT->getKind() == BuiltinType::Void;
   5966   return false;
   5967 }
   5968 
   5969 inline bool Type::isHalfType() const {
   5970   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5971     return BT->getKind() == BuiltinType::Half;
   5972   // FIXME: Should we allow complex __fp16? Probably not.
   5973   return false;
   5974 }
   5975 
   5976 inline bool Type::isNullPtrType() const {
   5977   if (const BuiltinType *BT = getAs<BuiltinType>())
   5978     return BT->getKind() == BuiltinType::NullPtr;
   5979   return false;
   5980 }
   5981 
   5982 bool IsEnumDeclComplete(EnumDecl *);
   5983 bool IsEnumDeclScoped(EnumDecl *);
   5984 
   5985 inline bool Type::isIntegerType() const {
   5986   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5987     return BT->getKind() >= BuiltinType::Bool &&
   5988            BT->getKind() <= BuiltinType::Int128;
   5989   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
   5990     // Incomplete enum types are not treated as integer types.
   5991     // FIXME: In C++, enum types are never integer types.
   5992     return IsEnumDeclComplete(ET->getDecl()) &&
   5993       !IsEnumDeclScoped(ET->getDecl());
   5994   }
   5995   return false;
   5996 }
   5997 
   5998 inline bool Type::isScalarType() const {
   5999   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   6000     return BT->getKind() > BuiltinType::Void &&
   6001            BT->getKind() <= BuiltinType::NullPtr;
   6002   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   6003     // Enums are scalar types, but only if they are defined.  Incomplete enums
   6004     // are not treated as scalar types.
   6005     return IsEnumDeclComplete(ET->getDecl());
   6006   return isa<PointerType>(CanonicalType) ||
   6007          isa<BlockPointerType>(CanonicalType) ||
   6008          isa<MemberPointerType>(CanonicalType) ||
   6009          isa<ComplexType>(CanonicalType) ||
   6010          isa<ObjCObjectPointerType>(CanonicalType);
   6011 }
   6012 
   6013 inline bool Type::isIntegralOrEnumerationType() const {
   6014   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   6015     return BT->getKind() >= BuiltinType::Bool &&
   6016            BT->getKind() <= BuiltinType::Int128;
   6017 
   6018   // Check for a complete enum type; incomplete enum types are not properly an
   6019   // enumeration type in the sense required here.
   6020   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   6021     return IsEnumDeclComplete(ET->getDecl());
   6022 
   6023   return false;
   6024 }
   6025 
   6026 inline bool Type::isBooleanType() const {
   6027   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   6028     return BT->getKind() == BuiltinType::Bool;
   6029   return false;
   6030 }
   6031 
   6032 inline bool Type::isUndeducedType() const {
   6033   auto *DT = getContainedDeducedType();
   6034   return DT && !DT->isDeduced();
   6035 }
   6036 
   6037 /// \brief Determines whether this is a type for which one can define
   6038 /// an overloaded operator.
   6039 inline bool Type::isOverloadableType() const {
   6040   return isDependentType() || isRecordType() || isEnumeralType();
   6041 }
   6042 
   6043 /// \brief Determines whether this type can decay to a pointer type.
   6044 inline bool Type::canDecayToPointerType() const {
   6045   return isFunctionType() || isArrayType();
   6046 }
   6047 
   6048 inline bool Type::hasPointerRepresentation() const {
   6049   return (isPointerType() || isReferenceType() || isBlockPointerType() ||
   6050           isObjCObjectPointerType() || isNullPtrType());
   6051 }
   6052 
   6053 inline bool Type::hasObjCPointerRepresentation() const {
   6054   return isObjCObjectPointerType();
   6055 }
   6056 
   6057 inline const Type *Type::getBaseElementTypeUnsafe() const {
   6058   const Type *type = this;
   6059   while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
   6060     type = arrayType->getElementType().getTypePtr();
   6061   return type;
   6062 }
   6063 
   6064 inline const Type *Type::getPointeeOrArrayElementType() const {
   6065   const Type *type = this;
   6066   if (type->isAnyPointerType())
   6067     return type->getPointeeType().getTypePtr();
   6068   else if (type->isArrayType())
   6069     return type->getBaseElementTypeUnsafe();
   6070   return type;
   6071 }
   6072 
   6073 /// Insertion operator for diagnostics.  This allows sending QualType's into a
   6074 /// diagnostic with <<.
   6075 inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
   6076                                            QualType T) {
   6077   DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   6078                   DiagnosticsEngine::ak_qualtype);
   6079   return DB;
   6080 }
   6081 
   6082 /// Insertion operator for partial diagnostics.  This allows sending QualType's
   6083 /// into a diagnostic with <<.
   6084 inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
   6085                                            QualType T) {
   6086   PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   6087                   DiagnosticsEngine::ak_qualtype);
   6088   return PD;
   6089 }
   6090 
   6091 // Helper class template that is used by Type::getAs to ensure that one does
   6092 // not try to look through a qualified type to get to an array type.
   6093 template <typename T>
   6094 using TypeIsArrayType =
   6095     std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
   6096                                      std::is_base_of<ArrayType, T>::value>;
   6097 
   6098 // Member-template getAs<specific type>'.
   6099 template <typename T> const T *Type::getAs() const {
   6100   static_assert(!TypeIsArrayType<T>::value,
   6101                 "ArrayType cannot be used with getAs!");
   6102 
   6103   // If this is directly a T type, return it.
   6104   if (const T *Ty = dyn_cast<T>(this))
   6105     return Ty;
   6106 
   6107   // If the canonical form of this type isn't the right kind, reject it.
   6108   if (!isa<T>(CanonicalType))
   6109     return nullptr;
   6110 
   6111   // If this is a typedef for the type, strip the typedef off without
   6112   // losing all typedef information.
   6113   return cast<T>(getUnqualifiedDesugaredType());
   6114 }
   6115 
   6116 template <typename T> const T *Type::getAsAdjusted() const {
   6117   static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
   6118 
   6119   // If this is directly a T type, return it.
   6120   if (const T *Ty = dyn_cast<T>(this))
   6121     return Ty;
   6122 
   6123   // If the canonical form of this type isn't the right kind, reject it.
   6124   if (!isa<T>(CanonicalType))
   6125     return nullptr;
   6126 
   6127   // Strip off type adjustments that do not modify the underlying nature of the
   6128   // type.
   6129   const Type *Ty = this;
   6130   while (Ty) {
   6131     if (const auto *A = dyn_cast<AttributedType>(Ty))
   6132       Ty = A->getModifiedType().getTypePtr();
   6133     else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
   6134       Ty = E->desugar().getTypePtr();
   6135     else if (const auto *P = dyn_cast<ParenType>(Ty))
   6136       Ty = P->desugar().getTypePtr();
   6137     else if (const auto *A = dyn_cast<AdjustedType>(Ty))
   6138       Ty = A->desugar().getTypePtr();
   6139     else
   6140       break;
   6141   }
   6142 
   6143   // Just because the canonical type is correct does not mean we can use cast<>,
   6144   // since we may not have stripped off all the sugar down to the base type.
   6145   return dyn_cast<T>(Ty);
   6146 }
   6147 
   6148 inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
   6149   // If this is directly an array type, return it.
   6150   if (const ArrayType *arr = dyn_cast<ArrayType>(this))
   6151     return arr;
   6152 
   6153   // If the canonical form of this type isn't the right kind, reject it.
   6154   if (!isa<ArrayType>(CanonicalType))
   6155     return nullptr;
   6156 
   6157   // If this is a typedef for the type, strip the typedef off without
   6158   // losing all typedef information.
   6159   return cast<ArrayType>(getUnqualifiedDesugaredType());
   6160 }
   6161 
   6162 template <typename T> const T *Type::castAs() const {
   6163   static_assert(!TypeIsArrayType<T>::value,
   6164                 "ArrayType cannot be used with castAs!");
   6165 
   6166   if (const T *ty = dyn_cast<T>(this)) return ty;
   6167   assert(isa<T>(CanonicalType));
   6168   return cast<T>(getUnqualifiedDesugaredType());
   6169 }
   6170 
   6171 inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
   6172   assert(isa<ArrayType>(CanonicalType));
   6173   if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
   6174   return cast<ArrayType>(getUnqualifiedDesugaredType());
   6175 }
   6176 
   6177 DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
   6178                          QualType CanonicalPtr)
   6179     : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
   6180 #ifndef NDEBUG
   6181   QualType Adjusted = getAdjustedType();
   6182   (void)AttributedType::stripOuterNullability(Adjusted);
   6183   assert(isa<PointerType>(Adjusted));
   6184 #endif
   6185 }
   6186 
   6187 QualType DecayedType::getPointeeType() const {
   6188   QualType Decayed = getDecayedType();
   6189   (void)AttributedType::stripOuterNullability(Decayed);
   6190   return cast<PointerType>(Decayed)->getPointeeType();
   6191 }
   6192 
   6193 
   6194 }  // end namespace clang
   6195 
   6196 #endif
   6197