Home | History | Annotate | Download | only in CodeGen
      1 //===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 /// \file
     11 /// This file provides a helper that implements much of the TTI interface in
     12 /// terms of the target-independent code generator and TargetLowering
     13 /// interfaces.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_CODEGEN_BASICTTIIMPL_H
     18 #define LLVM_CODEGEN_BASICTTIIMPL_H
     19 
     20 #include "llvm/ADT/APInt.h"
     21 #include "llvm/ADT/ArrayRef.h"
     22 #include "llvm/ADT/BitVector.h"
     23 #include "llvm/ADT/SmallPtrSet.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/Analysis/LoopInfo.h"
     26 #include "llvm/Analysis/TargetTransformInfo.h"
     27 #include "llvm/Analysis/TargetTransformInfoImpl.h"
     28 #include "llvm/CodeGen/ISDOpcodes.h"
     29 #include "llvm/CodeGen/MachineValueType.h"
     30 #include "llvm/CodeGen/ValueTypes.h"
     31 #include "llvm/IR/BasicBlock.h"
     32 #include "llvm/IR/CallSite.h"
     33 #include "llvm/IR/Constant.h"
     34 #include "llvm/IR/Constants.h"
     35 #include "llvm/IR/DataLayout.h"
     36 #include "llvm/IR/DerivedTypes.h"
     37 #include "llvm/IR/InstrTypes.h"
     38 #include "llvm/IR/Instruction.h"
     39 #include "llvm/IR/Instructions.h"
     40 #include "llvm/IR/Intrinsics.h"
     41 #include "llvm/IR/Operator.h"
     42 #include "llvm/IR/Type.h"
     43 #include "llvm/IR/Value.h"
     44 #include "llvm/MC/MCSchedule.h"
     45 #include "llvm/Support/Casting.h"
     46 #include "llvm/Support/CommandLine.h"
     47 #include "llvm/Support/ErrorHandling.h"
     48 #include "llvm/Support/MathExtras.h"
     49 #include "llvm/Target/TargetLowering.h"
     50 #include "llvm/Target/TargetSubtargetInfo.h"
     51 #include <algorithm>
     52 #include <cassert>
     53 #include <cstdint>
     54 #include <limits>
     55 #include <utility>
     56 
     57 namespace llvm {
     58 
     59 class Function;
     60 class GlobalValue;
     61 class LLVMContext;
     62 class ScalarEvolution;
     63 class SCEV;
     64 class TargetMachine;
     65 
     66 extern cl::opt<unsigned> PartialUnrollingThreshold;
     67 
     68 /// \brief Base class which can be used to help build a TTI implementation.
     69 ///
     70 /// This class provides as much implementation of the TTI interface as is
     71 /// possible using the target independent parts of the code generator.
     72 ///
     73 /// In order to subclass it, your class must implement a getST() method to
     74 /// return the subtarget, and a getTLI() method to return the target lowering.
     75 /// We need these methods implemented in the derived class so that this class
     76 /// doesn't have to duplicate storage for them.
     77 template <typename T>
     78 class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
     79 private:
     80   using BaseT = TargetTransformInfoImplCRTPBase<T>;
     81   using TTI = TargetTransformInfo;
     82 
     83   /// Estimate a cost of shuffle as a sequence of extract and insert
     84   /// operations.
     85   unsigned getPermuteShuffleOverhead(Type *Ty) {
     86     assert(Ty->isVectorTy() && "Can only shuffle vectors");
     87     unsigned Cost = 0;
     88     // Shuffle cost is equal to the cost of extracting element from its argument
     89     // plus the cost of inserting them onto the result vector.
     90 
     91     // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
     92     // index 0 of first vector, index 1 of second vector,index 2 of first
     93     // vector and finally index 3 of second vector and insert them at index
     94     // <0,1,2,3> of result vector.
     95     for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
     96       Cost += static_cast<T *>(this)
     97                   ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
     98       Cost += static_cast<T *>(this)
     99                   ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
    100     }
    101     return Cost;
    102   }
    103 
    104   /// \brief Local query method delegates up to T which *must* implement this!
    105   const TargetSubtargetInfo *getST() const {
    106     return static_cast<const T *>(this)->getST();
    107   }
    108 
    109   /// \brief Local query method delegates up to T which *must* implement this!
    110   const TargetLoweringBase *getTLI() const {
    111     return static_cast<const T *>(this)->getTLI();
    112   }
    113 
    114 protected:
    115   explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
    116       : BaseT(DL) {}
    117 
    118   using TargetTransformInfoImplBase::DL;
    119 
    120 public:
    121   /// \name Scalar TTI Implementations
    122   /// @{
    123   bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
    124                                       unsigned BitWidth, unsigned AddressSpace,
    125                                       unsigned Alignment, bool *Fast) const {
    126     EVT E = EVT::getIntegerVT(Context, BitWidth);
    127     return getTLI()->allowsMisalignedMemoryAccesses(E, AddressSpace, Alignment, Fast);
    128   }
    129 
    130   bool hasBranchDivergence() { return false; }
    131 
    132   bool isSourceOfDivergence(const Value *V) { return false; }
    133 
    134   bool isAlwaysUniform(const Value *V) { return false; }
    135 
    136   unsigned getFlatAddressSpace() {
    137     // Return an invalid address space.
    138     return -1;
    139   }
    140 
    141   bool isLegalAddImmediate(int64_t imm) {
    142     return getTLI()->isLegalAddImmediate(imm);
    143   }
    144 
    145   bool isLegalICmpImmediate(int64_t imm) {
    146     return getTLI()->isLegalICmpImmediate(imm);
    147   }
    148 
    149   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    150                              bool HasBaseReg, int64_t Scale,
    151                              unsigned AddrSpace, Instruction *I = nullptr) {
    152     TargetLoweringBase::AddrMode AM;
    153     AM.BaseGV = BaseGV;
    154     AM.BaseOffs = BaseOffset;
    155     AM.HasBaseReg = HasBaseReg;
    156     AM.Scale = Scale;
    157     return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
    158   }
    159 
    160   bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) {
    161     return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
    162   }
    163 
    164   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    165                            bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
    166     TargetLoweringBase::AddrMode AM;
    167     AM.BaseGV = BaseGV;
    168     AM.BaseOffs = BaseOffset;
    169     AM.HasBaseReg = HasBaseReg;
    170     AM.Scale = Scale;
    171     return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace);
    172   }
    173 
    174   bool isTruncateFree(Type *Ty1, Type *Ty2) {
    175     return getTLI()->isTruncateFree(Ty1, Ty2);
    176   }
    177 
    178   bool isProfitableToHoist(Instruction *I) {
    179     return getTLI()->isProfitableToHoist(I);
    180   }
    181 
    182   bool isTypeLegal(Type *Ty) {
    183     EVT VT = getTLI()->getValueType(DL, Ty);
    184     return getTLI()->isTypeLegal(VT);
    185   }
    186 
    187   int getGEPCost(Type *PointeeType, const Value *Ptr,
    188                  ArrayRef<const Value *> Operands) {
    189     return BaseT::getGEPCost(PointeeType, Ptr, Operands);
    190   }
    191 
    192   int getExtCost(const Instruction *I, const Value *Src) {
    193     if (getTLI()->isExtFree(I))
    194       return TargetTransformInfo::TCC_Free;
    195 
    196     if (isa<ZExtInst>(I) || isa<SExtInst>(I))
    197       if (const LoadInst *LI = dyn_cast<LoadInst>(Src))
    198         if (getTLI()->isExtLoad(LI, I, DL))
    199           return TargetTransformInfo::TCC_Free;
    200 
    201     return TargetTransformInfo::TCC_Basic;
    202   }
    203 
    204   unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    205                             ArrayRef<const Value *> Arguments) {
    206     return BaseT::getIntrinsicCost(IID, RetTy, Arguments);
    207   }
    208 
    209   unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    210                             ArrayRef<Type *> ParamTys) {
    211     if (IID == Intrinsic::cttz) {
    212       if (getTLI()->isCheapToSpeculateCttz())
    213         return TargetTransformInfo::TCC_Basic;
    214       return TargetTransformInfo::TCC_Expensive;
    215     }
    216 
    217     if (IID == Intrinsic::ctlz) {
    218       if (getTLI()->isCheapToSpeculateCtlz())
    219         return TargetTransformInfo::TCC_Basic;
    220       return TargetTransformInfo::TCC_Expensive;
    221     }
    222 
    223     return BaseT::getIntrinsicCost(IID, RetTy, ParamTys);
    224   }
    225 
    226   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
    227                                             unsigned &JumpTableSize) {
    228     /// Try to find the estimated number of clusters. Note that the number of
    229     /// clusters identified in this function could be different from the actural
    230     /// numbers found in lowering. This function ignore switches that are
    231     /// lowered with a mix of jump table / bit test / BTree. This function was
    232     /// initially intended to be used when estimating the cost of switch in
    233     /// inline cost heuristic, but it's a generic cost model to be used in other
    234     /// places (e.g., in loop unrolling).
    235     unsigned N = SI.getNumCases();
    236     const TargetLoweringBase *TLI = getTLI();
    237     const DataLayout &DL = this->getDataLayout();
    238 
    239     JumpTableSize = 0;
    240     bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
    241 
    242     // Early exit if both a jump table and bit test are not allowed.
    243     if (N < 1 || (!IsJTAllowed && DL.getPointerSizeInBits() < N))
    244       return N;
    245 
    246     APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
    247     APInt MinCaseVal = MaxCaseVal;
    248     for (auto CI : SI.cases()) {
    249       const APInt &CaseVal = CI.getCaseValue()->getValue();
    250       if (CaseVal.sgt(MaxCaseVal))
    251         MaxCaseVal = CaseVal;
    252       if (CaseVal.slt(MinCaseVal))
    253         MinCaseVal = CaseVal;
    254     }
    255 
    256     // Check if suitable for a bit test
    257     if (N <= DL.getPointerSizeInBits()) {
    258       SmallPtrSet<const BasicBlock *, 4> Dests;
    259       for (auto I : SI.cases())
    260         Dests.insert(I.getCaseSuccessor());
    261 
    262       if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal,
    263                                      DL))
    264         return 1;
    265     }
    266 
    267     // Check if suitable for a jump table.
    268     if (IsJTAllowed) {
    269       if (N < 2 || N < TLI->getMinimumJumpTableEntries())
    270         return N;
    271       uint64_t Range =
    272           (MaxCaseVal - MinCaseVal)
    273               .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
    274       // Check whether a range of clusters is dense enough for a jump table
    275       if (TLI->isSuitableForJumpTable(&SI, N, Range)) {
    276         JumpTableSize = Range;
    277         return 1;
    278       }
    279     }
    280     return N;
    281   }
    282 
    283   unsigned getJumpBufAlignment() { return getTLI()->getJumpBufAlignment(); }
    284 
    285   unsigned getJumpBufSize() { return getTLI()->getJumpBufSize(); }
    286 
    287   bool shouldBuildLookupTables() {
    288     const TargetLoweringBase *TLI = getTLI();
    289     return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
    290            TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
    291   }
    292 
    293   bool haveFastSqrt(Type *Ty) {
    294     const TargetLoweringBase *TLI = getTLI();
    295     EVT VT = TLI->getValueType(DL, Ty);
    296     return TLI->isTypeLegal(VT) &&
    297            TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
    298   }
    299 
    300   unsigned getFPOpCost(Type *Ty) {
    301     // By default, FP instructions are no more expensive since they are
    302     // implemented in HW.  Target specific TTI can override this.
    303     return TargetTransformInfo::TCC_Basic;
    304   }
    305 
    306   unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
    307     const TargetLoweringBase *TLI = getTLI();
    308     switch (Opcode) {
    309     default: break;
    310     case Instruction::Trunc:
    311       if (TLI->isTruncateFree(OpTy, Ty))
    312         return TargetTransformInfo::TCC_Free;
    313       return TargetTransformInfo::TCC_Basic;
    314     case Instruction::ZExt:
    315       if (TLI->isZExtFree(OpTy, Ty))
    316         return TargetTransformInfo::TCC_Free;
    317       return TargetTransformInfo::TCC_Basic;
    318     }
    319 
    320     return BaseT::getOperationCost(Opcode, Ty, OpTy);
    321   }
    322 
    323   unsigned getInliningThresholdMultiplier() { return 1; }
    324 
    325   void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
    326                                TTI::UnrollingPreferences &UP) {
    327     // This unrolling functionality is target independent, but to provide some
    328     // motivation for its intended use, for x86:
    329 
    330     // According to the Intel 64 and IA-32 Architectures Optimization Reference
    331     // Manual, Intel Core models and later have a loop stream detector (and
    332     // associated uop queue) that can benefit from partial unrolling.
    333     // The relevant requirements are:
    334     //  - The loop must have no more than 4 (8 for Nehalem and later) branches
    335     //    taken, and none of them may be calls.
    336     //  - The loop can have no more than 18 (28 for Nehalem and later) uops.
    337 
    338     // According to the Software Optimization Guide for AMD Family 15h
    339     // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
    340     // and loop buffer which can benefit from partial unrolling.
    341     // The relevant requirements are:
    342     //  - The loop must have fewer than 16 branches
    343     //  - The loop must have less than 40 uops in all executed loop branches
    344 
    345     // The number of taken branches in a loop is hard to estimate here, and
    346     // benchmarking has revealed that it is better not to be conservative when
    347     // estimating the branch count. As a result, we'll ignore the branch limits
    348     // until someone finds a case where it matters in practice.
    349 
    350     unsigned MaxOps;
    351     const TargetSubtargetInfo *ST = getST();
    352     if (PartialUnrollingThreshold.getNumOccurrences() > 0)
    353       MaxOps = PartialUnrollingThreshold;
    354     else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
    355       MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
    356     else
    357       return;
    358 
    359     // Scan the loop: don't unroll loops with calls.
    360     for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
    361          ++I) {
    362       BasicBlock *BB = *I;
    363 
    364       for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
    365         if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
    366           ImmutableCallSite CS(&*J);
    367           if (const Function *F = CS.getCalledFunction()) {
    368             if (!static_cast<T *>(this)->isLoweredToCall(F))
    369               continue;
    370           }
    371 
    372           return;
    373         }
    374     }
    375 
    376     // Enable runtime and partial unrolling up to the specified size.
    377     // Enable using trip count upper bound to unroll loops.
    378     UP.Partial = UP.Runtime = UP.UpperBound = true;
    379     UP.PartialThreshold = MaxOps;
    380 
    381     // Avoid unrolling when optimizing for size.
    382     UP.OptSizeThreshold = 0;
    383     UP.PartialOptSizeThreshold = 0;
    384 
    385     // Set number of instructions optimized when "back edge"
    386     // becomes "fall through" to default value of 2.
    387     UP.BEInsns = 2;
    388   }
    389 
    390   int getInstructionLatency(const Instruction *I) {
    391     if (isa<LoadInst>(I))
    392       return getST()->getSchedModel().DefaultLoadLatency;
    393 
    394     return BaseT::getInstructionLatency(I);
    395   }
    396 
    397   /// @}
    398 
    399   /// \name Vector TTI Implementations
    400   /// @{
    401 
    402   unsigned getNumberOfRegisters(bool Vector) { return Vector ? 0 : 1; }
    403 
    404   unsigned getRegisterBitWidth(bool Vector) const { return 32; }
    405 
    406   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
    407   /// are set if the result needs to be inserted and/or extracted from vectors.
    408   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
    409     assert(Ty->isVectorTy() && "Can only scalarize vectors");
    410     unsigned Cost = 0;
    411 
    412     for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
    413       if (Insert)
    414         Cost += static_cast<T *>(this)
    415                     ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
    416       if (Extract)
    417         Cost += static_cast<T *>(this)
    418                     ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
    419     }
    420 
    421     return Cost;
    422   }
    423 
    424   /// Estimate the overhead of scalarizing an instructions unique
    425   /// non-constant operands. The types of the arguments are ordinarily
    426   /// scalar, in which case the costs are multiplied with VF.
    427   unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
    428                                             unsigned VF) {
    429     unsigned Cost = 0;
    430     SmallPtrSet<const Value*, 4> UniqueOperands;
    431     for (const Value *A : Args) {
    432       if (!isa<Constant>(A) && UniqueOperands.insert(A).second) {
    433         Type *VecTy = nullptr;
    434         if (A->getType()->isVectorTy()) {
    435           VecTy = A->getType();
    436           // If A is a vector operand, VF should be 1 or correspond to A.
    437           assert((VF == 1 || VF == VecTy->getVectorNumElements()) &&
    438                  "Vector argument does not match VF");
    439         }
    440         else
    441           VecTy = VectorType::get(A->getType(), VF);
    442 
    443         Cost += getScalarizationOverhead(VecTy, false, true);
    444       }
    445     }
    446 
    447     return Cost;
    448   }
    449 
    450   unsigned getScalarizationOverhead(Type *VecTy, ArrayRef<const Value *> Args) {
    451     assert(VecTy->isVectorTy());
    452 
    453     unsigned Cost = 0;
    454 
    455     Cost += getScalarizationOverhead(VecTy, true, false);
    456     if (!Args.empty())
    457       Cost += getOperandsScalarizationOverhead(Args,
    458                                                VecTy->getVectorNumElements());
    459     else
    460       // When no information on arguments is provided, we add the cost
    461       // associated with one argument as a heuristic.
    462       Cost += getScalarizationOverhead(VecTy, false, true);
    463 
    464     return Cost;
    465   }
    466 
    467   unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
    468 
    469   unsigned getArithmeticInstrCost(
    470       unsigned Opcode, Type *Ty,
    471       TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
    472       TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
    473       TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
    474       TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
    475       ArrayRef<const Value *> Args = ArrayRef<const Value *>()) {
    476     // Check if any of the operands are vector operands.
    477     const TargetLoweringBase *TLI = getTLI();
    478     int ISD = TLI->InstructionOpcodeToISD(Opcode);
    479     assert(ISD && "Invalid opcode");
    480 
    481     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
    482 
    483     bool IsFloat = Ty->isFPOrFPVectorTy();
    484     // Assume that floating point arithmetic operations cost twice as much as
    485     // integer operations.
    486     unsigned OpCost = (IsFloat ? 2 : 1);
    487 
    488     if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
    489       // The operation is legal. Assume it costs 1.
    490       // TODO: Once we have extract/insert subvector cost we need to use them.
    491       return LT.first * OpCost;
    492     }
    493 
    494     if (!TLI->isOperationExpand(ISD, LT.second)) {
    495       // If the operation is custom lowered, then assume that the code is twice
    496       // as expensive.
    497       return LT.first * 2 * OpCost;
    498     }
    499 
    500     // Else, assume that we need to scalarize this op.
    501     // TODO: If one of the types get legalized by splitting, handle this
    502     // similarly to what getCastInstrCost() does.
    503     if (Ty->isVectorTy()) {
    504       unsigned Num = Ty->getVectorNumElements();
    505       unsigned Cost = static_cast<T *>(this)
    506                           ->getArithmeticInstrCost(Opcode, Ty->getScalarType());
    507       // Return the cost of multiple scalar invocation plus the cost of
    508       // inserting and extracting the values.
    509       return getScalarizationOverhead(Ty, Args) + Num * Cost;
    510     }
    511 
    512     // We don't know anything about this scalar instruction.
    513     return OpCost;
    514   }
    515 
    516   unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
    517                           Type *SubTp) {
    518     if (Kind == TTI::SK_Alternate || Kind == TTI::SK_PermuteTwoSrc ||
    519         Kind == TTI::SK_PermuteSingleSrc) {
    520       return getPermuteShuffleOverhead(Tp);
    521     }
    522     return 1;
    523   }
    524 
    525   unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
    526                             const Instruction *I = nullptr) {
    527     const TargetLoweringBase *TLI = getTLI();
    528     int ISD = TLI->InstructionOpcodeToISD(Opcode);
    529     assert(ISD && "Invalid opcode");
    530     std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, Src);
    531     std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(DL, Dst);
    532 
    533     // Check for NOOP conversions.
    534     if (SrcLT.first == DstLT.first &&
    535         SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
    536 
    537       // Bitcast between types that are legalized to the same type are free.
    538       if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
    539         return 0;
    540     }
    541 
    542     if (Opcode == Instruction::Trunc &&
    543         TLI->isTruncateFree(SrcLT.second, DstLT.second))
    544       return 0;
    545 
    546     if (Opcode == Instruction::ZExt &&
    547         TLI->isZExtFree(SrcLT.second, DstLT.second))
    548       return 0;
    549 
    550     if (Opcode == Instruction::AddrSpaceCast &&
    551         TLI->isNoopAddrSpaceCast(Src->getPointerAddressSpace(),
    552                                  Dst->getPointerAddressSpace()))
    553       return 0;
    554 
    555     // If this is a zext/sext of a load, return 0 if the corresponding
    556     // extending load exists on target.
    557     if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
    558         I && isa<LoadInst>(I->getOperand(0))) {
    559         EVT ExtVT = EVT::getEVT(Dst);
    560         EVT LoadVT = EVT::getEVT(Src);
    561         unsigned LType =
    562           ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
    563         if (TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
    564           return 0;
    565     }
    566 
    567     // If the cast is marked as legal (or promote) then assume low cost.
    568     if (SrcLT.first == DstLT.first &&
    569         TLI->isOperationLegalOrPromote(ISD, DstLT.second))
    570       return 1;
    571 
    572     // Handle scalar conversions.
    573     if (!Src->isVectorTy() && !Dst->isVectorTy()) {
    574       // Scalar bitcasts are usually free.
    575       if (Opcode == Instruction::BitCast)
    576         return 0;
    577 
    578       // Just check the op cost. If the operation is legal then assume it costs
    579       // 1.
    580       if (!TLI->isOperationExpand(ISD, DstLT.second))
    581         return 1;
    582 
    583       // Assume that illegal scalar instruction are expensive.
    584       return 4;
    585     }
    586 
    587     // Check vector-to-vector casts.
    588     if (Dst->isVectorTy() && Src->isVectorTy()) {
    589       // If the cast is between same-sized registers, then the check is simple.
    590       if (SrcLT.first == DstLT.first &&
    591           SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
    592 
    593         // Assume that Zext is done using AND.
    594         if (Opcode == Instruction::ZExt)
    595           return 1;
    596 
    597         // Assume that sext is done using SHL and SRA.
    598         if (Opcode == Instruction::SExt)
    599           return 2;
    600 
    601         // Just check the op cost. If the operation is legal then assume it
    602         // costs
    603         // 1 and multiply by the type-legalization overhead.
    604         if (!TLI->isOperationExpand(ISD, DstLT.second))
    605           return SrcLT.first * 1;
    606       }
    607 
    608       // If we are legalizing by splitting, query the concrete TTI for the cost
    609       // of casting the original vector twice. We also need to factor int the
    610       // cost of the split itself. Count that as 1, to be consistent with
    611       // TLI->getTypeLegalizationCost().
    612       if ((TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
    613            TargetLowering::TypeSplitVector) ||
    614           (TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
    615            TargetLowering::TypeSplitVector)) {
    616         Type *SplitDst = VectorType::get(Dst->getVectorElementType(),
    617                                          Dst->getVectorNumElements() / 2);
    618         Type *SplitSrc = VectorType::get(Src->getVectorElementType(),
    619                                          Src->getVectorNumElements() / 2);
    620         T *TTI = static_cast<T *>(this);
    621         return TTI->getVectorSplitCost() +
    622                (2 * TTI->getCastInstrCost(Opcode, SplitDst, SplitSrc, I));
    623       }
    624 
    625       // In other cases where the source or destination are illegal, assume
    626       // the operation will get scalarized.
    627       unsigned Num = Dst->getVectorNumElements();
    628       unsigned Cost = static_cast<T *>(this)->getCastInstrCost(
    629           Opcode, Dst->getScalarType(), Src->getScalarType(), I);
    630 
    631       // Return the cost of multiple scalar invocation plus the cost of
    632       // inserting and extracting the values.
    633       return getScalarizationOverhead(Dst, true, true) + Num * Cost;
    634     }
    635 
    636     // We already handled vector-to-vector and scalar-to-scalar conversions.
    637     // This
    638     // is where we handle bitcast between vectors and scalars. We need to assume
    639     //  that the conversion is scalarized in one way or another.
    640     if (Opcode == Instruction::BitCast)
    641       // Illegal bitcasts are done by storing and loading from a stack slot.
    642       return (Src->isVectorTy() ? getScalarizationOverhead(Src, false, true)
    643                                 : 0) +
    644              (Dst->isVectorTy() ? getScalarizationOverhead(Dst, true, false)
    645                                 : 0);
    646 
    647     llvm_unreachable("Unhandled cast");
    648   }
    649 
    650   unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
    651                                     VectorType *VecTy, unsigned Index) {
    652     return static_cast<T *>(this)->getVectorInstrCost(
    653                Instruction::ExtractElement, VecTy, Index) +
    654            static_cast<T *>(this)->getCastInstrCost(Opcode, Dst,
    655                                                     VecTy->getElementType());
    656   }
    657 
    658   unsigned getCFInstrCost(unsigned Opcode) {
    659     // Branches are assumed to be predicted.
    660     return 0;
    661   }
    662 
    663   unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
    664                               const Instruction *I) {
    665     const TargetLoweringBase *TLI = getTLI();
    666     int ISD = TLI->InstructionOpcodeToISD(Opcode);
    667     assert(ISD && "Invalid opcode");
    668 
    669     // Selects on vectors are actually vector selects.
    670     if (ISD == ISD::SELECT) {
    671       assert(CondTy && "CondTy must exist");
    672       if (CondTy->isVectorTy())
    673         ISD = ISD::VSELECT;
    674     }
    675     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
    676 
    677     if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
    678         !TLI->isOperationExpand(ISD, LT.second)) {
    679       // The operation is legal. Assume it costs 1. Multiply
    680       // by the type-legalization overhead.
    681       return LT.first * 1;
    682     }
    683 
    684     // Otherwise, assume that the cast is scalarized.
    685     // TODO: If one of the types get legalized by splitting, handle this
    686     // similarly to what getCastInstrCost() does.
    687     if (ValTy->isVectorTy()) {
    688       unsigned Num = ValTy->getVectorNumElements();
    689       if (CondTy)
    690         CondTy = CondTy->getScalarType();
    691       unsigned Cost = static_cast<T *>(this)->getCmpSelInstrCost(
    692           Opcode, ValTy->getScalarType(), CondTy, I);
    693 
    694       // Return the cost of multiple scalar invocation plus the cost of
    695       // inserting and extracting the values.
    696       return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
    697     }
    698 
    699     // Unknown scalar opcode.
    700     return 1;
    701   }
    702 
    703   unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
    704     std::pair<unsigned, MVT> LT =
    705         getTLI()->getTypeLegalizationCost(DL, Val->getScalarType());
    706 
    707     return LT.first;
    708   }
    709 
    710   unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    711                        unsigned AddressSpace, const Instruction *I = nullptr) {
    712     assert(!Src->isVoidTy() && "Invalid type");
    713     std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Src);
    714 
    715     // Assuming that all loads of legal types cost 1.
    716     unsigned Cost = LT.first;
    717 
    718     if (Src->isVectorTy() &&
    719         Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
    720       // This is a vector load that legalizes to a larger type than the vector
    721       // itself. Unless the corresponding extending load or truncating store is
    722       // legal, then this will scalarize.
    723       TargetLowering::LegalizeAction LA = TargetLowering::Expand;
    724       EVT MemVT = getTLI()->getValueType(DL, Src);
    725       if (Opcode == Instruction::Store)
    726         LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
    727       else
    728         LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
    729 
    730       if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
    731         // This is a vector load/store for some illegal type that is scalarized.
    732         // We must account for the cost of building or decomposing the vector.
    733         Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
    734                                          Opcode == Instruction::Store);
    735       }
    736     }
    737 
    738     return Cost;
    739   }
    740 
    741   unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
    742                                       unsigned Factor,
    743                                       ArrayRef<unsigned> Indices,
    744                                       unsigned Alignment,
    745                                       unsigned AddressSpace) {
    746     VectorType *VT = dyn_cast<VectorType>(VecTy);
    747     assert(VT && "Expect a vector type for interleaved memory op");
    748 
    749     unsigned NumElts = VT->getNumElements();
    750     assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
    751 
    752     unsigned NumSubElts = NumElts / Factor;
    753     VectorType *SubVT = VectorType::get(VT->getElementType(), NumSubElts);
    754 
    755     // Firstly, the cost of load/store operation.
    756     unsigned Cost = static_cast<T *>(this)->getMemoryOpCost(
    757         Opcode, VecTy, Alignment, AddressSpace);
    758 
    759     // Legalize the vector type, and get the legalized and unlegalized type
    760     // sizes.
    761     MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
    762     unsigned VecTySize =
    763         static_cast<T *>(this)->getDataLayout().getTypeStoreSize(VecTy);
    764     unsigned VecTyLTSize = VecTyLT.getStoreSize();
    765 
    766     // Return the ceiling of dividing A by B.
    767     auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
    768 
    769     // Scale the cost of the memory operation by the fraction of legalized
    770     // instructions that will actually be used. We shouldn't account for the
    771     // cost of dead instructions since they will be removed.
    772     //
    773     // E.g., An interleaved load of factor 8:
    774     //       %vec = load <16 x i64>, <16 x i64>* %ptr
    775     //       %v0 = shufflevector %vec, undef, <0, 8>
    776     //
    777     // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
    778     // used (those corresponding to elements [0:1] and [8:9] of the unlegalized
    779     // type). The other loads are unused.
    780     //
    781     // We only scale the cost of loads since interleaved store groups aren't
    782     // allowed to have gaps.
    783     if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) {
    784       // The number of loads of a legal type it will take to represent a load
    785       // of the unlegalized vector type.
    786       unsigned NumLegalInsts = ceil(VecTySize, VecTyLTSize);
    787 
    788       // The number of elements of the unlegalized type that correspond to a
    789       // single legal instruction.
    790       unsigned NumEltsPerLegalInst = ceil(NumElts, NumLegalInsts);
    791 
    792       // Determine which legal instructions will be used.
    793       BitVector UsedInsts(NumLegalInsts, false);
    794       for (unsigned Index : Indices)
    795         for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
    796           UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
    797 
    798       // Scale the cost of the load by the fraction of legal instructions that
    799       // will be used.
    800       Cost *= UsedInsts.count() / NumLegalInsts;
    801     }
    802 
    803     // Then plus the cost of interleave operation.
    804     if (Opcode == Instruction::Load) {
    805       // The interleave cost is similar to extract sub vectors' elements
    806       // from the wide vector, and insert them into sub vectors.
    807       //
    808       // E.g. An interleaved load of factor 2 (with one member of index 0):
    809       //      %vec = load <8 x i32>, <8 x i32>* %ptr
    810       //      %v0 = shuffle %vec, undef, <0, 2, 4, 6>         ; Index 0
    811       // The cost is estimated as extract elements at 0, 2, 4, 6 from the
    812       // <8 x i32> vector and insert them into a <4 x i32> vector.
    813 
    814       assert(Indices.size() <= Factor &&
    815              "Interleaved memory op has too many members");
    816 
    817       for (unsigned Index : Indices) {
    818         assert(Index < Factor && "Invalid index for interleaved memory op");
    819 
    820         // Extract elements from loaded vector for each sub vector.
    821         for (unsigned i = 0; i < NumSubElts; i++)
    822           Cost += static_cast<T *>(this)->getVectorInstrCost(
    823               Instruction::ExtractElement, VT, Index + i * Factor);
    824       }
    825 
    826       unsigned InsSubCost = 0;
    827       for (unsigned i = 0; i < NumSubElts; i++)
    828         InsSubCost += static_cast<T *>(this)->getVectorInstrCost(
    829             Instruction::InsertElement, SubVT, i);
    830 
    831       Cost += Indices.size() * InsSubCost;
    832     } else {
    833       // The interleave cost is extract all elements from sub vectors, and
    834       // insert them into the wide vector.
    835       //
    836       // E.g. An interleaved store of factor 2:
    837       //      %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
    838       //      store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
    839       // The cost is estimated as extract all elements from both <4 x i32>
    840       // vectors and insert into the <8 x i32> vector.
    841 
    842       unsigned ExtSubCost = 0;
    843       for (unsigned i = 0; i < NumSubElts; i++)
    844         ExtSubCost += static_cast<T *>(this)->getVectorInstrCost(
    845             Instruction::ExtractElement, SubVT, i);
    846       Cost += ExtSubCost * Factor;
    847 
    848       for (unsigned i = 0; i < NumElts; i++)
    849         Cost += static_cast<T *>(this)
    850                     ->getVectorInstrCost(Instruction::InsertElement, VT, i);
    851     }
    852 
    853     return Cost;
    854   }
    855 
    856   /// Get intrinsic cost based on arguments.
    857   unsigned getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
    858                                  ArrayRef<Value *> Args, FastMathFlags FMF,
    859                                  unsigned VF = 1) {
    860     unsigned RetVF = (RetTy->isVectorTy() ? RetTy->getVectorNumElements() : 1);
    861     assert((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type");
    862 
    863     switch (IID) {
    864     default: {
    865       // Assume that we need to scalarize this intrinsic.
    866       SmallVector<Type *, 4> Types;
    867       for (Value *Op : Args) {
    868         Type *OpTy = Op->getType();
    869         assert(VF == 1 || !OpTy->isVectorTy());
    870         Types.push_back(VF == 1 ? OpTy : VectorType::get(OpTy, VF));
    871       }
    872 
    873       if (VF > 1 && !RetTy->isVoidTy())
    874         RetTy = VectorType::get(RetTy, VF);
    875 
    876       // Compute the scalarization overhead based on Args for a vector
    877       // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
    878       // CostModel will pass a vector RetTy and VF is 1.
    879       unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
    880       if (RetVF > 1 || VF > 1) {
    881         ScalarizationCost = 0;
    882         if (!RetTy->isVoidTy())
    883           ScalarizationCost += getScalarizationOverhead(RetTy, true, false);
    884         ScalarizationCost += getOperandsScalarizationOverhead(Args, VF);
    885       }
    886 
    887       return static_cast<T *>(this)->
    888         getIntrinsicInstrCost(IID, RetTy, Types, FMF, ScalarizationCost);
    889     }
    890     case Intrinsic::masked_scatter: {
    891       assert(VF == 1 && "Can't vectorize types here.");
    892       Value *Mask = Args[3];
    893       bool VarMask = !isa<Constant>(Mask);
    894       unsigned Alignment = cast<ConstantInt>(Args[2])->getZExtValue();
    895       return
    896         static_cast<T *>(this)->getGatherScatterOpCost(Instruction::Store,
    897                                                        Args[0]->getType(),
    898                                                        Args[1], VarMask,
    899                                                        Alignment);
    900     }
    901     case Intrinsic::masked_gather: {
    902       assert(VF == 1 && "Can't vectorize types here.");
    903       Value *Mask = Args[2];
    904       bool VarMask = !isa<Constant>(Mask);
    905       unsigned Alignment = cast<ConstantInt>(Args[1])->getZExtValue();
    906       return
    907         static_cast<T *>(this)->getGatherScatterOpCost(Instruction::Load,
    908                                                        RetTy, Args[0], VarMask,
    909                                                        Alignment);
    910     }
    911     }
    912   }
    913 
    914   /// Get intrinsic cost based on argument types.
    915   /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
    916   /// cost of scalarizing the arguments and the return value will be computed
    917   /// based on types.
    918   unsigned getIntrinsicInstrCost(
    919       Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> Tys, FastMathFlags FMF,
    920       unsigned ScalarizationCostPassed = std::numeric_limits<unsigned>::max()) {
    921     SmallVector<unsigned, 2> ISDs;
    922     unsigned SingleCallCost = 10; // Library call cost. Make it expensive.
    923     switch (IID) {
    924     default: {
    925       // Assume that we need to scalarize this intrinsic.
    926       unsigned ScalarizationCost = ScalarizationCostPassed;
    927       unsigned ScalarCalls = 1;
    928       Type *ScalarRetTy = RetTy;
    929       if (RetTy->isVectorTy()) {
    930         if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
    931           ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
    932         ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
    933         ScalarRetTy = RetTy->getScalarType();
    934       }
    935       SmallVector<Type *, 4> ScalarTys;
    936       for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
    937         Type *Ty = Tys[i];
    938         if (Ty->isVectorTy()) {
    939           if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
    940             ScalarizationCost += getScalarizationOverhead(Ty, false, true);
    941           ScalarCalls = std::max(ScalarCalls, Ty->getVectorNumElements());
    942           Ty = Ty->getScalarType();
    943         }
    944         ScalarTys.push_back(Ty);
    945       }
    946       if (ScalarCalls == 1)
    947         return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
    948 
    949       unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost(
    950           IID, ScalarRetTy, ScalarTys, FMF);
    951 
    952       return ScalarCalls * ScalarCost + ScalarizationCost;
    953     }
    954     // Look for intrinsics that can be lowered directly or turned into a scalar
    955     // intrinsic call.
    956     case Intrinsic::sqrt:
    957       ISDs.push_back(ISD::FSQRT);
    958       break;
    959     case Intrinsic::sin:
    960       ISDs.push_back(ISD::FSIN);
    961       break;
    962     case Intrinsic::cos:
    963       ISDs.push_back(ISD::FCOS);
    964       break;
    965     case Intrinsic::exp:
    966       ISDs.push_back(ISD::FEXP);
    967       break;
    968     case Intrinsic::exp2:
    969       ISDs.push_back(ISD::FEXP2);
    970       break;
    971     case Intrinsic::log:
    972       ISDs.push_back(ISD::FLOG);
    973       break;
    974     case Intrinsic::log10:
    975       ISDs.push_back(ISD::FLOG10);
    976       break;
    977     case Intrinsic::log2:
    978       ISDs.push_back(ISD::FLOG2);
    979       break;
    980     case Intrinsic::fabs:
    981       ISDs.push_back(ISD::FABS);
    982       break;
    983     case Intrinsic::minnum:
    984       ISDs.push_back(ISD::FMINNUM);
    985       if (FMF.noNaNs())
    986         ISDs.push_back(ISD::FMINNAN);
    987       break;
    988     case Intrinsic::maxnum:
    989       ISDs.push_back(ISD::FMAXNUM);
    990       if (FMF.noNaNs())
    991         ISDs.push_back(ISD::FMAXNAN);
    992       break;
    993     case Intrinsic::copysign:
    994       ISDs.push_back(ISD::FCOPYSIGN);
    995       break;
    996     case Intrinsic::floor:
    997       ISDs.push_back(ISD::FFLOOR);
    998       break;
    999     case Intrinsic::ceil:
   1000       ISDs.push_back(ISD::FCEIL);
   1001       break;
   1002     case Intrinsic::trunc:
   1003       ISDs.push_back(ISD::FTRUNC);
   1004       break;
   1005     case Intrinsic::nearbyint:
   1006       ISDs.push_back(ISD::FNEARBYINT);
   1007       break;
   1008     case Intrinsic::rint:
   1009       ISDs.push_back(ISD::FRINT);
   1010       break;
   1011     case Intrinsic::round:
   1012       ISDs.push_back(ISD::FROUND);
   1013       break;
   1014     case Intrinsic::pow:
   1015       ISDs.push_back(ISD::FPOW);
   1016       break;
   1017     case Intrinsic::fma:
   1018       ISDs.push_back(ISD::FMA);
   1019       break;
   1020     case Intrinsic::fmuladd:
   1021       ISDs.push_back(ISD::FMA);
   1022       break;
   1023     // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
   1024     case Intrinsic::lifetime_start:
   1025     case Intrinsic::lifetime_end:
   1026       return 0;
   1027     case Intrinsic::masked_store:
   1028       return static_cast<T *>(this)
   1029           ->getMaskedMemoryOpCost(Instruction::Store, Tys[0], 0, 0);
   1030     case Intrinsic::masked_load:
   1031       return static_cast<T *>(this)
   1032           ->getMaskedMemoryOpCost(Instruction::Load, RetTy, 0, 0);
   1033     case Intrinsic::ctpop:
   1034       ISDs.push_back(ISD::CTPOP);
   1035       // In case of legalization use TCC_Expensive. This is cheaper than a
   1036       // library call but still not a cheap instruction.
   1037       SingleCallCost = TargetTransformInfo::TCC_Expensive;
   1038       break;
   1039     // FIXME: ctlz, cttz, ...
   1040     }
   1041 
   1042     const TargetLoweringBase *TLI = getTLI();
   1043     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
   1044 
   1045     SmallVector<unsigned, 2> LegalCost;
   1046     SmallVector<unsigned, 2> CustomCost;
   1047     for (unsigned ISD : ISDs) {
   1048       if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
   1049         if (IID == Intrinsic::fabs && TLI->isFAbsFree(LT.second)) {
   1050           return 0;
   1051         }
   1052 
   1053         // The operation is legal. Assume it costs 1.
   1054         // If the type is split to multiple registers, assume that there is some
   1055         // overhead to this.
   1056         // TODO: Once we have extract/insert subvector cost we need to use them.
   1057         if (LT.first > 1)
   1058           LegalCost.push_back(LT.first * 2);
   1059         else
   1060           LegalCost.push_back(LT.first * 1);
   1061       } else if (!TLI->isOperationExpand(ISD, LT.second)) {
   1062         // If the operation is custom lowered then assume
   1063         // that the code is twice as expensive.
   1064         CustomCost.push_back(LT.first * 2);
   1065       }
   1066     }
   1067 
   1068     auto MinLegalCostI = std::min_element(LegalCost.begin(), LegalCost.end());
   1069     if (MinLegalCostI != LegalCost.end())
   1070       return *MinLegalCostI;
   1071 
   1072     auto MinCustomCostI = std::min_element(CustomCost.begin(), CustomCost.end());
   1073     if (MinCustomCostI != CustomCost.end())
   1074       return *MinCustomCostI;
   1075 
   1076     // If we can't lower fmuladd into an FMA estimate the cost as a floating
   1077     // point mul followed by an add.
   1078     if (IID == Intrinsic::fmuladd)
   1079       return static_cast<T *>(this)
   1080                  ->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
   1081              static_cast<T *>(this)
   1082                  ->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
   1083 
   1084     // Else, assume that we need to scalarize this intrinsic. For math builtins
   1085     // this will emit a costly libcall, adding call overhead and spills. Make it
   1086     // very expensive.
   1087     if (RetTy->isVectorTy()) {
   1088       unsigned ScalarizationCost =
   1089           ((ScalarizationCostPassed != std::numeric_limits<unsigned>::max())
   1090                ? ScalarizationCostPassed
   1091                : getScalarizationOverhead(RetTy, true, false));
   1092       unsigned ScalarCalls = RetTy->getVectorNumElements();
   1093       SmallVector<Type *, 4> ScalarTys;
   1094       for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
   1095         Type *Ty = Tys[i];
   1096         if (Ty->isVectorTy())
   1097           Ty = Ty->getScalarType();
   1098         ScalarTys.push_back(Ty);
   1099       }
   1100       unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost(
   1101           IID, RetTy->getScalarType(), ScalarTys, FMF);
   1102       for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
   1103         if (Tys[i]->isVectorTy()) {
   1104           if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
   1105             ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
   1106           ScalarCalls = std::max(ScalarCalls, Tys[i]->getVectorNumElements());
   1107         }
   1108       }
   1109 
   1110       return ScalarCalls * ScalarCost + ScalarizationCost;
   1111     }
   1112 
   1113     // This is going to be turned into a library call, make it expensive.
   1114     return SingleCallCost;
   1115   }
   1116 
   1117   /// \brief Compute a cost of the given call instruction.
   1118   ///
   1119   /// Compute the cost of calling function F with return type RetTy and
   1120   /// argument types Tys. F might be nullptr, in this case the cost of an
   1121   /// arbitrary call with the specified signature will be returned.
   1122   /// This is used, for instance,  when we estimate call of a vector
   1123   /// counterpart of the given function.
   1124   /// \param F Called function, might be nullptr.
   1125   /// \param RetTy Return value types.
   1126   /// \param Tys Argument types.
   1127   /// \returns The cost of Call instruction.
   1128   unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
   1129     return 10;
   1130   }
   1131 
   1132   unsigned getNumberOfParts(Type *Tp) {
   1133     std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Tp);
   1134     return LT.first;
   1135   }
   1136 
   1137   unsigned getAddressComputationCost(Type *Ty, ScalarEvolution *,
   1138                                      const SCEV *) {
   1139     return 0;
   1140   }
   1141 
   1142   /// Try to calculate arithmetic and shuffle op costs for reduction operations.
   1143   /// We're assuming that reduction operation are performing the following way:
   1144   /// 1. Non-pairwise reduction
   1145   /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
   1146   /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
   1147   ///            \----------------v-------------/  \----------v------------/
   1148   ///                            n/2 elements               n/2 elements
   1149   /// %red1 = op <n x t> %val, <n x t> val1
   1150   /// After this operation we have a vector %red1 where only the first n/2
   1151   /// elements are meaningful, the second n/2 elements are undefined and can be
   1152   /// dropped. All other operations are actually working with the vector of
   1153   /// length n/2, not n, though the real vector length is still n.
   1154   /// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
   1155   /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
   1156   ///            \----------------v-------------/  \----------v------------/
   1157   ///                            n/4 elements               3*n/4 elements
   1158   /// %red2 = op <n x t> %red1, <n x t> val2  - working with the vector of
   1159   /// length n/2, the resulting vector has length n/4 etc.
   1160   /// 2. Pairwise reduction:
   1161   /// Everything is the same except for an additional shuffle operation which
   1162   /// is used to produce operands for pairwise kind of reductions.
   1163   /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
   1164   /// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef>
   1165   ///            \-------------v----------/  \----------v------------/
   1166   ///                   n/2 elements               n/2 elements
   1167   /// %val2 = shufflevector<n x t> %val, <n x t> %undef,
   1168   /// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef>
   1169   ///            \-------------v----------/  \----------v------------/
   1170   ///                   n/2 elements               n/2 elements
   1171   /// %red1 = op <n x t> %val1, <n x t> val2
   1172   /// Again, the operation is performed on <n x t> vector, but the resulting
   1173   /// vector %red1 is <n/2 x t> vector.
   1174   ///
   1175   /// The cost model should take into account that the actual length of the
   1176   /// vector is reduced on each iteration.
   1177   unsigned getArithmeticReductionCost(unsigned Opcode, Type *Ty,
   1178                                       bool IsPairwise) {
   1179     assert(Ty->isVectorTy() && "Expect a vector type");
   1180     Type *ScalarTy = Ty->getVectorElementType();
   1181     unsigned NumVecElts = Ty->getVectorNumElements();
   1182     unsigned NumReduxLevels = Log2_32(NumVecElts);
   1183     unsigned ArithCost = 0;
   1184     unsigned ShuffleCost = 0;
   1185     auto *ConcreteTTI = static_cast<T *>(this);
   1186     std::pair<unsigned, MVT> LT =
   1187         ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty);
   1188     unsigned LongVectorCount = 0;
   1189     unsigned MVTLen =
   1190         LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
   1191     while (NumVecElts > MVTLen) {
   1192       NumVecElts /= 2;
   1193       // Assume the pairwise shuffles add a cost.
   1194       ShuffleCost += (IsPairwise + 1) *
   1195                      ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
   1196                                                  NumVecElts, Ty);
   1197       ArithCost += ConcreteTTI->getArithmeticInstrCost(Opcode, Ty);
   1198       Ty = VectorType::get(ScalarTy, NumVecElts);
   1199       ++LongVectorCount;
   1200     }
   1201     // The minimal length of the vector is limited by the real length of vector
   1202     // operations performed on the current platform. That's why several final
   1203     // reduction operations are performed on the vectors with the same
   1204     // architecture-dependent length.
   1205     ShuffleCost += (NumReduxLevels - LongVectorCount) * (IsPairwise + 1) *
   1206                    ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
   1207                                                NumVecElts, Ty);
   1208     ArithCost += (NumReduxLevels - LongVectorCount) *
   1209                  ConcreteTTI->getArithmeticInstrCost(Opcode, Ty);
   1210     return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
   1211   }
   1212 
   1213   /// Try to calculate op costs for min/max reduction operations.
   1214   /// \param CondTy Conditional type for the Select instruction.
   1215   unsigned getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwise,
   1216                                   bool) {
   1217     assert(Ty->isVectorTy() && "Expect a vector type");
   1218     Type *ScalarTy = Ty->getVectorElementType();
   1219     Type *ScalarCondTy = CondTy->getVectorElementType();
   1220     unsigned NumVecElts = Ty->getVectorNumElements();
   1221     unsigned NumReduxLevels = Log2_32(NumVecElts);
   1222     unsigned CmpOpcode;
   1223     if (Ty->isFPOrFPVectorTy()) {
   1224       CmpOpcode = Instruction::FCmp;
   1225     } else {
   1226       assert(Ty->isIntOrIntVectorTy() &&
   1227              "expecting floating point or integer type for min/max reduction");
   1228       CmpOpcode = Instruction::ICmp;
   1229     }
   1230     unsigned MinMaxCost = 0;
   1231     unsigned ShuffleCost = 0;
   1232     auto *ConcreteTTI = static_cast<T *>(this);
   1233     std::pair<unsigned, MVT> LT =
   1234         ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty);
   1235     unsigned LongVectorCount = 0;
   1236     unsigned MVTLen =
   1237         LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
   1238     while (NumVecElts > MVTLen) {
   1239       NumVecElts /= 2;
   1240       // Assume the pairwise shuffles add a cost.
   1241       ShuffleCost += (IsPairwise + 1) *
   1242                      ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
   1243                                                  NumVecElts, Ty);
   1244       MinMaxCost +=
   1245           ConcreteTTI->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, nullptr) +
   1246           ConcreteTTI->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
   1247                                           nullptr);
   1248       Ty = VectorType::get(ScalarTy, NumVecElts);
   1249       CondTy = VectorType::get(ScalarCondTy, NumVecElts);
   1250       ++LongVectorCount;
   1251     }
   1252     // The minimal length of the vector is limited by the real length of vector
   1253     // operations performed on the current platform. That's why several final
   1254     // reduction opertions are perfomed on the vectors with the same
   1255     // architecture-dependent length.
   1256     ShuffleCost += (NumReduxLevels - LongVectorCount) * (IsPairwise + 1) *
   1257                    ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
   1258                                                NumVecElts, Ty);
   1259     MinMaxCost +=
   1260         (NumReduxLevels - LongVectorCount) *
   1261         (ConcreteTTI->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, nullptr) +
   1262          ConcreteTTI->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
   1263                                          nullptr));
   1264     // Need 3 extractelement instructions for scalarization + an additional
   1265     // scalar select instruction.
   1266     return ShuffleCost + MinMaxCost +
   1267            3 * getScalarizationOverhead(Ty, /*Insert=*/false,
   1268                                         /*Extract=*/true) +
   1269            ConcreteTTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
   1270                                            ScalarCondTy, nullptr);
   1271   }
   1272 
   1273   unsigned getVectorSplitCost() { return 1; }
   1274 
   1275   /// @}
   1276 };
   1277 
   1278 /// \brief Concrete BasicTTIImpl that can be used if no further customization
   1279 /// is needed.
   1280 class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
   1281   using BaseT = BasicTTIImplBase<BasicTTIImpl>;
   1282 
   1283   friend class BasicTTIImplBase<BasicTTIImpl>;
   1284 
   1285   const TargetSubtargetInfo *ST;
   1286   const TargetLoweringBase *TLI;
   1287 
   1288   const TargetSubtargetInfo *getST() const { return ST; }
   1289   const TargetLoweringBase *getTLI() const { return TLI; }
   1290 
   1291 public:
   1292   explicit BasicTTIImpl(const TargetMachine *ST, const Function &F);
   1293 };
   1294 
   1295 } // end namespace llvm
   1296 
   1297 #endif // LLVM_CODEGEN_BASICTTIIMPL_H
   1298