Home | History | Annotate | Download | only in AST
      1 //===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// \brief C Language Family Type Representation
     11 ///
     12 /// This file defines the clang::Type interface and subclasses, used to
     13 /// represent types for languages in the C family.
     14 ///
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_CLANG_AST_TYPE_H
     18 #define LLVM_CLANG_AST_TYPE_H
     19 
     20 #include "clang/AST/NestedNameSpecifier.h"
     21 #include "clang/AST/TemplateName.h"
     22 #include "clang/Basic/AddressSpaces.h"
     23 #include "clang/Basic/Diagnostic.h"
     24 #include "clang/Basic/ExceptionSpecificationType.h"
     25 #include "clang/Basic/LLVM.h"
     26 #include "clang/Basic/Linkage.h"
     27 #include "clang/Basic/PartialDiagnostic.h"
     28 #include "clang/Basic/Specifiers.h"
     29 #include "clang/Basic/Visibility.h"
     30 #include "llvm/ADT/APInt.h"
     31 #include "llvm/ADT/FoldingSet.h"
     32 #include "llvm/ADT/Optional.h"
     33 #include "llvm/ADT/PointerIntPair.h"
     34 #include "llvm/ADT/PointerUnion.h"
     35 #include "llvm/ADT/Twine.h"
     36 #include "llvm/ADT/iterator_range.h"
     37 #include "llvm/Support/ErrorHandling.h"
     38 
     39 namespace clang {
     40   enum {
     41     TypeAlignmentInBits = 4,
     42     TypeAlignment = 1 << TypeAlignmentInBits
     43   };
     44   class Type;
     45   class ExtQuals;
     46   class QualType;
     47 }
     48 
     49 namespace llvm {
     50   template <typename T>
     51   class PointerLikeTypeTraits;
     52   template<>
     53   class PointerLikeTypeTraits< ::clang::Type*> {
     54   public:
     55     static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
     56     static inline ::clang::Type *getFromVoidPointer(void *P) {
     57       return static_cast< ::clang::Type*>(P);
     58     }
     59     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     60   };
     61   template<>
     62   class PointerLikeTypeTraits< ::clang::ExtQuals*> {
     63   public:
     64     static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
     65     static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
     66       return static_cast< ::clang::ExtQuals*>(P);
     67     }
     68     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     69   };
     70 
     71   template <>
     72   struct isPodLike<clang::QualType> { static const bool value = true; };
     73 }
     74 
     75 namespace clang {
     76   class ASTContext;
     77   class TypedefNameDecl;
     78   class TemplateDecl;
     79   class TemplateTypeParmDecl;
     80   class NonTypeTemplateParmDecl;
     81   class TemplateTemplateParmDecl;
     82   class TagDecl;
     83   class RecordDecl;
     84   class CXXRecordDecl;
     85   class EnumDecl;
     86   class FieldDecl;
     87   class FunctionDecl;
     88   class ObjCInterfaceDecl;
     89   class ObjCProtocolDecl;
     90   class ObjCMethodDecl;
     91   class ObjCTypeParamDecl;
     92   class UnresolvedUsingTypenameDecl;
     93   class Expr;
     94   class Stmt;
     95   class SourceLocation;
     96   class StmtIteratorBase;
     97   class TemplateArgument;
     98   class TemplateArgumentLoc;
     99   class TemplateArgumentListInfo;
    100   class ElaboratedType;
    101   class ExtQuals;
    102   class ExtQualsTypeCommonBase;
    103   struct PrintingPolicy;
    104 
    105   template <typename> class CanQual;
    106   typedef CanQual<Type> CanQualType;
    107 
    108   // Provide forward declarations for all of the *Type classes
    109 #define TYPE(Class, Base) class Class##Type;
    110 #include "clang/AST/TypeNodes.def"
    111 
    112 /// The collection of all-type qualifiers we support.
    113 /// Clang supports five independent qualifiers:
    114 /// * C99: const, volatile, and restrict
    115 /// * MS: __unaligned
    116 /// * Embedded C (TR18037): address spaces
    117 /// * Objective C: the GC attributes (none, weak, or strong)
    118 class Qualifiers {
    119 public:
    120   enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
    121     Const    = 0x1,
    122     Restrict = 0x2,
    123     Volatile = 0x4,
    124     CVRMask = Const | Volatile | Restrict
    125   };
    126 
    127   enum GC {
    128     GCNone = 0,
    129     Weak,
    130     Strong
    131   };
    132 
    133   enum ObjCLifetime {
    134     /// There is no lifetime qualification on this type.
    135     OCL_None,
    136 
    137     /// This object can be modified without requiring retains or
    138     /// releases.
    139     OCL_ExplicitNone,
    140 
    141     /// Assigning into this object requires the old value to be
    142     /// released and the new value to be retained.  The timing of the
    143     /// release of the old value is inexact: it may be moved to
    144     /// immediately after the last known point where the value is
    145     /// live.
    146     OCL_Strong,
    147 
    148     /// Reading or writing from this object requires a barrier call.
    149     OCL_Weak,
    150 
    151     /// Assigning into this object requires a lifetime extension.
    152     OCL_Autoreleasing
    153   };
    154 
    155   enum {
    156     /// The maximum supported address space number.
    157     /// 23 bits should be enough for anyone.
    158     MaxAddressSpace = 0x7fffffu,
    159 
    160     /// The width of the "fast" qualifier mask.
    161     FastWidth = 3,
    162 
    163     /// The fast qualifier mask.
    164     FastMask = (1 << FastWidth) - 1
    165   };
    166 
    167   Qualifiers() : Mask(0) {}
    168 
    169   /// Returns the common set of qualifiers while removing them from
    170   /// the given sets.
    171   static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
    172     // If both are only CVR-qualified, bit operations are sufficient.
    173     if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
    174       Qualifiers Q;
    175       Q.Mask = L.Mask & R.Mask;
    176       L.Mask &= ~Q.Mask;
    177       R.Mask &= ~Q.Mask;
    178       return Q;
    179     }
    180 
    181     Qualifiers Q;
    182     unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
    183     Q.addCVRQualifiers(CommonCRV);
    184     L.removeCVRQualifiers(CommonCRV);
    185     R.removeCVRQualifiers(CommonCRV);
    186 
    187     if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
    188       Q.setObjCGCAttr(L.getObjCGCAttr());
    189       L.removeObjCGCAttr();
    190       R.removeObjCGCAttr();
    191     }
    192 
    193     if (L.getObjCLifetime() == R.getObjCLifetime()) {
    194       Q.setObjCLifetime(L.getObjCLifetime());
    195       L.removeObjCLifetime();
    196       R.removeObjCLifetime();
    197     }
    198 
    199     if (L.getAddressSpace() == R.getAddressSpace()) {
    200       Q.setAddressSpace(L.getAddressSpace());
    201       L.removeAddressSpace();
    202       R.removeAddressSpace();
    203     }
    204     return Q;
    205   }
    206 
    207   static Qualifiers fromFastMask(unsigned Mask) {
    208     Qualifiers Qs;
    209     Qs.addFastQualifiers(Mask);
    210     return Qs;
    211   }
    212 
    213   static Qualifiers fromCVRMask(unsigned CVR) {
    214     Qualifiers Qs;
    215     Qs.addCVRQualifiers(CVR);
    216     return Qs;
    217   }
    218 
    219   static Qualifiers fromCVRUMask(unsigned CVRU) {
    220     Qualifiers Qs;
    221     Qs.addCVRUQualifiers(CVRU);
    222     return Qs;
    223   }
    224 
    225   // Deserialize qualifiers from an opaque representation.
    226   static Qualifiers fromOpaqueValue(unsigned opaque) {
    227     Qualifiers Qs;
    228     Qs.Mask = opaque;
    229     return Qs;
    230   }
    231 
    232   // Serialize these qualifiers into an opaque representation.
    233   unsigned getAsOpaqueValue() const {
    234     return Mask;
    235   }
    236 
    237   bool hasConst() const { return Mask & Const; }
    238   void setConst(bool flag) {
    239     Mask = (Mask & ~Const) | (flag ? Const : 0);
    240   }
    241   void removeConst() { Mask &= ~Const; }
    242   void addConst() { Mask |= Const; }
    243 
    244   bool hasVolatile() const { return Mask & Volatile; }
    245   void setVolatile(bool flag) {
    246     Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
    247   }
    248   void removeVolatile() { Mask &= ~Volatile; }
    249   void addVolatile() { Mask |= Volatile; }
    250 
    251   bool hasRestrict() const { return Mask & Restrict; }
    252   void setRestrict(bool flag) {
    253     Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
    254   }
    255   void removeRestrict() { Mask &= ~Restrict; }
    256   void addRestrict() { Mask |= Restrict; }
    257 
    258   bool hasCVRQualifiers() const { return getCVRQualifiers(); }
    259   unsigned getCVRQualifiers() const { return Mask & CVRMask; }
    260   void setCVRQualifiers(unsigned mask) {
    261     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    262     Mask = (Mask & ~CVRMask) | mask;
    263   }
    264   void removeCVRQualifiers(unsigned mask) {
    265     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    266     Mask &= ~mask;
    267   }
    268   void removeCVRQualifiers() {
    269     removeCVRQualifiers(CVRMask);
    270   }
    271   void addCVRQualifiers(unsigned mask) {
    272     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    273     Mask |= mask;
    274   }
    275   void addCVRUQualifiers(unsigned mask) {
    276     assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits");
    277     Mask |= mask;
    278   }
    279 
    280   bool hasUnaligned() const { return Mask & UMask; }
    281   void setUnaligned(bool flag) {
    282     Mask = (Mask & ~UMask) | (flag ? UMask : 0);
    283   }
    284   void removeUnaligned() { Mask &= ~UMask; }
    285   void addUnaligned() { Mask |= UMask; }
    286 
    287   bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
    288   GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
    289   void setObjCGCAttr(GC type) {
    290     Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
    291   }
    292   void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
    293   void addObjCGCAttr(GC type) {
    294     assert(type);
    295     setObjCGCAttr(type);
    296   }
    297   Qualifiers withoutObjCGCAttr() const {
    298     Qualifiers qs = *this;
    299     qs.removeObjCGCAttr();
    300     return qs;
    301   }
    302   Qualifiers withoutObjCLifetime() const {
    303     Qualifiers qs = *this;
    304     qs.removeObjCLifetime();
    305     return qs;
    306   }
    307 
    308   bool hasObjCLifetime() const { return Mask & LifetimeMask; }
    309   ObjCLifetime getObjCLifetime() const {
    310     return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
    311   }
    312   void setObjCLifetime(ObjCLifetime type) {
    313     Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
    314   }
    315   void removeObjCLifetime() { setObjCLifetime(OCL_None); }
    316   void addObjCLifetime(ObjCLifetime type) {
    317     assert(type);
    318     assert(!hasObjCLifetime());
    319     Mask |= (type << LifetimeShift);
    320   }
    321 
    322   /// True if the lifetime is neither None or ExplicitNone.
    323   bool hasNonTrivialObjCLifetime() const {
    324     ObjCLifetime lifetime = getObjCLifetime();
    325     return (lifetime > OCL_ExplicitNone);
    326   }
    327 
    328   /// True if the lifetime is either strong or weak.
    329   bool hasStrongOrWeakObjCLifetime() const {
    330     ObjCLifetime lifetime = getObjCLifetime();
    331     return (lifetime == OCL_Strong || lifetime == OCL_Weak);
    332   }
    333 
    334   bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
    335   unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
    336   /// Get the address space attribute value to be printed by diagnostics.
    337   unsigned getAddressSpaceAttributePrintValue() const {
    338     auto Addr = getAddressSpace();
    339     // This function is not supposed to be used with language specific
    340     // address spaces. If that happens, the diagnostic message should consider
    341     // printing the QualType instead of the address space value.
    342     assert(Addr == 0 || Addr >= LangAS::Count);
    343     if (Addr)
    344       return Addr - LangAS::Count;
    345     // TODO: The diagnostic messages where Addr may be 0 should be fixed
    346     // since it cannot differentiate the situation where 0 denotes the default
    347     // address space or user specified __attribute__((address_space(0))).
    348     return 0;
    349   }
    350   void setAddressSpace(unsigned space) {
    351     assert(space <= MaxAddressSpace);
    352     Mask = (Mask & ~AddressSpaceMask)
    353          | (((uint32_t) space) << AddressSpaceShift);
    354   }
    355   void removeAddressSpace() { setAddressSpace(0); }
    356   void addAddressSpace(unsigned space) {
    357     assert(space);
    358     setAddressSpace(space);
    359   }
    360 
    361   // Fast qualifiers are those that can be allocated directly
    362   // on a QualType object.
    363   bool hasFastQualifiers() const { return getFastQualifiers(); }
    364   unsigned getFastQualifiers() const { return Mask & FastMask; }
    365   void setFastQualifiers(unsigned mask) {
    366     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    367     Mask = (Mask & ~FastMask) | mask;
    368   }
    369   void removeFastQualifiers(unsigned mask) {
    370     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    371     Mask &= ~mask;
    372   }
    373   void removeFastQualifiers() {
    374     removeFastQualifiers(FastMask);
    375   }
    376   void addFastQualifiers(unsigned mask) {
    377     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    378     Mask |= mask;
    379   }
    380 
    381   /// Return true if the set contains any qualifiers which require an ExtQuals
    382   /// node to be allocated.
    383   bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
    384   Qualifiers getNonFastQualifiers() const {
    385     Qualifiers Quals = *this;
    386     Quals.setFastQualifiers(0);
    387     return Quals;
    388   }
    389 
    390   /// Return true if the set contains any qualifiers.
    391   bool hasQualifiers() const { return Mask; }
    392   bool empty() const { return !Mask; }
    393 
    394   /// Add the qualifiers from the given set to this set.
    395   void addQualifiers(Qualifiers Q) {
    396     // If the other set doesn't have any non-boolean qualifiers, just
    397     // bit-or it in.
    398     if (!(Q.Mask & ~CVRMask))
    399       Mask |= Q.Mask;
    400     else {
    401       Mask |= (Q.Mask & CVRMask);
    402       if (Q.hasAddressSpace())
    403         addAddressSpace(Q.getAddressSpace());
    404       if (Q.hasObjCGCAttr())
    405         addObjCGCAttr(Q.getObjCGCAttr());
    406       if (Q.hasObjCLifetime())
    407         addObjCLifetime(Q.getObjCLifetime());
    408     }
    409   }
    410 
    411   /// \brief Remove the qualifiers from the given set from this set.
    412   void removeQualifiers(Qualifiers Q) {
    413     // If the other set doesn't have any non-boolean qualifiers, just
    414     // bit-and the inverse in.
    415     if (!(Q.Mask & ~CVRMask))
    416       Mask &= ~Q.Mask;
    417     else {
    418       Mask &= ~(Q.Mask & CVRMask);
    419       if (getObjCGCAttr() == Q.getObjCGCAttr())
    420         removeObjCGCAttr();
    421       if (getObjCLifetime() == Q.getObjCLifetime())
    422         removeObjCLifetime();
    423       if (getAddressSpace() == Q.getAddressSpace())
    424         removeAddressSpace();
    425     }
    426   }
    427 
    428   /// Add the qualifiers from the given set to this set, given that
    429   /// they don't conflict.
    430   void addConsistentQualifiers(Qualifiers qs) {
    431     assert(getAddressSpace() == qs.getAddressSpace() ||
    432            !hasAddressSpace() || !qs.hasAddressSpace());
    433     assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
    434            !hasObjCGCAttr() || !qs.hasObjCGCAttr());
    435     assert(getObjCLifetime() == qs.getObjCLifetime() ||
    436            !hasObjCLifetime() || !qs.hasObjCLifetime());
    437     Mask |= qs.Mask;
    438   }
    439 
    440   /// Returns true if this address space is a superset of the other one.
    441   /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
    442   /// overlapping address spaces.
    443   /// CL1.1 or CL1.2:
    444   ///   every address space is a superset of itself.
    445   /// CL2.0 adds:
    446   ///   __generic is a superset of any address space except for __constant.
    447   bool isAddressSpaceSupersetOf(Qualifiers other) const {
    448     return
    449         // Address spaces must match exactly.
    450         getAddressSpace() == other.getAddressSpace() ||
    451         // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
    452         // for __constant can be used as __generic.
    453         (getAddressSpace() == LangAS::opencl_generic &&
    454          other.getAddressSpace() != LangAS::opencl_constant);
    455   }
    456 
    457   /// Determines if these qualifiers compatibly include another set.
    458   /// Generally this answers the question of whether an object with the other
    459   /// qualifiers can be safely used as an object with these qualifiers.
    460   bool compatiblyIncludes(Qualifiers other) const {
    461     return isAddressSpaceSupersetOf(other) &&
    462            // ObjC GC qualifiers can match, be added, or be removed, but can't
    463            // be changed.
    464            (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
    465             !other.hasObjCGCAttr()) &&
    466            // ObjC lifetime qualifiers must match exactly.
    467            getObjCLifetime() == other.getObjCLifetime() &&
    468            // CVR qualifiers may subset.
    469            (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
    470            // U qualifier may superset.
    471            (!other.hasUnaligned() || hasUnaligned());
    472   }
    473 
    474   /// \brief Determines if these qualifiers compatibly include another set of
    475   /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
    476   ///
    477   /// One set of Objective-C lifetime qualifiers compatibly includes the other
    478   /// if the lifetime qualifiers match, or if both are non-__weak and the
    479   /// including set also contains the 'const' qualifier, or both are non-__weak
    480   /// and one is None (which can only happen in non-ARC modes).
    481   bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
    482     if (getObjCLifetime() == other.getObjCLifetime())
    483       return true;
    484 
    485     if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
    486       return false;
    487 
    488     if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
    489       return true;
    490 
    491     return hasConst();
    492   }
    493 
    494   /// \brief Determine whether this set of qualifiers is a strict superset of
    495   /// another set of qualifiers, not considering qualifier compatibility.
    496   bool isStrictSupersetOf(Qualifiers Other) const;
    497 
    498   bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
    499   bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
    500 
    501   explicit operator bool() const { return hasQualifiers(); }
    502 
    503   Qualifiers &operator+=(Qualifiers R) {
    504     addQualifiers(R);
    505     return *this;
    506   }
    507 
    508   // Union two qualifier sets.  If an enumerated qualifier appears
    509   // in both sets, use the one from the right.
    510   friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
    511     L += R;
    512     return L;
    513   }
    514 
    515   Qualifiers &operator-=(Qualifiers R) {
    516     removeQualifiers(R);
    517     return *this;
    518   }
    519 
    520   /// \brief Compute the difference between two qualifier sets.
    521   friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
    522     L -= R;
    523     return L;
    524   }
    525 
    526   std::string getAsString() const;
    527   std::string getAsString(const PrintingPolicy &Policy) const;
    528 
    529   bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
    530   void print(raw_ostream &OS, const PrintingPolicy &Policy,
    531              bool appendSpaceIfNonEmpty = false) const;
    532 
    533   void Profile(llvm::FoldingSetNodeID &ID) const {
    534     ID.AddInteger(Mask);
    535   }
    536 
    537 private:
    538 
    539   // bits:     |0 1 2|3|4 .. 5|6  ..  8|9   ...   31|
    540   //           |C R V|U|GCAttr|Lifetime|AddressSpace|
    541   uint32_t Mask;
    542 
    543   static const uint32_t UMask = 0x8;
    544   static const uint32_t UShift = 3;
    545   static const uint32_t GCAttrMask = 0x30;
    546   static const uint32_t GCAttrShift = 4;
    547   static const uint32_t LifetimeMask = 0x1C0;
    548   static const uint32_t LifetimeShift = 6;
    549   static const uint32_t AddressSpaceMask =
    550       ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
    551   static const uint32_t AddressSpaceShift = 9;
    552 };
    553 
    554 /// A std::pair-like structure for storing a qualified type split
    555 /// into its local qualifiers and its locally-unqualified type.
    556 struct SplitQualType {
    557   /// The locally-unqualified type.
    558   const Type *Ty;
    559 
    560   /// The local qualifiers.
    561   Qualifiers Quals;
    562 
    563   SplitQualType() : Ty(nullptr), Quals() {}
    564   SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
    565 
    566   SplitQualType getSingleStepDesugaredType() const; // end of this file
    567 
    568   // Make std::tie work.
    569   std::pair<const Type *,Qualifiers> asPair() const {
    570     return std::pair<const Type *, Qualifiers>(Ty, Quals);
    571   }
    572 
    573   friend bool operator==(SplitQualType a, SplitQualType b) {
    574     return a.Ty == b.Ty && a.Quals == b.Quals;
    575   }
    576   friend bool operator!=(SplitQualType a, SplitQualType b) {
    577     return a.Ty != b.Ty || a.Quals != b.Quals;
    578   }
    579 };
    580 
    581 /// The kind of type we are substituting Objective-C type arguments into.
    582 ///
    583 /// The kind of substitution affects the replacement of type parameters when
    584 /// no concrete type information is provided, e.g., when dealing with an
    585 /// unspecialized type.
    586 enum class ObjCSubstitutionContext {
    587   /// An ordinary type.
    588   Ordinary,
    589   /// The result type of a method or function.
    590   Result,
    591   /// The parameter type of a method or function.
    592   Parameter,
    593   /// The type of a property.
    594   Property,
    595   /// The superclass of a type.
    596   Superclass,
    597 };
    598 
    599 /// A (possibly-)qualified type.
    600 ///
    601 /// For efficiency, we don't store CV-qualified types as nodes on their
    602 /// own: instead each reference to a type stores the qualifiers.  This
    603 /// greatly reduces the number of nodes we need to allocate for types (for
    604 /// example we only need one for 'int', 'const int', 'volatile int',
    605 /// 'const volatile int', etc).
    606 ///
    607 /// As an added efficiency bonus, instead of making this a pair, we
    608 /// just store the two bits we care about in the low bits of the
    609 /// pointer.  To handle the packing/unpacking, we make QualType be a
    610 /// simple wrapper class that acts like a smart pointer.  A third bit
    611 /// indicates whether there are extended qualifiers present, in which
    612 /// case the pointer points to a special structure.
    613 class QualType {
    614   // Thankfully, these are efficiently composable.
    615   llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
    616                        Qualifiers::FastWidth> Value;
    617 
    618   const ExtQuals *getExtQualsUnsafe() const {
    619     return Value.getPointer().get<const ExtQuals*>();
    620   }
    621 
    622   const Type *getTypePtrUnsafe() const {
    623     return Value.getPointer().get<const Type*>();
    624   }
    625 
    626   const ExtQualsTypeCommonBase *getCommonPtr() const {
    627     assert(!isNull() && "Cannot retrieve a NULL type pointer");
    628     uintptr_t CommonPtrVal
    629       = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
    630     CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
    631     return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
    632   }
    633 
    634   friend class QualifierCollector;
    635 public:
    636   QualType() {}
    637 
    638   QualType(const Type *Ptr, unsigned Quals)
    639     : Value(Ptr, Quals) {}
    640   QualType(const ExtQuals *Ptr, unsigned Quals)
    641     : Value(Ptr, Quals) {}
    642 
    643   unsigned getLocalFastQualifiers() const { return Value.getInt(); }
    644   void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
    645 
    646   /// Retrieves a pointer to the underlying (unqualified) type.
    647   ///
    648   /// This function requires that the type not be NULL. If the type might be
    649   /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
    650   const Type *getTypePtr() const;
    651 
    652   const Type *getTypePtrOrNull() const;
    653 
    654   /// Retrieves a pointer to the name of the base type.
    655   const IdentifierInfo *getBaseTypeIdentifier() const;
    656 
    657   /// Divides a QualType into its unqualified type and a set of local
    658   /// qualifiers.
    659   SplitQualType split() const;
    660 
    661   void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
    662   static QualType getFromOpaquePtr(const void *Ptr) {
    663     QualType T;
    664     T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
    665     return T;
    666   }
    667 
    668   const Type &operator*() const {
    669     return *getTypePtr();
    670   }
    671 
    672   const Type *operator->() const {
    673     return getTypePtr();
    674   }
    675 
    676   bool isCanonical() const;
    677   bool isCanonicalAsParam() const;
    678 
    679   /// Return true if this QualType doesn't point to a type yet.
    680   bool isNull() const {
    681     return Value.getPointer().isNull();
    682   }
    683 
    684   /// \brief Determine whether this particular QualType instance has the
    685   /// "const" qualifier set, without looking through typedefs that may have
    686   /// added "const" at a different level.
    687   bool isLocalConstQualified() const {
    688     return (getLocalFastQualifiers() & Qualifiers::Const);
    689   }
    690 
    691   /// \brief Determine whether this type is const-qualified.
    692   bool isConstQualified() const;
    693 
    694   /// \brief Determine whether this particular QualType instance has the
    695   /// "restrict" qualifier set, without looking through typedefs that may have
    696   /// added "restrict" at a different level.
    697   bool isLocalRestrictQualified() const {
    698     return (getLocalFastQualifiers() & Qualifiers::Restrict);
    699   }
    700 
    701   /// \brief Determine whether this type is restrict-qualified.
    702   bool isRestrictQualified() const;
    703 
    704   /// \brief Determine whether this particular QualType instance has the
    705   /// "volatile" qualifier set, without looking through typedefs that may have
    706   /// added "volatile" at a different level.
    707   bool isLocalVolatileQualified() const {
    708     return (getLocalFastQualifiers() & Qualifiers::Volatile);
    709   }
    710 
    711   /// \brief Determine whether this type is volatile-qualified.
    712   bool isVolatileQualified() const;
    713 
    714   /// \brief Determine whether this particular QualType instance has any
    715   /// qualifiers, without looking through any typedefs that might add
    716   /// qualifiers at a different level.
    717   bool hasLocalQualifiers() const {
    718     return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
    719   }
    720 
    721   /// \brief Determine whether this type has any qualifiers.
    722   bool hasQualifiers() const;
    723 
    724   /// \brief Determine whether this particular QualType instance has any
    725   /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
    726   /// instance.
    727   bool hasLocalNonFastQualifiers() const {
    728     return Value.getPointer().is<const ExtQuals*>();
    729   }
    730 
    731   /// \brief Retrieve the set of qualifiers local to this particular QualType
    732   /// instance, not including any qualifiers acquired through typedefs or
    733   /// other sugar.
    734   Qualifiers getLocalQualifiers() const;
    735 
    736   /// \brief Retrieve the set of qualifiers applied to this type.
    737   Qualifiers getQualifiers() const;
    738 
    739   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    740   /// local to this particular QualType instance, not including any qualifiers
    741   /// acquired through typedefs or other sugar.
    742   unsigned getLocalCVRQualifiers() const {
    743     return getLocalFastQualifiers();
    744   }
    745 
    746   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    747   /// applied to this type.
    748   unsigned getCVRQualifiers() const;
    749 
    750   bool isConstant(const ASTContext& Ctx) const {
    751     return QualType::isConstant(*this, Ctx);
    752   }
    753 
    754   /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
    755   bool isPODType(const ASTContext &Context) const;
    756 
    757   /// Return true if this is a POD type according to the rules of the C++98
    758   /// standard, regardless of the current compilation's language.
    759   bool isCXX98PODType(const ASTContext &Context) const;
    760 
    761   /// Return true if this is a POD type according to the more relaxed rules
    762   /// of the C++11 standard, regardless of the current compilation's language.
    763   /// (C++0x [basic.types]p9)
    764   bool isCXX11PODType(const ASTContext &Context) const;
    765 
    766   /// Return true if this is a trivial type per (C++0x [basic.types]p9)
    767   bool isTrivialType(const ASTContext &Context) const;
    768 
    769   /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
    770   bool isTriviallyCopyableType(const ASTContext &Context) const;
    771 
    772   // Don't promise in the API that anything besides 'const' can be
    773   // easily added.
    774 
    775   /// Add the `const` type qualifier to this QualType.
    776   void addConst() {
    777     addFastQualifiers(Qualifiers::Const);
    778   }
    779   QualType withConst() const {
    780     return withFastQualifiers(Qualifiers::Const);
    781   }
    782 
    783   /// Add the `volatile` type qualifier to this QualType.
    784   void addVolatile() {
    785     addFastQualifiers(Qualifiers::Volatile);
    786   }
    787   QualType withVolatile() const {
    788     return withFastQualifiers(Qualifiers::Volatile);
    789   }
    790 
    791   /// Add the `restrict` qualifier to this QualType.
    792   void addRestrict() {
    793     addFastQualifiers(Qualifiers::Restrict);
    794   }
    795   QualType withRestrict() const {
    796     return withFastQualifiers(Qualifiers::Restrict);
    797   }
    798 
    799   QualType withCVRQualifiers(unsigned CVR) const {
    800     return withFastQualifiers(CVR);
    801   }
    802 
    803   void addFastQualifiers(unsigned TQs) {
    804     assert(!(TQs & ~Qualifiers::FastMask)
    805            && "non-fast qualifier bits set in mask!");
    806     Value.setInt(Value.getInt() | TQs);
    807   }
    808 
    809   void removeLocalConst();
    810   void removeLocalVolatile();
    811   void removeLocalRestrict();
    812   void removeLocalCVRQualifiers(unsigned Mask);
    813 
    814   void removeLocalFastQualifiers() { Value.setInt(0); }
    815   void removeLocalFastQualifiers(unsigned Mask) {
    816     assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
    817     Value.setInt(Value.getInt() & ~Mask);
    818   }
    819 
    820   // Creates a type with the given qualifiers in addition to any
    821   // qualifiers already on this type.
    822   QualType withFastQualifiers(unsigned TQs) const {
    823     QualType T = *this;
    824     T.addFastQualifiers(TQs);
    825     return T;
    826   }
    827 
    828   // Creates a type with exactly the given fast qualifiers, removing
    829   // any existing fast qualifiers.
    830   QualType withExactLocalFastQualifiers(unsigned TQs) const {
    831     return withoutLocalFastQualifiers().withFastQualifiers(TQs);
    832   }
    833 
    834   // Removes fast qualifiers, but leaves any extended qualifiers in place.
    835   QualType withoutLocalFastQualifiers() const {
    836     QualType T = *this;
    837     T.removeLocalFastQualifiers();
    838     return T;
    839   }
    840 
    841   QualType getCanonicalType() const;
    842 
    843   /// \brief Return this type with all of the instance-specific qualifiers
    844   /// removed, but without removing any qualifiers that may have been applied
    845   /// through typedefs.
    846   QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
    847 
    848   /// \brief Retrieve the unqualified variant of the given type,
    849   /// removing as little sugar as possible.
    850   ///
    851   /// This routine looks through various kinds of sugar to find the
    852   /// least-desugared type that is unqualified. For example, given:
    853   ///
    854   /// \code
    855   /// typedef int Integer;
    856   /// typedef const Integer CInteger;
    857   /// typedef CInteger DifferenceType;
    858   /// \endcode
    859   ///
    860   /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
    861   /// desugar until we hit the type \c Integer, which has no qualifiers on it.
    862   ///
    863   /// The resulting type might still be qualified if it's sugar for an array
    864   /// type.  To strip qualifiers even from within a sugared array type, use
    865   /// ASTContext::getUnqualifiedArrayType.
    866   inline QualType getUnqualifiedType() const;
    867 
    868   /// Retrieve the unqualified variant of the given type, removing as little
    869   /// sugar as possible.
    870   ///
    871   /// Like getUnqualifiedType(), but also returns the set of
    872   /// qualifiers that were built up.
    873   ///
    874   /// The resulting type might still be qualified if it's sugar for an array
    875   /// type.  To strip qualifiers even from within a sugared array type, use
    876   /// ASTContext::getUnqualifiedArrayType.
    877   inline SplitQualType getSplitUnqualifiedType() const;
    878 
    879   /// \brief Determine whether this type is more qualified than the other
    880   /// given type, requiring exact equality for non-CVR qualifiers.
    881   bool isMoreQualifiedThan(QualType Other) const;
    882 
    883   /// \brief Determine whether this type is at least as qualified as the other
    884   /// given type, requiring exact equality for non-CVR qualifiers.
    885   bool isAtLeastAsQualifiedAs(QualType Other) const;
    886 
    887   QualType getNonReferenceType() const;
    888 
    889   /// \brief Determine the type of a (typically non-lvalue) expression with the
    890   /// specified result type.
    891   ///
    892   /// This routine should be used for expressions for which the return type is
    893   /// explicitly specified (e.g., in a cast or call) and isn't necessarily
    894   /// an lvalue. It removes a top-level reference (since there are no
    895   /// expressions of reference type) and deletes top-level cvr-qualifiers
    896   /// from non-class types (in C++) or all types (in C).
    897   QualType getNonLValueExprType(const ASTContext &Context) const;
    898 
    899   /// Return the specified type with any "sugar" removed from
    900   /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
    901   /// the type is already concrete, it returns it unmodified.  This is similar
    902   /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
    903   /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
    904   /// concrete.
    905   ///
    906   /// Qualifiers are left in place.
    907   QualType getDesugaredType(const ASTContext &Context) const {
    908     return getDesugaredType(*this, Context);
    909   }
    910 
    911   SplitQualType getSplitDesugaredType() const {
    912     return getSplitDesugaredType(*this);
    913   }
    914 
    915   /// \brief Return the specified type with one level of "sugar" removed from
    916   /// the type.
    917   ///
    918   /// This routine takes off the first typedef, typeof, etc. If the outer level
    919   /// of the type is already concrete, it returns it unmodified.
    920   QualType getSingleStepDesugaredType(const ASTContext &Context) const {
    921     return getSingleStepDesugaredTypeImpl(*this, Context);
    922   }
    923 
    924   /// Returns the specified type after dropping any
    925   /// outer-level parentheses.
    926   QualType IgnoreParens() const {
    927     if (isa<ParenType>(*this))
    928       return QualType::IgnoreParens(*this);
    929     return *this;
    930   }
    931 
    932   /// Indicate whether the specified types and qualifiers are identical.
    933   friend bool operator==(const QualType &LHS, const QualType &RHS) {
    934     return LHS.Value == RHS.Value;
    935   }
    936   friend bool operator!=(const QualType &LHS, const QualType &RHS) {
    937     return LHS.Value != RHS.Value;
    938   }
    939   std::string getAsString() const {
    940     return getAsString(split());
    941   }
    942   static std::string getAsString(SplitQualType split) {
    943     return getAsString(split.Ty, split.Quals);
    944   }
    945   static std::string getAsString(const Type *ty, Qualifiers qs);
    946 
    947   std::string getAsString(const PrintingPolicy &Policy) const;
    948 
    949   void print(raw_ostream &OS, const PrintingPolicy &Policy,
    950              const Twine &PlaceHolder = Twine(),
    951              unsigned Indentation = 0) const {
    952     print(split(), OS, Policy, PlaceHolder, Indentation);
    953   }
    954   static void print(SplitQualType split, raw_ostream &OS,
    955                     const PrintingPolicy &policy, const Twine &PlaceHolder,
    956                     unsigned Indentation = 0) {
    957     return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
    958   }
    959   static void print(const Type *ty, Qualifiers qs,
    960                     raw_ostream &OS, const PrintingPolicy &policy,
    961                     const Twine &PlaceHolder,
    962                     unsigned Indentation = 0);
    963 
    964   void getAsStringInternal(std::string &Str,
    965                            const PrintingPolicy &Policy) const {
    966     return getAsStringInternal(split(), Str, Policy);
    967   }
    968   static void getAsStringInternal(SplitQualType split, std::string &out,
    969                                   const PrintingPolicy &policy) {
    970     return getAsStringInternal(split.Ty, split.Quals, out, policy);
    971   }
    972   static void getAsStringInternal(const Type *ty, Qualifiers qs,
    973                                   std::string &out,
    974                                   const PrintingPolicy &policy);
    975 
    976   class StreamedQualTypeHelper {
    977     const QualType &T;
    978     const PrintingPolicy &Policy;
    979     const Twine &PlaceHolder;
    980     unsigned Indentation;
    981   public:
    982     StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
    983                            const Twine &PlaceHolder, unsigned Indentation)
    984       : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
    985         Indentation(Indentation) { }
    986 
    987     friend raw_ostream &operator<<(raw_ostream &OS,
    988                                    const StreamedQualTypeHelper &SQT) {
    989       SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
    990       return OS;
    991     }
    992   };
    993 
    994   StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
    995                                 const Twine &PlaceHolder = Twine(),
    996                                 unsigned Indentation = 0) const {
    997     return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
    998   }
    999 
   1000   void dump(const char *s) const;
   1001   void dump() const;
   1002   void dump(llvm::raw_ostream &OS) const;
   1003 
   1004   void Profile(llvm::FoldingSetNodeID &ID) const {
   1005     ID.AddPointer(getAsOpaquePtr());
   1006   }
   1007 
   1008   /// Return the address space of this type.
   1009   inline unsigned getAddressSpace() const;
   1010 
   1011   /// Returns gc attribute of this type.
   1012   inline Qualifiers::GC getObjCGCAttr() const;
   1013 
   1014   /// true when Type is objc's weak.
   1015   bool isObjCGCWeak() const {
   1016     return getObjCGCAttr() == Qualifiers::Weak;
   1017   }
   1018 
   1019   /// true when Type is objc's strong.
   1020   bool isObjCGCStrong() const {
   1021     return getObjCGCAttr() == Qualifiers::Strong;
   1022   }
   1023 
   1024   /// Returns lifetime attribute of this type.
   1025   Qualifiers::ObjCLifetime getObjCLifetime() const {
   1026     return getQualifiers().getObjCLifetime();
   1027   }
   1028 
   1029   bool hasNonTrivialObjCLifetime() const {
   1030     return getQualifiers().hasNonTrivialObjCLifetime();
   1031   }
   1032 
   1033   bool hasStrongOrWeakObjCLifetime() const {
   1034     return getQualifiers().hasStrongOrWeakObjCLifetime();
   1035   }
   1036 
   1037   // true when Type is objc's weak and weak is enabled but ARC isn't.
   1038   bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
   1039 
   1040   enum DestructionKind {
   1041     DK_none,
   1042     DK_cxx_destructor,
   1043     DK_objc_strong_lifetime,
   1044     DK_objc_weak_lifetime
   1045   };
   1046 
   1047   /// Returns a nonzero value if objects of this type require
   1048   /// non-trivial work to clean up after.  Non-zero because it's
   1049   /// conceivable that qualifiers (objc_gc(weak)?) could make
   1050   /// something require destruction.
   1051   DestructionKind isDestructedType() const {
   1052     return isDestructedTypeImpl(*this);
   1053   }
   1054 
   1055   /// Determine whether expressions of the given type are forbidden
   1056   /// from being lvalues in C.
   1057   ///
   1058   /// The expression types that are forbidden to be lvalues are:
   1059   ///   - 'void', but not qualified void
   1060   ///   - function types
   1061   ///
   1062   /// The exact rule here is C99 6.3.2.1:
   1063   ///   An lvalue is an expression with an object type or an incomplete
   1064   ///   type other than void.
   1065   bool isCForbiddenLValueType() const;
   1066 
   1067   /// Substitute type arguments for the Objective-C type parameters used in the
   1068   /// subject type.
   1069   ///
   1070   /// \param ctx ASTContext in which the type exists.
   1071   ///
   1072   /// \param typeArgs The type arguments that will be substituted for the
   1073   /// Objective-C type parameters in the subject type, which are generally
   1074   /// computed via \c Type::getObjCSubstitutions. If empty, the type
   1075   /// parameters will be replaced with their bounds or id/Class, as appropriate
   1076   /// for the context.
   1077   ///
   1078   /// \param context The context in which the subject type was written.
   1079   ///
   1080   /// \returns the resulting type.
   1081   QualType substObjCTypeArgs(ASTContext &ctx,
   1082                              ArrayRef<QualType> typeArgs,
   1083                              ObjCSubstitutionContext context) const;
   1084 
   1085   /// Substitute type arguments from an object type for the Objective-C type
   1086   /// parameters used in the subject type.
   1087   ///
   1088   /// This operation combines the computation of type arguments for
   1089   /// substitution (\c Type::getObjCSubstitutions) with the actual process of
   1090   /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
   1091   /// callers that need to perform a single substitution in isolation.
   1092   ///
   1093   /// \param objectType The type of the object whose member type we're
   1094   /// substituting into. For example, this might be the receiver of a message
   1095   /// or the base of a property access.
   1096   ///
   1097   /// \param dc The declaration context from which the subject type was
   1098   /// retrieved, which indicates (for example) which type parameters should
   1099   /// be substituted.
   1100   ///
   1101   /// \param context The context in which the subject type was written.
   1102   ///
   1103   /// \returns the subject type after replacing all of the Objective-C type
   1104   /// parameters with their corresponding arguments.
   1105   QualType substObjCMemberType(QualType objectType,
   1106                                const DeclContext *dc,
   1107                                ObjCSubstitutionContext context) const;
   1108 
   1109   /// Strip Objective-C "__kindof" types from the given type.
   1110   QualType stripObjCKindOfType(const ASTContext &ctx) const;
   1111 
   1112   /// Remove all qualifiers including _Atomic.
   1113   QualType getAtomicUnqualifiedType() const;
   1114 
   1115 private:
   1116   // These methods are implemented in a separate translation unit;
   1117   // "static"-ize them to avoid creating temporary QualTypes in the
   1118   // caller.
   1119   static bool isConstant(QualType T, const ASTContext& Ctx);
   1120   static QualType getDesugaredType(QualType T, const ASTContext &Context);
   1121   static SplitQualType getSplitDesugaredType(QualType T);
   1122   static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
   1123   static QualType getSingleStepDesugaredTypeImpl(QualType type,
   1124                                                  const ASTContext &C);
   1125   static QualType IgnoreParens(QualType T);
   1126   static DestructionKind isDestructedTypeImpl(QualType type);
   1127 };
   1128 
   1129 } // end clang.
   1130 
   1131 namespace llvm {
   1132 /// Implement simplify_type for QualType, so that we can dyn_cast from QualType
   1133 /// to a specific Type class.
   1134 template<> struct simplify_type< ::clang::QualType> {
   1135   typedef const ::clang::Type *SimpleType;
   1136   static SimpleType getSimplifiedValue(::clang::QualType Val) {
   1137     return Val.getTypePtr();
   1138   }
   1139 };
   1140 
   1141 // Teach SmallPtrSet that QualType is "basically a pointer".
   1142 template<>
   1143 class PointerLikeTypeTraits<clang::QualType> {
   1144 public:
   1145   static inline void *getAsVoidPointer(clang::QualType P) {
   1146     return P.getAsOpaquePtr();
   1147   }
   1148   static inline clang::QualType getFromVoidPointer(void *P) {
   1149     return clang::QualType::getFromOpaquePtr(P);
   1150   }
   1151   // Various qualifiers go in low bits.
   1152   enum { NumLowBitsAvailable = 0 };
   1153 };
   1154 
   1155 } // end namespace llvm
   1156 
   1157 namespace clang {
   1158 
   1159 /// \brief Base class that is common to both the \c ExtQuals and \c Type
   1160 /// classes, which allows \c QualType to access the common fields between the
   1161 /// two.
   1162 ///
   1163 class ExtQualsTypeCommonBase {
   1164   ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
   1165     : BaseType(baseType), CanonicalType(canon) {}
   1166 
   1167   /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
   1168   /// a self-referential pointer (for \c Type).
   1169   ///
   1170   /// This pointer allows an efficient mapping from a QualType to its
   1171   /// underlying type pointer.
   1172   const Type *const BaseType;
   1173 
   1174   /// \brief The canonical type of this type.  A QualType.
   1175   QualType CanonicalType;
   1176 
   1177   friend class QualType;
   1178   friend class Type;
   1179   friend class ExtQuals;
   1180 };
   1181 
   1182 /// We can encode up to four bits in the low bits of a
   1183 /// type pointer, but there are many more type qualifiers that we want
   1184 /// to be able to apply to an arbitrary type.  Therefore we have this
   1185 /// struct, intended to be heap-allocated and used by QualType to
   1186 /// store qualifiers.
   1187 ///
   1188 /// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
   1189 /// in three low bits on the QualType pointer; a fourth bit records whether
   1190 /// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
   1191 /// Objective-C GC attributes) are much more rare.
   1192 class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
   1193   // NOTE: changing the fast qualifiers should be straightforward as
   1194   // long as you don't make 'const' non-fast.
   1195   // 1. Qualifiers:
   1196   //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
   1197   //       Fast qualifiers must occupy the low-order bits.
   1198   //    b) Update Qualifiers::FastWidth and FastMask.
   1199   // 2. QualType:
   1200   //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
   1201   //    b) Update remove{Volatile,Restrict}, defined near the end of
   1202   //       this header.
   1203   // 3. ASTContext:
   1204   //    a) Update get{Volatile,Restrict}Type.
   1205 
   1206   /// The immutable set of qualifiers applied by this node. Always contains
   1207   /// extended qualifiers.
   1208   Qualifiers Quals;
   1209 
   1210   ExtQuals *this_() { return this; }
   1211 
   1212 public:
   1213   ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
   1214     : ExtQualsTypeCommonBase(baseType,
   1215                              canon.isNull() ? QualType(this_(), 0) : canon),
   1216       Quals(quals)
   1217   {
   1218     assert(Quals.hasNonFastQualifiers()
   1219            && "ExtQuals created with no fast qualifiers");
   1220     assert(!Quals.hasFastQualifiers()
   1221            && "ExtQuals created with fast qualifiers");
   1222   }
   1223 
   1224   Qualifiers getQualifiers() const { return Quals; }
   1225 
   1226   bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
   1227   Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
   1228 
   1229   bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
   1230   Qualifiers::ObjCLifetime getObjCLifetime() const {
   1231     return Quals.getObjCLifetime();
   1232   }
   1233 
   1234   bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
   1235   unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
   1236 
   1237   const Type *getBaseType() const { return BaseType; }
   1238 
   1239 public:
   1240   void Profile(llvm::FoldingSetNodeID &ID) const {
   1241     Profile(ID, getBaseType(), Quals);
   1242   }
   1243   static void Profile(llvm::FoldingSetNodeID &ID,
   1244                       const Type *BaseType,
   1245                       Qualifiers Quals) {
   1246     assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
   1247     ID.AddPointer(BaseType);
   1248     Quals.Profile(ID);
   1249   }
   1250 };
   1251 
   1252 /// The kind of C++11 ref-qualifier associated with a function type.
   1253 /// This determines whether a member function's "this" object can be an
   1254 /// lvalue, rvalue, or neither.
   1255 enum RefQualifierKind {
   1256   /// \brief No ref-qualifier was provided.
   1257   RQ_None = 0,
   1258   /// \brief An lvalue ref-qualifier was provided (\c &).
   1259   RQ_LValue,
   1260   /// \brief An rvalue ref-qualifier was provided (\c &&).
   1261   RQ_RValue
   1262 };
   1263 
   1264 /// Which keyword(s) were used to create an AutoType.
   1265 enum class AutoTypeKeyword {
   1266   /// \brief auto
   1267   Auto,
   1268   /// \brief decltype(auto)
   1269   DecltypeAuto,
   1270   /// \brief __auto_type (GNU extension)
   1271   GNUAutoType
   1272 };
   1273 
   1274 /// The base class of the type hierarchy.
   1275 ///
   1276 /// A central concept with types is that each type always has a canonical
   1277 /// type.  A canonical type is the type with any typedef names stripped out
   1278 /// of it or the types it references.  For example, consider:
   1279 ///
   1280 ///  typedef int  foo;
   1281 ///  typedef foo* bar;
   1282 ///    'int *'    'foo *'    'bar'
   1283 ///
   1284 /// There will be a Type object created for 'int'.  Since int is canonical, its
   1285 /// CanonicalType pointer points to itself.  There is also a Type for 'foo' (a
   1286 /// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
   1287 /// there is a PointerType that represents 'int*', which, like 'int', is
   1288 /// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
   1289 /// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
   1290 /// is also 'int*'.
   1291 ///
   1292 /// Non-canonical types are useful for emitting diagnostics, without losing
   1293 /// information about typedefs being used.  Canonical types are useful for type
   1294 /// comparisons (they allow by-pointer equality tests) and useful for reasoning
   1295 /// about whether something has a particular form (e.g. is a function type),
   1296 /// because they implicitly, recursively, strip all typedefs out of a type.
   1297 ///
   1298 /// Types, once created, are immutable.
   1299 ///
   1300 class Type : public ExtQualsTypeCommonBase {
   1301 public:
   1302   enum TypeClass {
   1303 #define TYPE(Class, Base) Class,
   1304 #define LAST_TYPE(Class) TypeLast = Class,
   1305 #define ABSTRACT_TYPE(Class, Base)
   1306 #include "clang/AST/TypeNodes.def"
   1307     TagFirst = Record, TagLast = Enum
   1308   };
   1309 
   1310 private:
   1311   Type(const Type &) = delete;
   1312   void operator=(const Type &) = delete;
   1313 
   1314   /// Bitfields required by the Type class.
   1315   class TypeBitfields {
   1316     friend class Type;
   1317     template <class T> friend class TypePropertyCache;
   1318 
   1319     /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
   1320     unsigned TC : 8;
   1321 
   1322     /// Whether this type is a dependent type (C++ [temp.dep.type]).
   1323     unsigned Dependent : 1;
   1324 
   1325     /// Whether this type somehow involves a template parameter, even
   1326     /// if the resolution of the type does not depend on a template parameter.
   1327     unsigned InstantiationDependent : 1;
   1328 
   1329     /// Whether this type is a variably-modified type (C99 6.7.5).
   1330     unsigned VariablyModified : 1;
   1331 
   1332     /// \brief Whether this type contains an unexpanded parameter pack
   1333     /// (for C++11 variadic templates).
   1334     unsigned ContainsUnexpandedParameterPack : 1;
   1335 
   1336     /// \brief True if the cache (i.e. the bitfields here starting with
   1337     /// 'Cache') is valid.
   1338     mutable unsigned CacheValid : 1;
   1339 
   1340     /// \brief Linkage of this type.
   1341     mutable unsigned CachedLinkage : 3;
   1342 
   1343     /// \brief Whether this type involves and local or unnamed types.
   1344     mutable unsigned CachedLocalOrUnnamed : 1;
   1345 
   1346     /// \brief Whether this type comes from an AST file.
   1347     mutable unsigned FromAST : 1;
   1348 
   1349     bool isCacheValid() const {
   1350       return CacheValid;
   1351     }
   1352     Linkage getLinkage() const {
   1353       assert(isCacheValid() && "getting linkage from invalid cache");
   1354       return static_cast<Linkage>(CachedLinkage);
   1355     }
   1356     bool hasLocalOrUnnamedType() const {
   1357       assert(isCacheValid() && "getting linkage from invalid cache");
   1358       return CachedLocalOrUnnamed;
   1359     }
   1360   };
   1361   enum { NumTypeBits = 18 };
   1362 
   1363 protected:
   1364   // These classes allow subclasses to somewhat cleanly pack bitfields
   1365   // into Type.
   1366 
   1367   class ArrayTypeBitfields {
   1368     friend class ArrayType;
   1369 
   1370     unsigned : NumTypeBits;
   1371 
   1372     /// CVR qualifiers from declarations like
   1373     /// 'int X[static restrict 4]'. For function parameters only.
   1374     unsigned IndexTypeQuals : 3;
   1375 
   1376     /// Storage class qualifiers from declarations like
   1377     /// 'int X[static restrict 4]'. For function parameters only.
   1378     /// Actually an ArrayType::ArraySizeModifier.
   1379     unsigned SizeModifier : 3;
   1380   };
   1381 
   1382   class BuiltinTypeBitfields {
   1383     friend class BuiltinType;
   1384 
   1385     unsigned : NumTypeBits;
   1386 
   1387     /// The kind (BuiltinType::Kind) of builtin type this is.
   1388     unsigned Kind : 8;
   1389   };
   1390 
   1391   class FunctionTypeBitfields {
   1392     friend class FunctionType;
   1393     friend class FunctionProtoType;
   1394 
   1395     unsigned : NumTypeBits;
   1396 
   1397     /// Extra information which affects how the function is called, like
   1398     /// regparm and the calling convention.
   1399     unsigned ExtInfo : 10;
   1400 
   1401     /// Used only by FunctionProtoType, put here to pack with the
   1402     /// other bitfields.
   1403     /// The qualifiers are part of FunctionProtoType because...
   1404     ///
   1405     /// C++ 8.3.5p4: The return type, the parameter type list and the
   1406     /// cv-qualifier-seq, [...], are part of the function type.
   1407     unsigned TypeQuals : 4;
   1408 
   1409     /// \brief The ref-qualifier associated with a \c FunctionProtoType.
   1410     ///
   1411     /// This is a value of type \c RefQualifierKind.
   1412     unsigned RefQualifier : 2;
   1413   };
   1414 
   1415   class ObjCObjectTypeBitfields {
   1416     friend class ObjCObjectType;
   1417 
   1418     unsigned : NumTypeBits;
   1419 
   1420     /// The number of type arguments stored directly on this object type.
   1421     unsigned NumTypeArgs : 7;
   1422 
   1423     /// The number of protocols stored directly on this object type.
   1424     unsigned NumProtocols : 6;
   1425 
   1426     /// Whether this is a "kindof" type.
   1427     unsigned IsKindOf : 1;
   1428   };
   1429   static_assert(NumTypeBits + 7 + 6 + 1 <= 32, "Does not fit in an unsigned");
   1430 
   1431   class ReferenceTypeBitfields {
   1432     friend class ReferenceType;
   1433 
   1434     unsigned : NumTypeBits;
   1435 
   1436     /// True if the type was originally spelled with an lvalue sigil.
   1437     /// This is never true of rvalue references but can also be false
   1438     /// on lvalue references because of C++0x [dcl.typedef]p9,
   1439     /// as follows:
   1440     ///
   1441     ///   typedef int &ref;    // lvalue, spelled lvalue
   1442     ///   typedef int &&rvref; // rvalue
   1443     ///   ref &a;              // lvalue, inner ref, spelled lvalue
   1444     ///   ref &&a;             // lvalue, inner ref
   1445     ///   rvref &a;            // lvalue, inner ref, spelled lvalue
   1446     ///   rvref &&a;           // rvalue, inner ref
   1447     unsigned SpelledAsLValue : 1;
   1448 
   1449     /// True if the inner type is a reference type.  This only happens
   1450     /// in non-canonical forms.
   1451     unsigned InnerRef : 1;
   1452   };
   1453 
   1454   class TypeWithKeywordBitfields {
   1455     friend class TypeWithKeyword;
   1456 
   1457     unsigned : NumTypeBits;
   1458 
   1459     /// An ElaboratedTypeKeyword.  8 bits for efficient access.
   1460     unsigned Keyword : 8;
   1461   };
   1462 
   1463   class VectorTypeBitfields {
   1464     friend class VectorType;
   1465 
   1466     unsigned : NumTypeBits;
   1467 
   1468     /// The kind of vector, either a generic vector type or some
   1469     /// target-specific vector type such as for AltiVec or Neon.
   1470     unsigned VecKind : 3;
   1471 
   1472     /// The number of elements in the vector.
   1473     unsigned NumElements : 29 - NumTypeBits;
   1474 
   1475     enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
   1476   };
   1477 
   1478   class AttributedTypeBitfields {
   1479     friend class AttributedType;
   1480 
   1481     unsigned : NumTypeBits;
   1482 
   1483     /// An AttributedType::Kind
   1484     unsigned AttrKind : 32 - NumTypeBits;
   1485   };
   1486 
   1487   class AutoTypeBitfields {
   1488     friend class AutoType;
   1489 
   1490     unsigned : NumTypeBits;
   1491 
   1492     /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
   1493     /// or '__auto_type'?  AutoTypeKeyword value.
   1494     unsigned Keyword : 2;
   1495   };
   1496 
   1497   union {
   1498     TypeBitfields TypeBits;
   1499     ArrayTypeBitfields ArrayTypeBits;
   1500     AttributedTypeBitfields AttributedTypeBits;
   1501     AutoTypeBitfields AutoTypeBits;
   1502     BuiltinTypeBitfields BuiltinTypeBits;
   1503     FunctionTypeBitfields FunctionTypeBits;
   1504     ObjCObjectTypeBitfields ObjCObjectTypeBits;
   1505     ReferenceTypeBitfields ReferenceTypeBits;
   1506     TypeWithKeywordBitfields TypeWithKeywordBits;
   1507     VectorTypeBitfields VectorTypeBits;
   1508   };
   1509 
   1510 private:
   1511   /// \brief Set whether this type comes from an AST file.
   1512   void setFromAST(bool V = true) const {
   1513     TypeBits.FromAST = V;
   1514   }
   1515 
   1516   template <class T> friend class TypePropertyCache;
   1517 
   1518 protected:
   1519   // silence VC++ warning C4355: 'this' : used in base member initializer list
   1520   Type *this_() { return this; }
   1521   Type(TypeClass tc, QualType canon, bool Dependent,
   1522        bool InstantiationDependent, bool VariablyModified,
   1523        bool ContainsUnexpandedParameterPack)
   1524     : ExtQualsTypeCommonBase(this,
   1525                              canon.isNull() ? QualType(this_(), 0) : canon) {
   1526     TypeBits.TC = tc;
   1527     TypeBits.Dependent = Dependent;
   1528     TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
   1529     TypeBits.VariablyModified = VariablyModified;
   1530     TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
   1531     TypeBits.CacheValid = false;
   1532     TypeBits.CachedLocalOrUnnamed = false;
   1533     TypeBits.CachedLinkage = NoLinkage;
   1534     TypeBits.FromAST = false;
   1535   }
   1536   friend class ASTContext;
   1537 
   1538   void setDependent(bool D = true) {
   1539     TypeBits.Dependent = D;
   1540     if (D)
   1541       TypeBits.InstantiationDependent = true;
   1542   }
   1543   void setInstantiationDependent(bool D = true) {
   1544     TypeBits.InstantiationDependent = D; }
   1545   void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
   1546   }
   1547   void setContainsUnexpandedParameterPack(bool PP = true) {
   1548     TypeBits.ContainsUnexpandedParameterPack = PP;
   1549   }
   1550 
   1551 public:
   1552   TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
   1553 
   1554   /// \brief Whether this type comes from an AST file.
   1555   bool isFromAST() const { return TypeBits.FromAST; }
   1556 
   1557   /// \brief Whether this type is or contains an unexpanded parameter
   1558   /// pack, used to support C++0x variadic templates.
   1559   ///
   1560   /// A type that contains a parameter pack shall be expanded by the
   1561   /// ellipsis operator at some point. For example, the typedef in the
   1562   /// following example contains an unexpanded parameter pack 'T':
   1563   ///
   1564   /// \code
   1565   /// template<typename ...T>
   1566   /// struct X {
   1567   ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
   1568   /// };
   1569   /// \endcode
   1570   ///
   1571   /// Note that this routine does not specify which
   1572   bool containsUnexpandedParameterPack() const {
   1573     return TypeBits.ContainsUnexpandedParameterPack;
   1574   }
   1575 
   1576   /// Determines if this type would be canonical if it had no further
   1577   /// qualification.
   1578   bool isCanonicalUnqualified() const {
   1579     return CanonicalType == QualType(this, 0);
   1580   }
   1581 
   1582   /// Pull a single level of sugar off of this locally-unqualified type.
   1583   /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
   1584   /// or QualType::getSingleStepDesugaredType(const ASTContext&).
   1585   QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
   1586 
   1587   /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
   1588   /// object types, function types, and incomplete types.
   1589 
   1590   /// Return true if this is an incomplete type.
   1591   /// A type that can describe objects, but which lacks information needed to
   1592   /// determine its size (e.g. void, or a fwd declared struct). Clients of this
   1593   /// routine will need to determine if the size is actually required.
   1594   ///
   1595   /// \brief Def If non-null, and the type refers to some kind of declaration
   1596   /// that can be completed (such as a C struct, C++ class, or Objective-C
   1597   /// class), will be set to the declaration.
   1598   bool isIncompleteType(NamedDecl **Def = nullptr) const;
   1599 
   1600   /// Return true if this is an incomplete or object
   1601   /// type, in other words, not a function type.
   1602   bool isIncompleteOrObjectType() const {
   1603     return !isFunctionType();
   1604   }
   1605 
   1606   /// \brief Determine whether this type is an object type.
   1607   bool isObjectType() const {
   1608     // C++ [basic.types]p8:
   1609     //   An object type is a (possibly cv-qualified) type that is not a
   1610     //   function type, not a reference type, and not a void type.
   1611     return !isReferenceType() && !isFunctionType() && !isVoidType();
   1612   }
   1613 
   1614   /// Return true if this is a literal type
   1615   /// (C++11 [basic.types]p10)
   1616   bool isLiteralType(const ASTContext &Ctx) const;
   1617 
   1618   /// Test if this type is a standard-layout type.
   1619   /// (C++0x [basic.type]p9)
   1620   bool isStandardLayoutType() const;
   1621 
   1622   /// Helper methods to distinguish type categories. All type predicates
   1623   /// operate on the canonical type, ignoring typedefs and qualifiers.
   1624 
   1625   /// Returns true if the type is a builtin type.
   1626   bool isBuiltinType() const;
   1627 
   1628   /// Test for a particular builtin type.
   1629   bool isSpecificBuiltinType(unsigned K) const;
   1630 
   1631   /// Test for a type which does not represent an actual type-system type but
   1632   /// is instead used as a placeholder for various convenient purposes within
   1633   /// Clang.  All such types are BuiltinTypes.
   1634   bool isPlaceholderType() const;
   1635   const BuiltinType *getAsPlaceholderType() const;
   1636 
   1637   /// Test for a specific placeholder type.
   1638   bool isSpecificPlaceholderType(unsigned K) const;
   1639 
   1640   /// Test for a placeholder type other than Overload; see
   1641   /// BuiltinType::isNonOverloadPlaceholderType.
   1642   bool isNonOverloadPlaceholderType() const;
   1643 
   1644   /// isIntegerType() does *not* include complex integers (a GCC extension).
   1645   /// isComplexIntegerType() can be used to test for complex integers.
   1646   bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
   1647   bool isEnumeralType() const;
   1648   bool isBooleanType() const;
   1649   bool isCharType() const;
   1650   bool isWideCharType() const;
   1651   bool isChar16Type() const;
   1652   bool isChar32Type() const;
   1653   bool isAnyCharacterType() const;
   1654   bool isIntegralType(const ASTContext &Ctx) const;
   1655 
   1656   /// Determine whether this type is an integral or enumeration type.
   1657   bool isIntegralOrEnumerationType() const;
   1658   /// Determine whether this type is an integral or unscoped enumeration type.
   1659   bool isIntegralOrUnscopedEnumerationType() const;
   1660 
   1661   /// Floating point categories.
   1662   bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
   1663   /// isComplexType() does *not* include complex integers (a GCC extension).
   1664   /// isComplexIntegerType() can be used to test for complex integers.
   1665   bool isComplexType() const;      // C99 6.2.5p11 (complex)
   1666   bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
   1667   bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
   1668   bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
   1669   bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
   1670   bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
   1671   bool isVoidType() const;         // C99 6.2.5p19
   1672   bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
   1673   bool isAggregateType() const;
   1674   bool isFundamentalType() const;
   1675   bool isCompoundType() const;
   1676 
   1677   // Type Predicates: Check to see if this type is structurally the specified
   1678   // type, ignoring typedefs and qualifiers.
   1679   bool isFunctionType() const;
   1680   bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
   1681   bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
   1682   bool isPointerType() const;
   1683   bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
   1684   bool isBlockPointerType() const;
   1685   bool isVoidPointerType() const;
   1686   bool isReferenceType() const;
   1687   bool isLValueReferenceType() const;
   1688   bool isRValueReferenceType() const;
   1689   bool isFunctionPointerType() const;
   1690   bool isMemberPointerType() const;
   1691   bool isMemberFunctionPointerType() const;
   1692   bool isMemberDataPointerType() const;
   1693   bool isArrayType() const;
   1694   bool isConstantArrayType() const;
   1695   bool isIncompleteArrayType() const;
   1696   bool isVariableArrayType() const;
   1697   bool isDependentSizedArrayType() const;
   1698   bool isRecordType() const;
   1699   bool isClassType() const;
   1700   bool isStructureType() const;
   1701   bool isObjCBoxableRecordType() const;
   1702   bool isInterfaceType() const;
   1703   bool isStructureOrClassType() const;
   1704   bool isUnionType() const;
   1705   bool isComplexIntegerType() const;            // GCC _Complex integer type.
   1706   bool isVectorType() const;                    // GCC vector type.
   1707   bool isExtVectorType() const;                 // Extended vector type.
   1708   bool isObjCObjectPointerType() const;         // pointer to ObjC object
   1709   bool isObjCRetainableType() const;            // ObjC object or block pointer
   1710   bool isObjCLifetimeType() const;              // (array of)* retainable type
   1711   bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
   1712   bool isObjCNSObjectType() const;              // __attribute__((NSObject))
   1713   bool isObjCIndependentClassType() const;      // __attribute__((objc_independent_class))
   1714   // FIXME: change this to 'raw' interface type, so we can used 'interface' type
   1715   // for the common case.
   1716   bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
   1717   bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
   1718   bool isObjCQualifiedIdType() const;           // id<foo>
   1719   bool isObjCQualifiedClassType() const;        // Class<foo>
   1720   bool isObjCObjectOrInterfaceType() const;
   1721   bool isObjCIdType() const;                    // id
   1722   bool isObjCInertUnsafeUnretainedType() const;
   1723 
   1724   /// Whether the type is Objective-C 'id' or a __kindof type of an
   1725   /// object type, e.g., __kindof NSView * or __kindof id
   1726   /// <NSCopying>.
   1727   ///
   1728   /// \param bound Will be set to the bound on non-id subtype types,
   1729   /// which will be (possibly specialized) Objective-C class type, or
   1730   /// null for 'id.
   1731   bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
   1732                                   const ObjCObjectType *&bound) const;
   1733 
   1734   bool isObjCClassType() const;                 // Class
   1735 
   1736   /// Whether the type is Objective-C 'Class' or a __kindof type of an
   1737   /// Class type, e.g., __kindof Class <NSCopying>.
   1738   ///
   1739   /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
   1740   /// here because Objective-C's type system cannot express "a class
   1741   /// object for a subclass of NSFoo".
   1742   bool isObjCClassOrClassKindOfType() const;
   1743 
   1744   bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
   1745   bool isObjCSelType() const;                 // Class
   1746   bool isObjCBuiltinType() const;               // 'id' or 'Class'
   1747   bool isObjCARCBridgableType() const;
   1748   bool isCARCBridgableType() const;
   1749   bool isTemplateTypeParmType() const;          // C++ template type parameter
   1750   bool isNullPtrType() const;                   // C++11 std::nullptr_t
   1751   bool isAlignValT() const;                     // C++17 std::align_val_t
   1752   bool isAtomicType() const;                    // C11 _Atomic()
   1753 
   1754 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
   1755   bool is##Id##Type() const;
   1756 #include "clang/Basic/OpenCLImageTypes.def"
   1757 
   1758   bool isImageType() const;                     // Any OpenCL image type
   1759 
   1760   bool isSamplerT() const;                      // OpenCL sampler_t
   1761   bool isEventT() const;                        // OpenCL event_t
   1762   bool isClkEventT() const;                     // OpenCL clk_event_t
   1763   bool isQueueT() const;                        // OpenCL queue_t
   1764   bool isReserveIDT() const;                    // OpenCL reserve_id_t
   1765 
   1766   bool isPipeType() const;                      // OpenCL pipe type
   1767   bool isOpenCLSpecificType() const;            // Any OpenCL specific type
   1768 
   1769   /// Determines if this type, which must satisfy
   1770   /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
   1771   /// than implicitly __strong.
   1772   bool isObjCARCImplicitlyUnretainedType() const;
   1773 
   1774   /// Return the implicit lifetime for this type, which must not be dependent.
   1775   Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
   1776 
   1777   enum ScalarTypeKind {
   1778     STK_CPointer,
   1779     STK_BlockPointer,
   1780     STK_ObjCObjectPointer,
   1781     STK_MemberPointer,
   1782     STK_Bool,
   1783     STK_Integral,
   1784     STK_Floating,
   1785     STK_IntegralComplex,
   1786     STK_FloatingComplex
   1787   };
   1788   /// Given that this is a scalar type, classify it.
   1789   ScalarTypeKind getScalarTypeKind() const;
   1790 
   1791   /// Whether this type is a dependent type, meaning that its definition
   1792   /// somehow depends on a template parameter (C++ [temp.dep.type]).
   1793   bool isDependentType() const { return TypeBits.Dependent; }
   1794 
   1795   /// \brief Determine whether this type is an instantiation-dependent type,
   1796   /// meaning that the type involves a template parameter (even if the
   1797   /// definition does not actually depend on the type substituted for that
   1798   /// template parameter).
   1799   bool isInstantiationDependentType() const {
   1800     return TypeBits.InstantiationDependent;
   1801   }
   1802 
   1803   /// \brief Determine whether this type is an undeduced type, meaning that
   1804   /// it somehow involves a C++11 'auto' type or similar which has not yet been
   1805   /// deduced.
   1806   bool isUndeducedType() const;
   1807 
   1808   /// \brief Whether this type is a variably-modified type (C99 6.7.5).
   1809   bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
   1810 
   1811   /// \brief Whether this type involves a variable-length array type
   1812   /// with a definite size.
   1813   bool hasSizedVLAType() const;
   1814 
   1815   /// \brief Whether this type is or contains a local or unnamed type.
   1816   bool hasUnnamedOrLocalType() const;
   1817 
   1818   bool isOverloadableType() const;
   1819 
   1820   /// \brief Determine wither this type is a C++ elaborated-type-specifier.
   1821   bool isElaboratedTypeSpecifier() const;
   1822 
   1823   bool canDecayToPointerType() const;
   1824 
   1825   /// Whether this type is represented natively as a pointer.  This includes
   1826   /// pointers, references, block pointers, and Objective-C interface,
   1827   /// qualified id, and qualified interface types, as well as nullptr_t.
   1828   bool hasPointerRepresentation() const;
   1829 
   1830   /// Whether this type can represent an objective pointer type for the
   1831   /// purpose of GC'ability
   1832   bool hasObjCPointerRepresentation() const;
   1833 
   1834   /// \brief Determine whether this type has an integer representation
   1835   /// of some sort, e.g., it is an integer type or a vector.
   1836   bool hasIntegerRepresentation() const;
   1837 
   1838   /// \brief Determine whether this type has an signed integer representation
   1839   /// of some sort, e.g., it is an signed integer type or a vector.
   1840   bool hasSignedIntegerRepresentation() const;
   1841 
   1842   /// \brief Determine whether this type has an unsigned integer representation
   1843   /// of some sort, e.g., it is an unsigned integer type or a vector.
   1844   bool hasUnsignedIntegerRepresentation() const;
   1845 
   1846   /// \brief Determine whether this type has a floating-point representation
   1847   /// of some sort, e.g., it is a floating-point type or a vector thereof.
   1848   bool hasFloatingRepresentation() const;
   1849 
   1850   // Type Checking Functions: Check to see if this type is structurally the
   1851   // specified type, ignoring typedefs and qualifiers, and return a pointer to
   1852   // the best type we can.
   1853   const RecordType *getAsStructureType() const;
   1854   /// NOTE: getAs*ArrayType are methods on ASTContext.
   1855   const RecordType *getAsUnionType() const;
   1856   const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
   1857   const ObjCObjectType *getAsObjCInterfaceType() const;
   1858   // The following is a convenience method that returns an ObjCObjectPointerType
   1859   // for object declared using an interface.
   1860   const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
   1861   const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
   1862   const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
   1863   const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
   1864 
   1865   /// \brief Retrieves the CXXRecordDecl that this type refers to, either
   1866   /// because the type is a RecordType or because it is the injected-class-name
   1867   /// type of a class template or class template partial specialization.
   1868   CXXRecordDecl *getAsCXXRecordDecl() const;
   1869 
   1870   /// \brief Retrieves the TagDecl that this type refers to, either
   1871   /// because the type is a TagType or because it is the injected-class-name
   1872   /// type of a class template or class template partial specialization.
   1873   TagDecl *getAsTagDecl() const;
   1874 
   1875   /// If this is a pointer or reference to a RecordType, return the
   1876   /// CXXRecordDecl that that type refers to.
   1877   ///
   1878   /// If this is not a pointer or reference, or the type being pointed to does
   1879   /// not refer to a CXXRecordDecl, returns NULL.
   1880   const CXXRecordDecl *getPointeeCXXRecordDecl() const;
   1881 
   1882   /// Get the DeducedType whose type will be deduced for a variable with
   1883   /// an initializer of this type. This looks through declarators like pointer
   1884   /// types, but not through decltype or typedefs.
   1885   DeducedType *getContainedDeducedType() const;
   1886 
   1887   /// Get the AutoType whose type will be deduced for a variable with
   1888   /// an initializer of this type. This looks through declarators like pointer
   1889   /// types, but not through decltype or typedefs.
   1890   AutoType *getContainedAutoType() const {
   1891     return dyn_cast_or_null<AutoType>(getContainedDeducedType());
   1892   }
   1893 
   1894   /// Determine whether this type was written with a leading 'auto'
   1895   /// corresponding to a trailing return type (possibly for a nested
   1896   /// function type within a pointer to function type or similar).
   1897   bool hasAutoForTrailingReturnType() const;
   1898 
   1899   /// Member-template getAs<specific type>'.  Look through sugar for
   1900   /// an instance of \<specific type>.   This scheme will eventually
   1901   /// replace the specific getAsXXXX methods above.
   1902   ///
   1903   /// There are some specializations of this member template listed
   1904   /// immediately following this class.
   1905   template <typename T> const T *getAs() const;
   1906 
   1907   /// Member-template getAsAdjusted<specific type>. Look through specific kinds
   1908   /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
   1909   /// This is used when you need to walk over sugar nodes that represent some
   1910   /// kind of type adjustment from a type that was written as a \<specific type>
   1911   /// to another type that is still canonically a \<specific type>.
   1912   template <typename T> const T *getAsAdjusted() const;
   1913 
   1914   /// A variant of getAs<> for array types which silently discards
   1915   /// qualifiers from the outermost type.
   1916   const ArrayType *getAsArrayTypeUnsafe() const;
   1917 
   1918   /// Member-template castAs<specific type>.  Look through sugar for
   1919   /// the underlying instance of \<specific type>.
   1920   ///
   1921   /// This method has the same relationship to getAs<T> as cast<T> has
   1922   /// to dyn_cast<T>; which is to say, the underlying type *must*
   1923   /// have the intended type, and this method will never return null.
   1924   template <typename T> const T *castAs() const;
   1925 
   1926   /// A variant of castAs<> for array type which silently discards
   1927   /// qualifiers from the outermost type.
   1928   const ArrayType *castAsArrayTypeUnsafe() const;
   1929 
   1930   /// Get the base element type of this type, potentially discarding type
   1931   /// qualifiers.  This should never be used when type qualifiers
   1932   /// are meaningful.
   1933   const Type *getBaseElementTypeUnsafe() const;
   1934 
   1935   /// If this is an array type, return the element type of the array,
   1936   /// potentially with type qualifiers missing.
   1937   /// This should never be used when type qualifiers are meaningful.
   1938   const Type *getArrayElementTypeNoTypeQual() const;
   1939 
   1940   /// If this is a pointer type, return the pointee type.
   1941   /// If this is an array type, return the array element type.
   1942   /// This should never be used when type qualifiers are meaningful.
   1943   const Type *getPointeeOrArrayElementType() const;
   1944 
   1945   /// If this is a pointer, ObjC object pointer, or block
   1946   /// pointer, this returns the respective pointee.
   1947   QualType getPointeeType() const;
   1948 
   1949   /// Return the specified type with any "sugar" removed from the type,
   1950   /// removing any typedefs, typeofs, etc., as well as any qualifiers.
   1951   const Type *getUnqualifiedDesugaredType() const;
   1952 
   1953   /// More type predicates useful for type checking/promotion
   1954   bool isPromotableIntegerType() const; // C99 6.3.1.1p2
   1955 
   1956   /// Return true if this is an integer type that is
   1957   /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
   1958   /// or an enum decl which has a signed representation.
   1959   bool isSignedIntegerType() const;
   1960 
   1961   /// Return true if this is an integer type that is
   1962   /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
   1963   /// or an enum decl which has an unsigned representation.
   1964   bool isUnsignedIntegerType() const;
   1965 
   1966   /// Determines whether this is an integer type that is signed or an
   1967   /// enumeration types whose underlying type is a signed integer type.
   1968   bool isSignedIntegerOrEnumerationType() const;
   1969 
   1970   /// Determines whether this is an integer type that is unsigned or an
   1971   /// enumeration types whose underlying type is a unsigned integer type.
   1972   bool isUnsignedIntegerOrEnumerationType() const;
   1973 
   1974   /// Return true if this is not a variable sized type,
   1975   /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
   1976   /// incomplete types.
   1977   bool isConstantSizeType() const;
   1978 
   1979   /// Returns true if this type can be represented by some
   1980   /// set of type specifiers.
   1981   bool isSpecifierType() const;
   1982 
   1983   /// Determine the linkage of this type.
   1984   Linkage getLinkage() const;
   1985 
   1986   /// Determine the visibility of this type.
   1987   Visibility getVisibility() const {
   1988     return getLinkageAndVisibility().getVisibility();
   1989   }
   1990 
   1991   /// Return true if the visibility was explicitly set is the code.
   1992   bool isVisibilityExplicit() const {
   1993     return getLinkageAndVisibility().isVisibilityExplicit();
   1994   }
   1995 
   1996   /// Determine the linkage and visibility of this type.
   1997   LinkageInfo getLinkageAndVisibility() const;
   1998 
   1999   /// True if the computed linkage is valid. Used for consistency
   2000   /// checking. Should always return true.
   2001   bool isLinkageValid() const;
   2002 
   2003   /// Determine the nullability of the given type.
   2004   ///
   2005   /// Note that nullability is only captured as sugar within the type
   2006   /// system, not as part of the canonical type, so nullability will
   2007   /// be lost by canonicalization and desugaring.
   2008   Optional<NullabilityKind> getNullability(const ASTContext &context) const;
   2009 
   2010   /// Determine whether the given type can have a nullability
   2011   /// specifier applied to it, i.e., if it is any kind of pointer type
   2012   /// or a dependent type that could instantiate to any kind of
   2013   /// pointer type.
   2014   bool canHaveNullability() const;
   2015 
   2016   /// Retrieve the set of substitutions required when accessing a member
   2017   /// of the Objective-C receiver type that is declared in the given context.
   2018   ///
   2019   /// \c *this is the type of the object we're operating on, e.g., the
   2020   /// receiver for a message send or the base of a property access, and is
   2021   /// expected to be of some object or object pointer type.
   2022   ///
   2023   /// \param dc The declaration context for which we are building up a
   2024   /// substitution mapping, which should be an Objective-C class, extension,
   2025   /// category, or method within.
   2026   ///
   2027   /// \returns an array of type arguments that can be substituted for
   2028   /// the type parameters of the given declaration context in any type described
   2029   /// within that context, or an empty optional to indicate that no
   2030   /// substitution is required.
   2031   Optional<ArrayRef<QualType>>
   2032   getObjCSubstitutions(const DeclContext *dc) const;
   2033 
   2034   /// Determines if this is an ObjC interface type that may accept type
   2035   /// parameters.
   2036   bool acceptsObjCTypeParams() const;
   2037 
   2038   const char *getTypeClassName() const;
   2039 
   2040   QualType getCanonicalTypeInternal() const {
   2041     return CanonicalType;
   2042   }
   2043   CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
   2044   void dump() const;
   2045   void dump(llvm::raw_ostream &OS) const;
   2046 
   2047   friend class ASTReader;
   2048   friend class ASTWriter;
   2049 };
   2050 
   2051 /// \brief This will check for a TypedefType by removing any existing sugar
   2052 /// until it reaches a TypedefType or a non-sugared type.
   2053 template <> const TypedefType *Type::getAs() const;
   2054 
   2055 /// \brief This will check for a TemplateSpecializationType by removing any
   2056 /// existing sugar until it reaches a TemplateSpecializationType or a
   2057 /// non-sugared type.
   2058 template <> const TemplateSpecializationType *Type::getAs() const;
   2059 
   2060 /// \brief This will check for an AttributedType by removing any existing sugar
   2061 /// until it reaches an AttributedType or a non-sugared type.
   2062 template <> const AttributedType *Type::getAs() const;
   2063 
   2064 // We can do canonical leaf types faster, because we don't have to
   2065 // worry about preserving child type decoration.
   2066 #define TYPE(Class, Base)
   2067 #define LEAF_TYPE(Class) \
   2068 template <> inline const Class##Type *Type::getAs() const { \
   2069   return dyn_cast<Class##Type>(CanonicalType); \
   2070 } \
   2071 template <> inline const Class##Type *Type::castAs() const { \
   2072   return cast<Class##Type>(CanonicalType); \
   2073 }
   2074 #include "clang/AST/TypeNodes.def"
   2075 
   2076 
   2077 /// This class is used for builtin types like 'int'.  Builtin
   2078 /// types are always canonical and have a literal name field.
   2079 class BuiltinType : public Type {
   2080 public:
   2081   enum Kind {
   2082 // OpenCL image types
   2083 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
   2084 #include "clang/Basic/OpenCLImageTypes.def"
   2085 // All other builtin types
   2086 #define BUILTIN_TYPE(Id, SingletonId) Id,
   2087 #define LAST_BUILTIN_TYPE(Id) LastKind = Id
   2088 #include "clang/AST/BuiltinTypes.def"
   2089   };
   2090 
   2091 public:
   2092   BuiltinType(Kind K)
   2093     : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
   2094            /*InstantiationDependent=*/(K == Dependent),
   2095            /*VariablyModified=*/false,
   2096            /*Unexpanded parameter pack=*/false) {
   2097     BuiltinTypeBits.Kind = K;
   2098   }
   2099 
   2100   Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
   2101   StringRef getName(const PrintingPolicy &Policy) const;
   2102   const char *getNameAsCString(const PrintingPolicy &Policy) const {
   2103     // The StringRef is null-terminated.
   2104     StringRef str = getName(Policy);
   2105     assert(!str.empty() && str.data()[str.size()] == '\0');
   2106     return str.data();
   2107   }
   2108 
   2109   bool isSugared() const { return false; }
   2110   QualType desugar() const { return QualType(this, 0); }
   2111 
   2112   bool isInteger() const {
   2113     return getKind() >= Bool && getKind() <= Int128;
   2114   }
   2115 
   2116   bool isSignedInteger() const {
   2117     return getKind() >= Char_S && getKind() <= Int128;
   2118   }
   2119 
   2120   bool isUnsignedInteger() const {
   2121     return getKind() >= Bool && getKind() <= UInt128;
   2122   }
   2123 
   2124   bool isFloatingPoint() const {
   2125     return getKind() >= Half && getKind() <= Float128;
   2126   }
   2127 
   2128   /// Determines whether the given kind corresponds to a placeholder type.
   2129   static bool isPlaceholderTypeKind(Kind K) {
   2130     return K >= Overload;
   2131   }
   2132 
   2133   /// Determines whether this type is a placeholder type, i.e. a type
   2134   /// which cannot appear in arbitrary positions in a fully-formed
   2135   /// expression.
   2136   bool isPlaceholderType() const {
   2137     return isPlaceholderTypeKind(getKind());
   2138   }
   2139 
   2140   /// Determines whether this type is a placeholder type other than
   2141   /// Overload.  Most placeholder types require only syntactic
   2142   /// information about their context in order to be resolved (e.g.
   2143   /// whether it is a call expression), which means they can (and
   2144   /// should) be resolved in an earlier "phase" of analysis.
   2145   /// Overload expressions sometimes pick up further information
   2146   /// from their context, like whether the context expects a
   2147   /// specific function-pointer type, and so frequently need
   2148   /// special treatment.
   2149   bool isNonOverloadPlaceholderType() const {
   2150     return getKind() > Overload;
   2151   }
   2152 
   2153   static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
   2154 };
   2155 
   2156 /// Complex values, per C99 6.2.5p11.  This supports the C99 complex
   2157 /// types (_Complex float etc) as well as the GCC integer complex extensions.
   2158 ///
   2159 class ComplexType : public Type, public llvm::FoldingSetNode {
   2160   QualType ElementType;
   2161   ComplexType(QualType Element, QualType CanonicalPtr) :
   2162     Type(Complex, CanonicalPtr, Element->isDependentType(),
   2163          Element->isInstantiationDependentType(),
   2164          Element->isVariablyModifiedType(),
   2165          Element->containsUnexpandedParameterPack()),
   2166     ElementType(Element) {
   2167   }
   2168   friend class ASTContext;  // ASTContext creates these.
   2169 
   2170 public:
   2171   QualType getElementType() const { return ElementType; }
   2172 
   2173   bool isSugared() const { return false; }
   2174   QualType desugar() const { return QualType(this, 0); }
   2175 
   2176   void Profile(llvm::FoldingSetNodeID &ID) {
   2177     Profile(ID, getElementType());
   2178   }
   2179   static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
   2180     ID.AddPointer(Element.getAsOpaquePtr());
   2181   }
   2182 
   2183   static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
   2184 };
   2185 
   2186 /// Sugar for parentheses used when specifying types.
   2187 ///
   2188 class ParenType : public Type, public llvm::FoldingSetNode {
   2189   QualType Inner;
   2190 
   2191   ParenType(QualType InnerType, QualType CanonType) :
   2192     Type(Paren, CanonType, InnerType->isDependentType(),
   2193          InnerType->isInstantiationDependentType(),
   2194          InnerType->isVariablyModifiedType(),
   2195          InnerType->containsUnexpandedParameterPack()),
   2196     Inner(InnerType) {
   2197   }
   2198   friend class ASTContext;  // ASTContext creates these.
   2199 
   2200 public:
   2201 
   2202   QualType getInnerType() const { return Inner; }
   2203 
   2204   bool isSugared() const { return true; }
   2205   QualType desugar() const { return getInnerType(); }
   2206 
   2207   void Profile(llvm::FoldingSetNodeID &ID) {
   2208     Profile(ID, getInnerType());
   2209   }
   2210   static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
   2211     Inner.Profile(ID);
   2212   }
   2213 
   2214   static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
   2215 };
   2216 
   2217 /// PointerType - C99 6.7.5.1 - Pointer Declarators.
   2218 ///
   2219 class PointerType : public Type, public llvm::FoldingSetNode {
   2220   QualType PointeeType;
   2221 
   2222   PointerType(QualType Pointee, QualType CanonicalPtr) :
   2223     Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
   2224          Pointee->isInstantiationDependentType(),
   2225          Pointee->isVariablyModifiedType(),
   2226          Pointee->containsUnexpandedParameterPack()),
   2227     PointeeType(Pointee) {
   2228   }
   2229   friend class ASTContext;  // ASTContext creates these.
   2230 
   2231 public:
   2232 
   2233   QualType getPointeeType() const { return PointeeType; }
   2234 
   2235   /// Returns true if address spaces of pointers overlap.
   2236   /// OpenCL v2.0 defines conversion rules for pointers to different
   2237   /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
   2238   /// address spaces.
   2239   /// CL1.1 or CL1.2:
   2240   ///   address spaces overlap iff they are they same.
   2241   /// CL2.0 adds:
   2242   ///   __generic overlaps with any address space except for __constant.
   2243   bool isAddressSpaceOverlapping(const PointerType &other) const {
   2244     Qualifiers thisQuals = PointeeType.getQualifiers();
   2245     Qualifiers otherQuals = other.getPointeeType().getQualifiers();
   2246     // Address spaces overlap if at least one of them is a superset of another
   2247     return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
   2248            otherQuals.isAddressSpaceSupersetOf(thisQuals);
   2249   }
   2250 
   2251   bool isSugared() const { return false; }
   2252   QualType desugar() const { return QualType(this, 0); }
   2253 
   2254   void Profile(llvm::FoldingSetNodeID &ID) {
   2255     Profile(ID, getPointeeType());
   2256   }
   2257   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   2258     ID.AddPointer(Pointee.getAsOpaquePtr());
   2259   }
   2260 
   2261   static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
   2262 };
   2263 
   2264 /// Represents a type which was implicitly adjusted by the semantic
   2265 /// engine for arbitrary reasons.  For example, array and function types can
   2266 /// decay, and function types can have their calling conventions adjusted.
   2267 class AdjustedType : public Type, public llvm::FoldingSetNode {
   2268   QualType OriginalTy;
   2269   QualType AdjustedTy;
   2270 
   2271 protected:
   2272   AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
   2273                QualType CanonicalPtr)
   2274       : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
   2275              OriginalTy->isInstantiationDependentType(),
   2276              OriginalTy->isVariablyModifiedType(),
   2277              OriginalTy->containsUnexpandedParameterPack()),
   2278         OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
   2279 
   2280   friend class ASTContext;  // ASTContext creates these.
   2281 
   2282 public:
   2283   QualType getOriginalType() const { return OriginalTy; }
   2284   QualType getAdjustedType() const { return AdjustedTy; }
   2285 
   2286   bool isSugared() const { return true; }
   2287   QualType desugar() const { return AdjustedTy; }
   2288 
   2289   void Profile(llvm::FoldingSetNodeID &ID) {
   2290     Profile(ID, OriginalTy, AdjustedTy);
   2291   }
   2292   static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
   2293     ID.AddPointer(Orig.getAsOpaquePtr());
   2294     ID.AddPointer(New.getAsOpaquePtr());
   2295   }
   2296 
   2297   static bool classof(const Type *T) {
   2298     return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
   2299   }
   2300 };
   2301 
   2302 /// Represents a pointer type decayed from an array or function type.
   2303 class DecayedType : public AdjustedType {
   2304 
   2305   inline
   2306   DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
   2307 
   2308   friend class ASTContext;  // ASTContext creates these.
   2309 
   2310 public:
   2311   QualType getDecayedType() const { return getAdjustedType(); }
   2312 
   2313   inline QualType getPointeeType() const;
   2314 
   2315   static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
   2316 };
   2317 
   2318 /// Pointer to a block type.
   2319 /// This type is to represent types syntactically represented as
   2320 /// "void (^)(int)", etc. Pointee is required to always be a function type.
   2321 ///
   2322 class BlockPointerType : public Type, public llvm::FoldingSetNode {
   2323   QualType PointeeType;  // Block is some kind of pointer type
   2324   BlockPointerType(QualType Pointee, QualType CanonicalCls) :
   2325     Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
   2326          Pointee->isInstantiationDependentType(),
   2327          Pointee->isVariablyModifiedType(),
   2328          Pointee->containsUnexpandedParameterPack()),
   2329     PointeeType(Pointee) {
   2330   }
   2331   friend class ASTContext;  // ASTContext creates these.
   2332 
   2333 public:
   2334 
   2335   // Get the pointee type. Pointee is required to always be a function type.
   2336   QualType getPointeeType() const { return PointeeType; }
   2337 
   2338   bool isSugared() const { return false; }
   2339   QualType desugar() const { return QualType(this, 0); }
   2340 
   2341   void Profile(llvm::FoldingSetNodeID &ID) {
   2342       Profile(ID, getPointeeType());
   2343   }
   2344   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   2345       ID.AddPointer(Pointee.getAsOpaquePtr());
   2346   }
   2347 
   2348   static bool classof(const Type *T) {
   2349     return T->getTypeClass() == BlockPointer;
   2350   }
   2351 };
   2352 
   2353 /// Base for LValueReferenceType and RValueReferenceType
   2354 ///
   2355 class ReferenceType : public Type, public llvm::FoldingSetNode {
   2356   QualType PointeeType;
   2357 
   2358 protected:
   2359   ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
   2360                 bool SpelledAsLValue) :
   2361     Type(tc, CanonicalRef, Referencee->isDependentType(),
   2362          Referencee->isInstantiationDependentType(),
   2363          Referencee->isVariablyModifiedType(),
   2364          Referencee->containsUnexpandedParameterPack()),
   2365     PointeeType(Referencee)
   2366   {
   2367     ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
   2368     ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
   2369   }
   2370 
   2371 public:
   2372   bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
   2373   bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
   2374 
   2375   QualType getPointeeTypeAsWritten() const { return PointeeType; }
   2376   QualType getPointeeType() const {
   2377     // FIXME: this might strip inner qualifiers; okay?
   2378     const ReferenceType *T = this;
   2379     while (T->isInnerRef())
   2380       T = T->PointeeType->castAs<ReferenceType>();
   2381     return T->PointeeType;
   2382   }
   2383 
   2384   void Profile(llvm::FoldingSetNodeID &ID) {
   2385     Profile(ID, PointeeType, isSpelledAsLValue());
   2386   }
   2387   static void Profile(llvm::FoldingSetNodeID &ID,
   2388                       QualType Referencee,
   2389                       bool SpelledAsLValue) {
   2390     ID.AddPointer(Referencee.getAsOpaquePtr());
   2391     ID.AddBoolean(SpelledAsLValue);
   2392   }
   2393 
   2394   static bool classof(const Type *T) {
   2395     return T->getTypeClass() == LValueReference ||
   2396            T->getTypeClass() == RValueReference;
   2397   }
   2398 };
   2399 
   2400 /// An lvalue reference type, per C++11 [dcl.ref].
   2401 ///
   2402 class LValueReferenceType : public ReferenceType {
   2403   LValueReferenceType(QualType Referencee, QualType CanonicalRef,
   2404                       bool SpelledAsLValue) :
   2405     ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
   2406   {}
   2407   friend class ASTContext; // ASTContext creates these
   2408 public:
   2409   bool isSugared() const { return false; }
   2410   QualType desugar() const { return QualType(this, 0); }
   2411 
   2412   static bool classof(const Type *T) {
   2413     return T->getTypeClass() == LValueReference;
   2414   }
   2415 };
   2416 
   2417 /// An rvalue reference type, per C++11 [dcl.ref].
   2418 ///
   2419 class RValueReferenceType : public ReferenceType {
   2420   RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
   2421     ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
   2422   }
   2423   friend class ASTContext; // ASTContext creates these
   2424 public:
   2425   bool isSugared() const { return false; }
   2426   QualType desugar() const { return QualType(this, 0); }
   2427 
   2428   static bool classof(const Type *T) {
   2429     return T->getTypeClass() == RValueReference;
   2430   }
   2431 };
   2432 
   2433 /// A pointer to member type per C++ 8.3.3 - Pointers to members.
   2434 ///
   2435 /// This includes both pointers to data members and pointer to member functions.
   2436 ///
   2437 class MemberPointerType : public Type, public llvm::FoldingSetNode {
   2438   QualType PointeeType;
   2439   /// The class of which the pointee is a member. Must ultimately be a
   2440   /// RecordType, but could be a typedef or a template parameter too.
   2441   const Type *Class;
   2442 
   2443   MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
   2444     Type(MemberPointer, CanonicalPtr,
   2445          Cls->isDependentType() || Pointee->isDependentType(),
   2446          (Cls->isInstantiationDependentType() ||
   2447           Pointee->isInstantiationDependentType()),
   2448          Pointee->isVariablyModifiedType(),
   2449          (Cls->containsUnexpandedParameterPack() ||
   2450           Pointee->containsUnexpandedParameterPack())),
   2451     PointeeType(Pointee), Class(Cls) {
   2452   }
   2453   friend class ASTContext; // ASTContext creates these.
   2454 
   2455 public:
   2456   QualType getPointeeType() const { return PointeeType; }
   2457 
   2458   /// Returns true if the member type (i.e. the pointee type) is a
   2459   /// function type rather than a data-member type.
   2460   bool isMemberFunctionPointer() const {
   2461     return PointeeType->isFunctionProtoType();
   2462   }
   2463 
   2464   /// Returns true if the member type (i.e. the pointee type) is a
   2465   /// data type rather than a function type.
   2466   bool isMemberDataPointer() const {
   2467     return !PointeeType->isFunctionProtoType();
   2468   }
   2469 
   2470   const Type *getClass() const { return Class; }
   2471   CXXRecordDecl *getMostRecentCXXRecordDecl() const;
   2472 
   2473   bool isSugared() const { return false; }
   2474   QualType desugar() const { return QualType(this, 0); }
   2475 
   2476   void Profile(llvm::FoldingSetNodeID &ID) {
   2477     Profile(ID, getPointeeType(), getClass());
   2478   }
   2479   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
   2480                       const Type *Class) {
   2481     ID.AddPointer(Pointee.getAsOpaquePtr());
   2482     ID.AddPointer(Class);
   2483   }
   2484 
   2485   static bool classof(const Type *T) {
   2486     return T->getTypeClass() == MemberPointer;
   2487   }
   2488 };
   2489 
   2490 /// Represents an array type, per C99 6.7.5.2 - Array Declarators.
   2491 ///
   2492 class ArrayType : public Type, public llvm::FoldingSetNode {
   2493 public:
   2494   /// Capture whether this is a normal array (e.g. int X[4])
   2495   /// an array with a static size (e.g. int X[static 4]), or an array
   2496   /// with a star size (e.g. int X[*]).
   2497   /// 'static' is only allowed on function parameters.
   2498   enum ArraySizeModifier {
   2499     Normal, Static, Star
   2500   };
   2501 private:
   2502   /// The element type of the array.
   2503   QualType ElementType;
   2504 
   2505 protected:
   2506   // C++ [temp.dep.type]p1:
   2507   //   A type is dependent if it is...
   2508   //     - an array type constructed from any dependent type or whose
   2509   //       size is specified by a constant expression that is
   2510   //       value-dependent,
   2511   ArrayType(TypeClass tc, QualType et, QualType can,
   2512             ArraySizeModifier sm, unsigned tq,
   2513             bool ContainsUnexpandedParameterPack)
   2514     : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
   2515            et->isInstantiationDependentType() || tc == DependentSizedArray,
   2516            (tc == VariableArray || et->isVariablyModifiedType()),
   2517            ContainsUnexpandedParameterPack),
   2518       ElementType(et) {
   2519     ArrayTypeBits.IndexTypeQuals = tq;
   2520     ArrayTypeBits.SizeModifier = sm;
   2521   }
   2522 
   2523   friend class ASTContext;  // ASTContext creates these.
   2524 
   2525 public:
   2526   QualType getElementType() const { return ElementType; }
   2527   ArraySizeModifier getSizeModifier() const {
   2528     return ArraySizeModifier(ArrayTypeBits.SizeModifier);
   2529   }
   2530   Qualifiers getIndexTypeQualifiers() const {
   2531     return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
   2532   }
   2533   unsigned getIndexTypeCVRQualifiers() const {
   2534     return ArrayTypeBits.IndexTypeQuals;
   2535   }
   2536 
   2537   static bool classof(const Type *T) {
   2538     return T->getTypeClass() == ConstantArray ||
   2539            T->getTypeClass() == VariableArray ||
   2540            T->getTypeClass() == IncompleteArray ||
   2541            T->getTypeClass() == DependentSizedArray;
   2542   }
   2543 };
   2544 
   2545 /// Represents the canonical version of C arrays with a specified constant size.
   2546 /// For example, the canonical type for 'int A[4 + 4*100]' is a
   2547 /// ConstantArrayType where the element type is 'int' and the size is 404.
   2548 class ConstantArrayType : public ArrayType {
   2549   llvm::APInt Size; // Allows us to unique the type.
   2550 
   2551   ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
   2552                     ArraySizeModifier sm, unsigned tq)
   2553     : ArrayType(ConstantArray, et, can, sm, tq,
   2554                 et->containsUnexpandedParameterPack()),
   2555       Size(size) {}
   2556 protected:
   2557   ConstantArrayType(TypeClass tc, QualType et, QualType can,
   2558                     const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
   2559     : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
   2560       Size(size) {}
   2561   friend class ASTContext;  // ASTContext creates these.
   2562 public:
   2563   const llvm::APInt &getSize() const { return Size; }
   2564   bool isSugared() const { return false; }
   2565   QualType desugar() const { return QualType(this, 0); }
   2566 
   2567 
   2568   /// \brief Determine the number of bits required to address a member of
   2569   // an array with the given element type and number of elements.
   2570   static unsigned getNumAddressingBits(const ASTContext &Context,
   2571                                        QualType ElementType,
   2572                                        const llvm::APInt &NumElements);
   2573 
   2574   /// \brief Determine the maximum number of active bits that an array's size
   2575   /// can require, which limits the maximum size of the array.
   2576   static unsigned getMaxSizeBits(const ASTContext &Context);
   2577 
   2578   void Profile(llvm::FoldingSetNodeID &ID) {
   2579     Profile(ID, getElementType(), getSize(),
   2580             getSizeModifier(), getIndexTypeCVRQualifiers());
   2581   }
   2582   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2583                       const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
   2584                       unsigned TypeQuals) {
   2585     ID.AddPointer(ET.getAsOpaquePtr());
   2586     ID.AddInteger(ArraySize.getZExtValue());
   2587     ID.AddInteger(SizeMod);
   2588     ID.AddInteger(TypeQuals);
   2589   }
   2590   static bool classof(const Type *T) {
   2591     return T->getTypeClass() == ConstantArray;
   2592   }
   2593 };
   2594 
   2595 /// Represents a C array with an unspecified size.  For example 'int A[]' has
   2596 /// an IncompleteArrayType where the element type is 'int' and the size is
   2597 /// unspecified.
   2598 class IncompleteArrayType : public ArrayType {
   2599 
   2600   IncompleteArrayType(QualType et, QualType can,
   2601                       ArraySizeModifier sm, unsigned tq)
   2602     : ArrayType(IncompleteArray, et, can, sm, tq,
   2603                 et->containsUnexpandedParameterPack()) {}
   2604   friend class ASTContext;  // ASTContext creates these.
   2605 public:
   2606   bool isSugared() const { return false; }
   2607   QualType desugar() const { return QualType(this, 0); }
   2608 
   2609   static bool classof(const Type *T) {
   2610     return T->getTypeClass() == IncompleteArray;
   2611   }
   2612 
   2613   friend class StmtIteratorBase;
   2614 
   2615   void Profile(llvm::FoldingSetNodeID &ID) {
   2616     Profile(ID, getElementType(), getSizeModifier(),
   2617             getIndexTypeCVRQualifiers());
   2618   }
   2619 
   2620   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2621                       ArraySizeModifier SizeMod, unsigned TypeQuals) {
   2622     ID.AddPointer(ET.getAsOpaquePtr());
   2623     ID.AddInteger(SizeMod);
   2624     ID.AddInteger(TypeQuals);
   2625   }
   2626 };
   2627 
   2628 /// Represents a C array with a specified size that is not an
   2629 /// integer-constant-expression.  For example, 'int s[x+foo()]'.
   2630 /// Since the size expression is an arbitrary expression, we store it as such.
   2631 ///
   2632 /// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
   2633 /// should not be: two lexically equivalent variable array types could mean
   2634 /// different things, for example, these variables do not have the same type
   2635 /// dynamically:
   2636 ///
   2637 /// void foo(int x) {
   2638 ///   int Y[x];
   2639 ///   ++x;
   2640 ///   int Z[x];
   2641 /// }
   2642 ///
   2643 class VariableArrayType : public ArrayType {
   2644   /// An assignment-expression. VLA's are only permitted within
   2645   /// a function block.
   2646   Stmt *SizeExpr;
   2647   /// The range spanned by the left and right array brackets.
   2648   SourceRange Brackets;
   2649 
   2650   VariableArrayType(QualType et, QualType can, Expr *e,
   2651                     ArraySizeModifier sm, unsigned tq,
   2652                     SourceRange brackets)
   2653     : ArrayType(VariableArray, et, can, sm, tq,
   2654                 et->containsUnexpandedParameterPack()),
   2655       SizeExpr((Stmt*) e), Brackets(brackets) {}
   2656   friend class ASTContext;  // ASTContext creates these.
   2657 
   2658 public:
   2659   Expr *getSizeExpr() const {
   2660     // We use C-style casts instead of cast<> here because we do not wish
   2661     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2662     return (Expr*) SizeExpr;
   2663   }
   2664   SourceRange getBracketsRange() const { return Brackets; }
   2665   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2666   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2667 
   2668   bool isSugared() const { return false; }
   2669   QualType desugar() const { return QualType(this, 0); }
   2670 
   2671   static bool classof(const Type *T) {
   2672     return T->getTypeClass() == VariableArray;
   2673   }
   2674 
   2675   friend class StmtIteratorBase;
   2676 
   2677   void Profile(llvm::FoldingSetNodeID &ID) {
   2678     llvm_unreachable("Cannot unique VariableArrayTypes.");
   2679   }
   2680 };
   2681 
   2682 /// Represents an array type in C++ whose size is a value-dependent expression.
   2683 ///
   2684 /// For example:
   2685 /// \code
   2686 /// template<typename T, int Size>
   2687 /// class array {
   2688 ///   T data[Size];
   2689 /// };
   2690 /// \endcode
   2691 ///
   2692 /// For these types, we won't actually know what the array bound is
   2693 /// until template instantiation occurs, at which point this will
   2694 /// become either a ConstantArrayType or a VariableArrayType.
   2695 class DependentSizedArrayType : public ArrayType {
   2696   const ASTContext &Context;
   2697 
   2698   /// \brief An assignment expression that will instantiate to the
   2699   /// size of the array.
   2700   ///
   2701   /// The expression itself might be null, in which case the array
   2702   /// type will have its size deduced from an initializer.
   2703   Stmt *SizeExpr;
   2704 
   2705   /// The range spanned by the left and right array brackets.
   2706   SourceRange Brackets;
   2707 
   2708   DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
   2709                           Expr *e, ArraySizeModifier sm, unsigned tq,
   2710                           SourceRange brackets);
   2711 
   2712   friend class ASTContext;  // ASTContext creates these.
   2713 
   2714 public:
   2715   Expr *getSizeExpr() const {
   2716     // We use C-style casts instead of cast<> here because we do not wish
   2717     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2718     return (Expr*) SizeExpr;
   2719   }
   2720   SourceRange getBracketsRange() const { return Brackets; }
   2721   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2722   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2723 
   2724   bool isSugared() const { return false; }
   2725   QualType desugar() const { return QualType(this, 0); }
   2726 
   2727   static bool classof(const Type *T) {
   2728     return T->getTypeClass() == DependentSizedArray;
   2729   }
   2730 
   2731   friend class StmtIteratorBase;
   2732 
   2733 
   2734   void Profile(llvm::FoldingSetNodeID &ID) {
   2735     Profile(ID, Context, getElementType(),
   2736             getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
   2737   }
   2738 
   2739   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2740                       QualType ET, ArraySizeModifier SizeMod,
   2741                       unsigned TypeQuals, Expr *E);
   2742 };
   2743 
   2744 /// Represents an extended vector type where either the type or size is
   2745 /// dependent.
   2746 ///
   2747 /// For example:
   2748 /// \code
   2749 /// template<typename T, int Size>
   2750 /// class vector {
   2751 ///   typedef T __attribute__((ext_vector_type(Size))) type;
   2752 /// }
   2753 /// \endcode
   2754 class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
   2755   const ASTContext &Context;
   2756   Expr *SizeExpr;
   2757   /// The element type of the array.
   2758   QualType ElementType;
   2759   SourceLocation loc;
   2760 
   2761   DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
   2762                               QualType can, Expr *SizeExpr, SourceLocation loc);
   2763 
   2764   friend class ASTContext;
   2765 
   2766 public:
   2767   Expr *getSizeExpr() const { return SizeExpr; }
   2768   QualType getElementType() const { return ElementType; }
   2769   SourceLocation getAttributeLoc() const { return loc; }
   2770 
   2771   bool isSugared() const { return false; }
   2772   QualType desugar() const { return QualType(this, 0); }
   2773 
   2774   static bool classof(const Type *T) {
   2775     return T->getTypeClass() == DependentSizedExtVector;
   2776   }
   2777 
   2778   void Profile(llvm::FoldingSetNodeID &ID) {
   2779     Profile(ID, Context, getElementType(), getSizeExpr());
   2780   }
   2781 
   2782   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2783                       QualType ElementType, Expr *SizeExpr);
   2784 };
   2785 
   2786 
   2787 /// Represents a GCC generic vector type. This type is created using
   2788 /// __attribute__((vector_size(n)), where "n" specifies the vector size in
   2789 /// bytes; or from an Altivec __vector or vector declaration.
   2790 /// Since the constructor takes the number of vector elements, the
   2791 /// client is responsible for converting the size into the number of elements.
   2792 class VectorType : public Type, public llvm::FoldingSetNode {
   2793 public:
   2794   enum VectorKind {
   2795     GenericVector,  ///< not a target-specific vector type
   2796     AltiVecVector,  ///< is AltiVec vector
   2797     AltiVecPixel,   ///< is AltiVec 'vector Pixel'
   2798     AltiVecBool,    ///< is AltiVec 'vector bool ...'
   2799     NeonVector,     ///< is ARM Neon vector
   2800     NeonPolyVector  ///< is ARM Neon polynomial vector
   2801   };
   2802 protected:
   2803   /// The element type of the vector.
   2804   QualType ElementType;
   2805 
   2806   VectorType(QualType vecType, unsigned nElements, QualType canonType,
   2807              VectorKind vecKind);
   2808 
   2809   VectorType(TypeClass tc, QualType vecType, unsigned nElements,
   2810              QualType canonType, VectorKind vecKind);
   2811 
   2812   friend class ASTContext;  // ASTContext creates these.
   2813 
   2814 public:
   2815 
   2816   QualType getElementType() const { return ElementType; }
   2817   unsigned getNumElements() const { return VectorTypeBits.NumElements; }
   2818   static bool isVectorSizeTooLarge(unsigned NumElements) {
   2819     return NumElements > VectorTypeBitfields::MaxNumElements;
   2820   }
   2821 
   2822   bool isSugared() const { return false; }
   2823   QualType desugar() const { return QualType(this, 0); }
   2824 
   2825   VectorKind getVectorKind() const {
   2826     return VectorKind(VectorTypeBits.VecKind);
   2827   }
   2828 
   2829   void Profile(llvm::FoldingSetNodeID &ID) {
   2830     Profile(ID, getElementType(), getNumElements(),
   2831             getTypeClass(), getVectorKind());
   2832   }
   2833   static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
   2834                       unsigned NumElements, TypeClass TypeClass,
   2835                       VectorKind VecKind) {
   2836     ID.AddPointer(ElementType.getAsOpaquePtr());
   2837     ID.AddInteger(NumElements);
   2838     ID.AddInteger(TypeClass);
   2839     ID.AddInteger(VecKind);
   2840   }
   2841 
   2842   static bool classof(const Type *T) {
   2843     return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
   2844   }
   2845 };
   2846 
   2847 /// ExtVectorType - Extended vector type. This type is created using
   2848 /// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
   2849 /// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
   2850 /// class enables syntactic extensions, like Vector Components for accessing
   2851 /// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
   2852 /// Shading Language).
   2853 class ExtVectorType : public VectorType {
   2854   ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
   2855     VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
   2856   friend class ASTContext;  // ASTContext creates these.
   2857 public:
   2858   static int getPointAccessorIdx(char c) {
   2859     switch (c) {
   2860     default: return -1;
   2861     case 'x': case 'r': return 0;
   2862     case 'y': case 'g': return 1;
   2863     case 'z': case 'b': return 2;
   2864     case 'w': case 'a': return 3;
   2865     }
   2866   }
   2867   static int getNumericAccessorIdx(char c) {
   2868     switch (c) {
   2869       default: return -1;
   2870       case '0': return 0;
   2871       case '1': return 1;
   2872       case '2': return 2;
   2873       case '3': return 3;
   2874       case '4': return 4;
   2875       case '5': return 5;
   2876       case '6': return 6;
   2877       case '7': return 7;
   2878       case '8': return 8;
   2879       case '9': return 9;
   2880       case 'A':
   2881       case 'a': return 10;
   2882       case 'B':
   2883       case 'b': return 11;
   2884       case 'C':
   2885       case 'c': return 12;
   2886       case 'D':
   2887       case 'd': return 13;
   2888       case 'E':
   2889       case 'e': return 14;
   2890       case 'F':
   2891       case 'f': return 15;
   2892     }
   2893   }
   2894 
   2895   static int getAccessorIdx(char c, bool isNumericAccessor) {
   2896     if (isNumericAccessor)
   2897       return getNumericAccessorIdx(c);
   2898     else
   2899       return getPointAccessorIdx(c);
   2900   }
   2901 
   2902   bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
   2903     if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
   2904       return unsigned(idx-1) < getNumElements();
   2905     return false;
   2906   }
   2907   bool isSugared() const { return false; }
   2908   QualType desugar() const { return QualType(this, 0); }
   2909 
   2910   static bool classof(const Type *T) {
   2911     return T->getTypeClass() == ExtVector;
   2912   }
   2913 };
   2914 
   2915 /// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
   2916 /// class of FunctionNoProtoType and FunctionProtoType.
   2917 ///
   2918 class FunctionType : public Type {
   2919   // The type returned by the function.
   2920   QualType ResultType;
   2921 
   2922  public:
   2923   /// A class which abstracts out some details necessary for
   2924   /// making a call.
   2925   ///
   2926   /// It is not actually used directly for storing this information in
   2927   /// a FunctionType, although FunctionType does currently use the
   2928   /// same bit-pattern.
   2929   ///
   2930   // If you add a field (say Foo), other than the obvious places (both,
   2931   // constructors, compile failures), what you need to update is
   2932   // * Operator==
   2933   // * getFoo
   2934   // * withFoo
   2935   // * functionType. Add Foo, getFoo.
   2936   // * ASTContext::getFooType
   2937   // * ASTContext::mergeFunctionTypes
   2938   // * FunctionNoProtoType::Profile
   2939   // * FunctionProtoType::Profile
   2940   // * TypePrinter::PrintFunctionProto
   2941   // * AST read and write
   2942   // * Codegen
   2943   class ExtInfo {
   2944     // Feel free to rearrange or add bits, but if you go over 10,
   2945     // you'll need to adjust both the Bits field below and
   2946     // Type::FunctionTypeBitfields.
   2947 
   2948     //   |  CC  |noreturn|produces|regparm|
   2949     //   |0 .. 4|   5    |    6   | 7 .. 9|
   2950     //
   2951     // regparm is either 0 (no regparm attribute) or the regparm value+1.
   2952     enum { CallConvMask = 0x1F };
   2953     enum { NoReturnMask = 0x20 };
   2954     enum { ProducesResultMask = 0x40 };
   2955     enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
   2956            RegParmOffset = 7 }; // Assumed to be the last field
   2957 
   2958     uint16_t Bits;
   2959 
   2960     ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
   2961 
   2962     friend class FunctionType;
   2963 
   2964    public:
   2965     // Constructor with no defaults. Use this when you know that you
   2966     // have all the elements (when reading an AST file for example).
   2967     ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
   2968             bool producesResult) {
   2969       assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
   2970       Bits = ((unsigned) cc) |
   2971              (noReturn ? NoReturnMask : 0) |
   2972              (producesResult ? ProducesResultMask : 0) |
   2973              (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
   2974     }
   2975 
   2976     // Constructor with all defaults. Use when for example creating a
   2977     // function known to use defaults.
   2978     ExtInfo() : Bits(CC_C) { }
   2979 
   2980     // Constructor with just the calling convention, which is an important part
   2981     // of the canonical type.
   2982     ExtInfo(CallingConv CC) : Bits(CC) { }
   2983 
   2984     bool getNoReturn() const { return Bits & NoReturnMask; }
   2985     bool getProducesResult() const { return Bits & ProducesResultMask; }
   2986     bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
   2987     unsigned getRegParm() const {
   2988       unsigned RegParm = Bits >> RegParmOffset;
   2989       if (RegParm > 0)
   2990         --RegParm;
   2991       return RegParm;
   2992     }
   2993     CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
   2994 
   2995     bool operator==(ExtInfo Other) const {
   2996       return Bits == Other.Bits;
   2997     }
   2998     bool operator!=(ExtInfo Other) const {
   2999       return Bits != Other.Bits;
   3000     }
   3001 
   3002     // Note that we don't have setters. That is by design, use
   3003     // the following with methods instead of mutating these objects.
   3004 
   3005     ExtInfo withNoReturn(bool noReturn) const {
   3006       if (noReturn)
   3007         return ExtInfo(Bits | NoReturnMask);
   3008       else
   3009         return ExtInfo(Bits & ~NoReturnMask);
   3010     }
   3011 
   3012     ExtInfo withProducesResult(bool producesResult) const {
   3013       if (producesResult)
   3014         return ExtInfo(Bits | ProducesResultMask);
   3015       else
   3016         return ExtInfo(Bits & ~ProducesResultMask);
   3017     }
   3018 
   3019     ExtInfo withRegParm(unsigned RegParm) const {
   3020       assert(RegParm < 7 && "Invalid regparm value");
   3021       return ExtInfo((Bits & ~RegParmMask) |
   3022                      ((RegParm + 1) << RegParmOffset));
   3023     }
   3024 
   3025     ExtInfo withCallingConv(CallingConv cc) const {
   3026       return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
   3027     }
   3028 
   3029     void Profile(llvm::FoldingSetNodeID &ID) const {
   3030       ID.AddInteger(Bits);
   3031     }
   3032   };
   3033 
   3034 protected:
   3035   FunctionType(TypeClass tc, QualType res,
   3036                QualType Canonical, bool Dependent,
   3037                bool InstantiationDependent,
   3038                bool VariablyModified, bool ContainsUnexpandedParameterPack,
   3039                ExtInfo Info)
   3040     : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   3041            ContainsUnexpandedParameterPack),
   3042       ResultType(res) {
   3043     FunctionTypeBits.ExtInfo = Info.Bits;
   3044   }
   3045   unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
   3046 
   3047 public:
   3048   QualType getReturnType() const { return ResultType; }
   3049 
   3050   bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
   3051   unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
   3052   /// Determine whether this function type includes the GNU noreturn
   3053   /// attribute. The C++11 [[noreturn]] attribute does not affect the function
   3054   /// type.
   3055   bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
   3056   CallingConv getCallConv() const { return getExtInfo().getCC(); }
   3057   ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
   3058   bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
   3059   bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
   3060   bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
   3061 
   3062   /// \brief Determine the type of an expression that calls a function of
   3063   /// this type.
   3064   QualType getCallResultType(const ASTContext &Context) const {
   3065     return getReturnType().getNonLValueExprType(Context);
   3066   }
   3067 
   3068   static StringRef getNameForCallConv(CallingConv CC);
   3069 
   3070   static bool classof(const Type *T) {
   3071     return T->getTypeClass() == FunctionNoProto ||
   3072            T->getTypeClass() == FunctionProto;
   3073   }
   3074 };
   3075 
   3076 /// Represents a K&R-style 'int foo()' function, which has
   3077 /// no information available about its arguments.
   3078 class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
   3079   FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
   3080     : FunctionType(FunctionNoProto, Result, Canonical,
   3081                    /*Dependent=*/false, /*InstantiationDependent=*/false,
   3082                    Result->isVariablyModifiedType(),
   3083                    /*ContainsUnexpandedParameterPack=*/false, Info) {}
   3084 
   3085   friend class ASTContext;  // ASTContext creates these.
   3086 
   3087 public:
   3088   // No additional state past what FunctionType provides.
   3089 
   3090   bool isSugared() const { return false; }
   3091   QualType desugar() const { return QualType(this, 0); }
   3092 
   3093   void Profile(llvm::FoldingSetNodeID &ID) {
   3094     Profile(ID, getReturnType(), getExtInfo());
   3095   }
   3096   static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
   3097                       ExtInfo Info) {
   3098     Info.Profile(ID);
   3099     ID.AddPointer(ResultType.getAsOpaquePtr());
   3100   }
   3101 
   3102   static bool classof(const Type *T) {
   3103     return T->getTypeClass() == FunctionNoProto;
   3104   }
   3105 };
   3106 
   3107 /// Represents a prototype with parameter type info, e.g.
   3108 /// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
   3109 /// parameters, not as having a single void parameter. Such a type can have an
   3110 /// exception specification, but this specification is not part of the canonical
   3111 /// type.
   3112 class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
   3113 public:
   3114   /// Interesting information about a specific parameter that can't simply
   3115   /// be reflected in parameter's type.
   3116   ///
   3117   /// It makes sense to model language features this way when there's some
   3118   /// sort of parameter-specific override (such as an attribute) that
   3119   /// affects how the function is called.  For example, the ARC ns_consumed
   3120   /// attribute changes whether a parameter is passed at +0 (the default)
   3121   /// or +1 (ns_consumed).  This must be reflected in the function type,
   3122   /// but isn't really a change to the parameter type.
   3123   ///
   3124   /// One serious disadvantage of modelling language features this way is
   3125   /// that they generally do not work with language features that attempt
   3126   /// to destructure types.  For example, template argument deduction will
   3127   /// not be able to match a parameter declared as
   3128   ///   T (*)(U)
   3129   /// against an argument of type
   3130   ///   void (*)(__attribute__((ns_consumed)) id)
   3131   /// because the substitution of T=void, U=id into the former will
   3132   /// not produce the latter.
   3133   class ExtParameterInfo {
   3134     enum {
   3135       ABIMask         = 0x0F,
   3136       IsConsumed      = 0x10,
   3137       HasPassObjSize  = 0x20,
   3138     };
   3139     unsigned char Data;
   3140 
   3141   public:
   3142     ExtParameterInfo() : Data(0) {}
   3143 
   3144     /// Return the ABI treatment of this parameter.
   3145     ParameterABI getABI() const {
   3146       return ParameterABI(Data & ABIMask);
   3147     }
   3148     ExtParameterInfo withABI(ParameterABI kind) const {
   3149       ExtParameterInfo copy = *this;
   3150       copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
   3151       return copy;
   3152     }
   3153 
   3154     /// Is this parameter considered "consumed" by Objective-C ARC?
   3155     /// Consumed parameters must have retainable object type.
   3156     bool isConsumed() const {
   3157       return (Data & IsConsumed);
   3158     }
   3159     ExtParameterInfo withIsConsumed(bool consumed) const {
   3160       ExtParameterInfo copy = *this;
   3161       if (consumed) {
   3162         copy.Data |= IsConsumed;
   3163       } else {
   3164         copy.Data &= ~IsConsumed;
   3165       }
   3166       return copy;
   3167     }
   3168 
   3169     bool hasPassObjectSize() const {
   3170       return Data & HasPassObjSize;
   3171     }
   3172     ExtParameterInfo withHasPassObjectSize() const {
   3173       ExtParameterInfo Copy = *this;
   3174       Copy.Data |= HasPassObjSize;
   3175       return Copy;
   3176     }
   3177 
   3178     unsigned char getOpaqueValue() const { return Data; }
   3179     static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
   3180       ExtParameterInfo result;
   3181       result.Data = data;
   3182       return result;
   3183     }
   3184 
   3185     friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
   3186       return lhs.Data == rhs.Data;
   3187     }
   3188     friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
   3189       return lhs.Data != rhs.Data;
   3190     }
   3191   };
   3192 
   3193   struct ExceptionSpecInfo {
   3194     ExceptionSpecInfo()
   3195         : Type(EST_None), NoexceptExpr(nullptr),
   3196           SourceDecl(nullptr), SourceTemplate(nullptr) {}
   3197 
   3198     ExceptionSpecInfo(ExceptionSpecificationType EST)
   3199         : Type(EST), NoexceptExpr(nullptr), SourceDecl(nullptr),
   3200           SourceTemplate(nullptr) {}
   3201 
   3202     /// The kind of exception specification this is.
   3203     ExceptionSpecificationType Type;
   3204     /// Explicitly-specified list of exception types.
   3205     ArrayRef<QualType> Exceptions;
   3206     /// Noexcept expression, if this is EST_ComputedNoexcept.
   3207     Expr *NoexceptExpr;
   3208     /// The function whose exception specification this is, for
   3209     /// EST_Unevaluated and EST_Uninstantiated.
   3210     FunctionDecl *SourceDecl;
   3211     /// The function template whose exception specification this is instantiated
   3212     /// from, for EST_Uninstantiated.
   3213     FunctionDecl *SourceTemplate;
   3214   };
   3215 
   3216   /// Extra information about a function prototype.
   3217   struct ExtProtoInfo {
   3218     ExtProtoInfo()
   3219         : Variadic(false), HasTrailingReturn(false), TypeQuals(0),
   3220           RefQualifier(RQ_None), ExtParameterInfos(nullptr) {}
   3221 
   3222     ExtProtoInfo(CallingConv CC)
   3223         : ExtInfo(CC), Variadic(false), HasTrailingReturn(false), TypeQuals(0),
   3224           RefQualifier(RQ_None), ExtParameterInfos(nullptr) {}
   3225 
   3226     ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &O) {
   3227       ExtProtoInfo Result(*this);
   3228       Result.ExceptionSpec = O;
   3229       return Result;
   3230     }
   3231 
   3232     FunctionType::ExtInfo ExtInfo;
   3233     bool Variadic : 1;
   3234     bool HasTrailingReturn : 1;
   3235     unsigned char TypeQuals;
   3236     RefQualifierKind RefQualifier;
   3237     ExceptionSpecInfo ExceptionSpec;
   3238     const ExtParameterInfo *ExtParameterInfos;
   3239   };
   3240 
   3241 private:
   3242   /// \brief Determine whether there are any argument types that
   3243   /// contain an unexpanded parameter pack.
   3244   static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
   3245                                                  unsigned numArgs) {
   3246     for (unsigned Idx = 0; Idx < numArgs; ++Idx)
   3247       if (ArgArray[Idx]->containsUnexpandedParameterPack())
   3248         return true;
   3249 
   3250     return false;
   3251   }
   3252 
   3253   FunctionProtoType(QualType result, ArrayRef<QualType> params,
   3254                     QualType canonical, const ExtProtoInfo &epi);
   3255 
   3256   /// The number of parameters this function has, not counting '...'.
   3257   unsigned NumParams : 15;
   3258 
   3259   /// The number of types in the exception spec, if any.
   3260   unsigned NumExceptions : 9;
   3261 
   3262   /// The type of exception specification this function has.
   3263   unsigned ExceptionSpecType : 4;
   3264 
   3265   /// Whether this function has extended parameter information.
   3266   unsigned HasExtParameterInfos : 1;
   3267 
   3268   /// Whether the function is variadic.
   3269   unsigned Variadic : 1;
   3270 
   3271   /// Whether this function has a trailing return type.
   3272   unsigned HasTrailingReturn : 1;
   3273 
   3274   // ParamInfo - There is an variable size array after the class in memory that
   3275   // holds the parameter types.
   3276 
   3277   // Exceptions - There is another variable size array after ArgInfo that
   3278   // holds the exception types.
   3279 
   3280   // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
   3281   // to the expression in the noexcept() specifier.
   3282 
   3283   // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
   3284   // be a pair of FunctionDecl* pointing to the function which should be used to
   3285   // instantiate this function type's exception specification, and the function
   3286   // from which it should be instantiated.
   3287 
   3288   // ExtParameterInfos - A variable size array, following the exception
   3289   // specification and of length NumParams, holding an ExtParameterInfo
   3290   // for each of the parameters.  This only appears if HasExtParameterInfos
   3291   // is true.
   3292 
   3293   friend class ASTContext;  // ASTContext creates these.
   3294 
   3295   const ExtParameterInfo *getExtParameterInfosBuffer() const {
   3296     assert(hasExtParameterInfos());
   3297 
   3298     // Find the end of the exception specification.
   3299     const char *ptr = reinterpret_cast<const char *>(exception_begin());
   3300     ptr += getExceptionSpecSize();
   3301 
   3302     return reinterpret_cast<const ExtParameterInfo *>(ptr);
   3303   }
   3304 
   3305   size_t getExceptionSpecSize() const {
   3306     switch (getExceptionSpecType()) {
   3307     case EST_None:             return 0;
   3308     case EST_DynamicNone:      return 0;
   3309     case EST_MSAny:            return 0;
   3310     case EST_BasicNoexcept:    return 0;
   3311     case EST_Unparsed:         return 0;
   3312     case EST_Dynamic:          return getNumExceptions() * sizeof(QualType);
   3313     case EST_ComputedNoexcept: return sizeof(Expr*);
   3314     case EST_Uninstantiated:   return 2 * sizeof(FunctionDecl*);
   3315     case EST_Unevaluated:      return sizeof(FunctionDecl*);
   3316     }
   3317     llvm_unreachable("bad exception specification kind");
   3318   }
   3319 
   3320 public:
   3321   unsigned getNumParams() const { return NumParams; }
   3322   QualType getParamType(unsigned i) const {
   3323     assert(i < NumParams && "invalid parameter index");
   3324     return param_type_begin()[i];
   3325   }
   3326   ArrayRef<QualType> getParamTypes() const {
   3327     return llvm::makeArrayRef(param_type_begin(), param_type_end());
   3328   }
   3329 
   3330   ExtProtoInfo getExtProtoInfo() const {
   3331     ExtProtoInfo EPI;
   3332     EPI.ExtInfo = getExtInfo();
   3333     EPI.Variadic = isVariadic();
   3334     EPI.HasTrailingReturn = hasTrailingReturn();
   3335     EPI.ExceptionSpec.Type = getExceptionSpecType();
   3336     EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
   3337     EPI.RefQualifier = getRefQualifier();
   3338     if (EPI.ExceptionSpec.Type == EST_Dynamic) {
   3339       EPI.ExceptionSpec.Exceptions = exceptions();
   3340     } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
   3341       EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
   3342     } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
   3343       EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
   3344       EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
   3345     } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
   3346       EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
   3347     }
   3348     if (hasExtParameterInfos())
   3349       EPI.ExtParameterInfos = getExtParameterInfosBuffer();
   3350     return EPI;
   3351   }
   3352 
   3353   /// Get the kind of exception specification on this function.
   3354   ExceptionSpecificationType getExceptionSpecType() const {
   3355     return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
   3356   }
   3357   /// Return whether this function has any kind of exception spec.
   3358   bool hasExceptionSpec() const {
   3359     return getExceptionSpecType() != EST_None;
   3360   }
   3361   /// Return whether this function has a dynamic (throw) exception spec.
   3362   bool hasDynamicExceptionSpec() const {
   3363     return isDynamicExceptionSpec(getExceptionSpecType());
   3364   }
   3365   /// Return whether this function has a noexcept exception spec.
   3366   bool hasNoexceptExceptionSpec() const {
   3367     return isNoexceptExceptionSpec(getExceptionSpecType());
   3368   }
   3369   /// Return whether this function has a dependent exception spec.
   3370   bool hasDependentExceptionSpec() const;
   3371   /// Return whether this function has an instantiation-dependent exception
   3372   /// spec.
   3373   bool hasInstantiationDependentExceptionSpec() const;
   3374   /// Result type of getNoexceptSpec().
   3375   enum NoexceptResult {
   3376     NR_NoNoexcept,  ///< There is no noexcept specifier.
   3377     NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
   3378     NR_Dependent,   ///< The noexcept specifier is dependent.
   3379     NR_Throw,       ///< The noexcept specifier evaluates to false.
   3380     NR_Nothrow      ///< The noexcept specifier evaluates to true.
   3381   };
   3382   /// Get the meaning of the noexcept spec on this function, if any.
   3383   NoexceptResult getNoexceptSpec(const ASTContext &Ctx) const;
   3384   unsigned getNumExceptions() const { return NumExceptions; }
   3385   QualType getExceptionType(unsigned i) const {
   3386     assert(i < NumExceptions && "Invalid exception number!");
   3387     return exception_begin()[i];
   3388   }
   3389   Expr *getNoexceptExpr() const {
   3390     if (getExceptionSpecType() != EST_ComputedNoexcept)
   3391       return nullptr;
   3392     // NoexceptExpr sits where the arguments end.
   3393     return *reinterpret_cast<Expr *const *>(param_type_end());
   3394   }
   3395   /// \brief If this function type has an exception specification which hasn't
   3396   /// been determined yet (either because it has not been evaluated or because
   3397   /// it has not been instantiated), this is the function whose exception
   3398   /// specification is represented by this type.
   3399   FunctionDecl *getExceptionSpecDecl() const {
   3400     if (getExceptionSpecType() != EST_Uninstantiated &&
   3401         getExceptionSpecType() != EST_Unevaluated)
   3402       return nullptr;
   3403     return reinterpret_cast<FunctionDecl *const *>(param_type_end())[0];
   3404   }
   3405   /// \brief If this function type has an uninstantiated exception
   3406   /// specification, this is the function whose exception specification
   3407   /// should be instantiated to find the exception specification for
   3408   /// this type.
   3409   FunctionDecl *getExceptionSpecTemplate() const {
   3410     if (getExceptionSpecType() != EST_Uninstantiated)
   3411       return nullptr;
   3412     return reinterpret_cast<FunctionDecl *const *>(param_type_end())[1];
   3413   }
   3414   /// Determine whether this function type has a non-throwing exception
   3415   /// specification.
   3416   CanThrowResult canThrow(const ASTContext &Ctx) const;
   3417   /// Determine whether this function type has a non-throwing exception
   3418   /// specification. If this depends on template arguments, returns
   3419   /// \c ResultIfDependent.
   3420   bool isNothrow(const ASTContext &Ctx, bool ResultIfDependent = false) const {
   3421     return ResultIfDependent ? canThrow(Ctx) != CT_Can
   3422                              : canThrow(Ctx) == CT_Cannot;
   3423   }
   3424 
   3425   bool isVariadic() const { return Variadic; }
   3426 
   3427   /// Determines whether this function prototype contains a
   3428   /// parameter pack at the end.
   3429   ///
   3430   /// A function template whose last parameter is a parameter pack can be
   3431   /// called with an arbitrary number of arguments, much like a variadic
   3432   /// function.
   3433   bool isTemplateVariadic() const;
   3434 
   3435   bool hasTrailingReturn() const { return HasTrailingReturn; }
   3436 
   3437   unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
   3438 
   3439 
   3440   /// Retrieve the ref-qualifier associated with this function type.
   3441   RefQualifierKind getRefQualifier() const {
   3442     return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
   3443   }
   3444 
   3445   typedef const QualType *param_type_iterator;
   3446   typedef llvm::iterator_range<param_type_iterator> param_type_range;
   3447 
   3448   param_type_range param_types() const {
   3449     return param_type_range(param_type_begin(), param_type_end());
   3450   }
   3451   param_type_iterator param_type_begin() const {
   3452     return reinterpret_cast<const QualType *>(this+1);
   3453   }
   3454   param_type_iterator param_type_end() const {
   3455     return param_type_begin() + NumParams;
   3456   }
   3457 
   3458   typedef const QualType *exception_iterator;
   3459 
   3460   ArrayRef<QualType> exceptions() const {
   3461     return llvm::makeArrayRef(exception_begin(), exception_end());
   3462   }
   3463   exception_iterator exception_begin() const {
   3464     // exceptions begin where arguments end
   3465     return param_type_end();
   3466   }
   3467   exception_iterator exception_end() const {
   3468     if (getExceptionSpecType() != EST_Dynamic)
   3469       return exception_begin();
   3470     return exception_begin() + NumExceptions;
   3471   }
   3472 
   3473   /// Is there any interesting extra information for any of the parameters
   3474   /// of this function type?
   3475   bool hasExtParameterInfos() const { return HasExtParameterInfos; }
   3476   ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
   3477     assert(hasExtParameterInfos());
   3478     return ArrayRef<ExtParameterInfo>(getExtParameterInfosBuffer(),
   3479                                       getNumParams());
   3480   }
   3481   /// Return a pointer to the beginning of the array of extra parameter
   3482   /// information, if present, or else null if none of the parameters
   3483   /// carry it.  This is equivalent to getExtProtoInfo().ExtParameterInfos.
   3484   const ExtParameterInfo *getExtParameterInfosOrNull() const {
   3485     if (!hasExtParameterInfos())
   3486       return nullptr;
   3487     return getExtParameterInfosBuffer();
   3488   }
   3489 
   3490   ExtParameterInfo getExtParameterInfo(unsigned I) const {
   3491     assert(I < getNumParams() && "parameter index out of range");
   3492     if (hasExtParameterInfos())
   3493       return getExtParameterInfosBuffer()[I];
   3494     return ExtParameterInfo();
   3495   }
   3496 
   3497   ParameterABI getParameterABI(unsigned I) const {
   3498     assert(I < getNumParams() && "parameter index out of range");
   3499     if (hasExtParameterInfos())
   3500       return getExtParameterInfosBuffer()[I].getABI();
   3501     return ParameterABI::Ordinary;
   3502   }
   3503 
   3504   bool isParamConsumed(unsigned I) const {
   3505     assert(I < getNumParams() && "parameter index out of range");
   3506     if (hasExtParameterInfos())
   3507       return getExtParameterInfosBuffer()[I].isConsumed();
   3508     return false;
   3509   }
   3510 
   3511   bool isSugared() const { return false; }
   3512   QualType desugar() const { return QualType(this, 0); }
   3513 
   3514   void printExceptionSpecification(raw_ostream &OS,
   3515                                    const PrintingPolicy &Policy) const;
   3516 
   3517   static bool classof(const Type *T) {
   3518     return T->getTypeClass() == FunctionProto;
   3519   }
   3520 
   3521   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
   3522   static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
   3523                       param_type_iterator ArgTys, unsigned NumArgs,
   3524                       const ExtProtoInfo &EPI, const ASTContext &Context,
   3525                       bool Canonical);
   3526 };
   3527 
   3528 /// \brief Represents the dependent type named by a dependently-scoped
   3529 /// typename using declaration, e.g.
   3530 ///   using typename Base<T>::foo;
   3531 ///
   3532 /// Template instantiation turns these into the underlying type.
   3533 class UnresolvedUsingType : public Type {
   3534   UnresolvedUsingTypenameDecl *Decl;
   3535 
   3536   UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
   3537     : Type(UnresolvedUsing, QualType(), true, true, false,
   3538            /*ContainsUnexpandedParameterPack=*/false),
   3539       Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
   3540   friend class ASTContext; // ASTContext creates these.
   3541 public:
   3542 
   3543   UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
   3544 
   3545   bool isSugared() const { return false; }
   3546   QualType desugar() const { return QualType(this, 0); }
   3547 
   3548   static bool classof(const Type *T) {
   3549     return T->getTypeClass() == UnresolvedUsing;
   3550   }
   3551 
   3552   void Profile(llvm::FoldingSetNodeID &ID) {
   3553     return Profile(ID, Decl);
   3554   }
   3555   static void Profile(llvm::FoldingSetNodeID &ID,
   3556                       UnresolvedUsingTypenameDecl *D) {
   3557     ID.AddPointer(D);
   3558   }
   3559 };
   3560 
   3561 
   3562 class TypedefType : public Type {
   3563   TypedefNameDecl *Decl;
   3564 protected:
   3565   TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
   3566     : Type(tc, can, can->isDependentType(),
   3567            can->isInstantiationDependentType(),
   3568            can->isVariablyModifiedType(),
   3569            /*ContainsUnexpandedParameterPack=*/false),
   3570       Decl(const_cast<TypedefNameDecl*>(D)) {
   3571     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   3572   }
   3573   friend class ASTContext;  // ASTContext creates these.
   3574 public:
   3575 
   3576   TypedefNameDecl *getDecl() const { return Decl; }
   3577 
   3578   bool isSugared() const { return true; }
   3579   QualType desugar() const;
   3580 
   3581   static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
   3582 };
   3583 
   3584 /// Represents a `typeof` (or __typeof__) expression (a GCC extension).
   3585 class TypeOfExprType : public Type {
   3586   Expr *TOExpr;
   3587 
   3588 protected:
   3589   TypeOfExprType(Expr *E, QualType can = QualType());
   3590   friend class ASTContext;  // ASTContext creates these.
   3591 public:
   3592   Expr *getUnderlyingExpr() const { return TOExpr; }
   3593 
   3594   /// \brief Remove a single level of sugar.
   3595   QualType desugar() const;
   3596 
   3597   /// \brief Returns whether this type directly provides sugar.
   3598   bool isSugared() const;
   3599 
   3600   static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
   3601 };
   3602 
   3603 /// \brief Internal representation of canonical, dependent
   3604 /// `typeof(expr)` types.
   3605 ///
   3606 /// This class is used internally by the ASTContext to manage
   3607 /// canonical, dependent types, only. Clients will only see instances
   3608 /// of this class via TypeOfExprType nodes.
   3609 class DependentTypeOfExprType
   3610   : public TypeOfExprType, public llvm::FoldingSetNode {
   3611   const ASTContext &Context;
   3612 
   3613 public:
   3614   DependentTypeOfExprType(const ASTContext &Context, Expr *E)
   3615     : TypeOfExprType(E), Context(Context) { }
   3616 
   3617   void Profile(llvm::FoldingSetNodeID &ID) {
   3618     Profile(ID, Context, getUnderlyingExpr());
   3619   }
   3620 
   3621   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   3622                       Expr *E);
   3623 };
   3624 
   3625 /// Represents `typeof(type)`, a GCC extension.
   3626 class TypeOfType : public Type {
   3627   QualType TOType;
   3628   TypeOfType(QualType T, QualType can)
   3629     : Type(TypeOf, can, T->isDependentType(),
   3630            T->isInstantiationDependentType(),
   3631            T->isVariablyModifiedType(),
   3632            T->containsUnexpandedParameterPack()),
   3633       TOType(T) {
   3634     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   3635   }
   3636   friend class ASTContext;  // ASTContext creates these.
   3637 public:
   3638   QualType getUnderlyingType() const { return TOType; }
   3639 
   3640   /// \brief Remove a single level of sugar.
   3641   QualType desugar() const { return getUnderlyingType(); }
   3642 
   3643   /// \brief Returns whether this type directly provides sugar.
   3644   bool isSugared() const { return true; }
   3645 
   3646   static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
   3647 };
   3648 
   3649 /// Represents the type `decltype(expr)` (C++11).
   3650 class DecltypeType : public Type {
   3651   Expr *E;
   3652   QualType UnderlyingType;
   3653 
   3654 protected:
   3655   DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
   3656   friend class ASTContext;  // ASTContext creates these.
   3657 public:
   3658   Expr *getUnderlyingExpr() const { return E; }
   3659   QualType getUnderlyingType() const { return UnderlyingType; }
   3660 
   3661   /// \brief Remove a single level of sugar.
   3662   QualType desugar() const;
   3663 
   3664   /// \brief Returns whether this type directly provides sugar.
   3665   bool isSugared() const;
   3666 
   3667   static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
   3668 };
   3669 
   3670 /// \brief Internal representation of canonical, dependent
   3671 /// decltype(expr) types.
   3672 ///
   3673 /// This class is used internally by the ASTContext to manage
   3674 /// canonical, dependent types, only. Clients will only see instances
   3675 /// of this class via DecltypeType nodes.
   3676 class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
   3677   const ASTContext &Context;
   3678 
   3679 public:
   3680   DependentDecltypeType(const ASTContext &Context, Expr *E);
   3681 
   3682   void Profile(llvm::FoldingSetNodeID &ID) {
   3683     Profile(ID, Context, getUnderlyingExpr());
   3684   }
   3685 
   3686   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   3687                       Expr *E);
   3688 };
   3689 
   3690 /// A unary type transform, which is a type constructed from another.
   3691 class UnaryTransformType : public Type {
   3692 public:
   3693   enum UTTKind {
   3694     EnumUnderlyingType
   3695   };
   3696 
   3697 private:
   3698   /// The untransformed type.
   3699   QualType BaseType;
   3700   /// The transformed type if not dependent, otherwise the same as BaseType.
   3701   QualType UnderlyingType;
   3702 
   3703   UTTKind UKind;
   3704 protected:
   3705   UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
   3706                      QualType CanonicalTy);
   3707   friend class ASTContext;
   3708 public:
   3709   bool isSugared() const { return !isDependentType(); }
   3710   QualType desugar() const { return UnderlyingType; }
   3711 
   3712   QualType getUnderlyingType() const { return UnderlyingType; }
   3713   QualType getBaseType() const { return BaseType; }
   3714 
   3715   UTTKind getUTTKind() const { return UKind; }
   3716 
   3717   static bool classof(const Type *T) {
   3718     return T->getTypeClass() == UnaryTransform;
   3719   }
   3720 };
   3721 
   3722 /// \brief Internal representation of canonical, dependent
   3723 /// __underlying_type(type) types.
   3724 ///
   3725 /// This class is used internally by the ASTContext to manage
   3726 /// canonical, dependent types, only. Clients will only see instances
   3727 /// of this class via UnaryTransformType nodes.
   3728 class DependentUnaryTransformType : public UnaryTransformType,
   3729                                     public llvm::FoldingSetNode {
   3730 public:
   3731   DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
   3732                               UTTKind UKind);
   3733   void Profile(llvm::FoldingSetNodeID &ID) {
   3734     Profile(ID, getBaseType(), getUTTKind());
   3735   }
   3736 
   3737   static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
   3738                       UTTKind UKind) {
   3739     ID.AddPointer(BaseType.getAsOpaquePtr());
   3740     ID.AddInteger((unsigned)UKind);
   3741   }
   3742 };
   3743 
   3744 class TagType : public Type {
   3745   /// Stores the TagDecl associated with this type. The decl may point to any
   3746   /// TagDecl that declares the entity.
   3747   TagDecl * decl;
   3748 
   3749   friend class ASTReader;
   3750 
   3751 protected:
   3752   TagType(TypeClass TC, const TagDecl *D, QualType can);
   3753 
   3754 public:
   3755   TagDecl *getDecl() const;
   3756 
   3757   /// Determines whether this type is in the process of being defined.
   3758   bool isBeingDefined() const;
   3759 
   3760   static bool classof(const Type *T) {
   3761     return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
   3762   }
   3763 };
   3764 
   3765 /// A helper class that allows the use of isa/cast/dyncast
   3766 /// to detect TagType objects of structs/unions/classes.
   3767 class RecordType : public TagType {
   3768 protected:
   3769   explicit RecordType(const RecordDecl *D)
   3770     : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3771   explicit RecordType(TypeClass TC, RecordDecl *D)
   3772     : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3773   friend class ASTContext;   // ASTContext creates these.
   3774 public:
   3775 
   3776   RecordDecl *getDecl() const {
   3777     return reinterpret_cast<RecordDecl*>(TagType::getDecl());
   3778   }
   3779 
   3780   // FIXME: This predicate is a helper to QualType/Type. It needs to
   3781   // recursively check all fields for const-ness. If any field is declared
   3782   // const, it needs to return false.
   3783   bool hasConstFields() const { return false; }
   3784 
   3785   bool isSugared() const { return false; }
   3786   QualType desugar() const { return QualType(this, 0); }
   3787 
   3788   static bool classof(const Type *T) { return T->getTypeClass() == Record; }
   3789 };
   3790 
   3791 /// A helper class that allows the use of isa/cast/dyncast
   3792 /// to detect TagType objects of enums.
   3793 class EnumType : public TagType {
   3794   explicit EnumType(const EnumDecl *D)
   3795     : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3796   friend class ASTContext;   // ASTContext creates these.
   3797 public:
   3798 
   3799   EnumDecl *getDecl() const {
   3800     return reinterpret_cast<EnumDecl*>(TagType::getDecl());
   3801   }
   3802 
   3803   bool isSugared() const { return false; }
   3804   QualType desugar() const { return QualType(this, 0); }
   3805 
   3806   static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
   3807 };
   3808 
   3809 /// An attributed type is a type to which a type attribute has been applied.
   3810 ///
   3811 /// The "modified type" is the fully-sugared type to which the attributed
   3812 /// type was applied; generally it is not canonically equivalent to the
   3813 /// attributed type. The "equivalent type" is the minimally-desugared type
   3814 /// which the type is canonically equivalent to.
   3815 ///
   3816 /// For example, in the following attributed type:
   3817 ///     int32_t __attribute__((vector_size(16)))
   3818 ///   - the modified type is the TypedefType for int32_t
   3819 ///   - the equivalent type is VectorType(16, int32_t)
   3820 ///   - the canonical type is VectorType(16, int)
   3821 class AttributedType : public Type, public llvm::FoldingSetNode {
   3822 public:
   3823   // It is really silly to have yet another attribute-kind enum, but
   3824   // clang::attr::Kind doesn't currently cover the pure type attrs.
   3825   enum Kind {
   3826     // Expression operand.
   3827     attr_address_space,
   3828     attr_regparm,
   3829     attr_vector_size,
   3830     attr_neon_vector_type,
   3831     attr_neon_polyvector_type,
   3832 
   3833     FirstExprOperandKind = attr_address_space,
   3834     LastExprOperandKind = attr_neon_polyvector_type,
   3835 
   3836     // Enumerated operand (string or keyword).
   3837     attr_objc_gc,
   3838     attr_objc_ownership,
   3839     attr_pcs,
   3840     attr_pcs_vfp,
   3841 
   3842     FirstEnumOperandKind = attr_objc_gc,
   3843     LastEnumOperandKind = attr_pcs_vfp,
   3844 
   3845     // No operand.
   3846     attr_noreturn,
   3847     attr_cdecl,
   3848     attr_fastcall,
   3849     attr_stdcall,
   3850     attr_thiscall,
   3851     attr_regcall,
   3852     attr_pascal,
   3853     attr_swiftcall,
   3854     attr_vectorcall,
   3855     attr_inteloclbicc,
   3856     attr_ms_abi,
   3857     attr_sysv_abi,
   3858     attr_preserve_most,
   3859     attr_preserve_all,
   3860     attr_ptr32,
   3861     attr_ptr64,
   3862     attr_sptr,
   3863     attr_uptr,
   3864     attr_nonnull,
   3865     attr_nullable,
   3866     attr_null_unspecified,
   3867     attr_objc_kindof,
   3868     attr_objc_inert_unsafe_unretained,
   3869   };
   3870 
   3871 private:
   3872   QualType ModifiedType;
   3873   QualType EquivalentType;
   3874 
   3875   friend class ASTContext; // creates these
   3876 
   3877   AttributedType(QualType canon, Kind attrKind, QualType modified,
   3878                  QualType equivalent)
   3879       : Type(Attributed, canon, equivalent->isDependentType(),
   3880              equivalent->isInstantiationDependentType(),
   3881              equivalent->isVariablyModifiedType(),
   3882              equivalent->containsUnexpandedParameterPack()),
   3883         ModifiedType(modified), EquivalentType(equivalent) {
   3884     AttributedTypeBits.AttrKind = attrKind;
   3885   }
   3886 
   3887 public:
   3888   Kind getAttrKind() const {
   3889     return static_cast<Kind>(AttributedTypeBits.AttrKind);
   3890   }
   3891 
   3892   QualType getModifiedType() const { return ModifiedType; }
   3893   QualType getEquivalentType() const { return EquivalentType; }
   3894 
   3895   bool isSugared() const { return true; }
   3896   QualType desugar() const { return getEquivalentType(); }
   3897 
   3898   /// Does this attribute behave like a type qualifier?
   3899   ///
   3900   /// A type qualifier adjusts a type to provide specialized rules for
   3901   /// a specific object, like the standard const and volatile qualifiers.
   3902   /// This includes attributes controlling things like nullability,
   3903   /// address spaces, and ARC ownership.  The value of the object is still
   3904   /// largely described by the modified type.
   3905   ///
   3906   /// In contrast, many type attributes "rewrite" their modified type to
   3907   /// produce a fundamentally different type, not necessarily related in any
   3908   /// formalizable way to the original type.  For example, calling convention
   3909   /// and vector attributes are not simple type qualifiers.
   3910   ///
   3911   /// Type qualifiers are often, but not always, reflected in the canonical
   3912   /// type.
   3913   bool isQualifier() const;
   3914 
   3915   bool isMSTypeSpec() const;
   3916 
   3917   bool isCallingConv() const;
   3918 
   3919   llvm::Optional<NullabilityKind> getImmediateNullability() const;
   3920 
   3921   /// Retrieve the attribute kind corresponding to the given
   3922   /// nullability kind.
   3923   static Kind getNullabilityAttrKind(NullabilityKind kind) {
   3924     switch (kind) {
   3925     case NullabilityKind::NonNull:
   3926       return attr_nonnull;
   3927 
   3928     case NullabilityKind::Nullable:
   3929       return attr_nullable;
   3930 
   3931     case NullabilityKind::Unspecified:
   3932       return attr_null_unspecified;
   3933     }
   3934     llvm_unreachable("Unknown nullability kind.");
   3935   }
   3936 
   3937   /// Strip off the top-level nullability annotation on the given
   3938   /// type, if it's there.
   3939   ///
   3940   /// \param T The type to strip. If the type is exactly an
   3941   /// AttributedType specifying nullability (without looking through
   3942   /// type sugar), the nullability is returned and this type changed
   3943   /// to the underlying modified type.
   3944   ///
   3945   /// \returns the top-level nullability, if present.
   3946   static Optional<NullabilityKind> stripOuterNullability(QualType &T);
   3947 
   3948   void Profile(llvm::FoldingSetNodeID &ID) {
   3949     Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
   3950   }
   3951 
   3952   static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
   3953                       QualType modified, QualType equivalent) {
   3954     ID.AddInteger(attrKind);
   3955     ID.AddPointer(modified.getAsOpaquePtr());
   3956     ID.AddPointer(equivalent.getAsOpaquePtr());
   3957   }
   3958 
   3959   static bool classof(const Type *T) {
   3960     return T->getTypeClass() == Attributed;
   3961   }
   3962 };
   3963 
   3964 class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   3965   // Helper data collector for canonical types.
   3966   struct CanonicalTTPTInfo {
   3967     unsigned Depth : 15;
   3968     unsigned ParameterPack : 1;
   3969     unsigned Index : 16;
   3970   };
   3971 
   3972   union {
   3973     // Info for the canonical type.
   3974     CanonicalTTPTInfo CanTTPTInfo;
   3975     // Info for the non-canonical type.
   3976     TemplateTypeParmDecl *TTPDecl;
   3977   };
   3978 
   3979   /// Build a non-canonical type.
   3980   TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
   3981     : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
   3982            /*InstantiationDependent=*/true,
   3983            /*VariablyModified=*/false,
   3984            Canon->containsUnexpandedParameterPack()),
   3985       TTPDecl(TTPDecl) { }
   3986 
   3987   /// Build the canonical type.
   3988   TemplateTypeParmType(unsigned D, unsigned I, bool PP)
   3989     : Type(TemplateTypeParm, QualType(this, 0),
   3990            /*Dependent=*/true,
   3991            /*InstantiationDependent=*/true,
   3992            /*VariablyModified=*/false, PP) {
   3993     CanTTPTInfo.Depth = D;
   3994     CanTTPTInfo.Index = I;
   3995     CanTTPTInfo.ParameterPack = PP;
   3996   }
   3997 
   3998   friend class ASTContext;  // ASTContext creates these
   3999 
   4000   const CanonicalTTPTInfo& getCanTTPTInfo() const {
   4001     QualType Can = getCanonicalTypeInternal();
   4002     return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
   4003   }
   4004 
   4005 public:
   4006   unsigned getDepth() const { return getCanTTPTInfo().Depth; }
   4007   unsigned getIndex() const { return getCanTTPTInfo().Index; }
   4008   bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
   4009 
   4010   TemplateTypeParmDecl *getDecl() const {
   4011     return isCanonicalUnqualified() ? nullptr : TTPDecl;
   4012   }
   4013 
   4014   IdentifierInfo *getIdentifier() const;
   4015 
   4016   bool isSugared() const { return false; }
   4017   QualType desugar() const { return QualType(this, 0); }
   4018 
   4019   void Profile(llvm::FoldingSetNodeID &ID) {
   4020     Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
   4021   }
   4022 
   4023   static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
   4024                       unsigned Index, bool ParameterPack,
   4025                       TemplateTypeParmDecl *TTPDecl) {
   4026     ID.AddInteger(Depth);
   4027     ID.AddInteger(Index);
   4028     ID.AddBoolean(ParameterPack);
   4029     ID.AddPointer(TTPDecl);
   4030   }
   4031 
   4032   static bool classof(const Type *T) {
   4033     return T->getTypeClass() == TemplateTypeParm;
   4034   }
   4035 };
   4036 
   4037 /// \brief Represents the result of substituting a type for a template
   4038 /// type parameter.
   4039 ///
   4040 /// Within an instantiated template, all template type parameters have
   4041 /// been replaced with these.  They are used solely to record that a
   4042 /// type was originally written as a template type parameter;
   4043 /// therefore they are never canonical.
   4044 class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   4045   // The original type parameter.
   4046   const TemplateTypeParmType *Replaced;
   4047 
   4048   SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
   4049     : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
   4050            Canon->isInstantiationDependentType(),
   4051            Canon->isVariablyModifiedType(),
   4052            Canon->containsUnexpandedParameterPack()),
   4053       Replaced(Param) { }
   4054 
   4055   friend class ASTContext;
   4056 
   4057 public:
   4058   /// Gets the template parameter that was substituted for.
   4059   const TemplateTypeParmType *getReplacedParameter() const {
   4060     return Replaced;
   4061   }
   4062 
   4063   /// Gets the type that was substituted for the template
   4064   /// parameter.
   4065   QualType getReplacementType() const {
   4066     return getCanonicalTypeInternal();
   4067   }
   4068 
   4069   bool isSugared() const { return true; }
   4070   QualType desugar() const { return getReplacementType(); }
   4071 
   4072   void Profile(llvm::FoldingSetNodeID &ID) {
   4073     Profile(ID, getReplacedParameter(), getReplacementType());
   4074   }
   4075   static void Profile(llvm::FoldingSetNodeID &ID,
   4076                       const TemplateTypeParmType *Replaced,
   4077                       QualType Replacement) {
   4078     ID.AddPointer(Replaced);
   4079     ID.AddPointer(Replacement.getAsOpaquePtr());
   4080   }
   4081 
   4082   static bool classof(const Type *T) {
   4083     return T->getTypeClass() == SubstTemplateTypeParm;
   4084   }
   4085 };
   4086 
   4087 /// \brief Represents the result of substituting a set of types for a template
   4088 /// type parameter pack.
   4089 ///
   4090 /// When a pack expansion in the source code contains multiple parameter packs
   4091 /// and those parameter packs correspond to different levels of template
   4092 /// parameter lists, this type node is used to represent a template type
   4093 /// parameter pack from an outer level, which has already had its argument pack
   4094 /// substituted but that still lives within a pack expansion that itself
   4095 /// could not be instantiated. When actually performing a substitution into
   4096 /// that pack expansion (e.g., when all template parameters have corresponding
   4097 /// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
   4098 /// at the current pack substitution index.
   4099 class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
   4100   /// \brief The original type parameter.
   4101   const TemplateTypeParmType *Replaced;
   4102 
   4103   /// \brief A pointer to the set of template arguments that this
   4104   /// parameter pack is instantiated with.
   4105   const TemplateArgument *Arguments;
   4106 
   4107   /// \brief The number of template arguments in \c Arguments.
   4108   unsigned NumArguments;
   4109 
   4110   SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
   4111                                 QualType Canon,
   4112                                 const TemplateArgument &ArgPack);
   4113 
   4114   friend class ASTContext;
   4115 
   4116 public:
   4117   IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
   4118 
   4119   /// Gets the template parameter that was substituted for.
   4120   const TemplateTypeParmType *getReplacedParameter() const {
   4121     return Replaced;
   4122   }
   4123 
   4124   bool isSugared() const { return false; }
   4125   QualType desugar() const { return QualType(this, 0); }
   4126 
   4127   TemplateArgument getArgumentPack() const;
   4128 
   4129   void Profile(llvm::FoldingSetNodeID &ID);
   4130   static void Profile(llvm::FoldingSetNodeID &ID,
   4131                       const TemplateTypeParmType *Replaced,
   4132                       const TemplateArgument &ArgPack);
   4133 
   4134   static bool classof(const Type *T) {
   4135     return T->getTypeClass() == SubstTemplateTypeParmPack;
   4136   }
   4137 };
   4138 
   4139 /// \brief Common base class for placeholders for types that get replaced by
   4140 /// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
   4141 /// class template types, and (eventually) constrained type names from the C++
   4142 /// Concepts TS.
   4143 ///
   4144 /// These types are usually a placeholder for a deduced type. However, before
   4145 /// the initializer is attached, or (usually) if the initializer is
   4146 /// type-dependent, there is no deduced type and the type is canonical. In
   4147 /// the latter case, it is also a dependent type.
   4148 class DeducedType : public Type {
   4149 protected:
   4150   DeducedType(TypeClass TC, QualType DeducedAsType, bool IsDependent,
   4151               bool IsInstantiationDependent, bool ContainsParameterPack)
   4152       : Type(TC,
   4153              // FIXME: Retain the sugared deduced type?
   4154              DeducedAsType.isNull() ? QualType(this, 0)
   4155                                     : DeducedAsType.getCanonicalType(),
   4156              IsDependent, IsInstantiationDependent,
   4157              /*VariablyModified=*/false, ContainsParameterPack) {
   4158     if (!DeducedAsType.isNull()) {
   4159       if (DeducedAsType->isDependentType())
   4160         setDependent();
   4161       if (DeducedAsType->isInstantiationDependentType())
   4162         setInstantiationDependent();
   4163       if (DeducedAsType->containsUnexpandedParameterPack())
   4164         setContainsUnexpandedParameterPack();
   4165     }
   4166   }
   4167 
   4168 public:
   4169   bool isSugared() const { return !isCanonicalUnqualified(); }
   4170   QualType desugar() const { return getCanonicalTypeInternal(); }
   4171 
   4172   /// \brief Get the type deduced for this placeholder type, or null if it's
   4173   /// either not been deduced or was deduced to a dependent type.
   4174   QualType getDeducedType() const {
   4175     return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
   4176   }
   4177   bool isDeduced() const {
   4178     return !isCanonicalUnqualified() || isDependentType();
   4179   }
   4180 
   4181   static bool classof(const Type *T) {
   4182     return T->getTypeClass() == Auto ||
   4183            T->getTypeClass() == DeducedTemplateSpecialization;
   4184   }
   4185 };
   4186 
   4187 /// \brief Represents a C++11 auto or C++14 decltype(auto) type.
   4188 class AutoType : public DeducedType, public llvm::FoldingSetNode {
   4189   AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
   4190            bool IsDeducedAsDependent)
   4191       : DeducedType(Auto, DeducedAsType, IsDeducedAsDependent,
   4192                     IsDeducedAsDependent, /*ContainsPack=*/false) {
   4193     AutoTypeBits.Keyword = (unsigned)Keyword;
   4194   }
   4195 
   4196   friend class ASTContext;  // ASTContext creates these
   4197 
   4198 public:
   4199   bool isDecltypeAuto() const {
   4200     return getKeyword() == AutoTypeKeyword::DecltypeAuto;
   4201   }
   4202   AutoTypeKeyword getKeyword() const {
   4203     return (AutoTypeKeyword)AutoTypeBits.Keyword;
   4204   }
   4205 
   4206   void Profile(llvm::FoldingSetNodeID &ID) {
   4207     Profile(ID, getDeducedType(), getKeyword(), isDependentType());
   4208   }
   4209 
   4210   static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
   4211                       AutoTypeKeyword Keyword, bool IsDependent) {
   4212     ID.AddPointer(Deduced.getAsOpaquePtr());
   4213     ID.AddInteger((unsigned)Keyword);
   4214     ID.AddBoolean(IsDependent);
   4215   }
   4216 
   4217   static bool classof(const Type *T) {
   4218     return T->getTypeClass() == Auto;
   4219   }
   4220 };
   4221 
   4222 /// \brief Represents a C++17 deduced template specialization type.
   4223 class DeducedTemplateSpecializationType : public DeducedType,
   4224                                           public llvm::FoldingSetNode {
   4225   /// The name of the template whose arguments will be deduced.
   4226   TemplateName Template;
   4227 
   4228   DeducedTemplateSpecializationType(TemplateName Template,
   4229                                     QualType DeducedAsType,
   4230                                     bool IsDeducedAsDependent)
   4231       : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
   4232                     IsDeducedAsDependent || Template.isDependent(),
   4233                     IsDeducedAsDependent || Template.isInstantiationDependent(),
   4234                     Template.containsUnexpandedParameterPack()),
   4235         Template(Template) {}
   4236 
   4237   friend class ASTContext;  // ASTContext creates these
   4238 
   4239 public:
   4240   /// Retrieve the name of the template that we are deducing.
   4241   TemplateName getTemplateName() const { return Template;}
   4242 
   4243   void Profile(llvm::FoldingSetNodeID &ID) {
   4244     Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
   4245   }
   4246 
   4247   static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
   4248                       QualType Deduced, bool IsDependent) {
   4249     Template.Profile(ID);
   4250     ID.AddPointer(Deduced.getAsOpaquePtr());
   4251     ID.AddBoolean(IsDependent);
   4252   }
   4253 
   4254   static bool classof(const Type *T) {
   4255     return T->getTypeClass() == DeducedTemplateSpecialization;
   4256   }
   4257 };
   4258 
   4259 /// \brief Represents a type template specialization; the template
   4260 /// must be a class template, a type alias template, or a template
   4261 /// template parameter.  A template which cannot be resolved to one of
   4262 /// these, e.g. because it is written with a dependent scope
   4263 /// specifier, is instead represented as a
   4264 /// @c DependentTemplateSpecializationType.
   4265 ///
   4266 /// A non-dependent template specialization type is always "sugar",
   4267 /// typically for a \c RecordType.  For example, a class template
   4268 /// specialization type of \c vector<int> will refer to a tag type for
   4269 /// the instantiation \c std::vector<int, std::allocator<int>>
   4270 ///
   4271 /// Template specializations are dependent if either the template or
   4272 /// any of the template arguments are dependent, in which case the
   4273 /// type may also be canonical.
   4274 ///
   4275 /// Instances of this type are allocated with a trailing array of
   4276 /// TemplateArguments, followed by a QualType representing the
   4277 /// non-canonical aliased type when the template is a type alias
   4278 /// template.
   4279 class LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) TemplateSpecializationType
   4280     : public Type,
   4281       public llvm::FoldingSetNode {
   4282   /// The name of the template being specialized.  This is
   4283   /// either a TemplateName::Template (in which case it is a
   4284   /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
   4285   /// TypeAliasTemplateDecl*), a
   4286   /// TemplateName::SubstTemplateTemplateParmPack, or a
   4287   /// TemplateName::SubstTemplateTemplateParm (in which case the
   4288   /// replacement must, recursively, be one of these).
   4289   TemplateName Template;
   4290 
   4291   /// The number of template arguments named in this class template
   4292   /// specialization.
   4293   unsigned NumArgs : 31;
   4294 
   4295   /// Whether this template specialization type is a substituted type alias.
   4296   unsigned TypeAlias : 1;
   4297 
   4298   TemplateSpecializationType(TemplateName T,
   4299                              ArrayRef<TemplateArgument> Args,
   4300                              QualType Canon,
   4301                              QualType Aliased);
   4302 
   4303   friend class ASTContext;  // ASTContext creates these
   4304 
   4305 public:
   4306   /// Determine whether any of the given template arguments are dependent.
   4307   static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
   4308                                             bool &InstantiationDependent);
   4309 
   4310   static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
   4311                                             bool &InstantiationDependent);
   4312 
   4313   /// \brief Print a template argument list, including the '<' and '>'
   4314   /// enclosing the template arguments.
   4315   static void PrintTemplateArgumentList(raw_ostream &OS,
   4316                                         ArrayRef<TemplateArgument> Args,
   4317                                         const PrintingPolicy &Policy,
   4318                                         bool SkipBrackets = false);
   4319 
   4320   static void PrintTemplateArgumentList(raw_ostream &OS,
   4321                                         ArrayRef<TemplateArgumentLoc> Args,
   4322                                         const PrintingPolicy &Policy);
   4323 
   4324   static void PrintTemplateArgumentList(raw_ostream &OS,
   4325                                         const TemplateArgumentListInfo &,
   4326                                         const PrintingPolicy &Policy);
   4327 
   4328   /// True if this template specialization type matches a current
   4329   /// instantiation in the context in which it is found.
   4330   bool isCurrentInstantiation() const {
   4331     return isa<InjectedClassNameType>(getCanonicalTypeInternal());
   4332   }
   4333 
   4334   /// \brief Determine if this template specialization type is for a type alias
   4335   /// template that has been substituted.
   4336   ///
   4337   /// Nearly every template specialization type whose template is an alias
   4338   /// template will be substituted. However, this is not the case when
   4339   /// the specialization contains a pack expansion but the template alias
   4340   /// does not have a corresponding parameter pack, e.g.,
   4341   ///
   4342   /// \code
   4343   /// template<typename T, typename U, typename V> struct S;
   4344   /// template<typename T, typename U> using A = S<T, int, U>;
   4345   /// template<typename... Ts> struct X {
   4346   ///   typedef A<Ts...> type; // not a type alias
   4347   /// };
   4348   /// \endcode
   4349   bool isTypeAlias() const { return TypeAlias; }
   4350 
   4351   /// Get the aliased type, if this is a specialization of a type alias
   4352   /// template.
   4353   QualType getAliasedType() const {
   4354     assert(isTypeAlias() && "not a type alias template specialization");
   4355     return *reinterpret_cast<const QualType*>(end());
   4356   }
   4357 
   4358   typedef const TemplateArgument * iterator;
   4359 
   4360   iterator begin() const { return getArgs(); }
   4361   iterator end() const; // defined inline in TemplateBase.h
   4362 
   4363   /// Retrieve the name of the template that we are specializing.
   4364   TemplateName getTemplateName() const { return Template; }
   4365 
   4366   /// Retrieve the template arguments.
   4367   const TemplateArgument *getArgs() const {
   4368     return reinterpret_cast<const TemplateArgument *>(this + 1);
   4369   }
   4370 
   4371   /// Retrieve the number of template arguments.
   4372   unsigned getNumArgs() const { return NumArgs; }
   4373 
   4374   /// Retrieve a specific template argument as a type.
   4375   /// \pre \c isArgType(Arg)
   4376   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   4377 
   4378   ArrayRef<TemplateArgument> template_arguments() const {
   4379     return {getArgs(), NumArgs};
   4380   }
   4381 
   4382   bool isSugared() const {
   4383     return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
   4384   }
   4385   QualType desugar() const { return getCanonicalTypeInternal(); }
   4386 
   4387   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
   4388     Profile(ID, Template, template_arguments(), Ctx);
   4389     if (isTypeAlias())
   4390       getAliasedType().Profile(ID);
   4391   }
   4392 
   4393   static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
   4394                       ArrayRef<TemplateArgument> Args,
   4395                       const ASTContext &Context);
   4396 
   4397   static bool classof(const Type *T) {
   4398     return T->getTypeClass() == TemplateSpecialization;
   4399   }
   4400 };
   4401 
   4402 /// The injected class name of a C++ class template or class
   4403 /// template partial specialization.  Used to record that a type was
   4404 /// spelled with a bare identifier rather than as a template-id; the
   4405 /// equivalent for non-templated classes is just RecordType.
   4406 ///
   4407 /// Injected class name types are always dependent.  Template
   4408 /// instantiation turns these into RecordTypes.
   4409 ///
   4410 /// Injected class name types are always canonical.  This works
   4411 /// because it is impossible to compare an injected class name type
   4412 /// with the corresponding non-injected template type, for the same
   4413 /// reason that it is impossible to directly compare template
   4414 /// parameters from different dependent contexts: injected class name
   4415 /// types can only occur within the scope of a particular templated
   4416 /// declaration, and within that scope every template specialization
   4417 /// will canonicalize to the injected class name (when appropriate
   4418 /// according to the rules of the language).
   4419 class InjectedClassNameType : public Type {
   4420   CXXRecordDecl *Decl;
   4421 
   4422   /// The template specialization which this type represents.
   4423   /// For example, in
   4424   ///   template <class T> class A { ... };
   4425   /// this is A<T>, whereas in
   4426   ///   template <class X, class Y> class A<B<X,Y> > { ... };
   4427   /// this is A<B<X,Y> >.
   4428   ///
   4429   /// It is always unqualified, always a template specialization type,
   4430   /// and always dependent.
   4431   QualType InjectedType;
   4432 
   4433   friend class ASTContext; // ASTContext creates these.
   4434   friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
   4435                           // currently suitable for AST reading, too much
   4436                           // interdependencies.
   4437   friend class ASTNodeImporter;
   4438 
   4439   InjectedClassNameType(CXXRecordDecl *D, QualType TST)
   4440     : Type(InjectedClassName, QualType(), /*Dependent=*/true,
   4441            /*InstantiationDependent=*/true,
   4442            /*VariablyModified=*/false,
   4443            /*ContainsUnexpandedParameterPack=*/false),
   4444       Decl(D), InjectedType(TST) {
   4445     assert(isa<TemplateSpecializationType>(TST));
   4446     assert(!TST.hasQualifiers());
   4447     assert(TST->isDependentType());
   4448   }
   4449 
   4450 public:
   4451   QualType getInjectedSpecializationType() const { return InjectedType; }
   4452   const TemplateSpecializationType *getInjectedTST() const {
   4453     return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
   4454   }
   4455   TemplateName getTemplateName() const {
   4456     return getInjectedTST()->getTemplateName();
   4457   }
   4458 
   4459   CXXRecordDecl *getDecl() const;
   4460 
   4461   bool isSugared() const { return false; }
   4462   QualType desugar() const { return QualType(this, 0); }
   4463 
   4464   static bool classof(const Type *T) {
   4465     return T->getTypeClass() == InjectedClassName;
   4466   }
   4467 };
   4468 
   4469 /// \brief The kind of a tag type.
   4470 enum TagTypeKind {
   4471   /// \brief The "struct" keyword.
   4472   TTK_Struct,
   4473   /// \brief The "__interface" keyword.
   4474   TTK_Interface,
   4475   /// \brief The "union" keyword.
   4476   TTK_Union,
   4477   /// \brief The "class" keyword.
   4478   TTK_Class,
   4479   /// \brief The "enum" keyword.
   4480   TTK_Enum
   4481 };
   4482 
   4483 /// \brief The elaboration keyword that precedes a qualified type name or
   4484 /// introduces an elaborated-type-specifier.
   4485 enum ElaboratedTypeKeyword {
   4486   /// \brief The "struct" keyword introduces the elaborated-type-specifier.
   4487   ETK_Struct,
   4488   /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
   4489   ETK_Interface,
   4490   /// \brief The "union" keyword introduces the elaborated-type-specifier.
   4491   ETK_Union,
   4492   /// \brief The "class" keyword introduces the elaborated-type-specifier.
   4493   ETK_Class,
   4494   /// \brief The "enum" keyword introduces the elaborated-type-specifier.
   4495   ETK_Enum,
   4496   /// \brief The "typename" keyword precedes the qualified type name, e.g.,
   4497   /// \c typename T::type.
   4498   ETK_Typename,
   4499   /// \brief No keyword precedes the qualified type name.
   4500   ETK_None
   4501 };
   4502 
   4503 /// A helper class for Type nodes having an ElaboratedTypeKeyword.
   4504 /// The keyword in stored in the free bits of the base class.
   4505 /// Also provides a few static helpers for converting and printing
   4506 /// elaborated type keyword and tag type kind enumerations.
   4507 class TypeWithKeyword : public Type {
   4508 protected:
   4509   TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
   4510                   QualType Canonical, bool Dependent,
   4511                   bool InstantiationDependent, bool VariablyModified,
   4512                   bool ContainsUnexpandedParameterPack)
   4513   : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   4514          ContainsUnexpandedParameterPack) {
   4515     TypeWithKeywordBits.Keyword = Keyword;
   4516   }
   4517 
   4518 public:
   4519   ElaboratedTypeKeyword getKeyword() const {
   4520     return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
   4521   }
   4522 
   4523   /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
   4524   static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
   4525 
   4526   /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
   4527   /// It is an error to provide a type specifier which *isn't* a tag kind here.
   4528   static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
   4529 
   4530   /// Converts a TagTypeKind into an elaborated type keyword.
   4531   static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
   4532 
   4533   /// Converts an elaborated type keyword into a TagTypeKind.
   4534   /// It is an error to provide an elaborated type keyword
   4535   /// which *isn't* a tag kind here.
   4536   static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
   4537 
   4538   static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
   4539 
   4540   static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
   4541 
   4542   static StringRef getTagTypeKindName(TagTypeKind Kind) {
   4543     return getKeywordName(getKeywordForTagTypeKind(Kind));
   4544   }
   4545 
   4546   class CannotCastToThisType {};
   4547   static CannotCastToThisType classof(const Type *);
   4548 };
   4549 
   4550 /// \brief Represents a type that was referred to using an elaborated type
   4551 /// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
   4552 /// or both.
   4553 ///
   4554 /// This type is used to keep track of a type name as written in the
   4555 /// source code, including tag keywords and any nested-name-specifiers.
   4556 /// The type itself is always "sugar", used to express what was written
   4557 /// in the source code but containing no additional semantic information.
   4558 class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
   4559 
   4560   /// The nested name specifier containing the qualifier.
   4561   NestedNameSpecifier *NNS;
   4562 
   4563   /// The type that this qualified name refers to.
   4564   QualType NamedType;
   4565 
   4566   ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   4567                  QualType NamedType, QualType CanonType)
   4568     : TypeWithKeyword(Keyword, Elaborated, CanonType,
   4569                       NamedType->isDependentType(),
   4570                       NamedType->isInstantiationDependentType(),
   4571                       NamedType->isVariablyModifiedType(),
   4572                       NamedType->containsUnexpandedParameterPack()),
   4573       NNS(NNS), NamedType(NamedType) {
   4574     assert(!(Keyword == ETK_None && NNS == nullptr) &&
   4575            "ElaboratedType cannot have elaborated type keyword "
   4576            "and name qualifier both null.");
   4577   }
   4578 
   4579   friend class ASTContext;  // ASTContext creates these
   4580 
   4581 public:
   4582   ~ElaboratedType();
   4583 
   4584   /// Retrieve the qualification on this type.
   4585   NestedNameSpecifier *getQualifier() const { return NNS; }
   4586 
   4587   /// Retrieve the type named by the qualified-id.
   4588   QualType getNamedType() const { return NamedType; }
   4589 
   4590   /// Remove a single level of sugar.
   4591   QualType desugar() const { return getNamedType(); }
   4592 
   4593   /// Returns whether this type directly provides sugar.
   4594   bool isSugared() const { return true; }
   4595 
   4596   void Profile(llvm::FoldingSetNodeID &ID) {
   4597     Profile(ID, getKeyword(), NNS, NamedType);
   4598   }
   4599 
   4600   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   4601                       NestedNameSpecifier *NNS, QualType NamedType) {
   4602     ID.AddInteger(Keyword);
   4603     ID.AddPointer(NNS);
   4604     NamedType.Profile(ID);
   4605   }
   4606 
   4607   static bool classof(const Type *T) {
   4608     return T->getTypeClass() == Elaborated;
   4609   }
   4610 };
   4611 
   4612 /// \brief Represents a qualified type name for which the type name is
   4613 /// dependent.
   4614 ///
   4615 /// DependentNameType represents a class of dependent types that involve a
   4616 /// possibly dependent nested-name-specifier (e.g., "T::") followed by a
   4617 /// name of a type. The DependentNameType may start with a "typename" (for a
   4618 /// typename-specifier), "class", "struct", "union", or "enum" (for a
   4619 /// dependent elaborated-type-specifier), or nothing (in contexts where we
   4620 /// know that we must be referring to a type, e.g., in a base class specifier).
   4621 /// Typically the nested-name-specifier is dependent, but in MSVC compatibility
   4622 /// mode, this type is used with non-dependent names to delay name lookup until
   4623 /// instantiation.
   4624 class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
   4625 
   4626   /// \brief The nested name specifier containing the qualifier.
   4627   NestedNameSpecifier *NNS;
   4628 
   4629   /// \brief The type that this typename specifier refers to.
   4630   const IdentifierInfo *Name;
   4631 
   4632   DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   4633                     const IdentifierInfo *Name, QualType CanonType)
   4634     : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
   4635                       /*InstantiationDependent=*/true,
   4636                       /*VariablyModified=*/false,
   4637                       NNS->containsUnexpandedParameterPack()),
   4638       NNS(NNS), Name(Name) {}
   4639 
   4640   friend class ASTContext;  // ASTContext creates these
   4641 
   4642 public:
   4643   /// Retrieve the qualification on this type.
   4644   NestedNameSpecifier *getQualifier() const { return NNS; }
   4645 
   4646   /// Retrieve the type named by the typename specifier as an identifier.
   4647   ///
   4648   /// This routine will return a non-NULL identifier pointer when the
   4649   /// form of the original typename was terminated by an identifier,
   4650   /// e.g., "typename T::type".
   4651   const IdentifierInfo *getIdentifier() const {
   4652     return Name;
   4653   }
   4654 
   4655   bool isSugared() const { return false; }
   4656   QualType desugar() const { return QualType(this, 0); }
   4657 
   4658   void Profile(llvm::FoldingSetNodeID &ID) {
   4659     Profile(ID, getKeyword(), NNS, Name);
   4660   }
   4661 
   4662   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   4663                       NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
   4664     ID.AddInteger(Keyword);
   4665     ID.AddPointer(NNS);
   4666     ID.AddPointer(Name);
   4667   }
   4668 
   4669   static bool classof(const Type *T) {
   4670     return T->getTypeClass() == DependentName;
   4671   }
   4672 };
   4673 
   4674 /// Represents a template specialization type whose template cannot be
   4675 /// resolved, e.g.
   4676 ///   A<T>::template B<T>
   4677 class LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) DependentTemplateSpecializationType
   4678     : public TypeWithKeyword,
   4679       public llvm::FoldingSetNode {
   4680 
   4681   /// The nested name specifier containing the qualifier.
   4682   NestedNameSpecifier *NNS;
   4683 
   4684   /// The identifier of the template.
   4685   const IdentifierInfo *Name;
   4686 
   4687   /// \brief The number of template arguments named in this class template
   4688   /// specialization.
   4689   unsigned NumArgs;
   4690 
   4691   const TemplateArgument *getArgBuffer() const {
   4692     return reinterpret_cast<const TemplateArgument*>(this+1);
   4693   }
   4694   TemplateArgument *getArgBuffer() {
   4695     return reinterpret_cast<TemplateArgument*>(this+1);
   4696   }
   4697 
   4698   DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
   4699                                       NestedNameSpecifier *NNS,
   4700                                       const IdentifierInfo *Name,
   4701                                       ArrayRef<TemplateArgument> Args,
   4702                                       QualType Canon);
   4703 
   4704   friend class ASTContext;  // ASTContext creates these
   4705 
   4706 public:
   4707   NestedNameSpecifier *getQualifier() const { return NNS; }
   4708   const IdentifierInfo *getIdentifier() const { return Name; }
   4709 
   4710   /// \brief Retrieve the template arguments.
   4711   const TemplateArgument *getArgs() const {
   4712     return getArgBuffer();
   4713   }
   4714 
   4715   /// \brief Retrieve the number of template arguments.
   4716   unsigned getNumArgs() const { return NumArgs; }
   4717 
   4718   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   4719 
   4720   ArrayRef<TemplateArgument> template_arguments() const {
   4721     return {getArgs(), NumArgs};
   4722   }
   4723 
   4724   typedef const TemplateArgument * iterator;
   4725   iterator begin() const { return getArgs(); }
   4726   iterator end() const; // inline in TemplateBase.h
   4727 
   4728   bool isSugared() const { return false; }
   4729   QualType desugar() const { return QualType(this, 0); }
   4730 
   4731   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
   4732     Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), NumArgs});
   4733   }
   4734 
   4735   static void Profile(llvm::FoldingSetNodeID &ID,
   4736                       const ASTContext &Context,
   4737                       ElaboratedTypeKeyword Keyword,
   4738                       NestedNameSpecifier *Qualifier,
   4739                       const IdentifierInfo *Name,
   4740                       ArrayRef<TemplateArgument> Args);
   4741 
   4742   static bool classof(const Type *T) {
   4743     return T->getTypeClass() == DependentTemplateSpecialization;
   4744   }
   4745 };
   4746 
   4747 /// \brief Represents a pack expansion of types.
   4748 ///
   4749 /// Pack expansions are part of C++11 variadic templates. A pack
   4750 /// expansion contains a pattern, which itself contains one or more
   4751 /// "unexpanded" parameter packs. When instantiated, a pack expansion
   4752 /// produces a series of types, each instantiated from the pattern of
   4753 /// the expansion, where the Ith instantiation of the pattern uses the
   4754 /// Ith arguments bound to each of the unexpanded parameter packs. The
   4755 /// pack expansion is considered to "expand" these unexpanded
   4756 /// parameter packs.
   4757 ///
   4758 /// \code
   4759 /// template<typename ...Types> struct tuple;
   4760 ///
   4761 /// template<typename ...Types>
   4762 /// struct tuple_of_references {
   4763 ///   typedef tuple<Types&...> type;
   4764 /// };
   4765 /// \endcode
   4766 ///
   4767 /// Here, the pack expansion \c Types&... is represented via a
   4768 /// PackExpansionType whose pattern is Types&.
   4769 class PackExpansionType : public Type, public llvm::FoldingSetNode {
   4770   /// \brief The pattern of the pack expansion.
   4771   QualType Pattern;
   4772 
   4773   /// \brief The number of expansions that this pack expansion will
   4774   /// generate when substituted (+1), or indicates that
   4775   ///
   4776   /// This field will only have a non-zero value when some of the parameter
   4777   /// packs that occur within the pattern have been substituted but others have
   4778   /// not.
   4779   unsigned NumExpansions;
   4780 
   4781   PackExpansionType(QualType Pattern, QualType Canon,
   4782                     Optional<unsigned> NumExpansions)
   4783     : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
   4784            /*InstantiationDependent=*/true,
   4785            /*VariablyModified=*/Pattern->isVariablyModifiedType(),
   4786            /*ContainsUnexpandedParameterPack=*/false),
   4787       Pattern(Pattern),
   4788       NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
   4789 
   4790   friend class ASTContext;  // ASTContext creates these
   4791 
   4792 public:
   4793   /// \brief Retrieve the pattern of this pack expansion, which is the
   4794   /// type that will be repeatedly instantiated when instantiating the
   4795   /// pack expansion itself.
   4796   QualType getPattern() const { return Pattern; }
   4797 
   4798   /// \brief Retrieve the number of expansions that this pack expansion will
   4799   /// generate, if known.
   4800   Optional<unsigned> getNumExpansions() const {
   4801     if (NumExpansions)
   4802       return NumExpansions - 1;
   4803 
   4804     return None;
   4805   }
   4806 
   4807   bool isSugared() const { return !Pattern->isDependentType(); }
   4808   QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
   4809 
   4810   void Profile(llvm::FoldingSetNodeID &ID) {
   4811     Profile(ID, getPattern(), getNumExpansions());
   4812   }
   4813 
   4814   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
   4815                       Optional<unsigned> NumExpansions) {
   4816     ID.AddPointer(Pattern.getAsOpaquePtr());
   4817     ID.AddBoolean(NumExpansions.hasValue());
   4818     if (NumExpansions)
   4819       ID.AddInteger(*NumExpansions);
   4820   }
   4821 
   4822   static bool classof(const Type *T) {
   4823     return T->getTypeClass() == PackExpansion;
   4824   }
   4825 };
   4826 
   4827 /// This class wraps the list of protocol qualifiers. For types that can
   4828 /// take ObjC protocol qualifers, they can subclass this class.
   4829 template <class T>
   4830 class ObjCProtocolQualifiers {
   4831 protected:
   4832   ObjCProtocolQualifiers() {}
   4833   ObjCProtocolDecl * const *getProtocolStorage() const {
   4834     return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
   4835   }
   4836 
   4837   ObjCProtocolDecl **getProtocolStorage() {
   4838     return static_cast<T*>(this)->getProtocolStorageImpl();
   4839   }
   4840   void setNumProtocols(unsigned N) {
   4841     static_cast<T*>(this)->setNumProtocolsImpl(N);
   4842   }
   4843   void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
   4844     setNumProtocols(protocols.size());
   4845     assert(getNumProtocols() == protocols.size() &&
   4846            "bitfield overflow in protocol count");
   4847     if (!protocols.empty())
   4848       memcpy(getProtocolStorage(), protocols.data(),
   4849              protocols.size() * sizeof(ObjCProtocolDecl*));
   4850   }
   4851 
   4852 public:
   4853   typedef ObjCProtocolDecl * const *qual_iterator;
   4854   typedef llvm::iterator_range<qual_iterator> qual_range;
   4855 
   4856   qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
   4857   qual_iterator qual_begin() const { return getProtocolStorage(); }
   4858   qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
   4859 
   4860   bool qual_empty() const { return getNumProtocols() == 0; }
   4861 
   4862   /// Return the number of qualifying protocols in this type, or 0 if
   4863   /// there are none.
   4864   unsigned getNumProtocols() const {
   4865     return static_cast<const T*>(this)->getNumProtocolsImpl();
   4866   }
   4867 
   4868   /// Fetch a protocol by index.
   4869   ObjCProtocolDecl *getProtocol(unsigned I) const {
   4870     assert(I < getNumProtocols() && "Out-of-range protocol access");
   4871     return qual_begin()[I];
   4872   }
   4873 
   4874   /// Retrieve all of the protocol qualifiers.
   4875   ArrayRef<ObjCProtocolDecl *> getProtocols() const {
   4876     return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
   4877   }
   4878 };
   4879 
   4880 /// Represents a type parameter type in Objective C. It can take
   4881 /// a list of protocols.
   4882 class ObjCTypeParamType : public Type,
   4883                           public ObjCProtocolQualifiers<ObjCTypeParamType>,
   4884                           public llvm::FoldingSetNode {
   4885   friend class ASTContext;
   4886   friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
   4887 
   4888   /// The number of protocols stored on this type.
   4889   unsigned NumProtocols : 6;
   4890 
   4891   ObjCTypeParamDecl *OTPDecl;
   4892   /// The protocols are stored after the ObjCTypeParamType node. In the
   4893   /// canonical type, the list of protocols are sorted alphabetically
   4894   /// and uniqued.
   4895   ObjCProtocolDecl **getProtocolStorageImpl();
   4896   /// Return the number of qualifying protocols in this interface type,
   4897   /// or 0 if there are none.
   4898   unsigned getNumProtocolsImpl() const {
   4899     return NumProtocols;
   4900   }
   4901   void setNumProtocolsImpl(unsigned N) {
   4902     NumProtocols = N;
   4903   }
   4904   ObjCTypeParamType(const ObjCTypeParamDecl *D,
   4905                     QualType can,
   4906                     ArrayRef<ObjCProtocolDecl *> protocols);
   4907 public:
   4908   bool isSugared() const { return true; }
   4909   QualType desugar() const { return getCanonicalTypeInternal(); }
   4910 
   4911   static bool classof(const Type *T) {
   4912     return T->getTypeClass() == ObjCTypeParam;
   4913   }
   4914 
   4915   void Profile(llvm::FoldingSetNodeID &ID);
   4916   static void Profile(llvm::FoldingSetNodeID &ID,
   4917                       const ObjCTypeParamDecl *OTPDecl,
   4918                       ArrayRef<ObjCProtocolDecl *> protocols);
   4919 
   4920   ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
   4921 };
   4922 
   4923 /// Represents a class type in Objective C.
   4924 ///
   4925 /// Every Objective C type is a combination of a base type, a set of
   4926 /// type arguments (optional, for parameterized classes) and a list of
   4927 /// protocols.
   4928 ///
   4929 /// Given the following declarations:
   4930 /// \code
   4931 ///   \@class C<T>;
   4932 ///   \@protocol P;
   4933 /// \endcode
   4934 ///
   4935 /// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
   4936 /// with base C and no protocols.
   4937 ///
   4938 /// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
   4939 /// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
   4940 /// protocol list.
   4941 /// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
   4942 /// and protocol list [P].
   4943 ///
   4944 /// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
   4945 /// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
   4946 /// and no protocols.
   4947 ///
   4948 /// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
   4949 /// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
   4950 /// this should get its own sugar class to better represent the source.
   4951 class ObjCObjectType : public Type,
   4952                        public ObjCProtocolQualifiers<ObjCObjectType> {
   4953   friend class ObjCProtocolQualifiers<ObjCObjectType>;
   4954   // ObjCObjectType.NumTypeArgs - the number of type arguments stored
   4955   // after the ObjCObjectPointerType node.
   4956   // ObjCObjectType.NumProtocols - the number of protocols stored
   4957   // after the type arguments of ObjCObjectPointerType node.
   4958   //
   4959   // These protocols are those written directly on the type.  If
   4960   // protocol qualifiers ever become additive, the iterators will need
   4961   // to get kindof complicated.
   4962   //
   4963   // In the canonical object type, these are sorted alphabetically
   4964   // and uniqued.
   4965 
   4966   /// Either a BuiltinType or an InterfaceType or sugar for either.
   4967   QualType BaseType;
   4968 
   4969   /// Cached superclass type.
   4970   mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
   4971     CachedSuperClassType;
   4972 
   4973   QualType *getTypeArgStorage();
   4974   const QualType *getTypeArgStorage() const {
   4975     return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
   4976   }
   4977 
   4978   ObjCProtocolDecl **getProtocolStorageImpl();
   4979   /// Return the number of qualifying protocols in this interface type,
   4980   /// or 0 if there are none.
   4981   unsigned getNumProtocolsImpl() const {
   4982     return ObjCObjectTypeBits.NumProtocols;
   4983   }
   4984   void setNumProtocolsImpl(unsigned N) {
   4985     ObjCObjectTypeBits.NumProtocols = N;
   4986   }
   4987 
   4988 protected:
   4989   ObjCObjectType(QualType Canonical, QualType Base,
   4990                  ArrayRef<QualType> typeArgs,
   4991                  ArrayRef<ObjCProtocolDecl *> protocols,
   4992                  bool isKindOf);
   4993 
   4994   enum Nonce_ObjCInterface { Nonce_ObjCInterface };
   4995   ObjCObjectType(enum Nonce_ObjCInterface)
   4996         : Type(ObjCInterface, QualType(), false, false, false, false),
   4997       BaseType(QualType(this_(), 0)) {
   4998     ObjCObjectTypeBits.NumProtocols = 0;
   4999     ObjCObjectTypeBits.NumTypeArgs = 0;
   5000     ObjCObjectTypeBits.IsKindOf = 0;
   5001   }
   5002 
   5003   void computeSuperClassTypeSlow() const;
   5004 
   5005 public:
   5006   /// Gets the base type of this object type.  This is always (possibly
   5007   /// sugar for) one of:
   5008   ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
   5009   ///    user, which is a typedef for an ObjCObjectPointerType)
   5010   ///  - the 'Class' builtin type (same caveat)
   5011   ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
   5012   QualType getBaseType() const { return BaseType; }
   5013 
   5014   bool isObjCId() const {
   5015     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
   5016   }
   5017   bool isObjCClass() const {
   5018     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
   5019   }
   5020   bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
   5021   bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
   5022   bool isObjCUnqualifiedIdOrClass() const {
   5023     if (!qual_empty()) return false;
   5024     if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
   5025       return T->getKind() == BuiltinType::ObjCId ||
   5026              T->getKind() == BuiltinType::ObjCClass;
   5027     return false;
   5028   }
   5029   bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
   5030   bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
   5031 
   5032   /// Gets the interface declaration for this object type, if the base type
   5033   /// really is an interface.
   5034   ObjCInterfaceDecl *getInterface() const;
   5035 
   5036   /// Determine whether this object type is "specialized", meaning
   5037   /// that it has type arguments.
   5038   bool isSpecialized() const;
   5039 
   5040   /// Determine whether this object type was written with type arguments.
   5041   bool isSpecializedAsWritten() const {
   5042     return ObjCObjectTypeBits.NumTypeArgs > 0;
   5043   }
   5044 
   5045   /// Determine whether this object type is "unspecialized", meaning
   5046   /// that it has no type arguments.
   5047   bool isUnspecialized() const { return !isSpecialized(); }
   5048 
   5049   /// Determine whether this object type is "unspecialized" as
   5050   /// written, meaning that it has no type arguments.
   5051   bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
   5052 
   5053   /// Retrieve the type arguments of this object type (semantically).
   5054   ArrayRef<QualType> getTypeArgs() const;
   5055 
   5056   /// Retrieve the type arguments of this object type as they were
   5057   /// written.
   5058   ArrayRef<QualType> getTypeArgsAsWritten() const {
   5059     return llvm::makeArrayRef(getTypeArgStorage(),
   5060                               ObjCObjectTypeBits.NumTypeArgs);
   5061   }
   5062 
   5063   /// Whether this is a "__kindof" type as written.
   5064   bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
   5065 
   5066   /// Whether this ia a "__kindof" type (semantically).
   5067   bool isKindOfType() const;
   5068 
   5069   /// Retrieve the type of the superclass of this object type.
   5070   ///
   5071   /// This operation substitutes any type arguments into the
   5072   /// superclass of the current class type, potentially producing a
   5073   /// specialization of the superclass type. Produces a null type if
   5074   /// there is no superclass.
   5075   QualType getSuperClassType() const {
   5076     if (!CachedSuperClassType.getInt())
   5077       computeSuperClassTypeSlow();
   5078 
   5079     assert(CachedSuperClassType.getInt() && "Superclass not set?");
   5080     return QualType(CachedSuperClassType.getPointer(), 0);
   5081   }
   5082 
   5083   /// Strip off the Objective-C "kindof" type and (with it) any
   5084   /// protocol qualifiers.
   5085   QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
   5086 
   5087   bool isSugared() const { return false; }
   5088   QualType desugar() const { return QualType(this, 0); }
   5089 
   5090   static bool classof(const Type *T) {
   5091     return T->getTypeClass() == ObjCObject ||
   5092            T->getTypeClass() == ObjCInterface;
   5093   }
   5094 };
   5095 
   5096 /// A class providing a concrete implementation
   5097 /// of ObjCObjectType, so as to not increase the footprint of
   5098 /// ObjCInterfaceType.  Code outside of ASTContext and the core type
   5099 /// system should not reference this type.
   5100 class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
   5101   friend class ASTContext;
   5102 
   5103   // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
   5104   // will need to be modified.
   5105 
   5106   ObjCObjectTypeImpl(QualType Canonical, QualType Base,
   5107                      ArrayRef<QualType> typeArgs,
   5108                      ArrayRef<ObjCProtocolDecl *> protocols,
   5109                      bool isKindOf)
   5110     : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
   5111 
   5112 public:
   5113   void Profile(llvm::FoldingSetNodeID &ID);
   5114   static void Profile(llvm::FoldingSetNodeID &ID,
   5115                       QualType Base,
   5116                       ArrayRef<QualType> typeArgs,
   5117                       ArrayRef<ObjCProtocolDecl *> protocols,
   5118                       bool isKindOf);
   5119 };
   5120 
   5121 inline QualType *ObjCObjectType::getTypeArgStorage() {
   5122   return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
   5123 }
   5124 
   5125 inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
   5126     return reinterpret_cast<ObjCProtocolDecl**>(
   5127              getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
   5128 }
   5129 
   5130 inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
   5131     return reinterpret_cast<ObjCProtocolDecl**>(
   5132              static_cast<ObjCTypeParamType*>(this)+1);
   5133 }
   5134 
   5135 /// Interfaces are the core concept in Objective-C for object oriented design.
   5136 /// They basically correspond to C++ classes.  There are two kinds of interface
   5137 /// types: normal interfaces like `NSString`, and qualified interfaces, which
   5138 /// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
   5139 ///
   5140 /// ObjCInterfaceType guarantees the following properties when considered
   5141 /// as a subtype of its superclass, ObjCObjectType:
   5142 ///   - There are no protocol qualifiers.  To reinforce this, code which
   5143 ///     tries to invoke the protocol methods via an ObjCInterfaceType will
   5144 ///     fail to compile.
   5145 ///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
   5146 ///     T->getBaseType() == QualType(T, 0).
   5147 class ObjCInterfaceType : public ObjCObjectType {
   5148   mutable ObjCInterfaceDecl *Decl;
   5149 
   5150   ObjCInterfaceType(const ObjCInterfaceDecl *D)
   5151     : ObjCObjectType(Nonce_ObjCInterface),
   5152       Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
   5153   friend class ASTContext;  // ASTContext creates these.
   5154   friend class ASTReader;
   5155   friend class ObjCInterfaceDecl;
   5156 
   5157 public:
   5158   /// Get the declaration of this interface.
   5159   ObjCInterfaceDecl *getDecl() const { return Decl; }
   5160 
   5161   bool isSugared() const { return false; }
   5162   QualType desugar() const { return QualType(this, 0); }
   5163 
   5164   static bool classof(const Type *T) {
   5165     return T->getTypeClass() == ObjCInterface;
   5166   }
   5167 
   5168   // Nonsense to "hide" certain members of ObjCObjectType within this
   5169   // class.  People asking for protocols on an ObjCInterfaceType are
   5170   // not going to get what they want: ObjCInterfaceTypes are
   5171   // guaranteed to have no protocols.
   5172   enum {
   5173     qual_iterator,
   5174     qual_begin,
   5175     qual_end,
   5176     getNumProtocols,
   5177     getProtocol
   5178   };
   5179 };
   5180 
   5181 inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
   5182   QualType baseType = getBaseType();
   5183   while (const ObjCObjectType *ObjT = baseType->getAs<ObjCObjectType>()) {
   5184     if (const ObjCInterfaceType *T = dyn_cast<ObjCInterfaceType>(ObjT))
   5185       return T->getDecl();
   5186 
   5187     baseType = ObjT->getBaseType();
   5188   }
   5189 
   5190   return nullptr;
   5191 }
   5192 
   5193 /// Represents a pointer to an Objective C object.
   5194 ///
   5195 /// These are constructed from pointer declarators when the pointee type is
   5196 /// an ObjCObjectType (or sugar for one).  In addition, the 'id' and 'Class'
   5197 /// types are typedefs for these, and the protocol-qualified types 'id<P>'
   5198 /// and 'Class<P>' are translated into these.
   5199 ///
   5200 /// Pointers to pointers to Objective C objects are still PointerTypes;
   5201 /// only the first level of pointer gets it own type implementation.
   5202 class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
   5203   QualType PointeeType;
   5204 
   5205   ObjCObjectPointerType(QualType Canonical, QualType Pointee)
   5206     : Type(ObjCObjectPointer, Canonical,
   5207            Pointee->isDependentType(),
   5208            Pointee->isInstantiationDependentType(),
   5209            Pointee->isVariablyModifiedType(),
   5210            Pointee->containsUnexpandedParameterPack()),
   5211       PointeeType(Pointee) {}
   5212   friend class ASTContext;  // ASTContext creates these.
   5213 
   5214 public:
   5215   /// Gets the type pointed to by this ObjC pointer.
   5216   /// The result will always be an ObjCObjectType or sugar thereof.
   5217   QualType getPointeeType() const { return PointeeType; }
   5218 
   5219   /// Gets the type pointed to by this ObjC pointer.  Always returns non-null.
   5220   ///
   5221   /// This method is equivalent to getPointeeType() except that
   5222   /// it discards any typedefs (or other sugar) between this
   5223   /// type and the "outermost" object type.  So for:
   5224   /// \code
   5225   ///   \@class A; \@protocol P; \@protocol Q;
   5226   ///   typedef A<P> AP;
   5227   ///   typedef A A1;
   5228   ///   typedef A1<P> A1P;
   5229   ///   typedef A1P<Q> A1PQ;
   5230   /// \endcode
   5231   /// For 'A*', getObjectType() will return 'A'.
   5232   /// For 'A<P>*', getObjectType() will return 'A<P>'.
   5233   /// For 'AP*', getObjectType() will return 'A<P>'.
   5234   /// For 'A1*', getObjectType() will return 'A'.
   5235   /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
   5236   /// For 'A1P*', getObjectType() will return 'A1<P>'.
   5237   /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
   5238   ///   adding protocols to a protocol-qualified base discards the
   5239   ///   old qualifiers (for now).  But if it didn't, getObjectType()
   5240   ///   would return 'A1P<Q>' (and we'd have to make iterating over
   5241   ///   qualifiers more complicated).
   5242   const ObjCObjectType *getObjectType() const {
   5243     return PointeeType->castAs<ObjCObjectType>();
   5244   }
   5245 
   5246   /// If this pointer points to an Objective C
   5247   /// \@interface type, gets the type for that interface.  Any protocol
   5248   /// qualifiers on the interface are ignored.
   5249   ///
   5250   /// \return null if the base type for this pointer is 'id' or 'Class'
   5251   const ObjCInterfaceType *getInterfaceType() const;
   5252 
   5253   /// If this pointer points to an Objective \@interface
   5254   /// type, gets the declaration for that interface.
   5255   ///
   5256   /// \return null if the base type for this pointer is 'id' or 'Class'
   5257   ObjCInterfaceDecl *getInterfaceDecl() const {
   5258     return getObjectType()->getInterface();
   5259   }
   5260 
   5261   /// True if this is equivalent to the 'id' type, i.e. if
   5262   /// its object type is the primitive 'id' type with no protocols.
   5263   bool isObjCIdType() const {
   5264     return getObjectType()->isObjCUnqualifiedId();
   5265   }
   5266 
   5267   /// True if this is equivalent to the 'Class' type,
   5268   /// i.e. if its object tive is the primitive 'Class' type with no protocols.
   5269   bool isObjCClassType() const {
   5270     return getObjectType()->isObjCUnqualifiedClass();
   5271   }
   5272 
   5273   /// True if this is equivalent to the 'id' or 'Class' type,
   5274   bool isObjCIdOrClassType() const {
   5275     return getObjectType()->isObjCUnqualifiedIdOrClass();
   5276   }
   5277 
   5278   /// True if this is equivalent to 'id<P>' for some non-empty set of
   5279   /// protocols.
   5280   bool isObjCQualifiedIdType() const {
   5281     return getObjectType()->isObjCQualifiedId();
   5282   }
   5283 
   5284   /// True if this is equivalent to 'Class<P>' for some non-empty set of
   5285   /// protocols.
   5286   bool isObjCQualifiedClassType() const {
   5287     return getObjectType()->isObjCQualifiedClass();
   5288   }
   5289 
   5290   /// Whether this is a "__kindof" type.
   5291   bool isKindOfType() const { return getObjectType()->isKindOfType(); }
   5292 
   5293   /// Whether this type is specialized, meaning that it has type arguments.
   5294   bool isSpecialized() const { return getObjectType()->isSpecialized(); }
   5295 
   5296   /// Whether this type is specialized, meaning that it has type arguments.
   5297   bool isSpecializedAsWritten() const {
   5298     return getObjectType()->isSpecializedAsWritten();
   5299   }
   5300 
   5301   /// Whether this type is unspecialized, meaning that is has no type arguments.
   5302   bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
   5303 
   5304   /// Determine whether this object type is "unspecialized" as
   5305   /// written, meaning that it has no type arguments.
   5306   bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
   5307 
   5308   /// Retrieve the type arguments for this type.
   5309   ArrayRef<QualType> getTypeArgs() const {
   5310     return getObjectType()->getTypeArgs();
   5311   }
   5312 
   5313   /// Retrieve the type arguments for this type.
   5314   ArrayRef<QualType> getTypeArgsAsWritten() const {
   5315     return getObjectType()->getTypeArgsAsWritten();
   5316   }
   5317 
   5318   /// An iterator over the qualifiers on the object type.  Provided
   5319   /// for convenience.  This will always iterate over the full set of
   5320   /// protocols on a type, not just those provided directly.
   5321   typedef ObjCObjectType::qual_iterator qual_iterator;
   5322   typedef llvm::iterator_range<qual_iterator> qual_range;
   5323 
   5324   qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
   5325   qual_iterator qual_begin() const {
   5326     return getObjectType()->qual_begin();
   5327   }
   5328   qual_iterator qual_end() const {
   5329     return getObjectType()->qual_end();
   5330   }
   5331   bool qual_empty() const { return getObjectType()->qual_empty(); }
   5332 
   5333   /// Return the number of qualifying protocols on the object type.
   5334   unsigned getNumProtocols() const {
   5335     return getObjectType()->getNumProtocols();
   5336   }
   5337 
   5338   /// Retrieve a qualifying protocol by index on the object type.
   5339   ObjCProtocolDecl *getProtocol(unsigned I) const {
   5340     return getObjectType()->getProtocol(I);
   5341   }
   5342 
   5343   bool isSugared() const { return false; }
   5344   QualType desugar() const { return QualType(this, 0); }
   5345 
   5346   /// Retrieve the type of the superclass of this object pointer type.
   5347   ///
   5348   /// This operation substitutes any type arguments into the
   5349   /// superclass of the current class type, potentially producing a
   5350   /// pointer to a specialization of the superclass type. Produces a
   5351   /// null type if there is no superclass.
   5352   QualType getSuperClassType() const;
   5353 
   5354   /// Strip off the Objective-C "kindof" type and (with it) any
   5355   /// protocol qualifiers.
   5356   const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
   5357                                  const ASTContext &ctx) const;
   5358 
   5359   void Profile(llvm::FoldingSetNodeID &ID) {
   5360     Profile(ID, getPointeeType());
   5361   }
   5362   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
   5363     ID.AddPointer(T.getAsOpaquePtr());
   5364   }
   5365   static bool classof(const Type *T) {
   5366     return T->getTypeClass() == ObjCObjectPointer;
   5367   }
   5368 };
   5369 
   5370 class AtomicType : public Type, public llvm::FoldingSetNode {
   5371   QualType ValueType;
   5372 
   5373   AtomicType(QualType ValTy, QualType Canonical)
   5374     : Type(Atomic, Canonical, ValTy->isDependentType(),
   5375            ValTy->isInstantiationDependentType(),
   5376            ValTy->isVariablyModifiedType(),
   5377            ValTy->containsUnexpandedParameterPack()),
   5378       ValueType(ValTy) {}
   5379   friend class ASTContext;  // ASTContext creates these.
   5380 
   5381   public:
   5382   /// Gets the type contained by this atomic type, i.e.
   5383   /// the type returned by performing an atomic load of this atomic type.
   5384   QualType getValueType() const { return ValueType; }
   5385 
   5386   bool isSugared() const { return false; }
   5387   QualType desugar() const { return QualType(this, 0); }
   5388 
   5389   void Profile(llvm::FoldingSetNodeID &ID) {
   5390     Profile(ID, getValueType());
   5391   }
   5392   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
   5393     ID.AddPointer(T.getAsOpaquePtr());
   5394   }
   5395   static bool classof(const Type *T) {
   5396     return T->getTypeClass() == Atomic;
   5397   }
   5398 };
   5399 
   5400 /// PipeType - OpenCL20.
   5401 class PipeType : public Type, public llvm::FoldingSetNode {
   5402   QualType ElementType;
   5403   bool isRead;
   5404 
   5405   PipeType(QualType elemType, QualType CanonicalPtr, bool isRead) :
   5406     Type(Pipe, CanonicalPtr, elemType->isDependentType(),
   5407          elemType->isInstantiationDependentType(),
   5408          elemType->isVariablyModifiedType(),
   5409          elemType->containsUnexpandedParameterPack()),
   5410     ElementType(elemType), isRead(isRead) {}
   5411   friend class ASTContext;  // ASTContext creates these.
   5412 
   5413 public:
   5414   QualType getElementType() const { return ElementType; }
   5415 
   5416   bool isSugared() const { return false; }
   5417 
   5418   QualType desugar() const { return QualType(this, 0); }
   5419 
   5420   void Profile(llvm::FoldingSetNodeID &ID) {
   5421     Profile(ID, getElementType(), isReadOnly());
   5422   }
   5423 
   5424   static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
   5425     ID.AddPointer(T.getAsOpaquePtr());
   5426     ID.AddBoolean(isRead);
   5427   }
   5428 
   5429   static bool classof(const Type *T) {
   5430     return T->getTypeClass() == Pipe;
   5431   }
   5432 
   5433   bool isReadOnly() const { return isRead; }
   5434 };
   5435 
   5436 /// A qualifier set is used to build a set of qualifiers.
   5437 class QualifierCollector : public Qualifiers {
   5438 public:
   5439   QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
   5440 
   5441   /// Collect any qualifiers on the given type and return an
   5442   /// unqualified type.  The qualifiers are assumed to be consistent
   5443   /// with those already in the type.
   5444   const Type *strip(QualType type) {
   5445     addFastQualifiers(type.getLocalFastQualifiers());
   5446     if (!type.hasLocalNonFastQualifiers())
   5447       return type.getTypePtrUnsafe();
   5448 
   5449     const ExtQuals *extQuals = type.getExtQualsUnsafe();
   5450     addConsistentQualifiers(extQuals->getQualifiers());
   5451     return extQuals->getBaseType();
   5452   }
   5453 
   5454   /// Apply the collected qualifiers to the given type.
   5455   QualType apply(const ASTContext &Context, QualType QT) const;
   5456 
   5457   /// Apply the collected qualifiers to the given type.
   5458   QualType apply(const ASTContext &Context, const Type* T) const;
   5459 };
   5460 
   5461 
   5462 // Inline function definitions.
   5463 
   5464 inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
   5465   SplitQualType desugar =
   5466     Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
   5467   desugar.Quals.addConsistentQualifiers(Quals);
   5468   return desugar;
   5469 }
   5470 
   5471 inline const Type *QualType::getTypePtr() const {
   5472   return getCommonPtr()->BaseType;
   5473 }
   5474 
   5475 inline const Type *QualType::getTypePtrOrNull() const {
   5476   return (isNull() ? nullptr : getCommonPtr()->BaseType);
   5477 }
   5478 
   5479 inline SplitQualType QualType::split() const {
   5480   if (!hasLocalNonFastQualifiers())
   5481     return SplitQualType(getTypePtrUnsafe(),
   5482                          Qualifiers::fromFastMask(getLocalFastQualifiers()));
   5483 
   5484   const ExtQuals *eq = getExtQualsUnsafe();
   5485   Qualifiers qs = eq->getQualifiers();
   5486   qs.addFastQualifiers(getLocalFastQualifiers());
   5487   return SplitQualType(eq->getBaseType(), qs);
   5488 }
   5489 
   5490 inline Qualifiers QualType::getLocalQualifiers() const {
   5491   Qualifiers Quals;
   5492   if (hasLocalNonFastQualifiers())
   5493     Quals = getExtQualsUnsafe()->getQualifiers();
   5494   Quals.addFastQualifiers(getLocalFastQualifiers());
   5495   return Quals;
   5496 }
   5497 
   5498 inline Qualifiers QualType::getQualifiers() const {
   5499   Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
   5500   quals.addFastQualifiers(getLocalFastQualifiers());
   5501   return quals;
   5502 }
   5503 
   5504 inline unsigned QualType::getCVRQualifiers() const {
   5505   unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
   5506   cvr |= getLocalCVRQualifiers();
   5507   return cvr;
   5508 }
   5509 
   5510 inline QualType QualType::getCanonicalType() const {
   5511   QualType canon = getCommonPtr()->CanonicalType;
   5512   return canon.withFastQualifiers(getLocalFastQualifiers());
   5513 }
   5514 
   5515 inline bool QualType::isCanonical() const {
   5516   return getTypePtr()->isCanonicalUnqualified();
   5517 }
   5518 
   5519 inline bool QualType::isCanonicalAsParam() const {
   5520   if (!isCanonical()) return false;
   5521   if (hasLocalQualifiers()) return false;
   5522 
   5523   const Type *T = getTypePtr();
   5524   if (T->isVariablyModifiedType() && T->hasSizedVLAType())
   5525     return false;
   5526 
   5527   return !isa<FunctionType>(T) && !isa<ArrayType>(T);
   5528 }
   5529 
   5530 inline bool QualType::isConstQualified() const {
   5531   return isLocalConstQualified() ||
   5532          getCommonPtr()->CanonicalType.isLocalConstQualified();
   5533 }
   5534 
   5535 inline bool QualType::isRestrictQualified() const {
   5536   return isLocalRestrictQualified() ||
   5537          getCommonPtr()->CanonicalType.isLocalRestrictQualified();
   5538 }
   5539 
   5540 
   5541 inline bool QualType::isVolatileQualified() const {
   5542   return isLocalVolatileQualified() ||
   5543          getCommonPtr()->CanonicalType.isLocalVolatileQualified();
   5544 }
   5545 
   5546 inline bool QualType::hasQualifiers() const {
   5547   return hasLocalQualifiers() ||
   5548          getCommonPtr()->CanonicalType.hasLocalQualifiers();
   5549 }
   5550 
   5551 inline QualType QualType::getUnqualifiedType() const {
   5552   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   5553     return QualType(getTypePtr(), 0);
   5554 
   5555   return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
   5556 }
   5557 
   5558 inline SplitQualType QualType::getSplitUnqualifiedType() const {
   5559   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   5560     return split();
   5561 
   5562   return getSplitUnqualifiedTypeImpl(*this);
   5563 }
   5564 
   5565 inline void QualType::removeLocalConst() {
   5566   removeLocalFastQualifiers(Qualifiers::Const);
   5567 }
   5568 
   5569 inline void QualType::removeLocalRestrict() {
   5570   removeLocalFastQualifiers(Qualifiers::Restrict);
   5571 }
   5572 
   5573 inline void QualType::removeLocalVolatile() {
   5574   removeLocalFastQualifiers(Qualifiers::Volatile);
   5575 }
   5576 
   5577 inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
   5578   assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
   5579   static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
   5580                 "Fast bits differ from CVR bits!");
   5581 
   5582   // Fast path: we don't need to touch the slow qualifiers.
   5583   removeLocalFastQualifiers(Mask);
   5584 }
   5585 
   5586 /// Return the address space of this type.
   5587 inline unsigned QualType::getAddressSpace() const {
   5588   return getQualifiers().getAddressSpace();
   5589 }
   5590 
   5591 /// Return the gc attribute of this type.
   5592 inline Qualifiers::GC QualType::getObjCGCAttr() const {
   5593   return getQualifiers().getObjCGCAttr();
   5594 }
   5595 
   5596 inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
   5597   if (const PointerType *PT = t.getAs<PointerType>()) {
   5598     if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
   5599       return FT->getExtInfo();
   5600   } else if (const FunctionType *FT = t.getAs<FunctionType>())
   5601     return FT->getExtInfo();
   5602 
   5603   return FunctionType::ExtInfo();
   5604 }
   5605 
   5606 inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
   5607   return getFunctionExtInfo(*t);
   5608 }
   5609 
   5610 /// Determine whether this type is more
   5611 /// qualified than the Other type. For example, "const volatile int"
   5612 /// is more qualified than "const int", "volatile int", and
   5613 /// "int". However, it is not more qualified than "const volatile
   5614 /// int".
   5615 inline bool QualType::isMoreQualifiedThan(QualType other) const {
   5616   Qualifiers MyQuals = getQualifiers();
   5617   Qualifiers OtherQuals = other.getQualifiers();
   5618   return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
   5619 }
   5620 
   5621 /// Determine whether this type is at last
   5622 /// as qualified as the Other type. For example, "const volatile
   5623 /// int" is at least as qualified as "const int", "volatile int",
   5624 /// "int", and "const volatile int".
   5625 inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
   5626   Qualifiers OtherQuals = other.getQualifiers();
   5627 
   5628   // Ignore __unaligned qualifier if this type is a void.
   5629   if (getUnqualifiedType()->isVoidType())
   5630     OtherQuals.removeUnaligned();
   5631 
   5632   return getQualifiers().compatiblyIncludes(OtherQuals);
   5633 }
   5634 
   5635 /// If Type is a reference type (e.g., const
   5636 /// int&), returns the type that the reference refers to ("const
   5637 /// int"). Otherwise, returns the type itself. This routine is used
   5638 /// throughout Sema to implement C++ 5p6:
   5639 ///
   5640 ///   If an expression initially has the type "reference to T" (8.3.2,
   5641 ///   8.5.3), the type is adjusted to "T" prior to any further
   5642 ///   analysis, the expression designates the object or function
   5643 ///   denoted by the reference, and the expression is an lvalue.
   5644 inline QualType QualType::getNonReferenceType() const {
   5645   if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
   5646     return RefType->getPointeeType();
   5647   else
   5648     return *this;
   5649 }
   5650 
   5651 inline bool QualType::isCForbiddenLValueType() const {
   5652   return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
   5653           getTypePtr()->isFunctionType());
   5654 }
   5655 
   5656 /// Tests whether the type is categorized as a fundamental type.
   5657 ///
   5658 /// \returns True for types specified in C++0x [basic.fundamental].
   5659 inline bool Type::isFundamentalType() const {
   5660   return isVoidType() ||
   5661          // FIXME: It's really annoying that we don't have an
   5662          // 'isArithmeticType()' which agrees with the standard definition.
   5663          (isArithmeticType() && !isEnumeralType());
   5664 }
   5665 
   5666 /// Tests whether the type is categorized as a compound type.
   5667 ///
   5668 /// \returns True for types specified in C++0x [basic.compound].
   5669 inline bool Type::isCompoundType() const {
   5670   // C++0x [basic.compound]p1:
   5671   //   Compound types can be constructed in the following ways:
   5672   //    -- arrays of objects of a given type [...];
   5673   return isArrayType() ||
   5674   //    -- functions, which have parameters of given types [...];
   5675          isFunctionType() ||
   5676   //    -- pointers to void or objects or functions [...];
   5677          isPointerType() ||
   5678   //    -- references to objects or functions of a given type. [...]
   5679          isReferenceType() ||
   5680   //    -- classes containing a sequence of objects of various types, [...];
   5681          isRecordType() ||
   5682   //    -- unions, which are classes capable of containing objects of different
   5683   //               types at different times;
   5684          isUnionType() ||
   5685   //    -- enumerations, which comprise a set of named constant values. [...];
   5686          isEnumeralType() ||
   5687   //    -- pointers to non-static class members, [...].
   5688          isMemberPointerType();
   5689 }
   5690 
   5691 inline bool Type::isFunctionType() const {
   5692   return isa<FunctionType>(CanonicalType);
   5693 }
   5694 inline bool Type::isPointerType() const {
   5695   return isa<PointerType>(CanonicalType);
   5696 }
   5697 inline bool Type::isAnyPointerType() const {
   5698   return isPointerType() || isObjCObjectPointerType();
   5699 }
   5700 inline bool Type::isBlockPointerType() const {
   5701   return isa<BlockPointerType>(CanonicalType);
   5702 }
   5703 inline bool Type::isReferenceType() const {
   5704   return isa<ReferenceType>(CanonicalType);
   5705 }
   5706 inline bool Type::isLValueReferenceType() const {
   5707   return isa<LValueReferenceType>(CanonicalType);
   5708 }
   5709 inline bool Type::isRValueReferenceType() const {
   5710   return isa<RValueReferenceType>(CanonicalType);
   5711 }
   5712 inline bool Type::isFunctionPointerType() const {
   5713   if (const PointerType *T = getAs<PointerType>())
   5714     return T->getPointeeType()->isFunctionType();
   5715   else
   5716     return false;
   5717 }
   5718 inline bool Type::isMemberPointerType() const {
   5719   return isa<MemberPointerType>(CanonicalType);
   5720 }
   5721 inline bool Type::isMemberFunctionPointerType() const {
   5722   if (const MemberPointerType* T = getAs<MemberPointerType>())
   5723     return T->isMemberFunctionPointer();
   5724   else
   5725     return false;
   5726 }
   5727 inline bool Type::isMemberDataPointerType() const {
   5728   if (const MemberPointerType* T = getAs<MemberPointerType>())
   5729     return T->isMemberDataPointer();
   5730   else
   5731     return false;
   5732 }
   5733 inline bool Type::isArrayType() const {
   5734   return isa<ArrayType>(CanonicalType);
   5735 }
   5736 inline bool Type::isConstantArrayType() const {
   5737   return isa<ConstantArrayType>(CanonicalType);
   5738 }
   5739 inline bool Type::isIncompleteArrayType() const {
   5740   return isa<IncompleteArrayType>(CanonicalType);
   5741 }
   5742 inline bool Type::isVariableArrayType() const {
   5743   return isa<VariableArrayType>(CanonicalType);
   5744 }
   5745 inline bool Type::isDependentSizedArrayType() const {
   5746   return isa<DependentSizedArrayType>(CanonicalType);
   5747 }
   5748 inline bool Type::isBuiltinType() const {
   5749   return isa<BuiltinType>(CanonicalType);
   5750 }
   5751 inline bool Type::isRecordType() const {
   5752   return isa<RecordType>(CanonicalType);
   5753 }
   5754 inline bool Type::isEnumeralType() const {
   5755   return isa<EnumType>(CanonicalType);
   5756 }
   5757 inline bool Type::isAnyComplexType() const {
   5758   return isa<ComplexType>(CanonicalType);
   5759 }
   5760 inline bool Type::isVectorType() const {
   5761   return isa<VectorType>(CanonicalType);
   5762 }
   5763 inline bool Type::isExtVectorType() const {
   5764   return isa<ExtVectorType>(CanonicalType);
   5765 }
   5766 inline bool Type::isObjCObjectPointerType() const {
   5767   return isa<ObjCObjectPointerType>(CanonicalType);
   5768 }
   5769 inline bool Type::isObjCObjectType() const {
   5770   return isa<ObjCObjectType>(CanonicalType);
   5771 }
   5772 inline bool Type::isObjCObjectOrInterfaceType() const {
   5773   return isa<ObjCInterfaceType>(CanonicalType) ||
   5774     isa<ObjCObjectType>(CanonicalType);
   5775 }
   5776 inline bool Type::isAtomicType() const {
   5777   return isa<AtomicType>(CanonicalType);
   5778 }
   5779 
   5780 inline bool Type::isObjCQualifiedIdType() const {
   5781   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   5782     return OPT->isObjCQualifiedIdType();
   5783   return false;
   5784 }
   5785 inline bool Type::isObjCQualifiedClassType() const {
   5786   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   5787     return OPT->isObjCQualifiedClassType();
   5788   return false;
   5789 }
   5790 inline bool Type::isObjCIdType() const {
   5791   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   5792     return OPT->isObjCIdType();
   5793   return false;
   5794 }
   5795 inline bool Type::isObjCClassType() const {
   5796   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   5797     return OPT->isObjCClassType();
   5798   return false;
   5799 }
   5800 inline bool Type::isObjCSelType() const {
   5801   if (const PointerType *OPT = getAs<PointerType>())
   5802     return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
   5803   return false;
   5804 }
   5805 inline bool Type::isObjCBuiltinType() const {
   5806   return isObjCIdType() || isObjCClassType() || isObjCSelType();
   5807 }
   5808 
   5809 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
   5810   inline bool Type::is##Id##Type() const { \
   5811     return isSpecificBuiltinType(BuiltinType::Id); \
   5812   }
   5813 #include "clang/Basic/OpenCLImageTypes.def"
   5814 
   5815 inline bool Type::isSamplerT() const {
   5816   return isSpecificBuiltinType(BuiltinType::OCLSampler);
   5817 }
   5818 
   5819 inline bool Type::isEventT() const {
   5820   return isSpecificBuiltinType(BuiltinType::OCLEvent);
   5821 }
   5822 
   5823 inline bool Type::isClkEventT() const {
   5824   return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
   5825 }
   5826 
   5827 inline bool Type::isQueueT() const {
   5828   return isSpecificBuiltinType(BuiltinType::OCLQueue);
   5829 }
   5830 
   5831 inline bool Type::isReserveIDT() const {
   5832   return isSpecificBuiltinType(BuiltinType::OCLReserveID);
   5833 }
   5834 
   5835 inline bool Type::isImageType() const {
   5836 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
   5837   return
   5838 #include "clang/Basic/OpenCLImageTypes.def"
   5839       0; // end boolean or operation
   5840 }
   5841 
   5842 inline bool Type::isPipeType() const {
   5843   return isa<PipeType>(CanonicalType);
   5844 }
   5845 
   5846 inline bool Type::isOpenCLSpecificType() const {
   5847   return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
   5848          isQueueT() || isReserveIDT() || isPipeType();
   5849 }
   5850 
   5851 inline bool Type::isTemplateTypeParmType() const {
   5852   return isa<TemplateTypeParmType>(CanonicalType);
   5853 }
   5854 
   5855 inline bool Type::isSpecificBuiltinType(unsigned K) const {
   5856   if (const BuiltinType *BT = getAs<BuiltinType>())
   5857     if (BT->getKind() == (BuiltinType::Kind) K)
   5858       return true;
   5859   return false;
   5860 }
   5861 
   5862 inline bool Type::isPlaceholderType() const {
   5863   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5864     return BT->isPlaceholderType();
   5865   return false;
   5866 }
   5867 
   5868 inline const BuiltinType *Type::getAsPlaceholderType() const {
   5869   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5870     if (BT->isPlaceholderType())
   5871       return BT;
   5872   return nullptr;
   5873 }
   5874 
   5875 inline bool Type::isSpecificPlaceholderType(unsigned K) const {
   5876   assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
   5877   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5878     return (BT->getKind() == (BuiltinType::Kind) K);
   5879   return false;
   5880 }
   5881 
   5882 inline bool Type::isNonOverloadPlaceholderType() const {
   5883   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5884     return BT->isNonOverloadPlaceholderType();
   5885   return false;
   5886 }
   5887 
   5888 inline bool Type::isVoidType() const {
   5889   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5890     return BT->getKind() == BuiltinType::Void;
   5891   return false;
   5892 }
   5893 
   5894 inline bool Type::isHalfType() const {
   5895   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5896     return BT->getKind() == BuiltinType::Half;
   5897   // FIXME: Should we allow complex __fp16? Probably not.
   5898   return false;
   5899 }
   5900 
   5901 inline bool Type::isNullPtrType() const {
   5902   if (const BuiltinType *BT = getAs<BuiltinType>())
   5903     return BT->getKind() == BuiltinType::NullPtr;
   5904   return false;
   5905 }
   5906 
   5907 bool IsEnumDeclComplete(EnumDecl *);
   5908 bool IsEnumDeclScoped(EnumDecl *);
   5909 
   5910 inline bool Type::isIntegerType() const {
   5911   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5912     return BT->getKind() >= BuiltinType::Bool &&
   5913            BT->getKind() <= BuiltinType::Int128;
   5914   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
   5915     // Incomplete enum types are not treated as integer types.
   5916     // FIXME: In C++, enum types are never integer types.
   5917     return IsEnumDeclComplete(ET->getDecl()) &&
   5918       !IsEnumDeclScoped(ET->getDecl());
   5919   }
   5920   return false;
   5921 }
   5922 
   5923 inline bool Type::isScalarType() const {
   5924   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5925     return BT->getKind() > BuiltinType::Void &&
   5926            BT->getKind() <= BuiltinType::NullPtr;
   5927   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   5928     // Enums are scalar types, but only if they are defined.  Incomplete enums
   5929     // are not treated as scalar types.
   5930     return IsEnumDeclComplete(ET->getDecl());
   5931   return isa<PointerType>(CanonicalType) ||
   5932          isa<BlockPointerType>(CanonicalType) ||
   5933          isa<MemberPointerType>(CanonicalType) ||
   5934          isa<ComplexType>(CanonicalType) ||
   5935          isa<ObjCObjectPointerType>(CanonicalType);
   5936 }
   5937 
   5938 inline bool Type::isIntegralOrEnumerationType() const {
   5939   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5940     return BT->getKind() >= BuiltinType::Bool &&
   5941            BT->getKind() <= BuiltinType::Int128;
   5942 
   5943   // Check for a complete enum type; incomplete enum types are not properly an
   5944   // enumeration type in the sense required here.
   5945   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   5946     return IsEnumDeclComplete(ET->getDecl());
   5947 
   5948   return false;
   5949 }
   5950 
   5951 inline bool Type::isBooleanType() const {
   5952   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5953     return BT->getKind() == BuiltinType::Bool;
   5954   return false;
   5955 }
   5956 
   5957 inline bool Type::isUndeducedType() const {
   5958   auto *DT = getContainedDeducedType();
   5959   return DT && !DT->isDeduced();
   5960 }
   5961 
   5962 /// \brief Determines whether this is a type for which one can define
   5963 /// an overloaded operator.
   5964 inline bool Type::isOverloadableType() const {
   5965   return isDependentType() || isRecordType() || isEnumeralType();
   5966 }
   5967 
   5968 /// \brief Determines whether this type can decay to a pointer type.
   5969 inline bool Type::canDecayToPointerType() const {
   5970   return isFunctionType() || isArrayType();
   5971 }
   5972 
   5973 inline bool Type::hasPointerRepresentation() const {
   5974   return (isPointerType() || isReferenceType() || isBlockPointerType() ||
   5975           isObjCObjectPointerType() || isNullPtrType());
   5976 }
   5977 
   5978 inline bool Type::hasObjCPointerRepresentation() const {
   5979   return isObjCObjectPointerType();
   5980 }
   5981 
   5982 inline const Type *Type::getBaseElementTypeUnsafe() const {
   5983   const Type *type = this;
   5984   while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
   5985     type = arrayType->getElementType().getTypePtr();
   5986   return type;
   5987 }
   5988 
   5989 inline const Type *Type::getPointeeOrArrayElementType() const {
   5990   const Type *type = this;
   5991   if (type->isAnyPointerType())
   5992     return type->getPointeeType().getTypePtr();
   5993   else if (type->isArrayType())
   5994     return type->getBaseElementTypeUnsafe();
   5995   return type;
   5996 }
   5997 
   5998 /// Insertion operator for diagnostics.  This allows sending QualType's into a
   5999 /// diagnostic with <<.
   6000 inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
   6001                                            QualType T) {
   6002   DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   6003                   DiagnosticsEngine::ak_qualtype);
   6004   return DB;
   6005 }
   6006 
   6007 /// Insertion operator for partial diagnostics.  This allows sending QualType's
   6008 /// into a diagnostic with <<.
   6009 inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
   6010                                            QualType T) {
   6011   PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   6012                   DiagnosticsEngine::ak_qualtype);
   6013   return PD;
   6014 }
   6015 
   6016 // Helper class template that is used by Type::getAs to ensure that one does
   6017 // not try to look through a qualified type to get to an array type.
   6018 template <typename T>
   6019 using TypeIsArrayType =
   6020     std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
   6021                                      std::is_base_of<ArrayType, T>::value>;
   6022 
   6023 // Member-template getAs<specific type>'.
   6024 template <typename T> const T *Type::getAs() const {
   6025   static_assert(!TypeIsArrayType<T>::value,
   6026                 "ArrayType cannot be used with getAs!");
   6027 
   6028   // If this is directly a T type, return it.
   6029   if (const T *Ty = dyn_cast<T>(this))
   6030     return Ty;
   6031 
   6032   // If the canonical form of this type isn't the right kind, reject it.
   6033   if (!isa<T>(CanonicalType))
   6034     return nullptr;
   6035 
   6036   // If this is a typedef for the type, strip the typedef off without
   6037   // losing all typedef information.
   6038   return cast<T>(getUnqualifiedDesugaredType());
   6039 }
   6040 
   6041 template <typename T> const T *Type::getAsAdjusted() const {
   6042   static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
   6043 
   6044   // If this is directly a T type, return it.
   6045   if (const T *Ty = dyn_cast<T>(this))
   6046     return Ty;
   6047 
   6048   // If the canonical form of this type isn't the right kind, reject it.
   6049   if (!isa<T>(CanonicalType))
   6050     return nullptr;
   6051 
   6052   // Strip off type adjustments that do not modify the underlying nature of the
   6053   // type.
   6054   const Type *Ty = this;
   6055   while (Ty) {
   6056     if (const auto *A = dyn_cast<AttributedType>(Ty))
   6057       Ty = A->getModifiedType().getTypePtr();
   6058     else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
   6059       Ty = E->desugar().getTypePtr();
   6060     else if (const auto *P = dyn_cast<ParenType>(Ty))
   6061       Ty = P->desugar().getTypePtr();
   6062     else if (const auto *A = dyn_cast<AdjustedType>(Ty))
   6063       Ty = A->desugar().getTypePtr();
   6064     else
   6065       break;
   6066   }
   6067 
   6068   // Just because the canonical type is correct does not mean we can use cast<>,
   6069   // since we may not have stripped off all the sugar down to the base type.
   6070   return dyn_cast<T>(Ty);
   6071 }
   6072 
   6073 inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
   6074   // If this is directly an array type, return it.
   6075   if (const ArrayType *arr = dyn_cast<ArrayType>(this))
   6076     return arr;
   6077 
   6078   // If the canonical form of this type isn't the right kind, reject it.
   6079   if (!isa<ArrayType>(CanonicalType))
   6080     return nullptr;
   6081 
   6082   // If this is a typedef for the type, strip the typedef off without
   6083   // losing all typedef information.
   6084   return cast<ArrayType>(getUnqualifiedDesugaredType());
   6085 }
   6086 
   6087 template <typename T> const T *Type::castAs() const {
   6088   static_assert(!TypeIsArrayType<T>::value,
   6089                 "ArrayType cannot be used with castAs!");
   6090 
   6091   if (const T *ty = dyn_cast<T>(this)) return ty;
   6092   assert(isa<T>(CanonicalType));
   6093   return cast<T>(getUnqualifiedDesugaredType());
   6094 }
   6095 
   6096 inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
   6097   assert(isa<ArrayType>(CanonicalType));
   6098   if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
   6099   return cast<ArrayType>(getUnqualifiedDesugaredType());
   6100 }
   6101 
   6102 DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
   6103                          QualType CanonicalPtr)
   6104     : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
   6105 #ifndef NDEBUG
   6106   QualType Adjusted = getAdjustedType();
   6107   (void)AttributedType::stripOuterNullability(Adjusted);
   6108   assert(isa<PointerType>(Adjusted));
   6109 #endif
   6110 }
   6111 
   6112 QualType DecayedType::getPointeeType() const {
   6113   QualType Decayed = getDecayedType();
   6114   (void)AttributedType::stripOuterNullability(Decayed);
   6115   return cast<PointerType>(Decayed)->getPointeeType();
   6116 }
   6117 
   6118 
   6119 }  // end namespace clang
   6120 
   6121 #endif
   6122