Home | History | Annotate | Download | only in CodeGen
      1 //===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Collect the sequence of machine instructions for a basic block.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
     15 #define LLVM_CODEGEN_MACHINEBASICBLOCK_H
     16 
     17 #include "llvm/ADT/GraphTraits.h"
     18 #include "llvm/ADT/ilist.h"
     19 #include "llvm/ADT/ilist_node.h"
     20 #include "llvm/ADT/iterator_range.h"
     21 #include "llvm/ADT/simple_ilist.h"
     22 #include "llvm/CodeGen/MachineInstr.h"
     23 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
     24 #include "llvm/IR/DebugLoc.h"
     25 #include "llvm/MC/LaneBitmask.h"
     26 #include "llvm/MC/MCRegisterInfo.h"
     27 #include "llvm/Support/BranchProbability.h"
     28 #include <cassert>
     29 #include <cstdint>
     30 #include <functional>
     31 #include <iterator>
     32 #include <string>
     33 #include <vector>
     34 
     35 namespace llvm {
     36 
     37 class BasicBlock;
     38 class MachineFunction;
     39 class MCSymbol;
     40 class ModuleSlotTracker;
     41 class Pass;
     42 class SlotIndexes;
     43 class StringRef;
     44 class raw_ostream;
     45 class TargetRegisterClass;
     46 class TargetRegisterInfo;
     47 
     48 template <> struct ilist_traits<MachineInstr> {
     49 private:
     50   friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
     51 
     52   MachineBasicBlock *Parent;
     53 
     54   using instr_iterator =
     55       simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
     56 
     57 public:
     58   void addNodeToList(MachineInstr *N);
     59   void removeNodeFromList(MachineInstr *N);
     60   void transferNodesFromList(ilist_traits &OldList, instr_iterator First,
     61                              instr_iterator Last);
     62   void deleteNode(MachineInstr *MI);
     63 };
     64 
     65 class MachineBasicBlock
     66     : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
     67 public:
     68   /// Pair of physical register and lane mask.
     69   /// This is not simply a std::pair typedef because the members should be named
     70   /// clearly as they both have an integer type.
     71   struct RegisterMaskPair {
     72   public:
     73     MCPhysReg PhysReg;
     74     LaneBitmask LaneMask;
     75 
     76     RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
     77         : PhysReg(PhysReg), LaneMask(LaneMask) {}
     78   };
     79 
     80 private:
     81   using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
     82 
     83   Instructions Insts;
     84   const BasicBlock *BB;
     85   int Number;
     86   MachineFunction *xParent;
     87 
     88   /// Keep track of the predecessor / successor basic blocks.
     89   std::vector<MachineBasicBlock *> Predecessors;
     90   std::vector<MachineBasicBlock *> Successors;
     91 
     92   /// Keep track of the probabilities to the successors. This vector has the
     93   /// same order as Successors, or it is empty if we don't use it (disable
     94   /// optimization).
     95   std::vector<BranchProbability> Probs;
     96   using probability_iterator = std::vector<BranchProbability>::iterator;
     97   using const_probability_iterator =
     98       std::vector<BranchProbability>::const_iterator;
     99 
    100   /// Keep track of the physical registers that are livein of the basicblock.
    101   using LiveInVector = std::vector<RegisterMaskPair>;
    102   LiveInVector LiveIns;
    103 
    104   /// Alignment of the basic block. Zero if the basic block does not need to be
    105   /// aligned. The alignment is specified as log2(bytes).
    106   unsigned Alignment = 0;
    107 
    108   /// Indicate that this basic block is entered via an exception handler.
    109   bool IsEHPad = false;
    110 
    111   /// Indicate that this basic block is potentially the target of an indirect
    112   /// branch.
    113   bool AddressTaken = false;
    114 
    115   /// Indicate that this basic block is the entry block of an EH funclet.
    116   bool IsEHFuncletEntry = false;
    117 
    118   /// Indicate that this basic block is the entry block of a cleanup funclet.
    119   bool IsCleanupFuncletEntry = false;
    120 
    121   /// \brief since getSymbol is a relatively heavy-weight operation, the symbol
    122   /// is only computed once and is cached.
    123   mutable MCSymbol *CachedMCSymbol = nullptr;
    124 
    125   // Intrusive list support
    126   MachineBasicBlock() = default;
    127 
    128   explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
    129 
    130   ~MachineBasicBlock();
    131 
    132   // MachineBasicBlocks are allocated and owned by MachineFunction.
    133   friend class MachineFunction;
    134 
    135 public:
    136   /// Return the LLVM basic block that this instance corresponded to originally.
    137   /// Note that this may be NULL if this instance does not correspond directly
    138   /// to an LLVM basic block.
    139   const BasicBlock *getBasicBlock() const { return BB; }
    140 
    141   /// Return the name of the corresponding LLVM basic block, or an empty string.
    142   StringRef getName() const;
    143 
    144   /// Return a formatted string to identify this block and its parent function.
    145   std::string getFullName() const;
    146 
    147   /// Test whether this block is potentially the target of an indirect branch.
    148   bool hasAddressTaken() const { return AddressTaken; }
    149 
    150   /// Set this block to reflect that it potentially is the target of an indirect
    151   /// branch.
    152   void setHasAddressTaken() { AddressTaken = true; }
    153 
    154   /// Return the MachineFunction containing this basic block.
    155   const MachineFunction *getParent() const { return xParent; }
    156   MachineFunction *getParent() { return xParent; }
    157 
    158   using instr_iterator = Instructions::iterator;
    159   using const_instr_iterator = Instructions::const_iterator;
    160   using reverse_instr_iterator = Instructions::reverse_iterator;
    161   using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
    162 
    163   using iterator = MachineInstrBundleIterator<MachineInstr>;
    164   using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
    165   using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
    166   using const_reverse_iterator =
    167       MachineInstrBundleIterator<const MachineInstr, true>;
    168 
    169   unsigned size() const { return (unsigned)Insts.size(); }
    170   bool empty() const { return Insts.empty(); }
    171 
    172   MachineInstr       &instr_front()       { return Insts.front(); }
    173   MachineInstr       &instr_back()        { return Insts.back();  }
    174   const MachineInstr &instr_front() const { return Insts.front(); }
    175   const MachineInstr &instr_back()  const { return Insts.back();  }
    176 
    177   MachineInstr       &front()             { return Insts.front(); }
    178   MachineInstr       &back()              { return *--end();      }
    179   const MachineInstr &front()       const { return Insts.front(); }
    180   const MachineInstr &back()        const { return *--end();      }
    181 
    182   instr_iterator                instr_begin()       { return Insts.begin();  }
    183   const_instr_iterator          instr_begin() const { return Insts.begin();  }
    184   instr_iterator                  instr_end()       { return Insts.end();    }
    185   const_instr_iterator            instr_end() const { return Insts.end();    }
    186   reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
    187   const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
    188   reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
    189   const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
    190 
    191   using instr_range = iterator_range<instr_iterator>;
    192   using const_instr_range = iterator_range<const_instr_iterator>;
    193   instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
    194   const_instr_range instrs() const {
    195     return const_instr_range(instr_begin(), instr_end());
    196   }
    197 
    198   iterator                begin()       { return instr_begin();  }
    199   const_iterator          begin() const { return instr_begin();  }
    200   iterator                end  ()       { return instr_end();    }
    201   const_iterator          end  () const { return instr_end();    }
    202   reverse_iterator rbegin() {
    203     return reverse_iterator::getAtBundleBegin(instr_rbegin());
    204   }
    205   const_reverse_iterator rbegin() const {
    206     return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
    207   }
    208   reverse_iterator rend() { return reverse_iterator(instr_rend()); }
    209   const_reverse_iterator rend() const {
    210     return const_reverse_iterator(instr_rend());
    211   }
    212 
    213   /// Support for MachineInstr::getNextNode().
    214   static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
    215     return &MachineBasicBlock::Insts;
    216   }
    217 
    218   inline iterator_range<iterator> terminators() {
    219     return make_range(getFirstTerminator(), end());
    220   }
    221   inline iterator_range<const_iterator> terminators() const {
    222     return make_range(getFirstTerminator(), end());
    223   }
    224 
    225   // Machine-CFG iterators
    226   using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
    227   using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
    228   using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
    229   using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
    230   using pred_reverse_iterator =
    231       std::vector<MachineBasicBlock *>::reverse_iterator;
    232   using const_pred_reverse_iterator =
    233       std::vector<MachineBasicBlock *>::const_reverse_iterator;
    234   using succ_reverse_iterator =
    235       std::vector<MachineBasicBlock *>::reverse_iterator;
    236   using const_succ_reverse_iterator =
    237       std::vector<MachineBasicBlock *>::const_reverse_iterator;
    238   pred_iterator        pred_begin()       { return Predecessors.begin(); }
    239   const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
    240   pred_iterator        pred_end()         { return Predecessors.end();   }
    241   const_pred_iterator  pred_end()   const { return Predecessors.end();   }
    242   pred_reverse_iterator        pred_rbegin()
    243                                           { return Predecessors.rbegin();}
    244   const_pred_reverse_iterator  pred_rbegin() const
    245                                           { return Predecessors.rbegin();}
    246   pred_reverse_iterator        pred_rend()
    247                                           { return Predecessors.rend();  }
    248   const_pred_reverse_iterator  pred_rend()   const
    249                                           { return Predecessors.rend();  }
    250   unsigned             pred_size()  const {
    251     return (unsigned)Predecessors.size();
    252   }
    253   bool                 pred_empty() const { return Predecessors.empty(); }
    254   succ_iterator        succ_begin()       { return Successors.begin();   }
    255   const_succ_iterator  succ_begin() const { return Successors.begin();   }
    256   succ_iterator        succ_end()         { return Successors.end();     }
    257   const_succ_iterator  succ_end()   const { return Successors.end();     }
    258   succ_reverse_iterator        succ_rbegin()
    259                                           { return Successors.rbegin();  }
    260   const_succ_reverse_iterator  succ_rbegin() const
    261                                           { return Successors.rbegin();  }
    262   succ_reverse_iterator        succ_rend()
    263                                           { return Successors.rend();    }
    264   const_succ_reverse_iterator  succ_rend()   const
    265                                           { return Successors.rend();    }
    266   unsigned             succ_size()  const {
    267     return (unsigned)Successors.size();
    268   }
    269   bool                 succ_empty() const { return Successors.empty();   }
    270 
    271   inline iterator_range<pred_iterator> predecessors() {
    272     return make_range(pred_begin(), pred_end());
    273   }
    274   inline iterator_range<const_pred_iterator> predecessors() const {
    275     return make_range(pred_begin(), pred_end());
    276   }
    277   inline iterator_range<succ_iterator> successors() {
    278     return make_range(succ_begin(), succ_end());
    279   }
    280   inline iterator_range<const_succ_iterator> successors() const {
    281     return make_range(succ_begin(), succ_end());
    282   }
    283 
    284   // LiveIn management methods.
    285 
    286   /// Adds the specified register as a live in. Note that it is an error to add
    287   /// the same register to the same set more than once unless the intention is
    288   /// to call sortUniqueLiveIns after all registers are added.
    289   void addLiveIn(MCPhysReg PhysReg,
    290                  LaneBitmask LaneMask = LaneBitmask::getAll()) {
    291     LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
    292   }
    293   void addLiveIn(const RegisterMaskPair &RegMaskPair) {
    294     LiveIns.push_back(RegMaskPair);
    295   }
    296 
    297   /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
    298   /// this than repeatedly calling isLiveIn before calling addLiveIn for every
    299   /// LiveIn insertion.
    300   void sortUniqueLiveIns();
    301 
    302   /// Clear live in list.
    303   void clearLiveIns();
    304 
    305   /// Add PhysReg as live in to this block, and ensure that there is a copy of
    306   /// PhysReg to a virtual register of class RC. Return the virtual register
    307   /// that is a copy of the live in PhysReg.
    308   unsigned addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC);
    309 
    310   /// Remove the specified register from the live in set.
    311   void removeLiveIn(MCPhysReg Reg,
    312                     LaneBitmask LaneMask = LaneBitmask::getAll());
    313 
    314   /// Return true if the specified register is in the live in set.
    315   bool isLiveIn(MCPhysReg Reg,
    316                 LaneBitmask LaneMask = LaneBitmask::getAll()) const;
    317 
    318   // Iteration support for live in sets.  These sets are kept in sorted
    319   // order by their register number.
    320   using livein_iterator = LiveInVector::const_iterator;
    321 #ifndef NDEBUG
    322   /// Unlike livein_begin, this method does not check that the liveness
    323   /// information is accurate. Still for debug purposes it may be useful
    324   /// to have iterators that won't assert if the liveness information
    325   /// is not current.
    326   livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
    327   iterator_range<livein_iterator> liveins_dbg() const {
    328     return make_range(livein_begin_dbg(), livein_end());
    329   }
    330 #endif
    331   livein_iterator livein_begin() const;
    332   livein_iterator livein_end()   const { return LiveIns.end(); }
    333   bool            livein_empty() const { return LiveIns.empty(); }
    334   iterator_range<livein_iterator> liveins() const {
    335     return make_range(livein_begin(), livein_end());
    336   }
    337 
    338   /// Remove entry from the livein set and return iterator to the next.
    339   livein_iterator removeLiveIn(livein_iterator I);
    340 
    341   /// Get the clobber mask for the start of this basic block. Funclets use this
    342   /// to prevent register allocation across funclet transitions.
    343   const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
    344 
    345   /// Get the clobber mask for the end of the basic block.
    346   /// \see getBeginClobberMask()
    347   const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
    348 
    349   /// Return alignment of the basic block. The alignment is specified as
    350   /// log2(bytes).
    351   unsigned getAlignment() const { return Alignment; }
    352 
    353   /// Set alignment of the basic block. The alignment is specified as
    354   /// log2(bytes).
    355   void setAlignment(unsigned Align) { Alignment = Align; }
    356 
    357   /// Returns true if the block is a landing pad. That is this basic block is
    358   /// entered via an exception handler.
    359   bool isEHPad() const { return IsEHPad; }
    360 
    361   /// Indicates the block is a landing pad.  That is this basic block is entered
    362   /// via an exception handler.
    363   void setIsEHPad(bool V = true) { IsEHPad = V; }
    364 
    365   bool hasEHPadSuccessor() const;
    366 
    367   /// Returns true if this is the entry block of an EH funclet.
    368   bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
    369 
    370   /// Indicates if this is the entry block of an EH funclet.
    371   void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
    372 
    373   /// Returns true if this is the entry block of a cleanup funclet.
    374   bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
    375 
    376   /// Indicates if this is the entry block of a cleanup funclet.
    377   void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
    378 
    379   // Code Layout methods.
    380 
    381   /// Move 'this' block before or after the specified block.  This only moves
    382   /// the block, it does not modify the CFG or adjust potential fall-throughs at
    383   /// the end of the block.
    384   void moveBefore(MachineBasicBlock *NewAfter);
    385   void moveAfter(MachineBasicBlock *NewBefore);
    386 
    387   /// Update the terminator instructions in block to account for changes to the
    388   /// layout. If the block previously used a fallthrough, it may now need a
    389   /// branch, and if it previously used branching it may now be able to use a
    390   /// fallthrough.
    391   void updateTerminator();
    392 
    393   // Machine-CFG mutators
    394 
    395   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
    396   /// of Succ is automatically updated. PROB parameter is stored in
    397   /// Probabilities list. The default probability is set as unknown. Mixing
    398   /// known and unknown probabilities in successor list is not allowed. When all
    399   /// successors have unknown probabilities, 1 / N is returned as the
    400   /// probability for each successor, where N is the number of successors.
    401   ///
    402   /// Note that duplicate Machine CFG edges are not allowed.
    403   void addSuccessor(MachineBasicBlock *Succ,
    404                     BranchProbability Prob = BranchProbability::getUnknown());
    405 
    406   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
    407   /// of Succ is automatically updated. The probability is not provided because
    408   /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
    409   /// won't be used. Using this interface can save some space.
    410   void addSuccessorWithoutProb(MachineBasicBlock *Succ);
    411 
    412   /// Set successor probability of a given iterator.
    413   void setSuccProbability(succ_iterator I, BranchProbability Prob);
    414 
    415   /// Normalize probabilities of all successors so that the sum of them becomes
    416   /// one. This is usually done when the current update on this MBB is done, and
    417   /// the sum of its successors' probabilities is not guaranteed to be one. The
    418   /// user is responsible for the correct use of this function.
    419   /// MBB::removeSuccessor() has an option to do this automatically.
    420   void normalizeSuccProbs() {
    421     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
    422   }
    423 
    424   /// Validate successors' probabilities and check if the sum of them is
    425   /// approximate one. This only works in DEBUG mode.
    426   void validateSuccProbs() const;
    427 
    428   /// Remove successor from the successors list of this MachineBasicBlock. The
    429   /// Predecessors list of Succ is automatically updated.
    430   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
    431   /// after the successor is removed.
    432   void removeSuccessor(MachineBasicBlock *Succ,
    433                        bool NormalizeSuccProbs = false);
    434 
    435   /// Remove specified successor from the successors list of this
    436   /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
    437   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
    438   /// after the successor is removed.
    439   /// Return the iterator to the element after the one removed.
    440   succ_iterator removeSuccessor(succ_iterator I,
    441                                 bool NormalizeSuccProbs = false);
    442 
    443   /// Replace successor OLD with NEW and update probability info.
    444   void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
    445 
    446   /// Transfers all the successors from MBB to this machine basic block (i.e.,
    447   /// copies all the successors FromMBB and remove all the successors from
    448   /// FromMBB).
    449   void transferSuccessors(MachineBasicBlock *FromMBB);
    450 
    451   /// Transfers all the successors, as in transferSuccessors, and update PHI
    452   /// operands in the successor blocks which refer to FromMBB to refer to this.
    453   void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
    454 
    455   /// Return true if any of the successors have probabilities attached to them.
    456   bool hasSuccessorProbabilities() const { return !Probs.empty(); }
    457 
    458   /// Return true if the specified MBB is a predecessor of this block.
    459   bool isPredecessor(const MachineBasicBlock *MBB) const;
    460 
    461   /// Return true if the specified MBB is a successor of this block.
    462   bool isSuccessor(const MachineBasicBlock *MBB) const;
    463 
    464   /// Return true if the specified MBB will be emitted immediately after this
    465   /// block, such that if this block exits by falling through, control will
    466   /// transfer to the specified MBB. Note that MBB need not be a successor at
    467   /// all, for example if this block ends with an unconditional branch to some
    468   /// other block.
    469   bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
    470 
    471   /// Return the fallthrough block if the block can implicitly
    472   /// transfer control to the block after it by falling off the end of
    473   /// it.  This should return null if it can reach the block after
    474   /// it, but it uses an explicit branch to do so (e.g., a table
    475   /// jump).  Non-null return  is a conservative answer.
    476   MachineBasicBlock *getFallThrough();
    477 
    478   /// Return true if the block can implicitly transfer control to the
    479   /// block after it by falling off the end of it.  This should return
    480   /// false if it can reach the block after it, but it uses an
    481   /// explicit branch to do so (e.g., a table jump).  True is a
    482   /// conservative answer.
    483   bool canFallThrough();
    484 
    485   /// Returns a pointer to the first instruction in this block that is not a
    486   /// PHINode instruction. When adding instructions to the beginning of the
    487   /// basic block, they should be added before the returned value, not before
    488   /// the first instruction, which might be PHI.
    489   /// Returns end() is there's no non-PHI instruction.
    490   iterator getFirstNonPHI();
    491 
    492   /// Return the first instruction in MBB after I that is not a PHI or a label.
    493   /// This is the correct point to insert lowered copies at the beginning of a
    494   /// basic block that must be before any debugging information.
    495   iterator SkipPHIsAndLabels(iterator I);
    496 
    497   /// Return the first instruction in MBB after I that is not a PHI, label or
    498   /// debug.  This is the correct point to insert copies at the beginning of a
    499   /// basic block.
    500   iterator SkipPHIsLabelsAndDebug(iterator I);
    501 
    502   /// Returns an iterator to the first terminator instruction of this basic
    503   /// block. If a terminator does not exist, it returns end().
    504   iterator getFirstTerminator();
    505   const_iterator getFirstTerminator() const {
    506     return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
    507   }
    508 
    509   /// Same getFirstTerminator but it ignores bundles and return an
    510   /// instr_iterator instead.
    511   instr_iterator getFirstInstrTerminator();
    512 
    513   /// Returns an iterator to the first non-debug instruction in the basic block,
    514   /// or end().
    515   iterator getFirstNonDebugInstr();
    516   const_iterator getFirstNonDebugInstr() const {
    517     return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
    518   }
    519 
    520   /// Returns an iterator to the last non-debug instruction in the basic block,
    521   /// or end().
    522   iterator getLastNonDebugInstr();
    523   const_iterator getLastNonDebugInstr() const {
    524     return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
    525   }
    526 
    527   /// Convenience function that returns true if the block ends in a return
    528   /// instruction.
    529   bool isReturnBlock() const {
    530     return !empty() && back().isReturn();
    531   }
    532 
    533   /// Split the critical edge from this block to the given successor block, and
    534   /// return the newly created block, or null if splitting is not possible.
    535   ///
    536   /// This function updates LiveVariables, MachineDominatorTree, and
    537   /// MachineLoopInfo, as applicable.
    538   MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P);
    539 
    540   /// Check if the edge between this block and the given successor \p
    541   /// Succ, can be split. If this returns true a subsequent call to
    542   /// SplitCriticalEdge is guaranteed to return a valid basic block if
    543   /// no changes occured in the meantime.
    544   bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
    545 
    546   void pop_front() { Insts.pop_front(); }
    547   void pop_back() { Insts.pop_back(); }
    548   void push_back(MachineInstr *MI) { Insts.push_back(MI); }
    549 
    550   /// Insert MI into the instruction list before I, possibly inside a bundle.
    551   ///
    552   /// If the insertion point is inside a bundle, MI will be added to the bundle,
    553   /// otherwise MI will not be added to any bundle. That means this function
    554   /// alone can't be used to prepend or append instructions to bundles. See
    555   /// MIBundleBuilder::insert() for a more reliable way of doing that.
    556   instr_iterator insert(instr_iterator I, MachineInstr *M);
    557 
    558   /// Insert a range of instructions into the instruction list before I.
    559   template<typename IT>
    560   void insert(iterator I, IT S, IT E) {
    561     assert((I == end() || I->getParent() == this) &&
    562            "iterator points outside of basic block");
    563     Insts.insert(I.getInstrIterator(), S, E);
    564   }
    565 
    566   /// Insert MI into the instruction list before I.
    567   iterator insert(iterator I, MachineInstr *MI) {
    568     assert((I == end() || I->getParent() == this) &&
    569            "iterator points outside of basic block");
    570     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
    571            "Cannot insert instruction with bundle flags");
    572     return Insts.insert(I.getInstrIterator(), MI);
    573   }
    574 
    575   /// Insert MI into the instruction list after I.
    576   iterator insertAfter(iterator I, MachineInstr *MI) {
    577     assert((I == end() || I->getParent() == this) &&
    578            "iterator points outside of basic block");
    579     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
    580            "Cannot insert instruction with bundle flags");
    581     return Insts.insertAfter(I.getInstrIterator(), MI);
    582   }
    583 
    584   /// Remove an instruction from the instruction list and delete it.
    585   ///
    586   /// If the instruction is part of a bundle, the other instructions in the
    587   /// bundle will still be bundled after removing the single instruction.
    588   instr_iterator erase(instr_iterator I);
    589 
    590   /// Remove an instruction from the instruction list and delete it.
    591   ///
    592   /// If the instruction is part of a bundle, the other instructions in the
    593   /// bundle will still be bundled after removing the single instruction.
    594   instr_iterator erase_instr(MachineInstr *I) {
    595     return erase(instr_iterator(I));
    596   }
    597 
    598   /// Remove a range of instructions from the instruction list and delete them.
    599   iterator erase(iterator I, iterator E) {
    600     return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
    601   }
    602 
    603   /// Remove an instruction or bundle from the instruction list and delete it.
    604   ///
    605   /// If I points to a bundle of instructions, they are all erased.
    606   iterator erase(iterator I) {
    607     return erase(I, std::next(I));
    608   }
    609 
    610   /// Remove an instruction from the instruction list and delete it.
    611   ///
    612   /// If I is the head of a bundle of instructions, the whole bundle will be
    613   /// erased.
    614   iterator erase(MachineInstr *I) {
    615     return erase(iterator(I));
    616   }
    617 
    618   /// Remove the unbundled instruction from the instruction list without
    619   /// deleting it.
    620   ///
    621   /// This function can not be used to remove bundled instructions, use
    622   /// remove_instr to remove individual instructions from a bundle.
    623   MachineInstr *remove(MachineInstr *I) {
    624     assert(!I->isBundled() && "Cannot remove bundled instructions");
    625     return Insts.remove(instr_iterator(I));
    626   }
    627 
    628   /// Remove the possibly bundled instruction from the instruction list
    629   /// without deleting it.
    630   ///
    631   /// If the instruction is part of a bundle, the other instructions in the
    632   /// bundle will still be bundled after removing the single instruction.
    633   MachineInstr *remove_instr(MachineInstr *I);
    634 
    635   void clear() {
    636     Insts.clear();
    637   }
    638 
    639   /// Take an instruction from MBB 'Other' at the position From, and insert it
    640   /// into this MBB right before 'Where'.
    641   ///
    642   /// If From points to a bundle of instructions, the whole bundle is moved.
    643   void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
    644     // The range splice() doesn't allow noop moves, but this one does.
    645     if (Where != From)
    646       splice(Where, Other, From, std::next(From));
    647   }
    648 
    649   /// Take a block of instructions from MBB 'Other' in the range [From, To),
    650   /// and insert them into this MBB right before 'Where'.
    651   ///
    652   /// The instruction at 'Where' must not be included in the range of
    653   /// instructions to move.
    654   void splice(iterator Where, MachineBasicBlock *Other,
    655               iterator From, iterator To) {
    656     Insts.splice(Where.getInstrIterator(), Other->Insts,
    657                  From.getInstrIterator(), To.getInstrIterator());
    658   }
    659 
    660   /// This method unlinks 'this' from the containing function, and returns it,
    661   /// but does not delete it.
    662   MachineBasicBlock *removeFromParent();
    663 
    664   /// This method unlinks 'this' from the containing function and deletes it.
    665   void eraseFromParent();
    666 
    667   /// Given a machine basic block that branched to 'Old', change the code and
    668   /// CFG so that it branches to 'New' instead.
    669   void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
    670 
    671   /// Various pieces of code can cause excess edges in the CFG to be inserted.
    672   /// If we have proven that MBB can only branch to DestA and DestB, remove any
    673   /// other MBB successors from the CFG. DestA and DestB can be null. Besides
    674   /// DestA and DestB, retain other edges leading to LandingPads (currently
    675   /// there can be only one; we don't check or require that here). Note it is
    676   /// possible that DestA and/or DestB are LandingPads.
    677   bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
    678                             MachineBasicBlock *DestB,
    679                             bool IsCond);
    680 
    681   /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
    682   /// instructions.  Return UnknownLoc if there is none.
    683   DebugLoc findDebugLoc(instr_iterator MBBI);
    684   DebugLoc findDebugLoc(iterator MBBI) {
    685     return findDebugLoc(MBBI.getInstrIterator());
    686   }
    687 
    688   /// Find and return the merged DebugLoc of the branch instructions of the
    689   /// block. Return UnknownLoc if there is none.
    690   DebugLoc findBranchDebugLoc();
    691 
    692   /// Possible outcome of a register liveness query to computeRegisterLiveness()
    693   enum LivenessQueryResult {
    694     LQR_Live,   ///< Register is known to be (at least partially) live.
    695     LQR_Dead,   ///< Register is known to be fully dead.
    696     LQR_Unknown ///< Register liveness not decidable from local neighborhood.
    697   };
    698 
    699   /// Return whether (physical) register \p Reg has been <def>ined and not
    700   /// <kill>ed as of just before \p Before.
    701   ///
    702   /// Search is localised to a neighborhood of \p Neighborhood instructions
    703   /// before (searching for defs or kills) and \p Neighborhood instructions
    704   /// after (searching just for defs) \p Before.
    705   ///
    706   /// \p Reg must be a physical register.
    707   LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
    708                                               unsigned Reg,
    709                                               const_iterator Before,
    710                                               unsigned Neighborhood = 10) const;
    711 
    712   // Debugging methods.
    713   void dump() const;
    714   void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
    715   void print(raw_ostream &OS, ModuleSlotTracker &MST,
    716              const SlotIndexes* = nullptr) const;
    717 
    718   // Printing method used by LoopInfo.
    719   void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
    720 
    721   /// MachineBasicBlocks are uniquely numbered at the function level, unless
    722   /// they're not in a MachineFunction yet, in which case this will return -1.
    723   int getNumber() const { return Number; }
    724   void setNumber(int N) { Number = N; }
    725 
    726   /// Return the MCSymbol for this basic block.
    727   MCSymbol *getSymbol() const;
    728 
    729 private:
    730   /// Return probability iterator corresponding to the I successor iterator.
    731   probability_iterator getProbabilityIterator(succ_iterator I);
    732   const_probability_iterator
    733   getProbabilityIterator(const_succ_iterator I) const;
    734 
    735   friend class MachineBranchProbabilityInfo;
    736   friend class MIPrinter;
    737 
    738   /// Return probability of the edge from this block to MBB. This method should
    739   /// NOT be called directly, but by using getEdgeProbability method from
    740   /// MachineBranchProbabilityInfo class.
    741   BranchProbability getSuccProbability(const_succ_iterator Succ) const;
    742 
    743   // Methods used to maintain doubly linked list of blocks...
    744   friend struct ilist_callback_traits<MachineBasicBlock>;
    745 
    746   // Machine-CFG mutators
    747 
    748   /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
    749   /// unless you know what you're doing, because it doesn't update Pred's
    750   /// successors list. Use Pred->addSuccessor instead.
    751   void addPredecessor(MachineBasicBlock *Pred);
    752 
    753   /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
    754   /// unless you know what you're doing, because it doesn't update Pred's
    755   /// successors list. Use Pred->removeSuccessor instead.
    756   void removePredecessor(MachineBasicBlock *Pred);
    757 };
    758 
    759 raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
    760 
    761 // This is useful when building IndexedMaps keyed on basic block pointers.
    762 struct MBB2NumberFunctor :
    763   public std::unary_function<const MachineBasicBlock*, unsigned> {
    764   unsigned operator()(const MachineBasicBlock *MBB) const {
    765     return MBB->getNumber();
    766   }
    767 };
    768 
    769 //===--------------------------------------------------------------------===//
    770 // GraphTraits specializations for machine basic block graphs (machine-CFGs)
    771 //===--------------------------------------------------------------------===//
    772 
    773 // Provide specializations of GraphTraits to be able to treat a
    774 // MachineFunction as a graph of MachineBasicBlocks.
    775 //
    776 
    777 template <> struct GraphTraits<MachineBasicBlock *> {
    778   using NodeRef = MachineBasicBlock *;
    779   using ChildIteratorType = MachineBasicBlock::succ_iterator;
    780 
    781   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
    782   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
    783   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
    784 };
    785 
    786 template <> struct GraphTraits<const MachineBasicBlock *> {
    787   using NodeRef = const MachineBasicBlock *;
    788   using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
    789 
    790   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
    791   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
    792   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
    793 };
    794 
    795 // Provide specializations of GraphTraits to be able to treat a
    796 // MachineFunction as a graph of MachineBasicBlocks and to walk it
    797 // in inverse order.  Inverse order for a function is considered
    798 // to be when traversing the predecessor edges of a MBB
    799 // instead of the successor edges.
    800 //
    801 template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
    802   using NodeRef = MachineBasicBlock *;
    803   using ChildIteratorType = MachineBasicBlock::pred_iterator;
    804 
    805   static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
    806     return G.Graph;
    807   }
    808 
    809   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
    810   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
    811 };
    812 
    813 template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
    814   using NodeRef = const MachineBasicBlock *;
    815   using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
    816 
    817   static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
    818     return G.Graph;
    819   }
    820 
    821   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
    822   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
    823 };
    824 
    825 /// MachineInstrSpan provides an interface to get an iteration range
    826 /// containing the instruction it was initialized with, along with all
    827 /// those instructions inserted prior to or following that instruction
    828 /// at some point after the MachineInstrSpan is constructed.
    829 class MachineInstrSpan {
    830   MachineBasicBlock &MBB;
    831   MachineBasicBlock::iterator I, B, E;
    832 
    833 public:
    834   MachineInstrSpan(MachineBasicBlock::iterator I)
    835     : MBB(*I->getParent()),
    836       I(I),
    837       B(I == MBB.begin() ? MBB.end() : std::prev(I)),
    838       E(std::next(I)) {}
    839 
    840   MachineBasicBlock::iterator begin() {
    841     return B == MBB.end() ? MBB.begin() : std::next(B);
    842   }
    843   MachineBasicBlock::iterator end() { return E; }
    844   bool empty() { return begin() == end(); }
    845 
    846   MachineBasicBlock::iterator getInitial() { return I; }
    847 };
    848 
    849 /// Increment \p It until it points to a non-debug instruction or to \p End
    850 /// and return the resulting iterator. This function should only be used
    851 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
    852 /// const_instr_iterator} and the respective reverse iterators.
    853 template<typename IterT>
    854 inline IterT skipDebugInstructionsForward(IterT It, IterT End) {
    855   while (It != End && It->isDebugValue())
    856     It++;
    857   return It;
    858 }
    859 
    860 /// Decrement \p It until it points to a non-debug instruction or to \p Begin
    861 /// and return the resulting iterator. This function should only be used
    862 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
    863 /// const_instr_iterator} and the respective reverse iterators.
    864 template<class IterT>
    865 inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin) {
    866   while (It != Begin && It->isDebugValue())
    867     It--;
    868   return It;
    869 }
    870 
    871 } // end namespace llvm
    872 
    873 #endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H
    874