1 //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariables analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using a sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #ifndef LLVM_CODEGEN_LIVEVARIABLES_H 30 #define LLVM_CODEGEN_LIVEVARIABLES_H 31 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/IndexedMap.h" 34 #include "llvm/ADT/SmallSet.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/SparseBitVector.h" 37 #include "llvm/CodeGen/MachineFunctionPass.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 41 namespace llvm { 42 43 class MachineBasicBlock; 44 class MachineRegisterInfo; 45 46 class LiveVariables : public MachineFunctionPass { 47 public: 48 static char ID; // Pass identification, replacement for typeid 49 LiveVariables() : MachineFunctionPass(ID) { 50 initializeLiveVariablesPass(*PassRegistry::getPassRegistry()); 51 } 52 53 /// VarInfo - This represents the regions where a virtual register is live in 54 /// the program. We represent this with three different pieces of 55 /// information: the set of blocks in which the instruction is live 56 /// throughout, the set of blocks in which the instruction is actually used, 57 /// and the set of non-phi instructions that are the last users of the value. 58 /// 59 /// In the common case where a value is defined and killed in the same block, 60 /// There is one killing instruction, and AliveBlocks is empty. 61 /// 62 /// Otherwise, the value is live out of the block. If the value is live 63 /// throughout any blocks, these blocks are listed in AliveBlocks. Blocks 64 /// where the liveness range ends are not included in AliveBlocks, instead 65 /// being captured by the Kills set. In these blocks, the value is live into 66 /// the block (unless the value is defined and killed in the same block) and 67 /// lives until the specified instruction. Note that there cannot ever be a 68 /// value whose Kills set contains two instructions from the same basic block. 69 /// 70 /// PHI nodes complicate things a bit. If a PHI node is the last user of a 71 /// value in one of its predecessor blocks, it is not listed in the kills set, 72 /// but does include the predecessor block in the AliveBlocks set (unless that 73 /// block also defines the value). This leads to the (perfectly sensical) 74 /// situation where a value is defined in a block, and the last use is a phi 75 /// node in the successor. In this case, AliveBlocks is empty (the value is 76 /// not live across any blocks) and Kills is empty (phi nodes are not 77 /// included). This is sensical because the value must be live to the end of 78 /// the block, but is not live in any successor blocks. 79 struct VarInfo { 80 /// AliveBlocks - Set of blocks in which this value is alive completely 81 /// through. This is a bit set which uses the basic block number as an 82 /// index. 83 /// 84 SparseBitVector<> AliveBlocks; 85 86 /// Kills - List of MachineInstruction's which are the last use of this 87 /// virtual register (kill it) in their basic block. 88 /// 89 std::vector<MachineInstr*> Kills; 90 91 /// removeKill - Delete a kill corresponding to the specified 92 /// machine instruction. Returns true if there was a kill 93 /// corresponding to this instruction, false otherwise. 94 bool removeKill(MachineInstr &MI) { 95 std::vector<MachineInstr *>::iterator I = find(Kills, &MI); 96 if (I == Kills.end()) 97 return false; 98 Kills.erase(I); 99 return true; 100 } 101 102 /// findKill - Find a kill instruction in MBB. Return NULL if none is found. 103 MachineInstr *findKill(const MachineBasicBlock *MBB) const; 104 105 /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through 106 /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in 107 /// MBB, it is not considered live in. 108 bool isLiveIn(const MachineBasicBlock &MBB, 109 unsigned Reg, 110 MachineRegisterInfo &MRI); 111 112 void dump() const; 113 }; 114 115 private: 116 /// VirtRegInfo - This list is a mapping from virtual register number to 117 /// variable information. 118 /// 119 IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo; 120 121 /// PHIJoins - list of virtual registers that are PHI joins. These registers 122 /// may have multiple definitions, and they require special handling when 123 /// building live intervals. 124 SparseBitVector<> PHIJoins; 125 126 private: // Intermediate data structures 127 MachineFunction *MF; 128 129 MachineRegisterInfo* MRI; 130 131 const TargetRegisterInfo *TRI; 132 133 // PhysRegInfo - Keep track of which instruction was the last def of a 134 // physical register. This is a purely local property, because all physical 135 // register references are presumed dead across basic blocks. 136 std::vector<MachineInstr *> PhysRegDef; 137 138 // PhysRegInfo - Keep track of which instruction was the last use of a 139 // physical register. This is a purely local property, because all physical 140 // register references are presumed dead across basic blocks. 141 std::vector<MachineInstr *> PhysRegUse; 142 143 std::vector<SmallVector<unsigned, 4>> PHIVarInfo; 144 145 // DistanceMap - Keep track the distance of a MI from the start of the 146 // current basic block. 147 DenseMap<MachineInstr*, unsigned> DistanceMap; 148 149 /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the 150 /// uses. Pay special attention to the sub-register uses which may come below 151 /// the last use of the whole register. 152 bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI); 153 154 /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask. 155 void HandleRegMask(const MachineOperand&); 156 157 void HandlePhysRegUse(unsigned Reg, MachineInstr &MI); 158 void HandlePhysRegDef(unsigned Reg, MachineInstr *MI, 159 SmallVectorImpl<unsigned> &Defs); 160 void UpdatePhysRegDefs(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs); 161 162 /// FindLastRefOrPartRef - Return the last reference or partial reference of 163 /// the specified register. 164 MachineInstr *FindLastRefOrPartRef(unsigned Reg); 165 166 /// FindLastPartialDef - Return the last partial def of the specified 167 /// register. Also returns the sub-registers that're defined by the 168 /// instruction. 169 MachineInstr *FindLastPartialDef(unsigned Reg, 170 SmallSet<unsigned,4> &PartDefRegs); 171 172 /// analyzePHINodes - Gather information about the PHI nodes in here. In 173 /// particular, we want to map the variable information of a virtual 174 /// register which is used in a PHI node. We map that to the BB the vreg 175 /// is coming from. 176 void analyzePHINodes(const MachineFunction& Fn); 177 178 void runOnInstr(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs); 179 180 void runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs); 181 public: 182 183 bool runOnMachineFunction(MachineFunction &MF) override; 184 185 /// RegisterDefIsDead - Return true if the specified instruction defines the 186 /// specified register, but that definition is dead. 187 bool RegisterDefIsDead(MachineInstr &MI, unsigned Reg) const; 188 189 //===--------------------------------------------------------------------===// 190 // API to update live variable information 191 192 /// replaceKillInstruction - Update register kill info by replacing a kill 193 /// instruction with a new one. 194 void replaceKillInstruction(unsigned Reg, MachineInstr &OldMI, 195 MachineInstr &NewMI); 196 197 /// addVirtualRegisterKilled - Add information about the fact that the 198 /// specified register is killed after being used by the specified 199 /// instruction. If AddIfNotFound is true, add a implicit operand if it's 200 /// not found. 201 void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr &MI, 202 bool AddIfNotFound = false) { 203 if (MI.addRegisterKilled(IncomingReg, TRI, AddIfNotFound)) 204 getVarInfo(IncomingReg).Kills.push_back(&MI); 205 } 206 207 /// removeVirtualRegisterKilled - Remove the specified kill of the virtual 208 /// register from the live variable information. Returns true if the 209 /// variable was marked as killed by the specified instruction, 210 /// false otherwise. 211 bool removeVirtualRegisterKilled(unsigned reg, MachineInstr &MI) { 212 if (!getVarInfo(reg).removeKill(MI)) 213 return false; 214 215 bool Removed = false; 216 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 217 MachineOperand &MO = MI.getOperand(i); 218 if (MO.isReg() && MO.isKill() && MO.getReg() == reg) { 219 MO.setIsKill(false); 220 Removed = true; 221 break; 222 } 223 } 224 225 assert(Removed && "Register is not used by this instruction!"); 226 (void)Removed; 227 return true; 228 } 229 230 /// removeVirtualRegistersKilled - Remove all killed info for the specified 231 /// instruction. 232 void removeVirtualRegistersKilled(MachineInstr &MI); 233 234 /// addVirtualRegisterDead - Add information about the fact that the specified 235 /// register is dead after being used by the specified instruction. If 236 /// AddIfNotFound is true, add a implicit operand if it's not found. 237 void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr &MI, 238 bool AddIfNotFound = false) { 239 if (MI.addRegisterDead(IncomingReg, TRI, AddIfNotFound)) 240 getVarInfo(IncomingReg).Kills.push_back(&MI); 241 } 242 243 /// removeVirtualRegisterDead - Remove the specified kill of the virtual 244 /// register from the live variable information. Returns true if the 245 /// variable was marked dead at the specified instruction, false 246 /// otherwise. 247 bool removeVirtualRegisterDead(unsigned reg, MachineInstr &MI) { 248 if (!getVarInfo(reg).removeKill(MI)) 249 return false; 250 251 bool Removed = false; 252 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 253 MachineOperand &MO = MI.getOperand(i); 254 if (MO.isReg() && MO.isDef() && MO.getReg() == reg) { 255 MO.setIsDead(false); 256 Removed = true; 257 break; 258 } 259 } 260 assert(Removed && "Register is not defined by this instruction!"); 261 (void)Removed; 262 return true; 263 } 264 265 void getAnalysisUsage(AnalysisUsage &AU) const override; 266 267 void releaseMemory() override { 268 VirtRegInfo.clear(); 269 } 270 271 /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL 272 /// register. 273 VarInfo &getVarInfo(unsigned RegIdx); 274 275 void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock, 276 MachineBasicBlock *BB); 277 void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock, 278 MachineBasicBlock *BB, 279 std::vector<MachineBasicBlock*> &WorkList); 280 void HandleVirtRegDef(unsigned reg, MachineInstr &MI); 281 void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, MachineInstr &MI); 282 283 bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) { 284 return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI); 285 } 286 287 /// isLiveOut - Determine if Reg is live out from MBB, when not considering 288 /// PHI nodes. This means that Reg is either killed by a successor block or 289 /// passed through one. 290 bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB); 291 292 /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All 293 /// variables that are live out of DomBB and live into SuccBB will be marked 294 /// as passing live through BB. This method assumes that the machine code is 295 /// still in SSA form. 296 void addNewBlock(MachineBasicBlock *BB, 297 MachineBasicBlock *DomBB, 298 MachineBasicBlock *SuccBB); 299 300 /// isPHIJoin - Return true if Reg is a phi join register. 301 bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); } 302 303 /// setPHIJoin - Mark Reg as a phi join register. 304 void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); } 305 }; 306 307 } // End llvm namespace 308 309 #endif 310