Home | History | Annotate | Download | only in Scalar
      1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 /// \file
     11 /// This file implements the new LLVM's Global Value Numbering pass.
     12 /// GVN partitions values computed by a function into congruence classes.
     13 /// Values ending up in the same congruence class are guaranteed to be the same
     14 /// for every execution of the program. In that respect, congruency is a
     15 /// compile-time approximation of equivalence of values at runtime.
     16 /// The algorithm implemented here uses a sparse formulation and it's based
     17 /// on the ideas described in the paper:
     18 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
     19 /// Karthik Gargi.
     20 ///
     21 /// A brief overview of the algorithm: The algorithm is essentially the same as
     22 /// the standard RPO value numbering algorithm (a good reference is the paper
     23 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
     24 /// The RPO algorithm proceeds, on every iteration, to process every reachable
     25 /// block and every instruction in that block.  This is because the standard RPO
     26 /// algorithm does not track what things have the same value number, it only
     27 /// tracks what the value number of a given operation is (the mapping is
     28 /// operation -> value number).  Thus, when a value number of an operation
     29 /// changes, it must reprocess everything to ensure all uses of a value number
     30 /// get updated properly.  In constrast, the sparse algorithm we use *also*
     31 /// tracks what operations have a given value number (IE it also tracks the
     32 /// reverse mapping from value number -> operations with that value number), so
     33 /// that it only needs to reprocess the instructions that are affected when
     34 /// something's value number changes.  The vast majority of complexity and code
     35 /// in this file is devoted to tracking what value numbers could change for what
     36 /// instructions when various things happen.  The rest of the algorithm is
     37 /// devoted to performing symbolic evaluation, forward propagation, and
     38 /// simplification of operations based on the value numbers deduced so far
     39 ///
     40 /// In order to make the GVN mostly-complete, we use a technique derived from
     41 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
     42 /// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
     43 /// based GVN algorithms is related to their inability to detect equivalence
     44 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
     45 /// We resolve this issue by generating the equivalent "phi of ops" form for
     46 /// each op of phis we see, in a way that only takes polynomial time to resolve.
     47 ///
     48 /// We also do not perform elimination by using any published algorithm.  All
     49 /// published algorithms are O(Instructions). Instead, we use a technique that
     50 /// is O(number of operations with the same value number), enabling us to skip
     51 /// trying to eliminate things that have unique value numbers.
     52 //
     53 //===----------------------------------------------------------------------===//
     54 
     55 #include "llvm/Transforms/Scalar/NewGVN.h"
     56 #include "llvm/ADT/ArrayRef.h"
     57 #include "llvm/ADT/BitVector.h"
     58 #include "llvm/ADT/DenseMap.h"
     59 #include "llvm/ADT/DenseMapInfo.h"
     60 #include "llvm/ADT/DenseSet.h"
     61 #include "llvm/ADT/DepthFirstIterator.h"
     62 #include "llvm/ADT/GraphTraits.h"
     63 #include "llvm/ADT/Hashing.h"
     64 #include "llvm/ADT/PointerIntPair.h"
     65 #include "llvm/ADT/PostOrderIterator.h"
     66 #include "llvm/ADT/SmallPtrSet.h"
     67 #include "llvm/ADT/SmallVector.h"
     68 #include "llvm/ADT/SparseBitVector.h"
     69 #include "llvm/ADT/Statistic.h"
     70 #include "llvm/ADT/iterator_range.h"
     71 #include "llvm/Analysis/AliasAnalysis.h"
     72 #include "llvm/Analysis/AssumptionCache.h"
     73 #include "llvm/Analysis/CFGPrinter.h"
     74 #include "llvm/Analysis/ConstantFolding.h"
     75 #include "llvm/Analysis/GlobalsModRef.h"
     76 #include "llvm/Analysis/InstructionSimplify.h"
     77 #include "llvm/Analysis/MemoryBuiltins.h"
     78 #include "llvm/Analysis/MemorySSA.h"
     79 #include "llvm/Analysis/TargetLibraryInfo.h"
     80 #include "llvm/Transforms/Utils/Local.h"
     81 #include "llvm/IR/Argument.h"
     82 #include "llvm/IR/BasicBlock.h"
     83 #include "llvm/IR/Constant.h"
     84 #include "llvm/IR/Constants.h"
     85 #include "llvm/IR/Dominators.h"
     86 #include "llvm/IR/Function.h"
     87 #include "llvm/IR/InstrTypes.h"
     88 #include "llvm/IR/Instruction.h"
     89 #include "llvm/IR/Instructions.h"
     90 #include "llvm/IR/IntrinsicInst.h"
     91 #include "llvm/IR/Intrinsics.h"
     92 #include "llvm/IR/LLVMContext.h"
     93 #include "llvm/IR/Type.h"
     94 #include "llvm/IR/Use.h"
     95 #include "llvm/IR/User.h"
     96 #include "llvm/IR/Value.h"
     97 #include "llvm/Pass.h"
     98 #include "llvm/Support/Allocator.h"
     99 #include "llvm/Support/ArrayRecycler.h"
    100 #include "llvm/Support/Casting.h"
    101 #include "llvm/Support/CommandLine.h"
    102 #include "llvm/Support/Debug.h"
    103 #include "llvm/Support/DebugCounter.h"
    104 #include "llvm/Support/ErrorHandling.h"
    105 #include "llvm/Support/PointerLikeTypeTraits.h"
    106 #include "llvm/Support/raw_ostream.h"
    107 #include "llvm/Transforms/Scalar.h"
    108 #include "llvm/Transforms/Scalar/GVNExpression.h"
    109 #include "llvm/Transforms/Utils/PredicateInfo.h"
    110 #include "llvm/Transforms/Utils/VNCoercion.h"
    111 #include <algorithm>
    112 #include <cassert>
    113 #include <cstdint>
    114 #include <iterator>
    115 #include <map>
    116 #include <memory>
    117 #include <set>
    118 #include <string>
    119 #include <tuple>
    120 #include <utility>
    121 #include <vector>
    122 
    123 using namespace llvm;
    124 using namespace llvm::GVNExpression;
    125 using namespace llvm::VNCoercion;
    126 
    127 #define DEBUG_TYPE "newgvn"
    128 
    129 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
    130 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
    131 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
    132 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
    133 STATISTIC(NumGVNMaxIterations,
    134           "Maximum Number of iterations it took to converge GVN");
    135 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
    136 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
    137 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
    138           "Number of avoided sorted leader changes");
    139 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
    140 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
    141 STATISTIC(NumGVNPHIOfOpsEliminations,
    142           "Number of things eliminated using PHI of ops");
    143 DEBUG_COUNTER(VNCounter, "newgvn-vn",
    144               "Controls which instructions are value numbered");
    145 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
    146               "Controls which instructions we create phi of ops for");
    147 // Currently store defining access refinement is too slow due to basicaa being
    148 // egregiously slow.  This flag lets us keep it working while we work on this
    149 // issue.
    150 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
    151                                            cl::init(false), cl::Hidden);
    152 
    153 /// Currently, the generation "phi of ops" can result in correctness issues.
    154 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
    155                                     cl::Hidden);
    156 
    157 //===----------------------------------------------------------------------===//
    158 //                                GVN Pass
    159 //===----------------------------------------------------------------------===//
    160 
    161 // Anchor methods.
    162 namespace llvm {
    163 namespace GVNExpression {
    164 
    165 Expression::~Expression() = default;
    166 BasicExpression::~BasicExpression() = default;
    167 CallExpression::~CallExpression() = default;
    168 LoadExpression::~LoadExpression() = default;
    169 StoreExpression::~StoreExpression() = default;
    170 AggregateValueExpression::~AggregateValueExpression() = default;
    171 PHIExpression::~PHIExpression() = default;
    172 
    173 } // end namespace GVNExpression
    174 } // end namespace llvm
    175 
    176 namespace {
    177 
    178 // Tarjan's SCC finding algorithm with Nuutila's improvements
    179 // SCCIterator is actually fairly complex for the simple thing we want.
    180 // It also wants to hand us SCC's that are unrelated to the phi node we ask
    181 // about, and have us process them there or risk redoing work.
    182 // Graph traits over a filter iterator also doesn't work that well here.
    183 // This SCC finder is specialized to walk use-def chains, and only follows
    184 // instructions,
    185 // not generic values (arguments, etc).
    186 struct TarjanSCC {
    187   TarjanSCC() : Components(1) {}
    188 
    189   void Start(const Instruction *Start) {
    190     if (Root.lookup(Start) == 0)
    191       FindSCC(Start);
    192   }
    193 
    194   const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
    195     unsigned ComponentID = ValueToComponent.lookup(V);
    196 
    197     assert(ComponentID > 0 &&
    198            "Asking for a component for a value we never processed");
    199     return Components[ComponentID];
    200   }
    201 
    202 private:
    203   void FindSCC(const Instruction *I) {
    204     Root[I] = ++DFSNum;
    205     // Store the DFS Number we had before it possibly gets incremented.
    206     unsigned int OurDFS = DFSNum;
    207     for (auto &Op : I->operands()) {
    208       if (auto *InstOp = dyn_cast<Instruction>(Op)) {
    209         if (Root.lookup(Op) == 0)
    210           FindSCC(InstOp);
    211         if (!InComponent.count(Op))
    212           Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
    213       }
    214     }
    215     // See if we really were the root of a component, by seeing if we still have
    216     // our DFSNumber.  If we do, we are the root of the component, and we have
    217     // completed a component. If we do not, we are not the root of a component,
    218     // and belong on the component stack.
    219     if (Root.lookup(I) == OurDFS) {
    220       unsigned ComponentID = Components.size();
    221       Components.resize(Components.size() + 1);
    222       auto &Component = Components.back();
    223       Component.insert(I);
    224       LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
    225       InComponent.insert(I);
    226       ValueToComponent[I] = ComponentID;
    227       // Pop a component off the stack and label it.
    228       while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
    229         auto *Member = Stack.back();
    230         LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
    231         Component.insert(Member);
    232         InComponent.insert(Member);
    233         ValueToComponent[Member] = ComponentID;
    234         Stack.pop_back();
    235       }
    236     } else {
    237       // Part of a component, push to stack
    238       Stack.push_back(I);
    239     }
    240   }
    241 
    242   unsigned int DFSNum = 1;
    243   SmallPtrSet<const Value *, 8> InComponent;
    244   DenseMap<const Value *, unsigned int> Root;
    245   SmallVector<const Value *, 8> Stack;
    246 
    247   // Store the components as vector of ptr sets, because we need the topo order
    248   // of SCC's, but not individual member order
    249   SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
    250 
    251   DenseMap<const Value *, unsigned> ValueToComponent;
    252 };
    253 
    254 // Congruence classes represent the set of expressions/instructions
    255 // that are all the same *during some scope in the function*.
    256 // That is, because of the way we perform equality propagation, and
    257 // because of memory value numbering, it is not correct to assume
    258 // you can willy-nilly replace any member with any other at any
    259 // point in the function.
    260 //
    261 // For any Value in the Member set, it is valid to replace any dominated member
    262 // with that Value.
    263 //
    264 // Every congruence class has a leader, and the leader is used to symbolize
    265 // instructions in a canonical way (IE every operand of an instruction that is a
    266 // member of the same congruence class will always be replaced with leader
    267 // during symbolization).  To simplify symbolization, we keep the leader as a
    268 // constant if class can be proved to be a constant value.  Otherwise, the
    269 // leader is the member of the value set with the smallest DFS number.  Each
    270 // congruence class also has a defining expression, though the expression may be
    271 // null.  If it exists, it can be used for forward propagation and reassociation
    272 // of values.
    273 
    274 // For memory, we also track a representative MemoryAccess, and a set of memory
    275 // members for MemoryPhis (which have no real instructions). Note that for
    276 // memory, it seems tempting to try to split the memory members into a
    277 // MemoryCongruenceClass or something.  Unfortunately, this does not work
    278 // easily.  The value numbering of a given memory expression depends on the
    279 // leader of the memory congruence class, and the leader of memory congruence
    280 // class depends on the value numbering of a given memory expression.  This
    281 // leads to wasted propagation, and in some cases, missed optimization.  For
    282 // example: If we had value numbered two stores together before, but now do not,
    283 // we move them to a new value congruence class.  This in turn will move at one
    284 // of the memorydefs to a new memory congruence class.  Which in turn, affects
    285 // the value numbering of the stores we just value numbered (because the memory
    286 // congruence class is part of the value number).  So while theoretically
    287 // possible to split them up, it turns out to be *incredibly* complicated to get
    288 // it to work right, because of the interdependency.  While structurally
    289 // slightly messier, it is algorithmically much simpler and faster to do what we
    290 // do here, and track them both at once in the same class.
    291 // Note: The default iterators for this class iterate over values
    292 class CongruenceClass {
    293 public:
    294   using MemberType = Value;
    295   using MemberSet = SmallPtrSet<MemberType *, 4>;
    296   using MemoryMemberType = MemoryPhi;
    297   using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
    298 
    299   explicit CongruenceClass(unsigned ID) : ID(ID) {}
    300   CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
    301       : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
    302 
    303   unsigned getID() const { return ID; }
    304 
    305   // True if this class has no members left.  This is mainly used for assertion
    306   // purposes, and for skipping empty classes.
    307   bool isDead() const {
    308     // If it's both dead from a value perspective, and dead from a memory
    309     // perspective, it's really dead.
    310     return empty() && memory_empty();
    311   }
    312 
    313   // Leader functions
    314   Value *getLeader() const { return RepLeader; }
    315   void setLeader(Value *Leader) { RepLeader = Leader; }
    316   const std::pair<Value *, unsigned int> &getNextLeader() const {
    317     return NextLeader;
    318   }
    319   void resetNextLeader() { NextLeader = {nullptr, ~0}; }
    320   void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
    321     if (LeaderPair.second < NextLeader.second)
    322       NextLeader = LeaderPair;
    323   }
    324 
    325   Value *getStoredValue() const { return RepStoredValue; }
    326   void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
    327   const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
    328   void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
    329 
    330   // Forward propagation info
    331   const Expression *getDefiningExpr() const { return DefiningExpr; }
    332 
    333   // Value member set
    334   bool empty() const { return Members.empty(); }
    335   unsigned size() const { return Members.size(); }
    336   MemberSet::const_iterator begin() const { return Members.begin(); }
    337   MemberSet::const_iterator end() const { return Members.end(); }
    338   void insert(MemberType *M) { Members.insert(M); }
    339   void erase(MemberType *M) { Members.erase(M); }
    340   void swap(MemberSet &Other) { Members.swap(Other); }
    341 
    342   // Memory member set
    343   bool memory_empty() const { return MemoryMembers.empty(); }
    344   unsigned memory_size() const { return MemoryMembers.size(); }
    345   MemoryMemberSet::const_iterator memory_begin() const {
    346     return MemoryMembers.begin();
    347   }
    348   MemoryMemberSet::const_iterator memory_end() const {
    349     return MemoryMembers.end();
    350   }
    351   iterator_range<MemoryMemberSet::const_iterator> memory() const {
    352     return make_range(memory_begin(), memory_end());
    353   }
    354 
    355   void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
    356   void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
    357 
    358   // Store count
    359   unsigned getStoreCount() const { return StoreCount; }
    360   void incStoreCount() { ++StoreCount; }
    361   void decStoreCount() {
    362     assert(StoreCount != 0 && "Store count went negative");
    363     --StoreCount;
    364   }
    365 
    366   // True if this class has no memory members.
    367   bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
    368 
    369   // Return true if two congruence classes are equivalent to each other. This
    370   // means that every field but the ID number and the dead field are equivalent.
    371   bool isEquivalentTo(const CongruenceClass *Other) const {
    372     if (!Other)
    373       return false;
    374     if (this == Other)
    375       return true;
    376 
    377     if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
    378         std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
    379                  Other->RepMemoryAccess))
    380       return false;
    381     if (DefiningExpr != Other->DefiningExpr)
    382       if (!DefiningExpr || !Other->DefiningExpr ||
    383           *DefiningExpr != *Other->DefiningExpr)
    384         return false;
    385 
    386     if (Members.size() != Other->Members.size())
    387       return false;
    388 
    389     return all_of(Members,
    390                   [&](const Value *V) { return Other->Members.count(V); });
    391   }
    392 
    393 private:
    394   unsigned ID;
    395 
    396   // Representative leader.
    397   Value *RepLeader = nullptr;
    398 
    399   // The most dominating leader after our current leader, because the member set
    400   // is not sorted and is expensive to keep sorted all the time.
    401   std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
    402 
    403   // If this is represented by a store, the value of the store.
    404   Value *RepStoredValue = nullptr;
    405 
    406   // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
    407   // access.
    408   const MemoryAccess *RepMemoryAccess = nullptr;
    409 
    410   // Defining Expression.
    411   const Expression *DefiningExpr = nullptr;
    412 
    413   // Actual members of this class.
    414   MemberSet Members;
    415 
    416   // This is the set of MemoryPhis that exist in the class. MemoryDefs and
    417   // MemoryUses have real instructions representing them, so we only need to
    418   // track MemoryPhis here.
    419   MemoryMemberSet MemoryMembers;
    420 
    421   // Number of stores in this congruence class.
    422   // This is used so we can detect store equivalence changes properly.
    423   int StoreCount = 0;
    424 };
    425 
    426 } // end anonymous namespace
    427 
    428 namespace llvm {
    429 
    430 struct ExactEqualsExpression {
    431   const Expression &E;
    432 
    433   explicit ExactEqualsExpression(const Expression &E) : E(E) {}
    434 
    435   hash_code getComputedHash() const { return E.getComputedHash(); }
    436 
    437   bool operator==(const Expression &Other) const {
    438     return E.exactlyEquals(Other);
    439   }
    440 };
    441 
    442 template <> struct DenseMapInfo<const Expression *> {
    443   static const Expression *getEmptyKey() {
    444     auto Val = static_cast<uintptr_t>(-1);
    445     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
    446     return reinterpret_cast<const Expression *>(Val);
    447   }
    448 
    449   static const Expression *getTombstoneKey() {
    450     auto Val = static_cast<uintptr_t>(~1U);
    451     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
    452     return reinterpret_cast<const Expression *>(Val);
    453   }
    454 
    455   static unsigned getHashValue(const Expression *E) {
    456     return E->getComputedHash();
    457   }
    458 
    459   static unsigned getHashValue(const ExactEqualsExpression &E) {
    460     return E.getComputedHash();
    461   }
    462 
    463   static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
    464     if (RHS == getTombstoneKey() || RHS == getEmptyKey())
    465       return false;
    466     return LHS == *RHS;
    467   }
    468 
    469   static bool isEqual(const Expression *LHS, const Expression *RHS) {
    470     if (LHS == RHS)
    471       return true;
    472     if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
    473         LHS == getEmptyKey() || RHS == getEmptyKey())
    474       return false;
    475     // Compare hashes before equality.  This is *not* what the hashtable does,
    476     // since it is computing it modulo the number of buckets, whereas we are
    477     // using the full hash keyspace.  Since the hashes are precomputed, this
    478     // check is *much* faster than equality.
    479     if (LHS->getComputedHash() != RHS->getComputedHash())
    480       return false;
    481     return *LHS == *RHS;
    482   }
    483 };
    484 
    485 } // end namespace llvm
    486 
    487 namespace {
    488 
    489 class NewGVN {
    490   Function &F;
    491   DominatorTree *DT;
    492   const TargetLibraryInfo *TLI;
    493   AliasAnalysis *AA;
    494   MemorySSA *MSSA;
    495   MemorySSAWalker *MSSAWalker;
    496   const DataLayout &DL;
    497   std::unique_ptr<PredicateInfo> PredInfo;
    498 
    499   // These are the only two things the create* functions should have
    500   // side-effects on due to allocating memory.
    501   mutable BumpPtrAllocator ExpressionAllocator;
    502   mutable ArrayRecycler<Value *> ArgRecycler;
    503   mutable TarjanSCC SCCFinder;
    504   const SimplifyQuery SQ;
    505 
    506   // Number of function arguments, used by ranking
    507   unsigned int NumFuncArgs;
    508 
    509   // RPOOrdering of basic blocks
    510   DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
    511 
    512   // Congruence class info.
    513 
    514   // This class is called INITIAL in the paper. It is the class everything
    515   // startsout in, and represents any value. Being an optimistic analysis,
    516   // anything in the TOP class has the value TOP, which is indeterminate and
    517   // equivalent to everything.
    518   CongruenceClass *TOPClass;
    519   std::vector<CongruenceClass *> CongruenceClasses;
    520   unsigned NextCongruenceNum;
    521 
    522   // Value Mappings.
    523   DenseMap<Value *, CongruenceClass *> ValueToClass;
    524   DenseMap<Value *, const Expression *> ValueToExpression;
    525 
    526   // Value PHI handling, used to make equivalence between phi(op, op) and
    527   // op(phi, phi).
    528   // These mappings just store various data that would normally be part of the
    529   // IR.
    530   SmallPtrSet<const Instruction *, 8> PHINodeUses;
    531 
    532   DenseMap<const Value *, bool> OpSafeForPHIOfOps;
    533 
    534   // Map a temporary instruction we created to a parent block.
    535   DenseMap<const Value *, BasicBlock *> TempToBlock;
    536 
    537   // Map between the already in-program instructions and the temporary phis we
    538   // created that they are known equivalent to.
    539   DenseMap<const Value *, PHINode *> RealToTemp;
    540 
    541   // In order to know when we should re-process instructions that have
    542   // phi-of-ops, we track the set of expressions that they needed as
    543   // leaders. When we discover new leaders for those expressions, we process the
    544   // associated phi-of-op instructions again in case they have changed.  The
    545   // other way they may change is if they had leaders, and those leaders
    546   // disappear.  However, at the point they have leaders, there are uses of the
    547   // relevant operands in the created phi node, and so they will get reprocessed
    548   // through the normal user marking we perform.
    549   mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
    550   DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
    551       ExpressionToPhiOfOps;
    552 
    553   // Map from temporary operation to MemoryAccess.
    554   DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
    555 
    556   // Set of all temporary instructions we created.
    557   // Note: This will include instructions that were just created during value
    558   // numbering.  The way to test if something is using them is to check
    559   // RealToTemp.
    560   DenseSet<Instruction *> AllTempInstructions;
    561 
    562   // This is the set of instructions to revisit on a reachability change.  At
    563   // the end of the main iteration loop it will contain at least all the phi of
    564   // ops instructions that will be changed to phis, as well as regular phis.
    565   // During the iteration loop, it may contain other things, such as phi of ops
    566   // instructions that used edge reachability to reach a result, and so need to
    567   // be revisited when the edge changes, independent of whether the phi they
    568   // depended on changes.
    569   DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
    570 
    571   // Mapping from predicate info we used to the instructions we used it with.
    572   // In order to correctly ensure propagation, we must keep track of what
    573   // comparisons we used, so that when the values of the comparisons change, we
    574   // propagate the information to the places we used the comparison.
    575   mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
    576       PredicateToUsers;
    577 
    578   // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
    579   // stores, we no longer can rely solely on the def-use chains of MemorySSA.
    580   mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
    581       MemoryToUsers;
    582 
    583   // A table storing which memorydefs/phis represent a memory state provably
    584   // equivalent to another memory state.
    585   // We could use the congruence class machinery, but the MemoryAccess's are
    586   // abstract memory states, so they can only ever be equivalent to each other,
    587   // and not to constants, etc.
    588   DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
    589 
    590   // We could, if we wanted, build MemoryPhiExpressions and
    591   // MemoryVariableExpressions, etc, and value number them the same way we value
    592   // number phi expressions.  For the moment, this seems like overkill.  They
    593   // can only exist in one of three states: they can be TOP (equal to
    594   // everything), Equivalent to something else, or unique.  Because we do not
    595   // create expressions for them, we need to simulate leader change not just
    596   // when they change class, but when they change state.  Note: We can do the
    597   // same thing for phis, and avoid having phi expressions if we wanted, We
    598   // should eventually unify in one direction or the other, so this is a little
    599   // bit of an experiment in which turns out easier to maintain.
    600   enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
    601   DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
    602 
    603   enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
    604   mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
    605 
    606   // Expression to class mapping.
    607   using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
    608   ExpressionClassMap ExpressionToClass;
    609 
    610   // We have a single expression that represents currently DeadExpressions.
    611   // For dead expressions we can prove will stay dead, we mark them with
    612   // DFS number zero.  However, it's possible in the case of phi nodes
    613   // for us to assume/prove all arguments are dead during fixpointing.
    614   // We use DeadExpression for that case.
    615   DeadExpression *SingletonDeadExpression = nullptr;
    616 
    617   // Which values have changed as a result of leader changes.
    618   SmallPtrSet<Value *, 8> LeaderChanges;
    619 
    620   // Reachability info.
    621   using BlockEdge = BasicBlockEdge;
    622   DenseSet<BlockEdge> ReachableEdges;
    623   SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
    624 
    625   // This is a bitvector because, on larger functions, we may have
    626   // thousands of touched instructions at once (entire blocks,
    627   // instructions with hundreds of uses, etc).  Even with optimization
    628   // for when we mark whole blocks as touched, when this was a
    629   // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
    630   // the time in GVN just managing this list.  The bitvector, on the
    631   // other hand, efficiently supports test/set/clear of both
    632   // individual and ranges, as well as "find next element" This
    633   // enables us to use it as a worklist with essentially 0 cost.
    634   BitVector TouchedInstructions;
    635 
    636   DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
    637 
    638 #ifndef NDEBUG
    639   // Debugging for how many times each block and instruction got processed.
    640   DenseMap<const Value *, unsigned> ProcessedCount;
    641 #endif
    642 
    643   // DFS info.
    644   // This contains a mapping from Instructions to DFS numbers.
    645   // The numbering starts at 1. An instruction with DFS number zero
    646   // means that the instruction is dead.
    647   DenseMap<const Value *, unsigned> InstrDFS;
    648 
    649   // This contains the mapping DFS numbers to instructions.
    650   SmallVector<Value *, 32> DFSToInstr;
    651 
    652   // Deletion info.
    653   SmallPtrSet<Instruction *, 8> InstructionsToErase;
    654 
    655 public:
    656   NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
    657          TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
    658          const DataLayout &DL)
    659       : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
    660         PredInfo(make_unique<PredicateInfo>(F, *DT, *AC)), SQ(DL, TLI, DT, AC) {
    661   }
    662 
    663   bool runGVN();
    664 
    665 private:
    666   // Expression handling.
    667   const Expression *createExpression(Instruction *) const;
    668   const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
    669                                            Instruction *) const;
    670 
    671   // Our canonical form for phi arguments is a pair of incoming value, incoming
    672   // basic block.
    673   using ValPair = std::pair<Value *, BasicBlock *>;
    674 
    675   PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
    676                                      BasicBlock *, bool &HasBackEdge,
    677                                      bool &OriginalOpsConstant) const;
    678   const DeadExpression *createDeadExpression() const;
    679   const VariableExpression *createVariableExpression(Value *) const;
    680   const ConstantExpression *createConstantExpression(Constant *) const;
    681   const Expression *createVariableOrConstant(Value *V) const;
    682   const UnknownExpression *createUnknownExpression(Instruction *) const;
    683   const StoreExpression *createStoreExpression(StoreInst *,
    684                                                const MemoryAccess *) const;
    685   LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
    686                                        const MemoryAccess *) const;
    687   const CallExpression *createCallExpression(CallInst *,
    688                                              const MemoryAccess *) const;
    689   const AggregateValueExpression *
    690   createAggregateValueExpression(Instruction *) const;
    691   bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
    692 
    693   // Congruence class handling.
    694   CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
    695     auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
    696     CongruenceClasses.emplace_back(result);
    697     return result;
    698   }
    699 
    700   CongruenceClass *createMemoryClass(MemoryAccess *MA) {
    701     auto *CC = createCongruenceClass(nullptr, nullptr);
    702     CC->setMemoryLeader(MA);
    703     return CC;
    704   }
    705 
    706   CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
    707     auto *CC = getMemoryClass(MA);
    708     if (CC->getMemoryLeader() != MA)
    709       CC = createMemoryClass(MA);
    710     return CC;
    711   }
    712 
    713   CongruenceClass *createSingletonCongruenceClass(Value *Member) {
    714     CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
    715     CClass->insert(Member);
    716     ValueToClass[Member] = CClass;
    717     return CClass;
    718   }
    719 
    720   void initializeCongruenceClasses(Function &F);
    721   const Expression *makePossiblePHIOfOps(Instruction *,
    722                                          SmallPtrSetImpl<Value *> &);
    723   Value *findLeaderForInst(Instruction *ValueOp,
    724                            SmallPtrSetImpl<Value *> &Visited,
    725                            MemoryAccess *MemAccess, Instruction *OrigInst,
    726                            BasicBlock *PredBB);
    727   bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
    728                                  SmallPtrSetImpl<const Value *> &Visited,
    729                                  SmallVectorImpl<Instruction *> &Worklist);
    730   bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
    731                            SmallPtrSetImpl<const Value *> &);
    732   void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
    733   void removePhiOfOps(Instruction *I, PHINode *PHITemp);
    734 
    735   // Value number an Instruction or MemoryPhi.
    736   void valueNumberMemoryPhi(MemoryPhi *);
    737   void valueNumberInstruction(Instruction *);
    738 
    739   // Symbolic evaluation.
    740   const Expression *checkSimplificationResults(Expression *, Instruction *,
    741                                                Value *) const;
    742   const Expression *performSymbolicEvaluation(Value *,
    743                                               SmallPtrSetImpl<Value *> &) const;
    744   const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
    745                                                 Instruction *,
    746                                                 MemoryAccess *) const;
    747   const Expression *performSymbolicLoadEvaluation(Instruction *) const;
    748   const Expression *performSymbolicStoreEvaluation(Instruction *) const;
    749   const Expression *performSymbolicCallEvaluation(Instruction *) const;
    750   void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
    751   const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
    752                                                  Instruction *I,
    753                                                  BasicBlock *PHIBlock) const;
    754   const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
    755   const Expression *performSymbolicCmpEvaluation(Instruction *) const;
    756   const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
    757 
    758   // Congruence finding.
    759   bool someEquivalentDominates(const Instruction *, const Instruction *) const;
    760   Value *lookupOperandLeader(Value *) const;
    761   CongruenceClass *getClassForExpression(const Expression *E) const;
    762   void performCongruenceFinding(Instruction *, const Expression *);
    763   void moveValueToNewCongruenceClass(Instruction *, const Expression *,
    764                                      CongruenceClass *, CongruenceClass *);
    765   void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
    766                                       CongruenceClass *, CongruenceClass *);
    767   Value *getNextValueLeader(CongruenceClass *) const;
    768   const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
    769   bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
    770   CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
    771   const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
    772   bool isMemoryAccessTOP(const MemoryAccess *) const;
    773 
    774   // Ranking
    775   unsigned int getRank(const Value *) const;
    776   bool shouldSwapOperands(const Value *, const Value *) const;
    777 
    778   // Reachability handling.
    779   void updateReachableEdge(BasicBlock *, BasicBlock *);
    780   void processOutgoingEdges(TerminatorInst *, BasicBlock *);
    781   Value *findConditionEquivalence(Value *) const;
    782 
    783   // Elimination.
    784   struct ValueDFS;
    785   void convertClassToDFSOrdered(const CongruenceClass &,
    786                                 SmallVectorImpl<ValueDFS> &,
    787                                 DenseMap<const Value *, unsigned int> &,
    788                                 SmallPtrSetImpl<Instruction *> &) const;
    789   void convertClassToLoadsAndStores(const CongruenceClass &,
    790                                     SmallVectorImpl<ValueDFS> &) const;
    791 
    792   bool eliminateInstructions(Function &);
    793   void replaceInstruction(Instruction *, Value *);
    794   void markInstructionForDeletion(Instruction *);
    795   void deleteInstructionsInBlock(BasicBlock *);
    796   Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
    797                             const BasicBlock *) const;
    798 
    799   // New instruction creation.
    800   void handleNewInstruction(Instruction *) {}
    801 
    802   // Various instruction touch utilities
    803   template <typename Map, typename KeyType, typename Func>
    804   void for_each_found(Map &, const KeyType &, Func);
    805   template <typename Map, typename KeyType>
    806   void touchAndErase(Map &, const KeyType &);
    807   void markUsersTouched(Value *);
    808   void markMemoryUsersTouched(const MemoryAccess *);
    809   void markMemoryDefTouched(const MemoryAccess *);
    810   void markPredicateUsersTouched(Instruction *);
    811   void markValueLeaderChangeTouched(CongruenceClass *CC);
    812   void markMemoryLeaderChangeTouched(CongruenceClass *CC);
    813   void markPhiOfOpsChanged(const Expression *E);
    814   void addPredicateUsers(const PredicateBase *, Instruction *) const;
    815   void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
    816   void addAdditionalUsers(Value *To, Value *User) const;
    817 
    818   // Main loop of value numbering
    819   void iterateTouchedInstructions();
    820 
    821   // Utilities.
    822   void cleanupTables();
    823   std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
    824   void updateProcessedCount(const Value *V);
    825   void verifyMemoryCongruency() const;
    826   void verifyIterationSettled(Function &F);
    827   void verifyStoreExpressions() const;
    828   bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
    829                               const MemoryAccess *, const MemoryAccess *) const;
    830   BasicBlock *getBlockForValue(Value *V) const;
    831   void deleteExpression(const Expression *E) const;
    832   MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
    833   MemoryAccess *getDefiningAccess(const MemoryAccess *) const;
    834   MemoryPhi *getMemoryAccess(const BasicBlock *) const;
    835   template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
    836 
    837   unsigned InstrToDFSNum(const Value *V) const {
    838     assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
    839     return InstrDFS.lookup(V);
    840   }
    841 
    842   unsigned InstrToDFSNum(const MemoryAccess *MA) const {
    843     return MemoryToDFSNum(MA);
    844   }
    845 
    846   Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
    847 
    848   // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
    849   // This deliberately takes a value so it can be used with Use's, which will
    850   // auto-convert to Value's but not to MemoryAccess's.
    851   unsigned MemoryToDFSNum(const Value *MA) const {
    852     assert(isa<MemoryAccess>(MA) &&
    853            "This should not be used with instructions");
    854     return isa<MemoryUseOrDef>(MA)
    855                ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
    856                : InstrDFS.lookup(MA);
    857   }
    858 
    859   bool isCycleFree(const Instruction *) const;
    860   bool isBackedge(BasicBlock *From, BasicBlock *To) const;
    861 
    862   // Debug counter info.  When verifying, we have to reset the value numbering
    863   // debug counter to the same state it started in to get the same results.
    864   int64_t StartingVNCounter;
    865 };
    866 
    867 } // end anonymous namespace
    868 
    869 template <typename T>
    870 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
    871   if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
    872     return false;
    873   return LHS.MemoryExpression::equals(RHS);
    874 }
    875 
    876 bool LoadExpression::equals(const Expression &Other) const {
    877   return equalsLoadStoreHelper(*this, Other);
    878 }
    879 
    880 bool StoreExpression::equals(const Expression &Other) const {
    881   if (!equalsLoadStoreHelper(*this, Other))
    882     return false;
    883   // Make sure that store vs store includes the value operand.
    884   if (const auto *S = dyn_cast<StoreExpression>(&Other))
    885     if (getStoredValue() != S->getStoredValue())
    886       return false;
    887   return true;
    888 }
    889 
    890 // Determine if the edge From->To is a backedge
    891 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
    892   return From == To ||
    893          RPOOrdering.lookup(DT->getNode(From)) >=
    894              RPOOrdering.lookup(DT->getNode(To));
    895 }
    896 
    897 #ifndef NDEBUG
    898 static std::string getBlockName(const BasicBlock *B) {
    899   return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
    900 }
    901 #endif
    902 
    903 // Get a MemoryAccess for an instruction, fake or real.
    904 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
    905   auto *Result = MSSA->getMemoryAccess(I);
    906   return Result ? Result : TempToMemory.lookup(I);
    907 }
    908 
    909 // Get a MemoryPhi for a basic block. These are all real.
    910 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
    911   return MSSA->getMemoryAccess(BB);
    912 }
    913 
    914 // Get the basic block from an instruction/memory value.
    915 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
    916   if (auto *I = dyn_cast<Instruction>(V)) {
    917     auto *Parent = I->getParent();
    918     if (Parent)
    919       return Parent;
    920     Parent = TempToBlock.lookup(V);
    921     assert(Parent && "Every fake instruction should have a block");
    922     return Parent;
    923   }
    924 
    925   auto *MP = dyn_cast<MemoryPhi>(V);
    926   assert(MP && "Should have been an instruction or a MemoryPhi");
    927   return MP->getBlock();
    928 }
    929 
    930 // Delete a definitely dead expression, so it can be reused by the expression
    931 // allocator.  Some of these are not in creation functions, so we have to accept
    932 // const versions.
    933 void NewGVN::deleteExpression(const Expression *E) const {
    934   assert(isa<BasicExpression>(E));
    935   auto *BE = cast<BasicExpression>(E);
    936   const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
    937   ExpressionAllocator.Deallocate(E);
    938 }
    939 
    940 // If V is a predicateinfo copy, get the thing it is a copy of.
    941 static Value *getCopyOf(const Value *V) {
    942   if (auto *II = dyn_cast<IntrinsicInst>(V))
    943     if (II->getIntrinsicID() == Intrinsic::ssa_copy)
    944       return II->getOperand(0);
    945   return nullptr;
    946 }
    947 
    948 // Return true if V is really PN, even accounting for predicateinfo copies.
    949 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
    950   return V == PN || getCopyOf(V) == PN;
    951 }
    952 
    953 static bool isCopyOfAPHI(const Value *V) {
    954   auto *CO = getCopyOf(V);
    955   return CO && isa<PHINode>(CO);
    956 }
    957 
    958 // Sort PHI Operands into a canonical order.  What we use here is an RPO
    959 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
    960 // blocks.
    961 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
    962   llvm::sort(Ops.begin(), Ops.end(),
    963              [&](const ValPair &P1, const ValPair &P2) {
    964     return BlockInstRange.lookup(P1.second).first <
    965            BlockInstRange.lookup(P2.second).first;
    966   });
    967 }
    968 
    969 // Return true if V is a value that will always be available (IE can
    970 // be placed anywhere) in the function.  We don't do globals here
    971 // because they are often worse to put in place.
    972 static bool alwaysAvailable(Value *V) {
    973   return isa<Constant>(V) || isa<Argument>(V);
    974 }
    975 
    976 // Create a PHIExpression from an array of {incoming edge, value} pairs.  I is
    977 // the original instruction we are creating a PHIExpression for (but may not be
    978 // a phi node). We require, as an invariant, that all the PHIOperands in the
    979 // same block are sorted the same way. sortPHIOps will sort them into a
    980 // canonical order.
    981 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
    982                                            const Instruction *I,
    983                                            BasicBlock *PHIBlock,
    984                                            bool &HasBackedge,
    985                                            bool &OriginalOpsConstant) const {
    986   unsigned NumOps = PHIOperands.size();
    987   auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
    988 
    989   E->allocateOperands(ArgRecycler, ExpressionAllocator);
    990   E->setType(PHIOperands.begin()->first->getType());
    991   E->setOpcode(Instruction::PHI);
    992 
    993   // Filter out unreachable phi operands.
    994   auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
    995     auto *BB = P.second;
    996     if (auto *PHIOp = dyn_cast<PHINode>(I))
    997       if (isCopyOfPHI(P.first, PHIOp))
    998         return false;
    999     if (!ReachableEdges.count({BB, PHIBlock}))
   1000       return false;
   1001     // Things in TOPClass are equivalent to everything.
   1002     if (ValueToClass.lookup(P.first) == TOPClass)
   1003       return false;
   1004     OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
   1005     HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
   1006     return lookupOperandLeader(P.first) != I;
   1007   });
   1008   std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
   1009                  [&](const ValPair &P) -> Value * {
   1010                    return lookupOperandLeader(P.first);
   1011                  });
   1012   return E;
   1013 }
   1014 
   1015 // Set basic expression info (Arguments, type, opcode) for Expression
   1016 // E from Instruction I in block B.
   1017 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
   1018   bool AllConstant = true;
   1019   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
   1020     E->setType(GEP->getSourceElementType());
   1021   else
   1022     E->setType(I->getType());
   1023   E->setOpcode(I->getOpcode());
   1024   E->allocateOperands(ArgRecycler, ExpressionAllocator);
   1025 
   1026   // Transform the operand array into an operand leader array, and keep track of
   1027   // whether all members are constant.
   1028   std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
   1029     auto Operand = lookupOperandLeader(O);
   1030     AllConstant = AllConstant && isa<Constant>(Operand);
   1031     return Operand;
   1032   });
   1033 
   1034   return AllConstant;
   1035 }
   1036 
   1037 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
   1038                                                  Value *Arg1, Value *Arg2,
   1039                                                  Instruction *I) const {
   1040   auto *E = new (ExpressionAllocator) BasicExpression(2);
   1041 
   1042   E->setType(T);
   1043   E->setOpcode(Opcode);
   1044   E->allocateOperands(ArgRecycler, ExpressionAllocator);
   1045   if (Instruction::isCommutative(Opcode)) {
   1046     // Ensure that commutative instructions that only differ by a permutation
   1047     // of their operands get the same value number by sorting the operand value
   1048     // numbers.  Since all commutative instructions have two operands it is more
   1049     // efficient to sort by hand rather than using, say, std::sort.
   1050     if (shouldSwapOperands(Arg1, Arg2))
   1051       std::swap(Arg1, Arg2);
   1052   }
   1053   E->op_push_back(lookupOperandLeader(Arg1));
   1054   E->op_push_back(lookupOperandLeader(Arg2));
   1055 
   1056   Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
   1057   if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
   1058     return SimplifiedE;
   1059   return E;
   1060 }
   1061 
   1062 // Take a Value returned by simplification of Expression E/Instruction
   1063 // I, and see if it resulted in a simpler expression. If so, return
   1064 // that expression.
   1065 const Expression *NewGVN::checkSimplificationResults(Expression *E,
   1066                                                      Instruction *I,
   1067                                                      Value *V) const {
   1068   if (!V)
   1069     return nullptr;
   1070   if (auto *C = dyn_cast<Constant>(V)) {
   1071     if (I)
   1072       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
   1073                         << " constant " << *C << "\n");
   1074     NumGVNOpsSimplified++;
   1075     assert(isa<BasicExpression>(E) &&
   1076            "We should always have had a basic expression here");
   1077     deleteExpression(E);
   1078     return createConstantExpression(C);
   1079   } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
   1080     if (I)
   1081       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
   1082                         << " variable " << *V << "\n");
   1083     deleteExpression(E);
   1084     return createVariableExpression(V);
   1085   }
   1086 
   1087   CongruenceClass *CC = ValueToClass.lookup(V);
   1088   if (CC) {
   1089     if (CC->getLeader() && CC->getLeader() != I) {
   1090       // Don't add temporary instructions to the user lists.
   1091       if (!AllTempInstructions.count(I))
   1092         addAdditionalUsers(V, I);
   1093       return createVariableOrConstant(CC->getLeader());
   1094     }
   1095     if (CC->getDefiningExpr()) {
   1096       // If we simplified to something else, we need to communicate
   1097       // that we're users of the value we simplified to.
   1098       if (I != V) {
   1099         // Don't add temporary instructions to the user lists.
   1100         if (!AllTempInstructions.count(I))
   1101           addAdditionalUsers(V, I);
   1102       }
   1103 
   1104       if (I)
   1105         LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
   1106                           << " expression " << *CC->getDefiningExpr() << "\n");
   1107       NumGVNOpsSimplified++;
   1108       deleteExpression(E);
   1109       return CC->getDefiningExpr();
   1110     }
   1111   }
   1112 
   1113   return nullptr;
   1114 }
   1115 
   1116 // Create a value expression from the instruction I, replacing operands with
   1117 // their leaders.
   1118 
   1119 const Expression *NewGVN::createExpression(Instruction *I) const {
   1120   auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
   1121 
   1122   bool AllConstant = setBasicExpressionInfo(I, E);
   1123 
   1124   if (I->isCommutative()) {
   1125     // Ensure that commutative instructions that only differ by a permutation
   1126     // of their operands get the same value number by sorting the operand value
   1127     // numbers.  Since all commutative instructions have two operands it is more
   1128     // efficient to sort by hand rather than using, say, std::sort.
   1129     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
   1130     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
   1131       E->swapOperands(0, 1);
   1132   }
   1133   // Perform simplification.
   1134   if (auto *CI = dyn_cast<CmpInst>(I)) {
   1135     // Sort the operand value numbers so x<y and y>x get the same value
   1136     // number.
   1137     CmpInst::Predicate Predicate = CI->getPredicate();
   1138     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
   1139       E->swapOperands(0, 1);
   1140       Predicate = CmpInst::getSwappedPredicate(Predicate);
   1141     }
   1142     E->setOpcode((CI->getOpcode() << 8) | Predicate);
   1143     // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
   1144     assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
   1145            "Wrong types on cmp instruction");
   1146     assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
   1147             E->getOperand(1)->getType() == I->getOperand(1)->getType()));
   1148     Value *V =
   1149         SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
   1150     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
   1151       return SimplifiedE;
   1152   } else if (isa<SelectInst>(I)) {
   1153     if (isa<Constant>(E->getOperand(0)) ||
   1154         E->getOperand(1) == E->getOperand(2)) {
   1155       assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
   1156              E->getOperand(2)->getType() == I->getOperand(2)->getType());
   1157       Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
   1158                                     E->getOperand(2), SQ);
   1159       if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
   1160         return SimplifiedE;
   1161     }
   1162   } else if (I->isBinaryOp()) {
   1163     Value *V =
   1164         SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
   1165     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
   1166       return SimplifiedE;
   1167   } else if (auto *BI = dyn_cast<BitCastInst>(I)) {
   1168     Value *V =
   1169         SimplifyCastInst(BI->getOpcode(), BI->getOperand(0), BI->getType(), SQ);
   1170     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
   1171       return SimplifiedE;
   1172   } else if (isa<GetElementPtrInst>(I)) {
   1173     Value *V = SimplifyGEPInst(
   1174         E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
   1175     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
   1176       return SimplifiedE;
   1177   } else if (AllConstant) {
   1178     // We don't bother trying to simplify unless all of the operands
   1179     // were constant.
   1180     // TODO: There are a lot of Simplify*'s we could call here, if we
   1181     // wanted to.  The original motivating case for this code was a
   1182     // zext i1 false to i8, which we don't have an interface to
   1183     // simplify (IE there is no SimplifyZExt).
   1184 
   1185     SmallVector<Constant *, 8> C;
   1186     for (Value *Arg : E->operands())
   1187       C.emplace_back(cast<Constant>(Arg));
   1188 
   1189     if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
   1190       if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
   1191         return SimplifiedE;
   1192   }
   1193   return E;
   1194 }
   1195 
   1196 const AggregateValueExpression *
   1197 NewGVN::createAggregateValueExpression(Instruction *I) const {
   1198   if (auto *II = dyn_cast<InsertValueInst>(I)) {
   1199     auto *E = new (ExpressionAllocator)
   1200         AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
   1201     setBasicExpressionInfo(I, E);
   1202     E->allocateIntOperands(ExpressionAllocator);
   1203     std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
   1204     return E;
   1205   } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
   1206     auto *E = new (ExpressionAllocator)
   1207         AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
   1208     setBasicExpressionInfo(EI, E);
   1209     E->allocateIntOperands(ExpressionAllocator);
   1210     std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
   1211     return E;
   1212   }
   1213   llvm_unreachable("Unhandled type of aggregate value operation");
   1214 }
   1215 
   1216 const DeadExpression *NewGVN::createDeadExpression() const {
   1217   // DeadExpression has no arguments and all DeadExpression's are the same,
   1218   // so we only need one of them.
   1219   return SingletonDeadExpression;
   1220 }
   1221 
   1222 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
   1223   auto *E = new (ExpressionAllocator) VariableExpression(V);
   1224   E->setOpcode(V->getValueID());
   1225   return E;
   1226 }
   1227 
   1228 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
   1229   if (auto *C = dyn_cast<Constant>(V))
   1230     return createConstantExpression(C);
   1231   return createVariableExpression(V);
   1232 }
   1233 
   1234 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
   1235   auto *E = new (ExpressionAllocator) ConstantExpression(C);
   1236   E->setOpcode(C->getValueID());
   1237   return E;
   1238 }
   1239 
   1240 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
   1241   auto *E = new (ExpressionAllocator) UnknownExpression(I);
   1242   E->setOpcode(I->getOpcode());
   1243   return E;
   1244 }
   1245 
   1246 const CallExpression *
   1247 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
   1248   // FIXME: Add operand bundles for calls.
   1249   auto *E =
   1250       new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
   1251   setBasicExpressionInfo(CI, E);
   1252   return E;
   1253 }
   1254 
   1255 // Return true if some equivalent of instruction Inst dominates instruction U.
   1256 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
   1257                                      const Instruction *U) const {
   1258   auto *CC = ValueToClass.lookup(Inst);
   1259    // This must be an instruction because we are only called from phi nodes
   1260   // in the case that the value it needs to check against is an instruction.
   1261 
   1262   // The most likely candidates for dominance are the leader and the next leader.
   1263   // The leader or nextleader will dominate in all cases where there is an
   1264   // equivalent that is higher up in the dom tree.
   1265   // We can't *only* check them, however, because the
   1266   // dominator tree could have an infinite number of non-dominating siblings
   1267   // with instructions that are in the right congruence class.
   1268   //       A
   1269   // B C D E F G
   1270   // |
   1271   // H
   1272   // Instruction U could be in H,  with equivalents in every other sibling.
   1273   // Depending on the rpo order picked, the leader could be the equivalent in
   1274   // any of these siblings.
   1275   if (!CC)
   1276     return false;
   1277   if (alwaysAvailable(CC->getLeader()))
   1278     return true;
   1279   if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
   1280     return true;
   1281   if (CC->getNextLeader().first &&
   1282       DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
   1283     return true;
   1284   return llvm::any_of(*CC, [&](const Value *Member) {
   1285     return Member != CC->getLeader() &&
   1286            DT->dominates(cast<Instruction>(Member), U);
   1287   });
   1288 }
   1289 
   1290 // See if we have a congruence class and leader for this operand, and if so,
   1291 // return it. Otherwise, return the operand itself.
   1292 Value *NewGVN::lookupOperandLeader(Value *V) const {
   1293   CongruenceClass *CC = ValueToClass.lookup(V);
   1294   if (CC) {
   1295     // Everything in TOP is represented by undef, as it can be any value.
   1296     // We do have to make sure we get the type right though, so we can't set the
   1297     // RepLeader to undef.
   1298     if (CC == TOPClass)
   1299       return UndefValue::get(V->getType());
   1300     return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
   1301   }
   1302 
   1303   return V;
   1304 }
   1305 
   1306 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
   1307   auto *CC = getMemoryClass(MA);
   1308   assert(CC->getMemoryLeader() &&
   1309          "Every MemoryAccess should be mapped to a congruence class with a "
   1310          "representative memory access");
   1311   return CC->getMemoryLeader();
   1312 }
   1313 
   1314 // Return true if the MemoryAccess is really equivalent to everything. This is
   1315 // equivalent to the lattice value "TOP" in most lattices.  This is the initial
   1316 // state of all MemoryAccesses.
   1317 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
   1318   return getMemoryClass(MA) == TOPClass;
   1319 }
   1320 
   1321 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
   1322                                              LoadInst *LI,
   1323                                              const MemoryAccess *MA) const {
   1324   auto *E =
   1325       new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
   1326   E->allocateOperands(ArgRecycler, ExpressionAllocator);
   1327   E->setType(LoadType);
   1328 
   1329   // Give store and loads same opcode so they value number together.
   1330   E->setOpcode(0);
   1331   E->op_push_back(PointerOp);
   1332   if (LI)
   1333     E->setAlignment(LI->getAlignment());
   1334 
   1335   // TODO: Value number heap versions. We may be able to discover
   1336   // things alias analysis can't on it's own (IE that a store and a
   1337   // load have the same value, and thus, it isn't clobbering the load).
   1338   return E;
   1339 }
   1340 
   1341 const StoreExpression *
   1342 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
   1343   auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
   1344   auto *E = new (ExpressionAllocator)
   1345       StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
   1346   E->allocateOperands(ArgRecycler, ExpressionAllocator);
   1347   E->setType(SI->getValueOperand()->getType());
   1348 
   1349   // Give store and loads same opcode so they value number together.
   1350   E->setOpcode(0);
   1351   E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
   1352 
   1353   // TODO: Value number heap versions. We may be able to discover
   1354   // things alias analysis can't on it's own (IE that a store and a
   1355   // load have the same value, and thus, it isn't clobbering the load).
   1356   return E;
   1357 }
   1358 
   1359 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
   1360   // Unlike loads, we never try to eliminate stores, so we do not check if they
   1361   // are simple and avoid value numbering them.
   1362   auto *SI = cast<StoreInst>(I);
   1363   auto *StoreAccess = getMemoryAccess(SI);
   1364   // Get the expression, if any, for the RHS of the MemoryDef.
   1365   const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
   1366   if (EnableStoreRefinement)
   1367     StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
   1368   // If we bypassed the use-def chains, make sure we add a use.
   1369   StoreRHS = lookupMemoryLeader(StoreRHS);
   1370   if (StoreRHS != StoreAccess->getDefiningAccess())
   1371     addMemoryUsers(StoreRHS, StoreAccess);
   1372   // If we are defined by ourselves, use the live on entry def.
   1373   if (StoreRHS == StoreAccess)
   1374     StoreRHS = MSSA->getLiveOnEntryDef();
   1375 
   1376   if (SI->isSimple()) {
   1377     // See if we are defined by a previous store expression, it already has a
   1378     // value, and it's the same value as our current store. FIXME: Right now, we
   1379     // only do this for simple stores, we should expand to cover memcpys, etc.
   1380     const auto *LastStore = createStoreExpression(SI, StoreRHS);
   1381     const auto *LastCC = ExpressionToClass.lookup(LastStore);
   1382     // We really want to check whether the expression we matched was a store. No
   1383     // easy way to do that. However, we can check that the class we found has a
   1384     // store, which, assuming the value numbering state is not corrupt, is
   1385     // sufficient, because we must also be equivalent to that store's expression
   1386     // for it to be in the same class as the load.
   1387     if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
   1388       return LastStore;
   1389     // Also check if our value operand is defined by a load of the same memory
   1390     // location, and the memory state is the same as it was then (otherwise, it
   1391     // could have been overwritten later. See test32 in
   1392     // transforms/DeadStoreElimination/simple.ll).
   1393     if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
   1394       if ((lookupOperandLeader(LI->getPointerOperand()) ==
   1395            LastStore->getOperand(0)) &&
   1396           (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
   1397            StoreRHS))
   1398         return LastStore;
   1399     deleteExpression(LastStore);
   1400   }
   1401 
   1402   // If the store is not equivalent to anything, value number it as a store that
   1403   // produces a unique memory state (instead of using it's MemoryUse, we use
   1404   // it's MemoryDef).
   1405   return createStoreExpression(SI, StoreAccess);
   1406 }
   1407 
   1408 // See if we can extract the value of a loaded pointer from a load, a store, or
   1409 // a memory instruction.
   1410 const Expression *
   1411 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
   1412                                     LoadInst *LI, Instruction *DepInst,
   1413                                     MemoryAccess *DefiningAccess) const {
   1414   assert((!LI || LI->isSimple()) && "Not a simple load");
   1415   if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
   1416     // Can't forward from non-atomic to atomic without violating memory model.
   1417     // Also don't need to coerce if they are the same type, we will just
   1418     // propagate.
   1419     if (LI->isAtomic() > DepSI->isAtomic() ||
   1420         LoadType == DepSI->getValueOperand()->getType())
   1421       return nullptr;
   1422     int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
   1423     if (Offset >= 0) {
   1424       if (auto *C = dyn_cast<Constant>(
   1425               lookupOperandLeader(DepSI->getValueOperand()))) {
   1426         LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
   1427                           << " to constant " << *C << "\n");
   1428         return createConstantExpression(
   1429             getConstantStoreValueForLoad(C, Offset, LoadType, DL));
   1430       }
   1431     }
   1432   } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
   1433     // Can't forward from non-atomic to atomic without violating memory model.
   1434     if (LI->isAtomic() > DepLI->isAtomic())
   1435       return nullptr;
   1436     int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
   1437     if (Offset >= 0) {
   1438       // We can coerce a constant load into a load.
   1439       if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
   1440         if (auto *PossibleConstant =
   1441                 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
   1442           LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
   1443                             << " to constant " << *PossibleConstant << "\n");
   1444           return createConstantExpression(PossibleConstant);
   1445         }
   1446     }
   1447   } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
   1448     int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
   1449     if (Offset >= 0) {
   1450       if (auto *PossibleConstant =
   1451               getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
   1452         LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
   1453                           << " to constant " << *PossibleConstant << "\n");
   1454         return createConstantExpression(PossibleConstant);
   1455       }
   1456     }
   1457   }
   1458 
   1459   // All of the below are only true if the loaded pointer is produced
   1460   // by the dependent instruction.
   1461   if (LoadPtr != lookupOperandLeader(DepInst) &&
   1462       !AA->isMustAlias(LoadPtr, DepInst))
   1463     return nullptr;
   1464   // If this load really doesn't depend on anything, then we must be loading an
   1465   // undef value.  This can happen when loading for a fresh allocation with no
   1466   // intervening stores, for example.  Note that this is only true in the case
   1467   // that the result of the allocation is pointer equal to the load ptr.
   1468   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
   1469     return createConstantExpression(UndefValue::get(LoadType));
   1470   }
   1471   // If this load occurs either right after a lifetime begin,
   1472   // then the loaded value is undefined.
   1473   else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
   1474     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
   1475       return createConstantExpression(UndefValue::get(LoadType));
   1476   }
   1477   // If this load follows a calloc (which zero initializes memory),
   1478   // then the loaded value is zero
   1479   else if (isCallocLikeFn(DepInst, TLI)) {
   1480     return createConstantExpression(Constant::getNullValue(LoadType));
   1481   }
   1482 
   1483   return nullptr;
   1484 }
   1485 
   1486 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
   1487   auto *LI = cast<LoadInst>(I);
   1488 
   1489   // We can eliminate in favor of non-simple loads, but we won't be able to
   1490   // eliminate the loads themselves.
   1491   if (!LI->isSimple())
   1492     return nullptr;
   1493 
   1494   Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
   1495   // Load of undef is undef.
   1496   if (isa<UndefValue>(LoadAddressLeader))
   1497     return createConstantExpression(UndefValue::get(LI->getType()));
   1498   MemoryAccess *OriginalAccess = getMemoryAccess(I);
   1499   MemoryAccess *DefiningAccess =
   1500       MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
   1501 
   1502   if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
   1503     if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
   1504       Instruction *DefiningInst = MD->getMemoryInst();
   1505       // If the defining instruction is not reachable, replace with undef.
   1506       if (!ReachableBlocks.count(DefiningInst->getParent()))
   1507         return createConstantExpression(UndefValue::get(LI->getType()));
   1508       // This will handle stores and memory insts.  We only do if it the
   1509       // defining access has a different type, or it is a pointer produced by
   1510       // certain memory operations that cause the memory to have a fixed value
   1511       // (IE things like calloc).
   1512       if (const auto *CoercionResult =
   1513               performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
   1514                                           DefiningInst, DefiningAccess))
   1515         return CoercionResult;
   1516     }
   1517   }
   1518 
   1519   const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
   1520                                         DefiningAccess);
   1521   // If our MemoryLeader is not our defining access, add a use to the
   1522   // MemoryLeader, so that we get reprocessed when it changes.
   1523   if (LE->getMemoryLeader() != DefiningAccess)
   1524     addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
   1525   return LE;
   1526 }
   1527 
   1528 const Expression *
   1529 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
   1530   auto *PI = PredInfo->getPredicateInfoFor(I);
   1531   if (!PI)
   1532     return nullptr;
   1533 
   1534   LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
   1535 
   1536   auto *PWC = dyn_cast<PredicateWithCondition>(PI);
   1537   if (!PWC)
   1538     return nullptr;
   1539 
   1540   auto *CopyOf = I->getOperand(0);
   1541   auto *Cond = PWC->Condition;
   1542 
   1543   // If this a copy of the condition, it must be either true or false depending
   1544   // on the predicate info type and edge.
   1545   if (CopyOf == Cond) {
   1546     // We should not need to add predicate users because the predicate info is
   1547     // already a use of this operand.
   1548     if (isa<PredicateAssume>(PI))
   1549       return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
   1550     if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
   1551       if (PBranch->TrueEdge)
   1552         return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
   1553       return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
   1554     }
   1555     if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
   1556       return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
   1557   }
   1558 
   1559   // Not a copy of the condition, so see what the predicates tell us about this
   1560   // value.  First, though, we check to make sure the value is actually a copy
   1561   // of one of the condition operands. It's possible, in certain cases, for it
   1562   // to be a copy of a predicateinfo copy. In particular, if two branch
   1563   // operations use the same condition, and one branch dominates the other, we
   1564   // will end up with a copy of a copy.  This is currently a small deficiency in
   1565   // predicateinfo.  What will end up happening here is that we will value
   1566   // number both copies the same anyway.
   1567 
   1568   // Everything below relies on the condition being a comparison.
   1569   auto *Cmp = dyn_cast<CmpInst>(Cond);
   1570   if (!Cmp)
   1571     return nullptr;
   1572 
   1573   if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
   1574     LLVM_DEBUG(dbgs() << "Copy is not of any condition operands!\n");
   1575     return nullptr;
   1576   }
   1577   Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
   1578   Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
   1579   bool SwappedOps = false;
   1580   // Sort the ops.
   1581   if (shouldSwapOperands(FirstOp, SecondOp)) {
   1582     std::swap(FirstOp, SecondOp);
   1583     SwappedOps = true;
   1584   }
   1585   CmpInst::Predicate Predicate =
   1586       SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
   1587 
   1588   if (isa<PredicateAssume>(PI)) {
   1589     // If we assume the operands are equal, then they are equal.
   1590     if (Predicate == CmpInst::ICMP_EQ) {
   1591       addPredicateUsers(PI, I);
   1592       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
   1593                          I);
   1594       return createVariableOrConstant(FirstOp);
   1595     }
   1596   }
   1597   if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
   1598     // If we are *not* a copy of the comparison, we may equal to the other
   1599     // operand when the predicate implies something about equality of
   1600     // operations.  In particular, if the comparison is true/false when the
   1601     // operands are equal, and we are on the right edge, we know this operation
   1602     // is equal to something.
   1603     if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
   1604         (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
   1605       addPredicateUsers(PI, I);
   1606       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
   1607                          I);
   1608       return createVariableOrConstant(FirstOp);
   1609     }
   1610     // Handle the special case of floating point.
   1611     if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
   1612          (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
   1613         isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
   1614       addPredicateUsers(PI, I);
   1615       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
   1616                          I);
   1617       return createConstantExpression(cast<Constant>(FirstOp));
   1618     }
   1619   }
   1620   return nullptr;
   1621 }
   1622 
   1623 // Evaluate read only and pure calls, and create an expression result.
   1624 const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
   1625   auto *CI = cast<CallInst>(I);
   1626   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
   1627     // Intrinsics with the returned attribute are copies of arguments.
   1628     if (auto *ReturnedValue = II->getReturnedArgOperand()) {
   1629       if (II->getIntrinsicID() == Intrinsic::ssa_copy)
   1630         if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
   1631           return Result;
   1632       return createVariableOrConstant(ReturnedValue);
   1633     }
   1634   }
   1635   if (AA->doesNotAccessMemory(CI)) {
   1636     return createCallExpression(CI, TOPClass->getMemoryLeader());
   1637   } else if (AA->onlyReadsMemory(CI)) {
   1638     MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI);
   1639     return createCallExpression(CI, DefiningAccess);
   1640   }
   1641   return nullptr;
   1642 }
   1643 
   1644 // Retrieve the memory class for a given MemoryAccess.
   1645 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
   1646   auto *Result = MemoryAccessToClass.lookup(MA);
   1647   assert(Result && "Should have found memory class");
   1648   return Result;
   1649 }
   1650 
   1651 // Update the MemoryAccess equivalence table to say that From is equal to To,
   1652 // and return true if this is different from what already existed in the table.
   1653 bool NewGVN::setMemoryClass(const MemoryAccess *From,
   1654                             CongruenceClass *NewClass) {
   1655   assert(NewClass &&
   1656          "Every MemoryAccess should be getting mapped to a non-null class");
   1657   LLVM_DEBUG(dbgs() << "Setting " << *From);
   1658   LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
   1659   LLVM_DEBUG(dbgs() << NewClass->getID()
   1660                     << " with current MemoryAccess leader ");
   1661   LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
   1662 
   1663   auto LookupResult = MemoryAccessToClass.find(From);
   1664   bool Changed = false;
   1665   // If it's already in the table, see if the value changed.
   1666   if (LookupResult != MemoryAccessToClass.end()) {
   1667     auto *OldClass = LookupResult->second;
   1668     if (OldClass != NewClass) {
   1669       // If this is a phi, we have to handle memory member updates.
   1670       if (auto *MP = dyn_cast<MemoryPhi>(From)) {
   1671         OldClass->memory_erase(MP);
   1672         NewClass->memory_insert(MP);
   1673         // This may have killed the class if it had no non-memory members
   1674         if (OldClass->getMemoryLeader() == From) {
   1675           if (OldClass->definesNoMemory()) {
   1676             OldClass->setMemoryLeader(nullptr);
   1677           } else {
   1678             OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
   1679             LLVM_DEBUG(dbgs() << "Memory class leader change for class "
   1680                               << OldClass->getID() << " to "
   1681                               << *OldClass->getMemoryLeader()
   1682                               << " due to removal of a memory member " << *From
   1683                               << "\n");
   1684             markMemoryLeaderChangeTouched(OldClass);
   1685           }
   1686         }
   1687       }
   1688       // It wasn't equivalent before, and now it is.
   1689       LookupResult->second = NewClass;
   1690       Changed = true;
   1691     }
   1692   }
   1693 
   1694   return Changed;
   1695 }
   1696 
   1697 // Determine if a instruction is cycle-free.  That means the values in the
   1698 // instruction don't depend on any expressions that can change value as a result
   1699 // of the instruction.  For example, a non-cycle free instruction would be v =
   1700 // phi(0, v+1).
   1701 bool NewGVN::isCycleFree(const Instruction *I) const {
   1702   // In order to compute cycle-freeness, we do SCC finding on the instruction,
   1703   // and see what kind of SCC it ends up in.  If it is a singleton, it is
   1704   // cycle-free.  If it is not in a singleton, it is only cycle free if the
   1705   // other members are all phi nodes (as they do not compute anything, they are
   1706   // copies).
   1707   auto ICS = InstCycleState.lookup(I);
   1708   if (ICS == ICS_Unknown) {
   1709     SCCFinder.Start(I);
   1710     auto &SCC = SCCFinder.getComponentFor(I);
   1711     // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
   1712     if (SCC.size() == 1)
   1713       InstCycleState.insert({I, ICS_CycleFree});
   1714     else {
   1715       bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
   1716         return isa<PHINode>(V) || isCopyOfAPHI(V);
   1717       });
   1718       ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
   1719       for (auto *Member : SCC)
   1720         if (auto *MemberPhi = dyn_cast<PHINode>(Member))
   1721           InstCycleState.insert({MemberPhi, ICS});
   1722     }
   1723   }
   1724   if (ICS == ICS_Cycle)
   1725     return false;
   1726   return true;
   1727 }
   1728 
   1729 // Evaluate PHI nodes symbolically and create an expression result.
   1730 const Expression *
   1731 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
   1732                                      Instruction *I,
   1733                                      BasicBlock *PHIBlock) const {
   1734   // True if one of the incoming phi edges is a backedge.
   1735   bool HasBackedge = false;
   1736   // All constant tracks the state of whether all the *original* phi operands
   1737   // This is really shorthand for "this phi cannot cycle due to forward
   1738   // change in value of the phi is guaranteed not to later change the value of
   1739   // the phi. IE it can't be v = phi(undef, v+1)
   1740   bool OriginalOpsConstant = true;
   1741   auto *E = cast<PHIExpression>(createPHIExpression(
   1742       PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
   1743   // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
   1744   // See if all arguments are the same.
   1745   // We track if any were undef because they need special handling.
   1746   bool HasUndef = false;
   1747   auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
   1748     if (isa<UndefValue>(Arg)) {
   1749       HasUndef = true;
   1750       return false;
   1751     }
   1752     return true;
   1753   });
   1754   // If we are left with no operands, it's dead.
   1755   if (Filtered.begin() == Filtered.end()) {
   1756     // If it has undef at this point, it means there are no-non-undef arguments,
   1757     // and thus, the value of the phi node must be undef.
   1758     if (HasUndef) {
   1759       LLVM_DEBUG(
   1760           dbgs() << "PHI Node " << *I
   1761                  << " has no non-undef arguments, valuing it as undef\n");
   1762       return createConstantExpression(UndefValue::get(I->getType()));
   1763     }
   1764 
   1765     LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
   1766     deleteExpression(E);
   1767     return createDeadExpression();
   1768   }
   1769   Value *AllSameValue = *(Filtered.begin());
   1770   ++Filtered.begin();
   1771   // Can't use std::equal here, sadly, because filter.begin moves.
   1772   if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
   1773     // In LLVM's non-standard representation of phi nodes, it's possible to have
   1774     // phi nodes with cycles (IE dependent on other phis that are .... dependent
   1775     // on the original phi node), especially in weird CFG's where some arguments
   1776     // are unreachable, or uninitialized along certain paths.  This can cause
   1777     // infinite loops during evaluation. We work around this by not trying to
   1778     // really evaluate them independently, but instead using a variable
   1779     // expression to say if one is equivalent to the other.
   1780     // We also special case undef, so that if we have an undef, we can't use the
   1781     // common value unless it dominates the phi block.
   1782     if (HasUndef) {
   1783       // If we have undef and at least one other value, this is really a
   1784       // multivalued phi, and we need to know if it's cycle free in order to
   1785       // evaluate whether we can ignore the undef.  The other parts of this are
   1786       // just shortcuts.  If there is no backedge, or all operands are
   1787       // constants, it also must be cycle free.
   1788       if (HasBackedge && !OriginalOpsConstant &&
   1789           !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
   1790         return E;
   1791 
   1792       // Only have to check for instructions
   1793       if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
   1794         if (!someEquivalentDominates(AllSameInst, I))
   1795           return E;
   1796     }
   1797     // Can't simplify to something that comes later in the iteration.
   1798     // Otherwise, when and if it changes congruence class, we will never catch
   1799     // up. We will always be a class behind it.
   1800     if (isa<Instruction>(AllSameValue) &&
   1801         InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
   1802       return E;
   1803     NumGVNPhisAllSame++;
   1804     LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
   1805                       << "\n");
   1806     deleteExpression(E);
   1807     return createVariableOrConstant(AllSameValue);
   1808   }
   1809   return E;
   1810 }
   1811 
   1812 const Expression *
   1813 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
   1814   if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
   1815     auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
   1816     if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
   1817       unsigned Opcode = 0;
   1818       // EI might be an extract from one of our recognised intrinsics. If it
   1819       // is we'll synthesize a semantically equivalent expression instead on
   1820       // an extract value expression.
   1821       switch (II->getIntrinsicID()) {
   1822       case Intrinsic::sadd_with_overflow:
   1823       case Intrinsic::uadd_with_overflow:
   1824         Opcode = Instruction::Add;
   1825         break;
   1826       case Intrinsic::ssub_with_overflow:
   1827       case Intrinsic::usub_with_overflow:
   1828         Opcode = Instruction::Sub;
   1829         break;
   1830       case Intrinsic::smul_with_overflow:
   1831       case Intrinsic::umul_with_overflow:
   1832         Opcode = Instruction::Mul;
   1833         break;
   1834       default:
   1835         break;
   1836       }
   1837 
   1838       if (Opcode != 0) {
   1839         // Intrinsic recognized. Grab its args to finish building the
   1840         // expression.
   1841         assert(II->getNumArgOperands() == 2 &&
   1842                "Expect two args for recognised intrinsics.");
   1843         return createBinaryExpression(Opcode, EI->getType(),
   1844                                       II->getArgOperand(0),
   1845                                       II->getArgOperand(1), I);
   1846       }
   1847     }
   1848   }
   1849 
   1850   return createAggregateValueExpression(I);
   1851 }
   1852 
   1853 const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
   1854   assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
   1855 
   1856   auto *CI = cast<CmpInst>(I);
   1857   // See if our operands are equal to those of a previous predicate, and if so,
   1858   // if it implies true or false.
   1859   auto Op0 = lookupOperandLeader(CI->getOperand(0));
   1860   auto Op1 = lookupOperandLeader(CI->getOperand(1));
   1861   auto OurPredicate = CI->getPredicate();
   1862   if (shouldSwapOperands(Op0, Op1)) {
   1863     std::swap(Op0, Op1);
   1864     OurPredicate = CI->getSwappedPredicate();
   1865   }
   1866 
   1867   // Avoid processing the same info twice.
   1868   const PredicateBase *LastPredInfo = nullptr;
   1869   // See if we know something about the comparison itself, like it is the target
   1870   // of an assume.
   1871   auto *CmpPI = PredInfo->getPredicateInfoFor(I);
   1872   if (dyn_cast_or_null<PredicateAssume>(CmpPI))
   1873     return createConstantExpression(ConstantInt::getTrue(CI->getType()));
   1874 
   1875   if (Op0 == Op1) {
   1876     // This condition does not depend on predicates, no need to add users
   1877     if (CI->isTrueWhenEqual())
   1878       return createConstantExpression(ConstantInt::getTrue(CI->getType()));
   1879     else if (CI->isFalseWhenEqual())
   1880       return createConstantExpression(ConstantInt::getFalse(CI->getType()));
   1881   }
   1882 
   1883   // NOTE: Because we are comparing both operands here and below, and using
   1884   // previous comparisons, we rely on fact that predicateinfo knows to mark
   1885   // comparisons that use renamed operands as users of the earlier comparisons.
   1886   // It is *not* enough to just mark predicateinfo renamed operands as users of
   1887   // the earlier comparisons, because the *other* operand may have changed in a
   1888   // previous iteration.
   1889   // Example:
   1890   // icmp slt %a, %b
   1891   // %b.0 = ssa.copy(%b)
   1892   // false branch:
   1893   // icmp slt %c, %b.0
   1894 
   1895   // %c and %a may start out equal, and thus, the code below will say the second
   1896   // %icmp is false.  c may become equal to something else, and in that case the
   1897   // %second icmp *must* be reexamined, but would not if only the renamed
   1898   // %operands are considered users of the icmp.
   1899 
   1900   // *Currently* we only check one level of comparisons back, and only mark one
   1901   // level back as touched when changes happen.  If you modify this code to look
   1902   // back farther through comparisons, you *must* mark the appropriate
   1903   // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
   1904   // we know something just from the operands themselves
   1905 
   1906   // See if our operands have predicate info, so that we may be able to derive
   1907   // something from a previous comparison.
   1908   for (const auto &Op : CI->operands()) {
   1909     auto *PI = PredInfo->getPredicateInfoFor(Op);
   1910     if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
   1911       if (PI == LastPredInfo)
   1912         continue;
   1913       LastPredInfo = PI;
   1914       // In phi of ops cases, we may have predicate info that we are evaluating
   1915       // in a different context.
   1916       if (!DT->dominates(PBranch->To, getBlockForValue(I)))
   1917         continue;
   1918       // TODO: Along the false edge, we may know more things too, like
   1919       // icmp of
   1920       // same operands is false.
   1921       // TODO: We only handle actual comparison conditions below, not
   1922       // and/or.
   1923       auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
   1924       if (!BranchCond)
   1925         continue;
   1926       auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
   1927       auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
   1928       auto BranchPredicate = BranchCond->getPredicate();
   1929       if (shouldSwapOperands(BranchOp0, BranchOp1)) {
   1930         std::swap(BranchOp0, BranchOp1);
   1931         BranchPredicate = BranchCond->getSwappedPredicate();
   1932       }
   1933       if (BranchOp0 == Op0 && BranchOp1 == Op1) {
   1934         if (PBranch->TrueEdge) {
   1935           // If we know the previous predicate is true and we are in the true
   1936           // edge then we may be implied true or false.
   1937           if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
   1938                                                   OurPredicate)) {
   1939             addPredicateUsers(PI, I);
   1940             return createConstantExpression(
   1941                 ConstantInt::getTrue(CI->getType()));
   1942           }
   1943 
   1944           if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
   1945                                                    OurPredicate)) {
   1946             addPredicateUsers(PI, I);
   1947             return createConstantExpression(
   1948                 ConstantInt::getFalse(CI->getType()));
   1949           }
   1950         } else {
   1951           // Just handle the ne and eq cases, where if we have the same
   1952           // operands, we may know something.
   1953           if (BranchPredicate == OurPredicate) {
   1954             addPredicateUsers(PI, I);
   1955             // Same predicate, same ops,we know it was false, so this is false.
   1956             return createConstantExpression(
   1957                 ConstantInt::getFalse(CI->getType()));
   1958           } else if (BranchPredicate ==
   1959                      CmpInst::getInversePredicate(OurPredicate)) {
   1960             addPredicateUsers(PI, I);
   1961             // Inverse predicate, we know the other was false, so this is true.
   1962             return createConstantExpression(
   1963                 ConstantInt::getTrue(CI->getType()));
   1964           }
   1965         }
   1966       }
   1967     }
   1968   }
   1969   // Create expression will take care of simplifyCmpInst
   1970   return createExpression(I);
   1971 }
   1972 
   1973 // Substitute and symbolize the value before value numbering.
   1974 const Expression *
   1975 NewGVN::performSymbolicEvaluation(Value *V,
   1976                                   SmallPtrSetImpl<Value *> &Visited) const {
   1977   const Expression *E = nullptr;
   1978   if (auto *C = dyn_cast<Constant>(V))
   1979     E = createConstantExpression(C);
   1980   else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
   1981     E = createVariableExpression(V);
   1982   } else {
   1983     // TODO: memory intrinsics.
   1984     // TODO: Some day, we should do the forward propagation and reassociation
   1985     // parts of the algorithm.
   1986     auto *I = cast<Instruction>(V);
   1987     switch (I->getOpcode()) {
   1988     case Instruction::ExtractValue:
   1989     case Instruction::InsertValue:
   1990       E = performSymbolicAggrValueEvaluation(I);
   1991       break;
   1992     case Instruction::PHI: {
   1993       SmallVector<ValPair, 3> Ops;
   1994       auto *PN = cast<PHINode>(I);
   1995       for (unsigned i = 0; i < PN->getNumOperands(); ++i)
   1996         Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
   1997       // Sort to ensure the invariant createPHIExpression requires is met.
   1998       sortPHIOps(Ops);
   1999       E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
   2000     } break;
   2001     case Instruction::Call:
   2002       E = performSymbolicCallEvaluation(I);
   2003       break;
   2004     case Instruction::Store:
   2005       E = performSymbolicStoreEvaluation(I);
   2006       break;
   2007     case Instruction::Load:
   2008       E = performSymbolicLoadEvaluation(I);
   2009       break;
   2010     case Instruction::BitCast:
   2011       E = createExpression(I);
   2012       break;
   2013     case Instruction::ICmp:
   2014     case Instruction::FCmp:
   2015       E = performSymbolicCmpEvaluation(I);
   2016       break;
   2017     case Instruction::Add:
   2018     case Instruction::FAdd:
   2019     case Instruction::Sub:
   2020     case Instruction::FSub:
   2021     case Instruction::Mul:
   2022     case Instruction::FMul:
   2023     case Instruction::UDiv:
   2024     case Instruction::SDiv:
   2025     case Instruction::FDiv:
   2026     case Instruction::URem:
   2027     case Instruction::SRem:
   2028     case Instruction::FRem:
   2029     case Instruction::Shl:
   2030     case Instruction::LShr:
   2031     case Instruction::AShr:
   2032     case Instruction::And:
   2033     case Instruction::Or:
   2034     case Instruction::Xor:
   2035     case Instruction::Trunc:
   2036     case Instruction::ZExt:
   2037     case Instruction::SExt:
   2038     case Instruction::FPToUI:
   2039     case Instruction::FPToSI:
   2040     case Instruction::UIToFP:
   2041     case Instruction::SIToFP:
   2042     case Instruction::FPTrunc:
   2043     case Instruction::FPExt:
   2044     case Instruction::PtrToInt:
   2045     case Instruction::IntToPtr:
   2046     case Instruction::Select:
   2047     case Instruction::ExtractElement:
   2048     case Instruction::InsertElement:
   2049     case Instruction::ShuffleVector:
   2050     case Instruction::GetElementPtr:
   2051       E = createExpression(I);
   2052       break;
   2053     default:
   2054       return nullptr;
   2055     }
   2056   }
   2057   return E;
   2058 }
   2059 
   2060 // Look up a container in a map, and then call a function for each thing in the
   2061 // found container.
   2062 template <typename Map, typename KeyType, typename Func>
   2063 void NewGVN::for_each_found(Map &M, const KeyType &Key, Func F) {
   2064   const auto Result = M.find_as(Key);
   2065   if (Result != M.end())
   2066     for (typename Map::mapped_type::value_type Mapped : Result->second)
   2067       F(Mapped);
   2068 }
   2069 
   2070 // Look up a container of values/instructions in a map, and touch all the
   2071 // instructions in the container.  Then erase value from the map.
   2072 template <typename Map, typename KeyType>
   2073 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
   2074   const auto Result = M.find_as(Key);
   2075   if (Result != M.end()) {
   2076     for (const typename Map::mapped_type::value_type Mapped : Result->second)
   2077       TouchedInstructions.set(InstrToDFSNum(Mapped));
   2078     M.erase(Result);
   2079   }
   2080 }
   2081 
   2082 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
   2083   assert(User && To != User);
   2084   if (isa<Instruction>(To))
   2085     AdditionalUsers[To].insert(User);
   2086 }
   2087 
   2088 void NewGVN::markUsersTouched(Value *V) {
   2089   // Now mark the users as touched.
   2090   for (auto *User : V->users()) {
   2091     assert(isa<Instruction>(User) && "Use of value not within an instruction?");
   2092     TouchedInstructions.set(InstrToDFSNum(User));
   2093   }
   2094   touchAndErase(AdditionalUsers, V);
   2095 }
   2096 
   2097 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
   2098   LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
   2099   MemoryToUsers[To].insert(U);
   2100 }
   2101 
   2102 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
   2103   TouchedInstructions.set(MemoryToDFSNum(MA));
   2104 }
   2105 
   2106 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
   2107   if (isa<MemoryUse>(MA))
   2108     return;
   2109   for (auto U : MA->users())
   2110     TouchedInstructions.set(MemoryToDFSNum(U));
   2111   touchAndErase(MemoryToUsers, MA);
   2112 }
   2113 
   2114 // Add I to the set of users of a given predicate.
   2115 void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
   2116   // Don't add temporary instructions to the user lists.
   2117   if (AllTempInstructions.count(I))
   2118     return;
   2119 
   2120   if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
   2121     PredicateToUsers[PBranch->Condition].insert(I);
   2122   else if (auto *PAssume = dyn_cast<PredicateBranch>(PB))
   2123     PredicateToUsers[PAssume->Condition].insert(I);
   2124 }
   2125 
   2126 // Touch all the predicates that depend on this instruction.
   2127 void NewGVN::markPredicateUsersTouched(Instruction *I) {
   2128   touchAndErase(PredicateToUsers, I);
   2129 }
   2130 
   2131 // Mark users affected by a memory leader change.
   2132 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
   2133   for (auto M : CC->memory())
   2134     markMemoryDefTouched(M);
   2135 }
   2136 
   2137 // Touch the instructions that need to be updated after a congruence class has a
   2138 // leader change, and mark changed values.
   2139 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
   2140   for (auto M : *CC) {
   2141     if (auto *I = dyn_cast<Instruction>(M))
   2142       TouchedInstructions.set(InstrToDFSNum(I));
   2143     LeaderChanges.insert(M);
   2144   }
   2145 }
   2146 
   2147 // Give a range of things that have instruction DFS numbers, this will return
   2148 // the member of the range with the smallest dfs number.
   2149 template <class T, class Range>
   2150 T *NewGVN::getMinDFSOfRange(const Range &R) const {
   2151   std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
   2152   for (const auto X : R) {
   2153     auto DFSNum = InstrToDFSNum(X);
   2154     if (DFSNum < MinDFS.second)
   2155       MinDFS = {X, DFSNum};
   2156   }
   2157   return MinDFS.first;
   2158 }
   2159 
   2160 // This function returns the MemoryAccess that should be the next leader of
   2161 // congruence class CC, under the assumption that the current leader is going to
   2162 // disappear.
   2163 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
   2164   // TODO: If this ends up to slow, we can maintain a next memory leader like we
   2165   // do for regular leaders.
   2166   // Make sure there will be a leader to find.
   2167   assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
   2168   if (CC->getStoreCount() > 0) {
   2169     if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
   2170       return getMemoryAccess(NL);
   2171     // Find the store with the minimum DFS number.
   2172     auto *V = getMinDFSOfRange<Value>(make_filter_range(
   2173         *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
   2174     return getMemoryAccess(cast<StoreInst>(V));
   2175   }
   2176   assert(CC->getStoreCount() == 0);
   2177 
   2178   // Given our assertion, hitting this part must mean
   2179   // !OldClass->memory_empty()
   2180   if (CC->memory_size() == 1)
   2181     return *CC->memory_begin();
   2182   return getMinDFSOfRange<const MemoryPhi>(CC->memory());
   2183 }
   2184 
   2185 // This function returns the next value leader of a congruence class, under the
   2186 // assumption that the current leader is going away.  This should end up being
   2187 // the next most dominating member.
   2188 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
   2189   // We don't need to sort members if there is only 1, and we don't care about
   2190   // sorting the TOP class because everything either gets out of it or is
   2191   // unreachable.
   2192 
   2193   if (CC->size() == 1 || CC == TOPClass) {
   2194     return *(CC->begin());
   2195   } else if (CC->getNextLeader().first) {
   2196     ++NumGVNAvoidedSortedLeaderChanges;
   2197     return CC->getNextLeader().first;
   2198   } else {
   2199     ++NumGVNSortedLeaderChanges;
   2200     // NOTE: If this ends up to slow, we can maintain a dual structure for
   2201     // member testing/insertion, or keep things mostly sorted, and sort only
   2202     // here, or use SparseBitVector or ....
   2203     return getMinDFSOfRange<Value>(*CC);
   2204   }
   2205 }
   2206 
   2207 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
   2208 // the memory members, etc for the move.
   2209 //
   2210 // The invariants of this function are:
   2211 //
   2212 // - I must be moving to NewClass from OldClass
   2213 // - The StoreCount of OldClass and NewClass is expected to have been updated
   2214 //   for I already if it is a store.
   2215 // - The OldClass memory leader has not been updated yet if I was the leader.
   2216 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
   2217                                             MemoryAccess *InstMA,
   2218                                             CongruenceClass *OldClass,
   2219                                             CongruenceClass *NewClass) {
   2220   // If the leader is I, and we had a representative MemoryAccess, it should
   2221   // be the MemoryAccess of OldClass.
   2222   assert((!InstMA || !OldClass->getMemoryLeader() ||
   2223           OldClass->getLeader() != I ||
   2224           MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
   2225               MemoryAccessToClass.lookup(InstMA)) &&
   2226          "Representative MemoryAccess mismatch");
   2227   // First, see what happens to the new class
   2228   if (!NewClass->getMemoryLeader()) {
   2229     // Should be a new class, or a store becoming a leader of a new class.
   2230     assert(NewClass->size() == 1 ||
   2231            (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
   2232     NewClass->setMemoryLeader(InstMA);
   2233     // Mark it touched if we didn't just create a singleton
   2234     LLVM_DEBUG(dbgs() << "Memory class leader change for class "
   2235                       << NewClass->getID()
   2236                       << " due to new memory instruction becoming leader\n");
   2237     markMemoryLeaderChangeTouched(NewClass);
   2238   }
   2239   setMemoryClass(InstMA, NewClass);
   2240   // Now, fixup the old class if necessary
   2241   if (OldClass->getMemoryLeader() == InstMA) {
   2242     if (!OldClass->definesNoMemory()) {
   2243       OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
   2244       LLVM_DEBUG(dbgs() << "Memory class leader change for class "
   2245                         << OldClass->getID() << " to "
   2246                         << *OldClass->getMemoryLeader()
   2247                         << " due to removal of old leader " << *InstMA << "\n");
   2248       markMemoryLeaderChangeTouched(OldClass);
   2249     } else
   2250       OldClass->setMemoryLeader(nullptr);
   2251   }
   2252 }
   2253 
   2254 // Move a value, currently in OldClass, to be part of NewClass
   2255 // Update OldClass and NewClass for the move (including changing leaders, etc).
   2256 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
   2257                                            CongruenceClass *OldClass,
   2258                                            CongruenceClass *NewClass) {
   2259   if (I == OldClass->getNextLeader().first)
   2260     OldClass->resetNextLeader();
   2261 
   2262   OldClass->erase(I);
   2263   NewClass->insert(I);
   2264 
   2265   if (NewClass->getLeader() != I)
   2266     NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
   2267   // Handle our special casing of stores.
   2268   if (auto *SI = dyn_cast<StoreInst>(I)) {
   2269     OldClass->decStoreCount();
   2270     // Okay, so when do we want to make a store a leader of a class?
   2271     // If we have a store defined by an earlier load, we want the earlier load
   2272     // to lead the class.
   2273     // If we have a store defined by something else, we want the store to lead
   2274     // the class so everything else gets the "something else" as a value.
   2275     // If we have a store as the single member of the class, we want the store
   2276     // as the leader
   2277     if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
   2278       // If it's a store expression we are using, it means we are not equivalent
   2279       // to something earlier.
   2280       if (auto *SE = dyn_cast<StoreExpression>(E)) {
   2281         NewClass->setStoredValue(SE->getStoredValue());
   2282         markValueLeaderChangeTouched(NewClass);
   2283         // Shift the new class leader to be the store
   2284         LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
   2285                           << NewClass->getID() << " from "
   2286                           << *NewClass->getLeader() << " to  " << *SI
   2287                           << " because store joined class\n");
   2288         // If we changed the leader, we have to mark it changed because we don't
   2289         // know what it will do to symbolic evaluation.
   2290         NewClass->setLeader(SI);
   2291       }
   2292       // We rely on the code below handling the MemoryAccess change.
   2293     }
   2294     NewClass->incStoreCount();
   2295   }
   2296   // True if there is no memory instructions left in a class that had memory
   2297   // instructions before.
   2298 
   2299   // If it's not a memory use, set the MemoryAccess equivalence
   2300   auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
   2301   if (InstMA)
   2302     moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
   2303   ValueToClass[I] = NewClass;
   2304   // See if we destroyed the class or need to swap leaders.
   2305   if (OldClass->empty() && OldClass != TOPClass) {
   2306     if (OldClass->getDefiningExpr()) {
   2307       LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
   2308                         << " from table\n");
   2309       // We erase it as an exact expression to make sure we don't just erase an
   2310       // equivalent one.
   2311       auto Iter = ExpressionToClass.find_as(
   2312           ExactEqualsExpression(*OldClass->getDefiningExpr()));
   2313       if (Iter != ExpressionToClass.end())
   2314         ExpressionToClass.erase(Iter);
   2315 #ifdef EXPENSIVE_CHECKS
   2316       assert(
   2317           (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
   2318           "We erased the expression we just inserted, which should not happen");
   2319 #endif
   2320     }
   2321   } else if (OldClass->getLeader() == I) {
   2322     // When the leader changes, the value numbering of
   2323     // everything may change due to symbolization changes, so we need to
   2324     // reprocess.
   2325     LLVM_DEBUG(dbgs() << "Value class leader change for class "
   2326                       << OldClass->getID() << "\n");
   2327     ++NumGVNLeaderChanges;
   2328     // Destroy the stored value if there are no more stores to represent it.
   2329     // Note that this is basically clean up for the expression removal that
   2330     // happens below.  If we remove stores from a class, we may leave it as a
   2331     // class of equivalent memory phis.
   2332     if (OldClass->getStoreCount() == 0) {
   2333       if (OldClass->getStoredValue())
   2334         OldClass->setStoredValue(nullptr);
   2335     }
   2336     OldClass->setLeader(getNextValueLeader(OldClass));
   2337     OldClass->resetNextLeader();
   2338     markValueLeaderChangeTouched(OldClass);
   2339   }
   2340 }
   2341 
   2342 // For a given expression, mark the phi of ops instructions that could have
   2343 // changed as a result.
   2344 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
   2345   touchAndErase(ExpressionToPhiOfOps, E);
   2346 }
   2347 
   2348 // Perform congruence finding on a given value numbering expression.
   2349 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
   2350   // This is guaranteed to return something, since it will at least find
   2351   // TOP.
   2352 
   2353   CongruenceClass *IClass = ValueToClass.lookup(I);
   2354   assert(IClass && "Should have found a IClass");
   2355   // Dead classes should have been eliminated from the mapping.
   2356   assert(!IClass->isDead() && "Found a dead class");
   2357 
   2358   CongruenceClass *EClass = nullptr;
   2359   if (const auto *VE = dyn_cast<VariableExpression>(E)) {
   2360     EClass = ValueToClass.lookup(VE->getVariableValue());
   2361   } else if (isa<DeadExpression>(E)) {
   2362     EClass = TOPClass;
   2363   }
   2364   if (!EClass) {
   2365     auto lookupResult = ExpressionToClass.insert({E, nullptr});
   2366 
   2367     // If it's not in the value table, create a new congruence class.
   2368     if (lookupResult.second) {
   2369       CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
   2370       auto place = lookupResult.first;
   2371       place->second = NewClass;
   2372 
   2373       // Constants and variables should always be made the leader.
   2374       if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
   2375         NewClass->setLeader(CE->getConstantValue());
   2376       } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
   2377         StoreInst *SI = SE->getStoreInst();
   2378         NewClass->setLeader(SI);
   2379         NewClass->setStoredValue(SE->getStoredValue());
   2380         // The RepMemoryAccess field will be filled in properly by the
   2381         // moveValueToNewCongruenceClass call.
   2382       } else {
   2383         NewClass->setLeader(I);
   2384       }
   2385       assert(!isa<VariableExpression>(E) &&
   2386              "VariableExpression should have been handled already");
   2387 
   2388       EClass = NewClass;
   2389       LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
   2390                         << " using expression " << *E << " at "
   2391                         << NewClass->getID() << " and leader "
   2392                         << *(NewClass->getLeader()));
   2393       if (NewClass->getStoredValue())
   2394         LLVM_DEBUG(dbgs() << " and stored value "
   2395                           << *(NewClass->getStoredValue()));
   2396       LLVM_DEBUG(dbgs() << "\n");
   2397     } else {
   2398       EClass = lookupResult.first->second;
   2399       if (isa<ConstantExpression>(E))
   2400         assert((isa<Constant>(EClass->getLeader()) ||
   2401                 (EClass->getStoredValue() &&
   2402                  isa<Constant>(EClass->getStoredValue()))) &&
   2403                "Any class with a constant expression should have a "
   2404                "constant leader");
   2405 
   2406       assert(EClass && "Somehow don't have an eclass");
   2407 
   2408       assert(!EClass->isDead() && "We accidentally looked up a dead class");
   2409     }
   2410   }
   2411   bool ClassChanged = IClass != EClass;
   2412   bool LeaderChanged = LeaderChanges.erase(I);
   2413   if (ClassChanged || LeaderChanged) {
   2414     LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
   2415                       << *E << "\n");
   2416     if (ClassChanged) {
   2417       moveValueToNewCongruenceClass(I, E, IClass, EClass);
   2418       markPhiOfOpsChanged(E);
   2419     }
   2420 
   2421     markUsersTouched(I);
   2422     if (MemoryAccess *MA = getMemoryAccess(I))
   2423       markMemoryUsersTouched(MA);
   2424     if (auto *CI = dyn_cast<CmpInst>(I))
   2425       markPredicateUsersTouched(CI);
   2426   }
   2427   // If we changed the class of the store, we want to ensure nothing finds the
   2428   // old store expression.  In particular, loads do not compare against stored
   2429   // value, so they will find old store expressions (and associated class
   2430   // mappings) if we leave them in the table.
   2431   if (ClassChanged && isa<StoreInst>(I)) {
   2432     auto *OldE = ValueToExpression.lookup(I);
   2433     // It could just be that the old class died. We don't want to erase it if we
   2434     // just moved classes.
   2435     if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
   2436       // Erase this as an exact expression to ensure we don't erase expressions
   2437       // equivalent to it.
   2438       auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
   2439       if (Iter != ExpressionToClass.end())
   2440         ExpressionToClass.erase(Iter);
   2441     }
   2442   }
   2443   ValueToExpression[I] = E;
   2444 }
   2445 
   2446 // Process the fact that Edge (from, to) is reachable, including marking
   2447 // any newly reachable blocks and instructions for processing.
   2448 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
   2449   // Check if the Edge was reachable before.
   2450   if (ReachableEdges.insert({From, To}).second) {
   2451     // If this block wasn't reachable before, all instructions are touched.
   2452     if (ReachableBlocks.insert(To).second) {
   2453       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
   2454                         << " marked reachable\n");
   2455       const auto &InstRange = BlockInstRange.lookup(To);
   2456       TouchedInstructions.set(InstRange.first, InstRange.second);
   2457     } else {
   2458       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
   2459                         << " was reachable, but new edge {"
   2460                         << getBlockName(From) << "," << getBlockName(To)
   2461                         << "} to it found\n");
   2462 
   2463       // We've made an edge reachable to an existing block, which may
   2464       // impact predicates. Otherwise, only mark the phi nodes as touched, as
   2465       // they are the only thing that depend on new edges. Anything using their
   2466       // values will get propagated to if necessary.
   2467       if (MemoryAccess *MemPhi = getMemoryAccess(To))
   2468         TouchedInstructions.set(InstrToDFSNum(MemPhi));
   2469 
   2470       // FIXME: We should just add a union op on a Bitvector and
   2471       // SparseBitVector.  We can do it word by word faster than we are doing it
   2472       // here.
   2473       for (auto InstNum : RevisitOnReachabilityChange[To])
   2474         TouchedInstructions.set(InstNum);
   2475     }
   2476   }
   2477 }
   2478 
   2479 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
   2480 // see if we know some constant value for it already.
   2481 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
   2482   auto Result = lookupOperandLeader(Cond);
   2483   return isa<Constant>(Result) ? Result : nullptr;
   2484 }
   2485 
   2486 // Process the outgoing edges of a block for reachability.
   2487 void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) {
   2488   // Evaluate reachability of terminator instruction.
   2489   BranchInst *BR;
   2490   if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
   2491     Value *Cond = BR->getCondition();
   2492     Value *CondEvaluated = findConditionEquivalence(Cond);
   2493     if (!CondEvaluated) {
   2494       if (auto *I = dyn_cast<Instruction>(Cond)) {
   2495         const Expression *E = createExpression(I);
   2496         if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
   2497           CondEvaluated = CE->getConstantValue();
   2498         }
   2499       } else if (isa<ConstantInt>(Cond)) {
   2500         CondEvaluated = Cond;
   2501       }
   2502     }
   2503     ConstantInt *CI;
   2504     BasicBlock *TrueSucc = BR->getSuccessor(0);
   2505     BasicBlock *FalseSucc = BR->getSuccessor(1);
   2506     if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
   2507       if (CI->isOne()) {
   2508         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
   2509                           << " evaluated to true\n");
   2510         updateReachableEdge(B, TrueSucc);
   2511       } else if (CI->isZero()) {
   2512         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
   2513                           << " evaluated to false\n");
   2514         updateReachableEdge(B, FalseSucc);
   2515       }
   2516     } else {
   2517       updateReachableEdge(B, TrueSucc);
   2518       updateReachableEdge(B, FalseSucc);
   2519     }
   2520   } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
   2521     // For switches, propagate the case values into the case
   2522     // destinations.
   2523 
   2524     // Remember how many outgoing edges there are to every successor.
   2525     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
   2526 
   2527     Value *SwitchCond = SI->getCondition();
   2528     Value *CondEvaluated = findConditionEquivalence(SwitchCond);
   2529     // See if we were able to turn this switch statement into a constant.
   2530     if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
   2531       auto *CondVal = cast<ConstantInt>(CondEvaluated);
   2532       // We should be able to get case value for this.
   2533       auto Case = *SI->findCaseValue(CondVal);
   2534       if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
   2535         // We proved the value is outside of the range of the case.
   2536         // We can't do anything other than mark the default dest as reachable,
   2537         // and go home.
   2538         updateReachableEdge(B, SI->getDefaultDest());
   2539         return;
   2540       }
   2541       // Now get where it goes and mark it reachable.
   2542       BasicBlock *TargetBlock = Case.getCaseSuccessor();
   2543       updateReachableEdge(B, TargetBlock);
   2544     } else {
   2545       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
   2546         BasicBlock *TargetBlock = SI->getSuccessor(i);
   2547         ++SwitchEdges[TargetBlock];
   2548         updateReachableEdge(B, TargetBlock);
   2549       }
   2550     }
   2551   } else {
   2552     // Otherwise this is either unconditional, or a type we have no
   2553     // idea about. Just mark successors as reachable.
   2554     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
   2555       BasicBlock *TargetBlock = TI->getSuccessor(i);
   2556       updateReachableEdge(B, TargetBlock);
   2557     }
   2558 
   2559     // This also may be a memory defining terminator, in which case, set it
   2560     // equivalent only to itself.
   2561     //
   2562     auto *MA = getMemoryAccess(TI);
   2563     if (MA && !isa<MemoryUse>(MA)) {
   2564       auto *CC = ensureLeaderOfMemoryClass(MA);
   2565       if (setMemoryClass(MA, CC))
   2566         markMemoryUsersTouched(MA);
   2567     }
   2568   }
   2569 }
   2570 
   2571 // Remove the PHI of Ops PHI for I
   2572 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
   2573   InstrDFS.erase(PHITemp);
   2574   // It's still a temp instruction. We keep it in the array so it gets erased.
   2575   // However, it's no longer used by I, or in the block
   2576   TempToBlock.erase(PHITemp);
   2577   RealToTemp.erase(I);
   2578   // We don't remove the users from the phi node uses. This wastes a little
   2579   // time, but such is life.  We could use two sets to track which were there
   2580   // are the start of NewGVN, and which were added, but right nowt he cost of
   2581   // tracking is more than the cost of checking for more phi of ops.
   2582 }
   2583 
   2584 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
   2585 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
   2586                          Instruction *ExistingValue) {
   2587   InstrDFS[Op] = InstrToDFSNum(ExistingValue);
   2588   AllTempInstructions.insert(Op);
   2589   TempToBlock[Op] = BB;
   2590   RealToTemp[ExistingValue] = Op;
   2591   // Add all users to phi node use, as they are now uses of the phi of ops phis
   2592   // and may themselves be phi of ops.
   2593   for (auto *U : ExistingValue->users())
   2594     if (auto *UI = dyn_cast<Instruction>(U))
   2595       PHINodeUses.insert(UI);
   2596 }
   2597 
   2598 static bool okayForPHIOfOps(const Instruction *I) {
   2599   if (!EnablePhiOfOps)
   2600     return false;
   2601   return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
   2602          isa<LoadInst>(I);
   2603 }
   2604 
   2605 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
   2606     Value *V, const BasicBlock *PHIBlock,
   2607     SmallPtrSetImpl<const Value *> &Visited,
   2608     SmallVectorImpl<Instruction *> &Worklist) {
   2609 
   2610   if (!isa<Instruction>(V))
   2611     return true;
   2612   auto OISIt = OpSafeForPHIOfOps.find(V);
   2613   if (OISIt != OpSafeForPHIOfOps.end())
   2614     return OISIt->second;
   2615 
   2616   // Keep walking until we either dominate the phi block, or hit a phi, or run
   2617   // out of things to check.
   2618   if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
   2619     OpSafeForPHIOfOps.insert({V, true});
   2620     return true;
   2621   }
   2622   // PHI in the same block.
   2623   if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
   2624     OpSafeForPHIOfOps.insert({V, false});
   2625     return false;
   2626   }
   2627 
   2628   auto *OrigI = cast<Instruction>(V);
   2629   for (auto *Op : OrigI->operand_values()) {
   2630     if (!isa<Instruction>(Op))
   2631       continue;
   2632     // Stop now if we find an unsafe operand.
   2633     auto OISIt = OpSafeForPHIOfOps.find(OrigI);
   2634     if (OISIt != OpSafeForPHIOfOps.end()) {
   2635       if (!OISIt->second) {
   2636         OpSafeForPHIOfOps.insert({V, false});
   2637         return false;
   2638       }
   2639       continue;
   2640     }
   2641     if (!Visited.insert(Op).second)
   2642       continue;
   2643     Worklist.push_back(cast<Instruction>(Op));
   2644   }
   2645   return true;
   2646 }
   2647 
   2648 // Return true if this operand will be safe to use for phi of ops.
   2649 //
   2650 // The reason some operands are unsafe is that we are not trying to recursively
   2651 // translate everything back through phi nodes.  We actually expect some lookups
   2652 // of expressions to fail.  In particular, a lookup where the expression cannot
   2653 // exist in the predecessor.  This is true even if the expression, as shown, can
   2654 // be determined to be constant.
   2655 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
   2656                                  SmallPtrSetImpl<const Value *> &Visited) {
   2657   SmallVector<Instruction *, 4> Worklist;
   2658   if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
   2659     return false;
   2660   while (!Worklist.empty()) {
   2661     auto *I = Worklist.pop_back_val();
   2662     if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
   2663       return false;
   2664   }
   2665   OpSafeForPHIOfOps.insert({V, true});
   2666   return true;
   2667 }
   2668 
   2669 // Try to find a leader for instruction TransInst, which is a phi translated
   2670 // version of something in our original program.  Visited is used to ensure we
   2671 // don't infinite loop during translations of cycles.  OrigInst is the
   2672 // instruction in the original program, and PredBB is the predecessor we
   2673 // translated it through.
   2674 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
   2675                                  SmallPtrSetImpl<Value *> &Visited,
   2676                                  MemoryAccess *MemAccess, Instruction *OrigInst,
   2677                                  BasicBlock *PredBB) {
   2678   unsigned IDFSNum = InstrToDFSNum(OrigInst);
   2679   // Make sure it's marked as a temporary instruction.
   2680   AllTempInstructions.insert(TransInst);
   2681   // and make sure anything that tries to add it's DFS number is
   2682   // redirected to the instruction we are making a phi of ops
   2683   // for.
   2684   TempToBlock.insert({TransInst, PredBB});
   2685   InstrDFS.insert({TransInst, IDFSNum});
   2686 
   2687   const Expression *E = performSymbolicEvaluation(TransInst, Visited);
   2688   InstrDFS.erase(TransInst);
   2689   AllTempInstructions.erase(TransInst);
   2690   TempToBlock.erase(TransInst);
   2691   if (MemAccess)
   2692     TempToMemory.erase(TransInst);
   2693   if (!E)
   2694     return nullptr;
   2695   auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
   2696   if (!FoundVal) {
   2697     ExpressionToPhiOfOps[E].insert(OrigInst);
   2698     LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
   2699                       << " in block " << getBlockName(PredBB) << "\n");
   2700     return nullptr;
   2701   }
   2702   if (auto *SI = dyn_cast<StoreInst>(FoundVal))
   2703     FoundVal = SI->getValueOperand();
   2704   return FoundVal;
   2705 }
   2706 
   2707 // When we see an instruction that is an op of phis, generate the equivalent phi
   2708 // of ops form.
   2709 const Expression *
   2710 NewGVN::makePossiblePHIOfOps(Instruction *I,
   2711                              SmallPtrSetImpl<Value *> &Visited) {
   2712   if (!okayForPHIOfOps(I))
   2713     return nullptr;
   2714 
   2715   if (!Visited.insert(I).second)
   2716     return nullptr;
   2717   // For now, we require the instruction be cycle free because we don't
   2718   // *always* create a phi of ops for instructions that could be done as phi
   2719   // of ops, we only do it if we think it is useful.  If we did do it all the
   2720   // time, we could remove the cycle free check.
   2721   if (!isCycleFree(I))
   2722     return nullptr;
   2723 
   2724   SmallPtrSet<const Value *, 8> ProcessedPHIs;
   2725   // TODO: We don't do phi translation on memory accesses because it's
   2726   // complicated. For a load, we'd need to be able to simulate a new memoryuse,
   2727   // which we don't have a good way of doing ATM.
   2728   auto *MemAccess = getMemoryAccess(I);
   2729   // If the memory operation is defined by a memory operation this block that
   2730   // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
   2731   // can't help, as it would still be killed by that memory operation.
   2732   if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
   2733       MemAccess->getDefiningAccess()->getBlock() == I->getParent())
   2734     return nullptr;
   2735 
   2736   // Convert op of phis to phi of ops
   2737   SmallPtrSet<const Value *, 10> VisitedOps;
   2738   SmallVector<Value *, 4> Ops(I->operand_values());
   2739   BasicBlock *SamePHIBlock = nullptr;
   2740   PHINode *OpPHI = nullptr;
   2741   if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
   2742     return nullptr;
   2743   for (auto *Op : Ops) {
   2744     if (!isa<PHINode>(Op)) {
   2745       auto *ValuePHI = RealToTemp.lookup(Op);
   2746       if (!ValuePHI)
   2747         continue;
   2748       LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
   2749       Op = ValuePHI;
   2750     }
   2751     OpPHI = cast<PHINode>(Op);
   2752     if (!SamePHIBlock) {
   2753       SamePHIBlock = getBlockForValue(OpPHI);
   2754     } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
   2755       LLVM_DEBUG(
   2756           dbgs()
   2757           << "PHIs for operands are not all in the same block, aborting\n");
   2758       return nullptr;
   2759     }
   2760     // No point in doing this for one-operand phis.
   2761     if (OpPHI->getNumOperands() == 1) {
   2762       OpPHI = nullptr;
   2763       continue;
   2764     }
   2765   }
   2766 
   2767   if (!OpPHI)
   2768     return nullptr;
   2769 
   2770   SmallVector<ValPair, 4> PHIOps;
   2771   SmallPtrSet<Value *, 4> Deps;
   2772   auto *PHIBlock = getBlockForValue(OpPHI);
   2773   RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
   2774   for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
   2775     auto *PredBB = OpPHI->getIncomingBlock(PredNum);
   2776     Value *FoundVal = nullptr;
   2777     SmallPtrSet<Value *, 4> CurrentDeps;
   2778     // We could just skip unreachable edges entirely but it's tricky to do
   2779     // with rewriting existing phi nodes.
   2780     if (ReachableEdges.count({PredBB, PHIBlock})) {
   2781       // Clone the instruction, create an expression from it that is
   2782       // translated back into the predecessor, and see if we have a leader.
   2783       Instruction *ValueOp = I->clone();
   2784       if (MemAccess)
   2785         TempToMemory.insert({ValueOp, MemAccess});
   2786       bool SafeForPHIOfOps = true;
   2787       VisitedOps.clear();
   2788       for (auto &Op : ValueOp->operands()) {
   2789         auto *OrigOp = &*Op;
   2790         // When these operand changes, it could change whether there is a
   2791         // leader for us or not, so we have to add additional users.
   2792         if (isa<PHINode>(Op)) {
   2793           Op = Op->DoPHITranslation(PHIBlock, PredBB);
   2794           if (Op != OrigOp && Op != I)
   2795             CurrentDeps.insert(Op);
   2796         } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
   2797           if (getBlockForValue(ValuePHI) == PHIBlock)
   2798             Op = ValuePHI->getIncomingValueForBlock(PredBB);
   2799         }
   2800         // If we phi-translated the op, it must be safe.
   2801         SafeForPHIOfOps =
   2802             SafeForPHIOfOps &&
   2803             (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
   2804       }
   2805       // FIXME: For those things that are not safe we could generate
   2806       // expressions all the way down, and see if this comes out to a
   2807       // constant.  For anything where that is true, and unsafe, we should
   2808       // have made a phi-of-ops (or value numbered it equivalent to something)
   2809       // for the pieces already.
   2810       FoundVal = !SafeForPHIOfOps ? nullptr
   2811                                   : findLeaderForInst(ValueOp, Visited,
   2812                                                       MemAccess, I, PredBB);
   2813       ValueOp->deleteValue();
   2814       if (!FoundVal) {
   2815         // We failed to find a leader for the current ValueOp, but this might
   2816         // change in case of the translated operands change.
   2817         if (SafeForPHIOfOps)
   2818           for (auto Dep : CurrentDeps)
   2819             addAdditionalUsers(Dep, I);
   2820 
   2821         return nullptr;
   2822       }
   2823       Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
   2824     } else {
   2825       LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
   2826                         << getBlockName(PredBB)
   2827                         << " because the block is unreachable\n");
   2828       FoundVal = UndefValue::get(I->getType());
   2829       RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
   2830     }
   2831 
   2832     PHIOps.push_back({FoundVal, PredBB});
   2833     LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
   2834                       << getBlockName(PredBB) << "\n");
   2835   }
   2836   for (auto Dep : Deps)
   2837     addAdditionalUsers(Dep, I);
   2838   sortPHIOps(PHIOps);
   2839   auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
   2840   if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
   2841     LLVM_DEBUG(
   2842         dbgs()
   2843         << "Not creating real PHI of ops because it simplified to existing "
   2844            "value or constant\n");
   2845     return E;
   2846   }
   2847   auto *ValuePHI = RealToTemp.lookup(I);
   2848   bool NewPHI = false;
   2849   if (!ValuePHI) {
   2850     ValuePHI =
   2851         PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
   2852     addPhiOfOps(ValuePHI, PHIBlock, I);
   2853     NewPHI = true;
   2854     NumGVNPHIOfOpsCreated++;
   2855   }
   2856   if (NewPHI) {
   2857     for (auto PHIOp : PHIOps)
   2858       ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
   2859   } else {
   2860     TempToBlock[ValuePHI] = PHIBlock;
   2861     unsigned int i = 0;
   2862     for (auto PHIOp : PHIOps) {
   2863       ValuePHI->setIncomingValue(i, PHIOp.first);
   2864       ValuePHI->setIncomingBlock(i, PHIOp.second);
   2865       ++i;
   2866     }
   2867   }
   2868   RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
   2869   LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
   2870                     << "\n");
   2871 
   2872   return E;
   2873 }
   2874 
   2875 // The algorithm initially places the values of the routine in the TOP
   2876 // congruence class. The leader of TOP is the undetermined value `undef`.
   2877 // When the algorithm has finished, values still in TOP are unreachable.
   2878 void NewGVN::initializeCongruenceClasses(Function &F) {
   2879   NextCongruenceNum = 0;
   2880 
   2881   // Note that even though we use the live on entry def as a representative
   2882   // MemoryAccess, it is *not* the same as the actual live on entry def. We
   2883   // have no real equivalemnt to undef for MemoryAccesses, and so we really
   2884   // should be checking whether the MemoryAccess is top if we want to know if it
   2885   // is equivalent to everything.  Otherwise, what this really signifies is that
   2886   // the access "it reaches all the way back to the beginning of the function"
   2887 
   2888   // Initialize all other instructions to be in TOP class.
   2889   TOPClass = createCongruenceClass(nullptr, nullptr);
   2890   TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
   2891   //  The live on entry def gets put into it's own class
   2892   MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
   2893       createMemoryClass(MSSA->getLiveOnEntryDef());
   2894 
   2895   for (auto DTN : nodes(DT)) {
   2896     BasicBlock *BB = DTN->getBlock();
   2897     // All MemoryAccesses are equivalent to live on entry to start. They must
   2898     // be initialized to something so that initial changes are noticed. For
   2899     // the maximal answer, we initialize them all to be the same as
   2900     // liveOnEntry.
   2901     auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
   2902     if (MemoryBlockDefs)
   2903       for (const auto &Def : *MemoryBlockDefs) {
   2904         MemoryAccessToClass[&Def] = TOPClass;
   2905         auto *MD = dyn_cast<MemoryDef>(&Def);
   2906         // Insert the memory phis into the member list.
   2907         if (!MD) {
   2908           const MemoryPhi *MP = cast<MemoryPhi>(&Def);
   2909           TOPClass->memory_insert(MP);
   2910           MemoryPhiState.insert({MP, MPS_TOP});
   2911         }
   2912 
   2913         if (MD && isa<StoreInst>(MD->getMemoryInst()))
   2914           TOPClass->incStoreCount();
   2915       }
   2916 
   2917     // FIXME: This is trying to discover which instructions are uses of phi
   2918     // nodes.  We should move this into one of the myriad of places that walk
   2919     // all the operands already.
   2920     for (auto &I : *BB) {
   2921       if (isa<PHINode>(&I))
   2922         for (auto *U : I.users())
   2923           if (auto *UInst = dyn_cast<Instruction>(U))
   2924             if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
   2925               PHINodeUses.insert(UInst);
   2926       // Don't insert void terminators into the class. We don't value number
   2927       // them, and they just end up sitting in TOP.
   2928       if (isa<TerminatorInst>(I) && I.getType()->isVoidTy())
   2929         continue;
   2930       TOPClass->insert(&I);
   2931       ValueToClass[&I] = TOPClass;
   2932     }
   2933   }
   2934 
   2935   // Initialize arguments to be in their own unique congruence classes
   2936   for (auto &FA : F.args())
   2937     createSingletonCongruenceClass(&FA);
   2938 }
   2939 
   2940 void NewGVN::cleanupTables() {
   2941   for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
   2942     LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
   2943                       << " has " << CongruenceClasses[i]->size()
   2944                       << " members\n");
   2945     // Make sure we delete the congruence class (probably worth switching to
   2946     // a unique_ptr at some point.
   2947     delete CongruenceClasses[i];
   2948     CongruenceClasses[i] = nullptr;
   2949   }
   2950 
   2951   // Destroy the value expressions
   2952   SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
   2953                                          AllTempInstructions.end());
   2954   AllTempInstructions.clear();
   2955 
   2956   // We have to drop all references for everything first, so there are no uses
   2957   // left as we delete them.
   2958   for (auto *I : TempInst) {
   2959     I->dropAllReferences();
   2960   }
   2961 
   2962   while (!TempInst.empty()) {
   2963     auto *I = TempInst.back();
   2964     TempInst.pop_back();
   2965     I->deleteValue();
   2966   }
   2967 
   2968   ValueToClass.clear();
   2969   ArgRecycler.clear(ExpressionAllocator);
   2970   ExpressionAllocator.Reset();
   2971   CongruenceClasses.clear();
   2972   ExpressionToClass.clear();
   2973   ValueToExpression.clear();
   2974   RealToTemp.clear();
   2975   AdditionalUsers.clear();
   2976   ExpressionToPhiOfOps.clear();
   2977   TempToBlock.clear();
   2978   TempToMemory.clear();
   2979   PHINodeUses.clear();
   2980   OpSafeForPHIOfOps.clear();
   2981   ReachableBlocks.clear();
   2982   ReachableEdges.clear();
   2983 #ifndef NDEBUG
   2984   ProcessedCount.clear();
   2985 #endif
   2986   InstrDFS.clear();
   2987   InstructionsToErase.clear();
   2988   DFSToInstr.clear();
   2989   BlockInstRange.clear();
   2990   TouchedInstructions.clear();
   2991   MemoryAccessToClass.clear();
   2992   PredicateToUsers.clear();
   2993   MemoryToUsers.clear();
   2994   RevisitOnReachabilityChange.clear();
   2995 }
   2996 
   2997 // Assign local DFS number mapping to instructions, and leave space for Value
   2998 // PHI's.
   2999 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
   3000                                                        unsigned Start) {
   3001   unsigned End = Start;
   3002   if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
   3003     InstrDFS[MemPhi] = End++;
   3004     DFSToInstr.emplace_back(MemPhi);
   3005   }
   3006 
   3007   // Then the real block goes next.
   3008   for (auto &I : *B) {
   3009     // There's no need to call isInstructionTriviallyDead more than once on
   3010     // an instruction. Therefore, once we know that an instruction is dead
   3011     // we change its DFS number so that it doesn't get value numbered.
   3012     if (isInstructionTriviallyDead(&I, TLI)) {
   3013       InstrDFS[&I] = 0;
   3014       LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
   3015       markInstructionForDeletion(&I);
   3016       continue;
   3017     }
   3018     if (isa<PHINode>(&I))
   3019       RevisitOnReachabilityChange[B].set(End);
   3020     InstrDFS[&I] = End++;
   3021     DFSToInstr.emplace_back(&I);
   3022   }
   3023 
   3024   // All of the range functions taken half-open ranges (open on the end side).
   3025   // So we do not subtract one from count, because at this point it is one
   3026   // greater than the last instruction.
   3027   return std::make_pair(Start, End);
   3028 }
   3029 
   3030 void NewGVN::updateProcessedCount(const Value *V) {
   3031 #ifndef NDEBUG
   3032   if (ProcessedCount.count(V) == 0) {
   3033     ProcessedCount.insert({V, 1});
   3034   } else {
   3035     ++ProcessedCount[V];
   3036     assert(ProcessedCount[V] < 100 &&
   3037            "Seem to have processed the same Value a lot");
   3038   }
   3039 #endif
   3040 }
   3041 
   3042 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
   3043 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
   3044   // If all the arguments are the same, the MemoryPhi has the same value as the
   3045   // argument.  Filter out unreachable blocks and self phis from our operands.
   3046   // TODO: We could do cycle-checking on the memory phis to allow valueizing for
   3047   // self-phi checking.
   3048   const BasicBlock *PHIBlock = MP->getBlock();
   3049   auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
   3050     return cast<MemoryAccess>(U) != MP &&
   3051            !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
   3052            ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
   3053   });
   3054   // If all that is left is nothing, our memoryphi is undef. We keep it as
   3055   // InitialClass.  Note: The only case this should happen is if we have at
   3056   // least one self-argument.
   3057   if (Filtered.begin() == Filtered.end()) {
   3058     if (setMemoryClass(MP, TOPClass))
   3059       markMemoryUsersTouched(MP);
   3060     return;
   3061   }
   3062 
   3063   // Transform the remaining operands into operand leaders.
   3064   // FIXME: mapped_iterator should have a range version.
   3065   auto LookupFunc = [&](const Use &U) {
   3066     return lookupMemoryLeader(cast<MemoryAccess>(U));
   3067   };
   3068   auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
   3069   auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
   3070 
   3071   // and now check if all the elements are equal.
   3072   // Sadly, we can't use std::equals since these are random access iterators.
   3073   const auto *AllSameValue = *MappedBegin;
   3074   ++MappedBegin;
   3075   bool AllEqual = std::all_of(
   3076       MappedBegin, MappedEnd,
   3077       [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
   3078 
   3079   if (AllEqual)
   3080     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
   3081                       << "\n");
   3082   else
   3083     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
   3084   // If it's equal to something, it's in that class. Otherwise, it has to be in
   3085   // a class where it is the leader (other things may be equivalent to it, but
   3086   // it needs to start off in its own class, which means it must have been the
   3087   // leader, and it can't have stopped being the leader because it was never
   3088   // removed).
   3089   CongruenceClass *CC =
   3090       AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
   3091   auto OldState = MemoryPhiState.lookup(MP);
   3092   assert(OldState != MPS_Invalid && "Invalid memory phi state");
   3093   auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
   3094   MemoryPhiState[MP] = NewState;
   3095   if (setMemoryClass(MP, CC) || OldState != NewState)
   3096     markMemoryUsersTouched(MP);
   3097 }
   3098 
   3099 // Value number a single instruction, symbolically evaluating, performing
   3100 // congruence finding, and updating mappings.
   3101 void NewGVN::valueNumberInstruction(Instruction *I) {
   3102   LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
   3103   if (!I->isTerminator()) {
   3104     const Expression *Symbolized = nullptr;
   3105     SmallPtrSet<Value *, 2> Visited;
   3106     if (DebugCounter::shouldExecute(VNCounter)) {
   3107       Symbolized = performSymbolicEvaluation(I, Visited);
   3108       // Make a phi of ops if necessary
   3109       if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
   3110           !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
   3111         auto *PHIE = makePossiblePHIOfOps(I, Visited);
   3112         // If we created a phi of ops, use it.
   3113         // If we couldn't create one, make sure we don't leave one lying around
   3114         if (PHIE) {
   3115           Symbolized = PHIE;
   3116         } else if (auto *Op = RealToTemp.lookup(I)) {
   3117           removePhiOfOps(I, Op);
   3118         }
   3119       }
   3120     } else {
   3121       // Mark the instruction as unused so we don't value number it again.
   3122       InstrDFS[I] = 0;
   3123     }
   3124     // If we couldn't come up with a symbolic expression, use the unknown
   3125     // expression
   3126     if (Symbolized == nullptr)
   3127       Symbolized = createUnknownExpression(I);
   3128     performCongruenceFinding(I, Symbolized);
   3129   } else {
   3130     // Handle terminators that return values. All of them produce values we
   3131     // don't currently understand.  We don't place non-value producing
   3132     // terminators in a class.
   3133     if (!I->getType()->isVoidTy()) {
   3134       auto *Symbolized = createUnknownExpression(I);
   3135       performCongruenceFinding(I, Symbolized);
   3136     }
   3137     processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent());
   3138   }
   3139 }
   3140 
   3141 // Check if there is a path, using single or equal argument phi nodes, from
   3142 // First to Second.
   3143 bool NewGVN::singleReachablePHIPath(
   3144     SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
   3145     const MemoryAccess *Second) const {
   3146   if (First == Second)
   3147     return true;
   3148   if (MSSA->isLiveOnEntryDef(First))
   3149     return false;
   3150 
   3151   // This is not perfect, but as we're just verifying here, we can live with
   3152   // the loss of precision. The real solution would be that of doing strongly
   3153   // connected component finding in this routine, and it's probably not worth
   3154   // the complexity for the time being. So, we just keep a set of visited
   3155   // MemoryAccess and return true when we hit a cycle.
   3156   if (Visited.count(First))
   3157     return true;
   3158   Visited.insert(First);
   3159 
   3160   const auto *EndDef = First;
   3161   for (auto *ChainDef : optimized_def_chain(First)) {
   3162     if (ChainDef == Second)
   3163       return true;
   3164     if (MSSA->isLiveOnEntryDef(ChainDef))
   3165       return false;
   3166     EndDef = ChainDef;
   3167   }
   3168   auto *MP = cast<MemoryPhi>(EndDef);
   3169   auto ReachableOperandPred = [&](const Use &U) {
   3170     return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
   3171   };
   3172   auto FilteredPhiArgs =
   3173       make_filter_range(MP->operands(), ReachableOperandPred);
   3174   SmallVector<const Value *, 32> OperandList;
   3175   std::copy(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
   3176             std::back_inserter(OperandList));
   3177   bool Okay = OperandList.size() == 1;
   3178   if (!Okay)
   3179     Okay =
   3180         std::equal(OperandList.begin(), OperandList.end(), OperandList.begin());
   3181   if (Okay)
   3182     return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
   3183                                   Second);
   3184   return false;
   3185 }
   3186 
   3187 // Verify the that the memory equivalence table makes sense relative to the
   3188 // congruence classes.  Note that this checking is not perfect, and is currently
   3189 // subject to very rare false negatives. It is only useful for
   3190 // testing/debugging.
   3191 void NewGVN::verifyMemoryCongruency() const {
   3192 #ifndef NDEBUG
   3193   // Verify that the memory table equivalence and memory member set match
   3194   for (const auto *CC : CongruenceClasses) {
   3195     if (CC == TOPClass || CC->isDead())
   3196       continue;
   3197     if (CC->getStoreCount() != 0) {
   3198       assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
   3199              "Any class with a store as a leader should have a "
   3200              "representative stored value");
   3201       assert(CC->getMemoryLeader() &&
   3202              "Any congruence class with a store should have a "
   3203              "representative access");
   3204     }
   3205 
   3206     if (CC->getMemoryLeader())
   3207       assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
   3208              "Representative MemoryAccess does not appear to be reverse "
   3209              "mapped properly");
   3210     for (auto M : CC->memory())
   3211       assert(MemoryAccessToClass.lookup(M) == CC &&
   3212              "Memory member does not appear to be reverse mapped properly");
   3213   }
   3214 
   3215   // Anything equivalent in the MemoryAccess table should be in the same
   3216   // congruence class.
   3217 
   3218   // Filter out the unreachable and trivially dead entries, because they may
   3219   // never have been updated if the instructions were not processed.
   3220   auto ReachableAccessPred =
   3221       [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
   3222         bool Result = ReachableBlocks.count(Pair.first->getBlock());
   3223         if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
   3224             MemoryToDFSNum(Pair.first) == 0)
   3225           return false;
   3226         if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
   3227           return !isInstructionTriviallyDead(MemDef->getMemoryInst());
   3228 
   3229         // We could have phi nodes which operands are all trivially dead,
   3230         // so we don't process them.
   3231         if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
   3232           for (auto &U : MemPHI->incoming_values()) {
   3233             if (auto *I = dyn_cast<Instruction>(&*U)) {
   3234               if (!isInstructionTriviallyDead(I))
   3235                 return true;
   3236             }
   3237           }
   3238           return false;
   3239         }
   3240 
   3241         return true;
   3242       };
   3243 
   3244   auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
   3245   for (auto KV : Filtered) {
   3246     if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
   3247       auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
   3248       if (FirstMUD && SecondMUD) {
   3249         SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
   3250         assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
   3251                 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
   3252                     ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
   3253                "The instructions for these memory operations should have "
   3254                "been in the same congruence class or reachable through"
   3255                "a single argument phi");
   3256       }
   3257     } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
   3258       // We can only sanely verify that MemoryDefs in the operand list all have
   3259       // the same class.
   3260       auto ReachableOperandPred = [&](const Use &U) {
   3261         return ReachableEdges.count(
   3262                    {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
   3263                isa<MemoryDef>(U);
   3264 
   3265       };
   3266       // All arguments should in the same class, ignoring unreachable arguments
   3267       auto FilteredPhiArgs =
   3268           make_filter_range(FirstMP->operands(), ReachableOperandPred);
   3269       SmallVector<const CongruenceClass *, 16> PhiOpClasses;
   3270       std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
   3271                      std::back_inserter(PhiOpClasses), [&](const Use &U) {
   3272                        const MemoryDef *MD = cast<MemoryDef>(U);
   3273                        return ValueToClass.lookup(MD->getMemoryInst());
   3274                      });
   3275       assert(std::equal(PhiOpClasses.begin(), PhiOpClasses.end(),
   3276                         PhiOpClasses.begin()) &&
   3277              "All MemoryPhi arguments should be in the same class");
   3278     }
   3279   }
   3280 #endif
   3281 }
   3282 
   3283 // Verify that the sparse propagation we did actually found the maximal fixpoint
   3284 // We do this by storing the value to class mapping, touching all instructions,
   3285 // and redoing the iteration to see if anything changed.
   3286 void NewGVN::verifyIterationSettled(Function &F) {
   3287 #ifndef NDEBUG
   3288   LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
   3289   if (DebugCounter::isCounterSet(VNCounter))
   3290     DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
   3291 
   3292   // Note that we have to store the actual classes, as we may change existing
   3293   // classes during iteration.  This is because our memory iteration propagation
   3294   // is not perfect, and so may waste a little work.  But it should generate
   3295   // exactly the same congruence classes we have now, with different IDs.
   3296   std::map<const Value *, CongruenceClass> BeforeIteration;
   3297 
   3298   for (auto &KV : ValueToClass) {
   3299     if (auto *I = dyn_cast<Instruction>(KV.first))
   3300       // Skip unused/dead instructions.
   3301       if (InstrToDFSNum(I) == 0)
   3302         continue;
   3303     BeforeIteration.insert({KV.first, *KV.second});
   3304   }
   3305 
   3306   TouchedInstructions.set();
   3307   TouchedInstructions.reset(0);
   3308   iterateTouchedInstructions();
   3309   DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
   3310       EqualClasses;
   3311   for (const auto &KV : ValueToClass) {
   3312     if (auto *I = dyn_cast<Instruction>(KV.first))
   3313       // Skip unused/dead instructions.
   3314       if (InstrToDFSNum(I) == 0)
   3315         continue;
   3316     // We could sink these uses, but i think this adds a bit of clarity here as
   3317     // to what we are comparing.
   3318     auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
   3319     auto *AfterCC = KV.second;
   3320     // Note that the classes can't change at this point, so we memoize the set
   3321     // that are equal.
   3322     if (!EqualClasses.count({BeforeCC, AfterCC})) {
   3323       assert(BeforeCC->isEquivalentTo(AfterCC) &&
   3324              "Value number changed after main loop completed!");
   3325       EqualClasses.insert({BeforeCC, AfterCC});
   3326     }
   3327   }
   3328 #endif
   3329 }
   3330 
   3331 // Verify that for each store expression in the expression to class mapping,
   3332 // only the latest appears, and multiple ones do not appear.
   3333 // Because loads do not use the stored value when doing equality with stores,
   3334 // if we don't erase the old store expressions from the table, a load can find
   3335 // a no-longer valid StoreExpression.
   3336 void NewGVN::verifyStoreExpressions() const {
   3337 #ifndef NDEBUG
   3338   // This is the only use of this, and it's not worth defining a complicated
   3339   // densemapinfo hash/equality function for it.
   3340   std::set<
   3341       std::pair<const Value *,
   3342                 std::tuple<const Value *, const CongruenceClass *, Value *>>>
   3343       StoreExpressionSet;
   3344   for (const auto &KV : ExpressionToClass) {
   3345     if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
   3346       // Make sure a version that will conflict with loads is not already there
   3347       auto Res = StoreExpressionSet.insert(
   3348           {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
   3349                                               SE->getStoredValue())});
   3350       bool Okay = Res.second;
   3351       // It's okay to have the same expression already in there if it is
   3352       // identical in nature.
   3353       // This can happen when the leader of the stored value changes over time.
   3354       if (!Okay)
   3355         Okay = (std::get<1>(Res.first->second) == KV.second) &&
   3356                (lookupOperandLeader(std::get<2>(Res.first->second)) ==
   3357                 lookupOperandLeader(SE->getStoredValue()));
   3358       assert(Okay && "Stored expression conflict exists in expression table");
   3359       auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
   3360       assert(ValueExpr && ValueExpr->equals(*SE) &&
   3361              "StoreExpression in ExpressionToClass is not latest "
   3362              "StoreExpression for value");
   3363     }
   3364   }
   3365 #endif
   3366 }
   3367 
   3368 // This is the main value numbering loop, it iterates over the initial touched
   3369 // instruction set, propagating value numbers, marking things touched, etc,
   3370 // until the set of touched instructions is completely empty.
   3371 void NewGVN::iterateTouchedInstructions() {
   3372   unsigned int Iterations = 0;
   3373   // Figure out where touchedinstructions starts
   3374   int FirstInstr = TouchedInstructions.find_first();
   3375   // Nothing set, nothing to iterate, just return.
   3376   if (FirstInstr == -1)
   3377     return;
   3378   const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
   3379   while (TouchedInstructions.any()) {
   3380     ++Iterations;
   3381     // Walk through all the instructions in all the blocks in RPO.
   3382     // TODO: As we hit a new block, we should push and pop equalities into a
   3383     // table lookupOperandLeader can use, to catch things PredicateInfo
   3384     // might miss, like edge-only equivalences.
   3385     for (unsigned InstrNum : TouchedInstructions.set_bits()) {
   3386 
   3387       // This instruction was found to be dead. We don't bother looking
   3388       // at it again.
   3389       if (InstrNum == 0) {
   3390         TouchedInstructions.reset(InstrNum);
   3391         continue;
   3392       }
   3393 
   3394       Value *V = InstrFromDFSNum(InstrNum);
   3395       const BasicBlock *CurrBlock = getBlockForValue(V);
   3396 
   3397       // If we hit a new block, do reachability processing.
   3398       if (CurrBlock != LastBlock) {
   3399         LastBlock = CurrBlock;
   3400         bool BlockReachable = ReachableBlocks.count(CurrBlock);
   3401         const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
   3402 
   3403         // If it's not reachable, erase any touched instructions and move on.
   3404         if (!BlockReachable) {
   3405           TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
   3406           LLVM_DEBUG(dbgs() << "Skipping instructions in block "
   3407                             << getBlockName(CurrBlock)
   3408                             << " because it is unreachable\n");
   3409           continue;
   3410         }
   3411         updateProcessedCount(CurrBlock);
   3412       }
   3413       // Reset after processing (because we may mark ourselves as touched when
   3414       // we propagate equalities).
   3415       TouchedInstructions.reset(InstrNum);
   3416 
   3417       if (auto *MP = dyn_cast<MemoryPhi>(V)) {
   3418         LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
   3419         valueNumberMemoryPhi(MP);
   3420       } else if (auto *I = dyn_cast<Instruction>(V)) {
   3421         valueNumberInstruction(I);
   3422       } else {
   3423         llvm_unreachable("Should have been a MemoryPhi or Instruction");
   3424       }
   3425       updateProcessedCount(V);
   3426     }
   3427   }
   3428   NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
   3429 }
   3430 
   3431 // This is the main transformation entry point.
   3432 bool NewGVN::runGVN() {
   3433   if (DebugCounter::isCounterSet(VNCounter))
   3434     StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
   3435   bool Changed = false;
   3436   NumFuncArgs = F.arg_size();
   3437   MSSAWalker = MSSA->getWalker();
   3438   SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
   3439 
   3440   // Count number of instructions for sizing of hash tables, and come
   3441   // up with a global dfs numbering for instructions.
   3442   unsigned ICount = 1;
   3443   // Add an empty instruction to account for the fact that we start at 1
   3444   DFSToInstr.emplace_back(nullptr);
   3445   // Note: We want ideal RPO traversal of the blocks, which is not quite the
   3446   // same as dominator tree order, particularly with regard whether backedges
   3447   // get visited first or second, given a block with multiple successors.
   3448   // If we visit in the wrong order, we will end up performing N times as many
   3449   // iterations.
   3450   // The dominator tree does guarantee that, for a given dom tree node, it's
   3451   // parent must occur before it in the RPO ordering. Thus, we only need to sort
   3452   // the siblings.
   3453   ReversePostOrderTraversal<Function *> RPOT(&F);
   3454   unsigned Counter = 0;
   3455   for (auto &B : RPOT) {
   3456     auto *Node = DT->getNode(B);
   3457     assert(Node && "RPO and Dominator tree should have same reachability");
   3458     RPOOrdering[Node] = ++Counter;
   3459   }
   3460   // Sort dominator tree children arrays into RPO.
   3461   for (auto &B : RPOT) {
   3462     auto *Node = DT->getNode(B);
   3463     if (Node->getChildren().size() > 1)
   3464       llvm::sort(Node->begin(), Node->end(),
   3465                  [&](const DomTreeNode *A, const DomTreeNode *B) {
   3466                    return RPOOrdering[A] < RPOOrdering[B];
   3467                  });
   3468   }
   3469 
   3470   // Now a standard depth first ordering of the domtree is equivalent to RPO.
   3471   for (auto DTN : depth_first(DT->getRootNode())) {
   3472     BasicBlock *B = DTN->getBlock();
   3473     const auto &BlockRange = assignDFSNumbers(B, ICount);
   3474     BlockInstRange.insert({B, BlockRange});
   3475     ICount += BlockRange.second - BlockRange.first;
   3476   }
   3477   initializeCongruenceClasses(F);
   3478 
   3479   TouchedInstructions.resize(ICount);
   3480   // Ensure we don't end up resizing the expressionToClass map, as
   3481   // that can be quite expensive. At most, we have one expression per
   3482   // instruction.
   3483   ExpressionToClass.reserve(ICount);
   3484 
   3485   // Initialize the touched instructions to include the entry block.
   3486   const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
   3487   TouchedInstructions.set(InstRange.first, InstRange.second);
   3488   LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
   3489                     << " marked reachable\n");
   3490   ReachableBlocks.insert(&F.getEntryBlock());
   3491 
   3492   iterateTouchedInstructions();
   3493   verifyMemoryCongruency();
   3494   verifyIterationSettled(F);
   3495   verifyStoreExpressions();
   3496 
   3497   Changed |= eliminateInstructions(F);
   3498 
   3499   // Delete all instructions marked for deletion.
   3500   for (Instruction *ToErase : InstructionsToErase) {
   3501     if (!ToErase->use_empty())
   3502       ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
   3503 
   3504     if (ToErase->getParent())
   3505       ToErase->eraseFromParent();
   3506   }
   3507 
   3508   // Delete all unreachable blocks.
   3509   auto UnreachableBlockPred = [&](const BasicBlock &BB) {
   3510     return !ReachableBlocks.count(&BB);
   3511   };
   3512 
   3513   for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
   3514     LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
   3515                       << " is unreachable\n");
   3516     deleteInstructionsInBlock(&BB);
   3517     Changed = true;
   3518   }
   3519 
   3520   cleanupTables();
   3521   return Changed;
   3522 }
   3523 
   3524 struct NewGVN::ValueDFS {
   3525   int DFSIn = 0;
   3526   int DFSOut = 0;
   3527   int LocalNum = 0;
   3528 
   3529   // Only one of Def and U will be set.
   3530   // The bool in the Def tells us whether the Def is the stored value of a
   3531   // store.
   3532   PointerIntPair<Value *, 1, bool> Def;
   3533   Use *U = nullptr;
   3534 
   3535   bool operator<(const ValueDFS &Other) const {
   3536     // It's not enough that any given field be less than - we have sets
   3537     // of fields that need to be evaluated together to give a proper ordering.
   3538     // For example, if you have;
   3539     // DFS (1, 3)
   3540     // Val 0
   3541     // DFS (1, 2)
   3542     // Val 50
   3543     // We want the second to be less than the first, but if we just go field
   3544     // by field, we will get to Val 0 < Val 50 and say the first is less than
   3545     // the second. We only want it to be less than if the DFS orders are equal.
   3546     //
   3547     // Each LLVM instruction only produces one value, and thus the lowest-level
   3548     // differentiator that really matters for the stack (and what we use as as a
   3549     // replacement) is the local dfs number.
   3550     // Everything else in the structure is instruction level, and only affects
   3551     // the order in which we will replace operands of a given instruction.
   3552     //
   3553     // For a given instruction (IE things with equal dfsin, dfsout, localnum),
   3554     // the order of replacement of uses does not matter.
   3555     // IE given,
   3556     //  a = 5
   3557     //  b = a + a
   3558     // When you hit b, you will have two valuedfs with the same dfsin, out, and
   3559     // localnum.
   3560     // The .val will be the same as well.
   3561     // The .u's will be different.
   3562     // You will replace both, and it does not matter what order you replace them
   3563     // in (IE whether you replace operand 2, then operand 1, or operand 1, then
   3564     // operand 2).
   3565     // Similarly for the case of same dfsin, dfsout, localnum, but different
   3566     // .val's
   3567     //  a = 5
   3568     //  b  = 6
   3569     //  c = a + b
   3570     // in c, we will a valuedfs for a, and one for b,with everything the same
   3571     // but .val  and .u.
   3572     // It does not matter what order we replace these operands in.
   3573     // You will always end up with the same IR, and this is guaranteed.
   3574     return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
   3575            std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
   3576                     Other.U);
   3577   }
   3578 };
   3579 
   3580 // This function converts the set of members for a congruence class from values,
   3581 // to sets of defs and uses with associated DFS info.  The total number of
   3582 // reachable uses for each value is stored in UseCount, and instructions that
   3583 // seem
   3584 // dead (have no non-dead uses) are stored in ProbablyDead.
   3585 void NewGVN::convertClassToDFSOrdered(
   3586     const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
   3587     DenseMap<const Value *, unsigned int> &UseCounts,
   3588     SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
   3589   for (auto D : Dense) {
   3590     // First add the value.
   3591     BasicBlock *BB = getBlockForValue(D);
   3592     // Constants are handled prior to ever calling this function, so
   3593     // we should only be left with instructions as members.
   3594     assert(BB && "Should have figured out a basic block for value");
   3595     ValueDFS VDDef;
   3596     DomTreeNode *DomNode = DT->getNode(BB);
   3597     VDDef.DFSIn = DomNode->getDFSNumIn();
   3598     VDDef.DFSOut = DomNode->getDFSNumOut();
   3599     // If it's a store, use the leader of the value operand, if it's always
   3600     // available, or the value operand.  TODO: We could do dominance checks to
   3601     // find a dominating leader, but not worth it ATM.
   3602     if (auto *SI = dyn_cast<StoreInst>(D)) {
   3603       auto Leader = lookupOperandLeader(SI->getValueOperand());
   3604       if (alwaysAvailable(Leader)) {
   3605         VDDef.Def.setPointer(Leader);
   3606       } else {
   3607         VDDef.Def.setPointer(SI->getValueOperand());
   3608         VDDef.Def.setInt(true);
   3609       }
   3610     } else {
   3611       VDDef.Def.setPointer(D);
   3612     }
   3613     assert(isa<Instruction>(D) &&
   3614            "The dense set member should always be an instruction");
   3615     Instruction *Def = cast<Instruction>(D);
   3616     VDDef.LocalNum = InstrToDFSNum(D);
   3617     DFSOrderedSet.push_back(VDDef);
   3618     // If there is a phi node equivalent, add it
   3619     if (auto *PN = RealToTemp.lookup(Def)) {
   3620       auto *PHIE =
   3621           dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
   3622       if (PHIE) {
   3623         VDDef.Def.setInt(false);
   3624         VDDef.Def.setPointer(PN);
   3625         VDDef.LocalNum = 0;
   3626         DFSOrderedSet.push_back(VDDef);
   3627       }
   3628     }
   3629 
   3630     unsigned int UseCount = 0;
   3631     // Now add the uses.
   3632     for (auto &U : Def->uses()) {
   3633       if (auto *I = dyn_cast<Instruction>(U.getUser())) {
   3634         // Don't try to replace into dead uses
   3635         if (InstructionsToErase.count(I))
   3636           continue;
   3637         ValueDFS VDUse;
   3638         // Put the phi node uses in the incoming block.
   3639         BasicBlock *IBlock;
   3640         if (auto *P = dyn_cast<PHINode>(I)) {
   3641           IBlock = P->getIncomingBlock(U);
   3642           // Make phi node users appear last in the incoming block
   3643           // they are from.
   3644           VDUse.LocalNum = InstrDFS.size() + 1;
   3645         } else {
   3646           IBlock = getBlockForValue(I);
   3647           VDUse.LocalNum = InstrToDFSNum(I);
   3648         }
   3649 
   3650         // Skip uses in unreachable blocks, as we're going
   3651         // to delete them.
   3652         if (ReachableBlocks.count(IBlock) == 0)
   3653           continue;
   3654 
   3655         DomTreeNode *DomNode = DT->getNode(IBlock);
   3656         VDUse.DFSIn = DomNode->getDFSNumIn();
   3657         VDUse.DFSOut = DomNode->getDFSNumOut();
   3658         VDUse.U = &U;
   3659         ++UseCount;
   3660         DFSOrderedSet.emplace_back(VDUse);
   3661       }
   3662     }
   3663 
   3664     // If there are no uses, it's probably dead (but it may have side-effects,
   3665     // so not definitely dead. Otherwise, store the number of uses so we can
   3666     // track if it becomes dead later).
   3667     if (UseCount == 0)
   3668       ProbablyDead.insert(Def);
   3669     else
   3670       UseCounts[Def] = UseCount;
   3671   }
   3672 }
   3673 
   3674 // This function converts the set of members for a congruence class from values,
   3675 // to the set of defs for loads and stores, with associated DFS info.
   3676 void NewGVN::convertClassToLoadsAndStores(
   3677     const CongruenceClass &Dense,
   3678     SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
   3679   for (auto D : Dense) {
   3680     if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
   3681       continue;
   3682 
   3683     BasicBlock *BB = getBlockForValue(D);
   3684     ValueDFS VD;
   3685     DomTreeNode *DomNode = DT->getNode(BB);
   3686     VD.DFSIn = DomNode->getDFSNumIn();
   3687     VD.DFSOut = DomNode->getDFSNumOut();
   3688     VD.Def.setPointer(D);
   3689 
   3690     // If it's an instruction, use the real local dfs number.
   3691     if (auto *I = dyn_cast<Instruction>(D))
   3692       VD.LocalNum = InstrToDFSNum(I);
   3693     else
   3694       llvm_unreachable("Should have been an instruction");
   3695 
   3696     LoadsAndStores.emplace_back(VD);
   3697   }
   3698 }
   3699 
   3700 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
   3701   auto *ReplInst = dyn_cast<Instruction>(Repl);
   3702   if (!ReplInst)
   3703     return;
   3704 
   3705   // Patch the replacement so that it is not more restrictive than the value
   3706   // being replaced.
   3707   // Note that if 'I' is a load being replaced by some operation,
   3708   // for example, by an arithmetic operation, then andIRFlags()
   3709   // would just erase all math flags from the original arithmetic
   3710   // operation, which is clearly not wanted and not needed.
   3711   if (!isa<LoadInst>(I))
   3712     ReplInst->andIRFlags(I);
   3713 
   3714   // FIXME: If both the original and replacement value are part of the
   3715   // same control-flow region (meaning that the execution of one
   3716   // guarantees the execution of the other), then we can combine the
   3717   // noalias scopes here and do better than the general conservative
   3718   // answer used in combineMetadata().
   3719 
   3720   // In general, GVN unifies expressions over different control-flow
   3721   // regions, and so we need a conservative combination of the noalias
   3722   // scopes.
   3723   static const unsigned KnownIDs[] = {
   3724       LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
   3725       LLVMContext::MD_noalias,        LLVMContext::MD_range,
   3726       LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
   3727       LLVMContext::MD_invariant_group};
   3728   combineMetadata(ReplInst, I, KnownIDs);
   3729 }
   3730 
   3731 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
   3732   patchReplacementInstruction(I, Repl);
   3733   I->replaceAllUsesWith(Repl);
   3734 }
   3735 
   3736 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
   3737   LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
   3738   ++NumGVNBlocksDeleted;
   3739 
   3740   // Delete the instructions backwards, as it has a reduced likelihood of having
   3741   // to update as many def-use and use-def chains. Start after the terminator.
   3742   auto StartPoint = BB->rbegin();
   3743   ++StartPoint;
   3744   // Note that we explicitly recalculate BB->rend() on each iteration,
   3745   // as it may change when we remove the first instruction.
   3746   for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
   3747     Instruction &Inst = *I++;
   3748     if (!Inst.use_empty())
   3749       Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
   3750     if (isa<LandingPadInst>(Inst))
   3751       continue;
   3752 
   3753     Inst.eraseFromParent();
   3754     ++NumGVNInstrDeleted;
   3755   }
   3756   // Now insert something that simplifycfg will turn into an unreachable.
   3757   Type *Int8Ty = Type::getInt8Ty(BB->getContext());
   3758   new StoreInst(UndefValue::get(Int8Ty),
   3759                 Constant::getNullValue(Int8Ty->getPointerTo()),
   3760                 BB->getTerminator());
   3761 }
   3762 
   3763 void NewGVN::markInstructionForDeletion(Instruction *I) {
   3764   LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
   3765   InstructionsToErase.insert(I);
   3766 }
   3767 
   3768 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
   3769   LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
   3770   patchAndReplaceAllUsesWith(I, V);
   3771   // We save the actual erasing to avoid invalidating memory
   3772   // dependencies until we are done with everything.
   3773   markInstructionForDeletion(I);
   3774 }
   3775 
   3776 namespace {
   3777 
   3778 // This is a stack that contains both the value and dfs info of where
   3779 // that value is valid.
   3780 class ValueDFSStack {
   3781 public:
   3782   Value *back() const { return ValueStack.back(); }
   3783   std::pair<int, int> dfs_back() const { return DFSStack.back(); }
   3784 
   3785   void push_back(Value *V, int DFSIn, int DFSOut) {
   3786     ValueStack.emplace_back(V);
   3787     DFSStack.emplace_back(DFSIn, DFSOut);
   3788   }
   3789 
   3790   bool empty() const { return DFSStack.empty(); }
   3791 
   3792   bool isInScope(int DFSIn, int DFSOut) const {
   3793     if (empty())
   3794       return false;
   3795     return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
   3796   }
   3797 
   3798   void popUntilDFSScope(int DFSIn, int DFSOut) {
   3799 
   3800     // These two should always be in sync at this point.
   3801     assert(ValueStack.size() == DFSStack.size() &&
   3802            "Mismatch between ValueStack and DFSStack");
   3803     while (
   3804         !DFSStack.empty() &&
   3805         !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
   3806       DFSStack.pop_back();
   3807       ValueStack.pop_back();
   3808     }
   3809   }
   3810 
   3811 private:
   3812   SmallVector<Value *, 8> ValueStack;
   3813   SmallVector<std::pair<int, int>, 8> DFSStack;
   3814 };
   3815 
   3816 } // end anonymous namespace
   3817 
   3818 // Given an expression, get the congruence class for it.
   3819 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
   3820   if (auto *VE = dyn_cast<VariableExpression>(E))
   3821     return ValueToClass.lookup(VE->getVariableValue());
   3822   else if (isa<DeadExpression>(E))
   3823     return TOPClass;
   3824   return ExpressionToClass.lookup(E);
   3825 }
   3826 
   3827 // Given a value and a basic block we are trying to see if it is available in,
   3828 // see if the value has a leader available in that block.
   3829 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
   3830                                   const Instruction *OrigInst,
   3831                                   const BasicBlock *BB) const {
   3832   // It would already be constant if we could make it constant
   3833   if (auto *CE = dyn_cast<ConstantExpression>(E))
   3834     return CE->getConstantValue();
   3835   if (auto *VE = dyn_cast<VariableExpression>(E)) {
   3836     auto *V = VE->getVariableValue();
   3837     if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
   3838       return VE->getVariableValue();
   3839   }
   3840 
   3841   auto *CC = getClassForExpression(E);
   3842   if (!CC)
   3843     return nullptr;
   3844   if (alwaysAvailable(CC->getLeader()))
   3845     return CC->getLeader();
   3846 
   3847   for (auto Member : *CC) {
   3848     auto *MemberInst = dyn_cast<Instruction>(Member);
   3849     if (MemberInst == OrigInst)
   3850       continue;
   3851     // Anything that isn't an instruction is always available.
   3852     if (!MemberInst)
   3853       return Member;
   3854     if (DT->dominates(getBlockForValue(MemberInst), BB))
   3855       return Member;
   3856   }
   3857   return nullptr;
   3858 }
   3859 
   3860 bool NewGVN::eliminateInstructions(Function &F) {
   3861   // This is a non-standard eliminator. The normal way to eliminate is
   3862   // to walk the dominator tree in order, keeping track of available
   3863   // values, and eliminating them.  However, this is mildly
   3864   // pointless. It requires doing lookups on every instruction,
   3865   // regardless of whether we will ever eliminate it.  For
   3866   // instructions part of most singleton congruence classes, we know we
   3867   // will never eliminate them.
   3868 
   3869   // Instead, this eliminator looks at the congruence classes directly, sorts
   3870   // them into a DFS ordering of the dominator tree, and then we just
   3871   // perform elimination straight on the sets by walking the congruence
   3872   // class member uses in order, and eliminate the ones dominated by the
   3873   // last member.   This is worst case O(E log E) where E = number of
   3874   // instructions in a single congruence class.  In theory, this is all
   3875   // instructions.   In practice, it is much faster, as most instructions are
   3876   // either in singleton congruence classes or can't possibly be eliminated
   3877   // anyway (if there are no overlapping DFS ranges in class).
   3878   // When we find something not dominated, it becomes the new leader
   3879   // for elimination purposes.
   3880   // TODO: If we wanted to be faster, We could remove any members with no
   3881   // overlapping ranges while sorting, as we will never eliminate anything
   3882   // with those members, as they don't dominate anything else in our set.
   3883 
   3884   bool AnythingReplaced = false;
   3885 
   3886   // Since we are going to walk the domtree anyway, and we can't guarantee the
   3887   // DFS numbers are updated, we compute some ourselves.
   3888   DT->updateDFSNumbers();
   3889 
   3890   // Go through all of our phi nodes, and kill the arguments associated with
   3891   // unreachable edges.
   3892   auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
   3893     for (auto &Operand : PHI->incoming_values())
   3894       if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
   3895         LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
   3896                           << " for block "
   3897                           << getBlockName(PHI->getIncomingBlock(Operand))
   3898                           << " with undef due to it being unreachable\n");
   3899         Operand.set(UndefValue::get(PHI->getType()));
   3900       }
   3901   };
   3902   // Replace unreachable phi arguments.
   3903   // At this point, RevisitOnReachabilityChange only contains:
   3904   //
   3905   // 1. PHIs
   3906   // 2. Temporaries that will convert to PHIs
   3907   // 3. Operations that are affected by an unreachable edge but do not fit into
   3908   // 1 or 2 (rare).
   3909   // So it is a slight overshoot of what we want. We could make it exact by
   3910   // using two SparseBitVectors per block.
   3911   DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
   3912   for (auto &KV : ReachableEdges)
   3913     ReachablePredCount[KV.getEnd()]++;
   3914   for (auto &BBPair : RevisitOnReachabilityChange) {
   3915     for (auto InstNum : BBPair.second) {
   3916       auto *Inst = InstrFromDFSNum(InstNum);
   3917       auto *PHI = dyn_cast<PHINode>(Inst);
   3918       PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
   3919       if (!PHI)
   3920         continue;
   3921       auto *BB = BBPair.first;
   3922       if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
   3923         ReplaceUnreachablePHIArgs(PHI, BB);
   3924     }
   3925   }
   3926 
   3927   // Map to store the use counts
   3928   DenseMap<const Value *, unsigned int> UseCounts;
   3929   for (auto *CC : reverse(CongruenceClasses)) {
   3930     LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
   3931                       << "\n");
   3932     // Track the equivalent store info so we can decide whether to try
   3933     // dead store elimination.
   3934     SmallVector<ValueDFS, 8> PossibleDeadStores;
   3935     SmallPtrSet<Instruction *, 8> ProbablyDead;
   3936     if (CC->isDead() || CC->empty())
   3937       continue;
   3938     // Everything still in the TOP class is unreachable or dead.
   3939     if (CC == TOPClass) {
   3940       for (auto M : *CC) {
   3941         auto *VTE = ValueToExpression.lookup(M);
   3942         if (VTE && isa<DeadExpression>(VTE))
   3943           markInstructionForDeletion(cast<Instruction>(M));
   3944         assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
   3945                 InstructionsToErase.count(cast<Instruction>(M))) &&
   3946                "Everything in TOP should be unreachable or dead at this "
   3947                "point");
   3948       }
   3949       continue;
   3950     }
   3951 
   3952     assert(CC->getLeader() && "We should have had a leader");
   3953     // If this is a leader that is always available, and it's a
   3954     // constant or has no equivalences, just replace everything with
   3955     // it. We then update the congruence class with whatever members
   3956     // are left.
   3957     Value *Leader =
   3958         CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
   3959     if (alwaysAvailable(Leader)) {
   3960       CongruenceClass::MemberSet MembersLeft;
   3961       for (auto M : *CC) {
   3962         Value *Member = M;
   3963         // Void things have no uses we can replace.
   3964         if (Member == Leader || !isa<Instruction>(Member) ||
   3965             Member->getType()->isVoidTy()) {
   3966           MembersLeft.insert(Member);
   3967           continue;
   3968         }
   3969         LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
   3970                           << *Member << "\n");
   3971         auto *I = cast<Instruction>(Member);
   3972         assert(Leader != I && "About to accidentally remove our leader");
   3973         replaceInstruction(I, Leader);
   3974         AnythingReplaced = true;
   3975       }
   3976       CC->swap(MembersLeft);
   3977     } else {
   3978       // If this is a singleton, we can skip it.
   3979       if (CC->size() != 1 || RealToTemp.count(Leader)) {
   3980         // This is a stack because equality replacement/etc may place
   3981         // constants in the middle of the member list, and we want to use
   3982         // those constant values in preference to the current leader, over
   3983         // the scope of those constants.
   3984         ValueDFSStack EliminationStack;
   3985 
   3986         // Convert the members to DFS ordered sets and then merge them.
   3987         SmallVector<ValueDFS, 8> DFSOrderedSet;
   3988         convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
   3989 
   3990         // Sort the whole thing.
   3991         llvm::sort(DFSOrderedSet.begin(), DFSOrderedSet.end());
   3992         for (auto &VD : DFSOrderedSet) {
   3993           int MemberDFSIn = VD.DFSIn;
   3994           int MemberDFSOut = VD.DFSOut;
   3995           Value *Def = VD.Def.getPointer();
   3996           bool FromStore = VD.Def.getInt();
   3997           Use *U = VD.U;
   3998           // We ignore void things because we can't get a value from them.
   3999           if (Def && Def->getType()->isVoidTy())
   4000             continue;
   4001           auto *DefInst = dyn_cast_or_null<Instruction>(Def);
   4002           if (DefInst && AllTempInstructions.count(DefInst)) {
   4003             auto *PN = cast<PHINode>(DefInst);
   4004 
   4005             // If this is a value phi and that's the expression we used, insert
   4006             // it into the program
   4007             // remove from temp instruction list.
   4008             AllTempInstructions.erase(PN);
   4009             auto *DefBlock = getBlockForValue(Def);
   4010             LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
   4011                               << " into block "
   4012                               << getBlockName(getBlockForValue(Def)) << "\n");
   4013             PN->insertBefore(&DefBlock->front());
   4014             Def = PN;
   4015             NumGVNPHIOfOpsEliminations++;
   4016           }
   4017 
   4018           if (EliminationStack.empty()) {
   4019             LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
   4020           } else {
   4021             LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
   4022                               << EliminationStack.dfs_back().first << ","
   4023                               << EliminationStack.dfs_back().second << ")\n");
   4024           }
   4025 
   4026           LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
   4027                             << MemberDFSOut << ")\n");
   4028           // First, we see if we are out of scope or empty.  If so,
   4029           // and there equivalences, we try to replace the top of
   4030           // stack with equivalences (if it's on the stack, it must
   4031           // not have been eliminated yet).
   4032           // Then we synchronize to our current scope, by
   4033           // popping until we are back within a DFS scope that
   4034           // dominates the current member.
   4035           // Then, what happens depends on a few factors
   4036           // If the stack is now empty, we need to push
   4037           // If we have a constant or a local equivalence we want to
   4038           // start using, we also push.
   4039           // Otherwise, we walk along, processing members who are
   4040           // dominated by this scope, and eliminate them.
   4041           bool ShouldPush = Def && EliminationStack.empty();
   4042           bool OutOfScope =
   4043               !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
   4044 
   4045           if (OutOfScope || ShouldPush) {
   4046             // Sync to our current scope.
   4047             EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
   4048             bool ShouldPush = Def && EliminationStack.empty();
   4049             if (ShouldPush) {
   4050               EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
   4051             }
   4052           }
   4053 
   4054           // Skip the Def's, we only want to eliminate on their uses.  But mark
   4055           // dominated defs as dead.
   4056           if (Def) {
   4057             // For anything in this case, what and how we value number
   4058             // guarantees that any side-effets that would have occurred (ie
   4059             // throwing, etc) can be proven to either still occur (because it's
   4060             // dominated by something that has the same side-effects), or never
   4061             // occur.  Otherwise, we would not have been able to prove it value
   4062             // equivalent to something else. For these things, we can just mark
   4063             // it all dead.  Note that this is different from the "ProbablyDead"
   4064             // set, which may not be dominated by anything, and thus, are only
   4065             // easy to prove dead if they are also side-effect free. Note that
   4066             // because stores are put in terms of the stored value, we skip
   4067             // stored values here. If the stored value is really dead, it will
   4068             // still be marked for deletion when we process it in its own class.
   4069             if (!EliminationStack.empty() && Def != EliminationStack.back() &&
   4070                 isa<Instruction>(Def) && !FromStore)
   4071               markInstructionForDeletion(cast<Instruction>(Def));
   4072             continue;
   4073           }
   4074           // At this point, we know it is a Use we are trying to possibly
   4075           // replace.
   4076 
   4077           assert(isa<Instruction>(U->get()) &&
   4078                  "Current def should have been an instruction");
   4079           assert(isa<Instruction>(U->getUser()) &&
   4080                  "Current user should have been an instruction");
   4081 
   4082           // If the thing we are replacing into is already marked to be dead,
   4083           // this use is dead.  Note that this is true regardless of whether
   4084           // we have anything dominating the use or not.  We do this here
   4085           // because we are already walking all the uses anyway.
   4086           Instruction *InstUse = cast<Instruction>(U->getUser());
   4087           if (InstructionsToErase.count(InstUse)) {
   4088             auto &UseCount = UseCounts[U->get()];
   4089             if (--UseCount == 0) {
   4090               ProbablyDead.insert(cast<Instruction>(U->get()));
   4091             }
   4092           }
   4093 
   4094           // If we get to this point, and the stack is empty we must have a use
   4095           // with nothing we can use to eliminate this use, so just skip it.
   4096           if (EliminationStack.empty())
   4097             continue;
   4098 
   4099           Value *DominatingLeader = EliminationStack.back();
   4100 
   4101           auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
   4102           bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
   4103           if (isSSACopy)
   4104             DominatingLeader = II->getOperand(0);
   4105 
   4106           // Don't replace our existing users with ourselves.
   4107           if (U->get() == DominatingLeader)
   4108             continue;
   4109           LLVM_DEBUG(dbgs()
   4110                      << "Found replacement " << *DominatingLeader << " for "
   4111                      << *U->get() << " in " << *(U->getUser()) << "\n");
   4112 
   4113           // If we replaced something in an instruction, handle the patching of
   4114           // metadata.  Skip this if we are replacing predicateinfo with its
   4115           // original operand, as we already know we can just drop it.
   4116           auto *ReplacedInst = cast<Instruction>(U->get());
   4117           auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
   4118           if (!PI || DominatingLeader != PI->OriginalOp)
   4119             patchReplacementInstruction(ReplacedInst, DominatingLeader);
   4120           U->set(DominatingLeader);
   4121           // This is now a use of the dominating leader, which means if the
   4122           // dominating leader was dead, it's now live!
   4123           auto &LeaderUseCount = UseCounts[DominatingLeader];
   4124           // It's about to be alive again.
   4125           if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
   4126             ProbablyDead.erase(cast<Instruction>(DominatingLeader));
   4127           // Copy instructions, however, are still dead because we use their
   4128           // operand as the leader.
   4129           if (LeaderUseCount == 0 && isSSACopy)
   4130             ProbablyDead.insert(II);
   4131           ++LeaderUseCount;
   4132           AnythingReplaced = true;
   4133         }
   4134       }
   4135     }
   4136 
   4137     // At this point, anything still in the ProbablyDead set is actually dead if
   4138     // would be trivially dead.
   4139     for (auto *I : ProbablyDead)
   4140       if (wouldInstructionBeTriviallyDead(I))
   4141         markInstructionForDeletion(I);
   4142 
   4143     // Cleanup the congruence class.
   4144     CongruenceClass::MemberSet MembersLeft;
   4145     for (auto *Member : *CC)
   4146       if (!isa<Instruction>(Member) ||
   4147           !InstructionsToErase.count(cast<Instruction>(Member)))
   4148         MembersLeft.insert(Member);
   4149     CC->swap(MembersLeft);
   4150 
   4151     // If we have possible dead stores to look at, try to eliminate them.
   4152     if (CC->getStoreCount() > 0) {
   4153       convertClassToLoadsAndStores(*CC, PossibleDeadStores);
   4154       llvm::sort(PossibleDeadStores.begin(), PossibleDeadStores.end());
   4155       ValueDFSStack EliminationStack;
   4156       for (auto &VD : PossibleDeadStores) {
   4157         int MemberDFSIn = VD.DFSIn;
   4158         int MemberDFSOut = VD.DFSOut;
   4159         Instruction *Member = cast<Instruction>(VD.Def.getPointer());
   4160         if (EliminationStack.empty() ||
   4161             !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
   4162           // Sync to our current scope.
   4163           EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
   4164           if (EliminationStack.empty()) {
   4165             EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
   4166             continue;
   4167           }
   4168         }
   4169         // We already did load elimination, so nothing to do here.
   4170         if (isa<LoadInst>(Member))
   4171           continue;
   4172         assert(!EliminationStack.empty());
   4173         Instruction *Leader = cast<Instruction>(EliminationStack.back());
   4174         (void)Leader;
   4175         assert(DT->dominates(Leader->getParent(), Member->getParent()));
   4176         // Member is dominater by Leader, and thus dead
   4177         LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
   4178                           << " that is dominated by " << *Leader << "\n");
   4179         markInstructionForDeletion(Member);
   4180         CC->erase(Member);
   4181         ++NumGVNDeadStores;
   4182       }
   4183     }
   4184   }
   4185   return AnythingReplaced;
   4186 }
   4187 
   4188 // This function provides global ranking of operations so that we can place them
   4189 // in a canonical order.  Note that rank alone is not necessarily enough for a
   4190 // complete ordering, as constants all have the same rank.  However, generally,
   4191 // we will simplify an operation with all constants so that it doesn't matter
   4192 // what order they appear in.
   4193 unsigned int NewGVN::getRank(const Value *V) const {
   4194   // Prefer constants to undef to anything else
   4195   // Undef is a constant, have to check it first.
   4196   // Prefer smaller constants to constantexprs
   4197   if (isa<ConstantExpr>(V))
   4198     return 2;
   4199   if (isa<UndefValue>(V))
   4200     return 1;
   4201   if (isa<Constant>(V))
   4202     return 0;
   4203   else if (auto *A = dyn_cast<Argument>(V))
   4204     return 3 + A->getArgNo();
   4205 
   4206   // Need to shift the instruction DFS by number of arguments + 3 to account for
   4207   // the constant and argument ranking above.
   4208   unsigned Result = InstrToDFSNum(V);
   4209   if (Result > 0)
   4210     return 4 + NumFuncArgs + Result;
   4211   // Unreachable or something else, just return a really large number.
   4212   return ~0;
   4213 }
   4214 
   4215 // This is a function that says whether two commutative operations should
   4216 // have their order swapped when canonicalizing.
   4217 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
   4218   // Because we only care about a total ordering, and don't rewrite expressions
   4219   // in this order, we order by rank, which will give a strict weak ordering to
   4220   // everything but constants, and then we order by pointer address.
   4221   return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
   4222 }
   4223 
   4224 namespace {
   4225 
   4226 class NewGVNLegacyPass : public FunctionPass {
   4227 public:
   4228   // Pass identification, replacement for typeid.
   4229   static char ID;
   4230 
   4231   NewGVNLegacyPass() : FunctionPass(ID) {
   4232     initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
   4233   }
   4234 
   4235   bool runOnFunction(Function &F) override;
   4236 
   4237 private:
   4238   void getAnalysisUsage(AnalysisUsage &AU) const override {
   4239     AU.addRequired<AssumptionCacheTracker>();
   4240     AU.addRequired<DominatorTreeWrapperPass>();
   4241     AU.addRequired<TargetLibraryInfoWrapperPass>();
   4242     AU.addRequired<MemorySSAWrapperPass>();
   4243     AU.addRequired<AAResultsWrapperPass>();
   4244     AU.addPreserved<DominatorTreeWrapperPass>();
   4245     AU.addPreserved<GlobalsAAWrapperPass>();
   4246   }
   4247 };
   4248 
   4249 } // end anonymous namespace
   4250 
   4251 bool NewGVNLegacyPass::runOnFunction(Function &F) {
   4252   if (skipFunction(F))
   4253     return false;
   4254   return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
   4255                 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
   4256                 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
   4257                 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
   4258                 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
   4259                 F.getParent()->getDataLayout())
   4260       .runGVN();
   4261 }
   4262 
   4263 char NewGVNLegacyPass::ID = 0;
   4264 
   4265 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
   4266                       false, false)
   4267 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
   4268 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
   4269 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   4270 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
   4271 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
   4272 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
   4273 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
   4274                     false)
   4275 
   4276 // createGVNPass - The public interface to this file.
   4277 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
   4278 
   4279 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
   4280   // Apparently the order in which we get these results matter for
   4281   // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
   4282   // the same order here, just in case.
   4283   auto &AC = AM.getResult<AssumptionAnalysis>(F);
   4284   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
   4285   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
   4286   auto &AA = AM.getResult<AAManager>(F);
   4287   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
   4288   bool Changed =
   4289       NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
   4290           .runGVN();
   4291   if (!Changed)
   4292     return PreservedAnalyses::all();
   4293   PreservedAnalyses PA;
   4294   PA.preserve<DominatorTreeAnalysis>();
   4295   PA.preserve<GlobalsAA>();
   4296   return PA;
   4297 }
   4298