Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the PPCISelLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "PPCISelLowering.h"
     15 #include "MCTargetDesc/PPCPredicates.h"
     16 #include "PPCCallingConv.h"
     17 #include "PPCCCState.h"
     18 #include "PPCMachineFunctionInfo.h"
     19 #include "PPCPerfectShuffle.h"
     20 #include "PPCTargetMachine.h"
     21 #include "PPCTargetObjectFile.h"
     22 #include "llvm/ADT/STLExtras.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/ADT/StringSwitch.h"
     25 #include "llvm/ADT/Triple.h"
     26 #include "llvm/CodeGen/CallingConvLower.h"
     27 #include "llvm/CodeGen/MachineFrameInfo.h"
     28 #include "llvm/CodeGen/MachineFunction.h"
     29 #include "llvm/CodeGen/MachineInstrBuilder.h"
     30 #include "llvm/CodeGen/MachineLoopInfo.h"
     31 #include "llvm/CodeGen/MachineRegisterInfo.h"
     32 #include "llvm/CodeGen/SelectionDAG.h"
     33 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     34 #include "llvm/IR/CallingConv.h"
     35 #include "llvm/IR/Constants.h"
     36 #include "llvm/IR/DerivedTypes.h"
     37 #include "llvm/IR/Function.h"
     38 #include "llvm/IR/Intrinsics.h"
     39 #include "llvm/Support/CommandLine.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 #include "llvm/Support/Format.h"
     42 #include "llvm/Support/MathExtras.h"
     43 #include "llvm/Support/raw_ostream.h"
     44 #include "llvm/Target/TargetOptions.h"
     45 #include <list>
     46 
     47 using namespace llvm;
     48 
     49 #define DEBUG_TYPE "ppc-lowering"
     50 
     51 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
     52 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
     53 
     54 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
     55 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
     56 
     57 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
     58 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
     59 
     60 static cl::opt<bool> DisableSCO("disable-ppc-sco",
     61 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
     62 
     63 STATISTIC(NumTailCalls, "Number of tail calls");
     64 STATISTIC(NumSiblingCalls, "Number of sibling calls");
     65 
     66 // FIXME: Remove this once the bug has been fixed!
     67 extern cl::opt<bool> ANDIGlueBug;
     68 
     69 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
     70                                      const PPCSubtarget &STI)
     71     : TargetLowering(TM), Subtarget(STI) {
     72   // Use _setjmp/_longjmp instead of setjmp/longjmp.
     73   setUseUnderscoreSetJmp(true);
     74   setUseUnderscoreLongJmp(true);
     75 
     76   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
     77   // arguments are at least 4/8 bytes aligned.
     78   bool isPPC64 = Subtarget.isPPC64();
     79   setMinStackArgumentAlignment(isPPC64 ? 8:4);
     80 
     81   // Set up the register classes.
     82   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
     83   if (!useSoftFloat()) {
     84     addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
     85     addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
     86   }
     87 
     88   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
     89   for (MVT VT : MVT::integer_valuetypes()) {
     90     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
     91     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
     92   }
     93 
     94   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
     95 
     96   // PowerPC has pre-inc load and store's.
     97   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
     98   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
     99   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
    100   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
    101   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
    102   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
    103   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
    104   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
    105   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
    106   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
    107   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
    108   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
    109   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
    110   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
    111 
    112   if (Subtarget.useCRBits()) {
    113     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    114 
    115     if (isPPC64 || Subtarget.hasFPCVT()) {
    116       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
    117       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
    118                          isPPC64 ? MVT::i64 : MVT::i32);
    119       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
    120       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
    121                         isPPC64 ? MVT::i64 : MVT::i32);
    122     } else {
    123       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
    124       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
    125     }
    126 
    127     // PowerPC does not support direct load / store of condition registers
    128     setOperationAction(ISD::LOAD, MVT::i1, Custom);
    129     setOperationAction(ISD::STORE, MVT::i1, Custom);
    130 
    131     // FIXME: Remove this once the ANDI glue bug is fixed:
    132     if (ANDIGlueBug)
    133       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
    134 
    135     for (MVT VT : MVT::integer_valuetypes()) {
    136       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    137       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    138       setTruncStoreAction(VT, MVT::i1, Expand);
    139     }
    140 
    141     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
    142   }
    143 
    144   // This is used in the ppcf128->int sequence.  Note it has different semantics
    145   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
    146   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
    147 
    148   // We do not currently implement these libm ops for PowerPC.
    149   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
    150   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
    151   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
    152   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
    153   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
    154   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
    155 
    156   // PowerPC has no SREM/UREM instructions
    157   setOperationAction(ISD::SREM, MVT::i32, Expand);
    158   setOperationAction(ISD::UREM, MVT::i32, Expand);
    159   setOperationAction(ISD::SREM, MVT::i64, Expand);
    160   setOperationAction(ISD::UREM, MVT::i64, Expand);
    161 
    162   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
    163   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    164   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    165   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
    166   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    167   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    168   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    169   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
    170   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
    171 
    172   // We don't support sin/cos/sqrt/fmod/pow
    173   setOperationAction(ISD::FSIN , MVT::f64, Expand);
    174   setOperationAction(ISD::FCOS , MVT::f64, Expand);
    175   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
    176   setOperationAction(ISD::FREM , MVT::f64, Expand);
    177   setOperationAction(ISD::FPOW , MVT::f64, Expand);
    178   setOperationAction(ISD::FMA  , MVT::f64, Legal);
    179   setOperationAction(ISD::FSIN , MVT::f32, Expand);
    180   setOperationAction(ISD::FCOS , MVT::f32, Expand);
    181   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
    182   setOperationAction(ISD::FREM , MVT::f32, Expand);
    183   setOperationAction(ISD::FPOW , MVT::f32, Expand);
    184   setOperationAction(ISD::FMA  , MVT::f32, Legal);
    185 
    186   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    187 
    188   // If we're enabling GP optimizations, use hardware square root
    189   if (!Subtarget.hasFSQRT() &&
    190       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
    191         Subtarget.hasFRE()))
    192     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
    193 
    194   if (!Subtarget.hasFSQRT() &&
    195       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
    196         Subtarget.hasFRES()))
    197     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
    198 
    199   if (Subtarget.hasFCPSGN()) {
    200     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
    201     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
    202   } else {
    203     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    204     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    205   }
    206 
    207   if (Subtarget.hasFPRND()) {
    208     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
    209     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
    210     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
    211     setOperationAction(ISD::FROUND, MVT::f64, Legal);
    212 
    213     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
    214     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
    215     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
    216     setOperationAction(ISD::FROUND, MVT::f32, Legal);
    217   }
    218 
    219   // PowerPC does not have BSWAP, CTPOP or CTTZ
    220   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
    221   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
    222   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
    223   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
    224 
    225   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
    226     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
    227     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
    228   } else {
    229     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
    230     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
    231   }
    232 
    233   // PowerPC does not have ROTR
    234   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
    235   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
    236 
    237   if (!Subtarget.useCRBits()) {
    238     // PowerPC does not have Select
    239     setOperationAction(ISD::SELECT, MVT::i32, Expand);
    240     setOperationAction(ISD::SELECT, MVT::i64, Expand);
    241     setOperationAction(ISD::SELECT, MVT::f32, Expand);
    242     setOperationAction(ISD::SELECT, MVT::f64, Expand);
    243   }
    244 
    245   // PowerPC wants to turn select_cc of FP into fsel when possible.
    246   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    247   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    248 
    249   // PowerPC wants to optimize integer setcc a bit
    250   if (!Subtarget.useCRBits())
    251     setOperationAction(ISD::SETCC, MVT::i32, Custom);
    252 
    253   // PowerPC does not have BRCOND which requires SetCC
    254   if (!Subtarget.useCRBits())
    255     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    256 
    257   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
    258 
    259   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
    260   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    261 
    262   // PowerPC does not have [U|S]INT_TO_FP
    263   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
    264   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
    265 
    266   if (Subtarget.hasDirectMove() && isPPC64) {
    267     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
    268     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
    269     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
    270     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
    271   } else {
    272     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
    273     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
    274     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
    275     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
    276   }
    277 
    278   // We cannot sextinreg(i1).  Expand to shifts.
    279   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    280 
    281   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
    282   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
    283   // support continuation, user-level threading, and etc.. As a result, no
    284   // other SjLj exception interfaces are implemented and please don't build
    285   // your own exception handling based on them.
    286   // LLVM/Clang supports zero-cost DWARF exception handling.
    287   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
    288   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
    289 
    290   // We want to legalize GlobalAddress and ConstantPool nodes into the
    291   // appropriate instructions to materialize the address.
    292   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
    293   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    294   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
    295   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
    296   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
    297   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
    298   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    299   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
    300   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
    301   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
    302 
    303   // TRAP is legal.
    304   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    305 
    306   // TRAMPOLINE is custom lowered.
    307   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    308   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    309 
    310   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
    311   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
    312 
    313   if (Subtarget.isSVR4ABI()) {
    314     if (isPPC64) {
    315       // VAARG always uses double-word chunks, so promote anything smaller.
    316       setOperationAction(ISD::VAARG, MVT::i1, Promote);
    317       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
    318       setOperationAction(ISD::VAARG, MVT::i8, Promote);
    319       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
    320       setOperationAction(ISD::VAARG, MVT::i16, Promote);
    321       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
    322       setOperationAction(ISD::VAARG, MVT::i32, Promote);
    323       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
    324       setOperationAction(ISD::VAARG, MVT::Other, Expand);
    325     } else {
    326       // VAARG is custom lowered with the 32-bit SVR4 ABI.
    327       setOperationAction(ISD::VAARG, MVT::Other, Custom);
    328       setOperationAction(ISD::VAARG, MVT::i64, Custom);
    329     }
    330   } else
    331     setOperationAction(ISD::VAARG, MVT::Other, Expand);
    332 
    333   if (Subtarget.isSVR4ABI() && !isPPC64)
    334     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
    335     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
    336   else
    337     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
    338 
    339   // Use the default implementation.
    340   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    341   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
    342   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
    343   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
    344   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
    345   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
    346   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
    347 
    348   // We want to custom lower some of our intrinsics.
    349   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    350 
    351   // To handle counter-based loop conditions.
    352   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
    353 
    354   // Comparisons that require checking two conditions.
    355   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
    356   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
    357   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
    358   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
    359   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
    360   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
    361   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
    362   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
    363   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
    364   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
    365   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
    366   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
    367 
    368   if (Subtarget.has64BitSupport()) {
    369     // They also have instructions for converting between i64 and fp.
    370     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    371     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
    372     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    373     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    374     // This is just the low 32 bits of a (signed) fp->i64 conversion.
    375     // We cannot do this with Promote because i64 is not a legal type.
    376     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    377 
    378     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
    379       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    380   } else {
    381     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
    382     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
    383   }
    384 
    385   // With the instructions enabled under FPCVT, we can do everything.
    386   if (Subtarget.hasFPCVT()) {
    387     if (Subtarget.has64BitSupport()) {
    388       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    389       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
    390       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    391       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
    392     }
    393 
    394     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    395     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    396     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    397     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    398   }
    399 
    400   if (Subtarget.use64BitRegs()) {
    401     // 64-bit PowerPC implementations can support i64 types directly
    402     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
    403     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
    404     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
    405     // 64-bit PowerPC wants to expand i128 shifts itself.
    406     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
    407     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
    408     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
    409   } else {
    410     // 32-bit PowerPC wants to expand i64 shifts itself.
    411     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    412     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    413     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    414   }
    415 
    416   if (Subtarget.hasAltivec()) {
    417     // First set operation action for all vector types to expand. Then we
    418     // will selectively turn on ones that can be effectively codegen'd.
    419     for (MVT VT : MVT::vector_valuetypes()) {
    420       // add/sub are legal for all supported vector VT's.
    421       setOperationAction(ISD::ADD, VT, Legal);
    422       setOperationAction(ISD::SUB, VT, Legal);
    423 
    424       // Vector instructions introduced in P8
    425       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
    426         setOperationAction(ISD::CTPOP, VT, Legal);
    427         setOperationAction(ISD::CTLZ, VT, Legal);
    428       }
    429       else {
    430         setOperationAction(ISD::CTPOP, VT, Expand);
    431         setOperationAction(ISD::CTLZ, VT, Expand);
    432       }
    433 
    434       // We promote all shuffles to v16i8.
    435       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
    436       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
    437 
    438       // We promote all non-typed operations to v4i32.
    439       setOperationAction(ISD::AND   , VT, Promote);
    440       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
    441       setOperationAction(ISD::OR    , VT, Promote);
    442       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
    443       setOperationAction(ISD::XOR   , VT, Promote);
    444       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
    445       setOperationAction(ISD::LOAD  , VT, Promote);
    446       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
    447       setOperationAction(ISD::SELECT, VT, Promote);
    448       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
    449       setOperationAction(ISD::SELECT_CC, VT, Promote);
    450       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
    451       setOperationAction(ISD::STORE, VT, Promote);
    452       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
    453 
    454       // No other operations are legal.
    455       setOperationAction(ISD::MUL , VT, Expand);
    456       setOperationAction(ISD::SDIV, VT, Expand);
    457       setOperationAction(ISD::SREM, VT, Expand);
    458       setOperationAction(ISD::UDIV, VT, Expand);
    459       setOperationAction(ISD::UREM, VT, Expand);
    460       setOperationAction(ISD::FDIV, VT, Expand);
    461       setOperationAction(ISD::FREM, VT, Expand);
    462       setOperationAction(ISD::FNEG, VT, Expand);
    463       setOperationAction(ISD::FSQRT, VT, Expand);
    464       setOperationAction(ISD::FLOG, VT, Expand);
    465       setOperationAction(ISD::FLOG10, VT, Expand);
    466       setOperationAction(ISD::FLOG2, VT, Expand);
    467       setOperationAction(ISD::FEXP, VT, Expand);
    468       setOperationAction(ISD::FEXP2, VT, Expand);
    469       setOperationAction(ISD::FSIN, VT, Expand);
    470       setOperationAction(ISD::FCOS, VT, Expand);
    471       setOperationAction(ISD::FABS, VT, Expand);
    472       setOperationAction(ISD::FPOWI, VT, Expand);
    473       setOperationAction(ISD::FFLOOR, VT, Expand);
    474       setOperationAction(ISD::FCEIL,  VT, Expand);
    475       setOperationAction(ISD::FTRUNC, VT, Expand);
    476       setOperationAction(ISD::FRINT,  VT, Expand);
    477       setOperationAction(ISD::FNEARBYINT, VT, Expand);
    478       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
    479       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
    480       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
    481       setOperationAction(ISD::MULHU, VT, Expand);
    482       setOperationAction(ISD::MULHS, VT, Expand);
    483       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    484       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    485       setOperationAction(ISD::UDIVREM, VT, Expand);
    486       setOperationAction(ISD::SDIVREM, VT, Expand);
    487       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
    488       setOperationAction(ISD::FPOW, VT, Expand);
    489       setOperationAction(ISD::BSWAP, VT, Expand);
    490       setOperationAction(ISD::CTTZ, VT, Expand);
    491       setOperationAction(ISD::VSELECT, VT, Expand);
    492       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    493       setOperationAction(ISD::ROTL, VT, Expand);
    494       setOperationAction(ISD::ROTR, VT, Expand);
    495 
    496       for (MVT InnerVT : MVT::vector_valuetypes()) {
    497         setTruncStoreAction(VT, InnerVT, Expand);
    498         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
    499         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
    500         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
    501       }
    502     }
    503 
    504     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
    505     // with merges, splats, etc.
    506     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
    507 
    508     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
    509     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
    510     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
    511     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
    512     setOperationAction(ISD::SELECT, MVT::v4i32,
    513                        Subtarget.useCRBits() ? Legal : Expand);
    514     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
    515     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
    516     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
    517     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
    518     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
    519     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
    520     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
    521     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
    522     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
    523 
    524     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
    525     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
    526     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
    527     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
    528 
    529     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
    530     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
    531 
    532     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
    533       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
    534       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
    535     }
    536 
    537     if (Subtarget.hasP8Altivec())
    538       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
    539     else
    540       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    541 
    542     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    543     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
    544 
    545     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
    546     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
    547 
    548     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
    549     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
    550     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
    551     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
    552 
    553     // Altivec does not contain unordered floating-point compare instructions
    554     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
    555     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
    556     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
    557     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
    558 
    559     if (Subtarget.hasVSX()) {
    560       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
    561       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
    562       if (Subtarget.hasP8Vector()) {
    563         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
    564         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
    565       }
    566       if (Subtarget.hasDirectMove() && isPPC64) {
    567         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
    568         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
    569         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
    570         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
    571         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
    572         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
    573         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
    574         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
    575       }
    576       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
    577 
    578       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
    579       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
    580       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
    581       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
    582       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
    583 
    584       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
    585 
    586       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
    587       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
    588 
    589       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
    590       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
    591 
    592       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
    593       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
    594       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
    595       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
    596       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
    597 
    598       // Share the Altivec comparison restrictions.
    599       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
    600       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
    601       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
    602       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
    603 
    604       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
    605       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
    606 
    607       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
    608 
    609       if (Subtarget.hasP8Vector())
    610         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
    611 
    612       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
    613 
    614       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
    615       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
    616       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
    617 
    618       if (Subtarget.hasP8Altivec()) {
    619         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
    620         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
    621         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
    622 
    623         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
    624       }
    625       else {
    626         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
    627         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
    628         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
    629 
    630         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
    631 
    632         // VSX v2i64 only supports non-arithmetic operations.
    633         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
    634         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
    635       }
    636 
    637       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
    638       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
    639       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
    640       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
    641 
    642       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
    643 
    644       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
    645       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
    646       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
    647       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
    648 
    649       // Vector operation legalization checks the result type of
    650       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
    651       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
    652       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
    653       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
    654       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
    655 
    656       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
    657       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
    658       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
    659       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
    660 
    661       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
    662     }
    663 
    664     if (Subtarget.hasP8Altivec()) {
    665       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
    666       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
    667     }
    668     if (Subtarget.hasP9Vector()) {
    669       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal);
    670       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Legal);
    671     }
    672   }
    673 
    674   if (Subtarget.hasQPX()) {
    675     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
    676     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
    677     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
    678     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
    679 
    680     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
    681     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
    682 
    683     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
    684     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
    685 
    686     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
    687     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
    688 
    689     if (!Subtarget.useCRBits())
    690       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
    691     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
    692 
    693     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
    694     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
    695     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
    696     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
    697     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
    698     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
    699     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
    700 
    701     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
    702     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
    703 
    704     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
    705     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
    706     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
    707 
    708     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
    709     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
    710     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
    711     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
    712     setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
    713     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
    714     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
    715     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
    716     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
    717     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
    718     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
    719 
    720     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
    721     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
    722 
    723     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
    724     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
    725 
    726     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
    727 
    728     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
    729     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
    730     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
    731     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
    732 
    733     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
    734     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
    735 
    736     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
    737     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
    738 
    739     if (!Subtarget.useCRBits())
    740       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
    741     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
    742 
    743     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
    744     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
    745     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
    746     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
    747     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
    748     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
    749     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
    750 
    751     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
    752     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
    753 
    754     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
    755     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
    756     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
    757     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
    758     setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
    759     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
    760     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
    761     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
    762     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
    763     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
    764     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
    765 
    766     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
    767     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
    768 
    769     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
    770     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
    771 
    772     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
    773 
    774     setOperationAction(ISD::AND , MVT::v4i1, Legal);
    775     setOperationAction(ISD::OR , MVT::v4i1, Legal);
    776     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
    777 
    778     if (!Subtarget.useCRBits())
    779       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
    780     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
    781 
    782     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
    783     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
    784 
    785     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
    786     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
    787     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
    788     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
    789     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
    790     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
    791     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
    792 
    793     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
    794     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
    795 
    796     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
    797 
    798     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
    799     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
    800     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
    801     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
    802 
    803     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
    804     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
    805     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
    806     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
    807 
    808     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
    809     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
    810 
    811     // These need to set FE_INEXACT, and so cannot be vectorized here.
    812     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
    813     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
    814 
    815     if (TM.Options.UnsafeFPMath) {
    816       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
    817       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
    818 
    819       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
    820       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
    821     } else {
    822       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
    823       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
    824 
    825       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
    826       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
    827     }
    828   }
    829 
    830   if (Subtarget.has64BitSupport())
    831     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
    832 
    833   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
    834 
    835   if (!isPPC64) {
    836     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
    837     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
    838   }
    839 
    840   setBooleanContents(ZeroOrOneBooleanContent);
    841 
    842   if (Subtarget.hasAltivec()) {
    843     // Altivec instructions set fields to all zeros or all ones.
    844     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    845   }
    846 
    847   if (!isPPC64) {
    848     // These libcalls are not available in 32-bit.
    849     setLibcallName(RTLIB::SHL_I128, nullptr);
    850     setLibcallName(RTLIB::SRL_I128, nullptr);
    851     setLibcallName(RTLIB::SRA_I128, nullptr);
    852   }
    853 
    854   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
    855 
    856   // We have target-specific dag combine patterns for the following nodes:
    857   setTargetDAGCombine(ISD::SINT_TO_FP);
    858   setTargetDAGCombine(ISD::BUILD_VECTOR);
    859   if (Subtarget.hasFPCVT())
    860     setTargetDAGCombine(ISD::UINT_TO_FP);
    861   setTargetDAGCombine(ISD::LOAD);
    862   setTargetDAGCombine(ISD::STORE);
    863   setTargetDAGCombine(ISD::BR_CC);
    864   if (Subtarget.useCRBits())
    865     setTargetDAGCombine(ISD::BRCOND);
    866   setTargetDAGCombine(ISD::BSWAP);
    867   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    868   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    869   setTargetDAGCombine(ISD::INTRINSIC_VOID);
    870 
    871   setTargetDAGCombine(ISD::SIGN_EXTEND);
    872   setTargetDAGCombine(ISD::ZERO_EXTEND);
    873   setTargetDAGCombine(ISD::ANY_EXTEND);
    874 
    875   if (Subtarget.useCRBits()) {
    876     setTargetDAGCombine(ISD::TRUNCATE);
    877     setTargetDAGCombine(ISD::SETCC);
    878     setTargetDAGCombine(ISD::SELECT_CC);
    879   }
    880 
    881   // Use reciprocal estimates.
    882   if (TM.Options.UnsafeFPMath) {
    883     setTargetDAGCombine(ISD::FDIV);
    884     setTargetDAGCombine(ISD::FSQRT);
    885   }
    886 
    887   // Darwin long double math library functions have $LDBL128 appended.
    888   if (Subtarget.isDarwin()) {
    889     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
    890     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
    891     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
    892     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
    893     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
    894     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
    895     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
    896     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
    897     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
    898     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
    899   }
    900 
    901   // With 32 condition bits, we don't need to sink (and duplicate) compares
    902   // aggressively in CodeGenPrep.
    903   if (Subtarget.useCRBits()) {
    904     setHasMultipleConditionRegisters();
    905     setJumpIsExpensive();
    906   }
    907 
    908   setMinFunctionAlignment(2);
    909   if (Subtarget.isDarwin())
    910     setPrefFunctionAlignment(4);
    911 
    912   switch (Subtarget.getDarwinDirective()) {
    913   default: break;
    914   case PPC::DIR_970:
    915   case PPC::DIR_A2:
    916   case PPC::DIR_E500mc:
    917   case PPC::DIR_E5500:
    918   case PPC::DIR_PWR4:
    919   case PPC::DIR_PWR5:
    920   case PPC::DIR_PWR5X:
    921   case PPC::DIR_PWR6:
    922   case PPC::DIR_PWR6X:
    923   case PPC::DIR_PWR7:
    924   case PPC::DIR_PWR8:
    925   case PPC::DIR_PWR9:
    926     setPrefFunctionAlignment(4);
    927     setPrefLoopAlignment(4);
    928     break;
    929   }
    930 
    931   if (Subtarget.enableMachineScheduler())
    932     setSchedulingPreference(Sched::Source);
    933   else
    934     setSchedulingPreference(Sched::Hybrid);
    935 
    936   computeRegisterProperties(STI.getRegisterInfo());
    937 
    938   // The Freescale cores do better with aggressive inlining of memcpy and
    939   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
    940   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
    941       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
    942     MaxStoresPerMemset = 32;
    943     MaxStoresPerMemsetOptSize = 16;
    944     MaxStoresPerMemcpy = 32;
    945     MaxStoresPerMemcpyOptSize = 8;
    946     MaxStoresPerMemmove = 32;
    947     MaxStoresPerMemmoveOptSize = 8;
    948   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
    949     // The A2 also benefits from (very) aggressive inlining of memcpy and
    950     // friends. The overhead of a the function call, even when warm, can be
    951     // over one hundred cycles.
    952     MaxStoresPerMemset = 128;
    953     MaxStoresPerMemcpy = 128;
    954     MaxStoresPerMemmove = 128;
    955   }
    956 }
    957 
    958 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
    959 /// the desired ByVal argument alignment.
    960 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
    961                              unsigned MaxMaxAlign) {
    962   if (MaxAlign == MaxMaxAlign)
    963     return;
    964   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
    965     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
    966       MaxAlign = 32;
    967     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
    968       MaxAlign = 16;
    969   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    970     unsigned EltAlign = 0;
    971     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
    972     if (EltAlign > MaxAlign)
    973       MaxAlign = EltAlign;
    974   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
    975     for (auto *EltTy : STy->elements()) {
    976       unsigned EltAlign = 0;
    977       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
    978       if (EltAlign > MaxAlign)
    979         MaxAlign = EltAlign;
    980       if (MaxAlign == MaxMaxAlign)
    981         break;
    982     }
    983   }
    984 }
    985 
    986 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    987 /// function arguments in the caller parameter area.
    988 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
    989                                                   const DataLayout &DL) const {
    990   // Darwin passes everything on 4 byte boundary.
    991   if (Subtarget.isDarwin())
    992     return 4;
    993 
    994   // 16byte and wider vectors are passed on 16byte boundary.
    995   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
    996   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
    997   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
    998     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
    999   return Align;
   1000 }
   1001 
   1002 bool PPCTargetLowering::useSoftFloat() const {
   1003   return Subtarget.useSoftFloat();
   1004 }
   1005 
   1006 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
   1007   switch ((PPCISD::NodeType)Opcode) {
   1008   case PPCISD::FIRST_NUMBER:    break;
   1009   case PPCISD::FSEL:            return "PPCISD::FSEL";
   1010   case PPCISD::FCFID:           return "PPCISD::FCFID";
   1011   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
   1012   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
   1013   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
   1014   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
   1015   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
   1016   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
   1017   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
   1018   case PPCISD::FRE:             return "PPCISD::FRE";
   1019   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
   1020   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
   1021   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
   1022   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
   1023   case PPCISD::VPERM:           return "PPCISD::VPERM";
   1024   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
   1025   case PPCISD::XXINSERT:        return "PPCISD::XXINSERT";
   1026   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
   1027   case PPCISD::CMPB:            return "PPCISD::CMPB";
   1028   case PPCISD::Hi:              return "PPCISD::Hi";
   1029   case PPCISD::Lo:              return "PPCISD::Lo";
   1030   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
   1031   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
   1032   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
   1033   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
   1034   case PPCISD::SRL:             return "PPCISD::SRL";
   1035   case PPCISD::SRA:             return "PPCISD::SRA";
   1036   case PPCISD::SHL:             return "PPCISD::SHL";
   1037   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
   1038   case PPCISD::CALL:            return "PPCISD::CALL";
   1039   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
   1040   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
   1041   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
   1042   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
   1043   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
   1044   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
   1045   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
   1046   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
   1047   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
   1048   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
   1049   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
   1050   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
   1051   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
   1052   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
   1053   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
   1054   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
   1055   case PPCISD::VCMP:            return "PPCISD::VCMP";
   1056   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
   1057   case PPCISD::LBRX:            return "PPCISD::LBRX";
   1058   case PPCISD::STBRX:           return "PPCISD::STBRX";
   1059   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
   1060   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
   1061   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
   1062   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
   1063   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
   1064   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
   1065   case PPCISD::BDZ:             return "PPCISD::BDZ";
   1066   case PPCISD::MFFS:            return "PPCISD::MFFS";
   1067   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
   1068   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
   1069   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
   1070   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
   1071   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
   1072   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
   1073   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
   1074   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
   1075   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
   1076   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
   1077   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
   1078   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
   1079   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
   1080   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
   1081   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
   1082   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
   1083   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
   1084   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
   1085   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
   1086   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
   1087   case PPCISD::SC:              return "PPCISD::SC";
   1088   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
   1089   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
   1090   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
   1091   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
   1092   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
   1093   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
   1094   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
   1095   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
   1096   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
   1097   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
   1098   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
   1099   }
   1100   return nullptr;
   1101 }
   1102 
   1103 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
   1104                                           EVT VT) const {
   1105   if (!VT.isVector())
   1106     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
   1107 
   1108   if (Subtarget.hasQPX())
   1109     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
   1110 
   1111   return VT.changeVectorElementTypeToInteger();
   1112 }
   1113 
   1114 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
   1115   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
   1116   return true;
   1117 }
   1118 
   1119 //===----------------------------------------------------------------------===//
   1120 // Node matching predicates, for use by the tblgen matching code.
   1121 //===----------------------------------------------------------------------===//
   1122 
   1123 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
   1124 static bool isFloatingPointZero(SDValue Op) {
   1125   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
   1126     return CFP->getValueAPF().isZero();
   1127   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
   1128     // Maybe this has already been legalized into the constant pool?
   1129     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
   1130       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
   1131         return CFP->getValueAPF().isZero();
   1132   }
   1133   return false;
   1134 }
   1135 
   1136 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
   1137 /// true if Op is undef or if it matches the specified value.
   1138 static bool isConstantOrUndef(int Op, int Val) {
   1139   return Op < 0 || Op == Val;
   1140 }
   1141 
   1142 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
   1143 /// VPKUHUM instruction.
   1144 /// The ShuffleKind distinguishes between big-endian operations with
   1145 /// two different inputs (0), either-endian operations with two identical
   1146 /// inputs (1), and little-endian operations with two different inputs (2).
   1147 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
   1148 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
   1149                                SelectionDAG &DAG) {
   1150   bool IsLE = DAG.getDataLayout().isLittleEndian();
   1151   if (ShuffleKind == 0) {
   1152     if (IsLE)
   1153       return false;
   1154     for (unsigned i = 0; i != 16; ++i)
   1155       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
   1156         return false;
   1157   } else if (ShuffleKind == 2) {
   1158     if (!IsLE)
   1159       return false;
   1160     for (unsigned i = 0; i != 16; ++i)
   1161       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
   1162         return false;
   1163   } else if (ShuffleKind == 1) {
   1164     unsigned j = IsLE ? 0 : 1;
   1165     for (unsigned i = 0; i != 8; ++i)
   1166       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
   1167           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
   1168         return false;
   1169   }
   1170   return true;
   1171 }
   1172 
   1173 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
   1174 /// VPKUWUM instruction.
   1175 /// The ShuffleKind distinguishes between big-endian operations with
   1176 /// two different inputs (0), either-endian operations with two identical
   1177 /// inputs (1), and little-endian operations with two different inputs (2).
   1178 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
   1179 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
   1180                                SelectionDAG &DAG) {
   1181   bool IsLE = DAG.getDataLayout().isLittleEndian();
   1182   if (ShuffleKind == 0) {
   1183     if (IsLE)
   1184       return false;
   1185     for (unsigned i = 0; i != 16; i += 2)
   1186       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
   1187           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
   1188         return false;
   1189   } else if (ShuffleKind == 2) {
   1190     if (!IsLE)
   1191       return false;
   1192     for (unsigned i = 0; i != 16; i += 2)
   1193       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
   1194           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
   1195         return false;
   1196   } else if (ShuffleKind == 1) {
   1197     unsigned j = IsLE ? 0 : 2;
   1198     for (unsigned i = 0; i != 8; i += 2)
   1199       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
   1200           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
   1201           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
   1202           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
   1203         return false;
   1204   }
   1205   return true;
   1206 }
   1207 
   1208 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
   1209 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
   1210 /// current subtarget.
   1211 ///
   1212 /// The ShuffleKind distinguishes between big-endian operations with
   1213 /// two different inputs (0), either-endian operations with two identical
   1214 /// inputs (1), and little-endian operations with two different inputs (2).
   1215 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
   1216 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
   1217                                SelectionDAG &DAG) {
   1218   const PPCSubtarget& Subtarget =
   1219     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
   1220   if (!Subtarget.hasP8Vector())
   1221     return false;
   1222 
   1223   bool IsLE = DAG.getDataLayout().isLittleEndian();
   1224   if (ShuffleKind == 0) {
   1225     if (IsLE)
   1226       return false;
   1227     for (unsigned i = 0; i != 16; i += 4)
   1228       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
   1229           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
   1230           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
   1231           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
   1232         return false;
   1233   } else if (ShuffleKind == 2) {
   1234     if (!IsLE)
   1235       return false;
   1236     for (unsigned i = 0; i != 16; i += 4)
   1237       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
   1238           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
   1239           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
   1240           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
   1241         return false;
   1242   } else if (ShuffleKind == 1) {
   1243     unsigned j = IsLE ? 0 : 4;
   1244     for (unsigned i = 0; i != 8; i += 4)
   1245       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
   1246           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
   1247           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
   1248           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
   1249           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
   1250           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
   1251           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
   1252           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
   1253         return false;
   1254   }
   1255   return true;
   1256 }
   1257 
   1258 /// isVMerge - Common function, used to match vmrg* shuffles.
   1259 ///
   1260 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
   1261                      unsigned LHSStart, unsigned RHSStart) {
   1262   if (N->getValueType(0) != MVT::v16i8)
   1263     return false;
   1264   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
   1265          "Unsupported merge size!");
   1266 
   1267   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
   1268     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
   1269       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
   1270                              LHSStart+j+i*UnitSize) ||
   1271           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
   1272                              RHSStart+j+i*UnitSize))
   1273         return false;
   1274     }
   1275   return true;
   1276 }
   1277 
   1278 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
   1279 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
   1280 /// The ShuffleKind distinguishes between big-endian merges with two
   1281 /// different inputs (0), either-endian merges with two identical inputs (1),
   1282 /// and little-endian merges with two different inputs (2).  For the latter,
   1283 /// the input operands are swapped (see PPCInstrAltivec.td).
   1284 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
   1285                              unsigned ShuffleKind, SelectionDAG &DAG) {
   1286   if (DAG.getDataLayout().isLittleEndian()) {
   1287     if (ShuffleKind == 1) // unary
   1288       return isVMerge(N, UnitSize, 0, 0);
   1289     else if (ShuffleKind == 2) // swapped
   1290       return isVMerge(N, UnitSize, 0, 16);
   1291     else
   1292       return false;
   1293   } else {
   1294     if (ShuffleKind == 1) // unary
   1295       return isVMerge(N, UnitSize, 8, 8);
   1296     else if (ShuffleKind == 0) // normal
   1297       return isVMerge(N, UnitSize, 8, 24);
   1298     else
   1299       return false;
   1300   }
   1301 }
   1302 
   1303 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
   1304 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
   1305 /// The ShuffleKind distinguishes between big-endian merges with two
   1306 /// different inputs (0), either-endian merges with two identical inputs (1),
   1307 /// and little-endian merges with two different inputs (2).  For the latter,
   1308 /// the input operands are swapped (see PPCInstrAltivec.td).
   1309 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
   1310                              unsigned ShuffleKind, SelectionDAG &DAG) {
   1311   if (DAG.getDataLayout().isLittleEndian()) {
   1312     if (ShuffleKind == 1) // unary
   1313       return isVMerge(N, UnitSize, 8, 8);
   1314     else if (ShuffleKind == 2) // swapped
   1315       return isVMerge(N, UnitSize, 8, 24);
   1316     else
   1317       return false;
   1318   } else {
   1319     if (ShuffleKind == 1) // unary
   1320       return isVMerge(N, UnitSize, 0, 0);
   1321     else if (ShuffleKind == 0) // normal
   1322       return isVMerge(N, UnitSize, 0, 16);
   1323     else
   1324       return false;
   1325   }
   1326 }
   1327 
   1328 /**
   1329  * \brief Common function used to match vmrgew and vmrgow shuffles
   1330  *
   1331  * The indexOffset determines whether to look for even or odd words in
   1332  * the shuffle mask. This is based on the of the endianness of the target
   1333  * machine.
   1334  *   - Little Endian:
   1335  *     - Use offset of 0 to check for odd elements
   1336  *     - Use offset of 4 to check for even elements
   1337  *   - Big Endian:
   1338  *     - Use offset of 0 to check for even elements
   1339  *     - Use offset of 4 to check for odd elements
   1340  * A detailed description of the vector element ordering for little endian and
   1341  * big endian can be found at
   1342  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
   1343  * Targeting your applications - what little endian and big endian IBM XL C/C++
   1344  * compiler differences mean to you
   1345  *
   1346  * The mask to the shuffle vector instruction specifies the indices of the
   1347  * elements from the two input vectors to place in the result. The elements are
   1348  * numbered in array-access order, starting with the first vector. These vectors
   1349  * are always of type v16i8, thus each vector will contain 16 elements of size
   1350  * 8. More info on the shuffle vector can be found in the
   1351  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
   1352  * Language Reference.
   1353  *
   1354  * The RHSStartValue indicates whether the same input vectors are used (unary)
   1355  * or two different input vectors are used, based on the following:
   1356  *   - If the instruction uses the same vector for both inputs, the range of the
   1357  *     indices will be 0 to 15. In this case, the RHSStart value passed should
   1358  *     be 0.
   1359  *   - If the instruction has two different vectors then the range of the
   1360  *     indices will be 0 to 31. In this case, the RHSStart value passed should
   1361  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
   1362  *     to 31 specify elements in the second vector).
   1363  *
   1364  * \param[in] N The shuffle vector SD Node to analyze
   1365  * \param[in] IndexOffset Specifies whether to look for even or odd elements
   1366  * \param[in] RHSStartValue Specifies the starting index for the righthand input
   1367  * vector to the shuffle_vector instruction
   1368  * \return true iff this shuffle vector represents an even or odd word merge
   1369  */
   1370 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
   1371                      unsigned RHSStartValue) {
   1372   if (N->getValueType(0) != MVT::v16i8)
   1373     return false;
   1374 
   1375   for (unsigned i = 0; i < 2; ++i)
   1376     for (unsigned j = 0; j < 4; ++j)
   1377       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
   1378                              i*RHSStartValue+j+IndexOffset) ||
   1379           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
   1380                              i*RHSStartValue+j+IndexOffset+8))
   1381         return false;
   1382   return true;
   1383 }
   1384 
   1385 /**
   1386  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
   1387  * vmrgow instructions.
   1388  *
   1389  * \param[in] N The shuffle vector SD Node to analyze
   1390  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
   1391  * \param[in] ShuffleKind Identify the type of merge:
   1392  *   - 0 = big-endian merge with two different inputs;
   1393  *   - 1 = either-endian merge with two identical inputs;
   1394  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
   1395  *     little-endian merges).
   1396  * \param[in] DAG The current SelectionDAG
   1397  * \return true iff this shuffle mask
   1398  */
   1399 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
   1400                               unsigned ShuffleKind, SelectionDAG &DAG) {
   1401   if (DAG.getDataLayout().isLittleEndian()) {
   1402     unsigned indexOffset = CheckEven ? 4 : 0;
   1403     if (ShuffleKind == 1) // Unary
   1404       return isVMerge(N, indexOffset, 0);
   1405     else if (ShuffleKind == 2) // swapped
   1406       return isVMerge(N, indexOffset, 16);
   1407     else
   1408       return false;
   1409   }
   1410   else {
   1411     unsigned indexOffset = CheckEven ? 0 : 4;
   1412     if (ShuffleKind == 1) // Unary
   1413       return isVMerge(N, indexOffset, 0);
   1414     else if (ShuffleKind == 0) // Normal
   1415       return isVMerge(N, indexOffset, 16);
   1416     else
   1417       return false;
   1418   }
   1419   return false;
   1420 }
   1421 
   1422 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
   1423 /// amount, otherwise return -1.
   1424 /// The ShuffleKind distinguishes between big-endian operations with two
   1425 /// different inputs (0), either-endian operations with two identical inputs
   1426 /// (1), and little-endian operations with two different inputs (2).  For the
   1427 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
   1428 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
   1429                              SelectionDAG &DAG) {
   1430   if (N->getValueType(0) != MVT::v16i8)
   1431     return -1;
   1432 
   1433   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   1434 
   1435   // Find the first non-undef value in the shuffle mask.
   1436   unsigned i;
   1437   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
   1438     /*search*/;
   1439 
   1440   if (i == 16) return -1;  // all undef.
   1441 
   1442   // Otherwise, check to see if the rest of the elements are consecutively
   1443   // numbered from this value.
   1444   unsigned ShiftAmt = SVOp->getMaskElt(i);
   1445   if (ShiftAmt < i) return -1;
   1446 
   1447   ShiftAmt -= i;
   1448   bool isLE = DAG.getDataLayout().isLittleEndian();
   1449 
   1450   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
   1451     // Check the rest of the elements to see if they are consecutive.
   1452     for (++i; i != 16; ++i)
   1453       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
   1454         return -1;
   1455   } else if (ShuffleKind == 1) {
   1456     // Check the rest of the elements to see if they are consecutive.
   1457     for (++i; i != 16; ++i)
   1458       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
   1459         return -1;
   1460   } else
   1461     return -1;
   1462 
   1463   if (isLE)
   1464     ShiftAmt = 16 - ShiftAmt;
   1465 
   1466   return ShiftAmt;
   1467 }
   1468 
   1469 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
   1470 /// specifies a splat of a single element that is suitable for input to
   1471 /// VSPLTB/VSPLTH/VSPLTW.
   1472 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
   1473   assert(N->getValueType(0) == MVT::v16i8 &&
   1474          (EltSize == 1 || EltSize == 2 || EltSize == 4));
   1475 
   1476   // The consecutive indices need to specify an element, not part of two
   1477   // different elements.  So abandon ship early if this isn't the case.
   1478   if (N->getMaskElt(0) % EltSize != 0)
   1479     return false;
   1480 
   1481   // This is a splat operation if each element of the permute is the same, and
   1482   // if the value doesn't reference the second vector.
   1483   unsigned ElementBase = N->getMaskElt(0);
   1484 
   1485   // FIXME: Handle UNDEF elements too!
   1486   if (ElementBase >= 16)
   1487     return false;
   1488 
   1489   // Check that the indices are consecutive, in the case of a multi-byte element
   1490   // splatted with a v16i8 mask.
   1491   for (unsigned i = 1; i != EltSize; ++i)
   1492     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
   1493       return false;
   1494 
   1495   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
   1496     if (N->getMaskElt(i) < 0) continue;
   1497     for (unsigned j = 0; j != EltSize; ++j)
   1498       if (N->getMaskElt(i+j) != N->getMaskElt(j))
   1499         return false;
   1500   }
   1501   return true;
   1502 }
   1503 
   1504 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
   1505                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
   1506 
   1507   // Check that the mask is shuffling words
   1508   for (unsigned i = 0; i < 4; ++i) {
   1509     unsigned B0 = N->getMaskElt(i*4);
   1510     unsigned B1 = N->getMaskElt(i*4+1);
   1511     unsigned B2 = N->getMaskElt(i*4+2);
   1512     unsigned B3 = N->getMaskElt(i*4+3);
   1513     if (B0 % 4)
   1514       return false;
   1515     if (B1 != B0+1 || B2 != B1+1 || B3 != B2+1)
   1516       return false;
   1517   }
   1518 
   1519   // Now we look at mask elements 0,4,8,12
   1520   unsigned M0 = N->getMaskElt(0) / 4;
   1521   unsigned M1 = N->getMaskElt(4) / 4;
   1522   unsigned M2 = N->getMaskElt(8) / 4;
   1523   unsigned M3 = N->getMaskElt(12) / 4;
   1524   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
   1525   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
   1526 
   1527   // Below, let H and L be arbitrary elements of the shuffle mask
   1528   // where H is in the range [4,7] and L is in the range [0,3].
   1529   // H, 1, 2, 3 or L, 5, 6, 7
   1530   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
   1531       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
   1532     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
   1533     InsertAtByte = IsLE ? 12 : 0;
   1534     Swap = M0 < 4;
   1535     return true;
   1536   }
   1537   // 0, H, 2, 3 or 4, L, 6, 7
   1538   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
   1539       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
   1540     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
   1541     InsertAtByte = IsLE ? 8 : 4;
   1542     Swap = M1 < 4;
   1543     return true;
   1544   }
   1545   // 0, 1, H, 3 or 4, 5, L, 7
   1546   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
   1547       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
   1548     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
   1549     InsertAtByte = IsLE ? 4 : 8;
   1550     Swap = M2 < 4;
   1551     return true;
   1552   }
   1553   // 0, 1, 2, H or 4, 5, 6, L
   1554   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
   1555       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
   1556     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
   1557     InsertAtByte = IsLE ? 0 : 12;
   1558     Swap = M3 < 4;
   1559     return true;
   1560   }
   1561 
   1562   // If both vector operands for the shuffle are the same vector, the mask will
   1563   // contain only elements from the first one and the second one will be undef.
   1564   if (N->getOperand(1).isUndef()) {
   1565     ShiftElts = 0;
   1566     Swap = true;
   1567     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
   1568     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
   1569       InsertAtByte = IsLE ? 12 : 0;
   1570       return true;
   1571     }
   1572     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
   1573       InsertAtByte = IsLE ? 8 : 4;
   1574       return true;
   1575     }
   1576     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
   1577       InsertAtByte = IsLE ? 4 : 8;
   1578       return true;
   1579     }
   1580     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
   1581       InsertAtByte = IsLE ? 0 : 12;
   1582       return true;
   1583     }
   1584   }
   1585 
   1586   return false;
   1587 }
   1588 
   1589 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
   1590 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
   1591 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
   1592                                 SelectionDAG &DAG) {
   1593   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   1594   assert(isSplatShuffleMask(SVOp, EltSize));
   1595   if (DAG.getDataLayout().isLittleEndian())
   1596     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
   1597   else
   1598     return SVOp->getMaskElt(0) / EltSize;
   1599 }
   1600 
   1601 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
   1602 /// by using a vspltis[bhw] instruction of the specified element size, return
   1603 /// the constant being splatted.  The ByteSize field indicates the number of
   1604 /// bytes of each element [124] -> [bhw].
   1605 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
   1606   SDValue OpVal(nullptr, 0);
   1607 
   1608   // If ByteSize of the splat is bigger than the element size of the
   1609   // build_vector, then we have a case where we are checking for a splat where
   1610   // multiple elements of the buildvector are folded together into a single
   1611   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
   1612   unsigned EltSize = 16/N->getNumOperands();
   1613   if (EltSize < ByteSize) {
   1614     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
   1615     SDValue UniquedVals[4];
   1616     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
   1617 
   1618     // See if all of the elements in the buildvector agree across.
   1619     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   1620       if (N->getOperand(i).isUndef()) continue;
   1621       // If the element isn't a constant, bail fully out.
   1622       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
   1623 
   1624 
   1625       if (!UniquedVals[i&(Multiple-1)].getNode())
   1626         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
   1627       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
   1628         return SDValue();  // no match.
   1629     }
   1630 
   1631     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
   1632     // either constant or undef values that are identical for each chunk.  See
   1633     // if these chunks can form into a larger vspltis*.
   1634 
   1635     // Check to see if all of the leading entries are either 0 or -1.  If
   1636     // neither, then this won't fit into the immediate field.
   1637     bool LeadingZero = true;
   1638     bool LeadingOnes = true;
   1639     for (unsigned i = 0; i != Multiple-1; ++i) {
   1640       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
   1641 
   1642       LeadingZero &= isNullConstant(UniquedVals[i]);
   1643       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
   1644     }
   1645     // Finally, check the least significant entry.
   1646     if (LeadingZero) {
   1647       if (!UniquedVals[Multiple-1].getNode())
   1648         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
   1649       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
   1650       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
   1651         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
   1652     }
   1653     if (LeadingOnes) {
   1654       if (!UniquedVals[Multiple-1].getNode())
   1655         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
   1656       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
   1657       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
   1658         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
   1659     }
   1660 
   1661     return SDValue();
   1662   }
   1663 
   1664   // Check to see if this buildvec has a single non-undef value in its elements.
   1665   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   1666     if (N->getOperand(i).isUndef()) continue;
   1667     if (!OpVal.getNode())
   1668       OpVal = N->getOperand(i);
   1669     else if (OpVal != N->getOperand(i))
   1670       return SDValue();
   1671   }
   1672 
   1673   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
   1674 
   1675   unsigned ValSizeInBytes = EltSize;
   1676   uint64_t Value = 0;
   1677   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
   1678     Value = CN->getZExtValue();
   1679   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
   1680     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
   1681     Value = FloatToBits(CN->getValueAPF().convertToFloat());
   1682   }
   1683 
   1684   // If the splat value is larger than the element value, then we can never do
   1685   // this splat.  The only case that we could fit the replicated bits into our
   1686   // immediate field for would be zero, and we prefer to use vxor for it.
   1687   if (ValSizeInBytes < ByteSize) return SDValue();
   1688 
   1689   // If the element value is larger than the splat value, check if it consists
   1690   // of a repeated bit pattern of size ByteSize.
   1691   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
   1692     return SDValue();
   1693 
   1694   // Properly sign extend the value.
   1695   int MaskVal = SignExtend32(Value, ByteSize * 8);
   1696 
   1697   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
   1698   if (MaskVal == 0) return SDValue();
   1699 
   1700   // Finally, if this value fits in a 5 bit sext field, return it
   1701   if (SignExtend32<5>(MaskVal) == MaskVal)
   1702     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
   1703   return SDValue();
   1704 }
   1705 
   1706 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
   1707 /// amount, otherwise return -1.
   1708 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
   1709   EVT VT = N->getValueType(0);
   1710   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
   1711     return -1;
   1712 
   1713   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   1714 
   1715   // Find the first non-undef value in the shuffle mask.
   1716   unsigned i;
   1717   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
   1718     /*search*/;
   1719 
   1720   if (i == 4) return -1;  // all undef.
   1721 
   1722   // Otherwise, check to see if the rest of the elements are consecutively
   1723   // numbered from this value.
   1724   unsigned ShiftAmt = SVOp->getMaskElt(i);
   1725   if (ShiftAmt < i) return -1;
   1726   ShiftAmt -= i;
   1727 
   1728   // Check the rest of the elements to see if they are consecutive.
   1729   for (++i; i != 4; ++i)
   1730     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
   1731       return -1;
   1732 
   1733   return ShiftAmt;
   1734 }
   1735 
   1736 //===----------------------------------------------------------------------===//
   1737 //  Addressing Mode Selection
   1738 //===----------------------------------------------------------------------===//
   1739 
   1740 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
   1741 /// or 64-bit immediate, and if the value can be accurately represented as a
   1742 /// sign extension from a 16-bit value.  If so, this returns true and the
   1743 /// immediate.
   1744 static bool isIntS16Immediate(SDNode *N, short &Imm) {
   1745   if (!isa<ConstantSDNode>(N))
   1746     return false;
   1747 
   1748   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
   1749   if (N->getValueType(0) == MVT::i32)
   1750     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
   1751   else
   1752     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
   1753 }
   1754 static bool isIntS16Immediate(SDValue Op, short &Imm) {
   1755   return isIntS16Immediate(Op.getNode(), Imm);
   1756 }
   1757 
   1758 /// SelectAddressRegReg - Given the specified addressed, check to see if it
   1759 /// can be represented as an indexed [r+r] operation.  Returns false if it
   1760 /// can be more efficiently represented with [r+imm].
   1761 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
   1762                                             SDValue &Index,
   1763                                             SelectionDAG &DAG) const {
   1764   short imm = 0;
   1765   if (N.getOpcode() == ISD::ADD) {
   1766     if (isIntS16Immediate(N.getOperand(1), imm))
   1767       return false;    // r+i
   1768     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
   1769       return false;    // r+i
   1770 
   1771     Base = N.getOperand(0);
   1772     Index = N.getOperand(1);
   1773     return true;
   1774   } else if (N.getOpcode() == ISD::OR) {
   1775     if (isIntS16Immediate(N.getOperand(1), imm))
   1776       return false;    // r+i can fold it if we can.
   1777 
   1778     // If this is an or of disjoint bitfields, we can codegen this as an add
   1779     // (for better address arithmetic) if the LHS and RHS of the OR are provably
   1780     // disjoint.
   1781     APInt LHSKnownZero, LHSKnownOne;
   1782     APInt RHSKnownZero, RHSKnownOne;
   1783     DAG.computeKnownBits(N.getOperand(0),
   1784                          LHSKnownZero, LHSKnownOne);
   1785 
   1786     if (LHSKnownZero.getBoolValue()) {
   1787       DAG.computeKnownBits(N.getOperand(1),
   1788                            RHSKnownZero, RHSKnownOne);
   1789       // If all of the bits are known zero on the LHS or RHS, the add won't
   1790       // carry.
   1791       if (~(LHSKnownZero | RHSKnownZero) == 0) {
   1792         Base = N.getOperand(0);
   1793         Index = N.getOperand(1);
   1794         return true;
   1795       }
   1796     }
   1797   }
   1798 
   1799   return false;
   1800 }
   1801 
   1802 // If we happen to be doing an i64 load or store into a stack slot that has
   1803 // less than a 4-byte alignment, then the frame-index elimination may need to
   1804 // use an indexed load or store instruction (because the offset may not be a
   1805 // multiple of 4). The extra register needed to hold the offset comes from the
   1806 // register scavenger, and it is possible that the scavenger will need to use
   1807 // an emergency spill slot. As a result, we need to make sure that a spill slot
   1808 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
   1809 // stack slot.
   1810 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
   1811   // FIXME: This does not handle the LWA case.
   1812   if (VT != MVT::i64)
   1813     return;
   1814 
   1815   // NOTE: We'll exclude negative FIs here, which come from argument
   1816   // lowering, because there are no known test cases triggering this problem
   1817   // using packed structures (or similar). We can remove this exclusion if
   1818   // we find such a test case. The reason why this is so test-case driven is
   1819   // because this entire 'fixup' is only to prevent crashes (from the
   1820   // register scavenger) on not-really-valid inputs. For example, if we have:
   1821   //   %a = alloca i1
   1822   //   %b = bitcast i1* %a to i64*
   1823   //   store i64* a, i64 b
   1824   // then the store should really be marked as 'align 1', but is not. If it
   1825   // were marked as 'align 1' then the indexed form would have been
   1826   // instruction-selected initially, and the problem this 'fixup' is preventing
   1827   // won't happen regardless.
   1828   if (FrameIdx < 0)
   1829     return;
   1830 
   1831   MachineFunction &MF = DAG.getMachineFunction();
   1832   MachineFrameInfo *MFI = MF.getFrameInfo();
   1833 
   1834   unsigned Align = MFI->getObjectAlignment(FrameIdx);
   1835   if (Align >= 4)
   1836     return;
   1837 
   1838   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1839   FuncInfo->setHasNonRISpills();
   1840 }
   1841 
   1842 /// Returns true if the address N can be represented by a base register plus
   1843 /// a signed 16-bit displacement [r+imm], and if it is not better
   1844 /// represented as reg+reg.  If Aligned is true, only accept displacements
   1845 /// suitable for STD and friends, i.e. multiples of 4.
   1846 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
   1847                                             SDValue &Base,
   1848                                             SelectionDAG &DAG,
   1849                                             bool Aligned) const {
   1850   // FIXME dl should come from parent load or store, not from address
   1851   SDLoc dl(N);
   1852   // If this can be more profitably realized as r+r, fail.
   1853   if (SelectAddressRegReg(N, Disp, Base, DAG))
   1854     return false;
   1855 
   1856   if (N.getOpcode() == ISD::ADD) {
   1857     short imm = 0;
   1858     if (isIntS16Immediate(N.getOperand(1), imm) &&
   1859         (!Aligned || (imm & 3) == 0)) {
   1860       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
   1861       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
   1862         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1863         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1864       } else {
   1865         Base = N.getOperand(0);
   1866       }
   1867       return true; // [r+i]
   1868     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
   1869       // Match LOAD (ADD (X, Lo(G))).
   1870       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
   1871              && "Cannot handle constant offsets yet!");
   1872       Disp = N.getOperand(1).getOperand(0);  // The global address.
   1873       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
   1874              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
   1875              Disp.getOpcode() == ISD::TargetConstantPool ||
   1876              Disp.getOpcode() == ISD::TargetJumpTable);
   1877       Base = N.getOperand(0);
   1878       return true;  // [&g+r]
   1879     }
   1880   } else if (N.getOpcode() == ISD::OR) {
   1881     short imm = 0;
   1882     if (isIntS16Immediate(N.getOperand(1), imm) &&
   1883         (!Aligned || (imm & 3) == 0)) {
   1884       // If this is an or of disjoint bitfields, we can codegen this as an add
   1885       // (for better address arithmetic) if the LHS and RHS of the OR are
   1886       // provably disjoint.
   1887       APInt LHSKnownZero, LHSKnownOne;
   1888       DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
   1889 
   1890       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
   1891         // If all of the bits are known zero on the LHS or RHS, the add won't
   1892         // carry.
   1893         if (FrameIndexSDNode *FI =
   1894               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
   1895           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1896           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1897         } else {
   1898           Base = N.getOperand(0);
   1899         }
   1900         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
   1901         return true;
   1902       }
   1903     }
   1904   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
   1905     // Loading from a constant address.
   1906 
   1907     // If this address fits entirely in a 16-bit sext immediate field, codegen
   1908     // this as "d, 0"
   1909     short Imm;
   1910     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
   1911       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
   1912       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
   1913                              CN->getValueType(0));
   1914       return true;
   1915     }
   1916 
   1917     // Handle 32-bit sext immediates with LIS + addr mode.
   1918     if ((CN->getValueType(0) == MVT::i32 ||
   1919          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
   1920         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
   1921       int Addr = (int)CN->getZExtValue();
   1922 
   1923       // Otherwise, break this down into an LIS + disp.
   1924       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
   1925 
   1926       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
   1927                                    MVT::i32);
   1928       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
   1929       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
   1930       return true;
   1931     }
   1932   }
   1933 
   1934   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
   1935   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
   1936     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1937     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1938   } else
   1939     Base = N;
   1940   return true;      // [r+0]
   1941 }
   1942 
   1943 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
   1944 /// represented as an indexed [r+r] operation.
   1945 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
   1946                                                 SDValue &Index,
   1947                                                 SelectionDAG &DAG) const {
   1948   // Check to see if we can easily represent this as an [r+r] address.  This
   1949   // will fail if it thinks that the address is more profitably represented as
   1950   // reg+imm, e.g. where imm = 0.
   1951   if (SelectAddressRegReg(N, Base, Index, DAG))
   1952     return true;
   1953 
   1954   // If the operand is an addition, always emit this as [r+r], since this is
   1955   // better (for code size, and execution, as the memop does the add for free)
   1956   // than emitting an explicit add.
   1957   if (N.getOpcode() == ISD::ADD) {
   1958     Base = N.getOperand(0);
   1959     Index = N.getOperand(1);
   1960     return true;
   1961   }
   1962 
   1963   // Otherwise, do it the hard way, using R0 as the base register.
   1964   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
   1965                          N.getValueType());
   1966   Index = N;
   1967   return true;
   1968 }
   1969 
   1970 /// getPreIndexedAddressParts - returns true by value, base pointer and
   1971 /// offset pointer and addressing mode by reference if the node's address
   1972 /// can be legally represented as pre-indexed load / store address.
   1973 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   1974                                                   SDValue &Offset,
   1975                                                   ISD::MemIndexedMode &AM,
   1976                                                   SelectionDAG &DAG) const {
   1977   if (DisablePPCPreinc) return false;
   1978 
   1979   bool isLoad = true;
   1980   SDValue Ptr;
   1981   EVT VT;
   1982   unsigned Alignment;
   1983   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1984     Ptr = LD->getBasePtr();
   1985     VT = LD->getMemoryVT();
   1986     Alignment = LD->getAlignment();
   1987   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   1988     Ptr = ST->getBasePtr();
   1989     VT  = ST->getMemoryVT();
   1990     Alignment = ST->getAlignment();
   1991     isLoad = false;
   1992   } else
   1993     return false;
   1994 
   1995   // PowerPC doesn't have preinc load/store instructions for vectors (except
   1996   // for QPX, which does have preinc r+r forms).
   1997   if (VT.isVector()) {
   1998     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
   1999       return false;
   2000     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
   2001       AM = ISD::PRE_INC;
   2002       return true;
   2003     }
   2004   }
   2005 
   2006   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
   2007 
   2008     // Common code will reject creating a pre-inc form if the base pointer
   2009     // is a frame index, or if N is a store and the base pointer is either
   2010     // the same as or a predecessor of the value being stored.  Check for
   2011     // those situations here, and try with swapped Base/Offset instead.
   2012     bool Swap = false;
   2013 
   2014     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
   2015       Swap = true;
   2016     else if (!isLoad) {
   2017       SDValue Val = cast<StoreSDNode>(N)->getValue();
   2018       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
   2019         Swap = true;
   2020     }
   2021 
   2022     if (Swap)
   2023       std::swap(Base, Offset);
   2024 
   2025     AM = ISD::PRE_INC;
   2026     return true;
   2027   }
   2028 
   2029   // LDU/STU can only handle immediates that are a multiple of 4.
   2030   if (VT != MVT::i64) {
   2031     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
   2032       return false;
   2033   } else {
   2034     // LDU/STU need an address with at least 4-byte alignment.
   2035     if (Alignment < 4)
   2036       return false;
   2037 
   2038     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
   2039       return false;
   2040   }
   2041 
   2042   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   2043     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
   2044     // sext i32 to i64 when addr mode is r+i.
   2045     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
   2046         LD->getExtensionType() == ISD::SEXTLOAD &&
   2047         isa<ConstantSDNode>(Offset))
   2048       return false;
   2049   }
   2050 
   2051   AM = ISD::PRE_INC;
   2052   return true;
   2053 }
   2054 
   2055 //===----------------------------------------------------------------------===//
   2056 //  LowerOperation implementation
   2057 //===----------------------------------------------------------------------===//
   2058 
   2059 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
   2060 /// and LoOpFlags to the target MO flags.
   2061 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
   2062                                unsigned &HiOpFlags, unsigned &LoOpFlags,
   2063                                const GlobalValue *GV = nullptr) {
   2064   HiOpFlags = PPCII::MO_HA;
   2065   LoOpFlags = PPCII::MO_LO;
   2066 
   2067   // Don't use the pic base if not in PIC relocation model.
   2068   if (IsPIC) {
   2069     HiOpFlags |= PPCII::MO_PIC_FLAG;
   2070     LoOpFlags |= PPCII::MO_PIC_FLAG;
   2071   }
   2072 
   2073   // If this is a reference to a global value that requires a non-lazy-ptr, make
   2074   // sure that instruction lowering adds it.
   2075   if (GV && Subtarget.hasLazyResolverStub(GV)) {
   2076     HiOpFlags |= PPCII::MO_NLP_FLAG;
   2077     LoOpFlags |= PPCII::MO_NLP_FLAG;
   2078 
   2079     if (GV->hasHiddenVisibility()) {
   2080       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   2081       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   2082     }
   2083   }
   2084 }
   2085 
   2086 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
   2087                              SelectionDAG &DAG) {
   2088   SDLoc DL(HiPart);
   2089   EVT PtrVT = HiPart.getValueType();
   2090   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
   2091 
   2092   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
   2093   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
   2094 
   2095   // With PIC, the first instruction is actually "GR+hi(&G)".
   2096   if (isPIC)
   2097     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
   2098                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
   2099 
   2100   // Generate non-pic code that has direct accesses to the constant pool.
   2101   // The address of the global is just (hi(&g)+lo(&g)).
   2102   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
   2103 }
   2104 
   2105 static void setUsesTOCBasePtr(MachineFunction &MF) {
   2106   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2107   FuncInfo->setUsesTOCBasePtr();
   2108 }
   2109 
   2110 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
   2111   setUsesTOCBasePtr(DAG.getMachineFunction());
   2112 }
   2113 
   2114 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
   2115                            SDValue GA) {
   2116   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
   2117   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
   2118                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
   2119 
   2120   SDValue Ops[] = { GA, Reg };
   2121   return DAG.getMemIntrinsicNode(
   2122       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
   2123       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true,
   2124       false, 0);
   2125 }
   2126 
   2127 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
   2128                                              SelectionDAG &DAG) const {
   2129   EVT PtrVT = Op.getValueType();
   2130   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   2131   const Constant *C = CP->getConstVal();
   2132 
   2133   // 64-bit SVR4 ABI code is always position-independent.
   2134   // The actual address of the GlobalValue is stored in the TOC.
   2135   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2136     setUsesTOCBasePtr(DAG);
   2137     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
   2138     return getTOCEntry(DAG, SDLoc(CP), true, GA);
   2139   }
   2140 
   2141   unsigned MOHiFlag, MOLoFlag;
   2142   bool IsPIC = isPositionIndependent();
   2143   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
   2144 
   2145   if (IsPIC && Subtarget.isSVR4ABI()) {
   2146     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
   2147                                            PPCII::MO_PIC_FLAG);
   2148     return getTOCEntry(DAG, SDLoc(CP), false, GA);
   2149   }
   2150 
   2151   SDValue CPIHi =
   2152     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
   2153   SDValue CPILo =
   2154     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
   2155   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
   2156 }
   2157 
   2158 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
   2159   EVT PtrVT = Op.getValueType();
   2160   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   2161 
   2162   // 64-bit SVR4 ABI code is always position-independent.
   2163   // The actual address of the GlobalValue is stored in the TOC.
   2164   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2165     setUsesTOCBasePtr(DAG);
   2166     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
   2167     return getTOCEntry(DAG, SDLoc(JT), true, GA);
   2168   }
   2169 
   2170   unsigned MOHiFlag, MOLoFlag;
   2171   bool IsPIC = isPositionIndependent();
   2172   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
   2173 
   2174   if (IsPIC && Subtarget.isSVR4ABI()) {
   2175     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
   2176                                         PPCII::MO_PIC_FLAG);
   2177     return getTOCEntry(DAG, SDLoc(GA), false, GA);
   2178   }
   2179 
   2180   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
   2181   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
   2182   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
   2183 }
   2184 
   2185 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
   2186                                              SelectionDAG &DAG) const {
   2187   EVT PtrVT = Op.getValueType();
   2188   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
   2189   const BlockAddress *BA = BASDN->getBlockAddress();
   2190 
   2191   // 64-bit SVR4 ABI code is always position-independent.
   2192   // The actual BlockAddress is stored in the TOC.
   2193   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2194     setUsesTOCBasePtr(DAG);
   2195     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
   2196     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
   2197   }
   2198 
   2199   unsigned MOHiFlag, MOLoFlag;
   2200   bool IsPIC = isPositionIndependent();
   2201   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
   2202   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
   2203   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
   2204   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
   2205 }
   2206 
   2207 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
   2208                                               SelectionDAG &DAG) const {
   2209 
   2210   // FIXME: TLS addresses currently use medium model code sequences,
   2211   // which is the most useful form.  Eventually support for small and
   2212   // large models could be added if users need it, at the cost of
   2213   // additional complexity.
   2214   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   2215   if (DAG.getTarget().Options.EmulatedTLS)
   2216     return LowerToTLSEmulatedModel(GA, DAG);
   2217 
   2218   SDLoc dl(GA);
   2219   const GlobalValue *GV = GA->getGlobal();
   2220   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2221   bool is64bit = Subtarget.isPPC64();
   2222   const Module *M = DAG.getMachineFunction().getFunction()->getParent();
   2223   PICLevel::Level picLevel = M->getPICLevel();
   2224 
   2225   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
   2226 
   2227   if (Model == TLSModel::LocalExec) {
   2228     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   2229                                                PPCII::MO_TPREL_HA);
   2230     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   2231                                                PPCII::MO_TPREL_LO);
   2232     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
   2233                                      is64bit ? MVT::i64 : MVT::i32);
   2234     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
   2235     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
   2236   }
   2237 
   2238   if (Model == TLSModel::InitialExec) {
   2239     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   2240     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   2241                                                 PPCII::MO_TLS);
   2242     SDValue GOTPtr;
   2243     if (is64bit) {
   2244       setUsesTOCBasePtr(DAG);
   2245       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   2246       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
   2247                            PtrVT, GOTReg, TGA);
   2248     } else
   2249       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
   2250     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
   2251                                    PtrVT, TGA, GOTPtr);
   2252     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
   2253   }
   2254 
   2255   if (Model == TLSModel::GeneralDynamic) {
   2256     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   2257     SDValue GOTPtr;
   2258     if (is64bit) {
   2259       setUsesTOCBasePtr(DAG);
   2260       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   2261       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
   2262                                    GOTReg, TGA);
   2263     } else {
   2264       if (picLevel == PICLevel::SmallPIC)
   2265         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
   2266       else
   2267         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
   2268     }
   2269     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
   2270                        GOTPtr, TGA, TGA);
   2271   }
   2272 
   2273   if (Model == TLSModel::LocalDynamic) {
   2274     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   2275     SDValue GOTPtr;
   2276     if (is64bit) {
   2277       setUsesTOCBasePtr(DAG);
   2278       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   2279       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
   2280                            GOTReg, TGA);
   2281     } else {
   2282       if (picLevel == PICLevel::SmallPIC)
   2283         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
   2284       else
   2285         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
   2286     }
   2287     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
   2288                                   PtrVT, GOTPtr, TGA, TGA);
   2289     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
   2290                                       PtrVT, TLSAddr, TGA);
   2291     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
   2292   }
   2293 
   2294   llvm_unreachable("Unknown TLS model!");
   2295 }
   2296 
   2297 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
   2298                                               SelectionDAG &DAG) const {
   2299   EVT PtrVT = Op.getValueType();
   2300   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
   2301   SDLoc DL(GSDN);
   2302   const GlobalValue *GV = GSDN->getGlobal();
   2303 
   2304   // 64-bit SVR4 ABI code is always position-independent.
   2305   // The actual address of the GlobalValue is stored in the TOC.
   2306   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2307     setUsesTOCBasePtr(DAG);
   2308     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
   2309     return getTOCEntry(DAG, DL, true, GA);
   2310   }
   2311 
   2312   unsigned MOHiFlag, MOLoFlag;
   2313   bool IsPIC = isPositionIndependent();
   2314   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
   2315 
   2316   if (IsPIC && Subtarget.isSVR4ABI()) {
   2317     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
   2318                                             GSDN->getOffset(),
   2319                                             PPCII::MO_PIC_FLAG);
   2320     return getTOCEntry(DAG, DL, false, GA);
   2321   }
   2322 
   2323   SDValue GAHi =
   2324     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
   2325   SDValue GALo =
   2326     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
   2327 
   2328   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
   2329 
   2330   // If the global reference is actually to a non-lazy-pointer, we have to do an
   2331   // extra load to get the address of the global.
   2332   if (MOHiFlag & PPCII::MO_NLP_FLAG)
   2333     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
   2334                       false, false, false, 0);
   2335   return Ptr;
   2336 }
   2337 
   2338 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   2339   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   2340   SDLoc dl(Op);
   2341 
   2342   if (Op.getValueType() == MVT::v2i64) {
   2343     // When the operands themselves are v2i64 values, we need to do something
   2344     // special because VSX has no underlying comparison operations for these.
   2345     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
   2346       // Equality can be handled by casting to the legal type for Altivec
   2347       // comparisons, everything else needs to be expanded.
   2348       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
   2349         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   2350                  DAG.getSetCC(dl, MVT::v4i32,
   2351                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
   2352                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
   2353                    CC));
   2354       }
   2355 
   2356       return SDValue();
   2357     }
   2358 
   2359     // We handle most of these in the usual way.
   2360     return Op;
   2361   }
   2362 
   2363   // If we're comparing for equality to zero, expose the fact that this is
   2364   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
   2365   // fold the new nodes.
   2366   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   2367     if (C->isNullValue() && CC == ISD::SETEQ) {
   2368       EVT VT = Op.getOperand(0).getValueType();
   2369       SDValue Zext = Op.getOperand(0);
   2370       if (VT.bitsLT(MVT::i32)) {
   2371         VT = MVT::i32;
   2372         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
   2373       }
   2374       unsigned Log2b = Log2_32(VT.getSizeInBits());
   2375       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
   2376       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
   2377                                 DAG.getConstant(Log2b, dl, MVT::i32));
   2378       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
   2379     }
   2380     // Leave comparisons against 0 and -1 alone for now, since they're usually
   2381     // optimized.  FIXME: revisit this when we can custom lower all setcc
   2382     // optimizations.
   2383     if (C->isAllOnesValue() || C->isNullValue())
   2384       return SDValue();
   2385   }
   2386 
   2387   // If we have an integer seteq/setne, turn it into a compare against zero
   2388   // by xor'ing the rhs with the lhs, which is faster than setting a
   2389   // condition register, reading it back out, and masking the correct bit.  The
   2390   // normal approach here uses sub to do this instead of xor.  Using xor exposes
   2391   // the result to other bit-twiddling opportunities.
   2392   EVT LHSVT = Op.getOperand(0).getValueType();
   2393   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   2394     EVT VT = Op.getValueType();
   2395     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
   2396                                 Op.getOperand(1));
   2397     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
   2398   }
   2399   return SDValue();
   2400 }
   2401 
   2402 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
   2403   SDNode *Node = Op.getNode();
   2404   EVT VT = Node->getValueType(0);
   2405   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2406   SDValue InChain = Node->getOperand(0);
   2407   SDValue VAListPtr = Node->getOperand(1);
   2408   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
   2409   SDLoc dl(Node);
   2410 
   2411   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
   2412 
   2413   // gpr_index
   2414   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   2415                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
   2416                                     false, false, false, 0);
   2417   InChain = GprIndex.getValue(1);
   2418 
   2419   if (VT == MVT::i64) {
   2420     // Check if GprIndex is even
   2421     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
   2422                                  DAG.getConstant(1, dl, MVT::i32));
   2423     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
   2424                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
   2425     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
   2426                                           DAG.getConstant(1, dl, MVT::i32));
   2427     // Align GprIndex to be even if it isn't
   2428     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
   2429                            GprIndex);
   2430   }
   2431 
   2432   // fpr index is 1 byte after gpr
   2433   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   2434                                DAG.getConstant(1, dl, MVT::i32));
   2435 
   2436   // fpr
   2437   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   2438                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
   2439                                     false, false, false, 0);
   2440   InChain = FprIndex.getValue(1);
   2441 
   2442   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   2443                                        DAG.getConstant(8, dl, MVT::i32));
   2444 
   2445   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   2446                                         DAG.getConstant(4, dl, MVT::i32));
   2447 
   2448   // areas
   2449   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
   2450                                      MachinePointerInfo(), false, false,
   2451                                      false, 0);
   2452   InChain = OverflowArea.getValue(1);
   2453 
   2454   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
   2455                                     MachinePointerInfo(), false, false,
   2456                                     false, 0);
   2457   InChain = RegSaveArea.getValue(1);
   2458 
   2459   // select overflow_area if index > 8
   2460   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
   2461                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
   2462 
   2463   // adjustment constant gpr_index * 4/8
   2464   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
   2465                                     VT.isInteger() ? GprIndex : FprIndex,
   2466                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
   2467                                                     MVT::i32));
   2468 
   2469   // OurReg = RegSaveArea + RegConstant
   2470   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
   2471                                RegConstant);
   2472 
   2473   // Floating types are 32 bytes into RegSaveArea
   2474   if (VT.isFloatingPoint())
   2475     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
   2476                          DAG.getConstant(32, dl, MVT::i32));
   2477 
   2478   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
   2479   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   2480                                    VT.isInteger() ? GprIndex : FprIndex,
   2481                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
   2482                                                    MVT::i32));
   2483 
   2484   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
   2485                               VT.isInteger() ? VAListPtr : FprPtr,
   2486                               MachinePointerInfo(SV),
   2487                               MVT::i8, false, false, 0);
   2488 
   2489   // determine if we should load from reg_save_area or overflow_area
   2490   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
   2491 
   2492   // increase overflow_area by 4/8 if gpr/fpr > 8
   2493   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
   2494                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
   2495                                           dl, MVT::i32));
   2496 
   2497   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
   2498                              OverflowAreaPlusN);
   2499 
   2500   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
   2501                               OverflowAreaPtr,
   2502                               MachinePointerInfo(),
   2503                               MVT::i32, false, false, 0);
   2504 
   2505   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
   2506                      false, false, false, 0);
   2507 }
   2508 
   2509 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
   2510   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
   2511 
   2512   // We have to copy the entire va_list struct:
   2513   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
   2514   return DAG.getMemcpy(Op.getOperand(0), Op,
   2515                        Op.getOperand(1), Op.getOperand(2),
   2516                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
   2517                        false, MachinePointerInfo(), MachinePointerInfo());
   2518 }
   2519 
   2520 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
   2521                                                   SelectionDAG &DAG) const {
   2522   return Op.getOperand(0);
   2523 }
   2524 
   2525 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
   2526                                                 SelectionDAG &DAG) const {
   2527   SDValue Chain = Op.getOperand(0);
   2528   SDValue Trmp = Op.getOperand(1); // trampoline
   2529   SDValue FPtr = Op.getOperand(2); // nested function
   2530   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
   2531   SDLoc dl(Op);
   2532 
   2533   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2534   bool isPPC64 = (PtrVT == MVT::i64);
   2535   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
   2536 
   2537   TargetLowering::ArgListTy Args;
   2538   TargetLowering::ArgListEntry Entry;
   2539 
   2540   Entry.Ty = IntPtrTy;
   2541   Entry.Node = Trmp; Args.push_back(Entry);
   2542 
   2543   // TrampSize == (isPPC64 ? 48 : 40);
   2544   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
   2545                                isPPC64 ? MVT::i64 : MVT::i32);
   2546   Args.push_back(Entry);
   2547 
   2548   Entry.Node = FPtr; Args.push_back(Entry);
   2549   Entry.Node = Nest; Args.push_back(Entry);
   2550 
   2551   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
   2552   TargetLowering::CallLoweringInfo CLI(DAG);
   2553   CLI.setDebugLoc(dl).setChain(Chain)
   2554     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
   2555                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
   2556                std::move(Args));
   2557 
   2558   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   2559   return CallResult.second;
   2560 }
   2561 
   2562 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
   2563   MachineFunction &MF = DAG.getMachineFunction();
   2564   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2565   EVT PtrVT = getPointerTy(MF.getDataLayout());
   2566 
   2567   SDLoc dl(Op);
   2568 
   2569   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
   2570     // vastart just stores the address of the VarArgsFrameIndex slot into the
   2571     // memory location argument.
   2572     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2573     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2574     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   2575                         MachinePointerInfo(SV),
   2576                         false, false, 0);
   2577   }
   2578 
   2579   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
   2580   // We suppose the given va_list is already allocated.
   2581   //
   2582   // typedef struct {
   2583   //  char gpr;     /* index into the array of 8 GPRs
   2584   //                 * stored in the register save area
   2585   //                 * gpr=0 corresponds to r3,
   2586   //                 * gpr=1 to r4, etc.
   2587   //                 */
   2588   //  char fpr;     /* index into the array of 8 FPRs
   2589   //                 * stored in the register save area
   2590   //                 * fpr=0 corresponds to f1,
   2591   //                 * fpr=1 to f2, etc.
   2592   //                 */
   2593   //  char *overflow_arg_area;
   2594   //                /* location on stack that holds
   2595   //                 * the next overflow argument
   2596   //                 */
   2597   //  char *reg_save_area;
   2598   //               /* where r3:r10 and f1:f8 (if saved)
   2599   //                * are stored
   2600   //                */
   2601   // } va_list[1];
   2602 
   2603   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
   2604   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
   2605   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
   2606                                             PtrVT);
   2607   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   2608                                  PtrVT);
   2609 
   2610   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
   2611   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
   2612 
   2613   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
   2614   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
   2615 
   2616   uint64_t FPROffset = 1;
   2617   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
   2618 
   2619   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2620 
   2621   // Store first byte : number of int regs
   2622   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
   2623                                          Op.getOperand(1),
   2624                                          MachinePointerInfo(SV),
   2625                                          MVT::i8, false, false, 0);
   2626   uint64_t nextOffset = FPROffset;
   2627   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
   2628                                   ConstFPROffset);
   2629 
   2630   // Store second byte : number of float regs
   2631   SDValue secondStore =
   2632     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
   2633                       MachinePointerInfo(SV, nextOffset), MVT::i8,
   2634                       false, false, 0);
   2635   nextOffset += StackOffset;
   2636   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
   2637 
   2638   // Store second word : arguments given on stack
   2639   SDValue thirdStore =
   2640     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
   2641                  MachinePointerInfo(SV, nextOffset),
   2642                  false, false, 0);
   2643   nextOffset += FrameOffset;
   2644   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
   2645 
   2646   // Store third word : arguments given in registers
   2647   return DAG.getStore(thirdStore, dl, FR, nextPtr,
   2648                       MachinePointerInfo(SV, nextOffset),
   2649                       false, false, 0);
   2650 
   2651 }
   2652 
   2653 #include "PPCGenCallingConv.inc"
   2654 
   2655 // Function whose sole purpose is to kill compiler warnings
   2656 // stemming from unused functions included from PPCGenCallingConv.inc.
   2657 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
   2658   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
   2659 }
   2660 
   2661 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
   2662                                       CCValAssign::LocInfo &LocInfo,
   2663                                       ISD::ArgFlagsTy &ArgFlags,
   2664                                       CCState &State) {
   2665   return true;
   2666 }
   2667 
   2668 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
   2669                                              MVT &LocVT,
   2670                                              CCValAssign::LocInfo &LocInfo,
   2671                                              ISD::ArgFlagsTy &ArgFlags,
   2672                                              CCState &State) {
   2673   static const MCPhysReg ArgRegs[] = {
   2674     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   2675     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   2676   };
   2677   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   2678 
   2679   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
   2680 
   2681   // Skip one register if the first unallocated register has an even register
   2682   // number and there are still argument registers available which have not been
   2683   // allocated yet. RegNum is actually an index into ArgRegs, which means we
   2684   // need to skip a register if RegNum is odd.
   2685   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
   2686     State.AllocateReg(ArgRegs[RegNum]);
   2687   }
   2688 
   2689   // Always return false here, as this function only makes sure that the first
   2690   // unallocated register has an odd register number and does not actually
   2691   // allocate a register for the current argument.
   2692   return false;
   2693 }
   2694 
   2695 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
   2696                                                MVT &LocVT,
   2697                                                CCValAssign::LocInfo &LocInfo,
   2698                                                ISD::ArgFlagsTy &ArgFlags,
   2699                                                CCState &State) {
   2700   static const MCPhysReg ArgRegs[] = {
   2701     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   2702     PPC::F8
   2703   };
   2704 
   2705   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   2706 
   2707   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
   2708 
   2709   // If there is only one Floating-point register left we need to put both f64
   2710   // values of a split ppc_fp128 value on the stack.
   2711   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
   2712     State.AllocateReg(ArgRegs[RegNum]);
   2713   }
   2714 
   2715   // Always return false here, as this function only makes sure that the two f64
   2716   // values a ppc_fp128 value is split into are both passed in registers or both
   2717   // passed on the stack and does not actually allocate a register for the
   2718   // current argument.
   2719   return false;
   2720 }
   2721 
   2722 /// FPR - The set of FP registers that should be allocated for arguments,
   2723 /// on Darwin.
   2724 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
   2725                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
   2726                                 PPC::F11, PPC::F12, PPC::F13};
   2727 
   2728 /// QFPR - The set of QPX registers that should be allocated for arguments.
   2729 static const MCPhysReg QFPR[] = {
   2730     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
   2731     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
   2732 
   2733 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
   2734 /// the stack.
   2735 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
   2736                                        unsigned PtrByteSize) {
   2737   unsigned ArgSize = ArgVT.getStoreSize();
   2738   if (Flags.isByVal())
   2739     ArgSize = Flags.getByValSize();
   2740 
   2741   // Round up to multiples of the pointer size, except for array members,
   2742   // which are always packed.
   2743   if (!Flags.isInConsecutiveRegs())
   2744     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2745 
   2746   return ArgSize;
   2747 }
   2748 
   2749 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
   2750 /// on the stack.
   2751 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
   2752                                             ISD::ArgFlagsTy Flags,
   2753                                             unsigned PtrByteSize) {
   2754   unsigned Align = PtrByteSize;
   2755 
   2756   // Altivec parameters are padded to a 16 byte boundary.
   2757   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   2758       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   2759       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
   2760       ArgVT == MVT::v1i128)
   2761     Align = 16;
   2762   // QPX vector types stored in double-precision are padded to a 32 byte
   2763   // boundary.
   2764   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
   2765     Align = 32;
   2766 
   2767   // ByVal parameters are aligned as requested.
   2768   if (Flags.isByVal()) {
   2769     unsigned BVAlign = Flags.getByValAlign();
   2770     if (BVAlign > PtrByteSize) {
   2771       if (BVAlign % PtrByteSize != 0)
   2772           llvm_unreachable(
   2773             "ByVal alignment is not a multiple of the pointer size");
   2774 
   2775       Align = BVAlign;
   2776     }
   2777   }
   2778 
   2779   // Array members are always packed to their original alignment.
   2780   if (Flags.isInConsecutiveRegs()) {
   2781     // If the array member was split into multiple registers, the first
   2782     // needs to be aligned to the size of the full type.  (Except for
   2783     // ppcf128, which is only aligned as its f64 components.)
   2784     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
   2785       Align = OrigVT.getStoreSize();
   2786     else
   2787       Align = ArgVT.getStoreSize();
   2788   }
   2789 
   2790   return Align;
   2791 }
   2792 
   2793 /// CalculateStackSlotUsed - Return whether this argument will use its
   2794 /// stack slot (instead of being passed in registers).  ArgOffset,
   2795 /// AvailableFPRs, and AvailableVRs must hold the current argument
   2796 /// position, and will be updated to account for this argument.
   2797 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
   2798                                    ISD::ArgFlagsTy Flags,
   2799                                    unsigned PtrByteSize,
   2800                                    unsigned LinkageSize,
   2801                                    unsigned ParamAreaSize,
   2802                                    unsigned &ArgOffset,
   2803                                    unsigned &AvailableFPRs,
   2804                                    unsigned &AvailableVRs, bool HasQPX) {
   2805   bool UseMemory = false;
   2806 
   2807   // Respect alignment of argument on the stack.
   2808   unsigned Align =
   2809     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
   2810   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   2811   // If there's no space left in the argument save area, we must
   2812   // use memory (this check also catches zero-sized arguments).
   2813   if (ArgOffset >= LinkageSize + ParamAreaSize)
   2814     UseMemory = true;
   2815 
   2816   // Allocate argument on the stack.
   2817   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   2818   if (Flags.isInConsecutiveRegsLast())
   2819     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2820   // If we overran the argument save area, we must use memory
   2821   // (this check catches arguments passed partially in memory)
   2822   if (ArgOffset > LinkageSize + ParamAreaSize)
   2823     UseMemory = true;
   2824 
   2825   // However, if the argument is actually passed in an FPR or a VR,
   2826   // we don't use memory after all.
   2827   if (!Flags.isByVal()) {
   2828     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
   2829         // QPX registers overlap with the scalar FP registers.
   2830         (HasQPX && (ArgVT == MVT::v4f32 ||
   2831                     ArgVT == MVT::v4f64 ||
   2832                     ArgVT == MVT::v4i1)))
   2833       if (AvailableFPRs > 0) {
   2834         --AvailableFPRs;
   2835         return false;
   2836       }
   2837     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   2838         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   2839         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
   2840         ArgVT == MVT::v1i128)
   2841       if (AvailableVRs > 0) {
   2842         --AvailableVRs;
   2843         return false;
   2844       }
   2845   }
   2846 
   2847   return UseMemory;
   2848 }
   2849 
   2850 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
   2851 /// ensure minimum alignment required for target.
   2852 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
   2853                                      unsigned NumBytes) {
   2854   unsigned TargetAlign = Lowering->getStackAlignment();
   2855   unsigned AlignMask = TargetAlign - 1;
   2856   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
   2857   return NumBytes;
   2858 }
   2859 
   2860 SDValue PPCTargetLowering::LowerFormalArguments(
   2861     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   2862     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   2863     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   2864   if (Subtarget.isSVR4ABI()) {
   2865     if (Subtarget.isPPC64())
   2866       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
   2867                                          dl, DAG, InVals);
   2868     else
   2869       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
   2870                                          dl, DAG, InVals);
   2871   } else {
   2872     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
   2873                                        dl, DAG, InVals);
   2874   }
   2875 }
   2876 
   2877 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
   2878     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   2879     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   2880     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   2881 
   2882   // 32-bit SVR4 ABI Stack Frame Layout:
   2883   //              +-----------------------------------+
   2884   //        +-->  |            Back chain             |
   2885   //        |     +-----------------------------------+
   2886   //        |     | Floating-point register save area |
   2887   //        |     +-----------------------------------+
   2888   //        |     |    General register save area     |
   2889   //        |     +-----------------------------------+
   2890   //        |     |          CR save word             |
   2891   //        |     +-----------------------------------+
   2892   //        |     |         VRSAVE save word          |
   2893   //        |     +-----------------------------------+
   2894   //        |     |         Alignment padding         |
   2895   //        |     +-----------------------------------+
   2896   //        |     |     Vector register save area     |
   2897   //        |     +-----------------------------------+
   2898   //        |     |       Local variable space        |
   2899   //        |     +-----------------------------------+
   2900   //        |     |        Parameter list area        |
   2901   //        |     +-----------------------------------+
   2902   //        |     |           LR save word            |
   2903   //        |     +-----------------------------------+
   2904   // SP-->  +---  |            Back chain             |
   2905   //              +-----------------------------------+
   2906   //
   2907   // Specifications:
   2908   //   System V Application Binary Interface PowerPC Processor Supplement
   2909   //   AltiVec Technology Programming Interface Manual
   2910 
   2911   MachineFunction &MF = DAG.getMachineFunction();
   2912   MachineFrameInfo *MFI = MF.getFrameInfo();
   2913   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2914 
   2915   EVT PtrVT = getPointerTy(MF.getDataLayout());
   2916   // Potential tail calls could cause overwriting of argument stack slots.
   2917   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   2918                        (CallConv == CallingConv::Fast));
   2919   unsigned PtrByteSize = 4;
   2920 
   2921   // Assign locations to all of the incoming arguments.
   2922   SmallVector<CCValAssign, 16> ArgLocs;
   2923   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   2924                  *DAG.getContext());
   2925 
   2926   // Reserve space for the linkage area on the stack.
   2927   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   2928   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
   2929   if (useSoftFloat())
   2930     CCInfo.PreAnalyzeFormalArguments(Ins);
   2931 
   2932   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
   2933   CCInfo.clearWasPPCF128();
   2934 
   2935   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2936     CCValAssign &VA = ArgLocs[i];
   2937 
   2938     // Arguments stored in registers.
   2939     if (VA.isRegLoc()) {
   2940       const TargetRegisterClass *RC;
   2941       EVT ValVT = VA.getValVT();
   2942 
   2943       switch (ValVT.getSimpleVT().SimpleTy) {
   2944         default:
   2945           llvm_unreachable("ValVT not supported by formal arguments Lowering");
   2946         case MVT::i1:
   2947         case MVT::i32:
   2948           RC = &PPC::GPRCRegClass;
   2949           break;
   2950         case MVT::f32:
   2951           if (Subtarget.hasP8Vector())
   2952             RC = &PPC::VSSRCRegClass;
   2953           else
   2954             RC = &PPC::F4RCRegClass;
   2955           break;
   2956         case MVT::f64:
   2957           if (Subtarget.hasVSX())
   2958             RC = &PPC::VSFRCRegClass;
   2959           else
   2960             RC = &PPC::F8RCRegClass;
   2961           break;
   2962         case MVT::v16i8:
   2963         case MVT::v8i16:
   2964         case MVT::v4i32:
   2965           RC = &PPC::VRRCRegClass;
   2966           break;
   2967         case MVT::v4f32:
   2968           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
   2969           break;
   2970         case MVT::v2f64:
   2971         case MVT::v2i64:
   2972           RC = &PPC::VSHRCRegClass;
   2973           break;
   2974         case MVT::v4f64:
   2975           RC = &PPC::QFRCRegClass;
   2976           break;
   2977         case MVT::v4i1:
   2978           RC = &PPC::QBRCRegClass;
   2979           break;
   2980       }
   2981 
   2982       // Transform the arguments stored in physical registers into virtual ones.
   2983       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2984       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
   2985                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
   2986 
   2987       if (ValVT == MVT::i1)
   2988         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
   2989 
   2990       InVals.push_back(ArgValue);
   2991     } else {
   2992       // Argument stored in memory.
   2993       assert(VA.isMemLoc());
   2994 
   2995       unsigned ArgSize = VA.getLocVT().getStoreSize();
   2996       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
   2997                                       isImmutable);
   2998 
   2999       // Create load nodes to retrieve arguments from the stack.
   3000       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3001       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
   3002                                    MachinePointerInfo(),
   3003                                    false, false, false, 0));
   3004     }
   3005   }
   3006 
   3007   // Assign locations to all of the incoming aggregate by value arguments.
   3008   // Aggregates passed by value are stored in the local variable space of the
   3009   // caller's stack frame, right above the parameter list area.
   3010   SmallVector<CCValAssign, 16> ByValArgLocs;
   3011   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   3012                       ByValArgLocs, *DAG.getContext());
   3013 
   3014   // Reserve stack space for the allocations in CCInfo.
   3015   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   3016 
   3017   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
   3018 
   3019   // Area that is at least reserved in the caller of this function.
   3020   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
   3021   MinReservedArea = std::max(MinReservedArea, LinkageSize);
   3022 
   3023   // Set the size that is at least reserved in caller of this function.  Tail
   3024   // call optimized function's reserved stack space needs to be aligned so that
   3025   // taking the difference between two stack areas will result in an aligned
   3026   // stack.
   3027   MinReservedArea =
   3028       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
   3029   FuncInfo->setMinReservedArea(MinReservedArea);
   3030 
   3031   SmallVector<SDValue, 8> MemOps;
   3032 
   3033   // If the function takes variable number of arguments, make a frame index for
   3034   // the start of the first vararg value... for expansion of llvm.va_start.
   3035   if (isVarArg) {
   3036     static const MCPhysReg GPArgRegs[] = {
   3037       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   3038       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   3039     };
   3040     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
   3041 
   3042     static const MCPhysReg FPArgRegs[] = {
   3043       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   3044       PPC::F8
   3045     };
   3046     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
   3047 
   3048     if (useSoftFloat())
   3049        NumFPArgRegs = 0;
   3050 
   3051     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
   3052     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
   3053 
   3054     // Make room for NumGPArgRegs and NumFPArgRegs.
   3055     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
   3056                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
   3057 
   3058     FuncInfo->setVarArgsStackOffset(
   3059       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   3060                              CCInfo.getNextStackOffset(), true));
   3061 
   3062     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
   3063     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   3064 
   3065     // The fixed integer arguments of a variadic function are stored to the
   3066     // VarArgsFrameIndex on the stack so that they may be loaded by
   3067     // dereferencing the result of va_next.
   3068     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
   3069       // Get an existing live-in vreg, or add a new one.
   3070       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
   3071       if (!VReg)
   3072         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
   3073 
   3074       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3075       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3076                                    MachinePointerInfo(), false, false, 0);
   3077       MemOps.push_back(Store);
   3078       // Increment the address by four for the next argument to store
   3079       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
   3080       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   3081     }
   3082 
   3083     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
   3084     // is set.
   3085     // The double arguments are stored to the VarArgsFrameIndex
   3086     // on the stack.
   3087     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
   3088       // Get an existing live-in vreg, or add a new one.
   3089       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
   3090       if (!VReg)
   3091         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
   3092 
   3093       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
   3094       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3095                                    MachinePointerInfo(), false, false, 0);
   3096       MemOps.push_back(Store);
   3097       // Increment the address by eight for the next argument to store
   3098       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
   3099                                          PtrVT);
   3100       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   3101     }
   3102   }
   3103 
   3104   if (!MemOps.empty())
   3105     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3106 
   3107   return Chain;
   3108 }
   3109 
   3110 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   3111 // value to MVT::i64 and then truncate to the correct register size.
   3112 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
   3113                                              EVT ObjectVT, SelectionDAG &DAG,
   3114                                              SDValue ArgVal,
   3115                                              const SDLoc &dl) const {
   3116   if (Flags.isSExt())
   3117     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
   3118                          DAG.getValueType(ObjectVT));
   3119   else if (Flags.isZExt())
   3120     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
   3121                          DAG.getValueType(ObjectVT));
   3122 
   3123   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
   3124 }
   3125 
   3126 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
   3127     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   3128     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   3129     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   3130   // TODO: add description of PPC stack frame format, or at least some docs.
   3131   //
   3132   bool isELFv2ABI = Subtarget.isELFv2ABI();
   3133   bool isLittleEndian = Subtarget.isLittleEndian();
   3134   MachineFunction &MF = DAG.getMachineFunction();
   3135   MachineFrameInfo *MFI = MF.getFrameInfo();
   3136   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   3137 
   3138   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
   3139          "fastcc not supported on varargs functions");
   3140 
   3141   EVT PtrVT = getPointerTy(MF.getDataLayout());
   3142   // Potential tail calls could cause overwriting of argument stack slots.
   3143   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   3144                        (CallConv == CallingConv::Fast));
   3145   unsigned PtrByteSize = 8;
   3146   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   3147 
   3148   static const MCPhysReg GPR[] = {
   3149     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   3150     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   3151   };
   3152   static const MCPhysReg VR[] = {
   3153     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   3154     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   3155   };
   3156   static const MCPhysReg VSRH[] = {
   3157     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
   3158     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
   3159   };
   3160 
   3161   const unsigned Num_GPR_Regs = array_lengthof(GPR);
   3162   const unsigned Num_FPR_Regs = 13;
   3163   const unsigned Num_VR_Regs  = array_lengthof(VR);
   3164   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
   3165 
   3166   // Do a first pass over the arguments to determine whether the ABI
   3167   // guarantees that our caller has allocated the parameter save area
   3168   // on its stack frame.  In the ELFv1 ABI, this is always the case;
   3169   // in the ELFv2 ABI, it is true if this is a vararg function or if
   3170   // any parameter is located in a stack slot.
   3171 
   3172   bool HasParameterArea = !isELFv2ABI || isVarArg;
   3173   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
   3174   unsigned NumBytes = LinkageSize;
   3175   unsigned AvailableFPRs = Num_FPR_Regs;
   3176   unsigned AvailableVRs = Num_VR_Regs;
   3177   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   3178     if (Ins[i].Flags.isNest())
   3179       continue;
   3180 
   3181     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
   3182                                PtrByteSize, LinkageSize, ParamAreaSize,
   3183                                NumBytes, AvailableFPRs, AvailableVRs,
   3184                                Subtarget.hasQPX()))
   3185       HasParameterArea = true;
   3186   }
   3187 
   3188   // Add DAG nodes to load the arguments or copy them out of registers.  On
   3189   // entry to a function on PPC, the arguments start after the linkage area,
   3190   // although the first ones are often in registers.
   3191 
   3192   unsigned ArgOffset = LinkageSize;
   3193   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   3194   unsigned &QFPR_idx = FPR_idx;
   3195   SmallVector<SDValue, 8> MemOps;
   3196   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
   3197   unsigned CurArgIdx = 0;
   3198   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   3199     SDValue ArgVal;
   3200     bool needsLoad = false;
   3201     EVT ObjectVT = Ins[ArgNo].VT;
   3202     EVT OrigVT = Ins[ArgNo].ArgVT;
   3203     unsigned ObjSize = ObjectVT.getStoreSize();
   3204     unsigned ArgSize = ObjSize;
   3205     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   3206     if (Ins[ArgNo].isOrigArg()) {
   3207       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
   3208       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
   3209     }
   3210     // We re-align the argument offset for each argument, except when using the
   3211     // fast calling convention, when we need to make sure we do that only when
   3212     // we'll actually use a stack slot.
   3213     unsigned CurArgOffset, Align;
   3214     auto ComputeArgOffset = [&]() {
   3215       /* Respect alignment of argument on the stack.  */
   3216       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
   3217       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   3218       CurArgOffset = ArgOffset;
   3219     };
   3220 
   3221     if (CallConv != CallingConv::Fast) {
   3222       ComputeArgOffset();
   3223 
   3224       /* Compute GPR index associated with argument offset.  */
   3225       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   3226       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
   3227     }
   3228 
   3229     // FIXME the codegen can be much improved in some cases.
   3230     // We do not have to keep everything in memory.
   3231     if (Flags.isByVal()) {
   3232       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
   3233 
   3234       if (CallConv == CallingConv::Fast)
   3235         ComputeArgOffset();
   3236 
   3237       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   3238       ObjSize = Flags.getByValSize();
   3239       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3240       // Empty aggregate parameters do not take up registers.  Examples:
   3241       //   struct { } a;
   3242       //   union  { } b;
   3243       //   int c[0];
   3244       // etc.  However, we have to provide a place-holder in InVals, so
   3245       // pretend we have an 8-byte item at the current address for that
   3246       // purpose.
   3247       if (!ObjSize) {
   3248         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   3249         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3250         InVals.push_back(FIN);
   3251         continue;
   3252       }
   3253 
   3254       // Create a stack object covering all stack doublewords occupied
   3255       // by the argument.  If the argument is (fully or partially) on
   3256       // the stack, or if the argument is fully in registers but the
   3257       // caller has allocated the parameter save anyway, we can refer
   3258       // directly to the caller's stack frame.  Otherwise, create a
   3259       // local copy in our own frame.
   3260       int FI;
   3261       if (HasParameterArea ||
   3262           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
   3263         FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
   3264       else
   3265         FI = MFI->CreateStackObject(ArgSize, Align, false);
   3266       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3267 
   3268       // Handle aggregates smaller than 8 bytes.
   3269       if (ObjSize < PtrByteSize) {
   3270         // The value of the object is its address, which differs from the
   3271         // address of the enclosing doubleword on big-endian systems.
   3272         SDValue Arg = FIN;
   3273         if (!isLittleEndian) {
   3274           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
   3275           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
   3276         }
   3277         InVals.push_back(Arg);
   3278 
   3279         if (GPR_idx != Num_GPR_Regs) {
   3280           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
   3281           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3282           SDValue Store;
   3283 
   3284           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
   3285             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
   3286                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
   3287             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
   3288                                       MachinePointerInfo(&*FuncArg), ObjType,
   3289                                       false, false, 0);
   3290           } else {
   3291             // For sizes that don't fit a truncating store (3, 5, 6, 7),
   3292             // store the whole register as-is to the parameter save area
   3293             // slot.
   3294             Store =
   3295                 DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3296                              MachinePointerInfo(&*FuncArg), false, false, 0);
   3297           }
   3298 
   3299           MemOps.push_back(Store);
   3300         }
   3301         // Whether we copied from a register or not, advance the offset
   3302         // into the parameter save area by a full doubleword.
   3303         ArgOffset += PtrByteSize;
   3304         continue;
   3305       }
   3306 
   3307       // The value of the object is its address, which is the address of
   3308       // its first stack doubleword.
   3309       InVals.push_back(FIN);
   3310 
   3311       // Store whatever pieces of the object are in registers to memory.
   3312       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   3313         if (GPR_idx == Num_GPR_Regs)
   3314           break;
   3315 
   3316         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3317         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3318         SDValue Addr = FIN;
   3319         if (j) {
   3320           SDValue Off = DAG.getConstant(j, dl, PtrVT);
   3321           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
   3322         }
   3323         SDValue Store =
   3324             DAG.getStore(Val.getValue(1), dl, Val, Addr,
   3325                          MachinePointerInfo(&*FuncArg, j), false, false, 0);
   3326         MemOps.push_back(Store);
   3327         ++GPR_idx;
   3328       }
   3329       ArgOffset += ArgSize;
   3330       continue;
   3331     }
   3332 
   3333     switch (ObjectVT.getSimpleVT().SimpleTy) {
   3334     default: llvm_unreachable("Unhandled argument type!");
   3335     case MVT::i1:
   3336     case MVT::i32:
   3337     case MVT::i64:
   3338       if (Flags.isNest()) {
   3339         // The 'nest' parameter, if any, is passed in R11.
   3340         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
   3341         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3342 
   3343         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   3344           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   3345 
   3346         break;
   3347       }
   3348 
   3349       // These can be scalar arguments or elements of an integer array type
   3350       // passed directly.  Clang may use those instead of "byval" aggregate
   3351       // types to avoid forcing arguments to memory unnecessarily.
   3352       if (GPR_idx != Num_GPR_Regs) {
   3353         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
   3354         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3355 
   3356         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   3357           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   3358           // value to MVT::i64 and then truncate to the correct register size.
   3359           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   3360       } else {
   3361         if (CallConv == CallingConv::Fast)
   3362           ComputeArgOffset();
   3363 
   3364         needsLoad = true;
   3365         ArgSize = PtrByteSize;
   3366       }
   3367       if (CallConv != CallingConv::Fast || needsLoad)
   3368         ArgOffset += 8;
   3369       break;
   3370 
   3371     case MVT::f32:
   3372     case MVT::f64:
   3373       // These can be scalar arguments or elements of a float array type
   3374       // passed directly.  The latter are used to implement ELFv2 homogenous
   3375       // float aggregates.
   3376       if (FPR_idx != Num_FPR_Regs) {
   3377         unsigned VReg;
   3378 
   3379         if (ObjectVT == MVT::f32)
   3380           VReg = MF.addLiveIn(FPR[FPR_idx],
   3381                               Subtarget.hasP8Vector()
   3382                                   ? &PPC::VSSRCRegClass
   3383                                   : &PPC::F4RCRegClass);
   3384         else
   3385           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
   3386                                                 ? &PPC::VSFRCRegClass
   3387                                                 : &PPC::F8RCRegClass);
   3388 
   3389         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3390         ++FPR_idx;
   3391       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
   3392         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
   3393         // once we support fp <-> gpr moves.
   3394 
   3395         // This can only ever happen in the presence of f32 array types,
   3396         // since otherwise we never run out of FPRs before running out
   3397         // of GPRs.
   3398         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
   3399         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3400 
   3401         if (ObjectVT == MVT::f32) {
   3402           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
   3403             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
   3404                                  DAG.getConstant(32, dl, MVT::i32));
   3405           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
   3406         }
   3407 
   3408         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
   3409       } else {
   3410         if (CallConv == CallingConv::Fast)
   3411           ComputeArgOffset();
   3412 
   3413         needsLoad = true;
   3414       }
   3415 
   3416       // When passing an array of floats, the array occupies consecutive
   3417       // space in the argument area; only round up to the next doubleword
   3418       // at the end of the array.  Otherwise, each float takes 8 bytes.
   3419       if (CallConv != CallingConv::Fast || needsLoad) {
   3420         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
   3421         ArgOffset += ArgSize;
   3422         if (Flags.isInConsecutiveRegsLast())
   3423           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3424       }
   3425       break;
   3426     case MVT::v4f32:
   3427     case MVT::v4i32:
   3428     case MVT::v8i16:
   3429     case MVT::v16i8:
   3430     case MVT::v2f64:
   3431     case MVT::v2i64:
   3432     case MVT::v1i128:
   3433       if (!Subtarget.hasQPX()) {
   3434       // These can be scalar arguments or elements of a vector array type
   3435       // passed directly.  The latter are used to implement ELFv2 homogenous
   3436       // vector aggregates.
   3437       if (VR_idx != Num_VR_Regs) {
   3438         unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
   3439                         MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
   3440                         MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   3441         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3442         ++VR_idx;
   3443       } else {
   3444         if (CallConv == CallingConv::Fast)
   3445           ComputeArgOffset();
   3446 
   3447         needsLoad = true;
   3448       }
   3449       if (CallConv != CallingConv::Fast || needsLoad)
   3450         ArgOffset += 16;
   3451       break;
   3452       } // not QPX
   3453 
   3454       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
   3455              "Invalid QPX parameter type");
   3456       /* fall through */
   3457 
   3458     case MVT::v4f64:
   3459     case MVT::v4i1:
   3460       // QPX vectors are treated like their scalar floating-point subregisters
   3461       // (except that they're larger).
   3462       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
   3463       if (QFPR_idx != Num_QFPR_Regs) {
   3464         const TargetRegisterClass *RC;
   3465         switch (ObjectVT.getSimpleVT().SimpleTy) {
   3466         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
   3467         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
   3468         default:         RC = &PPC::QBRCRegClass; break;
   3469         }
   3470 
   3471         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
   3472         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3473         ++QFPR_idx;
   3474       } else {
   3475         if (CallConv == CallingConv::Fast)
   3476           ComputeArgOffset();
   3477         needsLoad = true;
   3478       }
   3479       if (CallConv != CallingConv::Fast || needsLoad)
   3480         ArgOffset += Sz;
   3481       break;
   3482     }
   3483 
   3484     // We need to load the argument to a virtual register if we determined
   3485     // above that we ran out of physical registers of the appropriate type.
   3486     if (needsLoad) {
   3487       if (ObjSize < ArgSize && !isLittleEndian)
   3488         CurArgOffset += ArgSize - ObjSize;
   3489       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
   3490       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3491       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   3492                            false, false, false, 0);
   3493     }
   3494 
   3495     InVals.push_back(ArgVal);
   3496   }
   3497 
   3498   // Area that is at least reserved in the caller of this function.
   3499   unsigned MinReservedArea;
   3500   if (HasParameterArea)
   3501     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
   3502   else
   3503     MinReservedArea = LinkageSize;
   3504 
   3505   // Set the size that is at least reserved in caller of this function.  Tail
   3506   // call optimized functions' reserved stack space needs to be aligned so that
   3507   // taking the difference between two stack areas will result in an aligned
   3508   // stack.
   3509   MinReservedArea =
   3510       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
   3511   FuncInfo->setMinReservedArea(MinReservedArea);
   3512 
   3513   // If the function takes variable number of arguments, make a frame index for
   3514   // the start of the first vararg value... for expansion of llvm.va_start.
   3515   if (isVarArg) {
   3516     int Depth = ArgOffset;
   3517 
   3518     FuncInfo->setVarArgsFrameIndex(
   3519       MFI->CreateFixedObject(PtrByteSize, Depth, true));
   3520     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   3521 
   3522     // If this function is vararg, store any remaining integer argument regs
   3523     // to their spots on the stack so that they may be loaded by dereferencing
   3524     // the result of va_next.
   3525     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   3526          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
   3527       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3528       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3529       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3530                                    MachinePointerInfo(), false, false, 0);
   3531       MemOps.push_back(Store);
   3532       // Increment the address by four for the next argument to store
   3533       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
   3534       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   3535     }
   3536   }
   3537 
   3538   if (!MemOps.empty())
   3539     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3540 
   3541   return Chain;
   3542 }
   3543 
   3544 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
   3545     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   3546     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   3547     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   3548   // TODO: add description of PPC stack frame format, or at least some docs.
   3549   //
   3550   MachineFunction &MF = DAG.getMachineFunction();
   3551   MachineFrameInfo *MFI = MF.getFrameInfo();
   3552   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   3553 
   3554   EVT PtrVT = getPointerTy(MF.getDataLayout());
   3555   bool isPPC64 = PtrVT == MVT::i64;
   3556   // Potential tail calls could cause overwriting of argument stack slots.
   3557   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   3558                        (CallConv == CallingConv::Fast));
   3559   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   3560   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   3561   unsigned ArgOffset = LinkageSize;
   3562   // Area that is at least reserved in caller of this function.
   3563   unsigned MinReservedArea = ArgOffset;
   3564 
   3565   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
   3566     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   3567     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   3568   };
   3569   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
   3570     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   3571     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   3572   };
   3573   static const MCPhysReg VR[] = {
   3574     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   3575     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   3576   };
   3577 
   3578   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
   3579   const unsigned Num_FPR_Regs = 13;
   3580   const unsigned Num_VR_Regs  = array_lengthof( VR);
   3581 
   3582   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   3583 
   3584   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
   3585 
   3586   // In 32-bit non-varargs functions, the stack space for vectors is after the
   3587   // stack space for non-vectors.  We do not use this space unless we have
   3588   // too many vectors to fit in registers, something that only occurs in
   3589   // constructed examples:), but we have to walk the arglist to figure
   3590   // that out...for the pathological case, compute VecArgOffset as the
   3591   // start of the vector parameter area.  Computing VecArgOffset is the
   3592   // entire point of the following loop.
   3593   unsigned VecArgOffset = ArgOffset;
   3594   if (!isVarArg && !isPPC64) {
   3595     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
   3596          ++ArgNo) {
   3597       EVT ObjectVT = Ins[ArgNo].VT;
   3598       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   3599 
   3600       if (Flags.isByVal()) {
   3601         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
   3602         unsigned ObjSize = Flags.getByValSize();
   3603         unsigned ArgSize =
   3604                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3605         VecArgOffset += ArgSize;
   3606         continue;
   3607       }
   3608 
   3609       switch(ObjectVT.getSimpleVT().SimpleTy) {
   3610       default: llvm_unreachable("Unhandled argument type!");
   3611       case MVT::i1:
   3612       case MVT::i32:
   3613       case MVT::f32:
   3614         VecArgOffset += 4;
   3615         break;
   3616       case MVT::i64:  // PPC64
   3617       case MVT::f64:
   3618         // FIXME: We are guaranteed to be !isPPC64 at this point.
   3619         // Does MVT::i64 apply?
   3620         VecArgOffset += 8;
   3621         break;
   3622       case MVT::v4f32:
   3623       case MVT::v4i32:
   3624       case MVT::v8i16:
   3625       case MVT::v16i8:
   3626         // Nothing to do, we're only looking at Nonvector args here.
   3627         break;
   3628       }
   3629     }
   3630   }
   3631   // We've found where the vector parameter area in memory is.  Skip the
   3632   // first 12 parameters; these don't use that memory.
   3633   VecArgOffset = ((VecArgOffset+15)/16)*16;
   3634   VecArgOffset += 12*16;
   3635 
   3636   // Add DAG nodes to load the arguments or copy them out of registers.  On
   3637   // entry to a function on PPC, the arguments start after the linkage area,
   3638   // although the first ones are often in registers.
   3639 
   3640   SmallVector<SDValue, 8> MemOps;
   3641   unsigned nAltivecParamsAtEnd = 0;
   3642   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
   3643   unsigned CurArgIdx = 0;
   3644   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   3645     SDValue ArgVal;
   3646     bool needsLoad = false;
   3647     EVT ObjectVT = Ins[ArgNo].VT;
   3648     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
   3649     unsigned ArgSize = ObjSize;
   3650     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   3651     if (Ins[ArgNo].isOrigArg()) {
   3652       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
   3653       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
   3654     }
   3655     unsigned CurArgOffset = ArgOffset;
   3656 
   3657     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
   3658     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
   3659         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
   3660       if (isVarArg || isPPC64) {
   3661         MinReservedArea = ((MinReservedArea+15)/16)*16;
   3662         MinReservedArea += CalculateStackSlotSize(ObjectVT,
   3663                                                   Flags,
   3664                                                   PtrByteSize);
   3665       } else  nAltivecParamsAtEnd++;
   3666     } else
   3667       // Calculate min reserved area.
   3668       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
   3669                                                 Flags,
   3670                                                 PtrByteSize);
   3671 
   3672     // FIXME the codegen can be much improved in some cases.
   3673     // We do not have to keep everything in memory.
   3674     if (Flags.isByVal()) {
   3675       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
   3676 
   3677       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   3678       ObjSize = Flags.getByValSize();
   3679       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3680       // Objects of size 1 and 2 are right justified, everything else is
   3681       // left justified.  This means the memory address is adjusted forwards.
   3682       if (ObjSize==1 || ObjSize==2) {
   3683         CurArgOffset = CurArgOffset + (4 - ObjSize);
   3684       }
   3685       // The value of the object is its address.
   3686       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
   3687       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3688       InVals.push_back(FIN);
   3689       if (ObjSize==1 || ObjSize==2) {
   3690         if (GPR_idx != Num_GPR_Regs) {
   3691           unsigned VReg;
   3692           if (isPPC64)
   3693             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3694           else
   3695             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3696           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3697           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
   3698           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
   3699                                             MachinePointerInfo(&*FuncArg),
   3700                                             ObjType, false, false, 0);
   3701           MemOps.push_back(Store);
   3702           ++GPR_idx;
   3703         }
   3704 
   3705         ArgOffset += PtrByteSize;
   3706 
   3707         continue;
   3708       }
   3709       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   3710         // Store whatever pieces of the object are in registers
   3711         // to memory.  ArgOffset will be the address of the beginning
   3712         // of the object.
   3713         if (GPR_idx != Num_GPR_Regs) {
   3714           unsigned VReg;
   3715           if (isPPC64)
   3716             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3717           else
   3718             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3719           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   3720           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3721           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3722           SDValue Store =
   3723               DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3724                            MachinePointerInfo(&*FuncArg, j), false, false, 0);
   3725           MemOps.push_back(Store);
   3726           ++GPR_idx;
   3727           ArgOffset += PtrByteSize;
   3728         } else {
   3729           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
   3730           break;
   3731         }
   3732       }
   3733       continue;
   3734     }
   3735 
   3736     switch (ObjectVT.getSimpleVT().SimpleTy) {
   3737     default: llvm_unreachable("Unhandled argument type!");
   3738     case MVT::i1:
   3739     case MVT::i32:
   3740       if (!isPPC64) {
   3741         if (GPR_idx != Num_GPR_Regs) {
   3742           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3743           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   3744 
   3745           if (ObjectVT == MVT::i1)
   3746             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
   3747 
   3748           ++GPR_idx;
   3749         } else {
   3750           needsLoad = true;
   3751           ArgSize = PtrByteSize;
   3752         }
   3753         // All int arguments reserve stack space in the Darwin ABI.
   3754         ArgOffset += PtrByteSize;
   3755         break;
   3756       }
   3757       // FALLTHROUGH
   3758     case MVT::i64:  // PPC64
   3759       if (GPR_idx != Num_GPR_Regs) {
   3760         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3761         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3762 
   3763         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   3764           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   3765           // value to MVT::i64 and then truncate to the correct register size.
   3766           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   3767 
   3768         ++GPR_idx;
   3769       } else {
   3770         needsLoad = true;
   3771         ArgSize = PtrByteSize;
   3772       }
   3773       // All int arguments reserve stack space in the Darwin ABI.
   3774       ArgOffset += 8;
   3775       break;
   3776 
   3777     case MVT::f32:
   3778     case MVT::f64:
   3779       // Every 4 bytes of argument space consumes one of the GPRs available for
   3780       // argument passing.
   3781       if (GPR_idx != Num_GPR_Regs) {
   3782         ++GPR_idx;
   3783         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
   3784           ++GPR_idx;
   3785       }
   3786       if (FPR_idx != Num_FPR_Regs) {
   3787         unsigned VReg;
   3788 
   3789         if (ObjectVT == MVT::f32)
   3790           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
   3791         else
   3792           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
   3793 
   3794         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3795         ++FPR_idx;
   3796       } else {
   3797         needsLoad = true;
   3798       }
   3799 
   3800       // All FP arguments reserve stack space in the Darwin ABI.
   3801       ArgOffset += isPPC64 ? 8 : ObjSize;
   3802       break;
   3803     case MVT::v4f32:
   3804     case MVT::v4i32:
   3805     case MVT::v8i16:
   3806     case MVT::v16i8:
   3807       // Note that vector arguments in registers don't reserve stack space,
   3808       // except in varargs functions.
   3809       if (VR_idx != Num_VR_Regs) {
   3810         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   3811         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3812         if (isVarArg) {
   3813           while ((ArgOffset % 16) != 0) {
   3814             ArgOffset += PtrByteSize;
   3815             if (GPR_idx != Num_GPR_Regs)
   3816               GPR_idx++;
   3817           }
   3818           ArgOffset += 16;
   3819           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
   3820         }
   3821         ++VR_idx;
   3822       } else {
   3823         if (!isVarArg && !isPPC64) {
   3824           // Vectors go after all the nonvectors.
   3825           CurArgOffset = VecArgOffset;
   3826           VecArgOffset += 16;
   3827         } else {
   3828           // Vectors are aligned.
   3829           ArgOffset = ((ArgOffset+15)/16)*16;
   3830           CurArgOffset = ArgOffset;
   3831           ArgOffset += 16;
   3832         }
   3833         needsLoad = true;
   3834       }
   3835       break;
   3836     }
   3837 
   3838     // We need to load the argument to a virtual register if we determined above
   3839     // that we ran out of physical registers of the appropriate type.
   3840     if (needsLoad) {
   3841       int FI = MFI->CreateFixedObject(ObjSize,
   3842                                       CurArgOffset + (ArgSize - ObjSize),
   3843                                       isImmutable);
   3844       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3845       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   3846                            false, false, false, 0);
   3847     }
   3848 
   3849     InVals.push_back(ArgVal);
   3850   }
   3851 
   3852   // Allow for Altivec parameters at the end, if needed.
   3853   if (nAltivecParamsAtEnd) {
   3854     MinReservedArea = ((MinReservedArea+15)/16)*16;
   3855     MinReservedArea += 16*nAltivecParamsAtEnd;
   3856   }
   3857 
   3858   // Area that is at least reserved in the caller of this function.
   3859   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
   3860 
   3861   // Set the size that is at least reserved in caller of this function.  Tail
   3862   // call optimized functions' reserved stack space needs to be aligned so that
   3863   // taking the difference between two stack areas will result in an aligned
   3864   // stack.
   3865   MinReservedArea =
   3866       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
   3867   FuncInfo->setMinReservedArea(MinReservedArea);
   3868 
   3869   // If the function takes variable number of arguments, make a frame index for
   3870   // the start of the first vararg value... for expansion of llvm.va_start.
   3871   if (isVarArg) {
   3872     int Depth = ArgOffset;
   3873 
   3874     FuncInfo->setVarArgsFrameIndex(
   3875       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   3876                              Depth, true));
   3877     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   3878 
   3879     // If this function is vararg, store any remaining integer argument regs
   3880     // to their spots on the stack so that they may be loaded by dereferencing
   3881     // the result of va_next.
   3882     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
   3883       unsigned VReg;
   3884 
   3885       if (isPPC64)
   3886         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3887       else
   3888         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3889 
   3890       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3891       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3892                                    MachinePointerInfo(), false, false, 0);
   3893       MemOps.push_back(Store);
   3894       // Increment the address by four for the next argument to store
   3895       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
   3896       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   3897     }
   3898   }
   3899 
   3900   if (!MemOps.empty())
   3901     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3902 
   3903   return Chain;
   3904 }
   3905 
   3906 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
   3907 /// adjusted to accommodate the arguments for the tailcall.
   3908 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
   3909                                    unsigned ParamSize) {
   3910 
   3911   if (!isTailCall) return 0;
   3912 
   3913   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
   3914   unsigned CallerMinReservedArea = FI->getMinReservedArea();
   3915   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
   3916   // Remember only if the new adjustement is bigger.
   3917   if (SPDiff < FI->getTailCallSPDelta())
   3918     FI->setTailCallSPDelta(SPDiff);
   3919 
   3920   return SPDiff;
   3921 }
   3922 
   3923 static bool isFunctionGlobalAddress(SDValue Callee);
   3924 
   3925 static bool
   3926 resideInSameModule(SDValue Callee, Reloc::Model RelMod) {
   3927   // If !G, Callee can be an external symbol.
   3928   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
   3929   if (!G) return false;
   3930 
   3931   const GlobalValue *GV = G->getGlobal();
   3932 
   3933   if (GV->isDeclaration()) return false;
   3934 
   3935   switch(GV->getLinkage()) {
   3936   default: llvm_unreachable("unknow linkage type");
   3937   case GlobalValue::AvailableExternallyLinkage:
   3938   case GlobalValue::ExternalWeakLinkage:
   3939     return false;
   3940 
   3941   // Callee with weak linkage is allowed if it has hidden or protected
   3942   // visibility
   3943   case GlobalValue::LinkOnceAnyLinkage:
   3944   case GlobalValue::LinkOnceODRLinkage: // e.g. c++ inline functions
   3945   case GlobalValue::WeakAnyLinkage:
   3946   case GlobalValue::WeakODRLinkage:     // e.g. c++ template instantiation
   3947     if (GV->hasDefaultVisibility())
   3948       return false;
   3949 
   3950   case GlobalValue::ExternalLinkage:
   3951   case GlobalValue::InternalLinkage:
   3952   case GlobalValue::PrivateLinkage:
   3953     break;
   3954   }
   3955 
   3956   // With '-fPIC', calling default visiblity function need insert 'nop' after
   3957   // function call, no matter that function resides in same module or not, so
   3958   // we treat it as in different module.
   3959   if (RelMod == Reloc::PIC_ && GV->hasDefaultVisibility())
   3960     return false;
   3961 
   3962   return true;
   3963 }
   3964 
   3965 static bool
   3966 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
   3967                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
   3968   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
   3969 
   3970   const unsigned PtrByteSize = 8;
   3971   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   3972 
   3973   static const MCPhysReg GPR[] = {
   3974     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   3975     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   3976   };
   3977   static const MCPhysReg VR[] = {
   3978     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   3979     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   3980   };
   3981 
   3982   const unsigned NumGPRs = array_lengthof(GPR);
   3983   const unsigned NumFPRs = 13;
   3984   const unsigned NumVRs = array_lengthof(VR);
   3985   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
   3986 
   3987   unsigned NumBytes = LinkageSize;
   3988   unsigned AvailableFPRs = NumFPRs;
   3989   unsigned AvailableVRs = NumVRs;
   3990 
   3991   for (const ISD::OutputArg& Param : Outs) {
   3992     if (Param.Flags.isNest()) continue;
   3993 
   3994     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
   3995                                PtrByteSize, LinkageSize, ParamAreaSize,
   3996                                NumBytes, AvailableFPRs, AvailableVRs,
   3997                                Subtarget.hasQPX()))
   3998       return true;
   3999   }
   4000   return false;
   4001 }
   4002 
   4003 static bool
   4004 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite *CS) {
   4005   if (CS->arg_size() != CallerFn->getArgumentList().size())
   4006     return false;
   4007 
   4008   ImmutableCallSite::arg_iterator CalleeArgIter = CS->arg_begin();
   4009   ImmutableCallSite::arg_iterator CalleeArgEnd = CS->arg_end();
   4010   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
   4011 
   4012   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
   4013     const Value* CalleeArg = *CalleeArgIter;
   4014     const Value* CallerArg = &(*CallerArgIter);
   4015     if (CalleeArg == CallerArg)
   4016       continue;
   4017 
   4018     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
   4019     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
   4020     //      }
   4021     // 1st argument of callee is undef and has the same type as caller.
   4022     if (CalleeArg->getType() == CallerArg->getType() &&
   4023         isa<UndefValue>(CalleeArg))
   4024       continue;
   4025 
   4026     return false;
   4027   }
   4028 
   4029   return true;
   4030 }
   4031 
   4032 bool
   4033 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
   4034                                     SDValue Callee,
   4035                                     CallingConv::ID CalleeCC,
   4036                                     ImmutableCallSite *CS,
   4037                                     bool isVarArg,
   4038                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   4039                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   4040                                     SelectionDAG& DAG) const {
   4041   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
   4042 
   4043   if (DisableSCO && !TailCallOpt) return false;
   4044 
   4045   // Variadic argument functions are not supported.
   4046   if (isVarArg) return false;
   4047 
   4048   MachineFunction &MF = DAG.getMachineFunction();
   4049   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
   4050 
   4051   // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has
   4052   // the same calling convention
   4053   if (CallerCC != CalleeCC) return false;
   4054 
   4055   // SCO support C calling convention
   4056   if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C)
   4057     return false;
   4058 
   4059   // Functions containing by val parameters are not supported.
   4060   if (std::any_of(Ins.begin(), Ins.end(),
   4061                   [](const ISD::InputArg& IA) { return IA.Flags.isByVal(); }))
   4062     return false;
   4063 
   4064   // No TCO/SCO on indirect call because Caller have to restore its TOC
   4065   if (!isFunctionGlobalAddress(Callee) &&
   4066       !isa<ExternalSymbolSDNode>(Callee))
   4067     return false;
   4068 
   4069   // Check if Callee resides in the same module, because for now, PPC64 SVR4 ABI
   4070   // (ELFv1/ELFv2) doesn't allow tail calls to a symbol resides in another
   4071   // module.
   4072   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
   4073   if (!resideInSameModule(Callee, getTargetMachine().getRelocationModel()))
   4074     return false;
   4075 
   4076   // TCO allows altering callee ABI, so we don't have to check further.
   4077   if (CalleeCC == CallingConv::Fast && TailCallOpt)
   4078     return true;
   4079 
   4080   if (DisableSCO) return false;
   4081 
   4082   // If callee use the same argument list that caller is using, then we can
   4083   // apply SCO on this case. If it is not, then we need to check if callee needs
   4084   // stack for passing arguments.
   4085   if (!hasSameArgumentList(MF.getFunction(), CS) &&
   4086       needStackSlotPassParameters(Subtarget, Outs)) {
   4087     return false;
   4088   }
   4089 
   4090   return true;
   4091 }
   4092 
   4093 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   4094 /// for tail call optimization. Targets which want to do tail call
   4095 /// optimization should implement this function.
   4096 bool
   4097 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   4098                                                      CallingConv::ID CalleeCC,
   4099                                                      bool isVarArg,
   4100                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   4101                                                      SelectionDAG& DAG) const {
   4102   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
   4103     return false;
   4104 
   4105   // Variable argument functions are not supported.
   4106   if (isVarArg)
   4107     return false;
   4108 
   4109   MachineFunction &MF = DAG.getMachineFunction();
   4110   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
   4111   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
   4112     // Functions containing by val parameters are not supported.
   4113     for (unsigned i = 0; i != Ins.size(); i++) {
   4114        ISD::ArgFlagsTy Flags = Ins[i].Flags;
   4115        if (Flags.isByVal()) return false;
   4116     }
   4117 
   4118     // Non-PIC/GOT tail calls are supported.
   4119     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
   4120       return true;
   4121 
   4122     // At the moment we can only do local tail calls (in same module, hidden
   4123     // or protected) if we are generating PIC.
   4124     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   4125       return G->getGlobal()->hasHiddenVisibility()
   4126           || G->getGlobal()->hasProtectedVisibility();
   4127   }
   4128 
   4129   return false;
   4130 }
   4131 
   4132 /// isCallCompatibleAddress - Return the immediate to use if the specified
   4133 /// 32-bit value is representable in the immediate field of a BxA instruction.
   4134 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
   4135   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   4136   if (!C) return nullptr;
   4137 
   4138   int Addr = C->getZExtValue();
   4139   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
   4140       SignExtend32<26>(Addr) != Addr)
   4141     return nullptr;  // Top 6 bits have to be sext of immediate.
   4142 
   4143   return DAG
   4144       .getConstant(
   4145           (int)C->getZExtValue() >> 2, SDLoc(Op),
   4146           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
   4147       .getNode();
   4148 }
   4149 
   4150 namespace {
   4151 
   4152 struct TailCallArgumentInfo {
   4153   SDValue Arg;
   4154   SDValue FrameIdxOp;
   4155   int       FrameIdx;
   4156 
   4157   TailCallArgumentInfo() : FrameIdx(0) {}
   4158 };
   4159 }
   4160 
   4161 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
   4162 static void StoreTailCallArgumentsToStackSlot(
   4163     SelectionDAG &DAG, SDValue Chain,
   4164     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
   4165     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
   4166   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
   4167     SDValue Arg = TailCallArgs[i].Arg;
   4168     SDValue FIN = TailCallArgs[i].FrameIdxOp;
   4169     int FI = TailCallArgs[i].FrameIdx;
   4170     // Store relative to framepointer.
   4171     MemOpChains.push_back(DAG.getStore(
   4172         Chain, dl, Arg, FIN,
   4173         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
   4174         false, 0));
   4175   }
   4176 }
   4177 
   4178 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
   4179 /// the appropriate stack slot for the tail call optimized function call.
   4180 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
   4181                                              SDValue OldRetAddr, SDValue OldFP,
   4182                                              int SPDiff, const SDLoc &dl) {
   4183   if (SPDiff) {
   4184     // Calculate the new stack slot for the return address.
   4185     MachineFunction &MF = DAG.getMachineFunction();
   4186     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
   4187     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
   4188     bool isPPC64 = Subtarget.isPPC64();
   4189     int SlotSize = isPPC64 ? 8 : 4;
   4190     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
   4191     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
   4192                                                           NewRetAddrLoc, true);
   4193     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   4194     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
   4195     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
   4196                          MachinePointerInfo::getFixedStack(MF, NewRetAddr),
   4197                          false, false, 0);
   4198 
   4199     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
   4200     // slot as the FP is never overwritten.
   4201     if (Subtarget.isDarwinABI()) {
   4202       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
   4203       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
   4204                                                           true);
   4205       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
   4206       Chain = DAG.getStore(
   4207           Chain, dl, OldFP, NewFramePtrIdx,
   4208           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx),
   4209           false, false, 0);
   4210     }
   4211   }
   4212   return Chain;
   4213 }
   4214 
   4215 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
   4216 /// the position of the argument.
   4217 static void
   4218 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
   4219                          SDValue Arg, int SPDiff, unsigned ArgOffset,
   4220                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
   4221   int Offset = ArgOffset + SPDiff;
   4222   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
   4223   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
   4224   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   4225   SDValue FIN = DAG.getFrameIndex(FI, VT);
   4226   TailCallArgumentInfo Info;
   4227   Info.Arg = Arg;
   4228   Info.FrameIdxOp = FIN;
   4229   Info.FrameIdx = FI;
   4230   TailCallArguments.push_back(Info);
   4231 }
   4232 
   4233 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
   4234 /// stack slot. Returns the chain as result and the loaded frame pointers in
   4235 /// LROpOut/FPOpout. Used when tail calling.
   4236 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
   4237     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
   4238     SDValue &FPOpOut, const SDLoc &dl) const {
   4239   if (SPDiff) {
   4240     // Load the LR and FP stack slot for later adjusting.
   4241     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
   4242     LROpOut = getReturnAddrFrameIndex(DAG);
   4243     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
   4244                           false, false, false, 0);
   4245     Chain = SDValue(LROpOut.getNode(), 1);
   4246 
   4247     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
   4248     // slot as the FP is never overwritten.
   4249     if (Subtarget.isDarwinABI()) {
   4250       FPOpOut = getFramePointerFrameIndex(DAG);
   4251       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
   4252                             false, false, false, 0);
   4253       Chain = SDValue(FPOpOut.getNode(), 1);
   4254     }
   4255   }
   4256   return Chain;
   4257 }
   4258 
   4259 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
   4260 /// by "Src" to address "Dst" of size "Size".  Alignment information is
   4261 /// specified by the specific parameter attribute. The copy will be passed as
   4262 /// a byval function parameter.
   4263 /// Sometimes what we are copying is the end of a larger object, the part that
   4264 /// does not fit in registers.
   4265 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
   4266                                          SDValue Chain, ISD::ArgFlagsTy Flags,
   4267                                          SelectionDAG &DAG, const SDLoc &dl) {
   4268   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
   4269   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
   4270                        false, false, false, MachinePointerInfo(),
   4271                        MachinePointerInfo());
   4272 }
   4273 
   4274 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
   4275 /// tail calls.
   4276 static void LowerMemOpCallTo(
   4277     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
   4278     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
   4279     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
   4280     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
   4281   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   4282   if (!isTailCall) {
   4283     if (isVector) {
   4284       SDValue StackPtr;
   4285       if (isPPC64)
   4286         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   4287       else
   4288         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   4289       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   4290                            DAG.getConstant(ArgOffset, dl, PtrVT));
   4291     }
   4292     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   4293                                        MachinePointerInfo(), false, false, 0));
   4294   // Calculate and remember argument location.
   4295   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
   4296                                   TailCallArguments);
   4297 }
   4298 
   4299 static void
   4300 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
   4301                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
   4302                 SDValue FPOp,
   4303                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
   4304   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
   4305   // might overwrite each other in case of tail call optimization.
   4306   SmallVector<SDValue, 8> MemOpChains2;
   4307   // Do not flag preceding copytoreg stuff together with the following stuff.
   4308   InFlag = SDValue();
   4309   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
   4310                                     MemOpChains2, dl);
   4311   if (!MemOpChains2.empty())
   4312     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
   4313 
   4314   // Store the return address to the appropriate stack slot.
   4315   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
   4316 
   4317   // Emit callseq_end just before tailcall node.
   4318   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   4319                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
   4320   InFlag = Chain.getValue(1);
   4321 }
   4322 
   4323 // Is this global address that of a function that can be called by name? (as
   4324 // opposed to something that must hold a descriptor for an indirect call).
   4325 static bool isFunctionGlobalAddress(SDValue Callee) {
   4326   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   4327     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
   4328         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
   4329       return false;
   4330 
   4331     return G->getGlobal()->getValueType()->isFunctionTy();
   4332   }
   4333 
   4334   return false;
   4335 }
   4336 
   4337 static unsigned
   4338 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
   4339             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
   4340             bool isPatchPoint, bool hasNest,
   4341             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
   4342             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
   4343             ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
   4344 
   4345   bool isPPC64 = Subtarget.isPPC64();
   4346   bool isSVR4ABI = Subtarget.isSVR4ABI();
   4347   bool isELFv2ABI = Subtarget.isELFv2ABI();
   4348 
   4349   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   4350   NodeTys.push_back(MVT::Other);   // Returns a chain
   4351   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
   4352 
   4353   unsigned CallOpc = PPCISD::CALL;
   4354 
   4355   bool needIndirectCall = true;
   4356   if (!isSVR4ABI || !isPPC64)
   4357     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
   4358       // If this is an absolute destination address, use the munged value.
   4359       Callee = SDValue(Dest, 0);
   4360       needIndirectCall = false;
   4361     }
   4362 
   4363   // PC-relative references to external symbols should go through $stub, unless
   4364   // we're building with the leopard linker or later, which automatically
   4365   // synthesizes these stubs.
   4366   const TargetMachine &TM = DAG.getTarget();
   4367   const Module *Mod = DAG.getMachineFunction().getFunction()->getParent();
   4368   const GlobalValue *GV = nullptr;
   4369   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
   4370     GV = G->getGlobal();
   4371   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
   4372   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
   4373 
   4374   if (isFunctionGlobalAddress(Callee)) {
   4375     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
   4376     // A call to a TLS address is actually an indirect call to a
   4377     // thread-specific pointer.
   4378     unsigned OpFlags = 0;
   4379     if (UsePlt)
   4380       OpFlags = PPCII::MO_PLT;
   4381 
   4382     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
   4383     // every direct call is) turn it into a TargetGlobalAddress /
   4384     // TargetExternalSymbol node so that legalize doesn't hack it.
   4385     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
   4386                                         Callee.getValueType(), 0, OpFlags);
   4387     needIndirectCall = false;
   4388   }
   4389 
   4390   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   4391     unsigned char OpFlags = 0;
   4392 
   4393     if (UsePlt)
   4394       OpFlags = PPCII::MO_PLT;
   4395 
   4396     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
   4397                                          OpFlags);
   4398     needIndirectCall = false;
   4399   }
   4400 
   4401   if (isPatchPoint) {
   4402     // We'll form an invalid direct call when lowering a patchpoint; the full
   4403     // sequence for an indirect call is complicated, and many of the
   4404     // instructions introduced might have side effects (and, thus, can't be
   4405     // removed later). The call itself will be removed as soon as the
   4406     // argument/return lowering is complete, so the fact that it has the wrong
   4407     // kind of operands should not really matter.
   4408     needIndirectCall = false;
   4409   }
   4410 
   4411   if (needIndirectCall) {
   4412     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
   4413     // to do the call, we can't use PPCISD::CALL.
   4414     SDValue MTCTROps[] = {Chain, Callee, InFlag};
   4415 
   4416     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
   4417       // Function pointers in the 64-bit SVR4 ABI do not point to the function
   4418       // entry point, but to the function descriptor (the function entry point
   4419       // address is part of the function descriptor though).
   4420       // The function descriptor is a three doubleword structure with the
   4421       // following fields: function entry point, TOC base address and
   4422       // environment pointer.
   4423       // Thus for a call through a function pointer, the following actions need
   4424       // to be performed:
   4425       //   1. Save the TOC of the caller in the TOC save area of its stack
   4426       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
   4427       //   2. Load the address of the function entry point from the function
   4428       //      descriptor.
   4429       //   3. Load the TOC of the callee from the function descriptor into r2.
   4430       //   4. Load the environment pointer from the function descriptor into
   4431       //      r11.
   4432       //   5. Branch to the function entry point address.
   4433       //   6. On return of the callee, the TOC of the caller needs to be
   4434       //      restored (this is done in FinishCall()).
   4435       //
   4436       // The loads are scheduled at the beginning of the call sequence, and the
   4437       // register copies are flagged together to ensure that no other
   4438       // operations can be scheduled in between. E.g. without flagging the
   4439       // copies together, a TOC access in the caller could be scheduled between
   4440       // the assignment of the callee TOC and the branch to the callee, which
   4441       // results in the TOC access going through the TOC of the callee instead
   4442       // of going through the TOC of the caller, which leads to incorrect code.
   4443 
   4444       // Load the address of the function entry point from the function
   4445       // descriptor.
   4446       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
   4447       if (LDChain.getValueType() == MVT::Glue)
   4448         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
   4449 
   4450       bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors();
   4451 
   4452       MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
   4453       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
   4454                                         false, false, LoadsInv, 8);
   4455 
   4456       // Load environment pointer into r11.
   4457       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
   4458       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
   4459       SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr,
   4460                                        MPI.getWithOffset(16), false, false,
   4461                                        LoadsInv, 8);
   4462 
   4463       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
   4464       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
   4465       SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC,
   4466                                    MPI.getWithOffset(8), false, false,
   4467                                    LoadsInv, 8);
   4468 
   4469       setUsesTOCBasePtr(DAG);
   4470       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
   4471                                         InFlag);
   4472       Chain = TOCVal.getValue(0);
   4473       InFlag = TOCVal.getValue(1);
   4474 
   4475       // If the function call has an explicit 'nest' parameter, it takes the
   4476       // place of the environment pointer.
   4477       if (!hasNest) {
   4478         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
   4479                                           InFlag);
   4480 
   4481         Chain = EnvVal.getValue(0);
   4482         InFlag = EnvVal.getValue(1);
   4483       }
   4484 
   4485       MTCTROps[0] = Chain;
   4486       MTCTROps[1] = LoadFuncPtr;
   4487       MTCTROps[2] = InFlag;
   4488     }
   4489 
   4490     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
   4491                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
   4492     InFlag = Chain.getValue(1);
   4493 
   4494     NodeTys.clear();
   4495     NodeTys.push_back(MVT::Other);
   4496     NodeTys.push_back(MVT::Glue);
   4497     Ops.push_back(Chain);
   4498     CallOpc = PPCISD::BCTRL;
   4499     Callee.setNode(nullptr);
   4500     // Add use of X11 (holding environment pointer)
   4501     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
   4502       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
   4503     // Add CTR register as callee so a bctr can be emitted later.
   4504     if (isTailCall)
   4505       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
   4506   }
   4507 
   4508   // If this is a direct call, pass the chain and the callee.
   4509   if (Callee.getNode()) {
   4510     Ops.push_back(Chain);
   4511     Ops.push_back(Callee);
   4512   }
   4513   // If this is a tail call add stack pointer delta.
   4514   if (isTailCall)
   4515     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
   4516 
   4517   // Add argument registers to the end of the list so that they are known live
   4518   // into the call.
   4519   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   4520     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   4521                                   RegsToPass[i].second.getValueType()));
   4522 
   4523   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
   4524   // into the call.
   4525   if (isSVR4ABI && isPPC64 && !isPatchPoint) {
   4526     setUsesTOCBasePtr(DAG);
   4527     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
   4528   }
   4529 
   4530   return CallOpc;
   4531 }
   4532 
   4533 static
   4534 bool isLocalCall(const SDValue &Callee)
   4535 {
   4536   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   4537     return G->getGlobal()->isStrongDefinitionForLinker();
   4538   return false;
   4539 }
   4540 
   4541 SDValue PPCTargetLowering::LowerCallResult(
   4542     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
   4543     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   4544     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   4545 
   4546   SmallVector<CCValAssign, 16> RVLocs;
   4547   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   4548                     *DAG.getContext());
   4549   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
   4550 
   4551   // Copy all of the result registers out of their specified physreg.
   4552   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   4553     CCValAssign &VA = RVLocs[i];
   4554     assert(VA.isRegLoc() && "Can only return in registers!");
   4555 
   4556     SDValue Val = DAG.getCopyFromReg(Chain, dl,
   4557                                      VA.getLocReg(), VA.getLocVT(), InFlag);
   4558     Chain = Val.getValue(1);
   4559     InFlag = Val.getValue(2);
   4560 
   4561     switch (VA.getLocInfo()) {
   4562     default: llvm_unreachable("Unknown loc info!");
   4563     case CCValAssign::Full: break;
   4564     case CCValAssign::AExt:
   4565       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   4566       break;
   4567     case CCValAssign::ZExt:
   4568       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
   4569                         DAG.getValueType(VA.getValVT()));
   4570       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   4571       break;
   4572     case CCValAssign::SExt:
   4573       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
   4574                         DAG.getValueType(VA.getValVT()));
   4575       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   4576       break;
   4577     }
   4578 
   4579     InVals.push_back(Val);
   4580   }
   4581 
   4582   return Chain;
   4583 }
   4584 
   4585 SDValue PPCTargetLowering::FinishCall(
   4586     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
   4587     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
   4588     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
   4589     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
   4590     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
   4591     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite *CS) const {
   4592 
   4593   std::vector<EVT> NodeTys;
   4594   SmallVector<SDValue, 8> Ops;
   4595   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
   4596                                  SPDiff, isTailCall, isPatchPoint, hasNest,
   4597                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
   4598 
   4599   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
   4600   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
   4601     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
   4602 
   4603   // When performing tail call optimization the callee pops its arguments off
   4604   // the stack. Account for this here so these bytes can be pushed back on in
   4605   // PPCFrameLowering::eliminateCallFramePseudoInstr.
   4606   int BytesCalleePops =
   4607     (CallConv == CallingConv::Fast &&
   4608      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
   4609 
   4610   // Add a register mask operand representing the call-preserved registers.
   4611   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
   4612   const uint32_t *Mask =
   4613       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
   4614   assert(Mask && "Missing call preserved mask for calling convention");
   4615   Ops.push_back(DAG.getRegisterMask(Mask));
   4616 
   4617   if (InFlag.getNode())
   4618     Ops.push_back(InFlag);
   4619 
   4620   // Emit tail call.
   4621   if (isTailCall) {
   4622     assert(((Callee.getOpcode() == ISD::Register &&
   4623              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
   4624             Callee.getOpcode() == ISD::TargetExternalSymbol ||
   4625             Callee.getOpcode() == ISD::TargetGlobalAddress ||
   4626             isa<ConstantSDNode>(Callee)) &&
   4627     "Expecting an global address, external symbol, absolute value or register");
   4628 
   4629     DAG.getMachineFunction().getFrameInfo()->setHasTailCall();
   4630     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
   4631   }
   4632 
   4633   // Add a NOP immediately after the branch instruction when using the 64-bit
   4634   // SVR4 ABI. At link time, if caller and callee are in a different module and
   4635   // thus have a different TOC, the call will be replaced with a call to a stub
   4636   // function which saves the current TOC, loads the TOC of the callee and
   4637   // branches to the callee. The NOP will be replaced with a load instruction
   4638   // which restores the TOC of the caller from the TOC save slot of the current
   4639   // stack frame. If caller and callee belong to the same module (and have the
   4640   // same TOC), the NOP will remain unchanged.
   4641 
   4642   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
   4643       !isPatchPoint) {
   4644     if (CallOpc == PPCISD::BCTRL) {
   4645       // This is a call through a function pointer.
   4646       // Restore the caller TOC from the save area into R2.
   4647       // See PrepareCall() for more information about calls through function
   4648       // pointers in the 64-bit SVR4 ABI.
   4649       // We are using a target-specific load with r2 hard coded, because the
   4650       // result of a target-independent load would never go directly into r2,
   4651       // since r2 is a reserved register (which prevents the register allocator
   4652       // from allocating it), resulting in an additional register being
   4653       // allocated and an unnecessary move instruction being generated.
   4654       CallOpc = PPCISD::BCTRL_LOAD_TOC;
   4655 
   4656       EVT PtrVT = getPointerTy(DAG.getDataLayout());
   4657       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
   4658       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
   4659       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
   4660       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
   4661 
   4662       // The address needs to go after the chain input but before the flag (or
   4663       // any other variadic arguments).
   4664       Ops.insert(std::next(Ops.begin()), AddTOC);
   4665     } else if ((CallOpc == PPCISD::CALL) &&
   4666                (!isLocalCall(Callee) ||
   4667                 DAG.getTarget().getRelocationModel() == Reloc::PIC_))
   4668       // Otherwise insert NOP for non-local calls.
   4669       CallOpc = PPCISD::CALL_NOP;
   4670   }
   4671 
   4672   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
   4673   InFlag = Chain.getValue(1);
   4674 
   4675   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   4676                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
   4677                              InFlag, dl);
   4678   if (!Ins.empty())
   4679     InFlag = Chain.getValue(1);
   4680 
   4681   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
   4682                          Ins, dl, DAG, InVals);
   4683 }
   4684 
   4685 SDValue
   4686 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   4687                              SmallVectorImpl<SDValue> &InVals) const {
   4688   SelectionDAG &DAG                     = CLI.DAG;
   4689   SDLoc &dl                             = CLI.DL;
   4690   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   4691   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   4692   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   4693   SDValue Chain                         = CLI.Chain;
   4694   SDValue Callee                        = CLI.Callee;
   4695   bool &isTailCall                      = CLI.IsTailCall;
   4696   CallingConv::ID CallConv              = CLI.CallConv;
   4697   bool isVarArg                         = CLI.IsVarArg;
   4698   bool isPatchPoint                     = CLI.IsPatchPoint;
   4699   ImmutableCallSite *CS                 = CLI.CS;
   4700 
   4701   if (isTailCall) {
   4702     if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
   4703       isTailCall =
   4704         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
   4705                                                  isVarArg, Outs, Ins, DAG);
   4706     else
   4707       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
   4708                                                      Ins, DAG);
   4709     if (isTailCall) {
   4710       ++NumTailCalls;
   4711       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
   4712         ++NumSiblingCalls;
   4713 
   4714       assert(isa<GlobalAddressSDNode>(Callee) &&
   4715              "Callee should be an llvm::Function object.");
   4716       DEBUG(
   4717         const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
   4718         const unsigned Width = 80 - strlen("TCO caller: ")
   4719                                   - strlen(", callee linkage: 0, 0");
   4720         dbgs() << "TCO caller: "
   4721                << left_justify(DAG.getMachineFunction().getName(), Width)
   4722                << ", callee linkage: "
   4723                << GV->getVisibility() << ", " << GV->getLinkage() << "\n"
   4724       );
   4725     }
   4726   }
   4727 
   4728   if (!isTailCall && CS && CS->isMustTailCall())
   4729     report_fatal_error("failed to perform tail call elimination on a call "
   4730                        "site marked musttail");
   4731 
   4732   if (Subtarget.isSVR4ABI()) {
   4733     if (Subtarget.isPPC64())
   4734       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
   4735                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
   4736                               dl, DAG, InVals, CS);
   4737     else
   4738       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
   4739                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
   4740                               dl, DAG, InVals, CS);
   4741   }
   4742 
   4743   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
   4744                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
   4745                           dl, DAG, InVals, CS);
   4746 }
   4747 
   4748 SDValue PPCTargetLowering::LowerCall_32SVR4(
   4749     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
   4750     bool isTailCall, bool isPatchPoint,
   4751     const SmallVectorImpl<ISD::OutputArg> &Outs,
   4752     const SmallVectorImpl<SDValue> &OutVals,
   4753     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   4754     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
   4755     ImmutableCallSite *CS) const {
   4756   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
   4757   // of the 32-bit SVR4 ABI stack frame layout.
   4758 
   4759   assert((CallConv == CallingConv::C ||
   4760           CallConv == CallingConv::Fast) && "Unknown calling convention!");
   4761 
   4762   unsigned PtrByteSize = 4;
   4763 
   4764   MachineFunction &MF = DAG.getMachineFunction();
   4765 
   4766   // Mark this function as potentially containing a function that contains a
   4767   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   4768   // and restoring the callers stack pointer in this functions epilog. This is
   4769   // done because by tail calling the called function might overwrite the value
   4770   // in this function's (MF) stack pointer stack slot 0(SP).
   4771   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   4772       CallConv == CallingConv::Fast)
   4773     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   4774 
   4775   // Count how many bytes are to be pushed on the stack, including the linkage
   4776   // area, parameter list area and the part of the local variable space which
   4777   // contains copies of aggregates which are passed by value.
   4778 
   4779   // Assign locations to all of the outgoing arguments.
   4780   SmallVector<CCValAssign, 16> ArgLocs;
   4781   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
   4782 
   4783   // Reserve space for the linkage area on the stack.
   4784   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
   4785                        PtrByteSize);
   4786   if (useSoftFloat())
   4787     CCInfo.PreAnalyzeCallOperands(Outs);
   4788 
   4789   if (isVarArg) {
   4790     // Handle fixed and variable vector arguments differently.
   4791     // Fixed vector arguments go into registers as long as registers are
   4792     // available. Variable vector arguments always go into memory.
   4793     unsigned NumArgs = Outs.size();
   4794 
   4795     for (unsigned i = 0; i != NumArgs; ++i) {
   4796       MVT ArgVT = Outs[i].VT;
   4797       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
   4798       bool Result;
   4799 
   4800       if (Outs[i].IsFixed) {
   4801         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
   4802                                CCInfo);
   4803       } else {
   4804         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
   4805                                       ArgFlags, CCInfo);
   4806       }
   4807 
   4808       if (Result) {
   4809 #ifndef NDEBUG
   4810         errs() << "Call operand #" << i << " has unhandled type "
   4811              << EVT(ArgVT).getEVTString() << "\n";
   4812 #endif
   4813         llvm_unreachable(nullptr);
   4814       }
   4815     }
   4816   } else {
   4817     // All arguments are treated the same.
   4818     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
   4819   }
   4820   CCInfo.clearWasPPCF128();
   4821 
   4822   // Assign locations to all of the outgoing aggregate by value arguments.
   4823   SmallVector<CCValAssign, 16> ByValArgLocs;
   4824   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
   4825 
   4826   // Reserve stack space for the allocations in CCInfo.
   4827   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   4828 
   4829   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
   4830 
   4831   // Size of the linkage area, parameter list area and the part of the local
   4832   // space variable where copies of aggregates which are passed by value are
   4833   // stored.
   4834   unsigned NumBytes = CCByValInfo.getNextStackOffset();
   4835 
   4836   // Calculate by how many bytes the stack has to be adjusted in case of tail
   4837   // call optimization.
   4838   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   4839 
   4840   // Adjust the stack pointer for the new arguments...
   4841   // These operations are automatically eliminated by the prolog/epilog pass
   4842   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   4843                                dl);
   4844   SDValue CallSeqStart = Chain;
   4845 
   4846   // Load the return address and frame pointer so it can be moved somewhere else
   4847   // later.
   4848   SDValue LROp, FPOp;
   4849   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
   4850 
   4851   // Set up a copy of the stack pointer for use loading and storing any
   4852   // arguments that may not fit in the registers available for argument
   4853   // passing.
   4854   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   4855 
   4856   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   4857   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   4858   SmallVector<SDValue, 8> MemOpChains;
   4859 
   4860   bool seenFloatArg = false;
   4861   // Walk the register/memloc assignments, inserting copies/loads.
   4862   for (unsigned i = 0, j = 0, e = ArgLocs.size();
   4863        i != e;
   4864        ++i) {
   4865     CCValAssign &VA = ArgLocs[i];
   4866     SDValue Arg = OutVals[i];
   4867     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   4868 
   4869     if (Flags.isByVal()) {
   4870       // Argument is an aggregate which is passed by value, thus we need to
   4871       // create a copy of it in the local variable space of the current stack
   4872       // frame (which is the stack frame of the caller) and pass the address of
   4873       // this copy to the callee.
   4874       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
   4875       CCValAssign &ByValVA = ByValArgLocs[j++];
   4876       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
   4877 
   4878       // Memory reserved in the local variable space of the callers stack frame.
   4879       unsigned LocMemOffset = ByValVA.getLocMemOffset();
   4880 
   4881       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
   4882       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
   4883                            StackPtr, PtrOff);
   4884 
   4885       // Create a copy of the argument in the local area of the current
   4886       // stack frame.
   4887       SDValue MemcpyCall =
   4888         CreateCopyOfByValArgument(Arg, PtrOff,
   4889                                   CallSeqStart.getNode()->getOperand(0),
   4890                                   Flags, DAG, dl);
   4891 
   4892       // This must go outside the CALLSEQ_START..END.
   4893       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   4894                            CallSeqStart.getNode()->getOperand(1),
   4895                            SDLoc(MemcpyCall));
   4896       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   4897                              NewCallSeqStart.getNode());
   4898       Chain = CallSeqStart = NewCallSeqStart;
   4899 
   4900       // Pass the address of the aggregate copy on the stack either in a
   4901       // physical register or in the parameter list area of the current stack
   4902       // frame to the callee.
   4903       Arg = PtrOff;
   4904     }
   4905 
   4906     if (VA.isRegLoc()) {
   4907       if (Arg.getValueType() == MVT::i1)
   4908         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
   4909 
   4910       seenFloatArg |= VA.getLocVT().isFloatingPoint();
   4911       // Put argument in a physical register.
   4912       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   4913     } else {
   4914       // Put argument in the parameter list area of the current stack frame.
   4915       assert(VA.isMemLoc());
   4916       unsigned LocMemOffset = VA.getLocMemOffset();
   4917 
   4918       if (!isTailCall) {
   4919         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
   4920         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
   4921                              StackPtr, PtrOff);
   4922 
   4923         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   4924                                            MachinePointerInfo(),
   4925                                            false, false, 0));
   4926       } else {
   4927         // Calculate and remember argument location.
   4928         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
   4929                                  TailCallArguments);
   4930       }
   4931     }
   4932   }
   4933 
   4934   if (!MemOpChains.empty())
   4935     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   4936 
   4937   // Build a sequence of copy-to-reg nodes chained together with token chain
   4938   // and flag operands which copy the outgoing args into the appropriate regs.
   4939   SDValue InFlag;
   4940   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   4941     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   4942                              RegsToPass[i].second, InFlag);
   4943     InFlag = Chain.getValue(1);
   4944   }
   4945 
   4946   // Set CR bit 6 to true if this is a vararg call with floating args passed in
   4947   // registers.
   4948   if (isVarArg) {
   4949     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   4950     SDValue Ops[] = { Chain, InFlag };
   4951 
   4952     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
   4953                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
   4954 
   4955     InFlag = Chain.getValue(1);
   4956   }
   4957 
   4958   if (isTailCall)
   4959     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
   4960                     TailCallArguments);
   4961 
   4962   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
   4963                     /* unused except on PPC64 ELFv1 */ false, DAG,
   4964                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
   4965                     NumBytes, Ins, InVals, CS);
   4966 }
   4967 
   4968 // Copy an argument into memory, being careful to do this outside the
   4969 // call sequence for the call to which the argument belongs.
   4970 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
   4971     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
   4972     SelectionDAG &DAG, const SDLoc &dl) const {
   4973   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
   4974                         CallSeqStart.getNode()->getOperand(0),
   4975                         Flags, DAG, dl);
   4976   // The MEMCPY must go outside the CALLSEQ_START..END.
   4977   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   4978                              CallSeqStart.getNode()->getOperand(1),
   4979                              SDLoc(MemcpyCall));
   4980   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   4981                          NewCallSeqStart.getNode());
   4982   return NewCallSeqStart;
   4983 }
   4984 
   4985 SDValue PPCTargetLowering::LowerCall_64SVR4(
   4986     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
   4987     bool isTailCall, bool isPatchPoint,
   4988     const SmallVectorImpl<ISD::OutputArg> &Outs,
   4989     const SmallVectorImpl<SDValue> &OutVals,
   4990     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   4991     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
   4992     ImmutableCallSite *CS) const {
   4993 
   4994   bool isELFv2ABI = Subtarget.isELFv2ABI();
   4995   bool isLittleEndian = Subtarget.isLittleEndian();
   4996   unsigned NumOps = Outs.size();
   4997   bool hasNest = false;
   4998   bool IsSibCall = false;
   4999 
   5000   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   5001   unsigned PtrByteSize = 8;
   5002 
   5003   MachineFunction &MF = DAG.getMachineFunction();
   5004 
   5005   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
   5006     IsSibCall = true;
   5007 
   5008   // Mark this function as potentially containing a function that contains a
   5009   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   5010   // and restoring the callers stack pointer in this functions epilog. This is
   5011   // done because by tail calling the called function might overwrite the value
   5012   // in this function's (MF) stack pointer stack slot 0(SP).
   5013   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   5014       CallConv == CallingConv::Fast)
   5015     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   5016 
   5017   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
   5018          "fastcc not supported on varargs functions");
   5019 
   5020   // Count how many bytes are to be pushed on the stack, including the linkage
   5021   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
   5022   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
   5023   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
   5024   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   5025   unsigned NumBytes = LinkageSize;
   5026   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   5027   unsigned &QFPR_idx = FPR_idx;
   5028 
   5029   static const MCPhysReg GPR[] = {
   5030     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   5031     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   5032   };
   5033   static const MCPhysReg VR[] = {
   5034     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   5035     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   5036   };
   5037   static const MCPhysReg VSRH[] = {
   5038     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
   5039     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
   5040   };
   5041 
   5042   const unsigned NumGPRs = array_lengthof(GPR);
   5043   const unsigned NumFPRs = 13;
   5044   const unsigned NumVRs  = array_lengthof(VR);
   5045   const unsigned NumQFPRs = NumFPRs;
   5046 
   5047   // When using the fast calling convention, we don't provide backing for
   5048   // arguments that will be in registers.
   5049   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
   5050 
   5051   // Add up all the space actually used.
   5052   for (unsigned i = 0; i != NumOps; ++i) {
   5053     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   5054     EVT ArgVT = Outs[i].VT;
   5055     EVT OrigVT = Outs[i].ArgVT;
   5056 
   5057     if (Flags.isNest())
   5058       continue;
   5059 
   5060     if (CallConv == CallingConv::Fast) {
   5061       if (Flags.isByVal())
   5062         NumGPRsUsed += (Flags.getByValSize()+7)/8;
   5063       else
   5064         switch (ArgVT.getSimpleVT().SimpleTy) {
   5065         default: llvm_unreachable("Unexpected ValueType for argument!");
   5066         case MVT::i1:
   5067         case MVT::i32:
   5068         case MVT::i64:
   5069           if (++NumGPRsUsed <= NumGPRs)
   5070             continue;
   5071           break;
   5072         case MVT::v4i32:
   5073         case MVT::v8i16:
   5074         case MVT::v16i8:
   5075         case MVT::v2f64:
   5076         case MVT::v2i64:
   5077         case MVT::v1i128:
   5078           if (++NumVRsUsed <= NumVRs)
   5079             continue;
   5080           break;
   5081         case MVT::v4f32:
   5082           // When using QPX, this is handled like a FP register, otherwise, it
   5083           // is an Altivec register.
   5084           if (Subtarget.hasQPX()) {
   5085             if (++NumFPRsUsed <= NumFPRs)
   5086               continue;
   5087           } else {
   5088             if (++NumVRsUsed <= NumVRs)
   5089               continue;
   5090           }
   5091           break;
   5092         case MVT::f32:
   5093         case MVT::f64:
   5094         case MVT::v4f64: // QPX
   5095         case MVT::v4i1:  // QPX
   5096           if (++NumFPRsUsed <= NumFPRs)
   5097             continue;
   5098           break;
   5099         }
   5100     }
   5101 
   5102     /* Respect alignment of argument on the stack.  */
   5103     unsigned Align =
   5104       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
   5105     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
   5106 
   5107     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   5108     if (Flags.isInConsecutiveRegsLast())
   5109       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   5110   }
   5111 
   5112   unsigned NumBytesActuallyUsed = NumBytes;
   5113 
   5114   // The prolog code of the callee may store up to 8 GPR argument registers to
   5115   // the stack, allowing va_start to index over them in memory if its varargs.
   5116   // Because we cannot tell if this is needed on the caller side, we have to
   5117   // conservatively assume that it is needed.  As such, make sure we have at
   5118   // least enough stack space for the caller to store the 8 GPRs.
   5119   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
   5120   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
   5121 
   5122   // Tail call needs the stack to be aligned.
   5123   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   5124       CallConv == CallingConv::Fast)
   5125     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
   5126 
   5127   int SPDiff = 0;
   5128 
   5129   // Calculate by how many bytes the stack has to be adjusted in case of tail
   5130   // call optimization.
   5131   if (!IsSibCall)
   5132     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   5133 
   5134   // To protect arguments on the stack from being clobbered in a tail call,
   5135   // force all the loads to happen before doing any other lowering.
   5136   if (isTailCall)
   5137     Chain = DAG.getStackArgumentTokenFactor(Chain);
   5138 
   5139   // Adjust the stack pointer for the new arguments...
   5140   // These operations are automatically eliminated by the prolog/epilog pass
   5141   if (!IsSibCall)
   5142     Chain = DAG.getCALLSEQ_START(Chain,
   5143                                  DAG.getIntPtrConstant(NumBytes, dl, true), dl);
   5144   SDValue CallSeqStart = Chain;
   5145 
   5146   // Load the return address and frame pointer so it can be move somewhere else
   5147   // later.
   5148   SDValue LROp, FPOp;
   5149   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
   5150 
   5151   // Set up a copy of the stack pointer for use loading and storing any
   5152   // arguments that may not fit in the registers available for argument
   5153   // passing.
   5154   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   5155 
   5156   // Figure out which arguments are going to go in registers, and which in
   5157   // memory.  Also, if this is a vararg function, floating point operations
   5158   // must be stored to our stack, and loaded into integer regs as well, if
   5159   // any integer regs are available for argument passing.
   5160   unsigned ArgOffset = LinkageSize;
   5161 
   5162   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   5163   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   5164 
   5165   SmallVector<SDValue, 8> MemOpChains;
   5166   for (unsigned i = 0; i != NumOps; ++i) {
   5167     SDValue Arg = OutVals[i];
   5168     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   5169     EVT ArgVT = Outs[i].VT;
   5170     EVT OrigVT = Outs[i].ArgVT;
   5171 
   5172     // PtrOff will be used to store the current argument to the stack if a
   5173     // register cannot be found for it.
   5174     SDValue PtrOff;
   5175 
   5176     // We re-align the argument offset for each argument, except when using the
   5177     // fast calling convention, when we need to make sure we do that only when
   5178     // we'll actually use a stack slot.
   5179     auto ComputePtrOff = [&]() {
   5180       /* Respect alignment of argument on the stack.  */
   5181       unsigned Align =
   5182         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
   5183       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   5184 
   5185       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
   5186 
   5187       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   5188     };
   5189 
   5190     if (CallConv != CallingConv::Fast) {
   5191       ComputePtrOff();
   5192 
   5193       /* Compute GPR index associated with argument offset.  */
   5194       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   5195       GPR_idx = std::min(GPR_idx, NumGPRs);
   5196     }
   5197 
   5198     // Promote integers to 64-bit values.
   5199     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
   5200       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   5201       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   5202       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   5203     }
   5204 
   5205     // FIXME memcpy is used way more than necessary.  Correctness first.
   5206     // Note: "by value" is code for passing a structure by value, not
   5207     // basic types.
   5208     if (Flags.isByVal()) {
   5209       // Note: Size includes alignment padding, so
   5210       //   struct x { short a; char b; }
   5211       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
   5212       // These are the proper values we need for right-justifying the
   5213       // aggregate in a parameter register.
   5214       unsigned Size = Flags.getByValSize();
   5215 
   5216       // An empty aggregate parameter takes up no storage and no
   5217       // registers.
   5218       if (Size == 0)
   5219         continue;
   5220 
   5221       if (CallConv == CallingConv::Fast)
   5222         ComputePtrOff();
   5223 
   5224       // All aggregates smaller than 8 bytes must be passed right-justified.
   5225       if (Size==1 || Size==2 || Size==4) {
   5226         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
   5227         if (GPR_idx != NumGPRs) {
   5228           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   5229                                         MachinePointerInfo(), VT,
   5230                                         false, false, false, 0);
   5231           MemOpChains.push_back(Load.getValue(1));
   5232           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5233 
   5234           ArgOffset += PtrByteSize;
   5235           continue;
   5236         }
   5237       }
   5238 
   5239       if (GPR_idx == NumGPRs && Size < 8) {
   5240         SDValue AddPtr = PtrOff;
   5241         if (!isLittleEndian) {
   5242           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
   5243                                           PtrOff.getValueType());
   5244           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   5245         }
   5246         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   5247                                                           CallSeqStart,
   5248                                                           Flags, DAG, dl);
   5249         ArgOffset += PtrByteSize;
   5250         continue;
   5251       }
   5252       // Copy entire object into memory.  There are cases where gcc-generated
   5253       // code assumes it is there, even if it could be put entirely into
   5254       // registers.  (This is not what the doc says.)
   5255 
   5256       // FIXME: The above statement is likely due to a misunderstanding of the
   5257       // documents.  All arguments must be copied into the parameter area BY
   5258       // THE CALLEE in the event that the callee takes the address of any
   5259       // formal argument.  That has not yet been implemented.  However, it is
   5260       // reasonable to use the stack area as a staging area for the register
   5261       // load.
   5262 
   5263       // Skip this for small aggregates, as we will use the same slot for a
   5264       // right-justified copy, below.
   5265       if (Size >= 8)
   5266         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   5267                                                           CallSeqStart,
   5268                                                           Flags, DAG, dl);
   5269 
   5270       // When a register is available, pass a small aggregate right-justified.
   5271       if (Size < 8 && GPR_idx != NumGPRs) {
   5272         // The easiest way to get this right-justified in a register
   5273         // is to copy the structure into the rightmost portion of a
   5274         // local variable slot, then load the whole slot into the
   5275         // register.
   5276         // FIXME: The memcpy seems to produce pretty awful code for
   5277         // small aggregates, particularly for packed ones.
   5278         // FIXME: It would be preferable to use the slot in the
   5279         // parameter save area instead of a new local variable.
   5280         SDValue AddPtr = PtrOff;
   5281         if (!isLittleEndian) {
   5282           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
   5283           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   5284         }
   5285         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   5286                                                           CallSeqStart,
   5287                                                           Flags, DAG, dl);
   5288 
   5289         // Load the slot into the register.
   5290         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
   5291                                    MachinePointerInfo(),
   5292                                    false, false, false, 0);
   5293         MemOpChains.push_back(Load.getValue(1));
   5294         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5295 
   5296         // Done with this argument.
   5297         ArgOffset += PtrByteSize;
   5298         continue;
   5299       }
   5300 
   5301       // For aggregates larger than PtrByteSize, copy the pieces of the
   5302       // object that fit into registers from the parameter save area.
   5303       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   5304         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
   5305         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   5306         if (GPR_idx != NumGPRs) {
   5307           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   5308                                      MachinePointerInfo(),
   5309                                      false, false, false, 0);
   5310           MemOpChains.push_back(Load.getValue(1));
   5311           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5312           ArgOffset += PtrByteSize;
   5313         } else {
   5314           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   5315           break;
   5316         }
   5317       }
   5318       continue;
   5319     }
   5320 
   5321     switch (Arg.getSimpleValueType().SimpleTy) {
   5322     default: llvm_unreachable("Unexpected ValueType for argument!");
   5323     case MVT::i1:
   5324     case MVT::i32:
   5325     case MVT::i64:
   5326       if (Flags.isNest()) {
   5327         // The 'nest' parameter, if any, is passed in R11.
   5328         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
   5329         hasNest = true;
   5330         break;
   5331       }
   5332 
   5333       // These can be scalar arguments or elements of an integer array type
   5334       // passed directly.  Clang may use those instead of "byval" aggregate
   5335       // types to avoid forcing arguments to memory unnecessarily.
   5336       if (GPR_idx != NumGPRs) {
   5337         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   5338       } else {
   5339         if (CallConv == CallingConv::Fast)
   5340           ComputePtrOff();
   5341 
   5342         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5343                          true, isTailCall, false, MemOpChains,
   5344                          TailCallArguments, dl);
   5345         if (CallConv == CallingConv::Fast)
   5346           ArgOffset += PtrByteSize;
   5347       }
   5348       if (CallConv != CallingConv::Fast)
   5349         ArgOffset += PtrByteSize;
   5350       break;
   5351     case MVT::f32:
   5352     case MVT::f64: {
   5353       // These can be scalar arguments or elements of a float array type
   5354       // passed directly.  The latter are used to implement ELFv2 homogenous
   5355       // float aggregates.
   5356 
   5357       // Named arguments go into FPRs first, and once they overflow, the
   5358       // remaining arguments go into GPRs and then the parameter save area.
   5359       // Unnamed arguments for vararg functions always go to GPRs and
   5360       // then the parameter save area.  For now, put all arguments to vararg
   5361       // routines always in both locations (FPR *and* GPR or stack slot).
   5362       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
   5363       bool NeededLoad = false;
   5364 
   5365       // First load the argument into the next available FPR.
   5366       if (FPR_idx != NumFPRs)
   5367         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   5368 
   5369       // Next, load the argument into GPR or stack slot if needed.
   5370       if (!NeedGPROrStack)
   5371         ;
   5372       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
   5373         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
   5374         // once we support fp <-> gpr moves.
   5375 
   5376         // In the non-vararg case, this can only ever happen in the
   5377         // presence of f32 array types, since otherwise we never run
   5378         // out of FPRs before running out of GPRs.
   5379         SDValue ArgVal;
   5380 
   5381         // Double values are always passed in a single GPR.
   5382         if (Arg.getValueType() != MVT::f32) {
   5383           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
   5384 
   5385         // Non-array float values are extended and passed in a GPR.
   5386         } else if (!Flags.isInConsecutiveRegs()) {
   5387           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
   5388           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
   5389 
   5390         // If we have an array of floats, we collect every odd element
   5391         // together with its predecessor into one GPR.
   5392         } else if (ArgOffset % PtrByteSize != 0) {
   5393           SDValue Lo, Hi;
   5394           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
   5395           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
   5396           if (!isLittleEndian)
   5397             std::swap(Lo, Hi);
   5398           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   5399 
   5400         // The final element, if even, goes into the first half of a GPR.
   5401         } else if (Flags.isInConsecutiveRegsLast()) {
   5402           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
   5403           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
   5404           if (!isLittleEndian)
   5405             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
   5406                                  DAG.getConstant(32, dl, MVT::i32));
   5407 
   5408         // Non-final even elements are skipped; they will be handled
   5409         // together the with subsequent argument on the next go-around.
   5410         } else
   5411           ArgVal = SDValue();
   5412 
   5413         if (ArgVal.getNode())
   5414           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
   5415       } else {
   5416         if (CallConv == CallingConv::Fast)
   5417           ComputePtrOff();
   5418 
   5419         // Single-precision floating-point values are mapped to the
   5420         // second (rightmost) word of the stack doubleword.
   5421         if (Arg.getValueType() == MVT::f32 &&
   5422             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
   5423           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
   5424           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   5425         }
   5426 
   5427         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5428                          true, isTailCall, false, MemOpChains,
   5429                          TailCallArguments, dl);
   5430 
   5431         NeededLoad = true;
   5432       }
   5433       // When passing an array of floats, the array occupies consecutive
   5434       // space in the argument area; only round up to the next doubleword
   5435       // at the end of the array.  Otherwise, each float takes 8 bytes.
   5436       if (CallConv != CallingConv::Fast || NeededLoad) {
   5437         ArgOffset += (Arg.getValueType() == MVT::f32 &&
   5438                       Flags.isInConsecutiveRegs()) ? 4 : 8;
   5439         if (Flags.isInConsecutiveRegsLast())
   5440           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   5441       }
   5442       break;
   5443     }
   5444     case MVT::v4f32:
   5445     case MVT::v4i32:
   5446     case MVT::v8i16:
   5447     case MVT::v16i8:
   5448     case MVT::v2f64:
   5449     case MVT::v2i64:
   5450     case MVT::v1i128:
   5451       if (!Subtarget.hasQPX()) {
   5452       // These can be scalar arguments or elements of a vector array type
   5453       // passed directly.  The latter are used to implement ELFv2 homogenous
   5454       // vector aggregates.
   5455 
   5456       // For a varargs call, named arguments go into VRs or on the stack as
   5457       // usual; unnamed arguments always go to the stack or the corresponding
   5458       // GPRs when within range.  For now, we always put the value in both
   5459       // locations (or even all three).
   5460       if (isVarArg) {
   5461         // We could elide this store in the case where the object fits
   5462         // entirely in R registers.  Maybe later.
   5463         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   5464                                      MachinePointerInfo(), false, false, 0);
   5465         MemOpChains.push_back(Store);
   5466         if (VR_idx != NumVRs) {
   5467           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   5468                                      MachinePointerInfo(),
   5469                                      false, false, false, 0);
   5470           MemOpChains.push_back(Load.getValue(1));
   5471 
   5472           unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
   5473                            Arg.getSimpleValueType() == MVT::v2i64) ?
   5474                           VSRH[VR_idx] : VR[VR_idx];
   5475           ++VR_idx;
   5476 
   5477           RegsToPass.push_back(std::make_pair(VReg, Load));
   5478         }
   5479         ArgOffset += 16;
   5480         for (unsigned i=0; i<16; i+=PtrByteSize) {
   5481           if (GPR_idx == NumGPRs)
   5482             break;
   5483           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   5484                                    DAG.getConstant(i, dl, PtrVT));
   5485           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   5486                                      false, false, false, 0);
   5487           MemOpChains.push_back(Load.getValue(1));
   5488           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5489         }
   5490         break;
   5491       }
   5492 
   5493       // Non-varargs Altivec params go into VRs or on the stack.
   5494       if (VR_idx != NumVRs) {
   5495         unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
   5496                          Arg.getSimpleValueType() == MVT::v2i64) ?
   5497                         VSRH[VR_idx] : VR[VR_idx];
   5498         ++VR_idx;
   5499 
   5500         RegsToPass.push_back(std::make_pair(VReg, Arg));
   5501       } else {
   5502         if (CallConv == CallingConv::Fast)
   5503           ComputePtrOff();
   5504 
   5505         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5506                          true, isTailCall, true, MemOpChains,
   5507                          TailCallArguments, dl);
   5508         if (CallConv == CallingConv::Fast)
   5509           ArgOffset += 16;
   5510       }
   5511 
   5512       if (CallConv != CallingConv::Fast)
   5513         ArgOffset += 16;
   5514       break;
   5515       } // not QPX
   5516 
   5517       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
   5518              "Invalid QPX parameter type");
   5519 
   5520       /* fall through */
   5521     case MVT::v4f64:
   5522     case MVT::v4i1: {
   5523       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
   5524       if (isVarArg) {
   5525         // We could elide this store in the case where the object fits
   5526         // entirely in R registers.  Maybe later.
   5527         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   5528                                      MachinePointerInfo(), false, false, 0);
   5529         MemOpChains.push_back(Store);
   5530         if (QFPR_idx != NumQFPRs) {
   5531           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl,
   5532                                      Store, PtrOff, MachinePointerInfo(),
   5533                                      false, false, false, 0);
   5534           MemOpChains.push_back(Load.getValue(1));
   5535           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
   5536         }
   5537         ArgOffset += (IsF32 ? 16 : 32);
   5538         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
   5539           if (GPR_idx == NumGPRs)
   5540             break;
   5541           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   5542                                    DAG.getConstant(i, dl, PtrVT));
   5543           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   5544                                      false, false, false, 0);
   5545           MemOpChains.push_back(Load.getValue(1));
   5546           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5547         }
   5548         break;
   5549       }
   5550 
   5551       // Non-varargs QPX params go into registers or on the stack.
   5552       if (QFPR_idx != NumQFPRs) {
   5553         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
   5554       } else {
   5555         if (CallConv == CallingConv::Fast)
   5556           ComputePtrOff();
   5557 
   5558         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5559                          true, isTailCall, true, MemOpChains,
   5560                          TailCallArguments, dl);
   5561         if (CallConv == CallingConv::Fast)
   5562           ArgOffset += (IsF32 ? 16 : 32);
   5563       }
   5564 
   5565       if (CallConv != CallingConv::Fast)
   5566         ArgOffset += (IsF32 ? 16 : 32);
   5567       break;
   5568       }
   5569     }
   5570   }
   5571 
   5572   assert(NumBytesActuallyUsed == ArgOffset);
   5573   (void)NumBytesActuallyUsed;
   5574 
   5575   if (!MemOpChains.empty())
   5576     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   5577 
   5578   // Check if this is an indirect call (MTCTR/BCTRL).
   5579   // See PrepareCall() for more information about calls through function
   5580   // pointers in the 64-bit SVR4 ABI.
   5581   if (!isTailCall && !isPatchPoint &&
   5582       !isFunctionGlobalAddress(Callee) &&
   5583       !isa<ExternalSymbolSDNode>(Callee)) {
   5584     // Load r2 into a virtual register and store it to the TOC save area.
   5585     setUsesTOCBasePtr(DAG);
   5586     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
   5587     // TOC save area offset.
   5588     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
   5589     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
   5590     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   5591     Chain = DAG.getStore(
   5592         Val.getValue(1), dl, Val, AddPtr,
   5593         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset),
   5594         false, false, 0);
   5595     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
   5596     // This does not mean the MTCTR instruction must use R12; it's easier
   5597     // to model this as an extra parameter, so do that.
   5598     if (isELFv2ABI && !isPatchPoint)
   5599       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
   5600   }
   5601 
   5602   // Build a sequence of copy-to-reg nodes chained together with token chain
   5603   // and flag operands which copy the outgoing args into the appropriate regs.
   5604   SDValue InFlag;
   5605   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   5606     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   5607                              RegsToPass[i].second, InFlag);
   5608     InFlag = Chain.getValue(1);
   5609   }
   5610 
   5611   if (isTailCall && !IsSibCall)
   5612     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
   5613                     TailCallArguments);
   5614 
   5615   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
   5616                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
   5617                     SPDiff, NumBytes, Ins, InVals, CS);
   5618 }
   5619 
   5620 SDValue PPCTargetLowering::LowerCall_Darwin(
   5621     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
   5622     bool isTailCall, bool isPatchPoint,
   5623     const SmallVectorImpl<ISD::OutputArg> &Outs,
   5624     const SmallVectorImpl<SDValue> &OutVals,
   5625     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   5626     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
   5627     ImmutableCallSite *CS) const {
   5628 
   5629   unsigned NumOps = Outs.size();
   5630 
   5631   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   5632   bool isPPC64 = PtrVT == MVT::i64;
   5633   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   5634 
   5635   MachineFunction &MF = DAG.getMachineFunction();
   5636 
   5637   // Mark this function as potentially containing a function that contains a
   5638   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   5639   // and restoring the callers stack pointer in this functions epilog. This is
   5640   // done because by tail calling the called function might overwrite the value
   5641   // in this function's (MF) stack pointer stack slot 0(SP).
   5642   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   5643       CallConv == CallingConv::Fast)
   5644     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   5645 
   5646   // Count how many bytes are to be pushed on the stack, including the linkage
   5647   // area, and parameter passing area.  We start with 24/48 bytes, which is
   5648   // prereserved space for [SP][CR][LR][3 x unused].
   5649   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   5650   unsigned NumBytes = LinkageSize;
   5651 
   5652   // Add up all the space actually used.
   5653   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
   5654   // they all go in registers, but we must reserve stack space for them for
   5655   // possible use by the caller.  In varargs or 64-bit calls, parameters are
   5656   // assigned stack space in order, with padding so Altivec parameters are
   5657   // 16-byte aligned.
   5658   unsigned nAltivecParamsAtEnd = 0;
   5659   for (unsigned i = 0; i != NumOps; ++i) {
   5660     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   5661     EVT ArgVT = Outs[i].VT;
   5662     // Varargs Altivec parameters are padded to a 16 byte boundary.
   5663     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   5664         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   5665         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
   5666       if (!isVarArg && !isPPC64) {
   5667         // Non-varargs Altivec parameters go after all the non-Altivec
   5668         // parameters; handle those later so we know how much padding we need.
   5669         nAltivecParamsAtEnd++;
   5670         continue;
   5671       }
   5672       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
   5673       NumBytes = ((NumBytes+15)/16)*16;
   5674     }
   5675     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   5676   }
   5677 
   5678   // Allow for Altivec parameters at the end, if needed.
   5679   if (nAltivecParamsAtEnd) {
   5680     NumBytes = ((NumBytes+15)/16)*16;
   5681     NumBytes += 16*nAltivecParamsAtEnd;
   5682   }
   5683 
   5684   // The prolog code of the callee may store up to 8 GPR argument registers to
   5685   // the stack, allowing va_start to index over them in memory if its varargs.
   5686   // Because we cannot tell if this is needed on the caller side, we have to
   5687   // conservatively assume that it is needed.  As such, make sure we have at
   5688   // least enough stack space for the caller to store the 8 GPRs.
   5689   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
   5690 
   5691   // Tail call needs the stack to be aligned.
   5692   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   5693       CallConv == CallingConv::Fast)
   5694     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
   5695 
   5696   // Calculate by how many bytes the stack has to be adjusted in case of tail
   5697   // call optimization.
   5698   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   5699 
   5700   // To protect arguments on the stack from being clobbered in a tail call,
   5701   // force all the loads to happen before doing any other lowering.
   5702   if (isTailCall)
   5703     Chain = DAG.getStackArgumentTokenFactor(Chain);
   5704 
   5705   // Adjust the stack pointer for the new arguments...
   5706   // These operations are automatically eliminated by the prolog/epilog pass
   5707   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   5708                                dl);
   5709   SDValue CallSeqStart = Chain;
   5710 
   5711   // Load the return address and frame pointer so it can be move somewhere else
   5712   // later.
   5713   SDValue LROp, FPOp;
   5714   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
   5715 
   5716   // Set up a copy of the stack pointer for use loading and storing any
   5717   // arguments that may not fit in the registers available for argument
   5718   // passing.
   5719   SDValue StackPtr;
   5720   if (isPPC64)
   5721     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   5722   else
   5723     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   5724 
   5725   // Figure out which arguments are going to go in registers, and which in
   5726   // memory.  Also, if this is a vararg function, floating point operations
   5727   // must be stored to our stack, and loaded into integer regs as well, if
   5728   // any integer regs are available for argument passing.
   5729   unsigned ArgOffset = LinkageSize;
   5730   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   5731 
   5732   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
   5733     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   5734     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   5735   };
   5736   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
   5737     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   5738     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   5739   };
   5740   static const MCPhysReg VR[] = {
   5741     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   5742     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   5743   };
   5744   const unsigned NumGPRs = array_lengthof(GPR_32);
   5745   const unsigned NumFPRs = 13;
   5746   const unsigned NumVRs  = array_lengthof(VR);
   5747 
   5748   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
   5749 
   5750   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   5751   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   5752 
   5753   SmallVector<SDValue, 8> MemOpChains;
   5754   for (unsigned i = 0; i != NumOps; ++i) {
   5755     SDValue Arg = OutVals[i];
   5756     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   5757 
   5758     // PtrOff will be used to store the current argument to the stack if a
   5759     // register cannot be found for it.
   5760     SDValue PtrOff;
   5761 
   5762     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
   5763 
   5764     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   5765 
   5766     // On PPC64, promote integers to 64-bit values.
   5767     if (isPPC64 && Arg.getValueType() == MVT::i32) {
   5768       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   5769       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   5770       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   5771     }
   5772 
   5773     // FIXME memcpy is used way more than necessary.  Correctness first.
   5774     // Note: "by value" is code for passing a structure by value, not
   5775     // basic types.
   5776     if (Flags.isByVal()) {
   5777       unsigned Size = Flags.getByValSize();
   5778       // Very small objects are passed right-justified.  Everything else is
   5779       // passed left-justified.
   5780       if (Size==1 || Size==2) {
   5781         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
   5782         if (GPR_idx != NumGPRs) {
   5783           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   5784                                         MachinePointerInfo(), VT,
   5785                                         false, false, false, 0);
   5786           MemOpChains.push_back(Load.getValue(1));
   5787           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5788 
   5789           ArgOffset += PtrByteSize;
   5790         } else {
   5791           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
   5792                                           PtrOff.getValueType());
   5793           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   5794           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   5795                                                             CallSeqStart,
   5796                                                             Flags, DAG, dl);
   5797           ArgOffset += PtrByteSize;
   5798         }
   5799         continue;
   5800       }
   5801       // Copy entire object into memory.  There are cases where gcc-generated
   5802       // code assumes it is there, even if it could be put entirely into
   5803       // registers.  (This is not what the doc says.)
   5804       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   5805                                                         CallSeqStart,
   5806                                                         Flags, DAG, dl);
   5807 
   5808       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
   5809       // copy the pieces of the object that fit into registers from the
   5810       // parameter save area.
   5811       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   5812         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
   5813         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   5814         if (GPR_idx != NumGPRs) {
   5815           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   5816                                      MachinePointerInfo(),
   5817                                      false, false, false, 0);
   5818           MemOpChains.push_back(Load.getValue(1));
   5819           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5820           ArgOffset += PtrByteSize;
   5821         } else {
   5822           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   5823           break;
   5824         }
   5825       }
   5826       continue;
   5827     }
   5828 
   5829     switch (Arg.getSimpleValueType().SimpleTy) {
   5830     default: llvm_unreachable("Unexpected ValueType for argument!");
   5831     case MVT::i1:
   5832     case MVT::i32:
   5833     case MVT::i64:
   5834       if (GPR_idx != NumGPRs) {
   5835         if (Arg.getValueType() == MVT::i1)
   5836           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
   5837 
   5838         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   5839       } else {
   5840         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5841                          isPPC64, isTailCall, false, MemOpChains,
   5842                          TailCallArguments, dl);
   5843       }
   5844       ArgOffset += PtrByteSize;
   5845       break;
   5846     case MVT::f32:
   5847     case MVT::f64:
   5848       if (FPR_idx != NumFPRs) {
   5849         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   5850 
   5851         if (isVarArg) {
   5852           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   5853                                        MachinePointerInfo(), false, false, 0);
   5854           MemOpChains.push_back(Store);
   5855 
   5856           // Float varargs are always shadowed in available integer registers
   5857           if (GPR_idx != NumGPRs) {
   5858             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   5859                                        MachinePointerInfo(), false, false,
   5860                                        false, 0);
   5861             MemOpChains.push_back(Load.getValue(1));
   5862             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5863           }
   5864           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
   5865             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
   5866             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   5867             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   5868                                        MachinePointerInfo(),
   5869                                        false, false, false, 0);
   5870             MemOpChains.push_back(Load.getValue(1));
   5871             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5872           }
   5873         } else {
   5874           // If we have any FPRs remaining, we may also have GPRs remaining.
   5875           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
   5876           // GPRs.
   5877           if (GPR_idx != NumGPRs)
   5878             ++GPR_idx;
   5879           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
   5880               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
   5881             ++GPR_idx;
   5882         }
   5883       } else
   5884         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5885                          isPPC64, isTailCall, false, MemOpChains,
   5886                          TailCallArguments, dl);
   5887       if (isPPC64)
   5888         ArgOffset += 8;
   5889       else
   5890         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
   5891       break;
   5892     case MVT::v4f32:
   5893     case MVT::v4i32:
   5894     case MVT::v8i16:
   5895     case MVT::v16i8:
   5896       if (isVarArg) {
   5897         // These go aligned on the stack, or in the corresponding R registers
   5898         // when within range.  The Darwin PPC ABI doc claims they also go in
   5899         // V registers; in fact gcc does this only for arguments that are
   5900         // prototyped, not for those that match the ...  We do it for all
   5901         // arguments, seems to work.
   5902         while (ArgOffset % 16 !=0) {
   5903           ArgOffset += PtrByteSize;
   5904           if (GPR_idx != NumGPRs)
   5905             GPR_idx++;
   5906         }
   5907         // We could elide this store in the case where the object fits
   5908         // entirely in R registers.  Maybe later.
   5909         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   5910                              DAG.getConstant(ArgOffset, dl, PtrVT));
   5911         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   5912                                      MachinePointerInfo(), false, false, 0);
   5913         MemOpChains.push_back(Store);
   5914         if (VR_idx != NumVRs) {
   5915           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   5916                                      MachinePointerInfo(),
   5917                                      false, false, false, 0);
   5918           MemOpChains.push_back(Load.getValue(1));
   5919           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
   5920         }
   5921         ArgOffset += 16;
   5922         for (unsigned i=0; i<16; i+=PtrByteSize) {
   5923           if (GPR_idx == NumGPRs)
   5924             break;
   5925           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   5926                                    DAG.getConstant(i, dl, PtrVT));
   5927           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   5928                                      false, false, false, 0);
   5929           MemOpChains.push_back(Load.getValue(1));
   5930           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5931         }
   5932         break;
   5933       }
   5934 
   5935       // Non-varargs Altivec params generally go in registers, but have
   5936       // stack space allocated at the end.
   5937       if (VR_idx != NumVRs) {
   5938         // Doesn't have GPR space allocated.
   5939         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
   5940       } else if (nAltivecParamsAtEnd==0) {
   5941         // We are emitting Altivec params in order.
   5942         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5943                          isPPC64, isTailCall, true, MemOpChains,
   5944                          TailCallArguments, dl);
   5945         ArgOffset += 16;
   5946       }
   5947       break;
   5948     }
   5949   }
   5950   // If all Altivec parameters fit in registers, as they usually do,
   5951   // they get stack space following the non-Altivec parameters.  We
   5952   // don't track this here because nobody below needs it.
   5953   // If there are more Altivec parameters than fit in registers emit
   5954   // the stores here.
   5955   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
   5956     unsigned j = 0;
   5957     // Offset is aligned; skip 1st 12 params which go in V registers.
   5958     ArgOffset = ((ArgOffset+15)/16)*16;
   5959     ArgOffset += 12*16;
   5960     for (unsigned i = 0; i != NumOps; ++i) {
   5961       SDValue Arg = OutVals[i];
   5962       EVT ArgType = Outs[i].VT;
   5963       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
   5964           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
   5965         if (++j > NumVRs) {
   5966           SDValue PtrOff;
   5967           // We are emitting Altivec params in order.
   5968           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5969                            isPPC64, isTailCall, true, MemOpChains,
   5970                            TailCallArguments, dl);
   5971           ArgOffset += 16;
   5972         }
   5973       }
   5974     }
   5975   }
   5976 
   5977   if (!MemOpChains.empty())
   5978     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   5979 
   5980   // On Darwin, R12 must contain the address of an indirect callee.  This does
   5981   // not mean the MTCTR instruction must use R12; it's easier to model this as
   5982   // an extra parameter, so do that.
   5983   if (!isTailCall &&
   5984       !isFunctionGlobalAddress(Callee) &&
   5985       !isa<ExternalSymbolSDNode>(Callee) &&
   5986       !isBLACompatibleAddress(Callee, DAG))
   5987     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
   5988                                                    PPC::R12), Callee));
   5989 
   5990   // Build a sequence of copy-to-reg nodes chained together with token chain
   5991   // and flag operands which copy the outgoing args into the appropriate regs.
   5992   SDValue InFlag;
   5993   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   5994     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   5995                              RegsToPass[i].second, InFlag);
   5996     InFlag = Chain.getValue(1);
   5997   }
   5998 
   5999   if (isTailCall)
   6000     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
   6001                     TailCallArguments);
   6002 
   6003   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
   6004                     /* unused except on PPC64 ELFv1 */ false, DAG,
   6005                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
   6006                     NumBytes, Ins, InVals, CS);
   6007 }
   6008 
   6009 bool
   6010 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   6011                                   MachineFunction &MF, bool isVarArg,
   6012                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   6013                                   LLVMContext &Context) const {
   6014   SmallVector<CCValAssign, 16> RVLocs;
   6015   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
   6016   return CCInfo.CheckReturn(Outs, RetCC_PPC);
   6017 }
   6018 
   6019 SDValue
   6020 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
   6021                                bool isVarArg,
   6022                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   6023                                const SmallVectorImpl<SDValue> &OutVals,
   6024                                const SDLoc &dl, SelectionDAG &DAG) const {
   6025 
   6026   SmallVector<CCValAssign, 16> RVLocs;
   6027   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   6028                  *DAG.getContext());
   6029   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
   6030 
   6031   SDValue Flag;
   6032   SmallVector<SDValue, 4> RetOps(1, Chain);
   6033 
   6034   // Copy the result values into the output registers.
   6035   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   6036     CCValAssign &VA = RVLocs[i];
   6037     assert(VA.isRegLoc() && "Can only return in registers!");
   6038 
   6039     SDValue Arg = OutVals[i];
   6040 
   6041     switch (VA.getLocInfo()) {
   6042     default: llvm_unreachable("Unknown loc info!");
   6043     case CCValAssign::Full: break;
   6044     case CCValAssign::AExt:
   6045       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   6046       break;
   6047     case CCValAssign::ZExt:
   6048       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   6049       break;
   6050     case CCValAssign::SExt:
   6051       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   6052       break;
   6053     }
   6054 
   6055     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   6056     Flag = Chain.getValue(1);
   6057     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   6058   }
   6059 
   6060   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
   6061   const MCPhysReg *I =
   6062     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
   6063   if (I) {
   6064     for (; *I; ++I) {
   6065 
   6066       if (PPC::G8RCRegClass.contains(*I))
   6067         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
   6068       else if (PPC::F8RCRegClass.contains(*I))
   6069         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
   6070       else if (PPC::CRRCRegClass.contains(*I))
   6071         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
   6072       else if (PPC::VRRCRegClass.contains(*I))
   6073         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
   6074       else
   6075         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
   6076     }
   6077   }
   6078 
   6079   RetOps[0] = Chain;  // Update chain.
   6080 
   6081   // Add the flag if we have it.
   6082   if (Flag.getNode())
   6083     RetOps.push_back(Flag);
   6084 
   6085   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
   6086 }
   6087 
   6088 SDValue
   6089 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
   6090                                                 SelectionDAG &DAG) const {
   6091   SDLoc dl(Op);
   6092 
   6093   // Get the corect type for integers.
   6094   EVT IntVT = Op.getValueType();
   6095 
   6096   // Get the inputs.
   6097   SDValue Chain = Op.getOperand(0);
   6098   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
   6099   // Build a DYNAREAOFFSET node.
   6100   SDValue Ops[2] = {Chain, FPSIdx};
   6101   SDVTList VTs = DAG.getVTList(IntVT);
   6102   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
   6103 }
   6104 
   6105 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
   6106                                              SelectionDAG &DAG) const {
   6107   // When we pop the dynamic allocation we need to restore the SP link.
   6108   SDLoc dl(Op);
   6109 
   6110   // Get the corect type for pointers.
   6111   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   6112 
   6113   // Construct the stack pointer operand.
   6114   bool isPPC64 = Subtarget.isPPC64();
   6115   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
   6116   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
   6117 
   6118   // Get the operands for the STACKRESTORE.
   6119   SDValue Chain = Op.getOperand(0);
   6120   SDValue SaveSP = Op.getOperand(1);
   6121 
   6122   // Load the old link SP.
   6123   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
   6124                                    MachinePointerInfo(),
   6125                                    false, false, false, 0);
   6126 
   6127   // Restore the stack pointer.
   6128   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
   6129 
   6130   // Store the old link SP.
   6131   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
   6132                       false, false, 0);
   6133 }
   6134 
   6135 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
   6136   MachineFunction &MF = DAG.getMachineFunction();
   6137   bool isPPC64 = Subtarget.isPPC64();
   6138   EVT PtrVT = getPointerTy(MF.getDataLayout());
   6139 
   6140   // Get current frame pointer save index.  The users of this index will be
   6141   // primarily DYNALLOC instructions.
   6142   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   6143   int RASI = FI->getReturnAddrSaveIndex();
   6144 
   6145   // If the frame pointer save index hasn't been defined yet.
   6146   if (!RASI) {
   6147     // Find out what the fix offset of the frame pointer save area.
   6148     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
   6149     // Allocate the frame index for frame pointer save area.
   6150     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
   6151     // Save the result.
   6152     FI->setReturnAddrSaveIndex(RASI);
   6153   }
   6154   return DAG.getFrameIndex(RASI, PtrVT);
   6155 }
   6156 
   6157 SDValue
   6158 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
   6159   MachineFunction &MF = DAG.getMachineFunction();
   6160   bool isPPC64 = Subtarget.isPPC64();
   6161   EVT PtrVT = getPointerTy(MF.getDataLayout());
   6162 
   6163   // Get current frame pointer save index.  The users of this index will be
   6164   // primarily DYNALLOC instructions.
   6165   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   6166   int FPSI = FI->getFramePointerSaveIndex();
   6167 
   6168   // If the frame pointer save index hasn't been defined yet.
   6169   if (!FPSI) {
   6170     // Find out what the fix offset of the frame pointer save area.
   6171     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
   6172     // Allocate the frame index for frame pointer save area.
   6173     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
   6174     // Save the result.
   6175     FI->setFramePointerSaveIndex(FPSI);
   6176   }
   6177   return DAG.getFrameIndex(FPSI, PtrVT);
   6178 }
   6179 
   6180 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   6181                                                    SelectionDAG &DAG) const {
   6182   // Get the inputs.
   6183   SDValue Chain = Op.getOperand(0);
   6184   SDValue Size  = Op.getOperand(1);
   6185   SDLoc dl(Op);
   6186 
   6187   // Get the corect type for pointers.
   6188   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   6189   // Negate the size.
   6190   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
   6191                                 DAG.getConstant(0, dl, PtrVT), Size);
   6192   // Construct a node for the frame pointer save index.
   6193   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
   6194   // Build a DYNALLOC node.
   6195   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
   6196   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
   6197   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
   6198 }
   6199 
   6200 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
   6201                                                SelectionDAG &DAG) const {
   6202   SDLoc DL(Op);
   6203   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
   6204                      DAG.getVTList(MVT::i32, MVT::Other),
   6205                      Op.getOperand(0), Op.getOperand(1));
   6206 }
   6207 
   6208 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
   6209                                                 SelectionDAG &DAG) const {
   6210   SDLoc DL(Op);
   6211   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
   6212                      Op.getOperand(0), Op.getOperand(1));
   6213 }
   6214 
   6215 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
   6216   if (Op.getValueType().isVector())
   6217     return LowerVectorLoad(Op, DAG);
   6218 
   6219   assert(Op.getValueType() == MVT::i1 &&
   6220          "Custom lowering only for i1 loads");
   6221 
   6222   // First, load 8 bits into 32 bits, then truncate to 1 bit.
   6223 
   6224   SDLoc dl(Op);
   6225   LoadSDNode *LD = cast<LoadSDNode>(Op);
   6226 
   6227   SDValue Chain = LD->getChain();
   6228   SDValue BasePtr = LD->getBasePtr();
   6229   MachineMemOperand *MMO = LD->getMemOperand();
   6230 
   6231   SDValue NewLD =
   6232       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
   6233                      BasePtr, MVT::i8, MMO);
   6234   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
   6235 
   6236   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
   6237   return DAG.getMergeValues(Ops, dl);
   6238 }
   6239 
   6240 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
   6241   if (Op.getOperand(1).getValueType().isVector())
   6242     return LowerVectorStore(Op, DAG);
   6243 
   6244   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
   6245          "Custom lowering only for i1 stores");
   6246 
   6247   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
   6248 
   6249   SDLoc dl(Op);
   6250   StoreSDNode *ST = cast<StoreSDNode>(Op);
   6251 
   6252   SDValue Chain = ST->getChain();
   6253   SDValue BasePtr = ST->getBasePtr();
   6254   SDValue Value = ST->getValue();
   6255   MachineMemOperand *MMO = ST->getMemOperand();
   6256 
   6257   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
   6258                       Value);
   6259   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
   6260 }
   6261 
   6262 // FIXME: Remove this once the ANDI glue bug is fixed:
   6263 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
   6264   assert(Op.getValueType() == MVT::i1 &&
   6265          "Custom lowering only for i1 results");
   6266 
   6267   SDLoc DL(Op);
   6268   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
   6269                      Op.getOperand(0));
   6270 }
   6271 
   6272 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
   6273 /// possible.
   6274 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   6275   // Not FP? Not a fsel.
   6276   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
   6277       !Op.getOperand(2).getValueType().isFloatingPoint())
   6278     return Op;
   6279 
   6280   // We might be able to do better than this under some circumstances, but in
   6281   // general, fsel-based lowering of select is a finite-math-only optimization.
   6282   // For more information, see section F.3 of the 2.06 ISA specification.
   6283   if (!DAG.getTarget().Options.NoInfsFPMath ||
   6284       !DAG.getTarget().Options.NoNaNsFPMath)
   6285     return Op;
   6286   // TODO: Propagate flags from the select rather than global settings.
   6287   SDNodeFlags Flags;
   6288   Flags.setNoInfs(true);
   6289   Flags.setNoNaNs(true);
   6290 
   6291   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   6292 
   6293   EVT ResVT = Op.getValueType();
   6294   EVT CmpVT = Op.getOperand(0).getValueType();
   6295   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   6296   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
   6297   SDLoc dl(Op);
   6298 
   6299   // If the RHS of the comparison is a 0.0, we don't need to do the
   6300   // subtraction at all.
   6301   SDValue Sel1;
   6302   if (isFloatingPointZero(RHS))
   6303     switch (CC) {
   6304     default: break;       // SETUO etc aren't handled by fsel.
   6305     case ISD::SETNE:
   6306       std::swap(TV, FV);
   6307     case ISD::SETEQ:
   6308       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6309         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   6310       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
   6311       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6312         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
   6313       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   6314                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
   6315     case ISD::SETULT:
   6316     case ISD::SETLT:
   6317       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   6318     case ISD::SETOGE:
   6319     case ISD::SETGE:
   6320       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6321         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   6322       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
   6323     case ISD::SETUGT:
   6324     case ISD::SETGT:
   6325       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   6326     case ISD::SETOLE:
   6327     case ISD::SETLE:
   6328       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6329         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   6330       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   6331                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
   6332     }
   6333 
   6334   SDValue Cmp;
   6335   switch (CC) {
   6336   default: break;       // SETUO etc aren't handled by fsel.
   6337   case ISD::SETNE:
   6338     std::swap(TV, FV);
   6339   case ISD::SETEQ:
   6340     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
   6341     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6342       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   6343     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   6344     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6345       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
   6346     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   6347                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
   6348   case ISD::SETULT:
   6349   case ISD::SETLT:
   6350     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
   6351     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6352       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   6353     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   6354   case ISD::SETOGE:
   6355   case ISD::SETGE:
   6356     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
   6357     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6358       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   6359     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   6360   case ISD::SETUGT:
   6361   case ISD::SETGT:
   6362     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
   6363     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6364       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   6365     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   6366   case ISD::SETOLE:
   6367   case ISD::SETLE:
   6368     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
   6369     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6370       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   6371     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   6372   }
   6373   return Op;
   6374 }
   6375 
   6376 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
   6377                                                SelectionDAG &DAG,
   6378                                                const SDLoc &dl) const {
   6379   assert(Op.getOperand(0).getValueType().isFloatingPoint());
   6380   SDValue Src = Op.getOperand(0);
   6381   if (Src.getValueType() == MVT::f32)
   6382     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   6383 
   6384   SDValue Tmp;
   6385   switch (Op.getSimpleValueType().SimpleTy) {
   6386   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
   6387   case MVT::i32:
   6388     Tmp = DAG.getNode(
   6389         Op.getOpcode() == ISD::FP_TO_SINT
   6390             ? PPCISD::FCTIWZ
   6391             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
   6392         dl, MVT::f64, Src);
   6393     break;
   6394   case MVT::i64:
   6395     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
   6396            "i64 FP_TO_UINT is supported only with FPCVT");
   6397     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
   6398                                                         PPCISD::FCTIDUZ,
   6399                       dl, MVT::f64, Src);
   6400     break;
   6401   }
   6402 
   6403   // Convert the FP value to an int value through memory.
   6404   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
   6405     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
   6406   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
   6407   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
   6408   MachinePointerInfo MPI =
   6409       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
   6410 
   6411   // Emit a store to the stack slot.
   6412   SDValue Chain;
   6413   if (i32Stack) {
   6414     MachineFunction &MF = DAG.getMachineFunction();
   6415     MachineMemOperand *MMO =
   6416       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
   6417     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
   6418     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
   6419               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
   6420   } else
   6421     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
   6422                          MPI, false, false, 0);
   6423 
   6424   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
   6425   // add in a bias on big endian.
   6426   if (Op.getValueType() == MVT::i32 && !i32Stack) {
   6427     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
   6428                         DAG.getConstant(4, dl, FIPtr.getValueType()));
   6429     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
   6430   }
   6431 
   6432   RLI.Chain = Chain;
   6433   RLI.Ptr = FIPtr;
   6434   RLI.MPI = MPI;
   6435 }
   6436 
   6437 /// \brief Custom lowers floating point to integer conversions to use
   6438 /// the direct move instructions available in ISA 2.07 to avoid the
   6439 /// need for load/store combinations.
   6440 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
   6441                                                     SelectionDAG &DAG,
   6442                                                     const SDLoc &dl) const {
   6443   assert(Op.getOperand(0).getValueType().isFloatingPoint());
   6444   SDValue Src = Op.getOperand(0);
   6445 
   6446   if (Src.getValueType() == MVT::f32)
   6447     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   6448 
   6449   SDValue Tmp;
   6450   switch (Op.getSimpleValueType().SimpleTy) {
   6451   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
   6452   case MVT::i32:
   6453     Tmp = DAG.getNode(
   6454         Op.getOpcode() == ISD::FP_TO_SINT
   6455             ? PPCISD::FCTIWZ
   6456             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
   6457         dl, MVT::f64, Src);
   6458     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
   6459     break;
   6460   case MVT::i64:
   6461     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
   6462            "i64 FP_TO_UINT is supported only with FPCVT");
   6463     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
   6464                                                         PPCISD::FCTIDUZ,
   6465                       dl, MVT::f64, Src);
   6466     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
   6467     break;
   6468   }
   6469   return Tmp;
   6470 }
   6471 
   6472 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
   6473                                           const SDLoc &dl) const {
   6474   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
   6475     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
   6476 
   6477   ReuseLoadInfo RLI;
   6478   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
   6479 
   6480   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
   6481                      false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
   6482                      RLI.Ranges);
   6483 }
   6484 
   6485 // We're trying to insert a regular store, S, and then a load, L. If the
   6486 // incoming value, O, is a load, we might just be able to have our load use the
   6487 // address used by O. However, we don't know if anything else will store to
   6488 // that address before we can load from it. To prevent this situation, we need
   6489 // to insert our load, L, into the chain as a peer of O. To do this, we give L
   6490 // the same chain operand as O, we create a token factor from the chain results
   6491 // of O and L, and we replace all uses of O's chain result with that token
   6492 // factor (see spliceIntoChain below for this last part).
   6493 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
   6494                                             ReuseLoadInfo &RLI,
   6495                                             SelectionDAG &DAG,
   6496                                             ISD::LoadExtType ET) const {
   6497   SDLoc dl(Op);
   6498   if (ET == ISD::NON_EXTLOAD &&
   6499       (Op.getOpcode() == ISD::FP_TO_UINT ||
   6500        Op.getOpcode() == ISD::FP_TO_SINT) &&
   6501       isOperationLegalOrCustom(Op.getOpcode(),
   6502                                Op.getOperand(0).getValueType())) {
   6503 
   6504     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
   6505     return true;
   6506   }
   6507 
   6508   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
   6509   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
   6510       LD->isNonTemporal())
   6511     return false;
   6512   if (LD->getMemoryVT() != MemVT)
   6513     return false;
   6514 
   6515   RLI.Ptr = LD->getBasePtr();
   6516   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
   6517     assert(LD->getAddressingMode() == ISD::PRE_INC &&
   6518            "Non-pre-inc AM on PPC?");
   6519     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
   6520                           LD->getOffset());
   6521   }
   6522 
   6523   RLI.Chain = LD->getChain();
   6524   RLI.MPI = LD->getPointerInfo();
   6525   RLI.IsInvariant = LD->isInvariant();
   6526   RLI.Alignment = LD->getAlignment();
   6527   RLI.AAInfo = LD->getAAInfo();
   6528   RLI.Ranges = LD->getRanges();
   6529 
   6530   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
   6531   return true;
   6532 }
   6533 
   6534 // Given the head of the old chain, ResChain, insert a token factor containing
   6535 // it and NewResChain, and make users of ResChain now be users of that token
   6536 // factor.
   6537 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
   6538                                         SDValue NewResChain,
   6539                                         SelectionDAG &DAG) const {
   6540   if (!ResChain)
   6541     return;
   6542 
   6543   SDLoc dl(NewResChain);
   6544 
   6545   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   6546                            NewResChain, DAG.getUNDEF(MVT::Other));
   6547   assert(TF.getNode() != NewResChain.getNode() &&
   6548          "A new TF really is required here");
   6549 
   6550   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
   6551   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
   6552 }
   6553 
   6554 /// \brief Analyze profitability of direct move
   6555 /// prefer float load to int load plus direct move
   6556 /// when there is no integer use of int load
   6557 static bool directMoveIsProfitable(const SDValue &Op) {
   6558   SDNode *Origin = Op.getOperand(0).getNode();
   6559   if (Origin->getOpcode() != ISD::LOAD)
   6560     return true;
   6561 
   6562   for (SDNode::use_iterator UI = Origin->use_begin(),
   6563                             UE = Origin->use_end();
   6564        UI != UE; ++UI) {
   6565 
   6566     // Only look at the users of the loaded value.
   6567     if (UI.getUse().get().getResNo() != 0)
   6568       continue;
   6569 
   6570     if (UI->getOpcode() != ISD::SINT_TO_FP &&
   6571         UI->getOpcode() != ISD::UINT_TO_FP)
   6572       return true;
   6573   }
   6574 
   6575   return false;
   6576 }
   6577 
   6578 /// \brief Custom lowers integer to floating point conversions to use
   6579 /// the direct move instructions available in ISA 2.07 to avoid the
   6580 /// need for load/store combinations.
   6581 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
   6582                                                     SelectionDAG &DAG,
   6583                                                     const SDLoc &dl) const {
   6584   assert((Op.getValueType() == MVT::f32 ||
   6585           Op.getValueType() == MVT::f64) &&
   6586          "Invalid floating point type as target of conversion");
   6587   assert(Subtarget.hasFPCVT() &&
   6588          "Int to FP conversions with direct moves require FPCVT");
   6589   SDValue FP;
   6590   SDValue Src = Op.getOperand(0);
   6591   bool SinglePrec = Op.getValueType() == MVT::f32;
   6592   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
   6593   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
   6594   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
   6595                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
   6596 
   6597   if (WordInt) {
   6598     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
   6599                      dl, MVT::f64, Src);
   6600     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
   6601   }
   6602   else {
   6603     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
   6604     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
   6605   }
   6606 
   6607   return FP;
   6608 }
   6609 
   6610 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
   6611                                           SelectionDAG &DAG) const {
   6612   SDLoc dl(Op);
   6613 
   6614   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
   6615     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
   6616       return SDValue();
   6617 
   6618     SDValue Value = Op.getOperand(0);
   6619     // The values are now known to be -1 (false) or 1 (true). To convert this
   6620     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
   6621     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
   6622     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
   6623 
   6624     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
   6625 
   6626     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
   6627 
   6628     if (Op.getValueType() != MVT::v4f64)
   6629       Value = DAG.getNode(ISD::FP_ROUND, dl,
   6630                           Op.getValueType(), Value,
   6631                           DAG.getIntPtrConstant(1, dl));
   6632     return Value;
   6633   }
   6634 
   6635   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
   6636   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
   6637     return SDValue();
   6638 
   6639   if (Op.getOperand(0).getValueType() == MVT::i1)
   6640     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
   6641                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
   6642                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
   6643 
   6644   // If we have direct moves, we can do all the conversion, skip the store/load
   6645   // however, without FPCVT we can't do most conversions.
   6646   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
   6647       Subtarget.isPPC64() && Subtarget.hasFPCVT())
   6648     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
   6649 
   6650   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
   6651          "UINT_TO_FP is supported only with FPCVT");
   6652 
   6653   // If we have FCFIDS, then use it when converting to single-precision.
   6654   // Otherwise, convert to double-precision and then round.
   6655   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   6656                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
   6657                                                             : PPCISD::FCFIDS)
   6658                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
   6659                                                             : PPCISD::FCFID);
   6660   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   6661                   ? MVT::f32
   6662                   : MVT::f64;
   6663 
   6664   if (Op.getOperand(0).getValueType() == MVT::i64) {
   6665     SDValue SINT = Op.getOperand(0);
   6666     // When converting to single-precision, we actually need to convert
   6667     // to double-precision first and then round to single-precision.
   6668     // To avoid double-rounding effects during that operation, we have
   6669     // to prepare the input operand.  Bits that might be truncated when
   6670     // converting to double-precision are replaced by a bit that won't
   6671     // be lost at this stage, but is below the single-precision rounding
   6672     // position.
   6673     //
   6674     // However, if -enable-unsafe-fp-math is in effect, accept double
   6675     // rounding to avoid the extra overhead.
   6676     if (Op.getValueType() == MVT::f32 &&
   6677         !Subtarget.hasFPCVT() &&
   6678         !DAG.getTarget().Options.UnsafeFPMath) {
   6679 
   6680       // Twiddle input to make sure the low 11 bits are zero.  (If this
   6681       // is the case, we are guaranteed the value will fit into the 53 bit
   6682       // mantissa of an IEEE double-precision value without rounding.)
   6683       // If any of those low 11 bits were not zero originally, make sure
   6684       // bit 12 (value 2048) is set instead, so that the final rounding
   6685       // to single-precision gets the correct result.
   6686       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
   6687                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
   6688       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
   6689                           Round, DAG.getConstant(2047, dl, MVT::i64));
   6690       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
   6691       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
   6692                           Round, DAG.getConstant(-2048, dl, MVT::i64));
   6693 
   6694       // However, we cannot use that value unconditionally: if the magnitude
   6695       // of the input value is small, the bit-twiddling we did above might
   6696       // end up visibly changing the output.  Fortunately, in that case, we
   6697       // don't need to twiddle bits since the original input will convert
   6698       // exactly to double-precision floating-point already.  Therefore,
   6699       // construct a conditional to use the original value if the top 11
   6700       // bits are all sign-bit copies, and use the rounded value computed
   6701       // above otherwise.
   6702       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
   6703                                  SINT, DAG.getConstant(53, dl, MVT::i32));
   6704       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
   6705                          Cond, DAG.getConstant(1, dl, MVT::i64));
   6706       Cond = DAG.getSetCC(dl, MVT::i32,
   6707                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
   6708 
   6709       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
   6710     }
   6711 
   6712     ReuseLoadInfo RLI;
   6713     SDValue Bits;
   6714 
   6715     MachineFunction &MF = DAG.getMachineFunction();
   6716     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
   6717       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
   6718                          false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
   6719                          RLI.Ranges);
   6720       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
   6721     } else if (Subtarget.hasLFIWAX() &&
   6722                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
   6723       MachineMemOperand *MMO =
   6724         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   6725                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   6726       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   6727       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
   6728                                      DAG.getVTList(MVT::f64, MVT::Other),
   6729                                      Ops, MVT::i32, MMO);
   6730       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
   6731     } else if (Subtarget.hasFPCVT() &&
   6732                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
   6733       MachineMemOperand *MMO =
   6734         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   6735                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   6736       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   6737       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
   6738                                      DAG.getVTList(MVT::f64, MVT::Other),
   6739                                      Ops, MVT::i32, MMO);
   6740       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
   6741     } else if (((Subtarget.hasLFIWAX() &&
   6742                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
   6743                 (Subtarget.hasFPCVT() &&
   6744                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
   6745                SINT.getOperand(0).getValueType() == MVT::i32) {
   6746       MachineFrameInfo *FrameInfo = MF.getFrameInfo();
   6747       EVT PtrVT = getPointerTy(DAG.getDataLayout());
   6748 
   6749       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
   6750       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   6751 
   6752       SDValue Store = DAG.getStore(
   6753           DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
   6754           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
   6755           false, false, 0);
   6756 
   6757       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
   6758              "Expected an i32 store");
   6759 
   6760       RLI.Ptr = FIdx;
   6761       RLI.Chain = Store;
   6762       RLI.MPI =
   6763           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
   6764       RLI.Alignment = 4;
   6765 
   6766       MachineMemOperand *MMO =
   6767         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   6768                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   6769       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   6770       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
   6771                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
   6772                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
   6773                                      Ops, MVT::i32, MMO);
   6774     } else
   6775       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
   6776 
   6777     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
   6778 
   6779     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
   6780       FP = DAG.getNode(ISD::FP_ROUND, dl,
   6781                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
   6782     return FP;
   6783   }
   6784 
   6785   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
   6786          "Unhandled INT_TO_FP type in custom expander!");
   6787   // Since we only generate this in 64-bit mode, we can take advantage of
   6788   // 64-bit registers.  In particular, sign extend the input value into the
   6789   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
   6790   // then lfd it and fcfid it.
   6791   MachineFunction &MF = DAG.getMachineFunction();
   6792   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
   6793   EVT PtrVT = getPointerTy(MF.getDataLayout());
   6794 
   6795   SDValue Ld;
   6796   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
   6797     ReuseLoadInfo RLI;
   6798     bool ReusingLoad;
   6799     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
   6800                                             DAG))) {
   6801       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
   6802       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   6803 
   6804       SDValue Store = DAG.getStore(
   6805           DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
   6806           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
   6807           false, false, 0);
   6808 
   6809       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
   6810              "Expected an i32 store");
   6811 
   6812       RLI.Ptr = FIdx;
   6813       RLI.Chain = Store;
   6814       RLI.MPI =
   6815           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
   6816       RLI.Alignment = 4;
   6817     }
   6818 
   6819     MachineMemOperand *MMO =
   6820       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   6821                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   6822     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   6823     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
   6824                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
   6825                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
   6826                                  Ops, MVT::i32, MMO);
   6827     if (ReusingLoad)
   6828       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
   6829   } else {
   6830     assert(Subtarget.isPPC64() &&
   6831            "i32->FP without LFIWAX supported only on PPC64");
   6832 
   6833     int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
   6834     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   6835 
   6836     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
   6837                                 Op.getOperand(0));
   6838 
   6839     // STD the extended value into the stack slot.
   6840     SDValue Store = DAG.getStore(
   6841         DAG.getEntryNode(), dl, Ext64, FIdx,
   6842         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
   6843         false, false, 0);
   6844 
   6845     // Load the value as a double.
   6846     Ld = DAG.getLoad(
   6847         MVT::f64, dl, Store, FIdx,
   6848         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
   6849         false, false, false, 0);
   6850   }
   6851 
   6852   // FCFID it and return it.
   6853   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
   6854   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
   6855     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
   6856                      DAG.getIntPtrConstant(0, dl));
   6857   return FP;
   6858 }
   6859 
   6860 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   6861                                             SelectionDAG &DAG) const {
   6862   SDLoc dl(Op);
   6863   /*
   6864    The rounding mode is in bits 30:31 of FPSR, and has the following
   6865    settings:
   6866      00 Round to nearest
   6867      01 Round to 0
   6868      10 Round to +inf
   6869      11 Round to -inf
   6870 
   6871   FLT_ROUNDS, on the other hand, expects the following:
   6872     -1 Undefined
   6873      0 Round to 0
   6874      1 Round to nearest
   6875      2 Round to +inf
   6876      3 Round to -inf
   6877 
   6878   To perform the conversion, we do:
   6879     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
   6880   */
   6881 
   6882   MachineFunction &MF = DAG.getMachineFunction();
   6883   EVT VT = Op.getValueType();
   6884   EVT PtrVT = getPointerTy(MF.getDataLayout());
   6885 
   6886   // Save FP Control Word to register
   6887   EVT NodeTys[] = {
   6888     MVT::f64,    // return register
   6889     MVT::Glue    // unused in this context
   6890   };
   6891   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
   6892 
   6893   // Save FP register to stack slot
   6894   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
   6895   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
   6896   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
   6897                                StackSlot, MachinePointerInfo(), false, false,0);
   6898 
   6899   // Load FP Control Word from low 32 bits of stack slot.
   6900   SDValue Four = DAG.getConstant(4, dl, PtrVT);
   6901   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
   6902   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
   6903                             false, false, false, 0);
   6904 
   6905   // Transform as necessary
   6906   SDValue CWD1 =
   6907     DAG.getNode(ISD::AND, dl, MVT::i32,
   6908                 CWD, DAG.getConstant(3, dl, MVT::i32));
   6909   SDValue CWD2 =
   6910     DAG.getNode(ISD::SRL, dl, MVT::i32,
   6911                 DAG.getNode(ISD::AND, dl, MVT::i32,
   6912                             DAG.getNode(ISD::XOR, dl, MVT::i32,
   6913                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
   6914                             DAG.getConstant(3, dl, MVT::i32)),
   6915                 DAG.getConstant(1, dl, MVT::i32));
   6916 
   6917   SDValue RetVal =
   6918     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
   6919 
   6920   return DAG.getNode((VT.getSizeInBits() < 16 ?
   6921                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
   6922 }
   6923 
   6924 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   6925   EVT VT = Op.getValueType();
   6926   unsigned BitWidth = VT.getSizeInBits();
   6927   SDLoc dl(Op);
   6928   assert(Op.getNumOperands() == 3 &&
   6929          VT == Op.getOperand(1).getValueType() &&
   6930          "Unexpected SHL!");
   6931 
   6932   // Expand into a bunch of logical ops.  Note that these ops
   6933   // depend on the PPC behavior for oversized shift amounts.
   6934   SDValue Lo = Op.getOperand(0);
   6935   SDValue Hi = Op.getOperand(1);
   6936   SDValue Amt = Op.getOperand(2);
   6937   EVT AmtVT = Amt.getValueType();
   6938 
   6939   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   6940                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
   6941   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
   6942   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
   6943   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
   6944   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   6945                              DAG.getConstant(-BitWidth, dl, AmtVT));
   6946   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
   6947   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   6948   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
   6949   SDValue OutOps[] = { OutLo, OutHi };
   6950   return DAG.getMergeValues(OutOps, dl);
   6951 }
   6952 
   6953 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   6954   EVT VT = Op.getValueType();
   6955   SDLoc dl(Op);
   6956   unsigned BitWidth = VT.getSizeInBits();
   6957   assert(Op.getNumOperands() == 3 &&
   6958          VT == Op.getOperand(1).getValueType() &&
   6959          "Unexpected SRL!");
   6960 
   6961   // Expand into a bunch of logical ops.  Note that these ops
   6962   // depend on the PPC behavior for oversized shift amounts.
   6963   SDValue Lo = Op.getOperand(0);
   6964   SDValue Hi = Op.getOperand(1);
   6965   SDValue Amt = Op.getOperand(2);
   6966   EVT AmtVT = Amt.getValueType();
   6967 
   6968   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   6969                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
   6970   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   6971   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   6972   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   6973   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   6974                              DAG.getConstant(-BitWidth, dl, AmtVT));
   6975   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
   6976   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   6977   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
   6978   SDValue OutOps[] = { OutLo, OutHi };
   6979   return DAG.getMergeValues(OutOps, dl);
   6980 }
   6981 
   6982 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
   6983   SDLoc dl(Op);
   6984   EVT VT = Op.getValueType();
   6985   unsigned BitWidth = VT.getSizeInBits();
   6986   assert(Op.getNumOperands() == 3 &&
   6987          VT == Op.getOperand(1).getValueType() &&
   6988          "Unexpected SRA!");
   6989 
   6990   // Expand into a bunch of logical ops, followed by a select_cc.
   6991   SDValue Lo = Op.getOperand(0);
   6992   SDValue Hi = Op.getOperand(1);
   6993   SDValue Amt = Op.getOperand(2);
   6994   EVT AmtVT = Amt.getValueType();
   6995 
   6996   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   6997                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
   6998   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   6999   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   7000   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   7001   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   7002                              DAG.getConstant(-BitWidth, dl, AmtVT));
   7003   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
   7004   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
   7005   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
   7006                                   Tmp4, Tmp6, ISD::SETLE);
   7007   SDValue OutOps[] = { OutLo, OutHi };
   7008   return DAG.getMergeValues(OutOps, dl);
   7009 }
   7010 
   7011 //===----------------------------------------------------------------------===//
   7012 // Vector related lowering.
   7013 //
   7014 
   7015 /// BuildSplatI - Build a canonical splati of Val with an element size of
   7016 /// SplatSize.  Cast the result to VT.
   7017 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
   7018                            SelectionDAG &DAG, const SDLoc &dl) {
   7019   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
   7020 
   7021   static const MVT VTys[] = { // canonical VT to use for each size.
   7022     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
   7023   };
   7024 
   7025   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
   7026 
   7027   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
   7028   if (Val == -1)
   7029     SplatSize = 1;
   7030 
   7031   EVT CanonicalVT = VTys[SplatSize-1];
   7032 
   7033   // Build a canonical splat for this value.
   7034   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
   7035 }
   7036 
   7037 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
   7038 /// specified intrinsic ID.
   7039 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
   7040                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
   7041   if (DestVT == MVT::Other) DestVT = Op.getValueType();
   7042   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   7043                      DAG.getConstant(IID, dl, MVT::i32), Op);
   7044 }
   7045 
   7046 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
   7047 /// specified intrinsic ID.
   7048 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
   7049                                 SelectionDAG &DAG, const SDLoc &dl,
   7050                                 EVT DestVT = MVT::Other) {
   7051   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
   7052   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   7053                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
   7054 }
   7055 
   7056 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
   7057 /// specified intrinsic ID.
   7058 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
   7059                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
   7060                                 EVT DestVT = MVT::Other) {
   7061   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
   7062   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   7063                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
   7064 }
   7065 
   7066 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
   7067 /// amount.  The result has the specified value type.
   7068 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
   7069                            SelectionDAG &DAG, const SDLoc &dl) {
   7070   // Force LHS/RHS to be the right type.
   7071   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
   7072   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
   7073 
   7074   int Ops[16];
   7075   for (unsigned i = 0; i != 16; ++i)
   7076     Ops[i] = i + Amt;
   7077   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
   7078   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   7079 }
   7080 
   7081 // If this is a case we can't handle, return null and let the default
   7082 // expansion code take care of it.  If we CAN select this case, and if it
   7083 // selects to a single instruction, return Op.  Otherwise, if we can codegen
   7084 // this case more efficiently than a constant pool load, lower it to the
   7085 // sequence of ops that should be used.
   7086 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
   7087                                              SelectionDAG &DAG) const {
   7088   SDLoc dl(Op);
   7089   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   7090   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
   7091 
   7092   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
   7093     // We first build an i32 vector, load it into a QPX register,
   7094     // then convert it to a floating-point vector and compare it
   7095     // to a zero vector to get the boolean result.
   7096     MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   7097     int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   7098     MachinePointerInfo PtrInfo =
   7099         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
   7100     EVT PtrVT = getPointerTy(DAG.getDataLayout());
   7101     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   7102 
   7103     assert(BVN->getNumOperands() == 4 &&
   7104       "BUILD_VECTOR for v4i1 does not have 4 operands");
   7105 
   7106     bool IsConst = true;
   7107     for (unsigned i = 0; i < 4; ++i) {
   7108       if (BVN->getOperand(i).isUndef()) continue;
   7109       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
   7110         IsConst = false;
   7111         break;
   7112       }
   7113     }
   7114 
   7115     if (IsConst) {
   7116       Constant *One =
   7117         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
   7118       Constant *NegOne =
   7119         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
   7120 
   7121       Constant *CV[4];
   7122       for (unsigned i = 0; i < 4; ++i) {
   7123         if (BVN->getOperand(i).isUndef())
   7124           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
   7125         else if (isNullConstant(BVN->getOperand(i)))
   7126           CV[i] = NegOne;
   7127         else
   7128           CV[i] = One;
   7129       }
   7130 
   7131       Constant *CP = ConstantVector::get(CV);
   7132       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
   7133                                           16 /* alignment */);
   7134 
   7135       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
   7136       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
   7137       return DAG.getMemIntrinsicNode(
   7138           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
   7139           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   7140     }
   7141 
   7142     SmallVector<SDValue, 4> Stores;
   7143     for (unsigned i = 0; i < 4; ++i) {
   7144       if (BVN->getOperand(i).isUndef()) continue;
   7145 
   7146       unsigned Offset = 4*i;
   7147       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
   7148       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
   7149 
   7150       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
   7151       if (StoreSize > 4) {
   7152         Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
   7153                                            BVN->getOperand(i), Idx,
   7154                                            PtrInfo.getWithOffset(Offset),
   7155                                            MVT::i32, false, false, 0));
   7156       } else {
   7157         SDValue StoreValue = BVN->getOperand(i);
   7158         if (StoreSize < 4)
   7159           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
   7160 
   7161         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
   7162                                       StoreValue, Idx,
   7163                                       PtrInfo.getWithOffset(Offset),
   7164                                       false, false, 0));
   7165       }
   7166     }
   7167 
   7168     SDValue StoreChain;
   7169     if (!Stores.empty())
   7170       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   7171     else
   7172       StoreChain = DAG.getEntryNode();
   7173 
   7174     // Now load from v4i32 into the QPX register; this will extend it to
   7175     // v4i64 but not yet convert it to a floating point. Nevertheless, this
   7176     // is typed as v4f64 because the QPX register integer states are not
   7177     // explicitly represented.
   7178 
   7179     SDValue Ops[] = {StoreChain,
   7180                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
   7181                      FIdx};
   7182     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
   7183 
   7184     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
   7185       dl, VTs, Ops, MVT::v4i32, PtrInfo);
   7186     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
   7187       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
   7188       LoadedVect);
   7189 
   7190     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
   7191 
   7192     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
   7193   }
   7194 
   7195   // All other QPX vectors are handled by generic code.
   7196   if (Subtarget.hasQPX())
   7197     return SDValue();
   7198 
   7199   // Check if this is a splat of a constant value.
   7200   APInt APSplatBits, APSplatUndef;
   7201   unsigned SplatBitSize;
   7202   bool HasAnyUndefs;
   7203   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
   7204                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
   7205       SplatBitSize > 32)
   7206     return SDValue();
   7207 
   7208   unsigned SplatBits = APSplatBits.getZExtValue();
   7209   unsigned SplatUndef = APSplatUndef.getZExtValue();
   7210   unsigned SplatSize = SplatBitSize / 8;
   7211 
   7212   // First, handle single instruction cases.
   7213 
   7214   // All zeros?
   7215   if (SplatBits == 0) {
   7216     // Canonicalize all zero vectors to be v4i32.
   7217     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
   7218       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
   7219       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
   7220     }
   7221     return Op;
   7222   }
   7223 
   7224   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
   7225   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
   7226                     (32-SplatBitSize));
   7227   if (SextVal >= -16 && SextVal <= 15)
   7228     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
   7229 
   7230   // Two instruction sequences.
   7231 
   7232   // If this value is in the range [-32,30] and is even, use:
   7233   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
   7234   // If this value is in the range [17,31] and is odd, use:
   7235   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
   7236   // If this value is in the range [-31,-17] and is odd, use:
   7237   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
   7238   // Note the last two are three-instruction sequences.
   7239   if (SextVal >= -32 && SextVal <= 31) {
   7240     // To avoid having these optimizations undone by constant folding,
   7241     // we convert to a pseudo that will be expanded later into one of
   7242     // the above forms.
   7243     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
   7244     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
   7245               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
   7246     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
   7247     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
   7248     if (VT == Op.getValueType())
   7249       return RetVal;
   7250     else
   7251       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
   7252   }
   7253 
   7254   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
   7255   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
   7256   // for fneg/fabs.
   7257   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
   7258     // Make -1 and vspltisw -1:
   7259     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
   7260 
   7261     // Make the VSLW intrinsic, computing 0x8000_0000.
   7262     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
   7263                                    OnesV, DAG, dl);
   7264 
   7265     // xor by OnesV to invert it.
   7266     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
   7267     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   7268   }
   7269 
   7270   // Check to see if this is a wide variety of vsplti*, binop self cases.
   7271   static const signed char SplatCsts[] = {
   7272     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
   7273     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
   7274   };
   7275 
   7276   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
   7277     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
   7278     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
   7279     int i = SplatCsts[idx];
   7280 
   7281     // Figure out what shift amount will be used by altivec if shifted by i in
   7282     // this splat size.
   7283     unsigned TypeShiftAmt = i & (SplatBitSize-1);
   7284 
   7285     // vsplti + shl self.
   7286     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
   7287       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   7288       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   7289         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
   7290         Intrinsic::ppc_altivec_vslw
   7291       };
   7292       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   7293       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   7294     }
   7295 
   7296     // vsplti + srl self.
   7297     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   7298       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   7299       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   7300         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
   7301         Intrinsic::ppc_altivec_vsrw
   7302       };
   7303       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   7304       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   7305     }
   7306 
   7307     // vsplti + sra self.
   7308     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   7309       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   7310       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   7311         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
   7312         Intrinsic::ppc_altivec_vsraw
   7313       };
   7314       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   7315       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   7316     }
   7317 
   7318     // vsplti + rol self.
   7319     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
   7320                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
   7321       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   7322       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   7323         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
   7324         Intrinsic::ppc_altivec_vrlw
   7325       };
   7326       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   7327       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   7328     }
   7329 
   7330     // t = vsplti c, result = vsldoi t, t, 1
   7331     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
   7332       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   7333       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
   7334       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
   7335     }
   7336     // t = vsplti c, result = vsldoi t, t, 2
   7337     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
   7338       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   7339       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
   7340       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
   7341     }
   7342     // t = vsplti c, result = vsldoi t, t, 3
   7343     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
   7344       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   7345       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
   7346       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
   7347     }
   7348   }
   7349 
   7350   return SDValue();
   7351 }
   7352 
   7353 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   7354 /// the specified operations to build the shuffle.
   7355 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   7356                                       SDValue RHS, SelectionDAG &DAG,
   7357                                       const SDLoc &dl) {
   7358   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   7359   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   7360   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   7361 
   7362   enum {
   7363     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   7364     OP_VMRGHW,
   7365     OP_VMRGLW,
   7366     OP_VSPLTISW0,
   7367     OP_VSPLTISW1,
   7368     OP_VSPLTISW2,
   7369     OP_VSPLTISW3,
   7370     OP_VSLDOI4,
   7371     OP_VSLDOI8,
   7372     OP_VSLDOI12
   7373   };
   7374 
   7375   if (OpNum == OP_COPY) {
   7376     if (LHSID == (1*9+2)*9+3) return LHS;
   7377     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   7378     return RHS;
   7379   }
   7380 
   7381   SDValue OpLHS, OpRHS;
   7382   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   7383   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   7384 
   7385   int ShufIdxs[16];
   7386   switch (OpNum) {
   7387   default: llvm_unreachable("Unknown i32 permute!");
   7388   case OP_VMRGHW:
   7389     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
   7390     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
   7391     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
   7392     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
   7393     break;
   7394   case OP_VMRGLW:
   7395     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
   7396     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
   7397     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
   7398     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
   7399     break;
   7400   case OP_VSPLTISW0:
   7401     for (unsigned i = 0; i != 16; ++i)
   7402       ShufIdxs[i] = (i&3)+0;
   7403     break;
   7404   case OP_VSPLTISW1:
   7405     for (unsigned i = 0; i != 16; ++i)
   7406       ShufIdxs[i] = (i&3)+4;
   7407     break;
   7408   case OP_VSPLTISW2:
   7409     for (unsigned i = 0; i != 16; ++i)
   7410       ShufIdxs[i] = (i&3)+8;
   7411     break;
   7412   case OP_VSPLTISW3:
   7413     for (unsigned i = 0; i != 16; ++i)
   7414       ShufIdxs[i] = (i&3)+12;
   7415     break;
   7416   case OP_VSLDOI4:
   7417     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
   7418   case OP_VSLDOI8:
   7419     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
   7420   case OP_VSLDOI12:
   7421     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
   7422   }
   7423   EVT VT = OpLHS.getValueType();
   7424   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
   7425   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
   7426   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
   7427   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   7428 }
   7429 
   7430 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
   7431 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
   7432 /// return the code it can be lowered into.  Worst case, it can always be
   7433 /// lowered into a vperm.
   7434 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
   7435                                                SelectionDAG &DAG) const {
   7436   SDLoc dl(Op);
   7437   SDValue V1 = Op.getOperand(0);
   7438   SDValue V2 = Op.getOperand(1);
   7439   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   7440   EVT VT = Op.getValueType();
   7441   bool isLittleEndian = Subtarget.isLittleEndian();
   7442 
   7443   unsigned ShiftElts, InsertAtByte;
   7444   bool Swap;
   7445   if (Subtarget.hasP9Vector() &&
   7446       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
   7447                            isLittleEndian)) {
   7448     if (Swap)
   7449       std::swap(V1, V2);
   7450     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
   7451     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
   7452     if (ShiftElts) {
   7453       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
   7454                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
   7455       SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Shl,
   7456                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
   7457       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
   7458     }
   7459     SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Conv2,
   7460                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
   7461     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
   7462   }
   7463 
   7464   if (Subtarget.hasVSX()) {
   7465     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
   7466       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
   7467       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
   7468       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
   7469                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
   7470       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
   7471     }
   7472 
   7473     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
   7474     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
   7475       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
   7476       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
   7477       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
   7478     }
   7479 
   7480   }
   7481 
   7482   if (Subtarget.hasQPX()) {
   7483     if (VT.getVectorNumElements() != 4)
   7484       return SDValue();
   7485 
   7486     if (V2.isUndef()) V2 = V1;
   7487 
   7488     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
   7489     if (AlignIdx != -1) {
   7490       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
   7491                          DAG.getConstant(AlignIdx, dl, MVT::i32));
   7492     } else if (SVOp->isSplat()) {
   7493       int SplatIdx = SVOp->getSplatIndex();
   7494       if (SplatIdx >= 4) {
   7495         std::swap(V1, V2);
   7496         SplatIdx -= 4;
   7497       }
   7498 
   7499       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
   7500                          DAG.getConstant(SplatIdx, dl, MVT::i32));
   7501     }
   7502 
   7503     // Lower this into a qvgpci/qvfperm pair.
   7504 
   7505     // Compute the qvgpci literal
   7506     unsigned idx = 0;
   7507     for (unsigned i = 0; i < 4; ++i) {
   7508       int m = SVOp->getMaskElt(i);
   7509       unsigned mm = m >= 0 ? (unsigned) m : i;
   7510       idx |= mm << (3-i)*3;
   7511     }
   7512 
   7513     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
   7514                              DAG.getConstant(idx, dl, MVT::i32));
   7515     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
   7516   }
   7517 
   7518   // Cases that are handled by instructions that take permute immediates
   7519   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
   7520   // selected by the instruction selector.
   7521   if (V2.isUndef()) {
   7522     if (PPC::isSplatShuffleMask(SVOp, 1) ||
   7523         PPC::isSplatShuffleMask(SVOp, 2) ||
   7524         PPC::isSplatShuffleMask(SVOp, 4) ||
   7525         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
   7526         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
   7527         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
   7528         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
   7529         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
   7530         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
   7531         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
   7532         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
   7533         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
   7534         (Subtarget.hasP8Altivec() && (
   7535          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
   7536          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
   7537          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
   7538       return Op;
   7539     }
   7540   }
   7541 
   7542   // Altivec has a variety of "shuffle immediates" that take two vector inputs
   7543   // and produce a fixed permutation.  If any of these match, do not lower to
   7544   // VPERM.
   7545   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
   7546   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
   7547       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
   7548       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
   7549       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
   7550       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
   7551       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
   7552       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
   7553       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
   7554       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
   7555       (Subtarget.hasP8Altivec() && (
   7556        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
   7557        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
   7558        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
   7559     return Op;
   7560 
   7561   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
   7562   // perfect shuffle table to emit an optimal matching sequence.
   7563   ArrayRef<int> PermMask = SVOp->getMask();
   7564 
   7565   unsigned PFIndexes[4];
   7566   bool isFourElementShuffle = true;
   7567   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
   7568     unsigned EltNo = 8;   // Start out undef.
   7569     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
   7570       if (PermMask[i*4+j] < 0)
   7571         continue;   // Undef, ignore it.
   7572 
   7573       unsigned ByteSource = PermMask[i*4+j];
   7574       if ((ByteSource & 3) != j) {
   7575         isFourElementShuffle = false;
   7576         break;
   7577       }
   7578 
   7579       if (EltNo == 8) {
   7580         EltNo = ByteSource/4;
   7581       } else if (EltNo != ByteSource/4) {
   7582         isFourElementShuffle = false;
   7583         break;
   7584       }
   7585     }
   7586     PFIndexes[i] = EltNo;
   7587   }
   7588 
   7589   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
   7590   // perfect shuffle vector to determine if it is cost effective to do this as
   7591   // discrete instructions, or whether we should use a vperm.
   7592   // For now, we skip this for little endian until such time as we have a
   7593   // little-endian perfect shuffle table.
   7594   if (isFourElementShuffle && !isLittleEndian) {
   7595     // Compute the index in the perfect shuffle table.
   7596     unsigned PFTableIndex =
   7597       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   7598 
   7599     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   7600     unsigned Cost  = (PFEntry >> 30);
   7601 
   7602     // Determining when to avoid vperm is tricky.  Many things affect the cost
   7603     // of vperm, particularly how many times the perm mask needs to be computed.
   7604     // For example, if the perm mask can be hoisted out of a loop or is already
   7605     // used (perhaps because there are multiple permutes with the same shuffle
   7606     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
   7607     // the loop requires an extra register.
   7608     //
   7609     // As a compromise, we only emit discrete instructions if the shuffle can be
   7610     // generated in 3 or fewer operations.  When we have loop information
   7611     // available, if this block is within a loop, we should avoid using vperm
   7612     // for 3-operation perms and use a constant pool load instead.
   7613     if (Cost < 3)
   7614       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   7615   }
   7616 
   7617   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
   7618   // vector that will get spilled to the constant pool.
   7619   if (V2.isUndef()) V2 = V1;
   7620 
   7621   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
   7622   // that it is in input element units, not in bytes.  Convert now.
   7623 
   7624   // For little endian, the order of the input vectors is reversed, and
   7625   // the permutation mask is complemented with respect to 31.  This is
   7626   // necessary to produce proper semantics with the big-endian-biased vperm
   7627   // instruction.
   7628   EVT EltVT = V1.getValueType().getVectorElementType();
   7629   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
   7630 
   7631   SmallVector<SDValue, 16> ResultMask;
   7632   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
   7633     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
   7634 
   7635     for (unsigned j = 0; j != BytesPerElement; ++j)
   7636       if (isLittleEndian)
   7637         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
   7638                                              dl, MVT::i32));
   7639       else
   7640         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
   7641                                              MVT::i32));
   7642   }
   7643 
   7644   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
   7645   if (isLittleEndian)
   7646     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
   7647                        V2, V1, VPermMask);
   7648   else
   7649     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
   7650                        V1, V2, VPermMask);
   7651 }
   7652 
   7653 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
   7654 /// vector comparison.  If it is, return true and fill in Opc/isDot with
   7655 /// information about the intrinsic.
   7656 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
   7657                                  bool &isDot, const PPCSubtarget &Subtarget) {
   7658   unsigned IntrinsicID =
   7659     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
   7660   CompareOpc = -1;
   7661   isDot = false;
   7662   switch (IntrinsicID) {
   7663   default: return false;
   7664     // Comparison predicates.
   7665   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
   7666   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
   7667   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
   7668   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
   7669   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
   7670   case Intrinsic::ppc_altivec_vcmpequd_p:
   7671     if (Subtarget.hasP8Altivec()) {
   7672       CompareOpc = 199;
   7673       isDot = 1;
   7674     } else
   7675       return false;
   7676 
   7677     break;
   7678   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
   7679   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
   7680   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
   7681   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
   7682   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
   7683   case Intrinsic::ppc_altivec_vcmpgtsd_p:
   7684     if (Subtarget.hasP8Altivec()) {
   7685       CompareOpc = 967;
   7686       isDot = 1;
   7687     } else
   7688       return false;
   7689 
   7690     break;
   7691   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
   7692   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
   7693   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
   7694   case Intrinsic::ppc_altivec_vcmpgtud_p:
   7695     if (Subtarget.hasP8Altivec()) {
   7696       CompareOpc = 711;
   7697       isDot = 1;
   7698     } else
   7699       return false;
   7700 
   7701     break;
   7702     // VSX predicate comparisons use the same infrastructure
   7703   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
   7704   case Intrinsic::ppc_vsx_xvcmpgedp_p:
   7705   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
   7706   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
   7707   case Intrinsic::ppc_vsx_xvcmpgesp_p:
   7708   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
   7709     if (Subtarget.hasVSX()) {
   7710       switch (IntrinsicID) {
   7711       case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break;
   7712       case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break;
   7713       case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break;
   7714       case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break;
   7715       case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break;
   7716       case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break;
   7717       }
   7718       isDot = 1;
   7719     }
   7720     else
   7721       return false;
   7722 
   7723     break;
   7724 
   7725     // Normal Comparisons.
   7726   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
   7727   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
   7728   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
   7729   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
   7730   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
   7731   case Intrinsic::ppc_altivec_vcmpequd:
   7732     if (Subtarget.hasP8Altivec()) {
   7733       CompareOpc = 199;
   7734       isDot = 0;
   7735     } else
   7736       return false;
   7737 
   7738     break;
   7739   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
   7740   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
   7741   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
   7742   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
   7743   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
   7744   case Intrinsic::ppc_altivec_vcmpgtsd:
   7745     if (Subtarget.hasP8Altivec()) {
   7746       CompareOpc = 967;
   7747       isDot = 0;
   7748     } else
   7749       return false;
   7750 
   7751     break;
   7752   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
   7753   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
   7754   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
   7755   case Intrinsic::ppc_altivec_vcmpgtud:
   7756     if (Subtarget.hasP8Altivec()) {
   7757       CompareOpc = 711;
   7758       isDot = 0;
   7759     } else
   7760       return false;
   7761 
   7762     break;
   7763   }
   7764   return true;
   7765 }
   7766 
   7767 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
   7768 /// lower, do it, otherwise return null.
   7769 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
   7770                                                    SelectionDAG &DAG) const {
   7771   unsigned IntrinsicID =
   7772     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   7773 
   7774   if (IntrinsicID == Intrinsic::thread_pointer) {
   7775     // Reads the thread pointer register, used for __builtin_thread_pointer.
   7776     bool is64bit = Subtarget.isPPC64();
   7777     return DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
   7778                            is64bit ? MVT::i64 : MVT::i32);
   7779   }
   7780 
   7781   // If this is a lowered altivec predicate compare, CompareOpc is set to the
   7782   // opcode number of the comparison.
   7783   SDLoc dl(Op);
   7784   int CompareOpc;
   7785   bool isDot;
   7786   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
   7787     return SDValue();    // Don't custom lower most intrinsics.
   7788 
   7789   // If this is a non-dot comparison, make the VCMP node and we are done.
   7790   if (!isDot) {
   7791     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
   7792                               Op.getOperand(1), Op.getOperand(2),
   7793                               DAG.getConstant(CompareOpc, dl, MVT::i32));
   7794     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
   7795   }
   7796 
   7797   // Create the PPCISD altivec 'dot' comparison node.
   7798   SDValue Ops[] = {
   7799     Op.getOperand(2),  // LHS
   7800     Op.getOperand(3),  // RHS
   7801     DAG.getConstant(CompareOpc, dl, MVT::i32)
   7802   };
   7803   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
   7804   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
   7805 
   7806   // Now that we have the comparison, emit a copy from the CR to a GPR.
   7807   // This is flagged to the above dot comparison.
   7808   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
   7809                                 DAG.getRegister(PPC::CR6, MVT::i32),
   7810                                 CompNode.getValue(1));
   7811 
   7812   // Unpack the result based on how the target uses it.
   7813   unsigned BitNo;   // Bit # of CR6.
   7814   bool InvertBit;   // Invert result?
   7815   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
   7816   default:  // Can't happen, don't crash on invalid number though.
   7817   case 0:   // Return the value of the EQ bit of CR6.
   7818     BitNo = 0; InvertBit = false;
   7819     break;
   7820   case 1:   // Return the inverted value of the EQ bit of CR6.
   7821     BitNo = 0; InvertBit = true;
   7822     break;
   7823   case 2:   // Return the value of the LT bit of CR6.
   7824     BitNo = 2; InvertBit = false;
   7825     break;
   7826   case 3:   // Return the inverted value of the LT bit of CR6.
   7827     BitNo = 2; InvertBit = true;
   7828     break;
   7829   }
   7830 
   7831   // Shift the bit into the low position.
   7832   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
   7833                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
   7834   // Isolate the bit.
   7835   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
   7836                       DAG.getConstant(1, dl, MVT::i32));
   7837 
   7838   // If we are supposed to, toggle the bit.
   7839   if (InvertBit)
   7840     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
   7841                         DAG.getConstant(1, dl, MVT::i32));
   7842   return Flags;
   7843 }
   7844 
   7845 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
   7846                                                   SelectionDAG &DAG) const {
   7847   SDLoc dl(Op);
   7848   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
   7849   // instructions), but for smaller types, we need to first extend up to v2i32
   7850   // before doing going farther.
   7851   if (Op.getValueType() == MVT::v2i64) {
   7852     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   7853     if (ExtVT != MVT::v2i32) {
   7854       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
   7855       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
   7856                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
   7857                                         ExtVT.getVectorElementType(), 4)));
   7858       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
   7859       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
   7860                        DAG.getValueType(MVT::v2i32));
   7861     }
   7862 
   7863     return Op;
   7864   }
   7865 
   7866   return SDValue();
   7867 }
   7868 
   7869 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
   7870                                                    SelectionDAG &DAG) const {
   7871   SDLoc dl(Op);
   7872   // Create a stack slot that is 16-byte aligned.
   7873   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   7874   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   7875   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   7876   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   7877 
   7878   // Store the input value into Value#0 of the stack slot.
   7879   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
   7880                                Op.getOperand(0), FIdx, MachinePointerInfo(),
   7881                                false, false, 0);
   7882   // Load it out.
   7883   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
   7884                      false, false, false, 0);
   7885 }
   7886 
   7887 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
   7888                                                    SelectionDAG &DAG) const {
   7889   SDLoc dl(Op);
   7890   SDNode *N = Op.getNode();
   7891 
   7892   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
   7893          "Unknown extract_vector_elt type");
   7894 
   7895   SDValue Value = N->getOperand(0);
   7896 
   7897   // The first part of this is like the store lowering except that we don't
   7898   // need to track the chain.
   7899 
   7900   // The values are now known to be -1 (false) or 1 (true). To convert this
   7901   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
   7902   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
   7903   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
   7904 
   7905   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
   7906   // understand how to form the extending load.
   7907   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
   7908 
   7909   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
   7910 
   7911   // Now convert to an integer and store.
   7912   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
   7913     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
   7914     Value);
   7915 
   7916   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   7917   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   7918   MachinePointerInfo PtrInfo =
   7919       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
   7920   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   7921   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   7922 
   7923   SDValue StoreChain = DAG.getEntryNode();
   7924   SDValue Ops[] = {StoreChain,
   7925                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
   7926                    Value, FIdx};
   7927   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
   7928 
   7929   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
   7930     dl, VTs, Ops, MVT::v4i32, PtrInfo);
   7931 
   7932   // Extract the value requested.
   7933   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   7934   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
   7935   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
   7936 
   7937   SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
   7938                                PtrInfo.getWithOffset(Offset),
   7939                                false, false, false, 0);
   7940 
   7941   if (!Subtarget.useCRBits())
   7942     return IntVal;
   7943 
   7944   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
   7945 }
   7946 
   7947 /// Lowering for QPX v4i1 loads
   7948 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
   7949                                            SelectionDAG &DAG) const {
   7950   SDLoc dl(Op);
   7951   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
   7952   SDValue LoadChain = LN->getChain();
   7953   SDValue BasePtr = LN->getBasePtr();
   7954 
   7955   if (Op.getValueType() == MVT::v4f64 ||
   7956       Op.getValueType() == MVT::v4f32) {
   7957     EVT MemVT = LN->getMemoryVT();
   7958     unsigned Alignment = LN->getAlignment();
   7959 
   7960     // If this load is properly aligned, then it is legal.
   7961     if (Alignment >= MemVT.getStoreSize())
   7962       return Op;
   7963 
   7964     EVT ScalarVT = Op.getValueType().getScalarType(),
   7965         ScalarMemVT = MemVT.getScalarType();
   7966     unsigned Stride = ScalarMemVT.getStoreSize();
   7967 
   7968     SDValue Vals[4], LoadChains[4];
   7969     for (unsigned Idx = 0; Idx < 4; ++Idx) {
   7970       SDValue Load;
   7971       if (ScalarVT != ScalarMemVT)
   7972         Load =
   7973           DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
   7974                          BasePtr,
   7975                          LN->getPointerInfo().getWithOffset(Idx*Stride),
   7976                          ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(),
   7977                          LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
   7978                          LN->getAAInfo());
   7979       else
   7980         Load =
   7981           DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
   7982                        LN->getPointerInfo().getWithOffset(Idx*Stride),
   7983                        LN->isVolatile(), LN->isNonTemporal(),
   7984                        LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
   7985                        LN->getAAInfo());
   7986 
   7987       if (Idx == 0 && LN->isIndexed()) {
   7988         assert(LN->getAddressingMode() == ISD::PRE_INC &&
   7989                "Unknown addressing mode on vector load");
   7990         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
   7991                                   LN->getAddressingMode());
   7992       }
   7993 
   7994       Vals[Idx] = Load;
   7995       LoadChains[Idx] = Load.getValue(1);
   7996 
   7997       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
   7998                             DAG.getConstant(Stride, dl,
   7999                                             BasePtr.getValueType()));
   8000     }
   8001 
   8002     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
   8003     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
   8004 
   8005     if (LN->isIndexed()) {
   8006       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
   8007       return DAG.getMergeValues(RetOps, dl);
   8008     }
   8009 
   8010     SDValue RetOps[] = { Value, TF };
   8011     return DAG.getMergeValues(RetOps, dl);
   8012   }
   8013 
   8014   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
   8015   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
   8016 
   8017   // To lower v4i1 from a byte array, we load the byte elements of the
   8018   // vector and then reuse the BUILD_VECTOR logic.
   8019 
   8020   SDValue VectElmts[4], VectElmtChains[4];
   8021   for (unsigned i = 0; i < 4; ++i) {
   8022     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
   8023     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
   8024 
   8025     VectElmts[i] = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
   8026                                   LN->getPointerInfo().getWithOffset(i),
   8027                                   MVT::i8 /* memory type */, LN->isVolatile(),
   8028                                   LN->isNonTemporal(), LN->isInvariant(),
   8029                                   1 /* alignment */, LN->getAAInfo());
   8030     VectElmtChains[i] = VectElmts[i].getValue(1);
   8031   }
   8032 
   8033   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
   8034   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
   8035 
   8036   SDValue RVals[] = { Value, LoadChain };
   8037   return DAG.getMergeValues(RVals, dl);
   8038 }
   8039 
   8040 /// Lowering for QPX v4i1 stores
   8041 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
   8042                                             SelectionDAG &DAG) const {
   8043   SDLoc dl(Op);
   8044   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
   8045   SDValue StoreChain = SN->getChain();
   8046   SDValue BasePtr = SN->getBasePtr();
   8047   SDValue Value = SN->getValue();
   8048 
   8049   if (Value.getValueType() == MVT::v4f64 ||
   8050       Value.getValueType() == MVT::v4f32) {
   8051     EVT MemVT = SN->getMemoryVT();
   8052     unsigned Alignment = SN->getAlignment();
   8053 
   8054     // If this store is properly aligned, then it is legal.
   8055     if (Alignment >= MemVT.getStoreSize())
   8056       return Op;
   8057 
   8058     EVT ScalarVT = Value.getValueType().getScalarType(),
   8059         ScalarMemVT = MemVT.getScalarType();
   8060     unsigned Stride = ScalarMemVT.getStoreSize();
   8061 
   8062     SDValue Stores[4];
   8063     for (unsigned Idx = 0; Idx < 4; ++Idx) {
   8064       SDValue Ex = DAG.getNode(
   8065           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
   8066           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
   8067       SDValue Store;
   8068       if (ScalarVT != ScalarMemVT)
   8069         Store =
   8070           DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
   8071                             SN->getPointerInfo().getWithOffset(Idx*Stride),
   8072                             ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(),
   8073                             MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
   8074       else
   8075         Store =
   8076           DAG.getStore(StoreChain, dl, Ex, BasePtr,
   8077                        SN->getPointerInfo().getWithOffset(Idx*Stride),
   8078                        SN->isVolatile(), SN->isNonTemporal(),
   8079                        MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
   8080 
   8081       if (Idx == 0 && SN->isIndexed()) {
   8082         assert(SN->getAddressingMode() == ISD::PRE_INC &&
   8083                "Unknown addressing mode on vector store");
   8084         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
   8085                                     SN->getAddressingMode());
   8086       }
   8087 
   8088       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
   8089                             DAG.getConstant(Stride, dl,
   8090                                             BasePtr.getValueType()));
   8091       Stores[Idx] = Store;
   8092     }
   8093 
   8094     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   8095 
   8096     if (SN->isIndexed()) {
   8097       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
   8098       return DAG.getMergeValues(RetOps, dl);
   8099     }
   8100 
   8101     return TF;
   8102   }
   8103 
   8104   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
   8105   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
   8106 
   8107   // The values are now known to be -1 (false) or 1 (true). To convert this
   8108   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
   8109   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
   8110   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
   8111 
   8112   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
   8113   // understand how to form the extending load.
   8114   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
   8115 
   8116   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
   8117 
   8118   // Now convert to an integer and store.
   8119   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
   8120     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
   8121     Value);
   8122 
   8123   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   8124   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   8125   MachinePointerInfo PtrInfo =
   8126       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
   8127   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   8128   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   8129 
   8130   SDValue Ops[] = {StoreChain,
   8131                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
   8132                    Value, FIdx};
   8133   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
   8134 
   8135   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
   8136     dl, VTs, Ops, MVT::v4i32, PtrInfo);
   8137 
   8138   // Move data into the byte array.
   8139   SDValue Loads[4], LoadChains[4];
   8140   for (unsigned i = 0; i < 4; ++i) {
   8141     unsigned Offset = 4*i;
   8142     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
   8143     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
   8144 
   8145     Loads[i] =
   8146         DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
   8147                     PtrInfo.getWithOffset(Offset), false, false, false, 0);
   8148     LoadChains[i] = Loads[i].getValue(1);
   8149   }
   8150 
   8151   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
   8152 
   8153   SDValue Stores[4];
   8154   for (unsigned i = 0; i < 4; ++i) {
   8155     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
   8156     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
   8157 
   8158     Stores[i] = DAG.getTruncStore(
   8159         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
   8160         MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(),
   8161         1 /* alignment */, SN->getAAInfo());
   8162   }
   8163 
   8164   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   8165 
   8166   return StoreChain;
   8167 }
   8168 
   8169 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
   8170   SDLoc dl(Op);
   8171   if (Op.getValueType() == MVT::v4i32) {
   8172     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   8173 
   8174     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
   8175     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
   8176 
   8177     SDValue RHSSwap =   // = vrlw RHS, 16
   8178       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
   8179 
   8180     // Shrinkify inputs to v8i16.
   8181     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
   8182     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
   8183     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
   8184 
   8185     // Low parts multiplied together, generating 32-bit results (we ignore the
   8186     // top parts).
   8187     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
   8188                                         LHS, RHS, DAG, dl, MVT::v4i32);
   8189 
   8190     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
   8191                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
   8192     // Shift the high parts up 16 bits.
   8193     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
   8194                               Neg16, DAG, dl);
   8195     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
   8196   } else if (Op.getValueType() == MVT::v8i16) {
   8197     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   8198 
   8199     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
   8200 
   8201     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
   8202                             LHS, RHS, Zero, DAG, dl);
   8203   } else if (Op.getValueType() == MVT::v16i8) {
   8204     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   8205     bool isLittleEndian = Subtarget.isLittleEndian();
   8206 
   8207     // Multiply the even 8-bit parts, producing 16-bit sums.
   8208     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
   8209                                            LHS, RHS, DAG, dl, MVT::v8i16);
   8210     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
   8211 
   8212     // Multiply the odd 8-bit parts, producing 16-bit sums.
   8213     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
   8214                                           LHS, RHS, DAG, dl, MVT::v8i16);
   8215     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
   8216 
   8217     // Merge the results together.  Because vmuleub and vmuloub are
   8218     // instructions with a big-endian bias, we must reverse the
   8219     // element numbering and reverse the meaning of "odd" and "even"
   8220     // when generating little endian code.
   8221     int Ops[16];
   8222     for (unsigned i = 0; i != 8; ++i) {
   8223       if (isLittleEndian) {
   8224         Ops[i*2  ] = 2*i;
   8225         Ops[i*2+1] = 2*i+16;
   8226       } else {
   8227         Ops[i*2  ] = 2*i+1;
   8228         Ops[i*2+1] = 2*i+1+16;
   8229       }
   8230     }
   8231     if (isLittleEndian)
   8232       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
   8233     else
   8234       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
   8235   } else {
   8236     llvm_unreachable("Unknown mul to lower!");
   8237   }
   8238 }
   8239 
   8240 /// LowerOperation - Provide custom lowering hooks for some operations.
   8241 ///
   8242 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   8243   switch (Op.getOpcode()) {
   8244   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
   8245   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
   8246   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
   8247   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
   8248   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
   8249   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
   8250   case ISD::SETCC:              return LowerSETCC(Op, DAG);
   8251   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
   8252   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
   8253   case ISD::VASTART:
   8254     return LowerVASTART(Op, DAG);
   8255 
   8256   case ISD::VAARG:
   8257     return LowerVAARG(Op, DAG);
   8258 
   8259   case ISD::VACOPY:
   8260     return LowerVACOPY(Op, DAG);
   8261 
   8262   case ISD::STACKRESTORE:
   8263     return LowerSTACKRESTORE(Op, DAG);
   8264 
   8265   case ISD::DYNAMIC_STACKALLOC:
   8266     return LowerDYNAMIC_STACKALLOC(Op, DAG);
   8267 
   8268   case ISD::GET_DYNAMIC_AREA_OFFSET:
   8269     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
   8270 
   8271   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
   8272   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
   8273 
   8274   case ISD::LOAD:               return LowerLOAD(Op, DAG);
   8275   case ISD::STORE:              return LowerSTORE(Op, DAG);
   8276   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
   8277   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
   8278   case ISD::FP_TO_UINT:
   8279   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
   8280                                                       SDLoc(Op));
   8281   case ISD::UINT_TO_FP:
   8282   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
   8283   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
   8284 
   8285   // Lower 64-bit shifts.
   8286   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
   8287   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
   8288   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
   8289 
   8290   // Vector-related lowering.
   8291   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
   8292   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
   8293   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   8294   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
   8295   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
   8296   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   8297   case ISD::MUL:                return LowerMUL(Op, DAG);
   8298 
   8299   // For counter-based loop handling.
   8300   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
   8301 
   8302   // Frame & Return address.
   8303   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
   8304   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
   8305   }
   8306 }
   8307 
   8308 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
   8309                                            SmallVectorImpl<SDValue>&Results,
   8310                                            SelectionDAG &DAG) const {
   8311   SDLoc dl(N);
   8312   switch (N->getOpcode()) {
   8313   default:
   8314     llvm_unreachable("Do not know how to custom type legalize this operation!");
   8315   case ISD::READCYCLECOUNTER: {
   8316     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
   8317     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
   8318 
   8319     Results.push_back(RTB);
   8320     Results.push_back(RTB.getValue(1));
   8321     Results.push_back(RTB.getValue(2));
   8322     break;
   8323   }
   8324   case ISD::INTRINSIC_W_CHAIN: {
   8325     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
   8326         Intrinsic::ppc_is_decremented_ctr_nonzero)
   8327       break;
   8328 
   8329     assert(N->getValueType(0) == MVT::i1 &&
   8330            "Unexpected result type for CTR decrement intrinsic");
   8331     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
   8332                                  N->getValueType(0));
   8333     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
   8334     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
   8335                                  N->getOperand(1));
   8336 
   8337     Results.push_back(NewInt);
   8338     Results.push_back(NewInt.getValue(1));
   8339     break;
   8340   }
   8341   case ISD::VAARG: {
   8342     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
   8343       return;
   8344 
   8345     EVT VT = N->getValueType(0);
   8346 
   8347     if (VT == MVT::i64) {
   8348       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
   8349 
   8350       Results.push_back(NewNode);
   8351       Results.push_back(NewNode.getValue(1));
   8352     }
   8353     return;
   8354   }
   8355   case ISD::FP_ROUND_INREG: {
   8356     assert(N->getValueType(0) == MVT::ppcf128);
   8357     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
   8358     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   8359                              MVT::f64, N->getOperand(0),
   8360                              DAG.getIntPtrConstant(0, dl));
   8361     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   8362                              MVT::f64, N->getOperand(0),
   8363                              DAG.getIntPtrConstant(1, dl));
   8364 
   8365     // Add the two halves of the long double in round-to-zero mode.
   8366     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
   8367 
   8368     // We know the low half is about to be thrown away, so just use something
   8369     // convenient.
   8370     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
   8371                                 FPreg, FPreg));
   8372     return;
   8373   }
   8374   case ISD::FP_TO_SINT:
   8375   case ISD::FP_TO_UINT:
   8376     // LowerFP_TO_INT() can only handle f32 and f64.
   8377     if (N->getOperand(0).getValueType() == MVT::ppcf128)
   8378       return;
   8379     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
   8380     return;
   8381   }
   8382 }
   8383 
   8384 //===----------------------------------------------------------------------===//
   8385 //  Other Lowering Code
   8386 //===----------------------------------------------------------------------===//
   8387 
   8388 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
   8389   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   8390   Function *Func = Intrinsic::getDeclaration(M, Id);
   8391   return Builder.CreateCall(Func, {});
   8392 }
   8393 
   8394 // The mappings for emitLeading/TrailingFence is taken from
   8395 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
   8396 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
   8397                                          AtomicOrdering Ord, bool IsStore,
   8398                                          bool IsLoad) const {
   8399   if (Ord == AtomicOrdering::SequentiallyConsistent)
   8400     return callIntrinsic(Builder, Intrinsic::ppc_sync);
   8401   if (isReleaseOrStronger(Ord))
   8402     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
   8403   return nullptr;
   8404 }
   8405 
   8406 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
   8407                                           AtomicOrdering Ord, bool IsStore,
   8408                                           bool IsLoad) const {
   8409   if (IsLoad && isAcquireOrStronger(Ord))
   8410     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
   8411   // FIXME: this is too conservative, a dependent branch + isync is enough.
   8412   // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
   8413   // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
   8414   // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
   8415   return nullptr;
   8416 }
   8417 
   8418 MachineBasicBlock *
   8419 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
   8420                                     unsigned AtomicSize,
   8421                                     unsigned BinOpcode) const {
   8422   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   8423   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   8424 
   8425   auto LoadMnemonic = PPC::LDARX;
   8426   auto StoreMnemonic = PPC::STDCX;
   8427   switch (AtomicSize) {
   8428   default:
   8429     llvm_unreachable("Unexpected size of atomic entity");
   8430   case 1:
   8431     LoadMnemonic = PPC::LBARX;
   8432     StoreMnemonic = PPC::STBCX;
   8433     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
   8434     break;
   8435   case 2:
   8436     LoadMnemonic = PPC::LHARX;
   8437     StoreMnemonic = PPC::STHCX;
   8438     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
   8439     break;
   8440   case 4:
   8441     LoadMnemonic = PPC::LWARX;
   8442     StoreMnemonic = PPC::STWCX;
   8443     break;
   8444   case 8:
   8445     LoadMnemonic = PPC::LDARX;
   8446     StoreMnemonic = PPC::STDCX;
   8447     break;
   8448   }
   8449 
   8450   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   8451   MachineFunction *F = BB->getParent();
   8452   MachineFunction::iterator It = ++BB->getIterator();
   8453 
   8454   unsigned dest = MI.getOperand(0).getReg();
   8455   unsigned ptrA = MI.getOperand(1).getReg();
   8456   unsigned ptrB = MI.getOperand(2).getReg();
   8457   unsigned incr = MI.getOperand(3).getReg();
   8458   DebugLoc dl = MI.getDebugLoc();
   8459 
   8460   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8461   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8462   F->insert(It, loopMBB);
   8463   F->insert(It, exitMBB);
   8464   exitMBB->splice(exitMBB->begin(), BB,
   8465                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8466   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   8467 
   8468   MachineRegisterInfo &RegInfo = F->getRegInfo();
   8469   unsigned TmpReg = (!BinOpcode) ? incr :
   8470     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
   8471                                            : &PPC::GPRCRegClass);
   8472 
   8473   //  thisMBB:
   8474   //   ...
   8475   //   fallthrough --> loopMBB
   8476   BB->addSuccessor(loopMBB);
   8477 
   8478   //  loopMBB:
   8479   //   l[wd]arx dest, ptr
   8480   //   add r0, dest, incr
   8481   //   st[wd]cx. r0, ptr
   8482   //   bne- loopMBB
   8483   //   fallthrough --> exitMBB
   8484   BB = loopMBB;
   8485   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
   8486     .addReg(ptrA).addReg(ptrB);
   8487   if (BinOpcode)
   8488     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
   8489   BuildMI(BB, dl, TII->get(StoreMnemonic))
   8490     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
   8491   BuildMI(BB, dl, TII->get(PPC::BCC))
   8492     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   8493   BB->addSuccessor(loopMBB);
   8494   BB->addSuccessor(exitMBB);
   8495 
   8496   //  exitMBB:
   8497   //   ...
   8498   BB = exitMBB;
   8499   return BB;
   8500 }
   8501 
   8502 MachineBasicBlock *
   8503 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
   8504                                             MachineBasicBlock *BB,
   8505                                             bool is8bit, // operation
   8506                                             unsigned BinOpcode) const {
   8507   // If we support part-word atomic mnemonics, just use them
   8508   if (Subtarget.hasPartwordAtomics())
   8509     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode);
   8510 
   8511   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   8512   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   8513   // In 64 bit mode we have to use 64 bits for addresses, even though the
   8514   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
   8515   // registers without caring whether they're 32 or 64, but here we're
   8516   // doing actual arithmetic on the addresses.
   8517   bool is64bit = Subtarget.isPPC64();
   8518   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
   8519 
   8520   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   8521   MachineFunction *F = BB->getParent();
   8522   MachineFunction::iterator It = ++BB->getIterator();
   8523 
   8524   unsigned dest = MI.getOperand(0).getReg();
   8525   unsigned ptrA = MI.getOperand(1).getReg();
   8526   unsigned ptrB = MI.getOperand(2).getReg();
   8527   unsigned incr = MI.getOperand(3).getReg();
   8528   DebugLoc dl = MI.getDebugLoc();
   8529 
   8530   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8531   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8532   F->insert(It, loopMBB);
   8533   F->insert(It, exitMBB);
   8534   exitMBB->splice(exitMBB->begin(), BB,
   8535                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8536   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   8537 
   8538   MachineRegisterInfo &RegInfo = F->getRegInfo();
   8539   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
   8540                                           : &PPC::GPRCRegClass;
   8541   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   8542   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   8543   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   8544   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
   8545   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   8546   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   8547   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   8548   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   8549   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
   8550   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   8551   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   8552   unsigned Ptr1Reg;
   8553   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
   8554 
   8555   //  thisMBB:
   8556   //   ...
   8557   //   fallthrough --> loopMBB
   8558   BB->addSuccessor(loopMBB);
   8559 
   8560   // The 4-byte load must be aligned, while a char or short may be
   8561   // anywhere in the word.  Hence all this nasty bookkeeping code.
   8562   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   8563   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   8564   //   xori shift, shift1, 24 [16]
   8565   //   rlwinm ptr, ptr1, 0, 0, 29
   8566   //   slw incr2, incr, shift
   8567   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   8568   //   slw mask, mask2, shift
   8569   //  loopMBB:
   8570   //   lwarx tmpDest, ptr
   8571   //   add tmp, tmpDest, incr2
   8572   //   andc tmp2, tmpDest, mask
   8573   //   and tmp3, tmp, mask
   8574   //   or tmp4, tmp3, tmp2
   8575   //   stwcx. tmp4, ptr
   8576   //   bne- loopMBB
   8577   //   fallthrough --> exitMBB
   8578   //   srw dest, tmpDest, shift
   8579   if (ptrA != ZeroReg) {
   8580     Ptr1Reg = RegInfo.createVirtualRegister(RC);
   8581     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   8582       .addReg(ptrA).addReg(ptrB);
   8583   } else {
   8584     Ptr1Reg = ptrB;
   8585   }
   8586   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   8587       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   8588   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   8589       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   8590   if (is64bit)
   8591     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   8592       .addReg(Ptr1Reg).addImm(0).addImm(61);
   8593   else
   8594     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   8595       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   8596   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
   8597       .addReg(incr).addReg(ShiftReg);
   8598   if (is8bit)
   8599     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   8600   else {
   8601     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   8602     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
   8603   }
   8604   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   8605       .addReg(Mask2Reg).addReg(ShiftReg);
   8606 
   8607   BB = loopMBB;
   8608   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   8609     .addReg(ZeroReg).addReg(PtrReg);
   8610   if (BinOpcode)
   8611     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
   8612       .addReg(Incr2Reg).addReg(TmpDestReg);
   8613   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
   8614     .addReg(TmpDestReg).addReg(MaskReg);
   8615   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
   8616     .addReg(TmpReg).addReg(MaskReg);
   8617   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
   8618     .addReg(Tmp3Reg).addReg(Tmp2Reg);
   8619   BuildMI(BB, dl, TII->get(PPC::STWCX))
   8620     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
   8621   BuildMI(BB, dl, TII->get(PPC::BCC))
   8622     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   8623   BB->addSuccessor(loopMBB);
   8624   BB->addSuccessor(exitMBB);
   8625 
   8626   //  exitMBB:
   8627   //   ...
   8628   BB = exitMBB;
   8629   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
   8630     .addReg(ShiftReg);
   8631   return BB;
   8632 }
   8633 
   8634 llvm::MachineBasicBlock *
   8635 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
   8636                                     MachineBasicBlock *MBB) const {
   8637   DebugLoc DL = MI.getDebugLoc();
   8638   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   8639 
   8640   MachineFunction *MF = MBB->getParent();
   8641   MachineRegisterInfo &MRI = MF->getRegInfo();
   8642 
   8643   const BasicBlock *BB = MBB->getBasicBlock();
   8644   MachineFunction::iterator I = ++MBB->getIterator();
   8645 
   8646   // Memory Reference
   8647   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
   8648   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
   8649 
   8650   unsigned DstReg = MI.getOperand(0).getReg();
   8651   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
   8652   assert(RC->hasType(MVT::i32) && "Invalid destination!");
   8653   unsigned mainDstReg = MRI.createVirtualRegister(RC);
   8654   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
   8655 
   8656   MVT PVT = getPointerTy(MF->getDataLayout());
   8657   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
   8658          "Invalid Pointer Size!");
   8659   // For v = setjmp(buf), we generate
   8660   //
   8661   // thisMBB:
   8662   //  SjLjSetup mainMBB
   8663   //  bl mainMBB
   8664   //  v_restore = 1
   8665   //  b sinkMBB
   8666   //
   8667   // mainMBB:
   8668   //  buf[LabelOffset] = LR
   8669   //  v_main = 0
   8670   //
   8671   // sinkMBB:
   8672   //  v = phi(main, restore)
   8673   //
   8674 
   8675   MachineBasicBlock *thisMBB = MBB;
   8676   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
   8677   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
   8678   MF->insert(I, mainMBB);
   8679   MF->insert(I, sinkMBB);
   8680 
   8681   MachineInstrBuilder MIB;
   8682 
   8683   // Transfer the remainder of BB and its successor edges to sinkMBB.
   8684   sinkMBB->splice(sinkMBB->begin(), MBB,
   8685                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
   8686   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
   8687 
   8688   // Note that the structure of the jmp_buf used here is not compatible
   8689   // with that used by libc, and is not designed to be. Specifically, it
   8690   // stores only those 'reserved' registers that LLVM does not otherwise
   8691   // understand how to spill. Also, by convention, by the time this
   8692   // intrinsic is called, Clang has already stored the frame address in the
   8693   // first slot of the buffer and stack address in the third. Following the
   8694   // X86 target code, we'll store the jump address in the second slot. We also
   8695   // need to save the TOC pointer (R2) to handle jumps between shared
   8696   // libraries, and that will be stored in the fourth slot. The thread
   8697   // identifier (R13) is not affected.
   8698 
   8699   // thisMBB:
   8700   const int64_t LabelOffset = 1 * PVT.getStoreSize();
   8701   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
   8702   const int64_t BPOffset    = 4 * PVT.getStoreSize();
   8703 
   8704   // Prepare IP either in reg.
   8705   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
   8706   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
   8707   unsigned BufReg = MI.getOperand(1).getReg();
   8708 
   8709   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
   8710     setUsesTOCBasePtr(*MBB->getParent());
   8711     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
   8712             .addReg(PPC::X2)
   8713             .addImm(TOCOffset)
   8714             .addReg(BufReg);
   8715     MIB.setMemRefs(MMOBegin, MMOEnd);
   8716   }
   8717 
   8718   // Naked functions never have a base pointer, and so we use r1. For all
   8719   // other functions, this decision must be delayed until during PEI.
   8720   unsigned BaseReg;
   8721   if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
   8722     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
   8723   else
   8724     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
   8725 
   8726   MIB = BuildMI(*thisMBB, MI, DL,
   8727                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
   8728             .addReg(BaseReg)
   8729             .addImm(BPOffset)
   8730             .addReg(BufReg);
   8731   MIB.setMemRefs(MMOBegin, MMOEnd);
   8732 
   8733   // Setup
   8734   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
   8735   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
   8736   MIB.addRegMask(TRI->getNoPreservedMask());
   8737 
   8738   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
   8739 
   8740   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
   8741           .addMBB(mainMBB);
   8742   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
   8743 
   8744   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
   8745   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
   8746 
   8747   // mainMBB:
   8748   //  mainDstReg = 0
   8749   MIB =
   8750       BuildMI(mainMBB, DL,
   8751               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
   8752 
   8753   // Store IP
   8754   if (Subtarget.isPPC64()) {
   8755     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
   8756             .addReg(LabelReg)
   8757             .addImm(LabelOffset)
   8758             .addReg(BufReg);
   8759   } else {
   8760     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
   8761             .addReg(LabelReg)
   8762             .addImm(LabelOffset)
   8763             .addReg(BufReg);
   8764   }
   8765 
   8766   MIB.setMemRefs(MMOBegin, MMOEnd);
   8767 
   8768   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
   8769   mainMBB->addSuccessor(sinkMBB);
   8770 
   8771   // sinkMBB:
   8772   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   8773           TII->get(PPC::PHI), DstReg)
   8774     .addReg(mainDstReg).addMBB(mainMBB)
   8775     .addReg(restoreDstReg).addMBB(thisMBB);
   8776 
   8777   MI.eraseFromParent();
   8778   return sinkMBB;
   8779 }
   8780 
   8781 MachineBasicBlock *
   8782 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
   8783                                      MachineBasicBlock *MBB) const {
   8784   DebugLoc DL = MI.getDebugLoc();
   8785   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   8786 
   8787   MachineFunction *MF = MBB->getParent();
   8788   MachineRegisterInfo &MRI = MF->getRegInfo();
   8789 
   8790   // Memory Reference
   8791   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
   8792   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
   8793 
   8794   MVT PVT = getPointerTy(MF->getDataLayout());
   8795   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
   8796          "Invalid Pointer Size!");
   8797 
   8798   const TargetRegisterClass *RC =
   8799     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
   8800   unsigned Tmp = MRI.createVirtualRegister(RC);
   8801   // Since FP is only updated here but NOT referenced, it's treated as GPR.
   8802   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
   8803   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
   8804   unsigned BP =
   8805       (PVT == MVT::i64)
   8806           ? PPC::X30
   8807           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
   8808                                                               : PPC::R30);
   8809 
   8810   MachineInstrBuilder MIB;
   8811 
   8812   const int64_t LabelOffset = 1 * PVT.getStoreSize();
   8813   const int64_t SPOffset    = 2 * PVT.getStoreSize();
   8814   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
   8815   const int64_t BPOffset    = 4 * PVT.getStoreSize();
   8816 
   8817   unsigned BufReg = MI.getOperand(0).getReg();
   8818 
   8819   // Reload FP (the jumped-to function may not have had a
   8820   // frame pointer, and if so, then its r31 will be restored
   8821   // as necessary).
   8822   if (PVT == MVT::i64) {
   8823     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
   8824             .addImm(0)
   8825             .addReg(BufReg);
   8826   } else {
   8827     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
   8828             .addImm(0)
   8829             .addReg(BufReg);
   8830   }
   8831   MIB.setMemRefs(MMOBegin, MMOEnd);
   8832 
   8833   // Reload IP
   8834   if (PVT == MVT::i64) {
   8835     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
   8836             .addImm(LabelOffset)
   8837             .addReg(BufReg);
   8838   } else {
   8839     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
   8840             .addImm(LabelOffset)
   8841             .addReg(BufReg);
   8842   }
   8843   MIB.setMemRefs(MMOBegin, MMOEnd);
   8844 
   8845   // Reload SP
   8846   if (PVT == MVT::i64) {
   8847     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
   8848             .addImm(SPOffset)
   8849             .addReg(BufReg);
   8850   } else {
   8851     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
   8852             .addImm(SPOffset)
   8853             .addReg(BufReg);
   8854   }
   8855   MIB.setMemRefs(MMOBegin, MMOEnd);
   8856 
   8857   // Reload BP
   8858   if (PVT == MVT::i64) {
   8859     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
   8860             .addImm(BPOffset)
   8861             .addReg(BufReg);
   8862   } else {
   8863     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
   8864             .addImm(BPOffset)
   8865             .addReg(BufReg);
   8866   }
   8867   MIB.setMemRefs(MMOBegin, MMOEnd);
   8868 
   8869   // Reload TOC
   8870   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
   8871     setUsesTOCBasePtr(*MBB->getParent());
   8872     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
   8873             .addImm(TOCOffset)
   8874             .addReg(BufReg);
   8875 
   8876     MIB.setMemRefs(MMOBegin, MMOEnd);
   8877   }
   8878 
   8879   // Jump
   8880   BuildMI(*MBB, MI, DL,
   8881           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
   8882   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
   8883 
   8884   MI.eraseFromParent();
   8885   return MBB;
   8886 }
   8887 
   8888 MachineBasicBlock *
   8889 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
   8890                                                MachineBasicBlock *BB) const {
   8891   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
   8892       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
   8893     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
   8894         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
   8895       // Call lowering should have added an r2 operand to indicate a dependence
   8896       // on the TOC base pointer value. It can't however, because there is no
   8897       // way to mark the dependence as implicit there, and so the stackmap code
   8898       // will confuse it with a regular operand. Instead, add the dependence
   8899       // here.
   8900       setUsesTOCBasePtr(*BB->getParent());
   8901       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
   8902     }
   8903 
   8904     return emitPatchPoint(MI, BB);
   8905   }
   8906 
   8907   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
   8908       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
   8909     return emitEHSjLjSetJmp(MI, BB);
   8910   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
   8911              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
   8912     return emitEHSjLjLongJmp(MI, BB);
   8913   }
   8914 
   8915   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   8916 
   8917   // To "insert" these instructions we actually have to insert their
   8918   // control-flow patterns.
   8919   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   8920   MachineFunction::iterator It = ++BB->getIterator();
   8921 
   8922   MachineFunction *F = BB->getParent();
   8923 
   8924   if (Subtarget.hasISEL() &&
   8925       (MI.getOpcode() == PPC::SELECT_CC_I4 ||
   8926        MI.getOpcode() == PPC::SELECT_CC_I8 ||
   8927        MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8)) {
   8928     SmallVector<MachineOperand, 2> Cond;
   8929     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
   8930         MI.getOpcode() == PPC::SELECT_CC_I8)
   8931       Cond.push_back(MI.getOperand(4));
   8932     else
   8933       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
   8934     Cond.push_back(MI.getOperand(1));
   8935 
   8936     DebugLoc dl = MI.getDebugLoc();
   8937     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
   8938                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
   8939   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
   8940              MI.getOpcode() == PPC::SELECT_CC_I8 ||
   8941              MI.getOpcode() == PPC::SELECT_CC_F4 ||
   8942              MI.getOpcode() == PPC::SELECT_CC_F8 ||
   8943              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
   8944              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
   8945              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
   8946              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
   8947              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
   8948              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
   8949              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
   8950              MI.getOpcode() == PPC::SELECT_I4 ||
   8951              MI.getOpcode() == PPC::SELECT_I8 ||
   8952              MI.getOpcode() == PPC::SELECT_F4 ||
   8953              MI.getOpcode() == PPC::SELECT_F8 ||
   8954              MI.getOpcode() == PPC::SELECT_QFRC ||
   8955              MI.getOpcode() == PPC::SELECT_QSRC ||
   8956              MI.getOpcode() == PPC::SELECT_QBRC ||
   8957              MI.getOpcode() == PPC::SELECT_VRRC ||
   8958              MI.getOpcode() == PPC::SELECT_VSFRC ||
   8959              MI.getOpcode() == PPC::SELECT_VSSRC ||
   8960              MI.getOpcode() == PPC::SELECT_VSRC) {
   8961     // The incoming instruction knows the destination vreg to set, the
   8962     // condition code register to branch on, the true/false values to
   8963     // select between, and a branch opcode to use.
   8964 
   8965     //  thisMBB:
   8966     //  ...
   8967     //   TrueVal = ...
   8968     //   cmpTY ccX, r1, r2
   8969     //   bCC copy1MBB
   8970     //   fallthrough --> copy0MBB
   8971     MachineBasicBlock *thisMBB = BB;
   8972     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   8973     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8974     DebugLoc dl = MI.getDebugLoc();
   8975     F->insert(It, copy0MBB);
   8976     F->insert(It, sinkMBB);
   8977 
   8978     // Transfer the remainder of BB and its successor edges to sinkMBB.
   8979     sinkMBB->splice(sinkMBB->begin(), BB,
   8980                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8981     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   8982 
   8983     // Next, add the true and fallthrough blocks as its successors.
   8984     BB->addSuccessor(copy0MBB);
   8985     BB->addSuccessor(sinkMBB);
   8986 
   8987     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
   8988         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
   8989         MI.getOpcode() == PPC::SELECT_QFRC ||
   8990         MI.getOpcode() == PPC::SELECT_QSRC ||
   8991         MI.getOpcode() == PPC::SELECT_QBRC ||
   8992         MI.getOpcode() == PPC::SELECT_VRRC ||
   8993         MI.getOpcode() == PPC::SELECT_VSFRC ||
   8994         MI.getOpcode() == PPC::SELECT_VSSRC ||
   8995         MI.getOpcode() == PPC::SELECT_VSRC) {
   8996       BuildMI(BB, dl, TII->get(PPC::BC))
   8997           .addReg(MI.getOperand(1).getReg())
   8998           .addMBB(sinkMBB);
   8999     } else {
   9000       unsigned SelectPred = MI.getOperand(4).getImm();
   9001       BuildMI(BB, dl, TII->get(PPC::BCC))
   9002           .addImm(SelectPred)
   9003           .addReg(MI.getOperand(1).getReg())
   9004           .addMBB(sinkMBB);
   9005     }
   9006 
   9007     //  copy0MBB:
   9008     //   %FalseValue = ...
   9009     //   # fallthrough to sinkMBB
   9010     BB = copy0MBB;
   9011 
   9012     // Update machine-CFG edges
   9013     BB->addSuccessor(sinkMBB);
   9014 
   9015     //  sinkMBB:
   9016     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   9017     //  ...
   9018     BB = sinkMBB;
   9019     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
   9020         .addReg(MI.getOperand(3).getReg())
   9021         .addMBB(copy0MBB)
   9022         .addReg(MI.getOperand(2).getReg())
   9023         .addMBB(thisMBB);
   9024   } else if (MI.getOpcode() == PPC::ReadTB) {
   9025     // To read the 64-bit time-base register on a 32-bit target, we read the
   9026     // two halves. Should the counter have wrapped while it was being read, we
   9027     // need to try again.
   9028     // ...
   9029     // readLoop:
   9030     // mfspr Rx,TBU # load from TBU
   9031     // mfspr Ry,TB  # load from TB
   9032     // mfspr Rz,TBU # load from TBU
   9033     // cmpw crX,Rx,Rz # check if 'old'='new'
   9034     // bne readLoop   # branch if they're not equal
   9035     // ...
   9036 
   9037     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
   9038     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   9039     DebugLoc dl = MI.getDebugLoc();
   9040     F->insert(It, readMBB);
   9041     F->insert(It, sinkMBB);
   9042 
   9043     // Transfer the remainder of BB and its successor edges to sinkMBB.
   9044     sinkMBB->splice(sinkMBB->begin(), BB,
   9045                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   9046     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   9047 
   9048     BB->addSuccessor(readMBB);
   9049     BB = readMBB;
   9050 
   9051     MachineRegisterInfo &RegInfo = F->getRegInfo();
   9052     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
   9053     unsigned LoReg = MI.getOperand(0).getReg();
   9054     unsigned HiReg = MI.getOperand(1).getReg();
   9055 
   9056     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
   9057     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
   9058     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
   9059 
   9060     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
   9061 
   9062     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
   9063       .addReg(HiReg).addReg(ReadAgainReg);
   9064     BuildMI(BB, dl, TII->get(PPC::BCC))
   9065       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
   9066 
   9067     BB->addSuccessor(readMBB);
   9068     BB->addSuccessor(sinkMBB);
   9069   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
   9070     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
   9071   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
   9072     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
   9073   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
   9074     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
   9075   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
   9076     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
   9077 
   9078   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
   9079     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
   9080   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
   9081     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
   9082   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
   9083     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
   9084   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
   9085     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
   9086 
   9087   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
   9088     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
   9089   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
   9090     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
   9091   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
   9092     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
   9093   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
   9094     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
   9095 
   9096   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
   9097     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
   9098   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
   9099     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
   9100   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
   9101     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
   9102   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
   9103     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
   9104 
   9105   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
   9106     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
   9107   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
   9108     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
   9109   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
   9110     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
   9111   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
   9112     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
   9113 
   9114   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
   9115     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
   9116   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
   9117     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
   9118   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
   9119     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
   9120   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
   9121     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
   9122 
   9123   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
   9124     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
   9125   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
   9126     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
   9127   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
   9128     BB = EmitAtomicBinary(MI, BB, 4, 0);
   9129   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
   9130     BB = EmitAtomicBinary(MI, BB, 8, 0);
   9131 
   9132   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
   9133            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
   9134            (Subtarget.hasPartwordAtomics() &&
   9135             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
   9136            (Subtarget.hasPartwordAtomics() &&
   9137             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
   9138     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
   9139 
   9140     auto LoadMnemonic = PPC::LDARX;
   9141     auto StoreMnemonic = PPC::STDCX;
   9142     switch (MI.getOpcode()) {
   9143     default:
   9144       llvm_unreachable("Compare and swap of unknown size");
   9145     case PPC::ATOMIC_CMP_SWAP_I8:
   9146       LoadMnemonic = PPC::LBARX;
   9147       StoreMnemonic = PPC::STBCX;
   9148       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
   9149       break;
   9150     case PPC::ATOMIC_CMP_SWAP_I16:
   9151       LoadMnemonic = PPC::LHARX;
   9152       StoreMnemonic = PPC::STHCX;
   9153       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
   9154       break;
   9155     case PPC::ATOMIC_CMP_SWAP_I32:
   9156       LoadMnemonic = PPC::LWARX;
   9157       StoreMnemonic = PPC::STWCX;
   9158       break;
   9159     case PPC::ATOMIC_CMP_SWAP_I64:
   9160       LoadMnemonic = PPC::LDARX;
   9161       StoreMnemonic = PPC::STDCX;
   9162       break;
   9163     }
   9164     unsigned dest = MI.getOperand(0).getReg();
   9165     unsigned ptrA = MI.getOperand(1).getReg();
   9166     unsigned ptrB = MI.getOperand(2).getReg();
   9167     unsigned oldval = MI.getOperand(3).getReg();
   9168     unsigned newval = MI.getOperand(4).getReg();
   9169     DebugLoc dl = MI.getDebugLoc();
   9170 
   9171     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   9172     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   9173     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   9174     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   9175     F->insert(It, loop1MBB);
   9176     F->insert(It, loop2MBB);
   9177     F->insert(It, midMBB);
   9178     F->insert(It, exitMBB);
   9179     exitMBB->splice(exitMBB->begin(), BB,
   9180                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   9181     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   9182 
   9183     //  thisMBB:
   9184     //   ...
   9185     //   fallthrough --> loopMBB
   9186     BB->addSuccessor(loop1MBB);
   9187 
   9188     // loop1MBB:
   9189     //   l[bhwd]arx dest, ptr
   9190     //   cmp[wd] dest, oldval
   9191     //   bne- midMBB
   9192     // loop2MBB:
   9193     //   st[bhwd]cx. newval, ptr
   9194     //   bne- loopMBB
   9195     //   b exitBB
   9196     // midMBB:
   9197     //   st[bhwd]cx. dest, ptr
   9198     // exitBB:
   9199     BB = loop1MBB;
   9200     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
   9201       .addReg(ptrA).addReg(ptrB);
   9202     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
   9203       .addReg(oldval).addReg(dest);
   9204     BuildMI(BB, dl, TII->get(PPC::BCC))
   9205       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   9206     BB->addSuccessor(loop2MBB);
   9207     BB->addSuccessor(midMBB);
   9208 
   9209     BB = loop2MBB;
   9210     BuildMI(BB, dl, TII->get(StoreMnemonic))
   9211       .addReg(newval).addReg(ptrA).addReg(ptrB);
   9212     BuildMI(BB, dl, TII->get(PPC::BCC))
   9213       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   9214     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   9215     BB->addSuccessor(loop1MBB);
   9216     BB->addSuccessor(exitMBB);
   9217 
   9218     BB = midMBB;
   9219     BuildMI(BB, dl, TII->get(StoreMnemonic))
   9220       .addReg(dest).addReg(ptrA).addReg(ptrB);
   9221     BB->addSuccessor(exitMBB);
   9222 
   9223     //  exitMBB:
   9224     //   ...
   9225     BB = exitMBB;
   9226   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
   9227              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
   9228     // We must use 64-bit registers for addresses when targeting 64-bit,
   9229     // since we're actually doing arithmetic on them.  Other registers
   9230     // can be 32-bit.
   9231     bool is64bit = Subtarget.isPPC64();
   9232     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
   9233 
   9234     unsigned dest = MI.getOperand(0).getReg();
   9235     unsigned ptrA = MI.getOperand(1).getReg();
   9236     unsigned ptrB = MI.getOperand(2).getReg();
   9237     unsigned oldval = MI.getOperand(3).getReg();
   9238     unsigned newval = MI.getOperand(4).getReg();
   9239     DebugLoc dl = MI.getDebugLoc();
   9240 
   9241     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   9242     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   9243     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   9244     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   9245     F->insert(It, loop1MBB);
   9246     F->insert(It, loop2MBB);
   9247     F->insert(It, midMBB);
   9248     F->insert(It, exitMBB);
   9249     exitMBB->splice(exitMBB->begin(), BB,
   9250                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   9251     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   9252 
   9253     MachineRegisterInfo &RegInfo = F->getRegInfo();
   9254     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
   9255                                             : &PPC::GPRCRegClass;
   9256     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   9257     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   9258     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   9259     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
   9260     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
   9261     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
   9262     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
   9263     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   9264     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   9265     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   9266     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   9267     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   9268     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   9269     unsigned Ptr1Reg;
   9270     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
   9271     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
   9272     //  thisMBB:
   9273     //   ...
   9274     //   fallthrough --> loopMBB
   9275     BB->addSuccessor(loop1MBB);
   9276 
   9277     // The 4-byte load must be aligned, while a char or short may be
   9278     // anywhere in the word.  Hence all this nasty bookkeeping code.
   9279     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   9280     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   9281     //   xori shift, shift1, 24 [16]
   9282     //   rlwinm ptr, ptr1, 0, 0, 29
   9283     //   slw newval2, newval, shift
   9284     //   slw oldval2, oldval,shift
   9285     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   9286     //   slw mask, mask2, shift
   9287     //   and newval3, newval2, mask
   9288     //   and oldval3, oldval2, mask
   9289     // loop1MBB:
   9290     //   lwarx tmpDest, ptr
   9291     //   and tmp, tmpDest, mask
   9292     //   cmpw tmp, oldval3
   9293     //   bne- midMBB
   9294     // loop2MBB:
   9295     //   andc tmp2, tmpDest, mask
   9296     //   or tmp4, tmp2, newval3
   9297     //   stwcx. tmp4, ptr
   9298     //   bne- loop1MBB
   9299     //   b exitBB
   9300     // midMBB:
   9301     //   stwcx. tmpDest, ptr
   9302     // exitBB:
   9303     //   srw dest, tmpDest, shift
   9304     if (ptrA != ZeroReg) {
   9305       Ptr1Reg = RegInfo.createVirtualRegister(RC);
   9306       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   9307         .addReg(ptrA).addReg(ptrB);
   9308     } else {
   9309       Ptr1Reg = ptrB;
   9310     }
   9311     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   9312         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   9313     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   9314         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   9315     if (is64bit)
   9316       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   9317         .addReg(Ptr1Reg).addImm(0).addImm(61);
   9318     else
   9319       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   9320         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   9321     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
   9322         .addReg(newval).addReg(ShiftReg);
   9323     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
   9324         .addReg(oldval).addReg(ShiftReg);
   9325     if (is8bit)
   9326       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   9327     else {
   9328       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   9329       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
   9330         .addReg(Mask3Reg).addImm(65535);
   9331     }
   9332     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   9333         .addReg(Mask2Reg).addReg(ShiftReg);
   9334     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
   9335         .addReg(NewVal2Reg).addReg(MaskReg);
   9336     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
   9337         .addReg(OldVal2Reg).addReg(MaskReg);
   9338 
   9339     BB = loop1MBB;
   9340     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   9341         .addReg(ZeroReg).addReg(PtrReg);
   9342     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
   9343         .addReg(TmpDestReg).addReg(MaskReg);
   9344     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
   9345         .addReg(TmpReg).addReg(OldVal3Reg);
   9346     BuildMI(BB, dl, TII->get(PPC::BCC))
   9347         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   9348     BB->addSuccessor(loop2MBB);
   9349     BB->addSuccessor(midMBB);
   9350 
   9351     BB = loop2MBB;
   9352     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
   9353         .addReg(TmpDestReg).addReg(MaskReg);
   9354     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
   9355         .addReg(Tmp2Reg).addReg(NewVal3Reg);
   9356     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
   9357         .addReg(ZeroReg).addReg(PtrReg);
   9358     BuildMI(BB, dl, TII->get(PPC::BCC))
   9359       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   9360     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   9361     BB->addSuccessor(loop1MBB);
   9362     BB->addSuccessor(exitMBB);
   9363 
   9364     BB = midMBB;
   9365     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
   9366       .addReg(ZeroReg).addReg(PtrReg);
   9367     BB->addSuccessor(exitMBB);
   9368 
   9369     //  exitMBB:
   9370     //   ...
   9371     BB = exitMBB;
   9372     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
   9373       .addReg(ShiftReg);
   9374   } else if (MI.getOpcode() == PPC::FADDrtz) {
   9375     // This pseudo performs an FADD with rounding mode temporarily forced
   9376     // to round-to-zero.  We emit this via custom inserter since the FPSCR
   9377     // is not modeled at the SelectionDAG level.
   9378     unsigned Dest = MI.getOperand(0).getReg();
   9379     unsigned Src1 = MI.getOperand(1).getReg();
   9380     unsigned Src2 = MI.getOperand(2).getReg();
   9381     DebugLoc dl = MI.getDebugLoc();
   9382 
   9383     MachineRegisterInfo &RegInfo = F->getRegInfo();
   9384     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
   9385 
   9386     // Save FPSCR value.
   9387     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
   9388 
   9389     // Set rounding mode to round-to-zero.
   9390     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
   9391     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
   9392 
   9393     // Perform addition.
   9394     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
   9395 
   9396     // Restore FPSCR value.
   9397     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
   9398   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
   9399              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
   9400              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
   9401              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
   9402     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
   9403                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
   9404                           ? PPC::ANDIo8
   9405                           : PPC::ANDIo;
   9406     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
   9407                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
   9408 
   9409     MachineRegisterInfo &RegInfo = F->getRegInfo();
   9410     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
   9411                                                   &PPC::GPRCRegClass :
   9412                                                   &PPC::G8RCRegClass);
   9413 
   9414     DebugLoc dl = MI.getDebugLoc();
   9415     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
   9416         .addReg(MI.getOperand(1).getReg())
   9417         .addImm(1);
   9418     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
   9419             MI.getOperand(0).getReg())
   9420         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
   9421   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
   9422     DebugLoc Dl = MI.getDebugLoc();
   9423     MachineRegisterInfo &RegInfo = F->getRegInfo();
   9424     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
   9425     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
   9426     return BB;
   9427   } else {
   9428     llvm_unreachable("Unexpected instr type to insert");
   9429   }
   9430 
   9431   MI.eraseFromParent(); // The pseudo instruction is gone now.
   9432   return BB;
   9433 }
   9434 
   9435 //===----------------------------------------------------------------------===//
   9436 // Target Optimization Hooks
   9437 //===----------------------------------------------------------------------===//
   9438 
   9439 static std::string getRecipOp(const char *Base, EVT VT) {
   9440   std::string RecipOp(Base);
   9441   if (VT.getScalarType() == MVT::f64)
   9442     RecipOp += "d";
   9443   else
   9444     RecipOp += "f";
   9445 
   9446   if (VT.isVector())
   9447     RecipOp = "vec-" + RecipOp;
   9448 
   9449   return RecipOp;
   9450 }
   9451 
   9452 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
   9453                                             DAGCombinerInfo &DCI,
   9454                                             unsigned &RefinementSteps,
   9455                                             bool &UseOneConstNR) const {
   9456   EVT VT = Operand.getValueType();
   9457   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
   9458       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
   9459       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
   9460       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
   9461       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
   9462       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
   9463     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
   9464     std::string RecipOp = getRecipOp("sqrt", VT);
   9465     if (!Recips.isEnabled(RecipOp))
   9466       return SDValue();
   9467 
   9468     RefinementSteps = Recips.getRefinementSteps(RecipOp);
   9469     UseOneConstNR = true;
   9470     return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
   9471   }
   9472   return SDValue();
   9473 }
   9474 
   9475 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
   9476                                             DAGCombinerInfo &DCI,
   9477                                             unsigned &RefinementSteps) const {
   9478   EVT VT = Operand.getValueType();
   9479   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
   9480       (VT == MVT::f64 && Subtarget.hasFRE()) ||
   9481       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
   9482       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
   9483       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
   9484       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
   9485     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
   9486     std::string RecipOp = getRecipOp("div", VT);
   9487     if (!Recips.isEnabled(RecipOp))
   9488       return SDValue();
   9489 
   9490     RefinementSteps = Recips.getRefinementSteps(RecipOp);
   9491     return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
   9492   }
   9493   return SDValue();
   9494 }
   9495 
   9496 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
   9497   // Note: This functionality is used only when unsafe-fp-math is enabled, and
   9498   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
   9499   // enabled for division), this functionality is redundant with the default
   9500   // combiner logic (once the division -> reciprocal/multiply transformation
   9501   // has taken place). As a result, this matters more for older cores than for
   9502   // newer ones.
   9503 
   9504   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
   9505   // reciprocal if there are two or more FDIVs (for embedded cores with only
   9506   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
   9507   switch (Subtarget.getDarwinDirective()) {
   9508   default:
   9509     return 3;
   9510   case PPC::DIR_440:
   9511   case PPC::DIR_A2:
   9512   case PPC::DIR_E500mc:
   9513   case PPC::DIR_E5500:
   9514     return 2;
   9515   }
   9516 }
   9517 
   9518 // isConsecutiveLSLoc needs to work even if all adds have not yet been
   9519 // collapsed, and so we need to look through chains of them.
   9520 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
   9521                                      int64_t& Offset, SelectionDAG &DAG) {
   9522   if (DAG.isBaseWithConstantOffset(Loc)) {
   9523     Base = Loc.getOperand(0);
   9524     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
   9525 
   9526     // The base might itself be a base plus an offset, and if so, accumulate
   9527     // that as well.
   9528     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
   9529   }
   9530 }
   9531 
   9532 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
   9533                             unsigned Bytes, int Dist,
   9534                             SelectionDAG &DAG) {
   9535   if (VT.getSizeInBits() / 8 != Bytes)
   9536     return false;
   9537 
   9538   SDValue BaseLoc = Base->getBasePtr();
   9539   if (Loc.getOpcode() == ISD::FrameIndex) {
   9540     if (BaseLoc.getOpcode() != ISD::FrameIndex)
   9541       return false;
   9542     const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   9543     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
   9544     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
   9545     int FS  = MFI->getObjectSize(FI);
   9546     int BFS = MFI->getObjectSize(BFI);
   9547     if (FS != BFS || FS != (int)Bytes) return false;
   9548     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
   9549   }
   9550 
   9551   SDValue Base1 = Loc, Base2 = BaseLoc;
   9552   int64_t Offset1 = 0, Offset2 = 0;
   9553   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
   9554   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
   9555   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
   9556     return true;
   9557 
   9558   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9559   const GlobalValue *GV1 = nullptr;
   9560   const GlobalValue *GV2 = nullptr;
   9561   Offset1 = 0;
   9562   Offset2 = 0;
   9563   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
   9564   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
   9565   if (isGA1 && isGA2 && GV1 == GV2)
   9566     return Offset1 == (Offset2 + Dist*Bytes);
   9567   return false;
   9568 }
   9569 
   9570 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
   9571 // not enforce equality of the chain operands.
   9572 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
   9573                             unsigned Bytes, int Dist,
   9574                             SelectionDAG &DAG) {
   9575   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
   9576     EVT VT = LS->getMemoryVT();
   9577     SDValue Loc = LS->getBasePtr();
   9578     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
   9579   }
   9580 
   9581   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
   9582     EVT VT;
   9583     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   9584     default: return false;
   9585     case Intrinsic::ppc_qpx_qvlfd:
   9586     case Intrinsic::ppc_qpx_qvlfda:
   9587       VT = MVT::v4f64;
   9588       break;
   9589     case Intrinsic::ppc_qpx_qvlfs:
   9590     case Intrinsic::ppc_qpx_qvlfsa:
   9591       VT = MVT::v4f32;
   9592       break;
   9593     case Intrinsic::ppc_qpx_qvlfcd:
   9594     case Intrinsic::ppc_qpx_qvlfcda:
   9595       VT = MVT::v2f64;
   9596       break;
   9597     case Intrinsic::ppc_qpx_qvlfcs:
   9598     case Intrinsic::ppc_qpx_qvlfcsa:
   9599       VT = MVT::v2f32;
   9600       break;
   9601     case Intrinsic::ppc_qpx_qvlfiwa:
   9602     case Intrinsic::ppc_qpx_qvlfiwz:
   9603     case Intrinsic::ppc_altivec_lvx:
   9604     case Intrinsic::ppc_altivec_lvxl:
   9605     case Intrinsic::ppc_vsx_lxvw4x:
   9606       VT = MVT::v4i32;
   9607       break;
   9608     case Intrinsic::ppc_vsx_lxvd2x:
   9609       VT = MVT::v2f64;
   9610       break;
   9611     case Intrinsic::ppc_altivec_lvebx:
   9612       VT = MVT::i8;
   9613       break;
   9614     case Intrinsic::ppc_altivec_lvehx:
   9615       VT = MVT::i16;
   9616       break;
   9617     case Intrinsic::ppc_altivec_lvewx:
   9618       VT = MVT::i32;
   9619       break;
   9620     }
   9621 
   9622     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
   9623   }
   9624 
   9625   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
   9626     EVT VT;
   9627     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   9628     default: return false;
   9629     case Intrinsic::ppc_qpx_qvstfd:
   9630     case Intrinsic::ppc_qpx_qvstfda:
   9631       VT = MVT::v4f64;
   9632       break;
   9633     case Intrinsic::ppc_qpx_qvstfs:
   9634     case Intrinsic::ppc_qpx_qvstfsa:
   9635       VT = MVT::v4f32;
   9636       break;
   9637     case Intrinsic::ppc_qpx_qvstfcd:
   9638     case Intrinsic::ppc_qpx_qvstfcda:
   9639       VT = MVT::v2f64;
   9640       break;
   9641     case Intrinsic::ppc_qpx_qvstfcs:
   9642     case Intrinsic::ppc_qpx_qvstfcsa:
   9643       VT = MVT::v2f32;
   9644       break;
   9645     case Intrinsic::ppc_qpx_qvstfiw:
   9646     case Intrinsic::ppc_qpx_qvstfiwa:
   9647     case Intrinsic::ppc_altivec_stvx:
   9648     case Intrinsic::ppc_altivec_stvxl:
   9649     case Intrinsic::ppc_vsx_stxvw4x:
   9650       VT = MVT::v4i32;
   9651       break;
   9652     case Intrinsic::ppc_vsx_stxvd2x:
   9653       VT = MVT::v2f64;
   9654       break;
   9655     case Intrinsic::ppc_altivec_stvebx:
   9656       VT = MVT::i8;
   9657       break;
   9658     case Intrinsic::ppc_altivec_stvehx:
   9659       VT = MVT::i16;
   9660       break;
   9661     case Intrinsic::ppc_altivec_stvewx:
   9662       VT = MVT::i32;
   9663       break;
   9664     }
   9665 
   9666     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
   9667   }
   9668 
   9669   return false;
   9670 }
   9671 
   9672 // Return true is there is a nearyby consecutive load to the one provided
   9673 // (regardless of alignment). We search up and down the chain, looking though
   9674 // token factors and other loads (but nothing else). As a result, a true result
   9675 // indicates that it is safe to create a new consecutive load adjacent to the
   9676 // load provided.
   9677 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
   9678   SDValue Chain = LD->getChain();
   9679   EVT VT = LD->getMemoryVT();
   9680 
   9681   SmallSet<SDNode *, 16> LoadRoots;
   9682   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
   9683   SmallSet<SDNode *, 16> Visited;
   9684 
   9685   // First, search up the chain, branching to follow all token-factor operands.
   9686   // If we find a consecutive load, then we're done, otherwise, record all
   9687   // nodes just above the top-level loads and token factors.
   9688   while (!Queue.empty()) {
   9689     SDNode *ChainNext = Queue.pop_back_val();
   9690     if (!Visited.insert(ChainNext).second)
   9691       continue;
   9692 
   9693     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
   9694       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
   9695         return true;
   9696 
   9697       if (!Visited.count(ChainLD->getChain().getNode()))
   9698         Queue.push_back(ChainLD->getChain().getNode());
   9699     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
   9700       for (const SDUse &O : ChainNext->ops())
   9701         if (!Visited.count(O.getNode()))
   9702           Queue.push_back(O.getNode());
   9703     } else
   9704       LoadRoots.insert(ChainNext);
   9705   }
   9706 
   9707   // Second, search down the chain, starting from the top-level nodes recorded
   9708   // in the first phase. These top-level nodes are the nodes just above all
   9709   // loads and token factors. Starting with their uses, recursively look though
   9710   // all loads (just the chain uses) and token factors to find a consecutive
   9711   // load.
   9712   Visited.clear();
   9713   Queue.clear();
   9714 
   9715   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
   9716        IE = LoadRoots.end(); I != IE; ++I) {
   9717     Queue.push_back(*I);
   9718 
   9719     while (!Queue.empty()) {
   9720       SDNode *LoadRoot = Queue.pop_back_val();
   9721       if (!Visited.insert(LoadRoot).second)
   9722         continue;
   9723 
   9724       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
   9725         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
   9726           return true;
   9727 
   9728       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
   9729            UE = LoadRoot->use_end(); UI != UE; ++UI)
   9730         if (((isa<MemSDNode>(*UI) &&
   9731             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
   9732             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
   9733           Queue.push_back(*UI);
   9734     }
   9735   }
   9736 
   9737   return false;
   9738 }
   9739 
   9740 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
   9741                                                   DAGCombinerInfo &DCI) const {
   9742   SelectionDAG &DAG = DCI.DAG;
   9743   SDLoc dl(N);
   9744 
   9745   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
   9746   // If we're tracking CR bits, we need to be careful that we don't have:
   9747   //   trunc(binary-ops(zext(x), zext(y)))
   9748   // or
   9749   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
   9750   // such that we're unnecessarily moving things into GPRs when it would be
   9751   // better to keep them in CR bits.
   9752 
   9753   // Note that trunc here can be an actual i1 trunc, or can be the effective
   9754   // truncation that comes from a setcc or select_cc.
   9755   if (N->getOpcode() == ISD::TRUNCATE &&
   9756       N->getValueType(0) != MVT::i1)
   9757     return SDValue();
   9758 
   9759   if (N->getOperand(0).getValueType() != MVT::i32 &&
   9760       N->getOperand(0).getValueType() != MVT::i64)
   9761     return SDValue();
   9762 
   9763   if (N->getOpcode() == ISD::SETCC ||
   9764       N->getOpcode() == ISD::SELECT_CC) {
   9765     // If we're looking at a comparison, then we need to make sure that the
   9766     // high bits (all except for the first) don't matter the result.
   9767     ISD::CondCode CC =
   9768       cast<CondCodeSDNode>(N->getOperand(
   9769         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
   9770     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
   9771 
   9772     if (ISD::isSignedIntSetCC(CC)) {
   9773       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
   9774           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
   9775         return SDValue();
   9776     } else if (ISD::isUnsignedIntSetCC(CC)) {
   9777       if (!DAG.MaskedValueIsZero(N->getOperand(0),
   9778                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
   9779           !DAG.MaskedValueIsZero(N->getOperand(1),
   9780                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
   9781         return SDValue();
   9782     } else {
   9783       // This is neither a signed nor an unsigned comparison, just make sure
   9784       // that the high bits are equal.
   9785       APInt Op1Zero, Op1One;
   9786       APInt Op2Zero, Op2One;
   9787       DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
   9788       DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
   9789 
   9790       // We don't really care about what is known about the first bit (if
   9791       // anything), so clear it in all masks prior to comparing them.
   9792       Op1Zero.clearBit(0); Op1One.clearBit(0);
   9793       Op2Zero.clearBit(0); Op2One.clearBit(0);
   9794 
   9795       if (Op1Zero != Op2Zero || Op1One != Op2One)
   9796         return SDValue();
   9797     }
   9798   }
   9799 
   9800   // We now know that the higher-order bits are irrelevant, we just need to
   9801   // make sure that all of the intermediate operations are bit operations, and
   9802   // all inputs are extensions.
   9803   if (N->getOperand(0).getOpcode() != ISD::AND &&
   9804       N->getOperand(0).getOpcode() != ISD::OR  &&
   9805       N->getOperand(0).getOpcode() != ISD::XOR &&
   9806       N->getOperand(0).getOpcode() != ISD::SELECT &&
   9807       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
   9808       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
   9809       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
   9810       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
   9811       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
   9812     return SDValue();
   9813 
   9814   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
   9815       N->getOperand(1).getOpcode() != ISD::AND &&
   9816       N->getOperand(1).getOpcode() != ISD::OR  &&
   9817       N->getOperand(1).getOpcode() != ISD::XOR &&
   9818       N->getOperand(1).getOpcode() != ISD::SELECT &&
   9819       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
   9820       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
   9821       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
   9822       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
   9823       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
   9824     return SDValue();
   9825 
   9826   SmallVector<SDValue, 4> Inputs;
   9827   SmallVector<SDValue, 8> BinOps, PromOps;
   9828   SmallPtrSet<SDNode *, 16> Visited;
   9829 
   9830   for (unsigned i = 0; i < 2; ++i) {
   9831     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
   9832           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
   9833           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
   9834           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
   9835         isa<ConstantSDNode>(N->getOperand(i)))
   9836       Inputs.push_back(N->getOperand(i));
   9837     else
   9838       BinOps.push_back(N->getOperand(i));
   9839 
   9840     if (N->getOpcode() == ISD::TRUNCATE)
   9841       break;
   9842   }
   9843 
   9844   // Visit all inputs, collect all binary operations (and, or, xor and
   9845   // select) that are all fed by extensions.
   9846   while (!BinOps.empty()) {
   9847     SDValue BinOp = BinOps.back();
   9848     BinOps.pop_back();
   9849 
   9850     if (!Visited.insert(BinOp.getNode()).second)
   9851       continue;
   9852 
   9853     PromOps.push_back(BinOp);
   9854 
   9855     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
   9856       // The condition of the select is not promoted.
   9857       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
   9858         continue;
   9859       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
   9860         continue;
   9861 
   9862       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
   9863             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
   9864             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
   9865            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
   9866           isa<ConstantSDNode>(BinOp.getOperand(i))) {
   9867         Inputs.push_back(BinOp.getOperand(i));
   9868       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
   9869                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
   9870                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
   9871                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
   9872                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
   9873                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
   9874                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
   9875                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
   9876                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
   9877         BinOps.push_back(BinOp.getOperand(i));
   9878       } else {
   9879         // We have an input that is not an extension or another binary
   9880         // operation; we'll abort this transformation.
   9881         return SDValue();
   9882       }
   9883     }
   9884   }
   9885 
   9886   // Make sure that this is a self-contained cluster of operations (which
   9887   // is not quite the same thing as saying that everything has only one
   9888   // use).
   9889   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   9890     if (isa<ConstantSDNode>(Inputs[i]))
   9891       continue;
   9892 
   9893     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
   9894                               UE = Inputs[i].getNode()->use_end();
   9895          UI != UE; ++UI) {
   9896       SDNode *User = *UI;
   9897       if (User != N && !Visited.count(User))
   9898         return SDValue();
   9899 
   9900       // Make sure that we're not going to promote the non-output-value
   9901       // operand(s) or SELECT or SELECT_CC.
   9902       // FIXME: Although we could sometimes handle this, and it does occur in
   9903       // practice that one of the condition inputs to the select is also one of
   9904       // the outputs, we currently can't deal with this.
   9905       if (User->getOpcode() == ISD::SELECT) {
   9906         if (User->getOperand(0) == Inputs[i])
   9907           return SDValue();
   9908       } else if (User->getOpcode() == ISD::SELECT_CC) {
   9909         if (User->getOperand(0) == Inputs[i] ||
   9910             User->getOperand(1) == Inputs[i])
   9911           return SDValue();
   9912       }
   9913     }
   9914   }
   9915 
   9916   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
   9917     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
   9918                               UE = PromOps[i].getNode()->use_end();
   9919          UI != UE; ++UI) {
   9920       SDNode *User = *UI;
   9921       if (User != N && !Visited.count(User))
   9922         return SDValue();
   9923 
   9924       // Make sure that we're not going to promote the non-output-value
   9925       // operand(s) or SELECT or SELECT_CC.
   9926       // FIXME: Although we could sometimes handle this, and it does occur in
   9927       // practice that one of the condition inputs to the select is also one of
   9928       // the outputs, we currently can't deal with this.
   9929       if (User->getOpcode() == ISD::SELECT) {
   9930         if (User->getOperand(0) == PromOps[i])
   9931           return SDValue();
   9932       } else if (User->getOpcode() == ISD::SELECT_CC) {
   9933         if (User->getOperand(0) == PromOps[i] ||
   9934             User->getOperand(1) == PromOps[i])
   9935           return SDValue();
   9936       }
   9937     }
   9938   }
   9939 
   9940   // Replace all inputs with the extension operand.
   9941   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   9942     // Constants may have users outside the cluster of to-be-promoted nodes,
   9943     // and so we need to replace those as we do the promotions.
   9944     if (isa<ConstantSDNode>(Inputs[i]))
   9945       continue;
   9946     else
   9947       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
   9948   }
   9949 
   9950   std::list<HandleSDNode> PromOpHandles;
   9951   for (auto &PromOp : PromOps)
   9952     PromOpHandles.emplace_back(PromOp);
   9953 
   9954   // Replace all operations (these are all the same, but have a different
   9955   // (i1) return type). DAG.getNode will validate that the types of
   9956   // a binary operator match, so go through the list in reverse so that
   9957   // we've likely promoted both operands first. Any intermediate truncations or
   9958   // extensions disappear.
   9959   while (!PromOpHandles.empty()) {
   9960     SDValue PromOp = PromOpHandles.back().getValue();
   9961     PromOpHandles.pop_back();
   9962 
   9963     if (PromOp.getOpcode() == ISD::TRUNCATE ||
   9964         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
   9965         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
   9966         PromOp.getOpcode() == ISD::ANY_EXTEND) {
   9967       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
   9968           PromOp.getOperand(0).getValueType() != MVT::i1) {
   9969         // The operand is not yet ready (see comment below).
   9970         PromOpHandles.emplace_front(PromOp);
   9971         continue;
   9972       }
   9973 
   9974       SDValue RepValue = PromOp.getOperand(0);
   9975       if (isa<ConstantSDNode>(RepValue))
   9976         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
   9977 
   9978       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
   9979       continue;
   9980     }
   9981 
   9982     unsigned C;
   9983     switch (PromOp.getOpcode()) {
   9984     default:             C = 0; break;
   9985     case ISD::SELECT:    C = 1; break;
   9986     case ISD::SELECT_CC: C = 2; break;
   9987     }
   9988 
   9989     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
   9990          PromOp.getOperand(C).getValueType() != MVT::i1) ||
   9991         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
   9992          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
   9993       // The to-be-promoted operands of this node have not yet been
   9994       // promoted (this should be rare because we're going through the
   9995       // list backward, but if one of the operands has several users in
   9996       // this cluster of to-be-promoted nodes, it is possible).
   9997       PromOpHandles.emplace_front(PromOp);
   9998       continue;
   9999     }
   10000 
   10001     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
   10002                                 PromOp.getNode()->op_end());
   10003 
   10004     // If there are any constant inputs, make sure they're replaced now.
   10005     for (unsigned i = 0; i < 2; ++i)
   10006       if (isa<ConstantSDNode>(Ops[C+i]))
   10007         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
   10008 
   10009     DAG.ReplaceAllUsesOfValueWith(PromOp,
   10010       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
   10011   }
   10012 
   10013   // Now we're left with the initial truncation itself.
   10014   if (N->getOpcode() == ISD::TRUNCATE)
   10015     return N->getOperand(0);
   10016 
   10017   // Otherwise, this is a comparison. The operands to be compared have just
   10018   // changed type (to i1), but everything else is the same.
   10019   return SDValue(N, 0);
   10020 }
   10021 
   10022 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
   10023                                                   DAGCombinerInfo &DCI) const {
   10024   SelectionDAG &DAG = DCI.DAG;
   10025   SDLoc dl(N);
   10026 
   10027   // If we're tracking CR bits, we need to be careful that we don't have:
   10028   //   zext(binary-ops(trunc(x), trunc(y)))
   10029   // or
   10030   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
   10031   // such that we're unnecessarily moving things into CR bits that can more
   10032   // efficiently stay in GPRs. Note that if we're not certain that the high
   10033   // bits are set as required by the final extension, we still may need to do
   10034   // some masking to get the proper behavior.
   10035 
   10036   // This same functionality is important on PPC64 when dealing with
   10037   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
   10038   // the return values of functions. Because it is so similar, it is handled
   10039   // here as well.
   10040 
   10041   if (N->getValueType(0) != MVT::i32 &&
   10042       N->getValueType(0) != MVT::i64)
   10043     return SDValue();
   10044 
   10045   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
   10046         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
   10047     return SDValue();
   10048 
   10049   if (N->getOperand(0).getOpcode() != ISD::AND &&
   10050       N->getOperand(0).getOpcode() != ISD::OR  &&
   10051       N->getOperand(0).getOpcode() != ISD::XOR &&
   10052       N->getOperand(0).getOpcode() != ISD::SELECT &&
   10053       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
   10054     return SDValue();
   10055 
   10056   SmallVector<SDValue, 4> Inputs;
   10057   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
   10058   SmallPtrSet<SDNode *, 16> Visited;
   10059 
   10060   // Visit all inputs, collect all binary operations (and, or, xor and
   10061   // select) that are all fed by truncations.
   10062   while (!BinOps.empty()) {
   10063     SDValue BinOp = BinOps.back();
   10064     BinOps.pop_back();
   10065 
   10066     if (!Visited.insert(BinOp.getNode()).second)
   10067       continue;
   10068 
   10069     PromOps.push_back(BinOp);
   10070 
   10071     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
   10072       // The condition of the select is not promoted.
   10073       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
   10074         continue;
   10075       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
   10076         continue;
   10077 
   10078       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
   10079           isa<ConstantSDNode>(BinOp.getOperand(i))) {
   10080         Inputs.push_back(BinOp.getOperand(i));
   10081       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
   10082                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
   10083                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
   10084                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
   10085                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
   10086         BinOps.push_back(BinOp.getOperand(i));
   10087       } else {
   10088         // We have an input that is not a truncation or another binary
   10089         // operation; we'll abort this transformation.
   10090         return SDValue();
   10091       }
   10092     }
   10093   }
   10094 
   10095   // The operands of a select that must be truncated when the select is
   10096   // promoted because the operand is actually part of the to-be-promoted set.
   10097   DenseMap<SDNode *, EVT> SelectTruncOp[2];
   10098 
   10099   // Make sure that this is a self-contained cluster of operations (which
   10100   // is not quite the same thing as saying that everything has only one
   10101   // use).
   10102   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   10103     if (isa<ConstantSDNode>(Inputs[i]))
   10104       continue;
   10105 
   10106     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
   10107                               UE = Inputs[i].getNode()->use_end();
   10108          UI != UE; ++UI) {
   10109       SDNode *User = *UI;
   10110       if (User != N && !Visited.count(User))
   10111         return SDValue();
   10112 
   10113       // If we're going to promote the non-output-value operand(s) or SELECT or
   10114       // SELECT_CC, record them for truncation.
   10115       if (User->getOpcode() == ISD::SELECT) {
   10116         if (User->getOperand(0) == Inputs[i])
   10117           SelectTruncOp[0].insert(std::make_pair(User,
   10118                                     User->getOperand(0).getValueType()));
   10119       } else if (User->getOpcode() == ISD::SELECT_CC) {
   10120         if (User->getOperand(0) == Inputs[i])
   10121           SelectTruncOp[0].insert(std::make_pair(User,
   10122                                     User->getOperand(0).getValueType()));
   10123         if (User->getOperand(1) == Inputs[i])
   10124           SelectTruncOp[1].insert(std::make_pair(User,
   10125                                     User->getOperand(1).getValueType()));
   10126       }
   10127     }
   10128   }
   10129 
   10130   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
   10131     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
   10132                               UE = PromOps[i].getNode()->use_end();
   10133          UI != UE; ++UI) {
   10134       SDNode *User = *UI;
   10135       if (User != N && !Visited.count(User))
   10136         return SDValue();
   10137 
   10138       // If we're going to promote the non-output-value operand(s) or SELECT or
   10139       // SELECT_CC, record them for truncation.
   10140       if (User->getOpcode() == ISD::SELECT) {
   10141         if (User->getOperand(0) == PromOps[i])
   10142           SelectTruncOp[0].insert(std::make_pair(User,
   10143                                     User->getOperand(0).getValueType()));
   10144       } else if (User->getOpcode() == ISD::SELECT_CC) {
   10145         if (User->getOperand(0) == PromOps[i])
   10146           SelectTruncOp[0].insert(std::make_pair(User,
   10147                                     User->getOperand(0).getValueType()));
   10148         if (User->getOperand(1) == PromOps[i])
   10149           SelectTruncOp[1].insert(std::make_pair(User,
   10150                                     User->getOperand(1).getValueType()));
   10151       }
   10152     }
   10153   }
   10154 
   10155   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
   10156   bool ReallyNeedsExt = false;
   10157   if (N->getOpcode() != ISD::ANY_EXTEND) {
   10158     // If all of the inputs are not already sign/zero extended, then
   10159     // we'll still need to do that at the end.
   10160     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   10161       if (isa<ConstantSDNode>(Inputs[i]))
   10162         continue;
   10163 
   10164       unsigned OpBits =
   10165         Inputs[i].getOperand(0).getValueSizeInBits();
   10166       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
   10167 
   10168       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
   10169            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
   10170                                   APInt::getHighBitsSet(OpBits,
   10171                                                         OpBits-PromBits))) ||
   10172           (N->getOpcode() == ISD::SIGN_EXTEND &&
   10173            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
   10174              (OpBits-(PromBits-1)))) {
   10175         ReallyNeedsExt = true;
   10176         break;
   10177       }
   10178     }
   10179   }
   10180 
   10181   // Replace all inputs, either with the truncation operand, or a
   10182   // truncation or extension to the final output type.
   10183   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   10184     // Constant inputs need to be replaced with the to-be-promoted nodes that
   10185     // use them because they might have users outside of the cluster of
   10186     // promoted nodes.
   10187     if (isa<ConstantSDNode>(Inputs[i]))
   10188       continue;
   10189 
   10190     SDValue InSrc = Inputs[i].getOperand(0);
   10191     if (Inputs[i].getValueType() == N->getValueType(0))
   10192       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
   10193     else if (N->getOpcode() == ISD::SIGN_EXTEND)
   10194       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
   10195         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
   10196     else if (N->getOpcode() == ISD::ZERO_EXTEND)
   10197       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
   10198         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
   10199     else
   10200       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
   10201         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
   10202   }
   10203 
   10204   std::list<HandleSDNode> PromOpHandles;
   10205   for (auto &PromOp : PromOps)
   10206     PromOpHandles.emplace_back(PromOp);
   10207 
   10208   // Replace all operations (these are all the same, but have a different
   10209   // (promoted) return type). DAG.getNode will validate that the types of
   10210   // a binary operator match, so go through the list in reverse so that
   10211   // we've likely promoted both operands first.
   10212   while (!PromOpHandles.empty()) {
   10213     SDValue PromOp = PromOpHandles.back().getValue();
   10214     PromOpHandles.pop_back();
   10215 
   10216     unsigned C;
   10217     switch (PromOp.getOpcode()) {
   10218     default:             C = 0; break;
   10219     case ISD::SELECT:    C = 1; break;
   10220     case ISD::SELECT_CC: C = 2; break;
   10221     }
   10222 
   10223     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
   10224          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
   10225         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
   10226          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
   10227       // The to-be-promoted operands of this node have not yet been
   10228       // promoted (this should be rare because we're going through the
   10229       // list backward, but if one of the operands has several users in
   10230       // this cluster of to-be-promoted nodes, it is possible).
   10231       PromOpHandles.emplace_front(PromOp);
   10232       continue;
   10233     }
   10234 
   10235     // For SELECT and SELECT_CC nodes, we do a similar check for any
   10236     // to-be-promoted comparison inputs.
   10237     if (PromOp.getOpcode() == ISD::SELECT ||
   10238         PromOp.getOpcode() == ISD::SELECT_CC) {
   10239       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
   10240            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
   10241           (SelectTruncOp[1].count(PromOp.getNode()) &&
   10242            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
   10243         PromOpHandles.emplace_front(PromOp);
   10244         continue;
   10245       }
   10246     }
   10247 
   10248     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
   10249                                 PromOp.getNode()->op_end());
   10250 
   10251     // If this node has constant inputs, then they'll need to be promoted here.
   10252     for (unsigned i = 0; i < 2; ++i) {
   10253       if (!isa<ConstantSDNode>(Ops[C+i]))
   10254         continue;
   10255       if (Ops[C+i].getValueType() == N->getValueType(0))
   10256         continue;
   10257 
   10258       if (N->getOpcode() == ISD::SIGN_EXTEND)
   10259         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
   10260       else if (N->getOpcode() == ISD::ZERO_EXTEND)
   10261         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
   10262       else
   10263         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
   10264     }
   10265 
   10266     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
   10267     // truncate them again to the original value type.
   10268     if (PromOp.getOpcode() == ISD::SELECT ||
   10269         PromOp.getOpcode() == ISD::SELECT_CC) {
   10270       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
   10271       if (SI0 != SelectTruncOp[0].end())
   10272         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
   10273       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
   10274       if (SI1 != SelectTruncOp[1].end())
   10275         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
   10276     }
   10277 
   10278     DAG.ReplaceAllUsesOfValueWith(PromOp,
   10279       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
   10280   }
   10281 
   10282   // Now we're left with the initial extension itself.
   10283   if (!ReallyNeedsExt)
   10284     return N->getOperand(0);
   10285 
   10286   // To zero extend, just mask off everything except for the first bit (in the
   10287   // i1 case).
   10288   if (N->getOpcode() == ISD::ZERO_EXTEND)
   10289     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
   10290                        DAG.getConstant(APInt::getLowBitsSet(
   10291                                          N->getValueSizeInBits(0), PromBits),
   10292                                        dl, N->getValueType(0)));
   10293 
   10294   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
   10295          "Invalid extension type");
   10296   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
   10297   SDValue ShiftCst =
   10298       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
   10299   return DAG.getNode(
   10300       ISD::SRA, dl, N->getValueType(0),
   10301       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
   10302       ShiftCst);
   10303 }
   10304 
   10305 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
   10306                                                  DAGCombinerInfo &DCI) const {
   10307   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
   10308          "Should be called with a BUILD_VECTOR node");
   10309 
   10310   SelectionDAG &DAG = DCI.DAG;
   10311   SDLoc dl(N);
   10312   if (N->getValueType(0) != MVT::v2f64 || !Subtarget.hasVSX())
   10313     return SDValue();
   10314 
   10315   // Looking for:
   10316   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
   10317   if (N->getOperand(0).getOpcode() != ISD::SINT_TO_FP &&
   10318       N->getOperand(0).getOpcode() != ISD::UINT_TO_FP)
   10319     return SDValue();
   10320   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
   10321       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
   10322     return SDValue();
   10323   if (N->getOperand(0).getOpcode() != N->getOperand(1).getOpcode())
   10324     return SDValue();
   10325 
   10326   SDValue Ext1 = N->getOperand(0).getOperand(0);
   10327   SDValue Ext2 = N->getOperand(1).getOperand(0);
   10328   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
   10329      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   10330     return SDValue();
   10331 
   10332   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
   10333   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
   10334   if (!Ext1Op || !Ext2Op)
   10335     return SDValue();
   10336   if (Ext1.getValueType() != MVT::i32 ||
   10337       Ext2.getValueType() != MVT::i32)
   10338   if (Ext1.getOperand(0) != Ext2.getOperand(0))
   10339     return SDValue();
   10340 
   10341   int FirstElem = Ext1Op->getZExtValue();
   10342   int SecondElem = Ext2Op->getZExtValue();
   10343   int SubvecIdx;
   10344   if (FirstElem == 0 && SecondElem == 1)
   10345     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
   10346   else if (FirstElem == 2 && SecondElem == 3)
   10347     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
   10348   else
   10349     return SDValue();
   10350 
   10351   SDValue SrcVec = Ext1.getOperand(0);
   10352   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
   10353     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
   10354   return DAG.getNode(NodeType, dl, MVT::v2f64,
   10355                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
   10356 }
   10357 
   10358 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
   10359                                               DAGCombinerInfo &DCI) const {
   10360   assert((N->getOpcode() == ISD::SINT_TO_FP ||
   10361           N->getOpcode() == ISD::UINT_TO_FP) &&
   10362          "Need an int -> FP conversion node here");
   10363 
   10364   if (!Subtarget.has64BitSupport())
   10365     return SDValue();
   10366 
   10367   SelectionDAG &DAG = DCI.DAG;
   10368   SDLoc dl(N);
   10369   SDValue Op(N, 0);
   10370 
   10371   // Don't handle ppc_fp128 here or i1 conversions.
   10372   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
   10373     return SDValue();
   10374   if (Op.getOperand(0).getValueType() == MVT::i1)
   10375     return SDValue();
   10376 
   10377   // For i32 intermediate values, unfortunately, the conversion functions
   10378   // leave the upper 32 bits of the value are undefined. Within the set of
   10379   // scalar instructions, we have no method for zero- or sign-extending the
   10380   // value. Thus, we cannot handle i32 intermediate values here.
   10381   if (Op.getOperand(0).getValueType() == MVT::i32)
   10382     return SDValue();
   10383 
   10384   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
   10385          "UINT_TO_FP is supported only with FPCVT");
   10386 
   10387   // If we have FCFIDS, then use it when converting to single-precision.
   10388   // Otherwise, convert to double-precision and then round.
   10389   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   10390                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
   10391                                                             : PPCISD::FCFIDS)
   10392                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
   10393                                                             : PPCISD::FCFID);
   10394   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   10395                   ? MVT::f32
   10396                   : MVT::f64;
   10397 
   10398   // If we're converting from a float, to an int, and back to a float again,
   10399   // then we don't need the store/load pair at all.
   10400   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
   10401        Subtarget.hasFPCVT()) ||
   10402       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
   10403     SDValue Src = Op.getOperand(0).getOperand(0);
   10404     if (Src.getValueType() == MVT::f32) {
   10405       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   10406       DCI.AddToWorklist(Src.getNode());
   10407     } else if (Src.getValueType() != MVT::f64) {
   10408       // Make sure that we don't pick up a ppc_fp128 source value.
   10409       return SDValue();
   10410     }
   10411 
   10412     unsigned FCTOp =
   10413       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
   10414                                                         PPCISD::FCTIDUZ;
   10415 
   10416     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
   10417     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
   10418 
   10419     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
   10420       FP = DAG.getNode(ISD::FP_ROUND, dl,
   10421                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
   10422       DCI.AddToWorklist(FP.getNode());
   10423     }
   10424 
   10425     return FP;
   10426   }
   10427 
   10428   return SDValue();
   10429 }
   10430 
   10431 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
   10432 // builtins) into loads with swaps.
   10433 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
   10434                                               DAGCombinerInfo &DCI) const {
   10435   SelectionDAG &DAG = DCI.DAG;
   10436   SDLoc dl(N);
   10437   SDValue Chain;
   10438   SDValue Base;
   10439   MachineMemOperand *MMO;
   10440 
   10441   switch (N->getOpcode()) {
   10442   default:
   10443     llvm_unreachable("Unexpected opcode for little endian VSX load");
   10444   case ISD::LOAD: {
   10445     LoadSDNode *LD = cast<LoadSDNode>(N);
   10446     Chain = LD->getChain();
   10447     Base = LD->getBasePtr();
   10448     MMO = LD->getMemOperand();
   10449     // If the MMO suggests this isn't a load of a full vector, leave
   10450     // things alone.  For a built-in, we have to make the change for
   10451     // correctness, so if there is a size problem that will be a bug.
   10452     if (MMO->getSize() < 16)
   10453       return SDValue();
   10454     break;
   10455   }
   10456   case ISD::INTRINSIC_W_CHAIN: {
   10457     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
   10458     Chain = Intrin->getChain();
   10459     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
   10460     // us what we want. Get operand 2 instead.
   10461     Base = Intrin->getOperand(2);
   10462     MMO = Intrin->getMemOperand();
   10463     break;
   10464   }
   10465   }
   10466 
   10467   MVT VecTy = N->getValueType(0).getSimpleVT();
   10468   SDValue LoadOps[] = { Chain, Base };
   10469   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
   10470                                          DAG.getVTList(MVT::v2f64, MVT::Other),
   10471                                          LoadOps, MVT::v2f64, MMO);
   10472 
   10473   DCI.AddToWorklist(Load.getNode());
   10474   Chain = Load.getValue(1);
   10475   SDValue Swap = DAG.getNode(
   10476       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
   10477   DCI.AddToWorklist(Swap.getNode());
   10478 
   10479   // Add a bitcast if the resulting load type doesn't match v2f64.
   10480   if (VecTy != MVT::v2f64) {
   10481     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
   10482     DCI.AddToWorklist(N.getNode());
   10483     // Package {bitcast value, swap's chain} to match Load's shape.
   10484     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
   10485                        N, Swap.getValue(1));
   10486   }
   10487 
   10488   return Swap;
   10489 }
   10490 
   10491 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
   10492 // builtins) into stores with swaps.
   10493 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
   10494                                                DAGCombinerInfo &DCI) const {
   10495   SelectionDAG &DAG = DCI.DAG;
   10496   SDLoc dl(N);
   10497   SDValue Chain;
   10498   SDValue Base;
   10499   unsigned SrcOpnd;
   10500   MachineMemOperand *MMO;
   10501 
   10502   switch (N->getOpcode()) {
   10503   default:
   10504     llvm_unreachable("Unexpected opcode for little endian VSX store");
   10505   case ISD::STORE: {
   10506     StoreSDNode *ST = cast<StoreSDNode>(N);
   10507     Chain = ST->getChain();
   10508     Base = ST->getBasePtr();
   10509     MMO = ST->getMemOperand();
   10510     SrcOpnd = 1;
   10511     // If the MMO suggests this isn't a store of a full vector, leave
   10512     // things alone.  For a built-in, we have to make the change for
   10513     // correctness, so if there is a size problem that will be a bug.
   10514     if (MMO->getSize() < 16)
   10515       return SDValue();
   10516     break;
   10517   }
   10518   case ISD::INTRINSIC_VOID: {
   10519     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
   10520     Chain = Intrin->getChain();
   10521     // Intrin->getBasePtr() oddly does not get what we want.
   10522     Base = Intrin->getOperand(3);
   10523     MMO = Intrin->getMemOperand();
   10524     SrcOpnd = 2;
   10525     break;
   10526   }
   10527   }
   10528 
   10529   SDValue Src = N->getOperand(SrcOpnd);
   10530   MVT VecTy = Src.getValueType().getSimpleVT();
   10531 
   10532   // All stores are done as v2f64 and possible bit cast.
   10533   if (VecTy != MVT::v2f64) {
   10534     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
   10535     DCI.AddToWorklist(Src.getNode());
   10536   }
   10537 
   10538   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
   10539                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
   10540   DCI.AddToWorklist(Swap.getNode());
   10541   Chain = Swap.getValue(1);
   10542   SDValue StoreOps[] = { Chain, Swap, Base };
   10543   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
   10544                                           DAG.getVTList(MVT::Other),
   10545                                           StoreOps, VecTy, MMO);
   10546   DCI.AddToWorklist(Store.getNode());
   10547   return Store;
   10548 }
   10549 
   10550 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
   10551                                              DAGCombinerInfo &DCI) const {
   10552   SelectionDAG &DAG = DCI.DAG;
   10553   SDLoc dl(N);
   10554   switch (N->getOpcode()) {
   10555   default: break;
   10556   case PPCISD::SHL:
   10557     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
   10558         return N->getOperand(0);
   10559     break;
   10560   case PPCISD::SRL:
   10561     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
   10562         return N->getOperand(0);
   10563     break;
   10564   case PPCISD::SRA:
   10565     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   10566       if (C->isNullValue() ||   //  0 >>s V -> 0.
   10567           C->isAllOnesValue())    // -1 >>s V -> -1.
   10568         return N->getOperand(0);
   10569     }
   10570     break;
   10571   case ISD::SIGN_EXTEND:
   10572   case ISD::ZERO_EXTEND:
   10573   case ISD::ANY_EXTEND:
   10574     return DAGCombineExtBoolTrunc(N, DCI);
   10575   case ISD::TRUNCATE:
   10576   case ISD::SETCC:
   10577   case ISD::SELECT_CC:
   10578     return DAGCombineTruncBoolExt(N, DCI);
   10579   case ISD::SINT_TO_FP:
   10580   case ISD::UINT_TO_FP:
   10581     return combineFPToIntToFP(N, DCI);
   10582   case ISD::STORE: {
   10583     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
   10584     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
   10585         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
   10586         N->getOperand(1).getValueType() == MVT::i32 &&
   10587         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
   10588       SDValue Val = N->getOperand(1).getOperand(0);
   10589       if (Val.getValueType() == MVT::f32) {
   10590         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
   10591         DCI.AddToWorklist(Val.getNode());
   10592       }
   10593       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
   10594       DCI.AddToWorklist(Val.getNode());
   10595 
   10596       SDValue Ops[] = {
   10597         N->getOperand(0), Val, N->getOperand(2),
   10598         DAG.getValueType(N->getOperand(1).getValueType())
   10599       };
   10600 
   10601       Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
   10602               DAG.getVTList(MVT::Other), Ops,
   10603               cast<StoreSDNode>(N)->getMemoryVT(),
   10604               cast<StoreSDNode>(N)->getMemOperand());
   10605       DCI.AddToWorklist(Val.getNode());
   10606       return Val;
   10607     }
   10608 
   10609     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
   10610     if (cast<StoreSDNode>(N)->isUnindexed() &&
   10611         N->getOperand(1).getOpcode() == ISD::BSWAP &&
   10612         N->getOperand(1).getNode()->hasOneUse() &&
   10613         (N->getOperand(1).getValueType() == MVT::i32 ||
   10614          N->getOperand(1).getValueType() == MVT::i16 ||
   10615          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
   10616           N->getOperand(1).getValueType() == MVT::i64))) {
   10617       SDValue BSwapOp = N->getOperand(1).getOperand(0);
   10618       // Do an any-extend to 32-bits if this is a half-word input.
   10619       if (BSwapOp.getValueType() == MVT::i16)
   10620         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
   10621 
   10622       SDValue Ops[] = {
   10623         N->getOperand(0), BSwapOp, N->getOperand(2),
   10624         DAG.getValueType(N->getOperand(1).getValueType())
   10625       };
   10626       return
   10627         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
   10628                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
   10629                                 cast<StoreSDNode>(N)->getMemOperand());
   10630     }
   10631 
   10632     // For little endian, VSX stores require generating xxswapd/lxvd2x.
   10633     EVT VT = N->getOperand(1).getValueType();
   10634     if (VT.isSimple()) {
   10635       MVT StoreVT = VT.getSimpleVT();
   10636       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
   10637           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
   10638            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
   10639         return expandVSXStoreForLE(N, DCI);
   10640     }
   10641     break;
   10642   }
   10643   case ISD::LOAD: {
   10644     LoadSDNode *LD = cast<LoadSDNode>(N);
   10645     EVT VT = LD->getValueType(0);
   10646 
   10647     // For little endian, VSX loads require generating lxvd2x/xxswapd.
   10648     if (VT.isSimple()) {
   10649       MVT LoadVT = VT.getSimpleVT();
   10650       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
   10651           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
   10652            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
   10653         return expandVSXLoadForLE(N, DCI);
   10654     }
   10655 
   10656     // We sometimes end up with a 64-bit integer load, from which we extract
   10657     // two single-precision floating-point numbers. This happens with
   10658     // std::complex<float>, and other similar structures, because of the way we
   10659     // canonicalize structure copies. However, if we lack direct moves,
   10660     // then the final bitcasts from the extracted integer values to the
   10661     // floating-point numbers turn into store/load pairs. Even with direct moves,
   10662     // just loading the two floating-point numbers is likely better.
   10663     auto ReplaceTwoFloatLoad = [&]() {
   10664       if (VT != MVT::i64)
   10665         return false;
   10666 
   10667       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
   10668           LD->isVolatile())
   10669         return false;
   10670 
   10671       //  We're looking for a sequence like this:
   10672       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
   10673       //      t16: i64 = srl t13, Constant:i32<32>
   10674       //    t17: i32 = truncate t16
   10675       //  t18: f32 = bitcast t17
   10676       //    t19: i32 = truncate t13
   10677       //  t20: f32 = bitcast t19
   10678 
   10679       if (!LD->hasNUsesOfValue(2, 0))
   10680         return false;
   10681 
   10682       auto UI = LD->use_begin();
   10683       while (UI.getUse().getResNo() != 0) ++UI;
   10684       SDNode *Trunc = *UI++;
   10685       while (UI.getUse().getResNo() != 0) ++UI;
   10686       SDNode *RightShift = *UI;
   10687       if (Trunc->getOpcode() != ISD::TRUNCATE)
   10688         std::swap(Trunc, RightShift);
   10689 
   10690       if (Trunc->getOpcode() != ISD::TRUNCATE ||
   10691           Trunc->getValueType(0) != MVT::i32 ||
   10692           !Trunc->hasOneUse())
   10693         return false;
   10694       if (RightShift->getOpcode() != ISD::SRL ||
   10695           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
   10696           RightShift->getConstantOperandVal(1) != 32 ||
   10697           !RightShift->hasOneUse())
   10698         return false;
   10699 
   10700       SDNode *Trunc2 = *RightShift->use_begin();
   10701       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
   10702           Trunc2->getValueType(0) != MVT::i32 ||
   10703           !Trunc2->hasOneUse())
   10704         return false;
   10705 
   10706       SDNode *Bitcast = *Trunc->use_begin();
   10707       SDNode *Bitcast2 = *Trunc2->use_begin();
   10708 
   10709       if (Bitcast->getOpcode() != ISD::BITCAST ||
   10710           Bitcast->getValueType(0) != MVT::f32)
   10711         return false;
   10712       if (Bitcast2->getOpcode() != ISD::BITCAST ||
   10713           Bitcast2->getValueType(0) != MVT::f32)
   10714         return false;
   10715 
   10716       if (Subtarget.isLittleEndian())
   10717         std::swap(Bitcast, Bitcast2);
   10718 
   10719       // Bitcast has the second float (in memory-layout order) and Bitcast2
   10720       // has the first one.
   10721 
   10722       SDValue BasePtr = LD->getBasePtr();
   10723       if (LD->isIndexed()) {
   10724         assert(LD->getAddressingMode() == ISD::PRE_INC &&
   10725                "Non-pre-inc AM on PPC?");
   10726         BasePtr =
   10727           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
   10728                       LD->getOffset());
   10729       }
   10730 
   10731       SDValue FloatLoad =
   10732         DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
   10733                     LD->getPointerInfo(), false, LD->isNonTemporal(),
   10734                     LD->isInvariant(), LD->getAlignment(), LD->getAAInfo());
   10735       SDValue AddPtr =
   10736         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
   10737                     BasePtr, DAG.getIntPtrConstant(4, dl));
   10738       SDValue FloatLoad2 =
   10739         DAG.getLoad(MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
   10740                     LD->getPointerInfo().getWithOffset(4), false,
   10741                     LD->isNonTemporal(), LD->isInvariant(),
   10742                     MinAlign(LD->getAlignment(), 4), LD->getAAInfo());
   10743 
   10744       if (LD->isIndexed()) {
   10745         // Note that DAGCombine should re-form any pre-increment load(s) from
   10746         // what is produced here if that makes sense.
   10747         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
   10748       }
   10749 
   10750       DCI.CombineTo(Bitcast2, FloatLoad);
   10751       DCI.CombineTo(Bitcast, FloatLoad2);
   10752 
   10753       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
   10754                                     SDValue(FloatLoad2.getNode(), 1));
   10755       return true;
   10756     };
   10757 
   10758     if (ReplaceTwoFloatLoad())
   10759       return SDValue(N, 0);
   10760 
   10761     EVT MemVT = LD->getMemoryVT();
   10762     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
   10763     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
   10764     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
   10765     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
   10766     if (LD->isUnindexed() && VT.isVector() &&
   10767         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
   10768           // P8 and later hardware should just use LOAD.
   10769           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
   10770                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
   10771          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
   10772           LD->getAlignment() >= ScalarABIAlignment)) &&
   10773         LD->getAlignment() < ABIAlignment) {
   10774       // This is a type-legal unaligned Altivec or QPX load.
   10775       SDValue Chain = LD->getChain();
   10776       SDValue Ptr = LD->getBasePtr();
   10777       bool isLittleEndian = Subtarget.isLittleEndian();
   10778 
   10779       // This implements the loading of unaligned vectors as described in
   10780       // the venerable Apple Velocity Engine overview. Specifically:
   10781       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
   10782       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
   10783       //
   10784       // The general idea is to expand a sequence of one or more unaligned
   10785       // loads into an alignment-based permutation-control instruction (lvsl
   10786       // or lvsr), a series of regular vector loads (which always truncate
   10787       // their input address to an aligned address), and a series of
   10788       // permutations.  The results of these permutations are the requested
   10789       // loaded values.  The trick is that the last "extra" load is not taken
   10790       // from the address you might suspect (sizeof(vector) bytes after the
   10791       // last requested load), but rather sizeof(vector) - 1 bytes after the
   10792       // last requested vector. The point of this is to avoid a page fault if
   10793       // the base address happened to be aligned. This works because if the
   10794       // base address is aligned, then adding less than a full vector length
   10795       // will cause the last vector in the sequence to be (re)loaded.
   10796       // Otherwise, the next vector will be fetched as you might suspect was
   10797       // necessary.
   10798 
   10799       // We might be able to reuse the permutation generation from
   10800       // a different base address offset from this one by an aligned amount.
   10801       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
   10802       // optimization later.
   10803       Intrinsic::ID Intr, IntrLD, IntrPerm;
   10804       MVT PermCntlTy, PermTy, LDTy;
   10805       if (Subtarget.hasAltivec()) {
   10806         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
   10807                                  Intrinsic::ppc_altivec_lvsl;
   10808         IntrLD = Intrinsic::ppc_altivec_lvx;
   10809         IntrPerm = Intrinsic::ppc_altivec_vperm;
   10810         PermCntlTy = MVT::v16i8;
   10811         PermTy = MVT::v4i32;
   10812         LDTy = MVT::v4i32;
   10813       } else {
   10814         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
   10815                                        Intrinsic::ppc_qpx_qvlpcls;
   10816         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
   10817                                        Intrinsic::ppc_qpx_qvlfs;
   10818         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
   10819         PermCntlTy = MVT::v4f64;
   10820         PermTy = MVT::v4f64;
   10821         LDTy = MemVT.getSimpleVT();
   10822       }
   10823 
   10824       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
   10825 
   10826       // Create the new MMO for the new base load. It is like the original MMO,
   10827       // but represents an area in memory almost twice the vector size centered
   10828       // on the original address. If the address is unaligned, we might start
   10829       // reading up to (sizeof(vector)-1) bytes below the address of the
   10830       // original unaligned load.
   10831       MachineFunction &MF = DAG.getMachineFunction();
   10832       MachineMemOperand *BaseMMO =
   10833         MF.getMachineMemOperand(LD->getMemOperand(),
   10834                                 -(long)MemVT.getStoreSize()+1,
   10835                                 2*MemVT.getStoreSize()-1);
   10836 
   10837       // Create the new base load.
   10838       SDValue LDXIntID =
   10839           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
   10840       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
   10841       SDValue BaseLoad =
   10842         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
   10843                                 DAG.getVTList(PermTy, MVT::Other),
   10844                                 BaseLoadOps, LDTy, BaseMMO);
   10845 
   10846       // Note that the value of IncOffset (which is provided to the next
   10847       // load's pointer info offset value, and thus used to calculate the
   10848       // alignment), and the value of IncValue (which is actually used to
   10849       // increment the pointer value) are different! This is because we
   10850       // require the next load to appear to be aligned, even though it
   10851       // is actually offset from the base pointer by a lesser amount.
   10852       int IncOffset = VT.getSizeInBits() / 8;
   10853       int IncValue = IncOffset;
   10854 
   10855       // Walk (both up and down) the chain looking for another load at the real
   10856       // (aligned) offset (the alignment of the other load does not matter in
   10857       // this case). If found, then do not use the offset reduction trick, as
   10858       // that will prevent the loads from being later combined (as they would
   10859       // otherwise be duplicates).
   10860       if (!findConsecutiveLoad(LD, DAG))
   10861         --IncValue;
   10862 
   10863       SDValue Increment =
   10864           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
   10865       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
   10866 
   10867       MachineMemOperand *ExtraMMO =
   10868         MF.getMachineMemOperand(LD->getMemOperand(),
   10869                                 1, 2*MemVT.getStoreSize()-1);
   10870       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
   10871       SDValue ExtraLoad =
   10872         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
   10873                                 DAG.getVTList(PermTy, MVT::Other),
   10874                                 ExtraLoadOps, LDTy, ExtraMMO);
   10875 
   10876       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   10877         BaseLoad.getValue(1), ExtraLoad.getValue(1));
   10878 
   10879       // Because vperm has a big-endian bias, we must reverse the order
   10880       // of the input vectors and complement the permute control vector
   10881       // when generating little endian code.  We have already handled the
   10882       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
   10883       // and ExtraLoad here.
   10884       SDValue Perm;
   10885       if (isLittleEndian)
   10886         Perm = BuildIntrinsicOp(IntrPerm,
   10887                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
   10888       else
   10889         Perm = BuildIntrinsicOp(IntrPerm,
   10890                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
   10891 
   10892       if (VT != PermTy)
   10893         Perm = Subtarget.hasAltivec() ?
   10894                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
   10895                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
   10896                                DAG.getTargetConstant(1, dl, MVT::i64));
   10897                                // second argument is 1 because this rounding
   10898                                // is always exact.
   10899 
   10900       // The output of the permutation is our loaded result, the TokenFactor is
   10901       // our new chain.
   10902       DCI.CombineTo(N, Perm, TF);
   10903       return SDValue(N, 0);
   10904     }
   10905     }
   10906     break;
   10907     case ISD::INTRINSIC_WO_CHAIN: {
   10908       bool isLittleEndian = Subtarget.isLittleEndian();
   10909       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   10910       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
   10911                                            : Intrinsic::ppc_altivec_lvsl);
   10912       if ((IID == Intr ||
   10913            IID == Intrinsic::ppc_qpx_qvlpcld  ||
   10914            IID == Intrinsic::ppc_qpx_qvlpcls) &&
   10915         N->getOperand(1)->getOpcode() == ISD::ADD) {
   10916         SDValue Add = N->getOperand(1);
   10917 
   10918         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
   10919                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
   10920 
   10921         if (DAG.MaskedValueIsZero(
   10922                 Add->getOperand(1),
   10923                 APInt::getAllOnesValue(Bits /* alignment */)
   10924                     .zext(
   10925                         Add.getValueType().getScalarType().getSizeInBits()))) {
   10926           SDNode *BasePtr = Add->getOperand(0).getNode();
   10927           for (SDNode::use_iterator UI = BasePtr->use_begin(),
   10928                                     UE = BasePtr->use_end();
   10929                UI != UE; ++UI) {
   10930             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   10931                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
   10932               // We've found another LVSL/LVSR, and this address is an aligned
   10933               // multiple of that one. The results will be the same, so use the
   10934               // one we've just found instead.
   10935 
   10936               return SDValue(*UI, 0);
   10937             }
   10938           }
   10939         }
   10940 
   10941         if (isa<ConstantSDNode>(Add->getOperand(1))) {
   10942           SDNode *BasePtr = Add->getOperand(0).getNode();
   10943           for (SDNode::use_iterator UI = BasePtr->use_begin(),
   10944                UE = BasePtr->use_end(); UI != UE; ++UI) {
   10945             if (UI->getOpcode() == ISD::ADD &&
   10946                 isa<ConstantSDNode>(UI->getOperand(1)) &&
   10947                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
   10948                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
   10949                 (1ULL << Bits) == 0) {
   10950               SDNode *OtherAdd = *UI;
   10951               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
   10952                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
   10953                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   10954                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
   10955                   return SDValue(*VI, 0);
   10956                 }
   10957               }
   10958             }
   10959           }
   10960         }
   10961       }
   10962     }
   10963 
   10964     break;
   10965   case ISD::INTRINSIC_W_CHAIN: {
   10966     // For little endian, VSX loads require generating lxvd2x/xxswapd.
   10967     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
   10968       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   10969       default:
   10970         break;
   10971       case Intrinsic::ppc_vsx_lxvw4x:
   10972       case Intrinsic::ppc_vsx_lxvd2x:
   10973         return expandVSXLoadForLE(N, DCI);
   10974       }
   10975     }
   10976     break;
   10977   }
   10978   case ISD::INTRINSIC_VOID: {
   10979     // For little endian, VSX stores require generating xxswapd/stxvd2x.
   10980     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
   10981       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   10982       default:
   10983         break;
   10984       case Intrinsic::ppc_vsx_stxvw4x:
   10985       case Intrinsic::ppc_vsx_stxvd2x:
   10986         return expandVSXStoreForLE(N, DCI);
   10987       }
   10988     }
   10989     break;
   10990   }
   10991   case ISD::BSWAP:
   10992     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
   10993     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
   10994         N->getOperand(0).hasOneUse() &&
   10995         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
   10996          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
   10997           N->getValueType(0) == MVT::i64))) {
   10998       SDValue Load = N->getOperand(0);
   10999       LoadSDNode *LD = cast<LoadSDNode>(Load);
   11000       // Create the byte-swapping load.
   11001       SDValue Ops[] = {
   11002         LD->getChain(),    // Chain
   11003         LD->getBasePtr(),  // Ptr
   11004         DAG.getValueType(N->getValueType(0)) // VT
   11005       };
   11006       SDValue BSLoad =
   11007         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
   11008                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
   11009                                               MVT::i64 : MVT::i32, MVT::Other),
   11010                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
   11011 
   11012       // If this is an i16 load, insert the truncate.
   11013       SDValue ResVal = BSLoad;
   11014       if (N->getValueType(0) == MVT::i16)
   11015         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
   11016 
   11017       // First, combine the bswap away.  This makes the value produced by the
   11018       // load dead.
   11019       DCI.CombineTo(N, ResVal);
   11020 
   11021       // Next, combine the load away, we give it a bogus result value but a real
   11022       // chain result.  The result value is dead because the bswap is dead.
   11023       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
   11024 
   11025       // Return N so it doesn't get rechecked!
   11026       return SDValue(N, 0);
   11027     }
   11028 
   11029     break;
   11030   case PPCISD::VCMP: {
   11031     // If a VCMPo node already exists with exactly the same operands as this
   11032     // node, use its result instead of this node (VCMPo computes both a CR6 and
   11033     // a normal output).
   11034     //
   11035     if (!N->getOperand(0).hasOneUse() &&
   11036         !N->getOperand(1).hasOneUse() &&
   11037         !N->getOperand(2).hasOneUse()) {
   11038 
   11039       // Scan all of the users of the LHS, looking for VCMPo's that match.
   11040       SDNode *VCMPoNode = nullptr;
   11041 
   11042       SDNode *LHSN = N->getOperand(0).getNode();
   11043       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
   11044            UI != E; ++UI)
   11045         if (UI->getOpcode() == PPCISD::VCMPo &&
   11046             UI->getOperand(1) == N->getOperand(1) &&
   11047             UI->getOperand(2) == N->getOperand(2) &&
   11048             UI->getOperand(0) == N->getOperand(0)) {
   11049           VCMPoNode = *UI;
   11050           break;
   11051         }
   11052 
   11053       // If there is no VCMPo node, or if the flag value has a single use, don't
   11054       // transform this.
   11055       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
   11056         break;
   11057 
   11058       // Look at the (necessarily single) use of the flag value.  If it has a
   11059       // chain, this transformation is more complex.  Note that multiple things
   11060       // could use the value result, which we should ignore.
   11061       SDNode *FlagUser = nullptr;
   11062       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
   11063            FlagUser == nullptr; ++UI) {
   11064         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
   11065         SDNode *User = *UI;
   11066         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
   11067           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
   11068             FlagUser = User;
   11069             break;
   11070           }
   11071         }
   11072       }
   11073 
   11074       // If the user is a MFOCRF instruction, we know this is safe.
   11075       // Otherwise we give up for right now.
   11076       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
   11077         return SDValue(VCMPoNode, 0);
   11078     }
   11079     break;
   11080   }
   11081   case ISD::BRCOND: {
   11082     SDValue Cond = N->getOperand(1);
   11083     SDValue Target = N->getOperand(2);
   11084 
   11085     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   11086         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
   11087           Intrinsic::ppc_is_decremented_ctr_nonzero) {
   11088 
   11089       // We now need to make the intrinsic dead (it cannot be instruction
   11090       // selected).
   11091       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
   11092       assert(Cond.getNode()->hasOneUse() &&
   11093              "Counter decrement has more than one use");
   11094 
   11095       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
   11096                          N->getOperand(0), Target);
   11097     }
   11098   }
   11099   break;
   11100   case ISD::BR_CC: {
   11101     // If this is a branch on an altivec predicate comparison, lower this so
   11102     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
   11103     // lowering is done pre-legalize, because the legalizer lowers the predicate
   11104     // compare down to code that is difficult to reassemble.
   11105     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
   11106     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
   11107 
   11108     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
   11109     // value. If so, pass-through the AND to get to the intrinsic.
   11110     if (LHS.getOpcode() == ISD::AND &&
   11111         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   11112         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
   11113           Intrinsic::ppc_is_decremented_ctr_nonzero &&
   11114         isa<ConstantSDNode>(LHS.getOperand(1)) &&
   11115         !isNullConstant(LHS.getOperand(1)))
   11116       LHS = LHS.getOperand(0);
   11117 
   11118     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   11119         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
   11120           Intrinsic::ppc_is_decremented_ctr_nonzero &&
   11121         isa<ConstantSDNode>(RHS)) {
   11122       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
   11123              "Counter decrement comparison is not EQ or NE");
   11124 
   11125       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
   11126       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
   11127                     (CC == ISD::SETNE && !Val);
   11128 
   11129       // We now need to make the intrinsic dead (it cannot be instruction
   11130       // selected).
   11131       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
   11132       assert(LHS.getNode()->hasOneUse() &&
   11133              "Counter decrement has more than one use");
   11134 
   11135       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
   11136                          N->getOperand(0), N->getOperand(4));
   11137     }
   11138 
   11139     int CompareOpc;
   11140     bool isDot;
   11141 
   11142     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   11143         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
   11144         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
   11145       assert(isDot && "Can't compare against a vector result!");
   11146 
   11147       // If this is a comparison against something other than 0/1, then we know
   11148       // that the condition is never/always true.
   11149       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
   11150       if (Val != 0 && Val != 1) {
   11151         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
   11152           return N->getOperand(0);
   11153         // Always !=, turn it into an unconditional branch.
   11154         return DAG.getNode(ISD::BR, dl, MVT::Other,
   11155                            N->getOperand(0), N->getOperand(4));
   11156       }
   11157 
   11158       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
   11159 
   11160       // Create the PPCISD altivec 'dot' comparison node.
   11161       SDValue Ops[] = {
   11162         LHS.getOperand(2),  // LHS of compare
   11163         LHS.getOperand(3),  // RHS of compare
   11164         DAG.getConstant(CompareOpc, dl, MVT::i32)
   11165       };
   11166       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
   11167       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
   11168 
   11169       // Unpack the result based on how the target uses it.
   11170       PPC::Predicate CompOpc;
   11171       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
   11172       default:  // Can't happen, don't crash on invalid number though.
   11173       case 0:   // Branch on the value of the EQ bit of CR6.
   11174         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
   11175         break;
   11176       case 1:   // Branch on the inverted value of the EQ bit of CR6.
   11177         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
   11178         break;
   11179       case 2:   // Branch on the value of the LT bit of CR6.
   11180         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
   11181         break;
   11182       case 3:   // Branch on the inverted value of the LT bit of CR6.
   11183         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
   11184         break;
   11185       }
   11186 
   11187       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
   11188                          DAG.getConstant(CompOpc, dl, MVT::i32),
   11189                          DAG.getRegister(PPC::CR6, MVT::i32),
   11190                          N->getOperand(4), CompNode.getValue(1));
   11191     }
   11192     break;
   11193   }
   11194   case ISD::BUILD_VECTOR:
   11195     return DAGCombineBuildVector(N, DCI);
   11196   }
   11197 
   11198   return SDValue();
   11199 }
   11200 
   11201 SDValue
   11202 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
   11203                                   SelectionDAG &DAG,
   11204                                   std::vector<SDNode *> *Created) const {
   11205   // fold (sdiv X, pow2)
   11206   EVT VT = N->getValueType(0);
   11207   if (VT == MVT::i64 && !Subtarget.isPPC64())
   11208     return SDValue();
   11209   if ((VT != MVT::i32 && VT != MVT::i64) ||
   11210       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
   11211     return SDValue();
   11212 
   11213   SDLoc DL(N);
   11214   SDValue N0 = N->getOperand(0);
   11215 
   11216   bool IsNegPow2 = (-Divisor).isPowerOf2();
   11217   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
   11218   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
   11219 
   11220   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
   11221   if (Created)
   11222     Created->push_back(Op.getNode());
   11223 
   11224   if (IsNegPow2) {
   11225     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
   11226     if (Created)
   11227       Created->push_back(Op.getNode());
   11228   }
   11229 
   11230   return Op;
   11231 }
   11232 
   11233 //===----------------------------------------------------------------------===//
   11234 // Inline Assembly Support
   11235 //===----------------------------------------------------------------------===//
   11236 
   11237 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   11238                                                       APInt &KnownZero,
   11239                                                       APInt &KnownOne,
   11240                                                       const SelectionDAG &DAG,
   11241                                                       unsigned Depth) const {
   11242   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
   11243   switch (Op.getOpcode()) {
   11244   default: break;
   11245   case PPCISD::LBRX: {
   11246     // lhbrx is known to have the top bits cleared out.
   11247     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
   11248       KnownZero = 0xFFFF0000;
   11249     break;
   11250   }
   11251   case ISD::INTRINSIC_WO_CHAIN: {
   11252     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
   11253     default: break;
   11254     case Intrinsic::ppc_altivec_vcmpbfp_p:
   11255     case Intrinsic::ppc_altivec_vcmpeqfp_p:
   11256     case Intrinsic::ppc_altivec_vcmpequb_p:
   11257     case Intrinsic::ppc_altivec_vcmpequh_p:
   11258     case Intrinsic::ppc_altivec_vcmpequw_p:
   11259     case Intrinsic::ppc_altivec_vcmpequd_p:
   11260     case Intrinsic::ppc_altivec_vcmpgefp_p:
   11261     case Intrinsic::ppc_altivec_vcmpgtfp_p:
   11262     case Intrinsic::ppc_altivec_vcmpgtsb_p:
   11263     case Intrinsic::ppc_altivec_vcmpgtsh_p:
   11264     case Intrinsic::ppc_altivec_vcmpgtsw_p:
   11265     case Intrinsic::ppc_altivec_vcmpgtsd_p:
   11266     case Intrinsic::ppc_altivec_vcmpgtub_p:
   11267     case Intrinsic::ppc_altivec_vcmpgtuh_p:
   11268     case Intrinsic::ppc_altivec_vcmpgtuw_p:
   11269     case Intrinsic::ppc_altivec_vcmpgtud_p:
   11270       KnownZero = ~1U;  // All bits but the low one are known to be zero.
   11271       break;
   11272     }
   11273   }
   11274   }
   11275 }
   11276 
   11277 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
   11278   switch (Subtarget.getDarwinDirective()) {
   11279   default: break;
   11280   case PPC::DIR_970:
   11281   case PPC::DIR_PWR4:
   11282   case PPC::DIR_PWR5:
   11283   case PPC::DIR_PWR5X:
   11284   case PPC::DIR_PWR6:
   11285   case PPC::DIR_PWR6X:
   11286   case PPC::DIR_PWR7:
   11287   case PPC::DIR_PWR8:
   11288   case PPC::DIR_PWR9: {
   11289     if (!ML)
   11290       break;
   11291 
   11292     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
   11293 
   11294     // For small loops (between 5 and 8 instructions), align to a 32-byte
   11295     // boundary so that the entire loop fits in one instruction-cache line.
   11296     uint64_t LoopSize = 0;
   11297     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
   11298       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
   11299         LoopSize += TII->GetInstSizeInBytes(*J);
   11300         if (LoopSize > 32)
   11301           break;
   11302       }
   11303 
   11304     if (LoopSize > 16 && LoopSize <= 32)
   11305       return 5;
   11306 
   11307     break;
   11308   }
   11309   }
   11310 
   11311   return TargetLowering::getPrefLoopAlignment(ML);
   11312 }
   11313 
   11314 /// getConstraintType - Given a constraint, return the type of
   11315 /// constraint it is for this target.
   11316 PPCTargetLowering::ConstraintType
   11317 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
   11318   if (Constraint.size() == 1) {
   11319     switch (Constraint[0]) {
   11320     default: break;
   11321     case 'b':
   11322     case 'r':
   11323     case 'f':
   11324     case 'd':
   11325     case 'v':
   11326     case 'y':
   11327       return C_RegisterClass;
   11328     case 'Z':
   11329       // FIXME: While Z does indicate a memory constraint, it specifically
   11330       // indicates an r+r address (used in conjunction with the 'y' modifier
   11331       // in the replacement string). Currently, we're forcing the base
   11332       // register to be r0 in the asm printer (which is interpreted as zero)
   11333       // and forming the complete address in the second register. This is
   11334       // suboptimal.
   11335       return C_Memory;
   11336     }
   11337   } else if (Constraint == "wc") { // individual CR bits.
   11338     return C_RegisterClass;
   11339   } else if (Constraint == "wa" || Constraint == "wd" ||
   11340              Constraint == "wf" || Constraint == "ws") {
   11341     return C_RegisterClass; // VSX registers.
   11342   }
   11343   return TargetLowering::getConstraintType(Constraint);
   11344 }
   11345 
   11346 /// Examine constraint type and operand type and determine a weight value.
   11347 /// This object must already have been set up with the operand type
   11348 /// and the current alternative constraint selected.
   11349 TargetLowering::ConstraintWeight
   11350 PPCTargetLowering::getSingleConstraintMatchWeight(
   11351     AsmOperandInfo &info, const char *constraint) const {
   11352   ConstraintWeight weight = CW_Invalid;
   11353   Value *CallOperandVal = info.CallOperandVal;
   11354     // If we don't have a value, we can't do a match,
   11355     // but allow it at the lowest weight.
   11356   if (!CallOperandVal)
   11357     return CW_Default;
   11358   Type *type = CallOperandVal->getType();
   11359 
   11360   // Look at the constraint type.
   11361   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
   11362     return CW_Register; // an individual CR bit.
   11363   else if ((StringRef(constraint) == "wa" ||
   11364             StringRef(constraint) == "wd" ||
   11365             StringRef(constraint) == "wf") &&
   11366            type->isVectorTy())
   11367     return CW_Register;
   11368   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
   11369     return CW_Register;
   11370 
   11371   switch (*constraint) {
   11372   default:
   11373     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   11374     break;
   11375   case 'b':
   11376     if (type->isIntegerTy())
   11377       weight = CW_Register;
   11378     break;
   11379   case 'f':
   11380     if (type->isFloatTy())
   11381       weight = CW_Register;
   11382     break;
   11383   case 'd':
   11384     if (type->isDoubleTy())
   11385       weight = CW_Register;
   11386     break;
   11387   case 'v':
   11388     if (type->isVectorTy())
   11389       weight = CW_Register;
   11390     break;
   11391   case 'y':
   11392     weight = CW_Register;
   11393     break;
   11394   case 'Z':
   11395     weight = CW_Memory;
   11396     break;
   11397   }
   11398   return weight;
   11399 }
   11400 
   11401 std::pair<unsigned, const TargetRegisterClass *>
   11402 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
   11403                                                 StringRef Constraint,
   11404                                                 MVT VT) const {
   11405   if (Constraint.size() == 1) {
   11406     // GCC RS6000 Constraint Letters
   11407     switch (Constraint[0]) {
   11408     case 'b':   // R1-R31
   11409       if (VT == MVT::i64 && Subtarget.isPPC64())
   11410         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
   11411       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
   11412     case 'r':   // R0-R31
   11413       if (VT == MVT::i64 && Subtarget.isPPC64())
   11414         return std::make_pair(0U, &PPC::G8RCRegClass);
   11415       return std::make_pair(0U, &PPC::GPRCRegClass);
   11416     // 'd' and 'f' constraints are both defined to be "the floating point
   11417     // registers", where one is for 32-bit and the other for 64-bit. We don't
   11418     // really care overly much here so just give them all the same reg classes.
   11419     case 'd':
   11420     case 'f':
   11421       if (VT == MVT::f32 || VT == MVT::i32)
   11422         return std::make_pair(0U, &PPC::F4RCRegClass);
   11423       if (VT == MVT::f64 || VT == MVT::i64)
   11424         return std::make_pair(0U, &PPC::F8RCRegClass);
   11425       if (VT == MVT::v4f64 && Subtarget.hasQPX())
   11426         return std::make_pair(0U, &PPC::QFRCRegClass);
   11427       if (VT == MVT::v4f32 && Subtarget.hasQPX())
   11428         return std::make_pair(0U, &PPC::QSRCRegClass);
   11429       break;
   11430     case 'v':
   11431       if (VT == MVT::v4f64 && Subtarget.hasQPX())
   11432         return std::make_pair(0U, &PPC::QFRCRegClass);
   11433       if (VT == MVT::v4f32 && Subtarget.hasQPX())
   11434         return std::make_pair(0U, &PPC::QSRCRegClass);
   11435       if (Subtarget.hasAltivec())
   11436         return std::make_pair(0U, &PPC::VRRCRegClass);
   11437     case 'y':   // crrc
   11438       return std::make_pair(0U, &PPC::CRRCRegClass);
   11439     }
   11440   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
   11441     // An individual CR bit.
   11442     return std::make_pair(0U, &PPC::CRBITRCRegClass);
   11443   } else if ((Constraint == "wa" || Constraint == "wd" ||
   11444              Constraint == "wf") && Subtarget.hasVSX()) {
   11445     return std::make_pair(0U, &PPC::VSRCRegClass);
   11446   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
   11447     if (VT == MVT::f32 && Subtarget.hasP8Vector())
   11448       return std::make_pair(0U, &PPC::VSSRCRegClass);
   11449     else
   11450       return std::make_pair(0U, &PPC::VSFRCRegClass);
   11451   }
   11452 
   11453   std::pair<unsigned, const TargetRegisterClass *> R =
   11454       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   11455 
   11456   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
   11457   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
   11458   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
   11459   // register.
   11460   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
   11461   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
   11462   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
   11463       PPC::GPRCRegClass.contains(R.first))
   11464     return std::make_pair(TRI->getMatchingSuperReg(R.first,
   11465                             PPC::sub_32, &PPC::G8RCRegClass),
   11466                           &PPC::G8RCRegClass);
   11467 
   11468   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
   11469   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
   11470     R.first = PPC::CR0;
   11471     R.second = &PPC::CRRCRegClass;
   11472   }
   11473 
   11474   return R;
   11475 }
   11476 
   11477 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   11478 /// vector.  If it is invalid, don't add anything to Ops.
   11479 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   11480                                                      std::string &Constraint,
   11481                                                      std::vector<SDValue>&Ops,
   11482                                                      SelectionDAG &DAG) const {
   11483   SDValue Result;
   11484 
   11485   // Only support length 1 constraints.
   11486   if (Constraint.length() > 1) return;
   11487 
   11488   char Letter = Constraint[0];
   11489   switch (Letter) {
   11490   default: break;
   11491   case 'I':
   11492   case 'J':
   11493   case 'K':
   11494   case 'L':
   11495   case 'M':
   11496   case 'N':
   11497   case 'O':
   11498   case 'P': {
   11499     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
   11500     if (!CST) return; // Must be an immediate to match.
   11501     SDLoc dl(Op);
   11502     int64_t Value = CST->getSExtValue();
   11503     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
   11504                          // numbers are printed as such.
   11505     switch (Letter) {
   11506     default: llvm_unreachable("Unknown constraint letter!");
   11507     case 'I':  // "I" is a signed 16-bit constant.
   11508       if (isInt<16>(Value))
   11509         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11510       break;
   11511     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
   11512       if (isShiftedUInt<16, 16>(Value))
   11513         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11514       break;
   11515     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
   11516       if (isShiftedInt<16, 16>(Value))
   11517         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11518       break;
   11519     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
   11520       if (isUInt<16>(Value))
   11521         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11522       break;
   11523     case 'M':  // "M" is a constant that is greater than 31.
   11524       if (Value > 31)
   11525         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11526       break;
   11527     case 'N':  // "N" is a positive constant that is an exact power of two.
   11528       if (Value > 0 && isPowerOf2_64(Value))
   11529         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11530       break;
   11531     case 'O':  // "O" is the constant zero.
   11532       if (Value == 0)
   11533         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11534       break;
   11535     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
   11536       if (isInt<16>(-Value))
   11537         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11538       break;
   11539     }
   11540     break;
   11541   }
   11542   }
   11543 
   11544   if (Result.getNode()) {
   11545     Ops.push_back(Result);
   11546     return;
   11547   }
   11548 
   11549   // Handle standard constraint letters.
   11550   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   11551 }
   11552 
   11553 // isLegalAddressingMode - Return true if the addressing mode represented
   11554 // by AM is legal for this target, for a load/store of the specified type.
   11555 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
   11556                                               const AddrMode &AM, Type *Ty,
   11557                                               unsigned AS) const {
   11558   // PPC does not allow r+i addressing modes for vectors!
   11559   if (Ty->isVectorTy() && AM.BaseOffs != 0)
   11560     return false;
   11561 
   11562   // PPC allows a sign-extended 16-bit immediate field.
   11563   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   11564     return false;
   11565 
   11566   // No global is ever allowed as a base.
   11567   if (AM.BaseGV)
   11568     return false;
   11569 
   11570   // PPC only support r+r,
   11571   switch (AM.Scale) {
   11572   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   11573     break;
   11574   case 1:
   11575     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   11576       return false;
   11577     // Otherwise we have r+r or r+i.
   11578     break;
   11579   case 2:
   11580     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   11581       return false;
   11582     // Allow 2*r as r+r.
   11583     break;
   11584   default:
   11585     // No other scales are supported.
   11586     return false;
   11587   }
   11588 
   11589   return true;
   11590 }
   11591 
   11592 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
   11593                                            SelectionDAG &DAG) const {
   11594   MachineFunction &MF = DAG.getMachineFunction();
   11595   MachineFrameInfo *MFI = MF.getFrameInfo();
   11596   MFI->setReturnAddressIsTaken(true);
   11597 
   11598   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   11599     return SDValue();
   11600 
   11601   SDLoc dl(Op);
   11602   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   11603 
   11604   // Make sure the function does not optimize away the store of the RA to
   11605   // the stack.
   11606   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   11607   FuncInfo->setLRStoreRequired();
   11608   bool isPPC64 = Subtarget.isPPC64();
   11609   auto PtrVT = getPointerTy(MF.getDataLayout());
   11610 
   11611   if (Depth > 0) {
   11612     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   11613     SDValue Offset =
   11614         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
   11615                         isPPC64 ? MVT::i64 : MVT::i32);
   11616     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   11617                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
   11618                        MachinePointerInfo(), false, false, false, 0);
   11619   }
   11620 
   11621   // Just load the return address off the stack.
   11622   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
   11623   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
   11624                      MachinePointerInfo(), false, false, false, 0);
   11625 }
   11626 
   11627 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
   11628                                           SelectionDAG &DAG) const {
   11629   SDLoc dl(Op);
   11630   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   11631 
   11632   MachineFunction &MF = DAG.getMachineFunction();
   11633   MachineFrameInfo *MFI = MF.getFrameInfo();
   11634   MFI->setFrameAddressIsTaken(true);
   11635 
   11636   EVT PtrVT = getPointerTy(MF.getDataLayout());
   11637   bool isPPC64 = PtrVT == MVT::i64;
   11638 
   11639   // Naked functions never have a frame pointer, and so we use r1. For all
   11640   // other functions, this decision must be delayed until during PEI.
   11641   unsigned FrameReg;
   11642   if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
   11643     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
   11644   else
   11645     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
   11646 
   11647   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
   11648                                          PtrVT);
   11649   while (Depth--)
   11650     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
   11651                             FrameAddr, MachinePointerInfo(), false, false,
   11652                             false, 0);
   11653   return FrameAddr;
   11654 }
   11655 
   11656 // FIXME? Maybe this could be a TableGen attribute on some registers and
   11657 // this table could be generated automatically from RegInfo.
   11658 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
   11659                                               SelectionDAG &DAG) const {
   11660   bool isPPC64 = Subtarget.isPPC64();
   11661   bool isDarwinABI = Subtarget.isDarwinABI();
   11662 
   11663   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
   11664       (!isPPC64 && VT != MVT::i32))
   11665     report_fatal_error("Invalid register global variable type");
   11666 
   11667   bool is64Bit = isPPC64 && VT == MVT::i64;
   11668   unsigned Reg = StringSwitch<unsigned>(RegName)
   11669                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
   11670                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
   11671                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
   11672                                   (is64Bit ? PPC::X13 : PPC::R13))
   11673                    .Default(0);
   11674 
   11675   if (Reg)
   11676     return Reg;
   11677   report_fatal_error("Invalid register name global variable");
   11678 }
   11679 
   11680 bool
   11681 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   11682   // The PowerPC target isn't yet aware of offsets.
   11683   return false;
   11684 }
   11685 
   11686 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
   11687                                            const CallInst &I,
   11688                                            unsigned Intrinsic) const {
   11689 
   11690   switch (Intrinsic) {
   11691   case Intrinsic::ppc_qpx_qvlfd:
   11692   case Intrinsic::ppc_qpx_qvlfs:
   11693   case Intrinsic::ppc_qpx_qvlfcd:
   11694   case Intrinsic::ppc_qpx_qvlfcs:
   11695   case Intrinsic::ppc_qpx_qvlfiwa:
   11696   case Intrinsic::ppc_qpx_qvlfiwz:
   11697   case Intrinsic::ppc_altivec_lvx:
   11698   case Intrinsic::ppc_altivec_lvxl:
   11699   case Intrinsic::ppc_altivec_lvebx:
   11700   case Intrinsic::ppc_altivec_lvehx:
   11701   case Intrinsic::ppc_altivec_lvewx:
   11702   case Intrinsic::ppc_vsx_lxvd2x:
   11703   case Intrinsic::ppc_vsx_lxvw4x: {
   11704     EVT VT;
   11705     switch (Intrinsic) {
   11706     case Intrinsic::ppc_altivec_lvebx:
   11707       VT = MVT::i8;
   11708       break;
   11709     case Intrinsic::ppc_altivec_lvehx:
   11710       VT = MVT::i16;
   11711       break;
   11712     case Intrinsic::ppc_altivec_lvewx:
   11713       VT = MVT::i32;
   11714       break;
   11715     case Intrinsic::ppc_vsx_lxvd2x:
   11716       VT = MVT::v2f64;
   11717       break;
   11718     case Intrinsic::ppc_qpx_qvlfd:
   11719       VT = MVT::v4f64;
   11720       break;
   11721     case Intrinsic::ppc_qpx_qvlfs:
   11722       VT = MVT::v4f32;
   11723       break;
   11724     case Intrinsic::ppc_qpx_qvlfcd:
   11725       VT = MVT::v2f64;
   11726       break;
   11727     case Intrinsic::ppc_qpx_qvlfcs:
   11728       VT = MVT::v2f32;
   11729       break;
   11730     default:
   11731       VT = MVT::v4i32;
   11732       break;
   11733     }
   11734 
   11735     Info.opc = ISD::INTRINSIC_W_CHAIN;
   11736     Info.memVT = VT;
   11737     Info.ptrVal = I.getArgOperand(0);
   11738     Info.offset = -VT.getStoreSize()+1;
   11739     Info.size = 2*VT.getStoreSize()-1;
   11740     Info.align = 1;
   11741     Info.vol = false;
   11742     Info.readMem = true;
   11743     Info.writeMem = false;
   11744     return true;
   11745   }
   11746   case Intrinsic::ppc_qpx_qvlfda:
   11747   case Intrinsic::ppc_qpx_qvlfsa:
   11748   case Intrinsic::ppc_qpx_qvlfcda:
   11749   case Intrinsic::ppc_qpx_qvlfcsa:
   11750   case Intrinsic::ppc_qpx_qvlfiwaa:
   11751   case Intrinsic::ppc_qpx_qvlfiwza: {
   11752     EVT VT;
   11753     switch (Intrinsic) {
   11754     case Intrinsic::ppc_qpx_qvlfda:
   11755       VT = MVT::v4f64;
   11756       break;
   11757     case Intrinsic::ppc_qpx_qvlfsa:
   11758       VT = MVT::v4f32;
   11759       break;
   11760     case Intrinsic::ppc_qpx_qvlfcda:
   11761       VT = MVT::v2f64;
   11762       break;
   11763     case Intrinsic::ppc_qpx_qvlfcsa:
   11764       VT = MVT::v2f32;
   11765       break;
   11766     default:
   11767       VT = MVT::v4i32;
   11768       break;
   11769     }
   11770 
   11771     Info.opc = ISD::INTRINSIC_W_CHAIN;
   11772     Info.memVT = VT;
   11773     Info.ptrVal = I.getArgOperand(0);
   11774     Info.offset = 0;
   11775     Info.size = VT.getStoreSize();
   11776     Info.align = 1;
   11777     Info.vol = false;
   11778     Info.readMem = true;
   11779     Info.writeMem = false;
   11780     return true;
   11781   }
   11782   case Intrinsic::ppc_qpx_qvstfd:
   11783   case Intrinsic::ppc_qpx_qvstfs:
   11784   case Intrinsic::ppc_qpx_qvstfcd:
   11785   case Intrinsic::ppc_qpx_qvstfcs:
   11786   case Intrinsic::ppc_qpx_qvstfiw:
   11787   case Intrinsic::ppc_altivec_stvx:
   11788   case Intrinsic::ppc_altivec_stvxl:
   11789   case Intrinsic::ppc_altivec_stvebx:
   11790   case Intrinsic::ppc_altivec_stvehx:
   11791   case Intrinsic::ppc_altivec_stvewx:
   11792   case Intrinsic::ppc_vsx_stxvd2x:
   11793   case Intrinsic::ppc_vsx_stxvw4x: {
   11794     EVT VT;
   11795     switch (Intrinsic) {
   11796     case Intrinsic::ppc_altivec_stvebx:
   11797       VT = MVT::i8;
   11798       break;
   11799     case Intrinsic::ppc_altivec_stvehx:
   11800       VT = MVT::i16;
   11801       break;
   11802     case Intrinsic::ppc_altivec_stvewx:
   11803       VT = MVT::i32;
   11804       break;
   11805     case Intrinsic::ppc_vsx_stxvd2x:
   11806       VT = MVT::v2f64;
   11807       break;
   11808     case Intrinsic::ppc_qpx_qvstfd:
   11809       VT = MVT::v4f64;
   11810       break;
   11811     case Intrinsic::ppc_qpx_qvstfs:
   11812       VT = MVT::v4f32;
   11813       break;
   11814     case Intrinsic::ppc_qpx_qvstfcd:
   11815       VT = MVT::v2f64;
   11816       break;
   11817     case Intrinsic::ppc_qpx_qvstfcs:
   11818       VT = MVT::v2f32;
   11819       break;
   11820     default:
   11821       VT = MVT::v4i32;
   11822       break;
   11823     }
   11824 
   11825     Info.opc = ISD::INTRINSIC_VOID;
   11826     Info.memVT = VT;
   11827     Info.ptrVal = I.getArgOperand(1);
   11828     Info.offset = -VT.getStoreSize()+1;
   11829     Info.size = 2*VT.getStoreSize()-1;
   11830     Info.align = 1;
   11831     Info.vol = false;
   11832     Info.readMem = false;
   11833     Info.writeMem = true;
   11834     return true;
   11835   }
   11836   case Intrinsic::ppc_qpx_qvstfda:
   11837   case Intrinsic::ppc_qpx_qvstfsa:
   11838   case Intrinsic::ppc_qpx_qvstfcda:
   11839   case Intrinsic::ppc_qpx_qvstfcsa:
   11840   case Intrinsic::ppc_qpx_qvstfiwa: {
   11841     EVT VT;
   11842     switch (Intrinsic) {
   11843     case Intrinsic::ppc_qpx_qvstfda:
   11844       VT = MVT::v4f64;
   11845       break;
   11846     case Intrinsic::ppc_qpx_qvstfsa:
   11847       VT = MVT::v4f32;
   11848       break;
   11849     case Intrinsic::ppc_qpx_qvstfcda:
   11850       VT = MVT::v2f64;
   11851       break;
   11852     case Intrinsic::ppc_qpx_qvstfcsa:
   11853       VT = MVT::v2f32;
   11854       break;
   11855     default:
   11856       VT = MVT::v4i32;
   11857       break;
   11858     }
   11859 
   11860     Info.opc = ISD::INTRINSIC_VOID;
   11861     Info.memVT = VT;
   11862     Info.ptrVal = I.getArgOperand(1);
   11863     Info.offset = 0;
   11864     Info.size = VT.getStoreSize();
   11865     Info.align = 1;
   11866     Info.vol = false;
   11867     Info.readMem = false;
   11868     Info.writeMem = true;
   11869     return true;
   11870   }
   11871   default:
   11872     break;
   11873   }
   11874 
   11875   return false;
   11876 }
   11877 
   11878 /// getOptimalMemOpType - Returns the target specific optimal type for load
   11879 /// and store operations as a result of memset, memcpy, and memmove
   11880 /// lowering. If DstAlign is zero that means it's safe to destination
   11881 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
   11882 /// means there isn't a need to check it against alignment requirement,
   11883 /// probably because the source does not need to be loaded. If 'IsMemset' is
   11884 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
   11885 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
   11886 /// source is constant so it does not need to be loaded.
   11887 /// It returns EVT::Other if the type should be determined using generic
   11888 /// target-independent logic.
   11889 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
   11890                                            unsigned DstAlign, unsigned SrcAlign,
   11891                                            bool IsMemset, bool ZeroMemset,
   11892                                            bool MemcpyStrSrc,
   11893                                            MachineFunction &MF) const {
   11894   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
   11895     const Function *F = MF.getFunction();
   11896     // When expanding a memset, require at least two QPX instructions to cover
   11897     // the cost of loading the value to be stored from the constant pool.
   11898     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
   11899        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
   11900         !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
   11901       return MVT::v4f64;
   11902     }
   11903 
   11904     // We should use Altivec/VSX loads and stores when available. For unaligned
   11905     // addresses, unaligned VSX loads are only fast starting with the P8.
   11906     if (Subtarget.hasAltivec() && Size >= 16 &&
   11907         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
   11908          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
   11909       return MVT::v4i32;
   11910   }
   11911 
   11912   if (Subtarget.isPPC64()) {
   11913     return MVT::i64;
   11914   }
   11915 
   11916   return MVT::i32;
   11917 }
   11918 
   11919 /// \brief Returns true if it is beneficial to convert a load of a constant
   11920 /// to just the constant itself.
   11921 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
   11922                                                           Type *Ty) const {
   11923   assert(Ty->isIntegerTy());
   11924 
   11925   unsigned BitSize = Ty->getPrimitiveSizeInBits();
   11926   return !(BitSize == 0 || BitSize > 64);
   11927 }
   11928 
   11929 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
   11930   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   11931     return false;
   11932   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
   11933   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
   11934   return NumBits1 == 64 && NumBits2 == 32;
   11935 }
   11936 
   11937 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
   11938   if (!VT1.isInteger() || !VT2.isInteger())
   11939     return false;
   11940   unsigned NumBits1 = VT1.getSizeInBits();
   11941   unsigned NumBits2 = VT2.getSizeInBits();
   11942   return NumBits1 == 64 && NumBits2 == 32;
   11943 }
   11944 
   11945 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
   11946   // Generally speaking, zexts are not free, but they are free when they can be
   11947   // folded with other operations.
   11948   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
   11949     EVT MemVT = LD->getMemoryVT();
   11950     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
   11951          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
   11952         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
   11953          LD->getExtensionType() == ISD::ZEXTLOAD))
   11954       return true;
   11955   }
   11956 
   11957   // FIXME: Add other cases...
   11958   //  - 32-bit shifts with a zext to i64
   11959   //  - zext after ctlz, bswap, etc.
   11960   //  - zext after and by a constant mask
   11961 
   11962   return TargetLowering::isZExtFree(Val, VT2);
   11963 }
   11964 
   11965 bool PPCTargetLowering::isFPExtFree(EVT VT) const {
   11966   assert(VT.isFloatingPoint());
   11967   return true;
   11968 }
   11969 
   11970 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
   11971   return isInt<16>(Imm) || isUInt<16>(Imm);
   11972 }
   11973 
   11974 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
   11975   return isInt<16>(Imm) || isUInt<16>(Imm);
   11976 }
   11977 
   11978 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
   11979                                                        unsigned,
   11980                                                        unsigned,
   11981                                                        bool *Fast) const {
   11982   if (DisablePPCUnaligned)
   11983     return false;
   11984 
   11985   // PowerPC supports unaligned memory access for simple non-vector types.
   11986   // Although accessing unaligned addresses is not as efficient as accessing
   11987   // aligned addresses, it is generally more efficient than manual expansion,
   11988   // and generally only traps for software emulation when crossing page
   11989   // boundaries.
   11990 
   11991   if (!VT.isSimple())
   11992     return false;
   11993 
   11994   if (VT.getSimpleVT().isVector()) {
   11995     if (Subtarget.hasVSX()) {
   11996       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
   11997           VT != MVT::v4f32 && VT != MVT::v4i32)
   11998         return false;
   11999     } else {
   12000       return false;
   12001     }
   12002   }
   12003 
   12004   if (VT == MVT::ppcf128)
   12005     return false;
   12006 
   12007   if (Fast)
   12008     *Fast = true;
   12009 
   12010   return true;
   12011 }
   12012 
   12013 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
   12014   VT = VT.getScalarType();
   12015 
   12016   if (!VT.isSimple())
   12017     return false;
   12018 
   12019   switch (VT.getSimpleVT().SimpleTy) {
   12020   case MVT::f32:
   12021   case MVT::f64:
   12022     return true;
   12023   default:
   12024     break;
   12025   }
   12026 
   12027   return false;
   12028 }
   12029 
   12030 const MCPhysReg *
   12031 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
   12032   // LR is a callee-save register, but we must treat it as clobbered by any call
   12033   // site. Hence we include LR in the scratch registers, which are in turn added
   12034   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
   12035   // to CTR, which is used by any indirect call.
   12036   static const MCPhysReg ScratchRegs[] = {
   12037     PPC::X12, PPC::LR8, PPC::CTR8, 0
   12038   };
   12039 
   12040   return ScratchRegs;
   12041 }
   12042 
   12043 unsigned PPCTargetLowering::getExceptionPointerRegister(
   12044     const Constant *PersonalityFn) const {
   12045   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
   12046 }
   12047 
   12048 unsigned PPCTargetLowering::getExceptionSelectorRegister(
   12049     const Constant *PersonalityFn) const {
   12050   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
   12051 }
   12052 
   12053 bool
   12054 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
   12055                      EVT VT , unsigned DefinedValues) const {
   12056   if (VT == MVT::v2i64)
   12057     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
   12058 
   12059   if (Subtarget.hasVSX() || Subtarget.hasQPX())
   12060     return true;
   12061 
   12062   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
   12063 }
   12064 
   12065 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
   12066   if (DisableILPPref || Subtarget.enableMachineScheduler())
   12067     return TargetLowering::getSchedulingPreference(N);
   12068 
   12069   return Sched::ILP;
   12070 }
   12071 
   12072 // Create a fast isel object.
   12073 FastISel *
   12074 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
   12075                                   const TargetLibraryInfo *LibInfo) const {
   12076   return PPC::createFastISel(FuncInfo, LibInfo);
   12077 }
   12078 
   12079 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
   12080   if (Subtarget.isDarwinABI()) return;
   12081   if (!Subtarget.isPPC64()) return;
   12082 
   12083   // Update IsSplitCSR in PPCFunctionInfo
   12084   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
   12085   PFI->setIsSplitCSR(true);
   12086 }
   12087 
   12088 void PPCTargetLowering::insertCopiesSplitCSR(
   12089   MachineBasicBlock *Entry,
   12090   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
   12091   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
   12092   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
   12093   if (!IStart)
   12094     return;
   12095 
   12096   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   12097   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
   12098   MachineBasicBlock::iterator MBBI = Entry->begin();
   12099   for (const MCPhysReg *I = IStart; *I; ++I) {
   12100     const TargetRegisterClass *RC = nullptr;
   12101     if (PPC::G8RCRegClass.contains(*I))
   12102       RC = &PPC::G8RCRegClass;
   12103     else if (PPC::F8RCRegClass.contains(*I))
   12104       RC = &PPC::F8RCRegClass;
   12105     else if (PPC::CRRCRegClass.contains(*I))
   12106       RC = &PPC::CRRCRegClass;
   12107     else if (PPC::VRRCRegClass.contains(*I))
   12108       RC = &PPC::VRRCRegClass;
   12109     else
   12110       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
   12111 
   12112     unsigned NewVR = MRI->createVirtualRegister(RC);
   12113     // Create copy from CSR to a virtual register.
   12114     // FIXME: this currently does not emit CFI pseudo-instructions, it works
   12115     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
   12116     // nounwind. If we want to generalize this later, we may need to emit
   12117     // CFI pseudo-instructions.
   12118     assert(Entry->getParent()->getFunction()->hasFnAttribute(
   12119              Attribute::NoUnwind) &&
   12120            "Function should be nounwind in insertCopiesSplitCSR!");
   12121     Entry->addLiveIn(*I);
   12122     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
   12123       .addReg(*I);
   12124 
   12125     // Insert the copy-back instructions right before the terminator
   12126     for (auto *Exit : Exits)
   12127       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
   12128               TII->get(TargetOpcode::COPY), *I)
   12129         .addReg(NewVR);
   12130   }
   12131 }
   12132 
   12133 // Override to enable LOAD_STACK_GUARD lowering on Linux.
   12134 bool PPCTargetLowering::useLoadStackGuardNode() const {
   12135   if (!Subtarget.isTargetLinux())
   12136     return TargetLowering::useLoadStackGuardNode();
   12137   return true;
   12138 }
   12139 
   12140 // Override to disable global variable loading on Linux.
   12141 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
   12142   if (!Subtarget.isTargetLinux())
   12143     return TargetLowering::insertSSPDeclarations(M);
   12144 }
   12145