Home | History | Annotate | Download | only in MCTargetDesc
      1 //===- ARMAddressingModes.h - ARM Addressing Modes --------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the ARM addressing mode implementation stuff.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
     15 #define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
     16 
     17 #include "llvm/ADT/APFloat.h"
     18 #include "llvm/ADT/APInt.h"
     19 #include "llvm/Support/MathExtras.h"
     20 #include <cassert>
     21 
     22 namespace llvm {
     23 
     24 /// ARM_AM - ARM Addressing Mode Stuff
     25 namespace ARM_AM {
     26   enum ShiftOpc {
     27     no_shift = 0,
     28     asr,
     29     lsl,
     30     lsr,
     31     ror,
     32     rrx
     33   };
     34 
     35   enum AddrOpc {
     36     sub = 0,
     37     add
     38   };
     39 
     40   static inline const char *getAddrOpcStr(AddrOpc Op) {
     41     return Op == sub ? "-" : "";
     42   }
     43 
     44   static inline const char *getShiftOpcStr(ShiftOpc Op) {
     45     switch (Op) {
     46     default: assert(0 && "Unknown shift opc!");
     47     case ARM_AM::asr: return "asr";
     48     case ARM_AM::lsl: return "lsl";
     49     case ARM_AM::lsr: return "lsr";
     50     case ARM_AM::ror: return "ror";
     51     case ARM_AM::rrx: return "rrx";
     52     }
     53   }
     54 
     55   static inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
     56     switch (Op) {
     57     default: assert(0 && "Unknown shift opc!");
     58     case ARM_AM::asr: return 2;
     59     case ARM_AM::lsl: return 0;
     60     case ARM_AM::lsr: return 1;
     61     case ARM_AM::ror: return 3;
     62     }
     63   }
     64 
     65   enum AMSubMode {
     66     bad_am_submode = 0,
     67     ia,
     68     ib,
     69     da,
     70     db
     71   };
     72 
     73   static inline const char *getAMSubModeStr(AMSubMode Mode) {
     74     switch (Mode) {
     75     default: assert(0 && "Unknown addressing sub-mode!");
     76     case ARM_AM::ia: return "ia";
     77     case ARM_AM::ib: return "ib";
     78     case ARM_AM::da: return "da";
     79     case ARM_AM::db: return "db";
     80     }
     81   }
     82 
     83   /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
     84   ///
     85   static inline unsigned rotr32(unsigned Val, unsigned Amt) {
     86     assert(Amt < 32 && "Invalid rotate amount");
     87     return (Val >> Amt) | (Val << ((32-Amt)&31));
     88   }
     89 
     90   /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
     91   ///
     92   static inline unsigned rotl32(unsigned Val, unsigned Amt) {
     93     assert(Amt < 32 && "Invalid rotate amount");
     94     return (Val << Amt) | (Val >> ((32-Amt)&31));
     95   }
     96 
     97   //===--------------------------------------------------------------------===//
     98   // Addressing Mode #1: shift_operand with registers
     99   //===--------------------------------------------------------------------===//
    100   //
    101   // This 'addressing mode' is used for arithmetic instructions.  It can
    102   // represent things like:
    103   //   reg
    104   //   reg [asr|lsl|lsr|ror|rrx] reg
    105   //   reg [asr|lsl|lsr|ror|rrx] imm
    106   //
    107   // This is stored three operands [rega, regb, opc].  The first is the base
    108   // reg, the second is the shift amount (or reg0 if not present or imm).  The
    109   // third operand encodes the shift opcode and the imm if a reg isn't present.
    110   //
    111   static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
    112     return ShOp | (Imm << 3);
    113   }
    114   static inline unsigned getSORegOffset(unsigned Op) {
    115     return Op >> 3;
    116   }
    117   static inline ShiftOpc getSORegShOp(unsigned Op) {
    118     return (ShiftOpc)(Op & 7);
    119   }
    120 
    121   /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
    122   /// the 8-bit imm value.
    123   static inline unsigned getSOImmValImm(unsigned Imm) {
    124     return Imm & 0xFF;
    125   }
    126   /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
    127   /// the rotate amount.
    128   static inline unsigned getSOImmValRot(unsigned Imm) {
    129     return (Imm >> 8) * 2;
    130   }
    131 
    132   /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
    133   /// computing the rotate amount to use.  If this immediate value cannot be
    134   /// handled with a single shifter-op, determine a good rotate amount that will
    135   /// take a maximal chunk of bits out of the immediate.
    136   static inline unsigned getSOImmValRotate(unsigned Imm) {
    137     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
    138     // of zero.
    139     if ((Imm & ~255U) == 0) return 0;
    140 
    141     // Use CTZ to compute the rotate amount.
    142     unsigned TZ = CountTrailingZeros_32(Imm);
    143 
    144     // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
    145     // not 9.
    146     unsigned RotAmt = TZ & ~1;
    147 
    148     // If we can handle this spread, return it.
    149     if ((rotr32(Imm, RotAmt) & ~255U) == 0)
    150       return (32-RotAmt)&31;  // HW rotates right, not left.
    151 
    152     // For values like 0xF000000F, we should ignore the low 6 bits, then
    153     // retry the hunt.
    154     if (Imm & 63U) {
    155       unsigned TZ2 = CountTrailingZeros_32(Imm & ~63U);
    156       unsigned RotAmt2 = TZ2 & ~1;
    157       if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
    158         return (32-RotAmt2)&31;  // HW rotates right, not left.
    159     }
    160 
    161     // Otherwise, we have no way to cover this span of bits with a single
    162     // shifter_op immediate.  Return a chunk of bits that will be useful to
    163     // handle.
    164     return (32-RotAmt)&31;  // HW rotates right, not left.
    165   }
    166 
    167   /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
    168   /// into an shifter_operand immediate operand, return the 12-bit encoding for
    169   /// it.  If not, return -1.
    170   static inline int getSOImmVal(unsigned Arg) {
    171     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
    172     // of zero.
    173     if ((Arg & ~255U) == 0) return Arg;
    174 
    175     unsigned RotAmt = getSOImmValRotate(Arg);
    176 
    177     // If this cannot be handled with a single shifter_op, bail out.
    178     if (rotr32(~255U, RotAmt) & Arg)
    179       return -1;
    180 
    181     // Encode this correctly.
    182     return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
    183   }
    184 
    185   /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
    186   /// or'ing together two SOImmVal's.
    187   static inline bool isSOImmTwoPartVal(unsigned V) {
    188     // If this can be handled with a single shifter_op, bail out.
    189     V = rotr32(~255U, getSOImmValRotate(V)) & V;
    190     if (V == 0)
    191       return false;
    192 
    193     // If this can be handled with two shifter_op's, accept.
    194     V = rotr32(~255U, getSOImmValRotate(V)) & V;
    195     return V == 0;
    196   }
    197 
    198   /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
    199   /// return the first chunk of it.
    200   static inline unsigned getSOImmTwoPartFirst(unsigned V) {
    201     return rotr32(255U, getSOImmValRotate(V)) & V;
    202   }
    203 
    204   /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
    205   /// return the second chunk of it.
    206   static inline unsigned getSOImmTwoPartSecond(unsigned V) {
    207     // Mask out the first hunk.
    208     V = rotr32(~255U, getSOImmValRotate(V)) & V;
    209 
    210     // Take what's left.
    211     assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
    212     return V;
    213   }
    214 
    215   /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
    216   /// by a left shift. Returns the shift amount to use.
    217   static inline unsigned getThumbImmValShift(unsigned Imm) {
    218     // 8-bit (or less) immediates are trivially immediate operand with a shift
    219     // of zero.
    220     if ((Imm & ~255U) == 0) return 0;
    221 
    222     // Use CTZ to compute the shift amount.
    223     return CountTrailingZeros_32(Imm);
    224   }
    225 
    226   /// isThumbImmShiftedVal - Return true if the specified value can be obtained
    227   /// by left shifting a 8-bit immediate.
    228   static inline bool isThumbImmShiftedVal(unsigned V) {
    229     // If this can be handled with
    230     V = (~255U << getThumbImmValShift(V)) & V;
    231     return V == 0;
    232   }
    233 
    234   /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
    235   /// by a left shift. Returns the shift amount to use.
    236   static inline unsigned getThumbImm16ValShift(unsigned Imm) {
    237     // 16-bit (or less) immediates are trivially immediate operand with a shift
    238     // of zero.
    239     if ((Imm & ~65535U) == 0) return 0;
    240 
    241     // Use CTZ to compute the shift amount.
    242     return CountTrailingZeros_32(Imm);
    243   }
    244 
    245   /// isThumbImm16ShiftedVal - Return true if the specified value can be
    246   /// obtained by left shifting a 16-bit immediate.
    247   static inline bool isThumbImm16ShiftedVal(unsigned V) {
    248     // If this can be handled with
    249     V = (~65535U << getThumbImm16ValShift(V)) & V;
    250     return V == 0;
    251   }
    252 
    253   /// getThumbImmNonShiftedVal - If V is a value that satisfies
    254   /// isThumbImmShiftedVal, return the non-shiftd value.
    255   static inline unsigned getThumbImmNonShiftedVal(unsigned V) {
    256     return V >> getThumbImmValShift(V);
    257   }
    258 
    259 
    260   /// getT2SOImmValSplat - Return the 12-bit encoded representation
    261   /// if the specified value can be obtained by splatting the low 8 bits
    262   /// into every other byte or every byte of a 32-bit value. i.e.,
    263   ///     00000000 00000000 00000000 abcdefgh    control = 0
    264   ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
    265   ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
    266   ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
    267   /// Return -1 if none of the above apply.
    268   /// See ARM Reference Manual A6.3.2.
    269   static inline int getT2SOImmValSplatVal(unsigned V) {
    270     unsigned u, Vs, Imm;
    271     // control = 0
    272     if ((V & 0xffffff00) == 0)
    273       return V;
    274 
    275     // If the value is zeroes in the first byte, just shift those off
    276     Vs = ((V & 0xff) == 0) ? V >> 8 : V;
    277     // Any passing value only has 8 bits of payload, splatted across the word
    278     Imm = Vs & 0xff;
    279     // Likewise, any passing values have the payload splatted into the 3rd byte
    280     u = Imm | (Imm << 16);
    281 
    282     // control = 1 or 2
    283     if (Vs == u)
    284       return (((Vs == V) ? 1 : 2) << 8) | Imm;
    285 
    286     // control = 3
    287     if (Vs == (u | (u << 8)))
    288       return (3 << 8) | Imm;
    289 
    290     return -1;
    291   }
    292 
    293   /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
    294   /// specified value is a rotated 8-bit value. Return -1 if no rotation
    295   /// encoding is possible.
    296   /// See ARM Reference Manual A6.3.2.
    297   static inline int getT2SOImmValRotateVal(unsigned V) {
    298     unsigned RotAmt = CountLeadingZeros_32(V);
    299     if (RotAmt >= 24)
    300       return -1;
    301 
    302     // If 'Arg' can be handled with a single shifter_op return the value.
    303     if ((rotr32(0xff000000U, RotAmt) & V) == V)
    304       return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
    305 
    306     return -1;
    307   }
    308 
    309   /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
    310   /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
    311   /// encoding for it.  If not, return -1.
    312   /// See ARM Reference Manual A6.3.2.
    313   static inline int getT2SOImmVal(unsigned Arg) {
    314     // If 'Arg' is an 8-bit splat, then get the encoded value.
    315     int Splat = getT2SOImmValSplatVal(Arg);
    316     if (Splat != -1)
    317       return Splat;
    318 
    319     // If 'Arg' can be handled with a single shifter_op return the value.
    320     int Rot = getT2SOImmValRotateVal(Arg);
    321     if (Rot != -1)
    322       return Rot;
    323 
    324     return -1;
    325   }
    326 
    327   static inline unsigned getT2SOImmValRotate(unsigned V) {
    328     if ((V & ~255U) == 0) return 0;
    329     // Use CTZ to compute the rotate amount.
    330     unsigned RotAmt = CountTrailingZeros_32(V);
    331     return (32 - RotAmt) & 31;
    332   }
    333 
    334   static inline bool isT2SOImmTwoPartVal (unsigned Imm) {
    335     unsigned V = Imm;
    336     // Passing values can be any combination of splat values and shifter
    337     // values. If this can be handled with a single shifter or splat, bail
    338     // out. Those should be handled directly, not with a two-part val.
    339     if (getT2SOImmValSplatVal(V) != -1)
    340       return false;
    341     V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
    342     if (V == 0)
    343       return false;
    344 
    345     // If this can be handled as an immediate, accept.
    346     if (getT2SOImmVal(V) != -1) return true;
    347 
    348     // Likewise, try masking out a splat value first.
    349     V = Imm;
    350     if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
    351       V &= ~0xff00ff00U;
    352     else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
    353       V &= ~0x00ff00ffU;
    354     // If what's left can be handled as an immediate, accept.
    355     if (getT2SOImmVal(V) != -1) return true;
    356 
    357     // Otherwise, do not accept.
    358     return false;
    359   }
    360 
    361   static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
    362     assert (isT2SOImmTwoPartVal(Imm) &&
    363             "Immedate cannot be encoded as two part immediate!");
    364     // Try a shifter operand as one part
    365     unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
    366     // If the rest is encodable as an immediate, then return it.
    367     if (getT2SOImmVal(V) != -1) return V;
    368 
    369     // Try masking out a splat value first.
    370     if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
    371       return Imm & 0xff00ff00U;
    372 
    373     // The other splat is all that's left as an option.
    374     assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
    375     return Imm & 0x00ff00ffU;
    376   }
    377 
    378   static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
    379     // Mask out the first hunk
    380     Imm ^= getT2SOImmTwoPartFirst(Imm);
    381     // Return what's left
    382     assert (getT2SOImmVal(Imm) != -1 &&
    383             "Unable to encode second part of T2 two part SO immediate");
    384     return Imm;
    385   }
    386 
    387 
    388   //===--------------------------------------------------------------------===//
    389   // Addressing Mode #2
    390   //===--------------------------------------------------------------------===//
    391   //
    392   // This is used for most simple load/store instructions.
    393   //
    394   // addrmode2 := reg +/- reg shop imm
    395   // addrmode2 := reg +/- imm12
    396   //
    397   // The first operand is always a Reg.  The second operand is a reg if in
    398   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
    399   // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
    400   // fourth operand 16-17 encodes the index mode.
    401   //
    402   // If this addressing mode is a frame index (before prolog/epilog insertion
    403   // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
    404   // with no shift amount for the frame offset.
    405   //
    406   static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
    407                                    unsigned IdxMode = 0) {
    408     assert(Imm12 < (1 << 12) && "Imm too large!");
    409     bool isSub = Opc == sub;
    410     return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
    411   }
    412   static inline unsigned getAM2Offset(unsigned AM2Opc) {
    413     return AM2Opc & ((1 << 12)-1);
    414   }
    415   static inline AddrOpc getAM2Op(unsigned AM2Opc) {
    416     return ((AM2Opc >> 12) & 1) ? sub : add;
    417   }
    418   static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
    419     return (ShiftOpc)((AM2Opc >> 13) & 7);
    420   }
    421   static inline unsigned getAM2IdxMode(unsigned AM2Opc) {
    422     return (AM2Opc >> 16);
    423   }
    424 
    425 
    426   //===--------------------------------------------------------------------===//
    427   // Addressing Mode #3
    428   //===--------------------------------------------------------------------===//
    429   //
    430   // This is used for sign-extending loads, and load/store-pair instructions.
    431   //
    432   // addrmode3 := reg +/- reg
    433   // addrmode3 := reg +/- imm8
    434   //
    435   // The first operand is always a Reg.  The second operand is a reg if in
    436   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
    437   // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
    438   // index mode.
    439 
    440   /// getAM3Opc - This function encodes the addrmode3 opc field.
    441   static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
    442                                    unsigned IdxMode = 0) {
    443     bool isSub = Opc == sub;
    444     return ((int)isSub << 8) | Offset | (IdxMode << 9);
    445   }
    446   static inline unsigned char getAM3Offset(unsigned AM3Opc) {
    447     return AM3Opc & 0xFF;
    448   }
    449   static inline AddrOpc getAM3Op(unsigned AM3Opc) {
    450     return ((AM3Opc >> 8) & 1) ? sub : add;
    451   }
    452   static inline unsigned getAM3IdxMode(unsigned AM3Opc) {
    453     return (AM3Opc >> 9);
    454   }
    455 
    456   //===--------------------------------------------------------------------===//
    457   // Addressing Mode #4
    458   //===--------------------------------------------------------------------===//
    459   //
    460   // This is used for load / store multiple instructions.
    461   //
    462   // addrmode4 := reg, <mode>
    463   //
    464   // The four modes are:
    465   //    IA - Increment after
    466   //    IB - Increment before
    467   //    DA - Decrement after
    468   //    DB - Decrement before
    469   // For VFP instructions, only the IA and DB modes are valid.
    470 
    471   static inline AMSubMode getAM4SubMode(unsigned Mode) {
    472     return (AMSubMode)(Mode & 0x7);
    473   }
    474 
    475   static inline unsigned getAM4ModeImm(AMSubMode SubMode) {
    476     return (int)SubMode;
    477   }
    478 
    479   //===--------------------------------------------------------------------===//
    480   // Addressing Mode #5
    481   //===--------------------------------------------------------------------===//
    482   //
    483   // This is used for coprocessor instructions, such as FP load/stores.
    484   //
    485   // addrmode5 := reg +/- imm8*4
    486   //
    487   // The first operand is always a Reg.  The second operand encodes the
    488   // operation in bit 8 and the immediate in bits 0-7.
    489 
    490   /// getAM5Opc - This function encodes the addrmode5 opc field.
    491   static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
    492     bool isSub = Opc == sub;
    493     return ((int)isSub << 8) | Offset;
    494   }
    495   static inline unsigned char getAM5Offset(unsigned AM5Opc) {
    496     return AM5Opc & 0xFF;
    497   }
    498   static inline AddrOpc getAM5Op(unsigned AM5Opc) {
    499     return ((AM5Opc >> 8) & 1) ? sub : add;
    500   }
    501 
    502   //===--------------------------------------------------------------------===//
    503   // Addressing Mode #6
    504   //===--------------------------------------------------------------------===//
    505   //
    506   // This is used for NEON load / store instructions.
    507   //
    508   // addrmode6 := reg with optional alignment
    509   //
    510   // This is stored in two operands [regaddr, align].  The first is the
    511   // address register.  The second operand is the value of the alignment
    512   // specifier in bytes or zero if no explicit alignment.
    513   // Valid alignments depend on the specific instruction.
    514 
    515   //===--------------------------------------------------------------------===//
    516   // NEON Modified Immediates
    517   //===--------------------------------------------------------------------===//
    518   //
    519   // Several NEON instructions (e.g., VMOV) take a "modified immediate"
    520   // vector operand, where a small immediate encoded in the instruction
    521   // specifies a full NEON vector value.  These modified immediates are
    522   // represented here as encoded integers.  The low 8 bits hold the immediate
    523   // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
    524   // the "Cmode" field of the instruction.  The interfaces below treat the
    525   // Op and Cmode values as a single 5-bit value.
    526 
    527   static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) {
    528     return (OpCmode << 8) | Val;
    529   }
    530   static inline unsigned getNEONModImmOpCmode(unsigned ModImm) {
    531     return (ModImm >> 8) & 0x1f;
    532   }
    533   static inline unsigned getNEONModImmVal(unsigned ModImm) {
    534     return ModImm & 0xff;
    535   }
    536 
    537   /// decodeNEONModImm - Decode a NEON modified immediate value into the
    538   /// element value and the element size in bits.  (If the element size is
    539   /// smaller than the vector, it is splatted into all the elements.)
    540   static inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) {
    541     unsigned OpCmode = getNEONModImmOpCmode(ModImm);
    542     unsigned Imm8 = getNEONModImmVal(ModImm);
    543     uint64_t Val = 0;
    544 
    545     if (OpCmode == 0xe) {
    546       // 8-bit vector elements
    547       Val = Imm8;
    548       EltBits = 8;
    549     } else if ((OpCmode & 0xc) == 0x8) {
    550       // 16-bit vector elements
    551       unsigned ByteNum = (OpCmode & 0x6) >> 1;
    552       Val = Imm8 << (8 * ByteNum);
    553       EltBits = 16;
    554     } else if ((OpCmode & 0x8) == 0) {
    555       // 32-bit vector elements, zero with one byte set
    556       unsigned ByteNum = (OpCmode & 0x6) >> 1;
    557       Val = Imm8 << (8 * ByteNum);
    558       EltBits = 32;
    559     } else if ((OpCmode & 0xe) == 0xc) {
    560       // 32-bit vector elements, one byte with low bits set
    561       unsigned ByteNum = 1 + (OpCmode & 0x1);
    562       Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
    563       EltBits = 32;
    564     } else if (OpCmode == 0x1e) {
    565       // 64-bit vector elements
    566       for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
    567         if ((ModImm >> ByteNum) & 1)
    568           Val |= (uint64_t)0xff << (8 * ByteNum);
    569       }
    570       EltBits = 64;
    571     } else {
    572       assert(false && "Unsupported NEON immediate");
    573     }
    574     return Val;
    575   }
    576 
    577   AMSubMode getLoadStoreMultipleSubMode(int Opcode);
    578 
    579   //===--------------------------------------------------------------------===//
    580   // Floating-point Immediates
    581   //
    582   static inline float getFPImmFloat(unsigned Imm) {
    583     // We expect an 8-bit binary encoding of a floating-point number here.
    584     union {
    585       uint32_t I;
    586       float F;
    587     } FPUnion;
    588 
    589     uint8_t Sign = (Imm >> 7) & 0x1;
    590     uint8_t Exp = (Imm >> 4) & 0x7;
    591     uint8_t Mantissa = Imm & 0xf;
    592 
    593     //   8-bit FP    iEEEE Float Encoding
    594     //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
    595     //
    596     // where B = NOT(b);
    597 
    598     FPUnion.I = 0;
    599     FPUnion.I |= Sign << 31;
    600     FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
    601     FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
    602     FPUnion.I |= (Exp & 0x3) << 23;
    603     FPUnion.I |= Mantissa << 19;
    604     return FPUnion.F;
    605   }
    606 
    607   /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
    608   /// floating-point value. If the value cannot be represented as an 8-bit
    609   /// floating-point value, then return -1.
    610   static inline int getFP32Imm(const APInt &Imm) {
    611     uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
    612     int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
    613     int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
    614 
    615     // We can handle 4 bits of mantissa.
    616     // mantissa = (16+UInt(e:f:g:h))/16.
    617     if (Mantissa & 0x7ffff)
    618       return -1;
    619     Mantissa >>= 19;
    620     if ((Mantissa & 0xf) != Mantissa)
    621       return -1;
    622 
    623     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
    624     if (Exp < -3 || Exp > 4)
    625       return -1;
    626     Exp = ((Exp+3) & 0x7) ^ 4;
    627 
    628     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
    629   }
    630 
    631   static inline int getFP32Imm(const APFloat &FPImm) {
    632     return getFP32Imm(FPImm.bitcastToAPInt());
    633   }
    634 
    635   /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
    636   /// floating-point value. If the value cannot be represented as an 8-bit
    637   /// floating-point value, then return -1.
    638   static inline int getFP64Imm(const APInt &Imm) {
    639     uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
    640     int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
    641     uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
    642 
    643     // We can handle 4 bits of mantissa.
    644     // mantissa = (16+UInt(e:f:g:h))/16.
    645     if (Mantissa & 0xffffffffffffULL)
    646       return -1;
    647     Mantissa >>= 48;
    648     if ((Mantissa & 0xf) != Mantissa)
    649       return -1;
    650 
    651     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
    652     if (Exp < -3 || Exp > 4)
    653       return -1;
    654     Exp = ((Exp+3) & 0x7) ^ 4;
    655 
    656     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
    657   }
    658 
    659   static inline int getFP64Imm(const APFloat &FPImm) {
    660     return getFP64Imm(FPImm.bitcastToAPInt());
    661   }
    662 
    663 } // end namespace ARM_AM
    664 } // end namespace llvm
    665 
    666 #endif
    667 
    668