1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAGISel class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "ScheduleDAGSDNodes.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/CodeGen/FunctionLoweringInfo.h" 18 #include "llvm/CodeGen/SelectionDAGISel.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/DebugInfo.h" 22 #include "llvm/Constants.h" 23 #include "llvm/Function.h" 24 #include "llvm/InlineAsm.h" 25 #include "llvm/Instructions.h" 26 #include "llvm/Intrinsics.h" 27 #include "llvm/IntrinsicInst.h" 28 #include "llvm/LLVMContext.h" 29 #include "llvm/Module.h" 30 #include "llvm/CodeGen/FastISel.h" 31 #include "llvm/CodeGen/GCStrategy.h" 32 #include "llvm/CodeGen/GCMetadata.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 39 #include "llvm/CodeGen/SchedulerRegistry.h" 40 #include "llvm/CodeGen/SelectionDAG.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 #include "llvm/Target/TargetIntrinsicInfo.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetLibraryInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/Timer.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/ADT/PostOrderIterator.h" 55 #include "llvm/ADT/Statistic.h" 56 #include <algorithm> 57 using namespace llvm; 58 59 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 60 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 61 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 62 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 63 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 64 65 #ifndef NDEBUG 66 static cl::opt<bool> 67 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden, 68 cl::desc("Enable extra verbose messages in the \"fast\" " 69 "instruction selector")); 70 // Terminators 71 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret"); 72 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br"); 73 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch"); 74 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr"); 75 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke"); 76 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume"); 77 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable"); 78 79 // Standard binary operators... 80 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add"); 81 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd"); 82 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub"); 83 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub"); 84 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul"); 85 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul"); 86 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv"); 87 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv"); 88 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv"); 89 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem"); 90 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem"); 91 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem"); 92 93 // Logical operators... 94 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And"); 95 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or"); 96 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor"); 97 98 // Memory instructions... 99 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca"); 100 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load"); 101 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store"); 102 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg"); 103 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM"); 104 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence"); 105 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr"); 106 107 // Convert instructions... 108 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc"); 109 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt"); 110 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt"); 111 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc"); 112 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt"); 113 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI"); 114 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI"); 115 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP"); 116 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP"); 117 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr"); 118 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt"); 119 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast"); 120 121 // Other instructions... 122 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp"); 123 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp"); 124 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI"); 125 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select"); 126 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call"); 127 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl"); 128 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr"); 129 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr"); 130 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg"); 131 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement"); 132 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement"); 133 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector"); 134 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue"); 135 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue"); 136 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad"); 137 #endif 138 139 static cl::opt<bool> 140 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, 141 cl::desc("Enable verbose messages in the \"fast\" " 142 "instruction selector")); 143 static cl::opt<bool> 144 EnableFastISelAbort("fast-isel-abort", cl::Hidden, 145 cl::desc("Enable abort calls when \"fast\" instruction fails")); 146 147 static cl::opt<bool> 148 UseMBPI("use-mbpi", 149 cl::desc("use Machine Branch Probability Info"), 150 cl::init(true), cl::Hidden); 151 152 #ifndef NDEBUG 153 static cl::opt<bool> 154 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 155 cl::desc("Pop up a window to show dags before the first " 156 "dag combine pass")); 157 static cl::opt<bool> 158 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 159 cl::desc("Pop up a window to show dags before legalize types")); 160 static cl::opt<bool> 161 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 162 cl::desc("Pop up a window to show dags before legalize")); 163 static cl::opt<bool> 164 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 165 cl::desc("Pop up a window to show dags before the second " 166 "dag combine pass")); 167 static cl::opt<bool> 168 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 169 cl::desc("Pop up a window to show dags before the post legalize types" 170 " dag combine pass")); 171 static cl::opt<bool> 172 ViewISelDAGs("view-isel-dags", cl::Hidden, 173 cl::desc("Pop up a window to show isel dags as they are selected")); 174 static cl::opt<bool> 175 ViewSchedDAGs("view-sched-dags", cl::Hidden, 176 cl::desc("Pop up a window to show sched dags as they are processed")); 177 static cl::opt<bool> 178 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 179 cl::desc("Pop up a window to show SUnit dags after they are processed")); 180 #else 181 static const bool ViewDAGCombine1 = false, 182 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, 183 ViewDAGCombine2 = false, 184 ViewDAGCombineLT = false, 185 ViewISelDAGs = false, ViewSchedDAGs = false, 186 ViewSUnitDAGs = false; 187 #endif 188 189 //===---------------------------------------------------------------------===// 190 /// 191 /// RegisterScheduler class - Track the registration of instruction schedulers. 192 /// 193 //===---------------------------------------------------------------------===// 194 MachinePassRegistry RegisterScheduler::Registry; 195 196 //===---------------------------------------------------------------------===// 197 /// 198 /// ISHeuristic command line option for instruction schedulers. 199 /// 200 //===---------------------------------------------------------------------===// 201 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 202 RegisterPassParser<RegisterScheduler> > 203 ISHeuristic("pre-RA-sched", 204 cl::init(&createDefaultScheduler), 205 cl::desc("Instruction schedulers available (before register" 206 " allocation):")); 207 208 static RegisterScheduler 209 defaultListDAGScheduler("default", "Best scheduler for the target", 210 createDefaultScheduler); 211 212 namespace llvm { 213 //===--------------------------------------------------------------------===// 214 /// createDefaultScheduler - This creates an instruction scheduler appropriate 215 /// for the target. 216 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 217 CodeGenOpt::Level OptLevel) { 218 const TargetLowering &TLI = IS->getTargetLowering(); 219 220 if (OptLevel == CodeGenOpt::None || 221 TLI.getSchedulingPreference() == Sched::Source) 222 return createSourceListDAGScheduler(IS, OptLevel); 223 if (TLI.getSchedulingPreference() == Sched::RegPressure) 224 return createBURRListDAGScheduler(IS, OptLevel); 225 if (TLI.getSchedulingPreference() == Sched::Hybrid) 226 return createHybridListDAGScheduler(IS, OptLevel); 227 if (TLI.getSchedulingPreference() == Sched::VLIW) 228 return createVLIWDAGScheduler(IS, OptLevel); 229 assert(TLI.getSchedulingPreference() == Sched::ILP && 230 "Unknown sched type!"); 231 return createILPListDAGScheduler(IS, OptLevel); 232 } 233 } 234 235 // EmitInstrWithCustomInserter - This method should be implemented by targets 236 // that mark instructions with the 'usesCustomInserter' flag. These 237 // instructions are special in various ways, which require special support to 238 // insert. The specified MachineInstr is created but not inserted into any 239 // basic blocks, and this method is called to expand it into a sequence of 240 // instructions, potentially also creating new basic blocks and control flow. 241 // When new basic blocks are inserted and the edges from MBB to its successors 242 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 243 // DenseMap. 244 MachineBasicBlock * 245 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 246 MachineBasicBlock *MBB) const { 247 #ifndef NDEBUG 248 dbgs() << "If a target marks an instruction with " 249 "'usesCustomInserter', it must implement " 250 "TargetLowering::EmitInstrWithCustomInserter!"; 251 #endif 252 llvm_unreachable(0); 253 } 254 255 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, 256 SDNode *Node) const { 257 assert(!MI->hasPostISelHook() && 258 "If a target marks an instruction with 'hasPostISelHook', " 259 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 260 } 261 262 //===----------------------------------------------------------------------===// 263 // SelectionDAGISel code 264 //===----------------------------------------------------------------------===// 265 266 void SelectionDAGISel::ISelUpdater::anchor() { } 267 268 SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, 269 CodeGenOpt::Level OL) : 270 MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()), 271 FuncInfo(new FunctionLoweringInfo(TLI)), 272 CurDAG(new SelectionDAG(tm, OL)), 273 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)), 274 GFI(), 275 OptLevel(OL), 276 DAGSize(0) { 277 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 278 initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry()); 279 initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry()); 280 initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry()); 281 } 282 283 SelectionDAGISel::~SelectionDAGISel() { 284 delete SDB; 285 delete CurDAG; 286 delete FuncInfo; 287 } 288 289 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 290 AU.addRequired<AliasAnalysis>(); 291 AU.addPreserved<AliasAnalysis>(); 292 AU.addRequired<GCModuleInfo>(); 293 AU.addPreserved<GCModuleInfo>(); 294 AU.addRequired<TargetLibraryInfo>(); 295 if (UseMBPI && OptLevel != CodeGenOpt::None) 296 AU.addRequired<BranchProbabilityInfo>(); 297 MachineFunctionPass::getAnalysisUsage(AU); 298 } 299 300 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 301 /// may trap on it. In this case we have to split the edge so that the path 302 /// through the predecessor block that doesn't go to the phi block doesn't 303 /// execute the possibly trapping instruction. 304 /// 305 /// This is required for correctness, so it must be done at -O0. 306 /// 307 static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) { 308 // Loop for blocks with phi nodes. 309 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { 310 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 311 if (PN == 0) continue; 312 313 ReprocessBlock: 314 // For each block with a PHI node, check to see if any of the input values 315 // are potentially trapping constant expressions. Constant expressions are 316 // the only potentially trapping value that can occur as the argument to a 317 // PHI. 318 for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 319 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 320 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 321 if (CE == 0 || !CE->canTrap()) continue; 322 323 // The only case we have to worry about is when the edge is critical. 324 // Since this block has a PHI Node, we assume it has multiple input 325 // edges: check to see if the pred has multiple successors. 326 BasicBlock *Pred = PN->getIncomingBlock(i); 327 if (Pred->getTerminator()->getNumSuccessors() == 1) 328 continue; 329 330 // Okay, we have to split this edge. 331 SplitCriticalEdge(Pred->getTerminator(), 332 GetSuccessorNumber(Pred, BB), SDISel, true); 333 goto ReprocessBlock; 334 } 335 } 336 } 337 338 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 339 // Do some sanity-checking on the command-line options. 340 assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) && 341 "-fast-isel-verbose requires -fast-isel"); 342 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 343 "-fast-isel-abort requires -fast-isel"); 344 345 const Function &Fn = *mf.getFunction(); 346 const TargetInstrInfo &TII = *TM.getInstrInfo(); 347 const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); 348 349 MF = &mf; 350 RegInfo = &MF->getRegInfo(); 351 AA = &getAnalysis<AliasAnalysis>(); 352 LibInfo = &getAnalysis<TargetLibraryInfo>(); 353 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0; 354 355 DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 356 357 SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this); 358 359 CurDAG->init(*MF); 360 FuncInfo->set(Fn, *MF); 361 362 if (UseMBPI && OptLevel != CodeGenOpt::None) 363 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>(); 364 else 365 FuncInfo->BPI = 0; 366 367 SDB->init(GFI, *AA, LibInfo); 368 369 SelectAllBasicBlocks(Fn); 370 371 // If the first basic block in the function has live ins that need to be 372 // copied into vregs, emit the copies into the top of the block before 373 // emitting the code for the block. 374 MachineBasicBlock *EntryMBB = MF->begin(); 375 RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII); 376 377 DenseMap<unsigned, unsigned> LiveInMap; 378 if (!FuncInfo->ArgDbgValues.empty()) 379 for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(), 380 E = RegInfo->livein_end(); LI != E; ++LI) 381 if (LI->second) 382 LiveInMap.insert(std::make_pair(LI->first, LI->second)); 383 384 // Insert DBG_VALUE instructions for function arguments to the entry block. 385 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 386 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; 387 unsigned Reg = MI->getOperand(0).getReg(); 388 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 389 EntryMBB->insert(EntryMBB->begin(), MI); 390 else { 391 MachineInstr *Def = RegInfo->getVRegDef(Reg); 392 MachineBasicBlock::iterator InsertPos = Def; 393 // FIXME: VR def may not be in entry block. 394 Def->getParent()->insert(llvm::next(InsertPos), MI); 395 } 396 397 // If Reg is live-in then update debug info to track its copy in a vreg. 398 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 399 if (LDI != LiveInMap.end()) { 400 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 401 MachineBasicBlock::iterator InsertPos = Def; 402 const MDNode *Variable = 403 MI->getOperand(MI->getNumOperands()-1).getMetadata(); 404 unsigned Offset = MI->getOperand(1).getImm(); 405 // Def is never a terminator here, so it is ok to increment InsertPos. 406 BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(), 407 TII.get(TargetOpcode::DBG_VALUE)) 408 .addReg(LDI->second, RegState::Debug) 409 .addImm(Offset).addMetadata(Variable); 410 411 // If this vreg is directly copied into an exported register then 412 // that COPY instructions also need DBG_VALUE, if it is the only 413 // user of LDI->second. 414 MachineInstr *CopyUseMI = NULL; 415 for (MachineRegisterInfo::use_iterator 416 UI = RegInfo->use_begin(LDI->second); 417 MachineInstr *UseMI = UI.skipInstruction();) { 418 if (UseMI->isDebugValue()) continue; 419 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 420 CopyUseMI = UseMI; continue; 421 } 422 // Otherwise this is another use or second copy use. 423 CopyUseMI = NULL; break; 424 } 425 if (CopyUseMI) { 426 MachineInstr *NewMI = 427 BuildMI(*MF, CopyUseMI->getDebugLoc(), 428 TII.get(TargetOpcode::DBG_VALUE)) 429 .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug) 430 .addImm(Offset).addMetadata(Variable); 431 MachineBasicBlock::iterator Pos = CopyUseMI; 432 EntryMBB->insertAfter(Pos, NewMI); 433 } 434 } 435 } 436 437 // Determine if there are any calls in this machine function. 438 MachineFrameInfo *MFI = MF->getFrameInfo(); 439 if (!MFI->hasCalls()) { 440 for (MachineFunction::const_iterator 441 I = MF->begin(), E = MF->end(); I != E; ++I) { 442 const MachineBasicBlock *MBB = I; 443 for (MachineBasicBlock::const_iterator 444 II = MBB->begin(), IE = MBB->end(); II != IE; ++II) { 445 const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode()); 446 447 if ((MCID.isCall() && !MCID.isReturn()) || 448 II->isStackAligningInlineAsm()) { 449 MFI->setHasCalls(true); 450 goto done; 451 } 452 } 453 } 454 done:; 455 } 456 457 // Determine if there is a call to setjmp in the machine function. 458 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 459 460 // Replace forward-declared registers with the registers containing 461 // the desired value. 462 MachineRegisterInfo &MRI = MF->getRegInfo(); 463 for (DenseMap<unsigned, unsigned>::iterator 464 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); 465 I != E; ++I) { 466 unsigned From = I->first; 467 unsigned To = I->second; 468 // If To is also scheduled to be replaced, find what its ultimate 469 // replacement is. 470 for (;;) { 471 DenseMap<unsigned, unsigned>::iterator J = 472 FuncInfo->RegFixups.find(To); 473 if (J == E) break; 474 To = J->second; 475 } 476 // Replace it. 477 MRI.replaceRegWith(From, To); 478 } 479 480 // Release function-specific state. SDB and CurDAG are already cleared 481 // at this point. 482 FuncInfo->clear(); 483 484 return true; 485 } 486 487 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 488 BasicBlock::const_iterator End, 489 bool &HadTailCall) { 490 // Lower all of the non-terminator instructions. If a call is emitted 491 // as a tail call, cease emitting nodes for this block. Terminators 492 // are handled below. 493 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) 494 SDB->visit(*I); 495 496 // Make sure the root of the DAG is up-to-date. 497 CurDAG->setRoot(SDB->getControlRoot()); 498 HadTailCall = SDB->HasTailCall; 499 SDB->clear(); 500 501 // Final step, emit the lowered DAG as machine code. 502 CodeGenAndEmitDAG(); 503 } 504 505 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 506 SmallPtrSet<SDNode*, 128> VisitedNodes; 507 SmallVector<SDNode*, 128> Worklist; 508 509 Worklist.push_back(CurDAG->getRoot().getNode()); 510 511 APInt KnownZero; 512 APInt KnownOne; 513 514 do { 515 SDNode *N = Worklist.pop_back_val(); 516 517 // If we've already seen this node, ignore it. 518 if (!VisitedNodes.insert(N)) 519 continue; 520 521 // Otherwise, add all chain operands to the worklist. 522 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 523 if (N->getOperand(i).getValueType() == MVT::Other) 524 Worklist.push_back(N->getOperand(i).getNode()); 525 526 // If this is a CopyToReg with a vreg dest, process it. 527 if (N->getOpcode() != ISD::CopyToReg) 528 continue; 529 530 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 531 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 532 continue; 533 534 // Ignore non-scalar or non-integer values. 535 SDValue Src = N->getOperand(2); 536 EVT SrcVT = Src.getValueType(); 537 if (!SrcVT.isInteger() || SrcVT.isVector()) 538 continue; 539 540 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 541 CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne); 542 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne); 543 } while (!Worklist.empty()); 544 } 545 546 void SelectionDAGISel::CodeGenAndEmitDAG() { 547 std::string GroupName; 548 if (TimePassesIsEnabled) 549 GroupName = "Instruction Selection and Scheduling"; 550 std::string BlockName; 551 int BlockNumber = -1; 552 (void)BlockNumber; 553 #ifdef NDEBUG 554 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || 555 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || 556 ViewSUnitDAGs) 557 #endif 558 { 559 BlockNumber = FuncInfo->MBB->getNumber(); 560 BlockName = MF->getFunction()->getName().str() + ":" + 561 FuncInfo->MBB->getBasicBlock()->getName().str(); 562 } 563 DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber 564 << " '" << BlockName << "'\n"; CurDAG->dump()); 565 566 if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName); 567 568 // Run the DAG combiner in pre-legalize mode. 569 { 570 NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled); 571 CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel); 572 } 573 574 DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber 575 << " '" << BlockName << "'\n"; CurDAG->dump()); 576 577 // Second step, hack on the DAG until it only uses operations and types that 578 // the target supports. 579 if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " + 580 BlockName); 581 582 bool Changed; 583 { 584 NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled); 585 Changed = CurDAG->LegalizeTypes(); 586 } 587 588 DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber 589 << " '" << BlockName << "'\n"; CurDAG->dump()); 590 591 if (Changed) { 592 if (ViewDAGCombineLT) 593 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 594 595 // Run the DAG combiner in post-type-legalize mode. 596 { 597 NamedRegionTimer T("DAG Combining after legalize types", GroupName, 598 TimePassesIsEnabled); 599 CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel); 600 } 601 602 DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber 603 << " '" << BlockName << "'\n"; CurDAG->dump()); 604 } 605 606 { 607 NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled); 608 Changed = CurDAG->LegalizeVectors(); 609 } 610 611 if (Changed) { 612 { 613 NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled); 614 CurDAG->LegalizeTypes(); 615 } 616 617 if (ViewDAGCombineLT) 618 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 619 620 // Run the DAG combiner in post-type-legalize mode. 621 { 622 NamedRegionTimer T("DAG Combining after legalize vectors", GroupName, 623 TimePassesIsEnabled); 624 CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel); 625 } 626 627 DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#" 628 << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); 629 } 630 631 if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName); 632 633 { 634 NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled); 635 CurDAG->Legalize(); 636 } 637 638 DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber 639 << " '" << BlockName << "'\n"; CurDAG->dump()); 640 641 if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName); 642 643 // Run the DAG combiner in post-legalize mode. 644 { 645 NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled); 646 CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel); 647 } 648 649 DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber 650 << " '" << BlockName << "'\n"; CurDAG->dump()); 651 652 if (OptLevel != CodeGenOpt::None) 653 ComputeLiveOutVRegInfo(); 654 655 if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName); 656 657 // Third, instruction select all of the operations to machine code, adding the 658 // code to the MachineBasicBlock. 659 { 660 NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled); 661 DoInstructionSelection(); 662 } 663 664 DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber 665 << " '" << BlockName << "'\n"; CurDAG->dump()); 666 667 if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName); 668 669 // Schedule machine code. 670 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 671 { 672 NamedRegionTimer T("Instruction Scheduling", GroupName, 673 TimePassesIsEnabled); 674 Scheduler->Run(CurDAG, FuncInfo->MBB); 675 } 676 677 if (ViewSUnitDAGs) Scheduler->viewGraph(); 678 679 // Emit machine code to BB. This can change 'BB' to the last block being 680 // inserted into. 681 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 682 { 683 NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled); 684 685 // FuncInfo->InsertPt is passed by reference and set to the end of the 686 // scheduled instructions. 687 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 688 } 689 690 // If the block was split, make sure we update any references that are used to 691 // update PHI nodes later on. 692 if (FirstMBB != LastMBB) 693 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 694 695 // Free the scheduler state. 696 { 697 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName, 698 TimePassesIsEnabled); 699 delete Scheduler; 700 } 701 702 // Free the SelectionDAG state, now that we're finished with it. 703 CurDAG->clear(); 704 } 705 706 void SelectionDAGISel::DoInstructionSelection() { 707 DEBUG(errs() << "===== Instruction selection begins: BB#" 708 << FuncInfo->MBB->getNumber() 709 << " '" << FuncInfo->MBB->getName() << "'\n"); 710 711 PreprocessISelDAG(); 712 713 // Select target instructions for the DAG. 714 { 715 // Number all nodes with a topological order and set DAGSize. 716 DAGSize = CurDAG->AssignTopologicalOrder(); 717 718 // Create a dummy node (which is not added to allnodes), that adds 719 // a reference to the root node, preventing it from being deleted, 720 // and tracking any changes of the root. 721 HandleSDNode Dummy(CurDAG->getRoot()); 722 ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode()); 723 ++ISelPosition; 724 725 // The AllNodes list is now topological-sorted. Visit the 726 // nodes by starting at the end of the list (the root of the 727 // graph) and preceding back toward the beginning (the entry 728 // node). 729 while (ISelPosition != CurDAG->allnodes_begin()) { 730 SDNode *Node = --ISelPosition; 731 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 732 // but there are currently some corner cases that it misses. Also, this 733 // makes it theoretically possible to disable the DAGCombiner. 734 if (Node->use_empty()) 735 continue; 736 737 SDNode *ResNode = Select(Node); 738 739 // FIXME: This is pretty gross. 'Select' should be changed to not return 740 // anything at all and this code should be nuked with a tactical strike. 741 742 // If node should not be replaced, continue with the next one. 743 if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE) 744 continue; 745 // Replace node. 746 if (ResNode) 747 ReplaceUses(Node, ResNode); 748 749 // If after the replacement this node is not used any more, 750 // remove this dead node. 751 if (Node->use_empty()) { // Don't delete EntryToken, etc. 752 ISelUpdater ISU(ISelPosition); 753 CurDAG->RemoveDeadNode(Node, &ISU); 754 } 755 } 756 757 CurDAG->setRoot(Dummy.getValue()); 758 } 759 760 DEBUG(errs() << "===== Instruction selection ends:\n"); 761 762 PostprocessISelDAG(); 763 } 764 765 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 766 /// do other setup for EH landing-pad blocks. 767 void SelectionDAGISel::PrepareEHLandingPad() { 768 MachineBasicBlock *MBB = FuncInfo->MBB; 769 770 // Add a label to mark the beginning of the landing pad. Deletion of the 771 // landing pad can thus be detected via the MachineModuleInfo. 772 MCSymbol *Label = MF->getMMI().addLandingPad(MBB); 773 774 // Assign the call site to the landing pad's begin label. 775 MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 776 777 const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL); 778 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 779 .addSym(Label); 780 781 // Mark exception register as live in. 782 unsigned Reg = TLI.getExceptionPointerRegister(); 783 if (Reg) MBB->addLiveIn(Reg); 784 785 // Mark exception selector register as live in. 786 Reg = TLI.getExceptionSelectorRegister(); 787 if (Reg) MBB->addLiveIn(Reg); 788 } 789 790 /// TryToFoldFastISelLoad - We're checking to see if we can fold the specified 791 /// load into the specified FoldInst. Note that we could have a sequence where 792 /// multiple LLVM IR instructions are folded into the same machineinstr. For 793 /// example we could have: 794 /// A: x = load i32 *P 795 /// B: y = icmp A, 42 796 /// C: br y, ... 797 /// 798 /// In this scenario, LI is "A", and FoldInst is "C". We know about "B" (and 799 /// any other folded instructions) because it is between A and C. 800 /// 801 /// If we succeed in folding the load into the operation, return true. 802 /// 803 bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI, 804 const Instruction *FoldInst, 805 FastISel *FastIS) { 806 // We know that the load has a single use, but don't know what it is. If it 807 // isn't one of the folded instructions, then we can't succeed here. Handle 808 // this by scanning the single-use users of the load until we get to FoldInst. 809 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 810 811 const Instruction *TheUser = LI->use_back(); 812 while (TheUser != FoldInst && // Scan up until we find FoldInst. 813 // Stay in the right block. 814 TheUser->getParent() == FoldInst->getParent() && 815 --MaxUsers) { // Don't scan too far. 816 // If there are multiple or no uses of this instruction, then bail out. 817 if (!TheUser->hasOneUse()) 818 return false; 819 820 TheUser = TheUser->use_back(); 821 } 822 823 // If we didn't find the fold instruction, then we failed to collapse the 824 // sequence. 825 if (TheUser != FoldInst) 826 return false; 827 828 // Don't try to fold volatile loads. Target has to deal with alignment 829 // constraints. 830 if (LI->isVolatile()) return false; 831 832 // Figure out which vreg this is going into. If there is no assigned vreg yet 833 // then there actually was no reference to it. Perhaps the load is referenced 834 // by a dead instruction. 835 unsigned LoadReg = FastIS->getRegForValue(LI); 836 if (LoadReg == 0) 837 return false; 838 839 // Check to see what the uses of this vreg are. If it has no uses, or more 840 // than one use (at the machine instr level) then we can't fold it. 841 MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg); 842 if (RI == RegInfo->reg_end()) 843 return false; 844 845 // See if there is exactly one use of the vreg. If there are multiple uses, 846 // then the instruction got lowered to multiple machine instructions or the 847 // use of the loaded value ended up being multiple operands of the result, in 848 // either case, we can't fold this. 849 MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI; 850 if (PostRI != RegInfo->reg_end()) 851 return false; 852 853 assert(RI.getOperand().isUse() && 854 "The only use of the vreg must be a use, we haven't emitted the def!"); 855 856 MachineInstr *User = &*RI; 857 858 // Set the insertion point properly. Folding the load can cause generation of 859 // other random instructions (like sign extends) for addressing modes, make 860 // sure they get inserted in a logical place before the new instruction. 861 FuncInfo->InsertPt = User; 862 FuncInfo->MBB = User->getParent(); 863 864 // Ask the target to try folding the load. 865 return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI); 866 } 867 868 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 869 /// side-effect free and is either dead or folded into a generated instruction. 870 /// Return false if it needs to be emitted. 871 static bool isFoldedOrDeadInstruction(const Instruction *I, 872 FunctionLoweringInfo *FuncInfo) { 873 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 874 !isa<TerminatorInst>(I) && // Terminators aren't folded. 875 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 876 !isa<LandingPadInst>(I) && // Landingpad instructions aren't folded. 877 !FuncInfo->isExportedInst(I); // Exported instrs must be computed. 878 } 879 880 #ifndef NDEBUG 881 // Collect per Instruction statistics for fast-isel misses. Only those 882 // instructions that cause the bail are accounted for. It does not account for 883 // instructions higher in the block. Thus, summing the per instructions stats 884 // will not add up to what is reported by NumFastIselFailures. 885 static void collectFailStats(const Instruction *I) { 886 switch (I->getOpcode()) { 887 default: assert (0 && "<Invalid operator> "); 888 889 // Terminators 890 case Instruction::Ret: NumFastIselFailRet++; return; 891 case Instruction::Br: NumFastIselFailBr++; return; 892 case Instruction::Switch: NumFastIselFailSwitch++; return; 893 case Instruction::IndirectBr: NumFastIselFailIndirectBr++; return; 894 case Instruction::Invoke: NumFastIselFailInvoke++; return; 895 case Instruction::Resume: NumFastIselFailResume++; return; 896 case Instruction::Unreachable: NumFastIselFailUnreachable++; return; 897 898 // Standard binary operators... 899 case Instruction::Add: NumFastIselFailAdd++; return; 900 case Instruction::FAdd: NumFastIselFailFAdd++; return; 901 case Instruction::Sub: NumFastIselFailSub++; return; 902 case Instruction::FSub: NumFastIselFailFSub++; return; 903 case Instruction::Mul: NumFastIselFailMul++; return; 904 case Instruction::FMul: NumFastIselFailFMul++; return; 905 case Instruction::UDiv: NumFastIselFailUDiv++; return; 906 case Instruction::SDiv: NumFastIselFailSDiv++; return; 907 case Instruction::FDiv: NumFastIselFailFDiv++; return; 908 case Instruction::URem: NumFastIselFailURem++; return; 909 case Instruction::SRem: NumFastIselFailSRem++; return; 910 case Instruction::FRem: NumFastIselFailFRem++; return; 911 912 // Logical operators... 913 case Instruction::And: NumFastIselFailAnd++; return; 914 case Instruction::Or: NumFastIselFailOr++; return; 915 case Instruction::Xor: NumFastIselFailXor++; return; 916 917 // Memory instructions... 918 case Instruction::Alloca: NumFastIselFailAlloca++; return; 919 case Instruction::Load: NumFastIselFailLoad++; return; 920 case Instruction::Store: NumFastIselFailStore++; return; 921 case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return; 922 case Instruction::AtomicRMW: NumFastIselFailAtomicRMW++; return; 923 case Instruction::Fence: NumFastIselFailFence++; return; 924 case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return; 925 926 // Convert instructions... 927 case Instruction::Trunc: NumFastIselFailTrunc++; return; 928 case Instruction::ZExt: NumFastIselFailZExt++; return; 929 case Instruction::SExt: NumFastIselFailSExt++; return; 930 case Instruction::FPTrunc: NumFastIselFailFPTrunc++; return; 931 case Instruction::FPExt: NumFastIselFailFPExt++; return; 932 case Instruction::FPToUI: NumFastIselFailFPToUI++; return; 933 case Instruction::FPToSI: NumFastIselFailFPToSI++; return; 934 case Instruction::UIToFP: NumFastIselFailUIToFP++; return; 935 case Instruction::SIToFP: NumFastIselFailSIToFP++; return; 936 case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return; 937 case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return; 938 case Instruction::BitCast: NumFastIselFailBitCast++; return; 939 940 // Other instructions... 941 case Instruction::ICmp: NumFastIselFailICmp++; return; 942 case Instruction::FCmp: NumFastIselFailFCmp++; return; 943 case Instruction::PHI: NumFastIselFailPHI++; return; 944 case Instruction::Select: NumFastIselFailSelect++; return; 945 case Instruction::Call: NumFastIselFailCall++; return; 946 case Instruction::Shl: NumFastIselFailShl++; return; 947 case Instruction::LShr: NumFastIselFailLShr++; return; 948 case Instruction::AShr: NumFastIselFailAShr++; return; 949 case Instruction::VAArg: NumFastIselFailVAArg++; return; 950 case Instruction::ExtractElement: NumFastIselFailExtractElement++; return; 951 case Instruction::InsertElement: NumFastIselFailInsertElement++; return; 952 case Instruction::ShuffleVector: NumFastIselFailShuffleVector++; return; 953 case Instruction::ExtractValue: NumFastIselFailExtractValue++; return; 954 case Instruction::InsertValue: NumFastIselFailInsertValue++; return; 955 case Instruction::LandingPad: NumFastIselFailLandingPad++; return; 956 } 957 } 958 #endif 959 960 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 961 // Initialize the Fast-ISel state, if needed. 962 FastISel *FastIS = 0; 963 if (TM.Options.EnableFastISel) 964 FastIS = TLI.createFastISel(*FuncInfo); 965 966 // Iterate over all basic blocks in the function. 967 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 968 for (ReversePostOrderTraversal<const Function*>::rpo_iterator 969 I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { 970 const BasicBlock *LLVMBB = *I; 971 972 if (OptLevel != CodeGenOpt::None) { 973 bool AllPredsVisited = true; 974 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 975 PI != PE; ++PI) { 976 if (!FuncInfo->VisitedBBs.count(*PI)) { 977 AllPredsVisited = false; 978 break; 979 } 980 } 981 982 if (AllPredsVisited) { 983 for (BasicBlock::const_iterator I = LLVMBB->begin(); 984 isa<PHINode>(I); ++I) 985 FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I)); 986 } else { 987 for (BasicBlock::const_iterator I = LLVMBB->begin(); 988 isa<PHINode>(I); ++I) 989 FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I)); 990 } 991 992 FuncInfo->VisitedBBs.insert(LLVMBB); 993 } 994 995 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 996 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); 997 998 BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI(); 999 BasicBlock::const_iterator const End = LLVMBB->end(); 1000 BasicBlock::const_iterator BI = End; 1001 1002 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); 1003 1004 // Setup an EH landing-pad block. 1005 if (FuncInfo->MBB->isLandingPad()) 1006 PrepareEHLandingPad(); 1007 1008 // Lower any arguments needed in this block if this is the entry block. 1009 if (LLVMBB == &Fn.getEntryBlock()) 1010 LowerArguments(LLVMBB); 1011 1012 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1013 if (FastIS) { 1014 FastIS->startNewBlock(); 1015 1016 // Emit code for any incoming arguments. This must happen before 1017 // beginning FastISel on the entry block. 1018 if (LLVMBB == &Fn.getEntryBlock()) { 1019 CurDAG->setRoot(SDB->getControlRoot()); 1020 SDB->clear(); 1021 CodeGenAndEmitDAG(); 1022 1023 // If we inserted any instructions at the beginning, make a note of 1024 // where they are, so we can be sure to emit subsequent instructions 1025 // after them. 1026 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1027 FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt)); 1028 else 1029 FastIS->setLastLocalValue(0); 1030 } 1031 1032 unsigned NumFastIselRemaining = std::distance(Begin, End); 1033 // Do FastISel on as many instructions as possible. 1034 for (; BI != Begin; --BI) { 1035 const Instruction *Inst = llvm::prior(BI); 1036 1037 // If we no longer require this instruction, skip it. 1038 if (isFoldedOrDeadInstruction(Inst, FuncInfo)) { 1039 --NumFastIselRemaining; 1040 continue; 1041 } 1042 1043 // Bottom-up: reset the insert pos at the top, after any local-value 1044 // instructions. 1045 FastIS->recomputeInsertPt(); 1046 1047 // Try to select the instruction with FastISel. 1048 if (FastIS->SelectInstruction(Inst)) { 1049 --NumFastIselRemaining; 1050 ++NumFastIselSuccess; 1051 // If fast isel succeeded, skip over all the folded instructions, and 1052 // then see if there is a load right before the selected instructions. 1053 // Try to fold the load if so. 1054 const Instruction *BeforeInst = Inst; 1055 while (BeforeInst != Begin) { 1056 BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst)); 1057 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) 1058 break; 1059 } 1060 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1061 BeforeInst->hasOneUse() && 1062 TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) { 1063 // If we succeeded, don't re-select the load. 1064 BI = llvm::next(BasicBlock::const_iterator(BeforeInst)); 1065 --NumFastIselRemaining; 1066 ++NumFastIselSuccess; 1067 } 1068 continue; 1069 } 1070 1071 #ifndef NDEBUG 1072 if (EnableFastISelVerbose2) 1073 collectFailStats(Inst); 1074 #endif 1075 1076 // Then handle certain instructions as single-LLVM-Instruction blocks. 1077 if (isa<CallInst>(Inst)) { 1078 1079 if (EnableFastISelVerbose || EnableFastISelAbort) { 1080 dbgs() << "FastISel missed call: "; 1081 Inst->dump(); 1082 } 1083 1084 if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) { 1085 unsigned &R = FuncInfo->ValueMap[Inst]; 1086 if (!R) 1087 R = FuncInfo->CreateRegs(Inst->getType()); 1088 } 1089 1090 bool HadTailCall = false; 1091 SelectBasicBlock(Inst, BI, HadTailCall); 1092 1093 // Recompute NumFastIselRemaining as Selection DAG instruction 1094 // selection may have handled the call, input args, etc. 1095 unsigned RemainingNow = std::distance(Begin, BI); 1096 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1097 1098 // If the call was emitted as a tail call, we're done with the block. 1099 if (HadTailCall) { 1100 --BI; 1101 break; 1102 } 1103 1104 NumFastIselRemaining = RemainingNow; 1105 continue; 1106 } 1107 1108 if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) { 1109 // Don't abort, and use a different message for terminator misses. 1110 NumFastIselFailures += NumFastIselRemaining; 1111 if (EnableFastISelVerbose || EnableFastISelAbort) { 1112 dbgs() << "FastISel missed terminator: "; 1113 Inst->dump(); 1114 } 1115 } else { 1116 NumFastIselFailures += NumFastIselRemaining; 1117 if (EnableFastISelVerbose || EnableFastISelAbort) { 1118 dbgs() << "FastISel miss: "; 1119 Inst->dump(); 1120 } 1121 if (EnableFastISelAbort) 1122 // The "fast" selector couldn't handle something and bailed. 1123 // For the purpose of debugging, just abort. 1124 llvm_unreachable("FastISel didn't select the entire block"); 1125 } 1126 break; 1127 } 1128 1129 FastIS->recomputeInsertPt(); 1130 } 1131 1132 if (Begin != BI) 1133 ++NumDAGBlocks; 1134 else 1135 ++NumFastIselBlocks; 1136 1137 if (Begin != BI) { 1138 // Run SelectionDAG instruction selection on the remainder of the block 1139 // not handled by FastISel. If FastISel is not run, this is the entire 1140 // block. 1141 bool HadTailCall; 1142 SelectBasicBlock(Begin, BI, HadTailCall); 1143 } 1144 1145 FinishBasicBlock(); 1146 FuncInfo->PHINodesToUpdate.clear(); 1147 } 1148 1149 delete FastIS; 1150 SDB->clearDanglingDebugInfo(); 1151 } 1152 1153 void 1154 SelectionDAGISel::FinishBasicBlock() { 1155 1156 DEBUG(dbgs() << "Total amount of phi nodes to update: " 1157 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1158 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) 1159 dbgs() << "Node " << i << " : (" 1160 << FuncInfo->PHINodesToUpdate[i].first 1161 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1162 1163 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1164 // PHI nodes in successors. 1165 if (SDB->SwitchCases.empty() && 1166 SDB->JTCases.empty() && 1167 SDB->BitTestCases.empty()) { 1168 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1169 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first; 1170 assert(PHI->isPHI() && 1171 "This is not a machine PHI node that we are updating!"); 1172 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1173 continue; 1174 PHI->addOperand( 1175 MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false)); 1176 PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB)); 1177 } 1178 return; 1179 } 1180 1181 for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) { 1182 // Lower header first, if it wasn't already lowered 1183 if (!SDB->BitTestCases[i].Emitted) { 1184 // Set the current basic block to the mbb we wish to insert the code into 1185 FuncInfo->MBB = SDB->BitTestCases[i].Parent; 1186 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1187 // Emit the code 1188 SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB); 1189 CurDAG->setRoot(SDB->getRoot()); 1190 SDB->clear(); 1191 CodeGenAndEmitDAG(); 1192 } 1193 1194 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { 1195 // Set the current basic block to the mbb we wish to insert the code into 1196 FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB; 1197 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1198 // Emit the code 1199 if (j+1 != ej) 1200 SDB->visitBitTestCase(SDB->BitTestCases[i], 1201 SDB->BitTestCases[i].Cases[j+1].ThisBB, 1202 SDB->BitTestCases[i].Reg, 1203 SDB->BitTestCases[i].Cases[j], 1204 FuncInfo->MBB); 1205 else 1206 SDB->visitBitTestCase(SDB->BitTestCases[i], 1207 SDB->BitTestCases[i].Default, 1208 SDB->BitTestCases[i].Reg, 1209 SDB->BitTestCases[i].Cases[j], 1210 FuncInfo->MBB); 1211 1212 1213 CurDAG->setRoot(SDB->getRoot()); 1214 SDB->clear(); 1215 CodeGenAndEmitDAG(); 1216 } 1217 1218 // Update PHI Nodes 1219 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1220 pi != pe; ++pi) { 1221 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first; 1222 MachineBasicBlock *PHIBB = PHI->getParent(); 1223 assert(PHI->isPHI() && 1224 "This is not a machine PHI node that we are updating!"); 1225 // This is "default" BB. We have two jumps to it. From "header" BB and 1226 // from last "case" BB. 1227 if (PHIBB == SDB->BitTestCases[i].Default) { 1228 PHI->addOperand(MachineOperand:: 1229 CreateReg(FuncInfo->PHINodesToUpdate[pi].second, 1230 false)); 1231 PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent)); 1232 PHI->addOperand(MachineOperand:: 1233 CreateReg(FuncInfo->PHINodesToUpdate[pi].second, 1234 false)); 1235 PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases. 1236 back().ThisBB)); 1237 } 1238 // One of "cases" BB. 1239 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); 1240 j != ej; ++j) { 1241 MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB; 1242 if (cBB->isSuccessor(PHIBB)) { 1243 PHI->addOperand(MachineOperand:: 1244 CreateReg(FuncInfo->PHINodesToUpdate[pi].second, 1245 false)); 1246 PHI->addOperand(MachineOperand::CreateMBB(cBB)); 1247 } 1248 } 1249 } 1250 } 1251 SDB->BitTestCases.clear(); 1252 1253 // If the JumpTable record is filled in, then we need to emit a jump table. 1254 // Updating the PHI nodes is tricky in this case, since we need to determine 1255 // whether the PHI is a successor of the range check MBB or the jump table MBB 1256 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { 1257 // Lower header first, if it wasn't already lowered 1258 if (!SDB->JTCases[i].first.Emitted) { 1259 // Set the current basic block to the mbb we wish to insert the code into 1260 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB; 1261 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1262 // Emit the code 1263 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, 1264 FuncInfo->MBB); 1265 CurDAG->setRoot(SDB->getRoot()); 1266 SDB->clear(); 1267 CodeGenAndEmitDAG(); 1268 } 1269 1270 // Set the current basic block to the mbb we wish to insert the code into 1271 FuncInfo->MBB = SDB->JTCases[i].second.MBB; 1272 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1273 // Emit the code 1274 SDB->visitJumpTable(SDB->JTCases[i].second); 1275 CurDAG->setRoot(SDB->getRoot()); 1276 SDB->clear(); 1277 CodeGenAndEmitDAG(); 1278 1279 // Update PHI Nodes 1280 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1281 pi != pe; ++pi) { 1282 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first; 1283 MachineBasicBlock *PHIBB = PHI->getParent(); 1284 assert(PHI->isPHI() && 1285 "This is not a machine PHI node that we are updating!"); 1286 // "default" BB. We can go there only from header BB. 1287 if (PHIBB == SDB->JTCases[i].second.Default) { 1288 PHI->addOperand 1289 (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second, 1290 false)); 1291 PHI->addOperand 1292 (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB)); 1293 } 1294 // JT BB. Just iterate over successors here 1295 if (FuncInfo->MBB->isSuccessor(PHIBB)) { 1296 PHI->addOperand 1297 (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second, 1298 false)); 1299 PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB)); 1300 } 1301 } 1302 } 1303 SDB->JTCases.clear(); 1304 1305 // If the switch block involved a branch to one of the actual successors, we 1306 // need to update PHI nodes in that block. 1307 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1308 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first; 1309 assert(PHI->isPHI() && 1310 "This is not a machine PHI node that we are updating!"); 1311 if (FuncInfo->MBB->isSuccessor(PHI->getParent())) { 1312 PHI->addOperand( 1313 MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false)); 1314 PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB)); 1315 } 1316 } 1317 1318 // If we generated any switch lowering information, build and codegen any 1319 // additional DAGs necessary. 1320 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { 1321 // Set the current basic block to the mbb we wish to insert the code into 1322 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB; 1323 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1324 1325 // Determine the unique successors. 1326 SmallVector<MachineBasicBlock *, 2> Succs; 1327 Succs.push_back(SDB->SwitchCases[i].TrueBB); 1328 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB) 1329 Succs.push_back(SDB->SwitchCases[i].FalseBB); 1330 1331 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1332 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB); 1333 CurDAG->setRoot(SDB->getRoot()); 1334 SDB->clear(); 1335 CodeGenAndEmitDAG(); 1336 1337 // Remember the last block, now that any splitting is done, for use in 1338 // populating PHI nodes in successors. 1339 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1340 1341 // Handle any PHI nodes in successors of this chunk, as if we were coming 1342 // from the original BB before switch expansion. Note that PHI nodes can 1343 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1344 // handle them the right number of times. 1345 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1346 FuncInfo->MBB = Succs[i]; 1347 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1348 // FuncInfo->MBB may have been removed from the CFG if a branch was 1349 // constant folded. 1350 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1351 for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin(); 1352 Phi != FuncInfo->MBB->end() && Phi->isPHI(); 1353 ++Phi) { 1354 // This value for this PHI node is recorded in PHINodesToUpdate. 1355 for (unsigned pn = 0; ; ++pn) { 1356 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1357 "Didn't find PHI entry!"); 1358 if (FuncInfo->PHINodesToUpdate[pn].first == Phi) { 1359 Phi->addOperand(MachineOperand:: 1360 CreateReg(FuncInfo->PHINodesToUpdate[pn].second, 1361 false)); 1362 Phi->addOperand(MachineOperand::CreateMBB(ThisBB)); 1363 break; 1364 } 1365 } 1366 } 1367 } 1368 } 1369 } 1370 SDB->SwitchCases.clear(); 1371 } 1372 1373 1374 /// Create the scheduler. If a specific scheduler was specified 1375 /// via the SchedulerRegistry, use it, otherwise select the 1376 /// one preferred by the target. 1377 /// 1378 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1379 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); 1380 1381 if (!Ctor) { 1382 Ctor = ISHeuristic; 1383 RegisterScheduler::setDefault(Ctor); 1384 } 1385 1386 return Ctor(this, OptLevel); 1387 } 1388 1389 //===----------------------------------------------------------------------===// 1390 // Helper functions used by the generated instruction selector. 1391 //===----------------------------------------------------------------------===// 1392 // Calls to these methods are generated by tblgen. 1393 1394 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1395 /// the dag combiner simplified the 255, we still want to match. RHS is the 1396 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1397 /// specified in the .td file (e.g. 255). 1398 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1399 int64_t DesiredMaskS) const { 1400 const APInt &ActualMask = RHS->getAPIntValue(); 1401 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1402 1403 // If the actual mask exactly matches, success! 1404 if (ActualMask == DesiredMask) 1405 return true; 1406 1407 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1408 if (ActualMask.intersects(~DesiredMask)) 1409 return false; 1410 1411 // Otherwise, the DAG Combiner may have proven that the value coming in is 1412 // either already zero or is not demanded. Check for known zero input bits. 1413 APInt NeededMask = DesiredMask & ~ActualMask; 1414 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 1415 return true; 1416 1417 // TODO: check to see if missing bits are just not demanded. 1418 1419 // Otherwise, this pattern doesn't match. 1420 return false; 1421 } 1422 1423 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 1424 /// the dag combiner simplified the 255, we still want to match. RHS is the 1425 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 1426 /// specified in the .td file (e.g. 255). 1427 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 1428 int64_t DesiredMaskS) const { 1429 const APInt &ActualMask = RHS->getAPIntValue(); 1430 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1431 1432 // If the actual mask exactly matches, success! 1433 if (ActualMask == DesiredMask) 1434 return true; 1435 1436 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1437 if (ActualMask.intersects(~DesiredMask)) 1438 return false; 1439 1440 // Otherwise, the DAG Combiner may have proven that the value coming in is 1441 // either already zero or is not demanded. Check for known zero input bits. 1442 APInt NeededMask = DesiredMask & ~ActualMask; 1443 1444 APInt KnownZero, KnownOne; 1445 CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne); 1446 1447 // If all the missing bits in the or are already known to be set, match! 1448 if ((NeededMask & KnownOne) == NeededMask) 1449 return true; 1450 1451 // TODO: check to see if missing bits are just not demanded. 1452 1453 // Otherwise, this pattern doesn't match. 1454 return false; 1455 } 1456 1457 1458 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 1459 /// by tblgen. Others should not call it. 1460 void SelectionDAGISel:: 1461 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) { 1462 std::vector<SDValue> InOps; 1463 std::swap(InOps, Ops); 1464 1465 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 1466 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 1467 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 1468 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 1469 1470 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 1471 if (InOps[e-1].getValueType() == MVT::Glue) 1472 --e; // Don't process a glue operand if it is here. 1473 1474 while (i != e) { 1475 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 1476 if (!InlineAsm::isMemKind(Flags)) { 1477 // Just skip over this operand, copying the operands verbatim. 1478 Ops.insert(Ops.end(), InOps.begin()+i, 1479 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 1480 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 1481 } else { 1482 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 1483 "Memory operand with multiple values?"); 1484 // Otherwise, this is a memory operand. Ask the target to select it. 1485 std::vector<SDValue> SelOps; 1486 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) 1487 report_fatal_error("Could not match memory address. Inline asm" 1488 " failure!"); 1489 1490 // Add this to the output node. 1491 unsigned NewFlags = 1492 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 1493 Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32)); 1494 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); 1495 i += 2; 1496 } 1497 } 1498 1499 // Add the glue input back if present. 1500 if (e != InOps.size()) 1501 Ops.push_back(InOps.back()); 1502 } 1503 1504 /// findGlueUse - Return use of MVT::Glue value produced by the specified 1505 /// SDNode. 1506 /// 1507 static SDNode *findGlueUse(SDNode *N) { 1508 unsigned FlagResNo = N->getNumValues()-1; 1509 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 1510 SDUse &Use = I.getUse(); 1511 if (Use.getResNo() == FlagResNo) 1512 return Use.getUser(); 1513 } 1514 return NULL; 1515 } 1516 1517 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". 1518 /// This function recursively traverses up the operand chain, ignoring 1519 /// certain nodes. 1520 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, 1521 SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited, 1522 bool IgnoreChains) { 1523 // The NodeID's are given uniques ID's where a node ID is guaranteed to be 1524 // greater than all of its (recursive) operands. If we scan to a point where 1525 // 'use' is smaller than the node we're scanning for, then we know we will 1526 // never find it. 1527 // 1528 // The Use may be -1 (unassigned) if it is a newly allocated node. This can 1529 // happen because we scan down to newly selected nodes in the case of glue 1530 // uses. 1531 if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)) 1532 return false; 1533 1534 // Don't revisit nodes if we already scanned it and didn't fail, we know we 1535 // won't fail if we scan it again. 1536 if (!Visited.insert(Use)) 1537 return false; 1538 1539 for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) { 1540 // Ignore chain uses, they are validated by HandleMergeInputChains. 1541 if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains) 1542 continue; 1543 1544 SDNode *N = Use->getOperand(i).getNode(); 1545 if (N == Def) { 1546 if (Use == ImmedUse || Use == Root) 1547 continue; // We are not looking for immediate use. 1548 assert(N != Root); 1549 return true; 1550 } 1551 1552 // Traverse up the operand chain. 1553 if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains)) 1554 return true; 1555 } 1556 return false; 1557 } 1558 1559 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 1560 /// operand node N of U during instruction selection that starts at Root. 1561 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 1562 SDNode *Root) const { 1563 if (OptLevel == CodeGenOpt::None) return false; 1564 return N.hasOneUse(); 1565 } 1566 1567 /// IsLegalToFold - Returns true if the specific operand node N of 1568 /// U can be folded during instruction selection that starts at Root. 1569 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 1570 CodeGenOpt::Level OptLevel, 1571 bool IgnoreChains) { 1572 if (OptLevel == CodeGenOpt::None) return false; 1573 1574 // If Root use can somehow reach N through a path that that doesn't contain 1575 // U then folding N would create a cycle. e.g. In the following 1576 // diagram, Root can reach N through X. If N is folded into into Root, then 1577 // X is both a predecessor and a successor of U. 1578 // 1579 // [N*] // 1580 // ^ ^ // 1581 // / \ // 1582 // [U*] [X]? // 1583 // ^ ^ // 1584 // \ / // 1585 // \ / // 1586 // [Root*] // 1587 // 1588 // * indicates nodes to be folded together. 1589 // 1590 // If Root produces glue, then it gets (even more) interesting. Since it 1591 // will be "glued" together with its glue use in the scheduler, we need to 1592 // check if it might reach N. 1593 // 1594 // [N*] // 1595 // ^ ^ // 1596 // / \ // 1597 // [U*] [X]? // 1598 // ^ ^ // 1599 // \ \ // 1600 // \ | // 1601 // [Root*] | // 1602 // ^ | // 1603 // f | // 1604 // | / // 1605 // [Y] / // 1606 // ^ / // 1607 // f / // 1608 // | / // 1609 // [GU] // 1610 // 1611 // If GU (glue use) indirectly reaches N (the load), and Root folds N 1612 // (call it Fold), then X is a predecessor of GU and a successor of 1613 // Fold. But since Fold and GU are glued together, this will create 1614 // a cycle in the scheduling graph. 1615 1616 // If the node has glue, walk down the graph to the "lowest" node in the 1617 // glueged set. 1618 EVT VT = Root->getValueType(Root->getNumValues()-1); 1619 while (VT == MVT::Glue) { 1620 SDNode *GU = findGlueUse(Root); 1621 if (GU == NULL) 1622 break; 1623 Root = GU; 1624 VT = Root->getValueType(Root->getNumValues()-1); 1625 1626 // If our query node has a glue result with a use, we've walked up it. If 1627 // the user (which has already been selected) has a chain or indirectly uses 1628 // the chain, our WalkChainUsers predicate will not consider it. Because of 1629 // this, we cannot ignore chains in this predicate. 1630 IgnoreChains = false; 1631 } 1632 1633 1634 SmallPtrSet<SDNode*, 16> Visited; 1635 return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains); 1636 } 1637 1638 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) { 1639 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 1640 SelectInlineAsmMemoryOperands(Ops); 1641 1642 std::vector<EVT> VTs; 1643 VTs.push_back(MVT::Other); 1644 VTs.push_back(MVT::Glue); 1645 SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(), 1646 VTs, &Ops[0], Ops.size()); 1647 New->setNodeId(-1); 1648 return New.getNode(); 1649 } 1650 1651 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) { 1652 return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0)); 1653 } 1654 1655 /// GetVBR - decode a vbr encoding whose top bit is set. 1656 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t 1657 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 1658 assert(Val >= 128 && "Not a VBR"); 1659 Val &= 127; // Remove first vbr bit. 1660 1661 unsigned Shift = 7; 1662 uint64_t NextBits; 1663 do { 1664 NextBits = MatcherTable[Idx++]; 1665 Val |= (NextBits&127) << Shift; 1666 Shift += 7; 1667 } while (NextBits & 128); 1668 1669 return Val; 1670 } 1671 1672 1673 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of 1674 /// interior glue and chain results to use the new glue and chain results. 1675 void SelectionDAGISel:: 1676 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain, 1677 const SmallVectorImpl<SDNode*> &ChainNodesMatched, 1678 SDValue InputGlue, 1679 const SmallVectorImpl<SDNode*> &GlueResultNodesMatched, 1680 bool isMorphNodeTo) { 1681 SmallVector<SDNode*, 4> NowDeadNodes; 1682 1683 ISelUpdater ISU(ISelPosition); 1684 1685 // Now that all the normal results are replaced, we replace the chain and 1686 // glue results if present. 1687 if (!ChainNodesMatched.empty()) { 1688 assert(InputChain.getNode() != 0 && 1689 "Matched input chains but didn't produce a chain"); 1690 // Loop over all of the nodes we matched that produced a chain result. 1691 // Replace all the chain results with the final chain we ended up with. 1692 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 1693 SDNode *ChainNode = ChainNodesMatched[i]; 1694 1695 // If this node was already deleted, don't look at it. 1696 if (ChainNode->getOpcode() == ISD::DELETED_NODE) 1697 continue; 1698 1699 // Don't replace the results of the root node if we're doing a 1700 // MorphNodeTo. 1701 if (ChainNode == NodeToMatch && isMorphNodeTo) 1702 continue; 1703 1704 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 1705 if (ChainVal.getValueType() == MVT::Glue) 1706 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 1707 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 1708 CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU); 1709 1710 // If the node became dead and we haven't already seen it, delete it. 1711 if (ChainNode->use_empty() && 1712 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) 1713 NowDeadNodes.push_back(ChainNode); 1714 } 1715 } 1716 1717 // If the result produces glue, update any glue results in the matched 1718 // pattern with the glue result. 1719 if (InputGlue.getNode() != 0) { 1720 // Handle any interior nodes explicitly marked. 1721 for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) { 1722 SDNode *FRN = GlueResultNodesMatched[i]; 1723 1724 // If this node was already deleted, don't look at it. 1725 if (FRN->getOpcode() == ISD::DELETED_NODE) 1726 continue; 1727 1728 assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue && 1729 "Doesn't have a glue result"); 1730 CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1), 1731 InputGlue, &ISU); 1732 1733 // If the node became dead and we haven't already seen it, delete it. 1734 if (FRN->use_empty() && 1735 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN)) 1736 NowDeadNodes.push_back(FRN); 1737 } 1738 } 1739 1740 if (!NowDeadNodes.empty()) 1741 CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU); 1742 1743 DEBUG(errs() << "ISEL: Match complete!\n"); 1744 } 1745 1746 enum ChainResult { 1747 CR_Simple, 1748 CR_InducesCycle, 1749 CR_LeadsToInteriorNode 1750 }; 1751 1752 /// WalkChainUsers - Walk down the users of the specified chained node that is 1753 /// part of the pattern we're matching, looking at all of the users we find. 1754 /// This determines whether something is an interior node, whether we have a 1755 /// non-pattern node in between two pattern nodes (which prevent folding because 1756 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched 1757 /// between pattern nodes (in which case the TF becomes part of the pattern). 1758 /// 1759 /// The walk we do here is guaranteed to be small because we quickly get down to 1760 /// already selected nodes "below" us. 1761 static ChainResult 1762 WalkChainUsers(SDNode *ChainedNode, 1763 SmallVectorImpl<SDNode*> &ChainedNodesInPattern, 1764 SmallVectorImpl<SDNode*> &InteriorChainedNodes) { 1765 ChainResult Result = CR_Simple; 1766 1767 for (SDNode::use_iterator UI = ChainedNode->use_begin(), 1768 E = ChainedNode->use_end(); UI != E; ++UI) { 1769 // Make sure the use is of the chain, not some other value we produce. 1770 if (UI.getUse().getValueType() != MVT::Other) continue; 1771 1772 SDNode *User = *UI; 1773 1774 // If we see an already-selected machine node, then we've gone beyond the 1775 // pattern that we're selecting down into the already selected chunk of the 1776 // DAG. 1777 if (User->isMachineOpcode() || 1778 User->getOpcode() == ISD::HANDLENODE) // Root of the graph. 1779 continue; 1780 1781 if (User->getOpcode() == ISD::CopyToReg || 1782 User->getOpcode() == ISD::CopyFromReg || 1783 User->getOpcode() == ISD::INLINEASM || 1784 User->getOpcode() == ISD::EH_LABEL) { 1785 // If their node ID got reset to -1 then they've already been selected. 1786 // Treat them like a MachineOpcode. 1787 if (User->getNodeId() == -1) 1788 continue; 1789 } 1790 1791 // If we have a TokenFactor, we handle it specially. 1792 if (User->getOpcode() != ISD::TokenFactor) { 1793 // If the node isn't a token factor and isn't part of our pattern, then it 1794 // must be a random chained node in between two nodes we're selecting. 1795 // This happens when we have something like: 1796 // x = load ptr 1797 // call 1798 // y = x+4 1799 // store y -> ptr 1800 // Because we structurally match the load/store as a read/modify/write, 1801 // but the call is chained between them. We cannot fold in this case 1802 // because it would induce a cycle in the graph. 1803 if (!std::count(ChainedNodesInPattern.begin(), 1804 ChainedNodesInPattern.end(), User)) 1805 return CR_InducesCycle; 1806 1807 // Otherwise we found a node that is part of our pattern. For example in: 1808 // x = load ptr 1809 // y = x+4 1810 // store y -> ptr 1811 // This would happen when we're scanning down from the load and see the 1812 // store as a user. Record that there is a use of ChainedNode that is 1813 // part of the pattern and keep scanning uses. 1814 Result = CR_LeadsToInteriorNode; 1815 InteriorChainedNodes.push_back(User); 1816 continue; 1817 } 1818 1819 // If we found a TokenFactor, there are two cases to consider: first if the 1820 // TokenFactor is just hanging "below" the pattern we're matching (i.e. no 1821 // uses of the TF are in our pattern) we just want to ignore it. Second, 1822 // the TokenFactor can be sandwiched in between two chained nodes, like so: 1823 // [Load chain] 1824 // ^ 1825 // | 1826 // [Load] 1827 // ^ ^ 1828 // | \ DAG's like cheese 1829 // / \ do you? 1830 // / | 1831 // [TokenFactor] [Op] 1832 // ^ ^ 1833 // | | 1834 // \ / 1835 // \ / 1836 // [Store] 1837 // 1838 // In this case, the TokenFactor becomes part of our match and we rewrite it 1839 // as a new TokenFactor. 1840 // 1841 // To distinguish these two cases, do a recursive walk down the uses. 1842 switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) { 1843 case CR_Simple: 1844 // If the uses of the TokenFactor are just already-selected nodes, ignore 1845 // it, it is "below" our pattern. 1846 continue; 1847 case CR_InducesCycle: 1848 // If the uses of the TokenFactor lead to nodes that are not part of our 1849 // pattern that are not selected, folding would turn this into a cycle, 1850 // bail out now. 1851 return CR_InducesCycle; 1852 case CR_LeadsToInteriorNode: 1853 break; // Otherwise, keep processing. 1854 } 1855 1856 // Okay, we know we're in the interesting interior case. The TokenFactor 1857 // is now going to be considered part of the pattern so that we rewrite its 1858 // uses (it may have uses that are not part of the pattern) with the 1859 // ultimate chain result of the generated code. We will also add its chain 1860 // inputs as inputs to the ultimate TokenFactor we create. 1861 Result = CR_LeadsToInteriorNode; 1862 ChainedNodesInPattern.push_back(User); 1863 InteriorChainedNodes.push_back(User); 1864 continue; 1865 } 1866 1867 return Result; 1868 } 1869 1870 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 1871 /// operation for when the pattern matched at least one node with a chains. The 1872 /// input vector contains a list of all of the chained nodes that we match. We 1873 /// must determine if this is a valid thing to cover (i.e. matching it won't 1874 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 1875 /// be used as the input node chain for the generated nodes. 1876 static SDValue 1877 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 1878 SelectionDAG *CurDAG) { 1879 // Walk all of the chained nodes we've matched, recursively scanning down the 1880 // users of the chain result. This adds any TokenFactor nodes that are caught 1881 // in between chained nodes to the chained and interior nodes list. 1882 SmallVector<SDNode*, 3> InteriorChainedNodes; 1883 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 1884 if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched, 1885 InteriorChainedNodes) == CR_InducesCycle) 1886 return SDValue(); // Would induce a cycle. 1887 } 1888 1889 // Okay, we have walked all the matched nodes and collected TokenFactor nodes 1890 // that we are interested in. Form our input TokenFactor node. 1891 SmallVector<SDValue, 3> InputChains; 1892 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 1893 // Add the input chain of this node to the InputChains list (which will be 1894 // the operands of the generated TokenFactor) if it's not an interior node. 1895 SDNode *N = ChainNodesMatched[i]; 1896 if (N->getOpcode() != ISD::TokenFactor) { 1897 if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N)) 1898 continue; 1899 1900 // Otherwise, add the input chain. 1901 SDValue InChain = ChainNodesMatched[i]->getOperand(0); 1902 assert(InChain.getValueType() == MVT::Other && "Not a chain"); 1903 InputChains.push_back(InChain); 1904 continue; 1905 } 1906 1907 // If we have a token factor, we want to add all inputs of the token factor 1908 // that are not part of the pattern we're matching. 1909 for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) { 1910 if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(), 1911 N->getOperand(op).getNode())) 1912 InputChains.push_back(N->getOperand(op)); 1913 } 1914 } 1915 1916 SDValue Res; 1917 if (InputChains.size() == 1) 1918 return InputChains[0]; 1919 return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(), 1920 MVT::Other, &InputChains[0], InputChains.size()); 1921 } 1922 1923 /// MorphNode - Handle morphing a node in place for the selector. 1924 SDNode *SelectionDAGISel:: 1925 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 1926 const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) { 1927 // It is possible we're using MorphNodeTo to replace a node with no 1928 // normal results with one that has a normal result (or we could be 1929 // adding a chain) and the input could have glue and chains as well. 1930 // In this case we need to shift the operands down. 1931 // FIXME: This is a horrible hack and broken in obscure cases, no worse 1932 // than the old isel though. 1933 int OldGlueResultNo = -1, OldChainResultNo = -1; 1934 1935 unsigned NTMNumResults = Node->getNumValues(); 1936 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 1937 OldGlueResultNo = NTMNumResults-1; 1938 if (NTMNumResults != 1 && 1939 Node->getValueType(NTMNumResults-2) == MVT::Other) 1940 OldChainResultNo = NTMNumResults-2; 1941 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 1942 OldChainResultNo = NTMNumResults-1; 1943 1944 // Call the underlying SelectionDAG routine to do the transmogrification. Note 1945 // that this deletes operands of the old node that become dead. 1946 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps); 1947 1948 // MorphNodeTo can operate in two ways: if an existing node with the 1949 // specified operands exists, it can just return it. Otherwise, it 1950 // updates the node in place to have the requested operands. 1951 if (Res == Node) { 1952 // If we updated the node in place, reset the node ID. To the isel, 1953 // this should be just like a newly allocated machine node. 1954 Res->setNodeId(-1); 1955 } 1956 1957 unsigned ResNumResults = Res->getNumValues(); 1958 // Move the glue if needed. 1959 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 1960 (unsigned)OldGlueResultNo != ResNumResults-1) 1961 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo), 1962 SDValue(Res, ResNumResults-1)); 1963 1964 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 1965 --ResNumResults; 1966 1967 // Move the chain reference if needed. 1968 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 1969 (unsigned)OldChainResultNo != ResNumResults-1) 1970 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo), 1971 SDValue(Res, ResNumResults-1)); 1972 1973 // Otherwise, no replacement happened because the node already exists. Replace 1974 // Uses of the old node with the new one. 1975 if (Res != Node) 1976 CurDAG->ReplaceAllUsesWith(Node, Res); 1977 1978 return Res; 1979 } 1980 1981 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 1982 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1983 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1984 SDValue N, 1985 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { 1986 // Accept if it is exactly the same as a previously recorded node. 1987 unsigned RecNo = MatcherTable[MatcherIndex++]; 1988 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 1989 return N == RecordedNodes[RecNo].first; 1990 } 1991 1992 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 1993 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1994 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1995 SelectionDAGISel &SDISel) { 1996 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 1997 } 1998 1999 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2000 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2001 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2002 SelectionDAGISel &SDISel, SDNode *N) { 2003 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 2004 } 2005 2006 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2007 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2008 SDNode *N) { 2009 uint16_t Opc = MatcherTable[MatcherIndex++]; 2010 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2011 return N->getOpcode() == Opc; 2012 } 2013 2014 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2015 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2016 SDValue N, const TargetLowering &TLI) { 2017 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2018 if (N.getValueType() == VT) return true; 2019 2020 // Handle the case when VT is iPTR. 2021 return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy(); 2022 } 2023 2024 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2025 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2026 SDValue N, const TargetLowering &TLI, 2027 unsigned ChildNo) { 2028 if (ChildNo >= N.getNumOperands()) 2029 return false; // Match fails if out of range child #. 2030 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI); 2031 } 2032 2033 2034 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2035 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2036 SDValue N) { 2037 return cast<CondCodeSDNode>(N)->get() == 2038 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2039 } 2040 2041 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2042 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2043 SDValue N, const TargetLowering &TLI) { 2044 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2045 if (cast<VTSDNode>(N)->getVT() == VT) 2046 return true; 2047 2048 // Handle the case when VT is iPTR. 2049 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy(); 2050 } 2051 2052 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2053 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2054 SDValue N) { 2055 int64_t Val = MatcherTable[MatcherIndex++]; 2056 if (Val & 128) 2057 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2058 2059 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2060 return C != 0 && C->getSExtValue() == Val; 2061 } 2062 2063 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2064 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2065 SDValue N, SelectionDAGISel &SDISel) { 2066 int64_t Val = MatcherTable[MatcherIndex++]; 2067 if (Val & 128) 2068 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2069 2070 if (N->getOpcode() != ISD::AND) return false; 2071 2072 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2073 return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2074 } 2075 2076 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2077 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2078 SDValue N, SelectionDAGISel &SDISel) { 2079 int64_t Val = MatcherTable[MatcherIndex++]; 2080 if (Val & 128) 2081 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2082 2083 if (N->getOpcode() != ISD::OR) return false; 2084 2085 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2086 return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2087 } 2088 2089 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2090 /// scope, evaluate the current node. If the current predicate is known to 2091 /// fail, set Result=true and return anything. If the current predicate is 2092 /// known to pass, set Result=false and return the MatcherIndex to continue 2093 /// with. If the current predicate is unknown, set Result=false and return the 2094 /// MatcherIndex to continue with. 2095 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2096 unsigned Index, SDValue N, 2097 bool &Result, SelectionDAGISel &SDISel, 2098 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { 2099 switch (Table[Index++]) { 2100 default: 2101 Result = false; 2102 return Index-1; // Could not evaluate this predicate. 2103 case SelectionDAGISel::OPC_CheckSame: 2104 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2105 return Index; 2106 case SelectionDAGISel::OPC_CheckPatternPredicate: 2107 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2108 return Index; 2109 case SelectionDAGISel::OPC_CheckPredicate: 2110 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2111 return Index; 2112 case SelectionDAGISel::OPC_CheckOpcode: 2113 Result = !::CheckOpcode(Table, Index, N.getNode()); 2114 return Index; 2115 case SelectionDAGISel::OPC_CheckType: 2116 Result = !::CheckType(Table, Index, N, SDISel.TLI); 2117 return Index; 2118 case SelectionDAGISel::OPC_CheckChild0Type: 2119 case SelectionDAGISel::OPC_CheckChild1Type: 2120 case SelectionDAGISel::OPC_CheckChild2Type: 2121 case SelectionDAGISel::OPC_CheckChild3Type: 2122 case SelectionDAGISel::OPC_CheckChild4Type: 2123 case SelectionDAGISel::OPC_CheckChild5Type: 2124 case SelectionDAGISel::OPC_CheckChild6Type: 2125 case SelectionDAGISel::OPC_CheckChild7Type: 2126 Result = !::CheckChildType(Table, Index, N, SDISel.TLI, 2127 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type); 2128 return Index; 2129 case SelectionDAGISel::OPC_CheckCondCode: 2130 Result = !::CheckCondCode(Table, Index, N); 2131 return Index; 2132 case SelectionDAGISel::OPC_CheckValueType: 2133 Result = !::CheckValueType(Table, Index, N, SDISel.TLI); 2134 return Index; 2135 case SelectionDAGISel::OPC_CheckInteger: 2136 Result = !::CheckInteger(Table, Index, N); 2137 return Index; 2138 case SelectionDAGISel::OPC_CheckAndImm: 2139 Result = !::CheckAndImm(Table, Index, N, SDISel); 2140 return Index; 2141 case SelectionDAGISel::OPC_CheckOrImm: 2142 Result = !::CheckOrImm(Table, Index, N, SDISel); 2143 return Index; 2144 } 2145 } 2146 2147 namespace { 2148 2149 struct MatchScope { 2150 /// FailIndex - If this match fails, this is the index to continue with. 2151 unsigned FailIndex; 2152 2153 /// NodeStack - The node stack when the scope was formed. 2154 SmallVector<SDValue, 4> NodeStack; 2155 2156 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2157 unsigned NumRecordedNodes; 2158 2159 /// NumMatchedMemRefs - The number of matched memref entries. 2160 unsigned NumMatchedMemRefs; 2161 2162 /// InputChain/InputGlue - The current chain/glue 2163 SDValue InputChain, InputGlue; 2164 2165 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2166 bool HasChainNodesMatched, HasGlueResultNodesMatched; 2167 }; 2168 2169 } 2170 2171 SDNode *SelectionDAGISel:: 2172 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, 2173 unsigned TableSize) { 2174 // FIXME: Should these even be selected? Handle these cases in the caller? 2175 switch (NodeToMatch->getOpcode()) { 2176 default: 2177 break; 2178 case ISD::EntryToken: // These nodes remain the same. 2179 case ISD::BasicBlock: 2180 case ISD::Register: 2181 case ISD::RegisterMask: 2182 //case ISD::VALUETYPE: 2183 //case ISD::CONDCODE: 2184 case ISD::HANDLENODE: 2185 case ISD::MDNODE_SDNODE: 2186 case ISD::TargetConstant: 2187 case ISD::TargetConstantFP: 2188 case ISD::TargetConstantPool: 2189 case ISD::TargetFrameIndex: 2190 case ISD::TargetExternalSymbol: 2191 case ISD::TargetBlockAddress: 2192 case ISD::TargetJumpTable: 2193 case ISD::TargetGlobalTLSAddress: 2194 case ISD::TargetGlobalAddress: 2195 case ISD::TokenFactor: 2196 case ISD::CopyFromReg: 2197 case ISD::CopyToReg: 2198 case ISD::EH_LABEL: 2199 NodeToMatch->setNodeId(-1); // Mark selected. 2200 return 0; 2201 case ISD::AssertSext: 2202 case ISD::AssertZext: 2203 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), 2204 NodeToMatch->getOperand(0)); 2205 return 0; 2206 case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch); 2207 case ISD::UNDEF: return Select_UNDEF(NodeToMatch); 2208 } 2209 2210 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2211 2212 // Set up the node stack with NodeToMatch as the only node on the stack. 2213 SmallVector<SDValue, 8> NodeStack; 2214 SDValue N = SDValue(NodeToMatch, 0); 2215 NodeStack.push_back(N); 2216 2217 // MatchScopes - Scopes used when matching, if a match failure happens, this 2218 // indicates where to continue checking. 2219 SmallVector<MatchScope, 8> MatchScopes; 2220 2221 // RecordedNodes - This is the set of nodes that have been recorded by the 2222 // state machine. The second value is the parent of the node, or null if the 2223 // root is recorded. 2224 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2225 2226 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2227 // pattern. 2228 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2229 2230 // These are the current input chain and glue for use when generating nodes. 2231 // Various Emit operations change these. For example, emitting a copytoreg 2232 // uses and updates these. 2233 SDValue InputChain, InputGlue; 2234 2235 // ChainNodesMatched - If a pattern matches nodes that have input/output 2236 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2237 // which ones they are. The result is captured into this list so that we can 2238 // update the chain results when the pattern is complete. 2239 SmallVector<SDNode*, 3> ChainNodesMatched; 2240 SmallVector<SDNode*, 3> GlueResultNodesMatched; 2241 2242 DEBUG(errs() << "ISEL: Starting pattern match on root node: "; 2243 NodeToMatch->dump(CurDAG); 2244 errs() << '\n'); 2245 2246 // Determine where to start the interpreter. Normally we start at opcode #0, 2247 // but if the state machine starts with an OPC_SwitchOpcode, then we 2248 // accelerate the first lookup (which is guaranteed to be hot) with the 2249 // OpcodeOffset table. 2250 unsigned MatcherIndex = 0; 2251 2252 if (!OpcodeOffset.empty()) { 2253 // Already computed the OpcodeOffset table, just index into it. 2254 if (N.getOpcode() < OpcodeOffset.size()) 2255 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2256 DEBUG(errs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2257 2258 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2259 // Otherwise, the table isn't computed, but the state machine does start 2260 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2261 // is the first time we're selecting an instruction. 2262 unsigned Idx = 1; 2263 while (1) { 2264 // Get the size of this case. 2265 unsigned CaseSize = MatcherTable[Idx++]; 2266 if (CaseSize & 128) 2267 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2268 if (CaseSize == 0) break; 2269 2270 // Get the opcode, add the index to the table. 2271 uint16_t Opc = MatcherTable[Idx++]; 2272 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2273 if (Opc >= OpcodeOffset.size()) 2274 OpcodeOffset.resize((Opc+1)*2); 2275 OpcodeOffset[Opc] = Idx; 2276 Idx += CaseSize; 2277 } 2278 2279 // Okay, do the lookup for the first opcode. 2280 if (N.getOpcode() < OpcodeOffset.size()) 2281 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2282 } 2283 2284 while (1) { 2285 assert(MatcherIndex < TableSize && "Invalid index"); 2286 #ifndef NDEBUG 2287 unsigned CurrentOpcodeIndex = MatcherIndex; 2288 #endif 2289 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2290 switch (Opcode) { 2291 case OPC_Scope: { 2292 // Okay, the semantics of this operation are that we should push a scope 2293 // then evaluate the first child. However, pushing a scope only to have 2294 // the first check fail (which then pops it) is inefficient. If we can 2295 // determine immediately that the first check (or first several) will 2296 // immediately fail, don't even bother pushing a scope for them. 2297 unsigned FailIndex; 2298 2299 while (1) { 2300 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2301 if (NumToSkip & 128) 2302 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2303 // Found the end of the scope with no match. 2304 if (NumToSkip == 0) { 2305 FailIndex = 0; 2306 break; 2307 } 2308 2309 FailIndex = MatcherIndex+NumToSkip; 2310 2311 unsigned MatcherIndexOfPredicate = MatcherIndex; 2312 (void)MatcherIndexOfPredicate; // silence warning. 2313 2314 // If we can't evaluate this predicate without pushing a scope (e.g. if 2315 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2316 // push the scope and evaluate the full predicate chain. 2317 bool Result; 2318 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2319 Result, *this, RecordedNodes); 2320 if (!Result) 2321 break; 2322 2323 DEBUG(errs() << " Skipped scope entry (due to false predicate) at " 2324 << "index " << MatcherIndexOfPredicate 2325 << ", continuing at " << FailIndex << "\n"); 2326 ++NumDAGIselRetries; 2327 2328 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2329 // move to the next case. 2330 MatcherIndex = FailIndex; 2331 } 2332 2333 // If the whole scope failed to match, bail. 2334 if (FailIndex == 0) break; 2335 2336 // Push a MatchScope which indicates where to go if the first child fails 2337 // to match. 2338 MatchScope NewEntry; 2339 NewEntry.FailIndex = FailIndex; 2340 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2341 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2342 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2343 NewEntry.InputChain = InputChain; 2344 NewEntry.InputGlue = InputGlue; 2345 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2346 NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty(); 2347 MatchScopes.push_back(NewEntry); 2348 continue; 2349 } 2350 case OPC_RecordNode: { 2351 // Remember this node, it may end up being an operand in the pattern. 2352 SDNode *Parent = 0; 2353 if (NodeStack.size() > 1) 2354 Parent = NodeStack[NodeStack.size()-2].getNode(); 2355 RecordedNodes.push_back(std::make_pair(N, Parent)); 2356 continue; 2357 } 2358 2359 case OPC_RecordChild0: case OPC_RecordChild1: 2360 case OPC_RecordChild2: case OPC_RecordChild3: 2361 case OPC_RecordChild4: case OPC_RecordChild5: 2362 case OPC_RecordChild6: case OPC_RecordChild7: { 2363 unsigned ChildNo = Opcode-OPC_RecordChild0; 2364 if (ChildNo >= N.getNumOperands()) 2365 break; // Match fails if out of range child #. 2366 2367 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2368 N.getNode())); 2369 continue; 2370 } 2371 case OPC_RecordMemRef: 2372 MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand()); 2373 continue; 2374 2375 case OPC_CaptureGlueInput: 2376 // If the current node has an input glue, capture it in InputGlue. 2377 if (N->getNumOperands() != 0 && 2378 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 2379 InputGlue = N->getOperand(N->getNumOperands()-1); 2380 continue; 2381 2382 case OPC_MoveChild: { 2383 unsigned ChildNo = MatcherTable[MatcherIndex++]; 2384 if (ChildNo >= N.getNumOperands()) 2385 break; // Match fails if out of range child #. 2386 N = N.getOperand(ChildNo); 2387 NodeStack.push_back(N); 2388 continue; 2389 } 2390 2391 case OPC_MoveParent: 2392 // Pop the current node off the NodeStack. 2393 NodeStack.pop_back(); 2394 assert(!NodeStack.empty() && "Node stack imbalance!"); 2395 N = NodeStack.back(); 2396 continue; 2397 2398 case OPC_CheckSame: 2399 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 2400 continue; 2401 case OPC_CheckPatternPredicate: 2402 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 2403 continue; 2404 case OPC_CheckPredicate: 2405 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 2406 N.getNode())) 2407 break; 2408 continue; 2409 case OPC_CheckComplexPat: { 2410 unsigned CPNum = MatcherTable[MatcherIndex++]; 2411 unsigned RecNo = MatcherTable[MatcherIndex++]; 2412 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 2413 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 2414 RecordedNodes[RecNo].first, CPNum, 2415 RecordedNodes)) 2416 break; 2417 continue; 2418 } 2419 case OPC_CheckOpcode: 2420 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 2421 continue; 2422 2423 case OPC_CheckType: 2424 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break; 2425 continue; 2426 2427 case OPC_SwitchOpcode: { 2428 unsigned CurNodeOpcode = N.getOpcode(); 2429 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 2430 unsigned CaseSize; 2431 while (1) { 2432 // Get the size of this case. 2433 CaseSize = MatcherTable[MatcherIndex++]; 2434 if (CaseSize & 128) 2435 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 2436 if (CaseSize == 0) break; 2437 2438 uint16_t Opc = MatcherTable[MatcherIndex++]; 2439 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2440 2441 // If the opcode matches, then we will execute this case. 2442 if (CurNodeOpcode == Opc) 2443 break; 2444 2445 // Otherwise, skip over this case. 2446 MatcherIndex += CaseSize; 2447 } 2448 2449 // If no cases matched, bail out. 2450 if (CaseSize == 0) break; 2451 2452 // Otherwise, execute the case we found. 2453 DEBUG(errs() << " OpcodeSwitch from " << SwitchStart 2454 << " to " << MatcherIndex << "\n"); 2455 continue; 2456 } 2457 2458 case OPC_SwitchType: { 2459 MVT CurNodeVT = N.getValueType().getSimpleVT(); 2460 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 2461 unsigned CaseSize; 2462 while (1) { 2463 // Get the size of this case. 2464 CaseSize = MatcherTable[MatcherIndex++]; 2465 if (CaseSize & 128) 2466 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 2467 if (CaseSize == 0) break; 2468 2469 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2470 if (CaseVT == MVT::iPTR) 2471 CaseVT = TLI.getPointerTy(); 2472 2473 // If the VT matches, then we will execute this case. 2474 if (CurNodeVT == CaseVT) 2475 break; 2476 2477 // Otherwise, skip over this case. 2478 MatcherIndex += CaseSize; 2479 } 2480 2481 // If no cases matched, bail out. 2482 if (CaseSize == 0) break; 2483 2484 // Otherwise, execute the case we found. 2485 DEBUG(errs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 2486 << "] from " << SwitchStart << " to " << MatcherIndex<<'\n'); 2487 continue; 2488 } 2489 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 2490 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 2491 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 2492 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 2493 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, 2494 Opcode-OPC_CheckChild0Type)) 2495 break; 2496 continue; 2497 case OPC_CheckCondCode: 2498 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 2499 continue; 2500 case OPC_CheckValueType: 2501 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break; 2502 continue; 2503 case OPC_CheckInteger: 2504 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 2505 continue; 2506 case OPC_CheckAndImm: 2507 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 2508 continue; 2509 case OPC_CheckOrImm: 2510 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 2511 continue; 2512 2513 case OPC_CheckFoldableChainNode: { 2514 assert(NodeStack.size() != 1 && "No parent node"); 2515 // Verify that all intermediate nodes between the root and this one have 2516 // a single use. 2517 bool HasMultipleUses = false; 2518 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) 2519 if (!NodeStack[i].hasOneUse()) { 2520 HasMultipleUses = true; 2521 break; 2522 } 2523 if (HasMultipleUses) break; 2524 2525 // Check to see that the target thinks this is profitable to fold and that 2526 // we can fold it without inducing cycles in the graph. 2527 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 2528 NodeToMatch) || 2529 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 2530 NodeToMatch, OptLevel, 2531 true/*We validate our own chains*/)) 2532 break; 2533 2534 continue; 2535 } 2536 case OPC_EmitInteger: { 2537 MVT::SimpleValueType VT = 2538 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2539 int64_t Val = MatcherTable[MatcherIndex++]; 2540 if (Val & 128) 2541 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2542 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 2543 CurDAG->getTargetConstant(Val, VT), (SDNode*)0)); 2544 continue; 2545 } 2546 case OPC_EmitRegister: { 2547 MVT::SimpleValueType VT = 2548 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2549 unsigned RegNo = MatcherTable[MatcherIndex++]; 2550 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 2551 CurDAG->getRegister(RegNo, VT), (SDNode*)0)); 2552 continue; 2553 } 2554 case OPC_EmitRegister2: { 2555 // For targets w/ more than 256 register names, the register enum 2556 // values are stored in two bytes in the matcher table (just like 2557 // opcodes). 2558 MVT::SimpleValueType VT = 2559 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2560 unsigned RegNo = MatcherTable[MatcherIndex++]; 2561 RegNo |= MatcherTable[MatcherIndex++] << 8; 2562 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 2563 CurDAG->getRegister(RegNo, VT), (SDNode*)0)); 2564 continue; 2565 } 2566 2567 case OPC_EmitConvertToTarget: { 2568 // Convert from IMM/FPIMM to target version. 2569 unsigned RecNo = MatcherTable[MatcherIndex++]; 2570 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2571 SDValue Imm = RecordedNodes[RecNo].first; 2572 2573 if (Imm->getOpcode() == ISD::Constant) { 2574 int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue(); 2575 Imm = CurDAG->getTargetConstant(Val, Imm.getValueType()); 2576 } else if (Imm->getOpcode() == ISD::ConstantFP) { 2577 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 2578 Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType()); 2579 } 2580 2581 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 2582 continue; 2583 } 2584 2585 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 2586 case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1 2587 // These are space-optimized forms of OPC_EmitMergeInputChains. 2588 assert(InputChain.getNode() == 0 && 2589 "EmitMergeInputChains should be the first chain producing node"); 2590 assert(ChainNodesMatched.empty() && 2591 "Should only have one EmitMergeInputChains per match"); 2592 2593 // Read all of the chained nodes. 2594 unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1; 2595 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2596 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 2597 2598 // FIXME: What if other value results of the node have uses not matched 2599 // by this pattern? 2600 if (ChainNodesMatched.back() != NodeToMatch && 2601 !RecordedNodes[RecNo].first.hasOneUse()) { 2602 ChainNodesMatched.clear(); 2603 break; 2604 } 2605 2606 // Merge the input chains if they are not intra-pattern references. 2607 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 2608 2609 if (InputChain.getNode() == 0) 2610 break; // Failed to merge. 2611 continue; 2612 } 2613 2614 case OPC_EmitMergeInputChains: { 2615 assert(InputChain.getNode() == 0 && 2616 "EmitMergeInputChains should be the first chain producing node"); 2617 // This node gets a list of nodes we matched in the input that have 2618 // chains. We want to token factor all of the input chains to these nodes 2619 // together. However, if any of the input chains is actually one of the 2620 // nodes matched in this pattern, then we have an intra-match reference. 2621 // Ignore these because the newly token factored chain should not refer to 2622 // the old nodes. 2623 unsigned NumChains = MatcherTable[MatcherIndex++]; 2624 assert(NumChains != 0 && "Can't TF zero chains"); 2625 2626 assert(ChainNodesMatched.empty() && 2627 "Should only have one EmitMergeInputChains per match"); 2628 2629 // Read all of the chained nodes. 2630 for (unsigned i = 0; i != NumChains; ++i) { 2631 unsigned RecNo = MatcherTable[MatcherIndex++]; 2632 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2633 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 2634 2635 // FIXME: What if other value results of the node have uses not matched 2636 // by this pattern? 2637 if (ChainNodesMatched.back() != NodeToMatch && 2638 !RecordedNodes[RecNo].first.hasOneUse()) { 2639 ChainNodesMatched.clear(); 2640 break; 2641 } 2642 } 2643 2644 // If the inner loop broke out, the match fails. 2645 if (ChainNodesMatched.empty()) 2646 break; 2647 2648 // Merge the input chains if they are not intra-pattern references. 2649 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 2650 2651 if (InputChain.getNode() == 0) 2652 break; // Failed to merge. 2653 2654 continue; 2655 } 2656 2657 case OPC_EmitCopyToReg: { 2658 unsigned RecNo = MatcherTable[MatcherIndex++]; 2659 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2660 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 2661 2662 if (InputChain.getNode() == 0) 2663 InputChain = CurDAG->getEntryNode(); 2664 2665 InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(), 2666 DestPhysReg, RecordedNodes[RecNo].first, 2667 InputGlue); 2668 2669 InputGlue = InputChain.getValue(1); 2670 continue; 2671 } 2672 2673 case OPC_EmitNodeXForm: { 2674 unsigned XFormNo = MatcherTable[MatcherIndex++]; 2675 unsigned RecNo = MatcherTable[MatcherIndex++]; 2676 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2677 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 2678 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0)); 2679 continue; 2680 } 2681 2682 case OPC_EmitNode: 2683 case OPC_MorphNodeTo: { 2684 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 2685 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2686 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 2687 // Get the result VT list. 2688 unsigned NumVTs = MatcherTable[MatcherIndex++]; 2689 SmallVector<EVT, 4> VTs; 2690 for (unsigned i = 0; i != NumVTs; ++i) { 2691 MVT::SimpleValueType VT = 2692 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2693 if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy; 2694 VTs.push_back(VT); 2695 } 2696 2697 if (EmitNodeInfo & OPFL_Chain) 2698 VTs.push_back(MVT::Other); 2699 if (EmitNodeInfo & OPFL_GlueOutput) 2700 VTs.push_back(MVT::Glue); 2701 2702 // This is hot code, so optimize the two most common cases of 1 and 2 2703 // results. 2704 SDVTList VTList; 2705 if (VTs.size() == 1) 2706 VTList = CurDAG->getVTList(VTs[0]); 2707 else if (VTs.size() == 2) 2708 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 2709 else 2710 VTList = CurDAG->getVTList(VTs.data(), VTs.size()); 2711 2712 // Get the operand list. 2713 unsigned NumOps = MatcherTable[MatcherIndex++]; 2714 SmallVector<SDValue, 8> Ops; 2715 for (unsigned i = 0; i != NumOps; ++i) { 2716 unsigned RecNo = MatcherTable[MatcherIndex++]; 2717 if (RecNo & 128) 2718 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 2719 2720 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 2721 Ops.push_back(RecordedNodes[RecNo].first); 2722 } 2723 2724 // If there are variadic operands to add, handle them now. 2725 if (EmitNodeInfo & OPFL_VariadicInfo) { 2726 // Determine the start index to copy from. 2727 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 2728 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 2729 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 2730 "Invalid variadic node"); 2731 // Copy all of the variadic operands, not including a potential glue 2732 // input. 2733 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 2734 i != e; ++i) { 2735 SDValue V = NodeToMatch->getOperand(i); 2736 if (V.getValueType() == MVT::Glue) break; 2737 Ops.push_back(V); 2738 } 2739 } 2740 2741 // If this has chain/glue inputs, add them. 2742 if (EmitNodeInfo & OPFL_Chain) 2743 Ops.push_back(InputChain); 2744 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0) 2745 Ops.push_back(InputGlue); 2746 2747 // Create the node. 2748 SDNode *Res = 0; 2749 if (Opcode != OPC_MorphNodeTo) { 2750 // If this is a normal EmitNode command, just create the new node and 2751 // add the results to the RecordedNodes list. 2752 Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(), 2753 VTList, Ops.data(), Ops.size()); 2754 2755 // Add all the non-glue/non-chain results to the RecordedNodes list. 2756 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 2757 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 2758 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 2759 (SDNode*) 0)); 2760 } 2761 2762 } else { 2763 Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(), 2764 EmitNodeInfo); 2765 } 2766 2767 // If the node had chain/glue results, update our notion of the current 2768 // chain and glue. 2769 if (EmitNodeInfo & OPFL_GlueOutput) { 2770 InputGlue = SDValue(Res, VTs.size()-1); 2771 if (EmitNodeInfo & OPFL_Chain) 2772 InputChain = SDValue(Res, VTs.size()-2); 2773 } else if (EmitNodeInfo & OPFL_Chain) 2774 InputChain = SDValue(Res, VTs.size()-1); 2775 2776 // If the OPFL_MemRefs glue is set on this node, slap all of the 2777 // accumulated memrefs onto it. 2778 // 2779 // FIXME: This is vastly incorrect for patterns with multiple outputs 2780 // instructions that access memory and for ComplexPatterns that match 2781 // loads. 2782 if (EmitNodeInfo & OPFL_MemRefs) { 2783 // Only attach load or store memory operands if the generated 2784 // instruction may load or store. 2785 const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc); 2786 bool mayLoad = MCID.mayLoad(); 2787 bool mayStore = MCID.mayStore(); 2788 2789 unsigned NumMemRefs = 0; 2790 for (SmallVector<MachineMemOperand*, 2>::const_iterator I = 2791 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { 2792 if ((*I)->isLoad()) { 2793 if (mayLoad) 2794 ++NumMemRefs; 2795 } else if ((*I)->isStore()) { 2796 if (mayStore) 2797 ++NumMemRefs; 2798 } else { 2799 ++NumMemRefs; 2800 } 2801 } 2802 2803 MachineSDNode::mmo_iterator MemRefs = 2804 MF->allocateMemRefsArray(NumMemRefs); 2805 2806 MachineSDNode::mmo_iterator MemRefsPos = MemRefs; 2807 for (SmallVector<MachineMemOperand*, 2>::const_iterator I = 2808 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { 2809 if ((*I)->isLoad()) { 2810 if (mayLoad) 2811 *MemRefsPos++ = *I; 2812 } else if ((*I)->isStore()) { 2813 if (mayStore) 2814 *MemRefsPos++ = *I; 2815 } else { 2816 *MemRefsPos++ = *I; 2817 } 2818 } 2819 2820 cast<MachineSDNode>(Res) 2821 ->setMemRefs(MemRefs, MemRefs + NumMemRefs); 2822 } 2823 2824 DEBUG(errs() << " " 2825 << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created") 2826 << " node: "; Res->dump(CurDAG); errs() << "\n"); 2827 2828 // If this was a MorphNodeTo then we're completely done! 2829 if (Opcode == OPC_MorphNodeTo) { 2830 // Update chain and glue uses. 2831 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, 2832 InputGlue, GlueResultNodesMatched, true); 2833 return Res; 2834 } 2835 2836 continue; 2837 } 2838 2839 case OPC_MarkGlueResults: { 2840 unsigned NumNodes = MatcherTable[MatcherIndex++]; 2841 2842 // Read and remember all the glue-result nodes. 2843 for (unsigned i = 0; i != NumNodes; ++i) { 2844 unsigned RecNo = MatcherTable[MatcherIndex++]; 2845 if (RecNo & 128) 2846 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 2847 2848 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2849 GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 2850 } 2851 continue; 2852 } 2853 2854 case OPC_CompleteMatch: { 2855 // The match has been completed, and any new nodes (if any) have been 2856 // created. Patch up references to the matched dag to use the newly 2857 // created nodes. 2858 unsigned NumResults = MatcherTable[MatcherIndex++]; 2859 2860 for (unsigned i = 0; i != NumResults; ++i) { 2861 unsigned ResSlot = MatcherTable[MatcherIndex++]; 2862 if (ResSlot & 128) 2863 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 2864 2865 assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame"); 2866 SDValue Res = RecordedNodes[ResSlot].first; 2867 2868 assert(i < NodeToMatch->getNumValues() && 2869 NodeToMatch->getValueType(i) != MVT::Other && 2870 NodeToMatch->getValueType(i) != MVT::Glue && 2871 "Invalid number of results to complete!"); 2872 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 2873 NodeToMatch->getValueType(i) == MVT::iPTR || 2874 Res.getValueType() == MVT::iPTR || 2875 NodeToMatch->getValueType(i).getSizeInBits() == 2876 Res.getValueType().getSizeInBits()) && 2877 "invalid replacement"); 2878 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); 2879 } 2880 2881 // If the root node defines glue, add it to the glue nodes to update list. 2882 if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue) 2883 GlueResultNodesMatched.push_back(NodeToMatch); 2884 2885 // Update chain and glue uses. 2886 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, 2887 InputGlue, GlueResultNodesMatched, false); 2888 2889 assert(NodeToMatch->use_empty() && 2890 "Didn't replace all uses of the node?"); 2891 2892 // FIXME: We just return here, which interacts correctly with SelectRoot 2893 // above. We should fix this to not return an SDNode* anymore. 2894 return 0; 2895 } 2896 } 2897 2898 // If the code reached this point, then the match failed. See if there is 2899 // another child to try in the current 'Scope', otherwise pop it until we 2900 // find a case to check. 2901 DEBUG(errs() << " Match failed at index " << CurrentOpcodeIndex << "\n"); 2902 ++NumDAGIselRetries; 2903 while (1) { 2904 if (MatchScopes.empty()) { 2905 CannotYetSelect(NodeToMatch); 2906 return 0; 2907 } 2908 2909 // Restore the interpreter state back to the point where the scope was 2910 // formed. 2911 MatchScope &LastScope = MatchScopes.back(); 2912 RecordedNodes.resize(LastScope.NumRecordedNodes); 2913 NodeStack.clear(); 2914 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 2915 N = NodeStack.back(); 2916 2917 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 2918 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 2919 MatcherIndex = LastScope.FailIndex; 2920 2921 DEBUG(errs() << " Continuing at " << MatcherIndex << "\n"); 2922 2923 InputChain = LastScope.InputChain; 2924 InputGlue = LastScope.InputGlue; 2925 if (!LastScope.HasChainNodesMatched) 2926 ChainNodesMatched.clear(); 2927 if (!LastScope.HasGlueResultNodesMatched) 2928 GlueResultNodesMatched.clear(); 2929 2930 // Check to see what the offset is at the new MatcherIndex. If it is zero 2931 // we have reached the end of this scope, otherwise we have another child 2932 // in the current scope to try. 2933 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2934 if (NumToSkip & 128) 2935 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2936 2937 // If we have another child in this scope to match, update FailIndex and 2938 // try it. 2939 if (NumToSkip != 0) { 2940 LastScope.FailIndex = MatcherIndex+NumToSkip; 2941 break; 2942 } 2943 2944 // End of this scope, pop it and try the next child in the containing 2945 // scope. 2946 MatchScopes.pop_back(); 2947 } 2948 } 2949 } 2950 2951 2952 2953 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 2954 std::string msg; 2955 raw_string_ostream Msg(msg); 2956 Msg << "Cannot select: "; 2957 2958 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 2959 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 2960 N->getOpcode() != ISD::INTRINSIC_VOID) { 2961 N->printrFull(Msg, CurDAG); 2962 } else { 2963 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 2964 unsigned iid = 2965 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 2966 if (iid < Intrinsic::num_intrinsics) 2967 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid); 2968 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 2969 Msg << "target intrinsic %" << TII->getName(iid); 2970 else 2971 Msg << "unknown intrinsic #" << iid; 2972 } 2973 report_fatal_error(Msg.str()); 2974 } 2975 2976 char SelectionDAGISel::ID = 0; 2977