Home | History | Annotate | Download | only in CodeGen
      1 //===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the TargetInstrInfoImpl class, it just provides default
     11 // implementations of various methods.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Target/TargetInstrInfo.h"
     16 #include "llvm/Target/TargetLowering.h"
     17 #include "llvm/Target/TargetMachine.h"
     18 #include "llvm/Target/TargetRegisterInfo.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/CodeGen/MachineFrameInfo.h"
     21 #include "llvm/CodeGen/MachineInstr.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineMemOperand.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
     26 #include "llvm/CodeGen/PseudoSourceValue.h"
     27 #include "llvm/MC/MCInstrItineraries.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 using namespace llvm;
     33 
     34 static cl::opt<bool> DisableHazardRecognizer(
     35   "disable-sched-hazard", cl::Hidden, cl::init(false),
     36   cl::desc("Disable hazard detection during preRA scheduling"));
     37 
     38 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
     39 /// after it, replacing it with an unconditional branch to NewDest.
     40 void
     41 TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
     42                                              MachineBasicBlock *NewDest) const {
     43   MachineBasicBlock *MBB = Tail->getParent();
     44 
     45   // Remove all the old successors of MBB from the CFG.
     46   while (!MBB->succ_empty())
     47     MBB->removeSuccessor(MBB->succ_begin());
     48 
     49   // Remove all the dead instructions from the end of MBB.
     50   MBB->erase(Tail, MBB->end());
     51 
     52   // If MBB isn't immediately before MBB, insert a branch to it.
     53   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
     54     InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
     55                  Tail->getDebugLoc());
     56   MBB->addSuccessor(NewDest);
     57 }
     58 
     59 // commuteInstruction - The default implementation of this method just exchanges
     60 // the two operands returned by findCommutedOpIndices.
     61 MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
     62                                                       bool NewMI) const {
     63   const MCInstrDesc &MCID = MI->getDesc();
     64   bool HasDef = MCID.getNumDefs();
     65   if (HasDef && !MI->getOperand(0).isReg())
     66     // No idea how to commute this instruction. Target should implement its own.
     67     return 0;
     68   unsigned Idx1, Idx2;
     69   if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
     70     std::string msg;
     71     raw_string_ostream Msg(msg);
     72     Msg << "Don't know how to commute: " << *MI;
     73     report_fatal_error(Msg.str());
     74   }
     75 
     76   assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
     77          "This only knows how to commute register operands so far");
     78   unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
     79   unsigned Reg1 = MI->getOperand(Idx1).getReg();
     80   unsigned Reg2 = MI->getOperand(Idx2).getReg();
     81   unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
     82   unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
     83   unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
     84   bool Reg1IsKill = MI->getOperand(Idx1).isKill();
     85   bool Reg2IsKill = MI->getOperand(Idx2).isKill();
     86   // If destination is tied to either of the commuted source register, then
     87   // it must be updated.
     88   if (HasDef && Reg0 == Reg1 &&
     89       MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
     90     Reg2IsKill = false;
     91     Reg0 = Reg2;
     92     SubReg0 = SubReg2;
     93   } else if (HasDef && Reg0 == Reg2 &&
     94              MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
     95     Reg1IsKill = false;
     96     Reg0 = Reg1;
     97     SubReg0 = SubReg1;
     98   }
     99 
    100   if (NewMI) {
    101     // Create a new instruction.
    102     bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
    103     MachineFunction &MF = *MI->getParent()->getParent();
    104     if (HasDef)
    105       return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
    106         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead), SubReg0)
    107         .addReg(Reg2, getKillRegState(Reg2IsKill), SubReg2)
    108         .addReg(Reg1, getKillRegState(Reg1IsKill), SubReg1);
    109     else
    110       return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
    111         .addReg(Reg2, getKillRegState(Reg2IsKill), SubReg2)
    112         .addReg(Reg1, getKillRegState(Reg1IsKill), SubReg1);
    113   }
    114 
    115   if (HasDef) {
    116     MI->getOperand(0).setReg(Reg0);
    117     MI->getOperand(0).setSubReg(SubReg0);
    118   }
    119   MI->getOperand(Idx2).setReg(Reg1);
    120   MI->getOperand(Idx1).setReg(Reg2);
    121   MI->getOperand(Idx2).setSubReg(SubReg1);
    122   MI->getOperand(Idx1).setSubReg(SubReg2);
    123   MI->getOperand(Idx2).setIsKill(Reg1IsKill);
    124   MI->getOperand(Idx1).setIsKill(Reg2IsKill);
    125   return MI;
    126 }
    127 
    128 /// findCommutedOpIndices - If specified MI is commutable, return the two
    129 /// operand indices that would swap value. Return true if the instruction
    130 /// is not in a form which this routine understands.
    131 bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
    132                                                 unsigned &SrcOpIdx1,
    133                                                 unsigned &SrcOpIdx2) const {
    134   assert(!MI->isBundle() &&
    135          "TargetInstrInfoImpl::findCommutedOpIndices() can't handle bundles");
    136 
    137   const MCInstrDesc &MCID = MI->getDesc();
    138   if (!MCID.isCommutable())
    139     return false;
    140   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
    141   // is not true, then the target must implement this.
    142   SrcOpIdx1 = MCID.getNumDefs();
    143   SrcOpIdx2 = SrcOpIdx1 + 1;
    144   if (!MI->getOperand(SrcOpIdx1).isReg() ||
    145       !MI->getOperand(SrcOpIdx2).isReg())
    146     // No idea.
    147     return false;
    148   return true;
    149 }
    150 
    151 
    152 bool
    153 TargetInstrInfoImpl::isUnpredicatedTerminator(const MachineInstr *MI) const {
    154   if (!MI->isTerminator()) return false;
    155 
    156   // Conditional branch is a special case.
    157   if (MI->isBranch() && !MI->isBarrier())
    158     return true;
    159   if (!MI->isPredicable())
    160     return true;
    161   return !isPredicated(MI);
    162 }
    163 
    164 
    165 bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
    166                             const SmallVectorImpl<MachineOperand> &Pred) const {
    167   bool MadeChange = false;
    168 
    169   assert(!MI->isBundle() &&
    170          "TargetInstrInfoImpl::PredicateInstruction() can't handle bundles");
    171 
    172   const MCInstrDesc &MCID = MI->getDesc();
    173   if (!MI->isPredicable())
    174     return false;
    175 
    176   for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
    177     if (MCID.OpInfo[i].isPredicate()) {
    178       MachineOperand &MO = MI->getOperand(i);
    179       if (MO.isReg()) {
    180         MO.setReg(Pred[j].getReg());
    181         MadeChange = true;
    182       } else if (MO.isImm()) {
    183         MO.setImm(Pred[j].getImm());
    184         MadeChange = true;
    185       } else if (MO.isMBB()) {
    186         MO.setMBB(Pred[j].getMBB());
    187         MadeChange = true;
    188       }
    189       ++j;
    190     }
    191   }
    192   return MadeChange;
    193 }
    194 
    195 bool TargetInstrInfoImpl::hasLoadFromStackSlot(const MachineInstr *MI,
    196                                         const MachineMemOperand *&MMO,
    197                                         int &FrameIndex) const {
    198   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
    199          oe = MI->memoperands_end();
    200        o != oe;
    201        ++o) {
    202     if ((*o)->isLoad() && (*o)->getValue())
    203       if (const FixedStackPseudoSourceValue *Value =
    204           dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
    205         FrameIndex = Value->getFrameIndex();
    206         MMO = *o;
    207         return true;
    208       }
    209   }
    210   return false;
    211 }
    212 
    213 bool TargetInstrInfoImpl::hasStoreToStackSlot(const MachineInstr *MI,
    214                                        const MachineMemOperand *&MMO,
    215                                        int &FrameIndex) const {
    216   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
    217          oe = MI->memoperands_end();
    218        o != oe;
    219        ++o) {
    220     if ((*o)->isStore() && (*o)->getValue())
    221       if (const FixedStackPseudoSourceValue *Value =
    222           dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
    223         FrameIndex = Value->getFrameIndex();
    224         MMO = *o;
    225         return true;
    226       }
    227   }
    228   return false;
    229 }
    230 
    231 void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
    232                                         MachineBasicBlock::iterator I,
    233                                         unsigned DestReg,
    234                                         unsigned SubIdx,
    235                                         const MachineInstr *Orig,
    236                                         const TargetRegisterInfo &TRI) const {
    237   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
    238   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
    239   MBB.insert(I, MI);
    240 }
    241 
    242 bool
    243 TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0,
    244                                       const MachineInstr *MI1,
    245                                       const MachineRegisterInfo *MRI) const {
    246   return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
    247 }
    248 
    249 MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
    250                                              MachineFunction &MF) const {
    251   assert(!Orig->isNotDuplicable() &&
    252          "Instruction cannot be duplicated");
    253   return MF.CloneMachineInstr(Orig);
    254 }
    255 
    256 // If the COPY instruction in MI can be folded to a stack operation, return
    257 // the register class to use.
    258 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
    259                                               unsigned FoldIdx) {
    260   assert(MI->isCopy() && "MI must be a COPY instruction");
    261   if (MI->getNumOperands() != 2)
    262     return 0;
    263   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
    264 
    265   const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
    266   const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
    267 
    268   if (FoldOp.getSubReg() || LiveOp.getSubReg())
    269     return 0;
    270 
    271   unsigned FoldReg = FoldOp.getReg();
    272   unsigned LiveReg = LiveOp.getReg();
    273 
    274   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
    275          "Cannot fold physregs");
    276 
    277   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
    278   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
    279 
    280   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
    281     return RC->contains(LiveOp.getReg()) ? RC : 0;
    282 
    283   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
    284     return RC;
    285 
    286   // FIXME: Allow folding when register classes are memory compatible.
    287   return 0;
    288 }
    289 
    290 bool TargetInstrInfoImpl::
    291 canFoldMemoryOperand(const MachineInstr *MI,
    292                      const SmallVectorImpl<unsigned> &Ops) const {
    293   return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
    294 }
    295 
    296 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
    297 /// slot into the specified machine instruction for the specified operand(s).
    298 /// If this is possible, a new instruction is returned with the specified
    299 /// operand folded, otherwise NULL is returned. The client is responsible for
    300 /// removing the old instruction and adding the new one in the instruction
    301 /// stream.
    302 MachineInstr*
    303 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
    304                                    const SmallVectorImpl<unsigned> &Ops,
    305                                    int FI) const {
    306   unsigned Flags = 0;
    307   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    308     if (MI->getOperand(Ops[i]).isDef())
    309       Flags |= MachineMemOperand::MOStore;
    310     else
    311       Flags |= MachineMemOperand::MOLoad;
    312 
    313   MachineBasicBlock *MBB = MI->getParent();
    314   assert(MBB && "foldMemoryOperand needs an inserted instruction");
    315   MachineFunction &MF = *MBB->getParent();
    316 
    317   // Ask the target to do the actual folding.
    318   if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
    319     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
    320     assert((!(Flags & MachineMemOperand::MOStore) ||
    321             NewMI->mayStore()) &&
    322            "Folded a def to a non-store!");
    323     assert((!(Flags & MachineMemOperand::MOLoad) ||
    324             NewMI->mayLoad()) &&
    325            "Folded a use to a non-load!");
    326     const MachineFrameInfo &MFI = *MF.getFrameInfo();
    327     assert(MFI.getObjectOffset(FI) != -1);
    328     MachineMemOperand *MMO =
    329       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
    330                               Flags, MFI.getObjectSize(FI),
    331                               MFI.getObjectAlignment(FI));
    332     NewMI->addMemOperand(MF, MMO);
    333 
    334     // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
    335     return MBB->insert(MI, NewMI);
    336   }
    337 
    338   // Straight COPY may fold as load/store.
    339   if (!MI->isCopy() || Ops.size() != 1)
    340     return 0;
    341 
    342   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
    343   if (!RC)
    344     return 0;
    345 
    346   const MachineOperand &MO = MI->getOperand(1-Ops[0]);
    347   MachineBasicBlock::iterator Pos = MI;
    348   const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
    349 
    350   if (Flags == MachineMemOperand::MOStore)
    351     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
    352   else
    353     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
    354   return --Pos;
    355 }
    356 
    357 /// foldMemoryOperand - Same as the previous version except it allows folding
    358 /// of any load and store from / to any address, not just from a specific
    359 /// stack slot.
    360 MachineInstr*
    361 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
    362                                    const SmallVectorImpl<unsigned> &Ops,
    363                                    MachineInstr* LoadMI) const {
    364   assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
    365 #ifndef NDEBUG
    366   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    367     assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
    368 #endif
    369   MachineBasicBlock &MBB = *MI->getParent();
    370   MachineFunction &MF = *MBB.getParent();
    371 
    372   // Ask the target to do the actual folding.
    373   MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
    374   if (!NewMI) return 0;
    375 
    376   NewMI = MBB.insert(MI, NewMI);
    377 
    378   // Copy the memoperands from the load to the folded instruction.
    379   NewMI->setMemRefs(LoadMI->memoperands_begin(),
    380                     LoadMI->memoperands_end());
    381 
    382   return NewMI;
    383 }
    384 
    385 bool TargetInstrInfo::
    386 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
    387                                          AliasAnalysis *AA) const {
    388   const MachineFunction &MF = *MI->getParent()->getParent();
    389   const MachineRegisterInfo &MRI = MF.getRegInfo();
    390   const TargetMachine &TM = MF.getTarget();
    391   const TargetInstrInfo &TII = *TM.getInstrInfo();
    392 
    393   // Remat clients assume operand 0 is the defined register.
    394   if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
    395     return false;
    396   unsigned DefReg = MI->getOperand(0).getReg();
    397 
    398   // A sub-register definition can only be rematerialized if the instruction
    399   // doesn't read the other parts of the register.  Otherwise it is really a
    400   // read-modify-write operation on the full virtual register which cannot be
    401   // moved safely.
    402   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
    403       MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
    404     return false;
    405 
    406   // A load from a fixed stack slot can be rematerialized. This may be
    407   // redundant with subsequent checks, but it's target-independent,
    408   // simple, and a common case.
    409   int FrameIdx = 0;
    410   if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
    411       MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
    412     return true;
    413 
    414   // Avoid instructions obviously unsafe for remat.
    415   if (MI->isNotDuplicable() || MI->mayStore() ||
    416       MI->hasUnmodeledSideEffects())
    417     return false;
    418 
    419   // Don't remat inline asm. We have no idea how expensive it is
    420   // even if it's side effect free.
    421   if (MI->isInlineAsm())
    422     return false;
    423 
    424   // Avoid instructions which load from potentially varying memory.
    425   if (MI->mayLoad() && !MI->isInvariantLoad(AA))
    426     return false;
    427 
    428   // If any of the registers accessed are non-constant, conservatively assume
    429   // the instruction is not rematerializable.
    430   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    431     const MachineOperand &MO = MI->getOperand(i);
    432     if (!MO.isReg()) continue;
    433     unsigned Reg = MO.getReg();
    434     if (Reg == 0)
    435       continue;
    436 
    437     // Check for a well-behaved physical register.
    438     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    439       if (MO.isUse()) {
    440         // If the physreg has no defs anywhere, it's just an ambient register
    441         // and we can freely move its uses. Alternatively, if it's allocatable,
    442         // it could get allocated to something with a def during allocation.
    443         if (!MRI.isConstantPhysReg(Reg, MF))
    444           return false;
    445       } else {
    446         // A physreg def. We can't remat it.
    447         return false;
    448       }
    449       continue;
    450     }
    451 
    452     // Only allow one virtual-register def.  There may be multiple defs of the
    453     // same virtual register, though.
    454     if (MO.isDef() && Reg != DefReg)
    455       return false;
    456 
    457     // Don't allow any virtual-register uses. Rematting an instruction with
    458     // virtual register uses would length the live ranges of the uses, which
    459     // is not necessarily a good idea, certainly not "trivial".
    460     if (MO.isUse())
    461       return false;
    462   }
    463 
    464   // Everything checked out.
    465   return true;
    466 }
    467 
    468 /// isSchedulingBoundary - Test if the given instruction should be
    469 /// considered a scheduling boundary. This primarily includes labels
    470 /// and terminators.
    471 bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI,
    472                                                const MachineBasicBlock *MBB,
    473                                                const MachineFunction &MF) const{
    474   // Terminators and labels can't be scheduled around.
    475   if (MI->isTerminator() || MI->isLabel())
    476     return true;
    477 
    478   // Don't attempt to schedule around any instruction that defines
    479   // a stack-oriented pointer, as it's unlikely to be profitable. This
    480   // saves compile time, because it doesn't require every single
    481   // stack slot reference to depend on the instruction that does the
    482   // modification.
    483   const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
    484   if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore()))
    485     return true;
    486 
    487   return false;
    488 }
    489 
    490 // Provide a global flag for disabling the PreRA hazard recognizer that targets
    491 // may choose to honor.
    492 bool TargetInstrInfoImpl::usePreRAHazardRecognizer() const {
    493   return !DisableHazardRecognizer;
    494 }
    495 
    496 // Default implementation of CreateTargetRAHazardRecognizer.
    497 ScheduleHazardRecognizer *TargetInstrInfoImpl::
    498 CreateTargetHazardRecognizer(const TargetMachine *TM,
    499                              const ScheduleDAG *DAG) const {
    500   // Dummy hazard recognizer allows all instructions to issue.
    501   return new ScheduleHazardRecognizer();
    502 }
    503 
    504 // Default implementation of CreateTargetPostRAHazardRecognizer.
    505 ScheduleHazardRecognizer *TargetInstrInfoImpl::
    506 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
    507                                    const ScheduleDAG *DAG) const {
    508   return (ScheduleHazardRecognizer *)
    509     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
    510 }
    511 
    512 int
    513 TargetInstrInfoImpl::getOperandLatency(const InstrItineraryData *ItinData,
    514                                        SDNode *DefNode, unsigned DefIdx,
    515                                        SDNode *UseNode, unsigned UseIdx) const {
    516   if (!ItinData || ItinData->isEmpty())
    517     return -1;
    518 
    519   if (!DefNode->isMachineOpcode())
    520     return -1;
    521 
    522   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
    523   if (!UseNode->isMachineOpcode())
    524     return ItinData->getOperandCycle(DefClass, DefIdx);
    525   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
    526   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
    527 }
    528 
    529 int TargetInstrInfoImpl::getInstrLatency(const InstrItineraryData *ItinData,
    530                                          SDNode *N) const {
    531   if (!ItinData || ItinData->isEmpty())
    532     return 1;
    533 
    534   if (!N->isMachineOpcode())
    535     return 1;
    536 
    537   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
    538 }
    539 
    540