Home | History | Annotate | Download | only in AsmParser
      1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the parser class for .ll files.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "LLParser.h"
     15 #include "llvm/AutoUpgrade.h"
     16 #include "llvm/CallingConv.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/DerivedTypes.h"
     19 #include "llvm/InlineAsm.h"
     20 #include "llvm/Instructions.h"
     21 #include "llvm/Module.h"
     22 #include "llvm/Operator.h"
     23 #include "llvm/ValueSymbolTable.h"
     24 #include "llvm/ADT/SmallPtrSet.h"
     25 #include "llvm/Support/ErrorHandling.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 using namespace llvm;
     28 
     29 static std::string getTypeString(Type *T) {
     30   std::string Result;
     31   raw_string_ostream Tmp(Result);
     32   Tmp << *T;
     33   return Tmp.str();
     34 }
     35 
     36 /// Run: module ::= toplevelentity*
     37 bool LLParser::Run() {
     38   // Prime the lexer.
     39   Lex.Lex();
     40 
     41   return ParseTopLevelEntities() ||
     42          ValidateEndOfModule();
     43 }
     44 
     45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
     46 /// module.
     47 bool LLParser::ValidateEndOfModule() {
     48   // Handle any instruction metadata forward references.
     49   if (!ForwardRefInstMetadata.empty()) {
     50     for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
     51          I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
     52          I != E; ++I) {
     53       Instruction *Inst = I->first;
     54       const std::vector<MDRef> &MDList = I->second;
     55 
     56       for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
     57         unsigned SlotNo = MDList[i].MDSlot;
     58 
     59         if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
     60           return Error(MDList[i].Loc, "use of undefined metadata '!" +
     61                        Twine(SlotNo) + "'");
     62         Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
     63       }
     64     }
     65     ForwardRefInstMetadata.clear();
     66   }
     67 
     68 
     69   // If there are entries in ForwardRefBlockAddresses at this point, they are
     70   // references after the function was defined.  Resolve those now.
     71   while (!ForwardRefBlockAddresses.empty()) {
     72     // Okay, we are referencing an already-parsed function, resolve them now.
     73     Function *TheFn = 0;
     74     const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
     75     if (Fn.Kind == ValID::t_GlobalName)
     76       TheFn = M->getFunction(Fn.StrVal);
     77     else if (Fn.UIntVal < NumberedVals.size())
     78       TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
     79 
     80     if (TheFn == 0)
     81       return Error(Fn.Loc, "unknown function referenced by blockaddress");
     82 
     83     // Resolve all these references.
     84     if (ResolveForwardRefBlockAddresses(TheFn,
     85                                       ForwardRefBlockAddresses.begin()->second,
     86                                         0))
     87       return true;
     88 
     89     ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
     90   }
     91 
     92   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
     93     if (NumberedTypes[i].second.isValid())
     94       return Error(NumberedTypes[i].second,
     95                    "use of undefined type '%" + Twine(i) + "'");
     96 
     97   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
     98        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
     99     if (I->second.second.isValid())
    100       return Error(I->second.second,
    101                    "use of undefined type named '" + I->getKey() + "'");
    102 
    103   if (!ForwardRefVals.empty())
    104     return Error(ForwardRefVals.begin()->second.second,
    105                  "use of undefined value '@" + ForwardRefVals.begin()->first +
    106                  "'");
    107 
    108   if (!ForwardRefValIDs.empty())
    109     return Error(ForwardRefValIDs.begin()->second.second,
    110                  "use of undefined value '@" +
    111                  Twine(ForwardRefValIDs.begin()->first) + "'");
    112 
    113   if (!ForwardRefMDNodes.empty())
    114     return Error(ForwardRefMDNodes.begin()->second.second,
    115                  "use of undefined metadata '!" +
    116                  Twine(ForwardRefMDNodes.begin()->first) + "'");
    117 
    118 
    119   // Look for intrinsic functions and CallInst that need to be upgraded
    120   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
    121     UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
    122 
    123   return false;
    124 }
    125 
    126 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
    127                              std::vector<std::pair<ValID, GlobalValue*> > &Refs,
    128                                                PerFunctionState *PFS) {
    129   // Loop over all the references, resolving them.
    130   for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
    131     BasicBlock *Res;
    132     if (PFS) {
    133       if (Refs[i].first.Kind == ValID::t_LocalName)
    134         Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
    135       else
    136         Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
    137     } else if (Refs[i].first.Kind == ValID::t_LocalID) {
    138       return Error(Refs[i].first.Loc,
    139        "cannot take address of numeric label after the function is defined");
    140     } else {
    141       Res = dyn_cast_or_null<BasicBlock>(
    142                      TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
    143     }
    144 
    145     if (Res == 0)
    146       return Error(Refs[i].first.Loc,
    147                    "referenced value is not a basic block");
    148 
    149     // Get the BlockAddress for this and update references to use it.
    150     BlockAddress *BA = BlockAddress::get(TheFn, Res);
    151     Refs[i].second->replaceAllUsesWith(BA);
    152     Refs[i].second->eraseFromParent();
    153   }
    154   return false;
    155 }
    156 
    157 
    158 //===----------------------------------------------------------------------===//
    159 // Top-Level Entities
    160 //===----------------------------------------------------------------------===//
    161 
    162 bool LLParser::ParseTopLevelEntities() {
    163   while (1) {
    164     switch (Lex.getKind()) {
    165     default:         return TokError("expected top-level entity");
    166     case lltok::Eof: return false;
    167     case lltok::kw_declare: if (ParseDeclare()) return true; break;
    168     case lltok::kw_define:  if (ParseDefine()) return true; break;
    169     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
    170     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
    171     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
    172     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
    173     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
    174     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
    175     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
    176     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
    177     case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
    178 
    179     // The Global variable production with no name can have many different
    180     // optional leading prefixes, the production is:
    181     // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
    182     //               OptionalAddrSpace OptionalUnNammedAddr
    183     //               ('constant'|'global') ...
    184     case lltok::kw_private:             // OptionalLinkage
    185     case lltok::kw_linker_private:      // OptionalLinkage
    186     case lltok::kw_linker_private_weak: // OptionalLinkage
    187     case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
    188     case lltok::kw_internal:            // OptionalLinkage
    189     case lltok::kw_weak:                // OptionalLinkage
    190     case lltok::kw_weak_odr:            // OptionalLinkage
    191     case lltok::kw_linkonce:            // OptionalLinkage
    192     case lltok::kw_linkonce_odr:        // OptionalLinkage
    193     case lltok::kw_appending:           // OptionalLinkage
    194     case lltok::kw_dllexport:           // OptionalLinkage
    195     case lltok::kw_common:              // OptionalLinkage
    196     case lltok::kw_dllimport:           // OptionalLinkage
    197     case lltok::kw_extern_weak:         // OptionalLinkage
    198     case lltok::kw_external: {          // OptionalLinkage
    199       unsigned Linkage, Visibility;
    200       if (ParseOptionalLinkage(Linkage) ||
    201           ParseOptionalVisibility(Visibility) ||
    202           ParseGlobal("", SMLoc(), Linkage, true, Visibility))
    203         return true;
    204       break;
    205     }
    206     case lltok::kw_default:       // OptionalVisibility
    207     case lltok::kw_hidden:        // OptionalVisibility
    208     case lltok::kw_protected: {   // OptionalVisibility
    209       unsigned Visibility;
    210       if (ParseOptionalVisibility(Visibility) ||
    211           ParseGlobal("", SMLoc(), 0, false, Visibility))
    212         return true;
    213       break;
    214     }
    215 
    216     case lltok::kw_thread_local:  // OptionalThreadLocal
    217     case lltok::kw_addrspace:     // OptionalAddrSpace
    218     case lltok::kw_constant:      // GlobalType
    219     case lltok::kw_global:        // GlobalType
    220       if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
    221       break;
    222     }
    223   }
    224 }
    225 
    226 
    227 /// toplevelentity
    228 ///   ::= 'module' 'asm' STRINGCONSTANT
    229 bool LLParser::ParseModuleAsm() {
    230   assert(Lex.getKind() == lltok::kw_module);
    231   Lex.Lex();
    232 
    233   std::string AsmStr;
    234   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
    235       ParseStringConstant(AsmStr)) return true;
    236 
    237   M->appendModuleInlineAsm(AsmStr);
    238   return false;
    239 }
    240 
    241 /// toplevelentity
    242 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
    243 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
    244 bool LLParser::ParseTargetDefinition() {
    245   assert(Lex.getKind() == lltok::kw_target);
    246   std::string Str;
    247   switch (Lex.Lex()) {
    248   default: return TokError("unknown target property");
    249   case lltok::kw_triple:
    250     Lex.Lex();
    251     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
    252         ParseStringConstant(Str))
    253       return true;
    254     M->setTargetTriple(Str);
    255     return false;
    256   case lltok::kw_datalayout:
    257     Lex.Lex();
    258     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
    259         ParseStringConstant(Str))
    260       return true;
    261     M->setDataLayout(Str);
    262     return false;
    263   }
    264 }
    265 
    266 /// toplevelentity
    267 ///   ::= 'deplibs' '=' '[' ']'
    268 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
    269 bool LLParser::ParseDepLibs() {
    270   assert(Lex.getKind() == lltok::kw_deplibs);
    271   Lex.Lex();
    272   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
    273       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
    274     return true;
    275 
    276   if (EatIfPresent(lltok::rsquare))
    277     return false;
    278 
    279   std::string Str;
    280   if (ParseStringConstant(Str)) return true;
    281   M->addLibrary(Str);
    282 
    283   while (EatIfPresent(lltok::comma)) {
    284     if (ParseStringConstant(Str)) return true;
    285     M->addLibrary(Str);
    286   }
    287 
    288   return ParseToken(lltok::rsquare, "expected ']' at end of list");
    289 }
    290 
    291 /// ParseUnnamedType:
    292 ///   ::= LocalVarID '=' 'type' type
    293 bool LLParser::ParseUnnamedType() {
    294   LocTy TypeLoc = Lex.getLoc();
    295   unsigned TypeID = Lex.getUIntVal();
    296   Lex.Lex(); // eat LocalVarID;
    297 
    298   if (ParseToken(lltok::equal, "expected '=' after name") ||
    299       ParseToken(lltok::kw_type, "expected 'type' after '='"))
    300     return true;
    301 
    302   if (TypeID >= NumberedTypes.size())
    303     NumberedTypes.resize(TypeID+1);
    304 
    305   Type *Result = 0;
    306   if (ParseStructDefinition(TypeLoc, "",
    307                             NumberedTypes[TypeID], Result)) return true;
    308 
    309   if (!isa<StructType>(Result)) {
    310     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
    311     if (Entry.first)
    312       return Error(TypeLoc, "non-struct types may not be recursive");
    313     Entry.first = Result;
    314     Entry.second = SMLoc();
    315   }
    316 
    317   return false;
    318 }
    319 
    320 
    321 /// toplevelentity
    322 ///   ::= LocalVar '=' 'type' type
    323 bool LLParser::ParseNamedType() {
    324   std::string Name = Lex.getStrVal();
    325   LocTy NameLoc = Lex.getLoc();
    326   Lex.Lex();  // eat LocalVar.
    327 
    328   if (ParseToken(lltok::equal, "expected '=' after name") ||
    329       ParseToken(lltok::kw_type, "expected 'type' after name"))
    330     return true;
    331 
    332   Type *Result = 0;
    333   if (ParseStructDefinition(NameLoc, Name,
    334                             NamedTypes[Name], Result)) return true;
    335 
    336   if (!isa<StructType>(Result)) {
    337     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
    338     if (Entry.first)
    339       return Error(NameLoc, "non-struct types may not be recursive");
    340     Entry.first = Result;
    341     Entry.second = SMLoc();
    342   }
    343 
    344   return false;
    345 }
    346 
    347 
    348 /// toplevelentity
    349 ///   ::= 'declare' FunctionHeader
    350 bool LLParser::ParseDeclare() {
    351   assert(Lex.getKind() == lltok::kw_declare);
    352   Lex.Lex();
    353 
    354   Function *F;
    355   return ParseFunctionHeader(F, false);
    356 }
    357 
    358 /// toplevelentity
    359 ///   ::= 'define' FunctionHeader '{' ...
    360 bool LLParser::ParseDefine() {
    361   assert(Lex.getKind() == lltok::kw_define);
    362   Lex.Lex();
    363 
    364   Function *F;
    365   return ParseFunctionHeader(F, true) ||
    366          ParseFunctionBody(*F);
    367 }
    368 
    369 /// ParseGlobalType
    370 ///   ::= 'constant'
    371 ///   ::= 'global'
    372 bool LLParser::ParseGlobalType(bool &IsConstant) {
    373   if (Lex.getKind() == lltok::kw_constant)
    374     IsConstant = true;
    375   else if (Lex.getKind() == lltok::kw_global)
    376     IsConstant = false;
    377   else {
    378     IsConstant = false;
    379     return TokError("expected 'global' or 'constant'");
    380   }
    381   Lex.Lex();
    382   return false;
    383 }
    384 
    385 /// ParseUnnamedGlobal:
    386 ///   OptionalVisibility ALIAS ...
    387 ///   OptionalLinkage OptionalVisibility ...   -> global variable
    388 ///   GlobalID '=' OptionalVisibility ALIAS ...
    389 ///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
    390 bool LLParser::ParseUnnamedGlobal() {
    391   unsigned VarID = NumberedVals.size();
    392   std::string Name;
    393   LocTy NameLoc = Lex.getLoc();
    394 
    395   // Handle the GlobalID form.
    396   if (Lex.getKind() == lltok::GlobalID) {
    397     if (Lex.getUIntVal() != VarID)
    398       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
    399                    Twine(VarID) + "'");
    400     Lex.Lex(); // eat GlobalID;
    401 
    402     if (ParseToken(lltok::equal, "expected '=' after name"))
    403       return true;
    404   }
    405 
    406   bool HasLinkage;
    407   unsigned Linkage, Visibility;
    408   if (ParseOptionalLinkage(Linkage, HasLinkage) ||
    409       ParseOptionalVisibility(Visibility))
    410     return true;
    411 
    412   if (HasLinkage || Lex.getKind() != lltok::kw_alias)
    413     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
    414   return ParseAlias(Name, NameLoc, Visibility);
    415 }
    416 
    417 /// ParseNamedGlobal:
    418 ///   GlobalVar '=' OptionalVisibility ALIAS ...
    419 ///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
    420 bool LLParser::ParseNamedGlobal() {
    421   assert(Lex.getKind() == lltok::GlobalVar);
    422   LocTy NameLoc = Lex.getLoc();
    423   std::string Name = Lex.getStrVal();
    424   Lex.Lex();
    425 
    426   bool HasLinkage;
    427   unsigned Linkage, Visibility;
    428   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
    429       ParseOptionalLinkage(Linkage, HasLinkage) ||
    430       ParseOptionalVisibility(Visibility))
    431     return true;
    432 
    433   if (HasLinkage || Lex.getKind() != lltok::kw_alias)
    434     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
    435   return ParseAlias(Name, NameLoc, Visibility);
    436 }
    437 
    438 // MDString:
    439 //   ::= '!' STRINGCONSTANT
    440 bool LLParser::ParseMDString(MDString *&Result) {
    441   std::string Str;
    442   if (ParseStringConstant(Str)) return true;
    443   Result = MDString::get(Context, Str);
    444   return false;
    445 }
    446 
    447 // MDNode:
    448 //   ::= '!' MDNodeNumber
    449 //
    450 /// This version of ParseMDNodeID returns the slot number and null in the case
    451 /// of a forward reference.
    452 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
    453   // !{ ..., !42, ... }
    454   if (ParseUInt32(SlotNo)) return true;
    455 
    456   // Check existing MDNode.
    457   if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
    458     Result = NumberedMetadata[SlotNo];
    459   else
    460     Result = 0;
    461   return false;
    462 }
    463 
    464 bool LLParser::ParseMDNodeID(MDNode *&Result) {
    465   // !{ ..., !42, ... }
    466   unsigned MID = 0;
    467   if (ParseMDNodeID(Result, MID)) return true;
    468 
    469   // If not a forward reference, just return it now.
    470   if (Result) return false;
    471 
    472   // Otherwise, create MDNode forward reference.
    473   MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
    474   ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
    475 
    476   if (NumberedMetadata.size() <= MID)
    477     NumberedMetadata.resize(MID+1);
    478   NumberedMetadata[MID] = FwdNode;
    479   Result = FwdNode;
    480   return false;
    481 }
    482 
    483 /// ParseNamedMetadata:
    484 ///   !foo = !{ !1, !2 }
    485 bool LLParser::ParseNamedMetadata() {
    486   assert(Lex.getKind() == lltok::MetadataVar);
    487   std::string Name = Lex.getStrVal();
    488   Lex.Lex();
    489 
    490   if (ParseToken(lltok::equal, "expected '=' here") ||
    491       ParseToken(lltok::exclaim, "Expected '!' here") ||
    492       ParseToken(lltok::lbrace, "Expected '{' here"))
    493     return true;
    494 
    495   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
    496   if (Lex.getKind() != lltok::rbrace)
    497     do {
    498       if (ParseToken(lltok::exclaim, "Expected '!' here"))
    499         return true;
    500 
    501       MDNode *N = 0;
    502       if (ParseMDNodeID(N)) return true;
    503       NMD->addOperand(N);
    504     } while (EatIfPresent(lltok::comma));
    505 
    506   if (ParseToken(lltok::rbrace, "expected end of metadata node"))
    507     return true;
    508 
    509   return false;
    510 }
    511 
    512 /// ParseStandaloneMetadata:
    513 ///   !42 = !{...}
    514 bool LLParser::ParseStandaloneMetadata() {
    515   assert(Lex.getKind() == lltok::exclaim);
    516   Lex.Lex();
    517   unsigned MetadataID = 0;
    518 
    519   LocTy TyLoc;
    520   Type *Ty = 0;
    521   SmallVector<Value *, 16> Elts;
    522   if (ParseUInt32(MetadataID) ||
    523       ParseToken(lltok::equal, "expected '=' here") ||
    524       ParseType(Ty, TyLoc) ||
    525       ParseToken(lltok::exclaim, "Expected '!' here") ||
    526       ParseToken(lltok::lbrace, "Expected '{' here") ||
    527       ParseMDNodeVector(Elts, NULL) ||
    528       ParseToken(lltok::rbrace, "expected end of metadata node"))
    529     return true;
    530 
    531   MDNode *Init = MDNode::get(Context, Elts);
    532 
    533   // See if this was forward referenced, if so, handle it.
    534   std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
    535     FI = ForwardRefMDNodes.find(MetadataID);
    536   if (FI != ForwardRefMDNodes.end()) {
    537     MDNode *Temp = FI->second.first;
    538     Temp->replaceAllUsesWith(Init);
    539     MDNode::deleteTemporary(Temp);
    540     ForwardRefMDNodes.erase(FI);
    541 
    542     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
    543   } else {
    544     if (MetadataID >= NumberedMetadata.size())
    545       NumberedMetadata.resize(MetadataID+1);
    546 
    547     if (NumberedMetadata[MetadataID] != 0)
    548       return TokError("Metadata id is already used");
    549     NumberedMetadata[MetadataID] = Init;
    550   }
    551 
    552   return false;
    553 }
    554 
    555 /// ParseAlias:
    556 ///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
    557 /// Aliasee
    558 ///   ::= TypeAndValue
    559 ///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
    560 ///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
    561 ///
    562 /// Everything through visibility has already been parsed.
    563 ///
    564 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
    565                           unsigned Visibility) {
    566   assert(Lex.getKind() == lltok::kw_alias);
    567   Lex.Lex();
    568   unsigned Linkage;
    569   LocTy LinkageLoc = Lex.getLoc();
    570   if (ParseOptionalLinkage(Linkage))
    571     return true;
    572 
    573   if (Linkage != GlobalValue::ExternalLinkage &&
    574       Linkage != GlobalValue::WeakAnyLinkage &&
    575       Linkage != GlobalValue::WeakODRLinkage &&
    576       Linkage != GlobalValue::InternalLinkage &&
    577       Linkage != GlobalValue::PrivateLinkage &&
    578       Linkage != GlobalValue::LinkerPrivateLinkage &&
    579       Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
    580       Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
    581     return Error(LinkageLoc, "invalid linkage type for alias");
    582 
    583   Constant *Aliasee;
    584   LocTy AliaseeLoc = Lex.getLoc();
    585   if (Lex.getKind() != lltok::kw_bitcast &&
    586       Lex.getKind() != lltok::kw_getelementptr) {
    587     if (ParseGlobalTypeAndValue(Aliasee)) return true;
    588   } else {
    589     // The bitcast dest type is not present, it is implied by the dest type.
    590     ValID ID;
    591     if (ParseValID(ID)) return true;
    592     if (ID.Kind != ValID::t_Constant)
    593       return Error(AliaseeLoc, "invalid aliasee");
    594     Aliasee = ID.ConstantVal;
    595   }
    596 
    597   if (!Aliasee->getType()->isPointerTy())
    598     return Error(AliaseeLoc, "alias must have pointer type");
    599 
    600   // Okay, create the alias but do not insert it into the module yet.
    601   GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
    602                                     (GlobalValue::LinkageTypes)Linkage, Name,
    603                                     Aliasee);
    604   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
    605 
    606   // See if this value already exists in the symbol table.  If so, it is either
    607   // a redefinition or a definition of a forward reference.
    608   if (GlobalValue *Val = M->getNamedValue(Name)) {
    609     // See if this was a redefinition.  If so, there is no entry in
    610     // ForwardRefVals.
    611     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
    612       I = ForwardRefVals.find(Name);
    613     if (I == ForwardRefVals.end())
    614       return Error(NameLoc, "redefinition of global named '@" + Name + "'");
    615 
    616     // Otherwise, this was a definition of forward ref.  Verify that types
    617     // agree.
    618     if (Val->getType() != GA->getType())
    619       return Error(NameLoc,
    620               "forward reference and definition of alias have different types");
    621 
    622     // If they agree, just RAUW the old value with the alias and remove the
    623     // forward ref info.
    624     Val->replaceAllUsesWith(GA);
    625     Val->eraseFromParent();
    626     ForwardRefVals.erase(I);
    627   }
    628 
    629   // Insert into the module, we know its name won't collide now.
    630   M->getAliasList().push_back(GA);
    631   assert(GA->getName() == Name && "Should not be a name conflict!");
    632 
    633   return false;
    634 }
    635 
    636 /// ParseGlobal
    637 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
    638 ///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
    639 ///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
    640 ///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
    641 ///
    642 /// Everything through visibility has been parsed already.
    643 ///
    644 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
    645                            unsigned Linkage, bool HasLinkage,
    646                            unsigned Visibility) {
    647   unsigned AddrSpace;
    648   bool ThreadLocal, IsConstant, UnnamedAddr;
    649   LocTy UnnamedAddrLoc;
    650   LocTy TyLoc;
    651 
    652   Type *Ty = 0;
    653   if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
    654       ParseOptionalAddrSpace(AddrSpace) ||
    655       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
    656                          &UnnamedAddrLoc) ||
    657       ParseGlobalType(IsConstant) ||
    658       ParseType(Ty, TyLoc))
    659     return true;
    660 
    661   // If the linkage is specified and is external, then no initializer is
    662   // present.
    663   Constant *Init = 0;
    664   if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
    665                       Linkage != GlobalValue::ExternalWeakLinkage &&
    666                       Linkage != GlobalValue::ExternalLinkage)) {
    667     if (ParseGlobalValue(Ty, Init))
    668       return true;
    669   }
    670 
    671   if (Ty->isFunctionTy() || Ty->isLabelTy())
    672     return Error(TyLoc, "invalid type for global variable");
    673 
    674   GlobalVariable *GV = 0;
    675 
    676   // See if the global was forward referenced, if so, use the global.
    677   if (!Name.empty()) {
    678     if (GlobalValue *GVal = M->getNamedValue(Name)) {
    679       if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
    680         return Error(NameLoc, "redefinition of global '@" + Name + "'");
    681       GV = cast<GlobalVariable>(GVal);
    682     }
    683   } else {
    684     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
    685       I = ForwardRefValIDs.find(NumberedVals.size());
    686     if (I != ForwardRefValIDs.end()) {
    687       GV = cast<GlobalVariable>(I->second.first);
    688       ForwardRefValIDs.erase(I);
    689     }
    690   }
    691 
    692   if (GV == 0) {
    693     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
    694                             Name, 0, false, AddrSpace);
    695   } else {
    696     if (GV->getType()->getElementType() != Ty)
    697       return Error(TyLoc,
    698             "forward reference and definition of global have different types");
    699 
    700     // Move the forward-reference to the correct spot in the module.
    701     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
    702   }
    703 
    704   if (Name.empty())
    705     NumberedVals.push_back(GV);
    706 
    707   // Set the parsed properties on the global.
    708   if (Init)
    709     GV->setInitializer(Init);
    710   GV->setConstant(IsConstant);
    711   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
    712   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
    713   GV->setThreadLocal(ThreadLocal);
    714   GV->setUnnamedAddr(UnnamedAddr);
    715 
    716   // Parse attributes on the global.
    717   while (Lex.getKind() == lltok::comma) {
    718     Lex.Lex();
    719 
    720     if (Lex.getKind() == lltok::kw_section) {
    721       Lex.Lex();
    722       GV->setSection(Lex.getStrVal());
    723       if (ParseToken(lltok::StringConstant, "expected global section string"))
    724         return true;
    725     } else if (Lex.getKind() == lltok::kw_align) {
    726       unsigned Alignment;
    727       if (ParseOptionalAlignment(Alignment)) return true;
    728       GV->setAlignment(Alignment);
    729     } else {
    730       TokError("unknown global variable property!");
    731     }
    732   }
    733 
    734   return false;
    735 }
    736 
    737 
    738 //===----------------------------------------------------------------------===//
    739 // GlobalValue Reference/Resolution Routines.
    740 //===----------------------------------------------------------------------===//
    741 
    742 /// GetGlobalVal - Get a value with the specified name or ID, creating a
    743 /// forward reference record if needed.  This can return null if the value
    744 /// exists but does not have the right type.
    745 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
    746                                     LocTy Loc) {
    747   PointerType *PTy = dyn_cast<PointerType>(Ty);
    748   if (PTy == 0) {
    749     Error(Loc, "global variable reference must have pointer type");
    750     return 0;
    751   }
    752 
    753   // Look this name up in the normal function symbol table.
    754   GlobalValue *Val =
    755     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
    756 
    757   // If this is a forward reference for the value, see if we already created a
    758   // forward ref record.
    759   if (Val == 0) {
    760     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
    761       I = ForwardRefVals.find(Name);
    762     if (I != ForwardRefVals.end())
    763       Val = I->second.first;
    764   }
    765 
    766   // If we have the value in the symbol table or fwd-ref table, return it.
    767   if (Val) {
    768     if (Val->getType() == Ty) return Val;
    769     Error(Loc, "'@" + Name + "' defined with type '" +
    770           getTypeString(Val->getType()) + "'");
    771     return 0;
    772   }
    773 
    774   // Otherwise, create a new forward reference for this value and remember it.
    775   GlobalValue *FwdVal;
    776   if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
    777     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
    778   else
    779     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
    780                                 GlobalValue::ExternalWeakLinkage, 0, Name);
    781 
    782   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
    783   return FwdVal;
    784 }
    785 
    786 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
    787   PointerType *PTy = dyn_cast<PointerType>(Ty);
    788   if (PTy == 0) {
    789     Error(Loc, "global variable reference must have pointer type");
    790     return 0;
    791   }
    792 
    793   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
    794 
    795   // If this is a forward reference for the value, see if we already created a
    796   // forward ref record.
    797   if (Val == 0) {
    798     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
    799       I = ForwardRefValIDs.find(ID);
    800     if (I != ForwardRefValIDs.end())
    801       Val = I->second.first;
    802   }
    803 
    804   // If we have the value in the symbol table or fwd-ref table, return it.
    805   if (Val) {
    806     if (Val->getType() == Ty) return Val;
    807     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
    808           getTypeString(Val->getType()) + "'");
    809     return 0;
    810   }
    811 
    812   // Otherwise, create a new forward reference for this value and remember it.
    813   GlobalValue *FwdVal;
    814   if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
    815     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
    816   else
    817     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
    818                                 GlobalValue::ExternalWeakLinkage, 0, "");
    819 
    820   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
    821   return FwdVal;
    822 }
    823 
    824 
    825 //===----------------------------------------------------------------------===//
    826 // Helper Routines.
    827 //===----------------------------------------------------------------------===//
    828 
    829 /// ParseToken - If the current token has the specified kind, eat it and return
    830 /// success.  Otherwise, emit the specified error and return failure.
    831 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
    832   if (Lex.getKind() != T)
    833     return TokError(ErrMsg);
    834   Lex.Lex();
    835   return false;
    836 }
    837 
    838 /// ParseStringConstant
    839 ///   ::= StringConstant
    840 bool LLParser::ParseStringConstant(std::string &Result) {
    841   if (Lex.getKind() != lltok::StringConstant)
    842     return TokError("expected string constant");
    843   Result = Lex.getStrVal();
    844   Lex.Lex();
    845   return false;
    846 }
    847 
    848 /// ParseUInt32
    849 ///   ::= uint32
    850 bool LLParser::ParseUInt32(unsigned &Val) {
    851   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
    852     return TokError("expected integer");
    853   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
    854   if (Val64 != unsigned(Val64))
    855     return TokError("expected 32-bit integer (too large)");
    856   Val = Val64;
    857   Lex.Lex();
    858   return false;
    859 }
    860 
    861 
    862 /// ParseOptionalAddrSpace
    863 ///   := /*empty*/
    864 ///   := 'addrspace' '(' uint32 ')'
    865 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
    866   AddrSpace = 0;
    867   if (!EatIfPresent(lltok::kw_addrspace))
    868     return false;
    869   return ParseToken(lltok::lparen, "expected '(' in address space") ||
    870          ParseUInt32(AddrSpace) ||
    871          ParseToken(lltok::rparen, "expected ')' in address space");
    872 }
    873 
    874 /// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
    875 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
    876 /// 2: function attr.
    877 bool LLParser::ParseOptionalAttrs(Attributes &Attrs, unsigned AttrKind) {
    878   Attrs = Attribute::None;
    879   LocTy AttrLoc = Lex.getLoc();
    880 
    881   while (1) {
    882     switch (Lex.getKind()) {
    883     default:  // End of attributes.
    884       if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
    885         return Error(AttrLoc, "invalid use of function-only attribute");
    886 
    887       // As a hack, we allow "align 2" on functions as a synonym for
    888       // "alignstack 2".
    889       if (AttrKind == 2 &&
    890           (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment)))
    891         return Error(AttrLoc, "invalid use of attribute on a function");
    892 
    893       if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
    894         return Error(AttrLoc, "invalid use of parameter-only attribute");
    895 
    896       return false;
    897     case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
    898     case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
    899     case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
    900     case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
    901     case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
    902     case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
    903     case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
    904     case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
    905 
    906     case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
    907     case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
    908     case lltok::kw_uwtable:         Attrs |= Attribute::UWTable; break;
    909     case lltok::kw_returns_twice:   Attrs |= Attribute::ReturnsTwice; break;
    910     case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
    911     case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
    912     case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
    913     case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
    914     case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
    915     case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
    916     case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
    917     case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
    918     case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
    919     case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
    920     case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
    921     case lltok::kw_nonlazybind:     Attrs |= Attribute::NonLazyBind; break;
    922     case lltok::kw_address_safety:  Attrs |= Attribute::AddressSafety; break;
    923 
    924     case lltok::kw_alignstack: {
    925       unsigned Alignment;
    926       if (ParseOptionalStackAlignment(Alignment))
    927         return true;
    928       Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
    929       continue;
    930     }
    931 
    932     case lltok::kw_align: {
    933       unsigned Alignment;
    934       if (ParseOptionalAlignment(Alignment))
    935         return true;
    936       Attrs |= Attribute::constructAlignmentFromInt(Alignment);
    937       continue;
    938     }
    939 
    940     }
    941     Lex.Lex();
    942   }
    943 }
    944 
    945 /// ParseOptionalLinkage
    946 ///   ::= /*empty*/
    947 ///   ::= 'private'
    948 ///   ::= 'linker_private'
    949 ///   ::= 'linker_private_weak'
    950 ///   ::= 'linker_private_weak_def_auto'
    951 ///   ::= 'internal'
    952 ///   ::= 'weak'
    953 ///   ::= 'weak_odr'
    954 ///   ::= 'linkonce'
    955 ///   ::= 'linkonce_odr'
    956 ///   ::= 'available_externally'
    957 ///   ::= 'appending'
    958 ///   ::= 'dllexport'
    959 ///   ::= 'common'
    960 ///   ::= 'dllimport'
    961 ///   ::= 'extern_weak'
    962 ///   ::= 'external'
    963 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
    964   HasLinkage = false;
    965   switch (Lex.getKind()) {
    966   default:                       Res=GlobalValue::ExternalLinkage; return false;
    967   case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
    968   case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
    969   case lltok::kw_linker_private_weak:
    970     Res = GlobalValue::LinkerPrivateWeakLinkage;
    971     break;
    972   case lltok::kw_linker_private_weak_def_auto:
    973     Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
    974     break;
    975   case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
    976   case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
    977   case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
    978   case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
    979   case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
    980   case lltok::kw_available_externally:
    981     Res = GlobalValue::AvailableExternallyLinkage;
    982     break;
    983   case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
    984   case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
    985   case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
    986   case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
    987   case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
    988   case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
    989   }
    990   Lex.Lex();
    991   HasLinkage = true;
    992   return false;
    993 }
    994 
    995 /// ParseOptionalVisibility
    996 ///   ::= /*empty*/
    997 ///   ::= 'default'
    998 ///   ::= 'hidden'
    999 ///   ::= 'protected'
   1000 ///
   1001 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
   1002   switch (Lex.getKind()) {
   1003   default:                  Res = GlobalValue::DefaultVisibility; return false;
   1004   case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
   1005   case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
   1006   case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
   1007   }
   1008   Lex.Lex();
   1009   return false;
   1010 }
   1011 
   1012 /// ParseOptionalCallingConv
   1013 ///   ::= /*empty*/
   1014 ///   ::= 'ccc'
   1015 ///   ::= 'fastcc'
   1016 ///   ::= 'coldcc'
   1017 ///   ::= 'x86_stdcallcc'
   1018 ///   ::= 'x86_fastcallcc'
   1019 ///   ::= 'x86_thiscallcc'
   1020 ///   ::= 'arm_apcscc'
   1021 ///   ::= 'arm_aapcscc'
   1022 ///   ::= 'arm_aapcs_vfpcc'
   1023 ///   ::= 'msp430_intrcc'
   1024 ///   ::= 'ptx_kernel'
   1025 ///   ::= 'ptx_device'
   1026 ///   ::= 'cc' UINT
   1027 ///
   1028 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
   1029   switch (Lex.getKind()) {
   1030   default:                       CC = CallingConv::C; return false;
   1031   case lltok::kw_ccc:            CC = CallingConv::C; break;
   1032   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
   1033   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
   1034   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
   1035   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
   1036   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
   1037   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
   1038   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
   1039   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
   1040   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
   1041   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
   1042   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
   1043   case lltok::kw_cc: {
   1044       unsigned ArbitraryCC;
   1045       Lex.Lex();
   1046       if (ParseUInt32(ArbitraryCC))
   1047         return true;
   1048       CC = static_cast<CallingConv::ID>(ArbitraryCC);
   1049       return false;
   1050     }
   1051   }
   1052 
   1053   Lex.Lex();
   1054   return false;
   1055 }
   1056 
   1057 /// ParseInstructionMetadata
   1058 ///   ::= !dbg !42 (',' !dbg !57)*
   1059 bool LLParser::ParseInstructionMetadata(Instruction *Inst,
   1060                                         PerFunctionState *PFS) {
   1061   do {
   1062     if (Lex.getKind() != lltok::MetadataVar)
   1063       return TokError("expected metadata after comma");
   1064 
   1065     std::string Name = Lex.getStrVal();
   1066     unsigned MDK = M->getMDKindID(Name);
   1067     Lex.Lex();
   1068 
   1069     MDNode *Node;
   1070     SMLoc Loc = Lex.getLoc();
   1071 
   1072     if (ParseToken(lltok::exclaim, "expected '!' here"))
   1073       return true;
   1074 
   1075     // This code is similar to that of ParseMetadataValue, however it needs to
   1076     // have special-case code for a forward reference; see the comments on
   1077     // ForwardRefInstMetadata for details. Also, MDStrings are not supported
   1078     // at the top level here.
   1079     if (Lex.getKind() == lltok::lbrace) {
   1080       ValID ID;
   1081       if (ParseMetadataListValue(ID, PFS))
   1082         return true;
   1083       assert(ID.Kind == ValID::t_MDNode);
   1084       Inst->setMetadata(MDK, ID.MDNodeVal);
   1085     } else {
   1086       unsigned NodeID = 0;
   1087       if (ParseMDNodeID(Node, NodeID))
   1088         return true;
   1089       if (Node) {
   1090         // If we got the node, add it to the instruction.
   1091         Inst->setMetadata(MDK, Node);
   1092       } else {
   1093         MDRef R = { Loc, MDK, NodeID };
   1094         // Otherwise, remember that this should be resolved later.
   1095         ForwardRefInstMetadata[Inst].push_back(R);
   1096       }
   1097     }
   1098 
   1099     // If this is the end of the list, we're done.
   1100   } while (EatIfPresent(lltok::comma));
   1101   return false;
   1102 }
   1103 
   1104 /// ParseOptionalAlignment
   1105 ///   ::= /* empty */
   1106 ///   ::= 'align' 4
   1107 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
   1108   Alignment = 0;
   1109   if (!EatIfPresent(lltok::kw_align))
   1110     return false;
   1111   LocTy AlignLoc = Lex.getLoc();
   1112   if (ParseUInt32(Alignment)) return true;
   1113   if (!isPowerOf2_32(Alignment))
   1114     return Error(AlignLoc, "alignment is not a power of two");
   1115   if (Alignment > Value::MaximumAlignment)
   1116     return Error(AlignLoc, "huge alignments are not supported yet");
   1117   return false;
   1118 }
   1119 
   1120 /// ParseOptionalCommaAlign
   1121 ///   ::=
   1122 ///   ::= ',' align 4
   1123 ///
   1124 /// This returns with AteExtraComma set to true if it ate an excess comma at the
   1125 /// end.
   1126 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
   1127                                        bool &AteExtraComma) {
   1128   AteExtraComma = false;
   1129   while (EatIfPresent(lltok::comma)) {
   1130     // Metadata at the end is an early exit.
   1131     if (Lex.getKind() == lltok::MetadataVar) {
   1132       AteExtraComma = true;
   1133       return false;
   1134     }
   1135 
   1136     if (Lex.getKind() != lltok::kw_align)
   1137       return Error(Lex.getLoc(), "expected metadata or 'align'");
   1138 
   1139     if (ParseOptionalAlignment(Alignment)) return true;
   1140   }
   1141 
   1142   return false;
   1143 }
   1144 
   1145 /// ParseScopeAndOrdering
   1146 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
   1147 ///   else: ::=
   1148 ///
   1149 /// This sets Scope and Ordering to the parsed values.
   1150 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
   1151                                      AtomicOrdering &Ordering) {
   1152   if (!isAtomic)
   1153     return false;
   1154 
   1155   Scope = CrossThread;
   1156   if (EatIfPresent(lltok::kw_singlethread))
   1157     Scope = SingleThread;
   1158   switch (Lex.getKind()) {
   1159   default: return TokError("Expected ordering on atomic instruction");
   1160   case lltok::kw_unordered: Ordering = Unordered; break;
   1161   case lltok::kw_monotonic: Ordering = Monotonic; break;
   1162   case lltok::kw_acquire: Ordering = Acquire; break;
   1163   case lltok::kw_release: Ordering = Release; break;
   1164   case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
   1165   case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
   1166   }
   1167   Lex.Lex();
   1168   return false;
   1169 }
   1170 
   1171 /// ParseOptionalStackAlignment
   1172 ///   ::= /* empty */
   1173 ///   ::= 'alignstack' '(' 4 ')'
   1174 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
   1175   Alignment = 0;
   1176   if (!EatIfPresent(lltok::kw_alignstack))
   1177     return false;
   1178   LocTy ParenLoc = Lex.getLoc();
   1179   if (!EatIfPresent(lltok::lparen))
   1180     return Error(ParenLoc, "expected '('");
   1181   LocTy AlignLoc = Lex.getLoc();
   1182   if (ParseUInt32(Alignment)) return true;
   1183   ParenLoc = Lex.getLoc();
   1184   if (!EatIfPresent(lltok::rparen))
   1185     return Error(ParenLoc, "expected ')'");
   1186   if (!isPowerOf2_32(Alignment))
   1187     return Error(AlignLoc, "stack alignment is not a power of two");
   1188   return false;
   1189 }
   1190 
   1191 /// ParseIndexList - This parses the index list for an insert/extractvalue
   1192 /// instruction.  This sets AteExtraComma in the case where we eat an extra
   1193 /// comma at the end of the line and find that it is followed by metadata.
   1194 /// Clients that don't allow metadata can call the version of this function that
   1195 /// only takes one argument.
   1196 ///
   1197 /// ParseIndexList
   1198 ///    ::=  (',' uint32)+
   1199 ///
   1200 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
   1201                               bool &AteExtraComma) {
   1202   AteExtraComma = false;
   1203 
   1204   if (Lex.getKind() != lltok::comma)
   1205     return TokError("expected ',' as start of index list");
   1206 
   1207   while (EatIfPresent(lltok::comma)) {
   1208     if (Lex.getKind() == lltok::MetadataVar) {
   1209       AteExtraComma = true;
   1210       return false;
   1211     }
   1212     unsigned Idx = 0;
   1213     if (ParseUInt32(Idx)) return true;
   1214     Indices.push_back(Idx);
   1215   }
   1216 
   1217   return false;
   1218 }
   1219 
   1220 //===----------------------------------------------------------------------===//
   1221 // Type Parsing.
   1222 //===----------------------------------------------------------------------===//
   1223 
   1224 /// ParseType - Parse a type.
   1225 bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
   1226   SMLoc TypeLoc = Lex.getLoc();
   1227   switch (Lex.getKind()) {
   1228   default:
   1229     return TokError("expected type");
   1230   case lltok::Type:
   1231     // Type ::= 'float' | 'void' (etc)
   1232     Result = Lex.getTyVal();
   1233     Lex.Lex();
   1234     break;
   1235   case lltok::lbrace:
   1236     // Type ::= StructType
   1237     if (ParseAnonStructType(Result, false))
   1238       return true;
   1239     break;
   1240   case lltok::lsquare:
   1241     // Type ::= '[' ... ']'
   1242     Lex.Lex(); // eat the lsquare.
   1243     if (ParseArrayVectorType(Result, false))
   1244       return true;
   1245     break;
   1246   case lltok::less: // Either vector or packed struct.
   1247     // Type ::= '<' ... '>'
   1248     Lex.Lex();
   1249     if (Lex.getKind() == lltok::lbrace) {
   1250       if (ParseAnonStructType(Result, true) ||
   1251           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
   1252         return true;
   1253     } else if (ParseArrayVectorType(Result, true))
   1254       return true;
   1255     break;
   1256   case lltok::LocalVar: {
   1257     // Type ::= %foo
   1258     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
   1259 
   1260     // If the type hasn't been defined yet, create a forward definition and
   1261     // remember where that forward def'n was seen (in case it never is defined).
   1262     if (Entry.first == 0) {
   1263       Entry.first = StructType::create(Context, Lex.getStrVal());
   1264       Entry.second = Lex.getLoc();
   1265     }
   1266     Result = Entry.first;
   1267     Lex.Lex();
   1268     break;
   1269   }
   1270 
   1271   case lltok::LocalVarID: {
   1272     // Type ::= %4
   1273     if (Lex.getUIntVal() >= NumberedTypes.size())
   1274       NumberedTypes.resize(Lex.getUIntVal()+1);
   1275     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
   1276 
   1277     // If the type hasn't been defined yet, create a forward definition and
   1278     // remember where that forward def'n was seen (in case it never is defined).
   1279     if (Entry.first == 0) {
   1280       Entry.first = StructType::create(Context);
   1281       Entry.second = Lex.getLoc();
   1282     }
   1283     Result = Entry.first;
   1284     Lex.Lex();
   1285     break;
   1286   }
   1287   }
   1288 
   1289   // Parse the type suffixes.
   1290   while (1) {
   1291     switch (Lex.getKind()) {
   1292     // End of type.
   1293     default:
   1294       if (!AllowVoid && Result->isVoidTy())
   1295         return Error(TypeLoc, "void type only allowed for function results");
   1296       return false;
   1297 
   1298     // Type ::= Type '*'
   1299     case lltok::star:
   1300       if (Result->isLabelTy())
   1301         return TokError("basic block pointers are invalid");
   1302       if (Result->isVoidTy())
   1303         return TokError("pointers to void are invalid - use i8* instead");
   1304       if (!PointerType::isValidElementType(Result))
   1305         return TokError("pointer to this type is invalid");
   1306       Result = PointerType::getUnqual(Result);
   1307       Lex.Lex();
   1308       break;
   1309 
   1310     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
   1311     case lltok::kw_addrspace: {
   1312       if (Result->isLabelTy())
   1313         return TokError("basic block pointers are invalid");
   1314       if (Result->isVoidTy())
   1315         return TokError("pointers to void are invalid; use i8* instead");
   1316       if (!PointerType::isValidElementType(Result))
   1317         return TokError("pointer to this type is invalid");
   1318       unsigned AddrSpace;
   1319       if (ParseOptionalAddrSpace(AddrSpace) ||
   1320           ParseToken(lltok::star, "expected '*' in address space"))
   1321         return true;
   1322 
   1323       Result = PointerType::get(Result, AddrSpace);
   1324       break;
   1325     }
   1326 
   1327     /// Types '(' ArgTypeListI ')' OptFuncAttrs
   1328     case lltok::lparen:
   1329       if (ParseFunctionType(Result))
   1330         return true;
   1331       break;
   1332     }
   1333   }
   1334 }
   1335 
   1336 /// ParseParameterList
   1337 ///    ::= '(' ')'
   1338 ///    ::= '(' Arg (',' Arg)* ')'
   1339 ///  Arg
   1340 ///    ::= Type OptionalAttributes Value OptionalAttributes
   1341 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
   1342                                   PerFunctionState &PFS) {
   1343   if (ParseToken(lltok::lparen, "expected '(' in call"))
   1344     return true;
   1345 
   1346   while (Lex.getKind() != lltok::rparen) {
   1347     // If this isn't the first argument, we need a comma.
   1348     if (!ArgList.empty() &&
   1349         ParseToken(lltok::comma, "expected ',' in argument list"))
   1350       return true;
   1351 
   1352     // Parse the argument.
   1353     LocTy ArgLoc;
   1354     Type *ArgTy = 0;
   1355     Attributes ArgAttrs1;
   1356     Attributes ArgAttrs2;
   1357     Value *V;
   1358     if (ParseType(ArgTy, ArgLoc))
   1359       return true;
   1360 
   1361     // Otherwise, handle normal operands.
   1362     if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS))
   1363       return true;
   1364     ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
   1365   }
   1366 
   1367   Lex.Lex();  // Lex the ')'.
   1368   return false;
   1369 }
   1370 
   1371 
   1372 
   1373 /// ParseArgumentList - Parse the argument list for a function type or function
   1374 /// prototype.
   1375 ///   ::= '(' ArgTypeListI ')'
   1376 /// ArgTypeListI
   1377 ///   ::= /*empty*/
   1378 ///   ::= '...'
   1379 ///   ::= ArgTypeList ',' '...'
   1380 ///   ::= ArgType (',' ArgType)*
   1381 ///
   1382 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
   1383                                  bool &isVarArg){
   1384   isVarArg = false;
   1385   assert(Lex.getKind() == lltok::lparen);
   1386   Lex.Lex(); // eat the (.
   1387 
   1388   if (Lex.getKind() == lltok::rparen) {
   1389     // empty
   1390   } else if (Lex.getKind() == lltok::dotdotdot) {
   1391     isVarArg = true;
   1392     Lex.Lex();
   1393   } else {
   1394     LocTy TypeLoc = Lex.getLoc();
   1395     Type *ArgTy = 0;
   1396     Attributes Attrs;
   1397     std::string Name;
   1398 
   1399     if (ParseType(ArgTy) ||
   1400         ParseOptionalAttrs(Attrs, 0)) return true;
   1401 
   1402     if (ArgTy->isVoidTy())
   1403       return Error(TypeLoc, "argument can not have void type");
   1404 
   1405     if (Lex.getKind() == lltok::LocalVar) {
   1406       Name = Lex.getStrVal();
   1407       Lex.Lex();
   1408     }
   1409 
   1410     if (!FunctionType::isValidArgumentType(ArgTy))
   1411       return Error(TypeLoc, "invalid type for function argument");
   1412 
   1413     ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
   1414 
   1415     while (EatIfPresent(lltok::comma)) {
   1416       // Handle ... at end of arg list.
   1417       if (EatIfPresent(lltok::dotdotdot)) {
   1418         isVarArg = true;
   1419         break;
   1420       }
   1421 
   1422       // Otherwise must be an argument type.
   1423       TypeLoc = Lex.getLoc();
   1424       if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
   1425 
   1426       if (ArgTy->isVoidTy())
   1427         return Error(TypeLoc, "argument can not have void type");
   1428 
   1429       if (Lex.getKind() == lltok::LocalVar) {
   1430         Name = Lex.getStrVal();
   1431         Lex.Lex();
   1432       } else {
   1433         Name = "";
   1434       }
   1435 
   1436       if (!ArgTy->isFirstClassType())
   1437         return Error(TypeLoc, "invalid type for function argument");
   1438 
   1439       ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
   1440     }
   1441   }
   1442 
   1443   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
   1444 }
   1445 
   1446 /// ParseFunctionType
   1447 ///  ::= Type ArgumentList OptionalAttrs
   1448 bool LLParser::ParseFunctionType(Type *&Result) {
   1449   assert(Lex.getKind() == lltok::lparen);
   1450 
   1451   if (!FunctionType::isValidReturnType(Result))
   1452     return TokError("invalid function return type");
   1453 
   1454   SmallVector<ArgInfo, 8> ArgList;
   1455   bool isVarArg;
   1456   if (ParseArgumentList(ArgList, isVarArg))
   1457     return true;
   1458 
   1459   // Reject names on the arguments lists.
   1460   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   1461     if (!ArgList[i].Name.empty())
   1462       return Error(ArgList[i].Loc, "argument name invalid in function type");
   1463     if (ArgList[i].Attrs)
   1464       return Error(ArgList[i].Loc,
   1465                    "argument attributes invalid in function type");
   1466   }
   1467 
   1468   SmallVector<Type*, 16> ArgListTy;
   1469   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
   1470     ArgListTy.push_back(ArgList[i].Ty);
   1471 
   1472   Result = FunctionType::get(Result, ArgListTy, isVarArg);
   1473   return false;
   1474 }
   1475 
   1476 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
   1477 /// other structs.
   1478 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
   1479   SmallVector<Type*, 8> Elts;
   1480   if (ParseStructBody(Elts)) return true;
   1481 
   1482   Result = StructType::get(Context, Elts, Packed);
   1483   return false;
   1484 }
   1485 
   1486 /// ParseStructDefinition - Parse a struct in a 'type' definition.
   1487 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
   1488                                      std::pair<Type*, LocTy> &Entry,
   1489                                      Type *&ResultTy) {
   1490   // If the type was already defined, diagnose the redefinition.
   1491   if (Entry.first && !Entry.second.isValid())
   1492     return Error(TypeLoc, "redefinition of type");
   1493 
   1494   // If we have opaque, just return without filling in the definition for the
   1495   // struct.  This counts as a definition as far as the .ll file goes.
   1496   if (EatIfPresent(lltok::kw_opaque)) {
   1497     // This type is being defined, so clear the location to indicate this.
   1498     Entry.second = SMLoc();
   1499 
   1500     // If this type number has never been uttered, create it.
   1501     if (Entry.first == 0)
   1502       Entry.first = StructType::create(Context, Name);
   1503     ResultTy = Entry.first;
   1504     return false;
   1505   }
   1506 
   1507   // If the type starts with '<', then it is either a packed struct or a vector.
   1508   bool isPacked = EatIfPresent(lltok::less);
   1509 
   1510   // If we don't have a struct, then we have a random type alias, which we
   1511   // accept for compatibility with old files.  These types are not allowed to be
   1512   // forward referenced and not allowed to be recursive.
   1513   if (Lex.getKind() != lltok::lbrace) {
   1514     if (Entry.first)
   1515       return Error(TypeLoc, "forward references to non-struct type");
   1516 
   1517     ResultTy = 0;
   1518     if (isPacked)
   1519       return ParseArrayVectorType(ResultTy, true);
   1520     return ParseType(ResultTy);
   1521   }
   1522 
   1523   // This type is being defined, so clear the location to indicate this.
   1524   Entry.second = SMLoc();
   1525 
   1526   // If this type number has never been uttered, create it.
   1527   if (Entry.first == 0)
   1528     Entry.first = StructType::create(Context, Name);
   1529 
   1530   StructType *STy = cast<StructType>(Entry.first);
   1531 
   1532   SmallVector<Type*, 8> Body;
   1533   if (ParseStructBody(Body) ||
   1534       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
   1535     return true;
   1536 
   1537   STy->setBody(Body, isPacked);
   1538   ResultTy = STy;
   1539   return false;
   1540 }
   1541 
   1542 
   1543 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
   1544 ///   StructType
   1545 ///     ::= '{' '}'
   1546 ///     ::= '{' Type (',' Type)* '}'
   1547 ///     ::= '<' '{' '}' '>'
   1548 ///     ::= '<' '{' Type (',' Type)* '}' '>'
   1549 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
   1550   assert(Lex.getKind() == lltok::lbrace);
   1551   Lex.Lex(); // Consume the '{'
   1552 
   1553   // Handle the empty struct.
   1554   if (EatIfPresent(lltok::rbrace))
   1555     return false;
   1556 
   1557   LocTy EltTyLoc = Lex.getLoc();
   1558   Type *Ty = 0;
   1559   if (ParseType(Ty)) return true;
   1560   Body.push_back(Ty);
   1561 
   1562   if (!StructType::isValidElementType(Ty))
   1563     return Error(EltTyLoc, "invalid element type for struct");
   1564 
   1565   while (EatIfPresent(lltok::comma)) {
   1566     EltTyLoc = Lex.getLoc();
   1567     if (ParseType(Ty)) return true;
   1568 
   1569     if (!StructType::isValidElementType(Ty))
   1570       return Error(EltTyLoc, "invalid element type for struct");
   1571 
   1572     Body.push_back(Ty);
   1573   }
   1574 
   1575   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
   1576 }
   1577 
   1578 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
   1579 /// token has already been consumed.
   1580 ///   Type
   1581 ///     ::= '[' APSINTVAL 'x' Types ']'
   1582 ///     ::= '<' APSINTVAL 'x' Types '>'
   1583 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
   1584   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
   1585       Lex.getAPSIntVal().getBitWidth() > 64)
   1586     return TokError("expected number in address space");
   1587 
   1588   LocTy SizeLoc = Lex.getLoc();
   1589   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
   1590   Lex.Lex();
   1591 
   1592   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
   1593       return true;
   1594 
   1595   LocTy TypeLoc = Lex.getLoc();
   1596   Type *EltTy = 0;
   1597   if (ParseType(EltTy)) return true;
   1598 
   1599   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
   1600                  "expected end of sequential type"))
   1601     return true;
   1602 
   1603   if (isVector) {
   1604     if (Size == 0)
   1605       return Error(SizeLoc, "zero element vector is illegal");
   1606     if ((unsigned)Size != Size)
   1607       return Error(SizeLoc, "size too large for vector");
   1608     if (!VectorType::isValidElementType(EltTy))
   1609       return Error(TypeLoc,
   1610        "vector element type must be fp, integer or a pointer to these types");
   1611     Result = VectorType::get(EltTy, unsigned(Size));
   1612   } else {
   1613     if (!ArrayType::isValidElementType(EltTy))
   1614       return Error(TypeLoc, "invalid array element type");
   1615     Result = ArrayType::get(EltTy, Size);
   1616   }
   1617   return false;
   1618 }
   1619 
   1620 //===----------------------------------------------------------------------===//
   1621 // Function Semantic Analysis.
   1622 //===----------------------------------------------------------------------===//
   1623 
   1624 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
   1625                                              int functionNumber)
   1626   : P(p), F(f), FunctionNumber(functionNumber) {
   1627 
   1628   // Insert unnamed arguments into the NumberedVals list.
   1629   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
   1630        AI != E; ++AI)
   1631     if (!AI->hasName())
   1632       NumberedVals.push_back(AI);
   1633 }
   1634 
   1635 LLParser::PerFunctionState::~PerFunctionState() {
   1636   // If there were any forward referenced non-basicblock values, delete them.
   1637   for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
   1638        I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
   1639     if (!isa<BasicBlock>(I->second.first)) {
   1640       I->second.first->replaceAllUsesWith(
   1641                            UndefValue::get(I->second.first->getType()));
   1642       delete I->second.first;
   1643       I->second.first = 0;
   1644     }
   1645 
   1646   for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
   1647        I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
   1648     if (!isa<BasicBlock>(I->second.first)) {
   1649       I->second.first->replaceAllUsesWith(
   1650                            UndefValue::get(I->second.first->getType()));
   1651       delete I->second.first;
   1652       I->second.first = 0;
   1653     }
   1654 }
   1655 
   1656 bool LLParser::PerFunctionState::FinishFunction() {
   1657   // Check to see if someone took the address of labels in this block.
   1658   if (!P.ForwardRefBlockAddresses.empty()) {
   1659     ValID FunctionID;
   1660     if (!F.getName().empty()) {
   1661       FunctionID.Kind = ValID::t_GlobalName;
   1662       FunctionID.StrVal = F.getName();
   1663     } else {
   1664       FunctionID.Kind = ValID::t_GlobalID;
   1665       FunctionID.UIntVal = FunctionNumber;
   1666     }
   1667 
   1668     std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
   1669       FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
   1670     if (FRBAI != P.ForwardRefBlockAddresses.end()) {
   1671       // Resolve all these references.
   1672       if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
   1673         return true;
   1674 
   1675       P.ForwardRefBlockAddresses.erase(FRBAI);
   1676     }
   1677   }
   1678 
   1679   if (!ForwardRefVals.empty())
   1680     return P.Error(ForwardRefVals.begin()->second.second,
   1681                    "use of undefined value '%" + ForwardRefVals.begin()->first +
   1682                    "'");
   1683   if (!ForwardRefValIDs.empty())
   1684     return P.Error(ForwardRefValIDs.begin()->second.second,
   1685                    "use of undefined value '%" +
   1686                    Twine(ForwardRefValIDs.begin()->first) + "'");
   1687   return false;
   1688 }
   1689 
   1690 
   1691 /// GetVal - Get a value with the specified name or ID, creating a
   1692 /// forward reference record if needed.  This can return null if the value
   1693 /// exists but does not have the right type.
   1694 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
   1695                                           Type *Ty, LocTy Loc) {
   1696   // Look this name up in the normal function symbol table.
   1697   Value *Val = F.getValueSymbolTable().lookup(Name);
   1698 
   1699   // If this is a forward reference for the value, see if we already created a
   1700   // forward ref record.
   1701   if (Val == 0) {
   1702     std::map<std::string, std::pair<Value*, LocTy> >::iterator
   1703       I = ForwardRefVals.find(Name);
   1704     if (I != ForwardRefVals.end())
   1705       Val = I->second.first;
   1706   }
   1707 
   1708   // If we have the value in the symbol table or fwd-ref table, return it.
   1709   if (Val) {
   1710     if (Val->getType() == Ty) return Val;
   1711     if (Ty->isLabelTy())
   1712       P.Error(Loc, "'%" + Name + "' is not a basic block");
   1713     else
   1714       P.Error(Loc, "'%" + Name + "' defined with type '" +
   1715               getTypeString(Val->getType()) + "'");
   1716     return 0;
   1717   }
   1718 
   1719   // Don't make placeholders with invalid type.
   1720   if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
   1721     P.Error(Loc, "invalid use of a non-first-class type");
   1722     return 0;
   1723   }
   1724 
   1725   // Otherwise, create a new forward reference for this value and remember it.
   1726   Value *FwdVal;
   1727   if (Ty->isLabelTy())
   1728     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
   1729   else
   1730     FwdVal = new Argument(Ty, Name);
   1731 
   1732   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
   1733   return FwdVal;
   1734 }
   1735 
   1736 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
   1737                                           LocTy Loc) {
   1738   // Look this name up in the normal function symbol table.
   1739   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
   1740 
   1741   // If this is a forward reference for the value, see if we already created a
   1742   // forward ref record.
   1743   if (Val == 0) {
   1744     std::map<unsigned, std::pair<Value*, LocTy> >::iterator
   1745       I = ForwardRefValIDs.find(ID);
   1746     if (I != ForwardRefValIDs.end())
   1747       Val = I->second.first;
   1748   }
   1749 
   1750   // If we have the value in the symbol table or fwd-ref table, return it.
   1751   if (Val) {
   1752     if (Val->getType() == Ty) return Val;
   1753     if (Ty->isLabelTy())
   1754       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
   1755     else
   1756       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
   1757               getTypeString(Val->getType()) + "'");
   1758     return 0;
   1759   }
   1760 
   1761   if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
   1762     P.Error(Loc, "invalid use of a non-first-class type");
   1763     return 0;
   1764   }
   1765 
   1766   // Otherwise, create a new forward reference for this value and remember it.
   1767   Value *FwdVal;
   1768   if (Ty->isLabelTy())
   1769     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
   1770   else
   1771     FwdVal = new Argument(Ty);
   1772 
   1773   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
   1774   return FwdVal;
   1775 }
   1776 
   1777 /// SetInstName - After an instruction is parsed and inserted into its
   1778 /// basic block, this installs its name.
   1779 bool LLParser::PerFunctionState::SetInstName(int NameID,
   1780                                              const std::string &NameStr,
   1781                                              LocTy NameLoc, Instruction *Inst) {
   1782   // If this instruction has void type, it cannot have a name or ID specified.
   1783   if (Inst->getType()->isVoidTy()) {
   1784     if (NameID != -1 || !NameStr.empty())
   1785       return P.Error(NameLoc, "instructions returning void cannot have a name");
   1786     return false;
   1787   }
   1788 
   1789   // If this was a numbered instruction, verify that the instruction is the
   1790   // expected value and resolve any forward references.
   1791   if (NameStr.empty()) {
   1792     // If neither a name nor an ID was specified, just use the next ID.
   1793     if (NameID == -1)
   1794       NameID = NumberedVals.size();
   1795 
   1796     if (unsigned(NameID) != NumberedVals.size())
   1797       return P.Error(NameLoc, "instruction expected to be numbered '%" +
   1798                      Twine(NumberedVals.size()) + "'");
   1799 
   1800     std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
   1801       ForwardRefValIDs.find(NameID);
   1802     if (FI != ForwardRefValIDs.end()) {
   1803       if (FI->second.first->getType() != Inst->getType())
   1804         return P.Error(NameLoc, "instruction forward referenced with type '" +
   1805                        getTypeString(FI->second.first->getType()) + "'");
   1806       FI->second.first->replaceAllUsesWith(Inst);
   1807       delete FI->second.first;
   1808       ForwardRefValIDs.erase(FI);
   1809     }
   1810 
   1811     NumberedVals.push_back(Inst);
   1812     return false;
   1813   }
   1814 
   1815   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
   1816   std::map<std::string, std::pair<Value*, LocTy> >::iterator
   1817     FI = ForwardRefVals.find(NameStr);
   1818   if (FI != ForwardRefVals.end()) {
   1819     if (FI->second.first->getType() != Inst->getType())
   1820       return P.Error(NameLoc, "instruction forward referenced with type '" +
   1821                      getTypeString(FI->second.first->getType()) + "'");
   1822     FI->second.first->replaceAllUsesWith(Inst);
   1823     delete FI->second.first;
   1824     ForwardRefVals.erase(FI);
   1825   }
   1826 
   1827   // Set the name on the instruction.
   1828   Inst->setName(NameStr);
   1829 
   1830   if (Inst->getName() != NameStr)
   1831     return P.Error(NameLoc, "multiple definition of local value named '" +
   1832                    NameStr + "'");
   1833   return false;
   1834 }
   1835 
   1836 /// GetBB - Get a basic block with the specified name or ID, creating a
   1837 /// forward reference record if needed.
   1838 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
   1839                                               LocTy Loc) {
   1840   return cast_or_null<BasicBlock>(GetVal(Name,
   1841                                         Type::getLabelTy(F.getContext()), Loc));
   1842 }
   1843 
   1844 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
   1845   return cast_or_null<BasicBlock>(GetVal(ID,
   1846                                         Type::getLabelTy(F.getContext()), Loc));
   1847 }
   1848 
   1849 /// DefineBB - Define the specified basic block, which is either named or
   1850 /// unnamed.  If there is an error, this returns null otherwise it returns
   1851 /// the block being defined.
   1852 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
   1853                                                  LocTy Loc) {
   1854   BasicBlock *BB;
   1855   if (Name.empty())
   1856     BB = GetBB(NumberedVals.size(), Loc);
   1857   else
   1858     BB = GetBB(Name, Loc);
   1859   if (BB == 0) return 0; // Already diagnosed error.
   1860 
   1861   // Move the block to the end of the function.  Forward ref'd blocks are
   1862   // inserted wherever they happen to be referenced.
   1863   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
   1864 
   1865   // Remove the block from forward ref sets.
   1866   if (Name.empty()) {
   1867     ForwardRefValIDs.erase(NumberedVals.size());
   1868     NumberedVals.push_back(BB);
   1869   } else {
   1870     // BB forward references are already in the function symbol table.
   1871     ForwardRefVals.erase(Name);
   1872   }
   1873 
   1874   return BB;
   1875 }
   1876 
   1877 //===----------------------------------------------------------------------===//
   1878 // Constants.
   1879 //===----------------------------------------------------------------------===//
   1880 
   1881 /// ParseValID - Parse an abstract value that doesn't necessarily have a
   1882 /// type implied.  For example, if we parse "4" we don't know what integer type
   1883 /// it has.  The value will later be combined with its type and checked for
   1884 /// sanity.  PFS is used to convert function-local operands of metadata (since
   1885 /// metadata operands are not just parsed here but also converted to values).
   1886 /// PFS can be null when we are not parsing metadata values inside a function.
   1887 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
   1888   ID.Loc = Lex.getLoc();
   1889   switch (Lex.getKind()) {
   1890   default: return TokError("expected value token");
   1891   case lltok::GlobalID:  // @42
   1892     ID.UIntVal = Lex.getUIntVal();
   1893     ID.Kind = ValID::t_GlobalID;
   1894     break;
   1895   case lltok::GlobalVar:  // @foo
   1896     ID.StrVal = Lex.getStrVal();
   1897     ID.Kind = ValID::t_GlobalName;
   1898     break;
   1899   case lltok::LocalVarID:  // %42
   1900     ID.UIntVal = Lex.getUIntVal();
   1901     ID.Kind = ValID::t_LocalID;
   1902     break;
   1903   case lltok::LocalVar:  // %foo
   1904     ID.StrVal = Lex.getStrVal();
   1905     ID.Kind = ValID::t_LocalName;
   1906     break;
   1907   case lltok::exclaim:   // !42, !{...}, or !"foo"
   1908     return ParseMetadataValue(ID, PFS);
   1909   case lltok::APSInt:
   1910     ID.APSIntVal = Lex.getAPSIntVal();
   1911     ID.Kind = ValID::t_APSInt;
   1912     break;
   1913   case lltok::APFloat:
   1914     ID.APFloatVal = Lex.getAPFloatVal();
   1915     ID.Kind = ValID::t_APFloat;
   1916     break;
   1917   case lltok::kw_true:
   1918     ID.ConstantVal = ConstantInt::getTrue(Context);
   1919     ID.Kind = ValID::t_Constant;
   1920     break;
   1921   case lltok::kw_false:
   1922     ID.ConstantVal = ConstantInt::getFalse(Context);
   1923     ID.Kind = ValID::t_Constant;
   1924     break;
   1925   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
   1926   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
   1927   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
   1928 
   1929   case lltok::lbrace: {
   1930     // ValID ::= '{' ConstVector '}'
   1931     Lex.Lex();
   1932     SmallVector<Constant*, 16> Elts;
   1933     if (ParseGlobalValueVector(Elts) ||
   1934         ParseToken(lltok::rbrace, "expected end of struct constant"))
   1935       return true;
   1936 
   1937     ID.ConstantStructElts = new Constant*[Elts.size()];
   1938     ID.UIntVal = Elts.size();
   1939     memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
   1940     ID.Kind = ValID::t_ConstantStruct;
   1941     return false;
   1942   }
   1943   case lltok::less: {
   1944     // ValID ::= '<' ConstVector '>'         --> Vector.
   1945     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
   1946     Lex.Lex();
   1947     bool isPackedStruct = EatIfPresent(lltok::lbrace);
   1948 
   1949     SmallVector<Constant*, 16> Elts;
   1950     LocTy FirstEltLoc = Lex.getLoc();
   1951     if (ParseGlobalValueVector(Elts) ||
   1952         (isPackedStruct &&
   1953          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
   1954         ParseToken(lltok::greater, "expected end of constant"))
   1955       return true;
   1956 
   1957     if (isPackedStruct) {
   1958       ID.ConstantStructElts = new Constant*[Elts.size()];
   1959       memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
   1960       ID.UIntVal = Elts.size();
   1961       ID.Kind = ValID::t_PackedConstantStruct;
   1962       return false;
   1963     }
   1964 
   1965     if (Elts.empty())
   1966       return Error(ID.Loc, "constant vector must not be empty");
   1967 
   1968     if (!Elts[0]->getType()->isIntegerTy() &&
   1969         !Elts[0]->getType()->isFloatingPointTy() &&
   1970         !Elts[0]->getType()->isPointerTy())
   1971       return Error(FirstEltLoc,
   1972             "vector elements must have integer, pointer or floating point type");
   1973 
   1974     // Verify that all the vector elements have the same type.
   1975     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
   1976       if (Elts[i]->getType() != Elts[0]->getType())
   1977         return Error(FirstEltLoc,
   1978                      "vector element #" + Twine(i) +
   1979                     " is not of type '" + getTypeString(Elts[0]->getType()));
   1980 
   1981     ID.ConstantVal = ConstantVector::get(Elts);
   1982     ID.Kind = ValID::t_Constant;
   1983     return false;
   1984   }
   1985   case lltok::lsquare: {   // Array Constant
   1986     Lex.Lex();
   1987     SmallVector<Constant*, 16> Elts;
   1988     LocTy FirstEltLoc = Lex.getLoc();
   1989     if (ParseGlobalValueVector(Elts) ||
   1990         ParseToken(lltok::rsquare, "expected end of array constant"))
   1991       return true;
   1992 
   1993     // Handle empty element.
   1994     if (Elts.empty()) {
   1995       // Use undef instead of an array because it's inconvenient to determine
   1996       // the element type at this point, there being no elements to examine.
   1997       ID.Kind = ValID::t_EmptyArray;
   1998       return false;
   1999     }
   2000 
   2001     if (!Elts[0]->getType()->isFirstClassType())
   2002       return Error(FirstEltLoc, "invalid array element type: " +
   2003                    getTypeString(Elts[0]->getType()));
   2004 
   2005     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
   2006 
   2007     // Verify all elements are correct type!
   2008     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
   2009       if (Elts[i]->getType() != Elts[0]->getType())
   2010         return Error(FirstEltLoc,
   2011                      "array element #" + Twine(i) +
   2012                      " is not of type '" + getTypeString(Elts[0]->getType()));
   2013     }
   2014 
   2015     ID.ConstantVal = ConstantArray::get(ATy, Elts);
   2016     ID.Kind = ValID::t_Constant;
   2017     return false;
   2018   }
   2019   case lltok::kw_c:  // c "foo"
   2020     Lex.Lex();
   2021     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
   2022                                                   false);
   2023     if (ParseToken(lltok::StringConstant, "expected string")) return true;
   2024     ID.Kind = ValID::t_Constant;
   2025     return false;
   2026 
   2027   case lltok::kw_asm: {
   2028     // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
   2029     bool HasSideEffect, AlignStack;
   2030     Lex.Lex();
   2031     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
   2032         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
   2033         ParseStringConstant(ID.StrVal) ||
   2034         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
   2035         ParseToken(lltok::StringConstant, "expected constraint string"))
   2036       return true;
   2037     ID.StrVal2 = Lex.getStrVal();
   2038     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
   2039     ID.Kind = ValID::t_InlineAsm;
   2040     return false;
   2041   }
   2042 
   2043   case lltok::kw_blockaddress: {
   2044     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
   2045     Lex.Lex();
   2046 
   2047     ValID Fn, Label;
   2048     LocTy FnLoc, LabelLoc;
   2049 
   2050     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
   2051         ParseValID(Fn) ||
   2052         ParseToken(lltok::comma, "expected comma in block address expression")||
   2053         ParseValID(Label) ||
   2054         ParseToken(lltok::rparen, "expected ')' in block address expression"))
   2055       return true;
   2056 
   2057     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
   2058       return Error(Fn.Loc, "expected function name in blockaddress");
   2059     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
   2060       return Error(Label.Loc, "expected basic block name in blockaddress");
   2061 
   2062     // Make a global variable as a placeholder for this reference.
   2063     GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
   2064                                            false, GlobalValue::InternalLinkage,
   2065                                                 0, "");
   2066     ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
   2067     ID.ConstantVal = FwdRef;
   2068     ID.Kind = ValID::t_Constant;
   2069     return false;
   2070   }
   2071 
   2072   case lltok::kw_trunc:
   2073   case lltok::kw_zext:
   2074   case lltok::kw_sext:
   2075   case lltok::kw_fptrunc:
   2076   case lltok::kw_fpext:
   2077   case lltok::kw_bitcast:
   2078   case lltok::kw_uitofp:
   2079   case lltok::kw_sitofp:
   2080   case lltok::kw_fptoui:
   2081   case lltok::kw_fptosi:
   2082   case lltok::kw_inttoptr:
   2083   case lltok::kw_ptrtoint: {
   2084     unsigned Opc = Lex.getUIntVal();
   2085     Type *DestTy = 0;
   2086     Constant *SrcVal;
   2087     Lex.Lex();
   2088     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
   2089         ParseGlobalTypeAndValue(SrcVal) ||
   2090         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
   2091         ParseType(DestTy) ||
   2092         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
   2093       return true;
   2094     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
   2095       return Error(ID.Loc, "invalid cast opcode for cast from '" +
   2096                    getTypeString(SrcVal->getType()) + "' to '" +
   2097                    getTypeString(DestTy) + "'");
   2098     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
   2099                                                  SrcVal, DestTy);
   2100     ID.Kind = ValID::t_Constant;
   2101     return false;
   2102   }
   2103   case lltok::kw_extractvalue: {
   2104     Lex.Lex();
   2105     Constant *Val;
   2106     SmallVector<unsigned, 4> Indices;
   2107     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
   2108         ParseGlobalTypeAndValue(Val) ||
   2109         ParseIndexList(Indices) ||
   2110         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
   2111       return true;
   2112 
   2113     if (!Val->getType()->isAggregateType())
   2114       return Error(ID.Loc, "extractvalue operand must be aggregate type");
   2115     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
   2116       return Error(ID.Loc, "invalid indices for extractvalue");
   2117     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
   2118     ID.Kind = ValID::t_Constant;
   2119     return false;
   2120   }
   2121   case lltok::kw_insertvalue: {
   2122     Lex.Lex();
   2123     Constant *Val0, *Val1;
   2124     SmallVector<unsigned, 4> Indices;
   2125     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
   2126         ParseGlobalTypeAndValue(Val0) ||
   2127         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
   2128         ParseGlobalTypeAndValue(Val1) ||
   2129         ParseIndexList(Indices) ||
   2130         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
   2131       return true;
   2132     if (!Val0->getType()->isAggregateType())
   2133       return Error(ID.Loc, "insertvalue operand must be aggregate type");
   2134     if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
   2135       return Error(ID.Loc, "invalid indices for insertvalue");
   2136     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
   2137     ID.Kind = ValID::t_Constant;
   2138     return false;
   2139   }
   2140   case lltok::kw_icmp:
   2141   case lltok::kw_fcmp: {
   2142     unsigned PredVal, Opc = Lex.getUIntVal();
   2143     Constant *Val0, *Val1;
   2144     Lex.Lex();
   2145     if (ParseCmpPredicate(PredVal, Opc) ||
   2146         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
   2147         ParseGlobalTypeAndValue(Val0) ||
   2148         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
   2149         ParseGlobalTypeAndValue(Val1) ||
   2150         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
   2151       return true;
   2152 
   2153     if (Val0->getType() != Val1->getType())
   2154       return Error(ID.Loc, "compare operands must have the same type");
   2155 
   2156     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
   2157 
   2158     if (Opc == Instruction::FCmp) {
   2159       if (!Val0->getType()->isFPOrFPVectorTy())
   2160         return Error(ID.Loc, "fcmp requires floating point operands");
   2161       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
   2162     } else {
   2163       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
   2164       if (!Val0->getType()->isIntOrIntVectorTy() &&
   2165           !Val0->getType()->getScalarType()->isPointerTy())
   2166         return Error(ID.Loc, "icmp requires pointer or integer operands");
   2167       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
   2168     }
   2169     ID.Kind = ValID::t_Constant;
   2170     return false;
   2171   }
   2172 
   2173   // Binary Operators.
   2174   case lltok::kw_add:
   2175   case lltok::kw_fadd:
   2176   case lltok::kw_sub:
   2177   case lltok::kw_fsub:
   2178   case lltok::kw_mul:
   2179   case lltok::kw_fmul:
   2180   case lltok::kw_udiv:
   2181   case lltok::kw_sdiv:
   2182   case lltok::kw_fdiv:
   2183   case lltok::kw_urem:
   2184   case lltok::kw_srem:
   2185   case lltok::kw_frem:
   2186   case lltok::kw_shl:
   2187   case lltok::kw_lshr:
   2188   case lltok::kw_ashr: {
   2189     bool NUW = false;
   2190     bool NSW = false;
   2191     bool Exact = false;
   2192     unsigned Opc = Lex.getUIntVal();
   2193     Constant *Val0, *Val1;
   2194     Lex.Lex();
   2195     LocTy ModifierLoc = Lex.getLoc();
   2196     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
   2197         Opc == Instruction::Mul || Opc == Instruction::Shl) {
   2198       if (EatIfPresent(lltok::kw_nuw))
   2199         NUW = true;
   2200       if (EatIfPresent(lltok::kw_nsw)) {
   2201         NSW = true;
   2202         if (EatIfPresent(lltok::kw_nuw))
   2203           NUW = true;
   2204       }
   2205     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
   2206                Opc == Instruction::LShr || Opc == Instruction::AShr) {
   2207       if (EatIfPresent(lltok::kw_exact))
   2208         Exact = true;
   2209     }
   2210     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
   2211         ParseGlobalTypeAndValue(Val0) ||
   2212         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
   2213         ParseGlobalTypeAndValue(Val1) ||
   2214         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
   2215       return true;
   2216     if (Val0->getType() != Val1->getType())
   2217       return Error(ID.Loc, "operands of constexpr must have same type");
   2218     if (!Val0->getType()->isIntOrIntVectorTy()) {
   2219       if (NUW)
   2220         return Error(ModifierLoc, "nuw only applies to integer operations");
   2221       if (NSW)
   2222         return Error(ModifierLoc, "nsw only applies to integer operations");
   2223     }
   2224     // Check that the type is valid for the operator.
   2225     switch (Opc) {
   2226     case Instruction::Add:
   2227     case Instruction::Sub:
   2228     case Instruction::Mul:
   2229     case Instruction::UDiv:
   2230     case Instruction::SDiv:
   2231     case Instruction::URem:
   2232     case Instruction::SRem:
   2233     case Instruction::Shl:
   2234     case Instruction::AShr:
   2235     case Instruction::LShr:
   2236       if (!Val0->getType()->isIntOrIntVectorTy())
   2237         return Error(ID.Loc, "constexpr requires integer operands");
   2238       break;
   2239     case Instruction::FAdd:
   2240     case Instruction::FSub:
   2241     case Instruction::FMul:
   2242     case Instruction::FDiv:
   2243     case Instruction::FRem:
   2244       if (!Val0->getType()->isFPOrFPVectorTy())
   2245         return Error(ID.Loc, "constexpr requires fp operands");
   2246       break;
   2247     default: llvm_unreachable("Unknown binary operator!");
   2248     }
   2249     unsigned Flags = 0;
   2250     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
   2251     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
   2252     if (Exact) Flags |= PossiblyExactOperator::IsExact;
   2253     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
   2254     ID.ConstantVal = C;
   2255     ID.Kind = ValID::t_Constant;
   2256     return false;
   2257   }
   2258 
   2259   // Logical Operations
   2260   case lltok::kw_and:
   2261   case lltok::kw_or:
   2262   case lltok::kw_xor: {
   2263     unsigned Opc = Lex.getUIntVal();
   2264     Constant *Val0, *Val1;
   2265     Lex.Lex();
   2266     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
   2267         ParseGlobalTypeAndValue(Val0) ||
   2268         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
   2269         ParseGlobalTypeAndValue(Val1) ||
   2270         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
   2271       return true;
   2272     if (Val0->getType() != Val1->getType())
   2273       return Error(ID.Loc, "operands of constexpr must have same type");
   2274     if (!Val0->getType()->isIntOrIntVectorTy())
   2275       return Error(ID.Loc,
   2276                    "constexpr requires integer or integer vector operands");
   2277     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
   2278     ID.Kind = ValID::t_Constant;
   2279     return false;
   2280   }
   2281 
   2282   case lltok::kw_getelementptr:
   2283   case lltok::kw_shufflevector:
   2284   case lltok::kw_insertelement:
   2285   case lltok::kw_extractelement:
   2286   case lltok::kw_select: {
   2287     unsigned Opc = Lex.getUIntVal();
   2288     SmallVector<Constant*, 16> Elts;
   2289     bool InBounds = false;
   2290     Lex.Lex();
   2291     if (Opc == Instruction::GetElementPtr)
   2292       InBounds = EatIfPresent(lltok::kw_inbounds);
   2293     if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
   2294         ParseGlobalValueVector(Elts) ||
   2295         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
   2296       return true;
   2297 
   2298     if (Opc == Instruction::GetElementPtr) {
   2299       if (Elts.size() == 0 ||
   2300           !Elts[0]->getType()->getScalarType()->isPointerTy())
   2301         return Error(ID.Loc, "getelementptr requires pointer operand");
   2302 
   2303       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
   2304       if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
   2305         return Error(ID.Loc, "invalid indices for getelementptr");
   2306       ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
   2307                                                       InBounds);
   2308     } else if (Opc == Instruction::Select) {
   2309       if (Elts.size() != 3)
   2310         return Error(ID.Loc, "expected three operands to select");
   2311       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
   2312                                                               Elts[2]))
   2313         return Error(ID.Loc, Reason);
   2314       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
   2315     } else if (Opc == Instruction::ShuffleVector) {
   2316       if (Elts.size() != 3)
   2317         return Error(ID.Loc, "expected three operands to shufflevector");
   2318       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
   2319         return Error(ID.Loc, "invalid operands to shufflevector");
   2320       ID.ConstantVal =
   2321                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
   2322     } else if (Opc == Instruction::ExtractElement) {
   2323       if (Elts.size() != 2)
   2324         return Error(ID.Loc, "expected two operands to extractelement");
   2325       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
   2326         return Error(ID.Loc, "invalid extractelement operands");
   2327       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
   2328     } else {
   2329       assert(Opc == Instruction::InsertElement && "Unknown opcode");
   2330       if (Elts.size() != 3)
   2331       return Error(ID.Loc, "expected three operands to insertelement");
   2332       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
   2333         return Error(ID.Loc, "invalid insertelement operands");
   2334       ID.ConstantVal =
   2335                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
   2336     }
   2337 
   2338     ID.Kind = ValID::t_Constant;
   2339     return false;
   2340   }
   2341   }
   2342 
   2343   Lex.Lex();
   2344   return false;
   2345 }
   2346 
   2347 /// ParseGlobalValue - Parse a global value with the specified type.
   2348 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
   2349   C = 0;
   2350   ValID ID;
   2351   Value *V = NULL;
   2352   bool Parsed = ParseValID(ID) ||
   2353                 ConvertValIDToValue(Ty, ID, V, NULL);
   2354   if (V && !(C = dyn_cast<Constant>(V)))
   2355     return Error(ID.Loc, "global values must be constants");
   2356   return Parsed;
   2357 }
   2358 
   2359 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
   2360   Type *Ty = 0;
   2361   return ParseType(Ty) ||
   2362          ParseGlobalValue(Ty, V);
   2363 }
   2364 
   2365 /// ParseGlobalValueVector
   2366 ///   ::= /*empty*/
   2367 ///   ::= TypeAndValue (',' TypeAndValue)*
   2368 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
   2369   // Empty list.
   2370   if (Lex.getKind() == lltok::rbrace ||
   2371       Lex.getKind() == lltok::rsquare ||
   2372       Lex.getKind() == lltok::greater ||
   2373       Lex.getKind() == lltok::rparen)
   2374     return false;
   2375 
   2376   Constant *C;
   2377   if (ParseGlobalTypeAndValue(C)) return true;
   2378   Elts.push_back(C);
   2379 
   2380   while (EatIfPresent(lltok::comma)) {
   2381     if (ParseGlobalTypeAndValue(C)) return true;
   2382     Elts.push_back(C);
   2383   }
   2384 
   2385   return false;
   2386 }
   2387 
   2388 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
   2389   assert(Lex.getKind() == lltok::lbrace);
   2390   Lex.Lex();
   2391 
   2392   SmallVector<Value*, 16> Elts;
   2393   if (ParseMDNodeVector(Elts, PFS) ||
   2394       ParseToken(lltok::rbrace, "expected end of metadata node"))
   2395     return true;
   2396 
   2397   ID.MDNodeVal = MDNode::get(Context, Elts);
   2398   ID.Kind = ValID::t_MDNode;
   2399   return false;
   2400 }
   2401 
   2402 /// ParseMetadataValue
   2403 ///  ::= !42
   2404 ///  ::= !{...}
   2405 ///  ::= !"string"
   2406 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
   2407   assert(Lex.getKind() == lltok::exclaim);
   2408   Lex.Lex();
   2409 
   2410   // MDNode:
   2411   // !{ ... }
   2412   if (Lex.getKind() == lltok::lbrace)
   2413     return ParseMetadataListValue(ID, PFS);
   2414 
   2415   // Standalone metadata reference
   2416   // !42
   2417   if (Lex.getKind() == lltok::APSInt) {
   2418     if (ParseMDNodeID(ID.MDNodeVal)) return true;
   2419     ID.Kind = ValID::t_MDNode;
   2420     return false;
   2421   }
   2422 
   2423   // MDString:
   2424   //   ::= '!' STRINGCONSTANT
   2425   if (ParseMDString(ID.MDStringVal)) return true;
   2426   ID.Kind = ValID::t_MDString;
   2427   return false;
   2428 }
   2429 
   2430 
   2431 //===----------------------------------------------------------------------===//
   2432 // Function Parsing.
   2433 //===----------------------------------------------------------------------===//
   2434 
   2435 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
   2436                                    PerFunctionState *PFS) {
   2437   if (Ty->isFunctionTy())
   2438     return Error(ID.Loc, "functions are not values, refer to them as pointers");
   2439 
   2440   switch (ID.Kind) {
   2441   case ValID::t_LocalID:
   2442     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
   2443     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
   2444     return (V == 0);
   2445   case ValID::t_LocalName:
   2446     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
   2447     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
   2448     return (V == 0);
   2449   case ValID::t_InlineAsm: {
   2450     PointerType *PTy = dyn_cast<PointerType>(Ty);
   2451     FunctionType *FTy =
   2452       PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
   2453     if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
   2454       return Error(ID.Loc, "invalid type for inline asm constraint string");
   2455     V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
   2456     return false;
   2457   }
   2458   case ValID::t_MDNode:
   2459     if (!Ty->isMetadataTy())
   2460       return Error(ID.Loc, "metadata value must have metadata type");
   2461     V = ID.MDNodeVal;
   2462     return false;
   2463   case ValID::t_MDString:
   2464     if (!Ty->isMetadataTy())
   2465       return Error(ID.Loc, "metadata value must have metadata type");
   2466     V = ID.MDStringVal;
   2467     return false;
   2468   case ValID::t_GlobalName:
   2469     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
   2470     return V == 0;
   2471   case ValID::t_GlobalID:
   2472     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
   2473     return V == 0;
   2474   case ValID::t_APSInt:
   2475     if (!Ty->isIntegerTy())
   2476       return Error(ID.Loc, "integer constant must have integer type");
   2477     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
   2478     V = ConstantInt::get(Context, ID.APSIntVal);
   2479     return false;
   2480   case ValID::t_APFloat:
   2481     if (!Ty->isFloatingPointTy() ||
   2482         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
   2483       return Error(ID.Loc, "floating point constant invalid for type");
   2484 
   2485     // The lexer has no type info, so builds all half, float, and double FP
   2486     // constants as double.  Fix this here.  Long double does not need this.
   2487     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
   2488       bool Ignored;
   2489       if (Ty->isHalfTy())
   2490         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
   2491                               &Ignored);
   2492       else if (Ty->isFloatTy())
   2493         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
   2494                               &Ignored);
   2495     }
   2496     V = ConstantFP::get(Context, ID.APFloatVal);
   2497 
   2498     if (V->getType() != Ty)
   2499       return Error(ID.Loc, "floating point constant does not have type '" +
   2500                    getTypeString(Ty) + "'");
   2501 
   2502     return false;
   2503   case ValID::t_Null:
   2504     if (!Ty->isPointerTy())
   2505       return Error(ID.Loc, "null must be a pointer type");
   2506     V = ConstantPointerNull::get(cast<PointerType>(Ty));
   2507     return false;
   2508   case ValID::t_Undef:
   2509     // FIXME: LabelTy should not be a first-class type.
   2510     if (!Ty->isFirstClassType() || Ty->isLabelTy())
   2511       return Error(ID.Loc, "invalid type for undef constant");
   2512     V = UndefValue::get(Ty);
   2513     return false;
   2514   case ValID::t_EmptyArray:
   2515     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
   2516       return Error(ID.Loc, "invalid empty array initializer");
   2517     V = UndefValue::get(Ty);
   2518     return false;
   2519   case ValID::t_Zero:
   2520     // FIXME: LabelTy should not be a first-class type.
   2521     if (!Ty->isFirstClassType() || Ty->isLabelTy())
   2522       return Error(ID.Loc, "invalid type for null constant");
   2523     V = Constant::getNullValue(Ty);
   2524     return false;
   2525   case ValID::t_Constant:
   2526     if (ID.ConstantVal->getType() != Ty)
   2527       return Error(ID.Loc, "constant expression type mismatch");
   2528 
   2529     V = ID.ConstantVal;
   2530     return false;
   2531   case ValID::t_ConstantStruct:
   2532   case ValID::t_PackedConstantStruct:
   2533     if (StructType *ST = dyn_cast<StructType>(Ty)) {
   2534       if (ST->getNumElements() != ID.UIntVal)
   2535         return Error(ID.Loc,
   2536                      "initializer with struct type has wrong # elements");
   2537       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
   2538         return Error(ID.Loc, "packed'ness of initializer and type don't match");
   2539 
   2540       // Verify that the elements are compatible with the structtype.
   2541       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
   2542         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
   2543           return Error(ID.Loc, "element " + Twine(i) +
   2544                     " of struct initializer doesn't match struct element type");
   2545 
   2546       V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
   2547                                                ID.UIntVal));
   2548     } else
   2549       return Error(ID.Loc, "constant expression type mismatch");
   2550     return false;
   2551   }
   2552   llvm_unreachable("Invalid ValID");
   2553 }
   2554 
   2555 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
   2556   V = 0;
   2557   ValID ID;
   2558   return ParseValID(ID, PFS) ||
   2559          ConvertValIDToValue(Ty, ID, V, PFS);
   2560 }
   2561 
   2562 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
   2563   Type *Ty = 0;
   2564   return ParseType(Ty) ||
   2565          ParseValue(Ty, V, PFS);
   2566 }
   2567 
   2568 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
   2569                                       PerFunctionState &PFS) {
   2570   Value *V;
   2571   Loc = Lex.getLoc();
   2572   if (ParseTypeAndValue(V, PFS)) return true;
   2573   if (!isa<BasicBlock>(V))
   2574     return Error(Loc, "expected a basic block");
   2575   BB = cast<BasicBlock>(V);
   2576   return false;
   2577 }
   2578 
   2579 
   2580 /// FunctionHeader
   2581 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
   2582 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
   2583 ///       OptionalAlign OptGC
   2584 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
   2585   // Parse the linkage.
   2586   LocTy LinkageLoc = Lex.getLoc();
   2587   unsigned Linkage;
   2588 
   2589   unsigned Visibility;
   2590   Attributes RetAttrs;
   2591   CallingConv::ID CC;
   2592   Type *RetType = 0;
   2593   LocTy RetTypeLoc = Lex.getLoc();
   2594   if (ParseOptionalLinkage(Linkage) ||
   2595       ParseOptionalVisibility(Visibility) ||
   2596       ParseOptionalCallingConv(CC) ||
   2597       ParseOptionalAttrs(RetAttrs, 1) ||
   2598       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
   2599     return true;
   2600 
   2601   // Verify that the linkage is ok.
   2602   switch ((GlobalValue::LinkageTypes)Linkage) {
   2603   case GlobalValue::ExternalLinkage:
   2604     break; // always ok.
   2605   case GlobalValue::DLLImportLinkage:
   2606   case GlobalValue::ExternalWeakLinkage:
   2607     if (isDefine)
   2608       return Error(LinkageLoc, "invalid linkage for function definition");
   2609     break;
   2610   case GlobalValue::PrivateLinkage:
   2611   case GlobalValue::LinkerPrivateLinkage:
   2612   case GlobalValue::LinkerPrivateWeakLinkage:
   2613   case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
   2614   case GlobalValue::InternalLinkage:
   2615   case GlobalValue::AvailableExternallyLinkage:
   2616   case GlobalValue::LinkOnceAnyLinkage:
   2617   case GlobalValue::LinkOnceODRLinkage:
   2618   case GlobalValue::WeakAnyLinkage:
   2619   case GlobalValue::WeakODRLinkage:
   2620   case GlobalValue::DLLExportLinkage:
   2621     if (!isDefine)
   2622       return Error(LinkageLoc, "invalid linkage for function declaration");
   2623     break;
   2624   case GlobalValue::AppendingLinkage:
   2625   case GlobalValue::CommonLinkage:
   2626     return Error(LinkageLoc, "invalid function linkage type");
   2627   }
   2628 
   2629   if (!FunctionType::isValidReturnType(RetType))
   2630     return Error(RetTypeLoc, "invalid function return type");
   2631 
   2632   LocTy NameLoc = Lex.getLoc();
   2633 
   2634   std::string FunctionName;
   2635   if (Lex.getKind() == lltok::GlobalVar) {
   2636     FunctionName = Lex.getStrVal();
   2637   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
   2638     unsigned NameID = Lex.getUIntVal();
   2639 
   2640     if (NameID != NumberedVals.size())
   2641       return TokError("function expected to be numbered '%" +
   2642                       Twine(NumberedVals.size()) + "'");
   2643   } else {
   2644     return TokError("expected function name");
   2645   }
   2646 
   2647   Lex.Lex();
   2648 
   2649   if (Lex.getKind() != lltok::lparen)
   2650     return TokError("expected '(' in function argument list");
   2651 
   2652   SmallVector<ArgInfo, 8> ArgList;
   2653   bool isVarArg;
   2654   Attributes FuncAttrs;
   2655   std::string Section;
   2656   unsigned Alignment;
   2657   std::string GC;
   2658   bool UnnamedAddr;
   2659   LocTy UnnamedAddrLoc;
   2660 
   2661   if (ParseArgumentList(ArgList, isVarArg) ||
   2662       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
   2663                          &UnnamedAddrLoc) ||
   2664       ParseOptionalAttrs(FuncAttrs, 2) ||
   2665       (EatIfPresent(lltok::kw_section) &&
   2666        ParseStringConstant(Section)) ||
   2667       ParseOptionalAlignment(Alignment) ||
   2668       (EatIfPresent(lltok::kw_gc) &&
   2669        ParseStringConstant(GC)))
   2670     return true;
   2671 
   2672   // If the alignment was parsed as an attribute, move to the alignment field.
   2673   if (FuncAttrs & Attribute::Alignment) {
   2674     Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
   2675     FuncAttrs &= ~Attribute::Alignment;
   2676   }
   2677 
   2678   // Okay, if we got here, the function is syntactically valid.  Convert types
   2679   // and do semantic checks.
   2680   std::vector<Type*> ParamTypeList;
   2681   SmallVector<AttributeWithIndex, 8> Attrs;
   2682 
   2683   if (RetAttrs != Attribute::None)
   2684     Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
   2685 
   2686   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   2687     ParamTypeList.push_back(ArgList[i].Ty);
   2688     if (ArgList[i].Attrs != Attribute::None)
   2689       Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
   2690   }
   2691 
   2692   if (FuncAttrs != Attribute::None)
   2693     Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
   2694 
   2695   AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
   2696 
   2697   if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
   2698     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
   2699 
   2700   FunctionType *FT =
   2701     FunctionType::get(RetType, ParamTypeList, isVarArg);
   2702   PointerType *PFT = PointerType::getUnqual(FT);
   2703 
   2704   Fn = 0;
   2705   if (!FunctionName.empty()) {
   2706     // If this was a definition of a forward reference, remove the definition
   2707     // from the forward reference table and fill in the forward ref.
   2708     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
   2709       ForwardRefVals.find(FunctionName);
   2710     if (FRVI != ForwardRefVals.end()) {
   2711       Fn = M->getFunction(FunctionName);
   2712       if (Fn->getType() != PFT)
   2713         return Error(FRVI->second.second, "invalid forward reference to "
   2714                      "function '" + FunctionName + "' with wrong type!");
   2715 
   2716       ForwardRefVals.erase(FRVI);
   2717     } else if ((Fn = M->getFunction(FunctionName))) {
   2718       // Reject redefinitions.
   2719       return Error(NameLoc, "invalid redefinition of function '" +
   2720                    FunctionName + "'");
   2721     } else if (M->getNamedValue(FunctionName)) {
   2722       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
   2723     }
   2724 
   2725   } else {
   2726     // If this is a definition of a forward referenced function, make sure the
   2727     // types agree.
   2728     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
   2729       = ForwardRefValIDs.find(NumberedVals.size());
   2730     if (I != ForwardRefValIDs.end()) {
   2731       Fn = cast<Function>(I->second.first);
   2732       if (Fn->getType() != PFT)
   2733         return Error(NameLoc, "type of definition and forward reference of '@" +
   2734                      Twine(NumberedVals.size()) + "' disagree");
   2735       ForwardRefValIDs.erase(I);
   2736     }
   2737   }
   2738 
   2739   if (Fn == 0)
   2740     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
   2741   else // Move the forward-reference to the correct spot in the module.
   2742     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
   2743 
   2744   if (FunctionName.empty())
   2745     NumberedVals.push_back(Fn);
   2746 
   2747   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
   2748   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
   2749   Fn->setCallingConv(CC);
   2750   Fn->setAttributes(PAL);
   2751   Fn->setUnnamedAddr(UnnamedAddr);
   2752   Fn->setAlignment(Alignment);
   2753   Fn->setSection(Section);
   2754   if (!GC.empty()) Fn->setGC(GC.c_str());
   2755 
   2756   // Add all of the arguments we parsed to the function.
   2757   Function::arg_iterator ArgIt = Fn->arg_begin();
   2758   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
   2759     // If the argument has a name, insert it into the argument symbol table.
   2760     if (ArgList[i].Name.empty()) continue;
   2761 
   2762     // Set the name, if it conflicted, it will be auto-renamed.
   2763     ArgIt->setName(ArgList[i].Name);
   2764 
   2765     if (ArgIt->getName() != ArgList[i].Name)
   2766       return Error(ArgList[i].Loc, "redefinition of argument '%" +
   2767                    ArgList[i].Name + "'");
   2768   }
   2769 
   2770   return false;
   2771 }
   2772 
   2773 
   2774 /// ParseFunctionBody
   2775 ///   ::= '{' BasicBlock+ '}'
   2776 ///
   2777 bool LLParser::ParseFunctionBody(Function &Fn) {
   2778   if (Lex.getKind() != lltok::lbrace)
   2779     return TokError("expected '{' in function body");
   2780   Lex.Lex();  // eat the {.
   2781 
   2782   int FunctionNumber = -1;
   2783   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
   2784 
   2785   PerFunctionState PFS(*this, Fn, FunctionNumber);
   2786 
   2787   // We need at least one basic block.
   2788   if (Lex.getKind() == lltok::rbrace)
   2789     return TokError("function body requires at least one basic block");
   2790 
   2791   while (Lex.getKind() != lltok::rbrace)
   2792     if (ParseBasicBlock(PFS)) return true;
   2793 
   2794   // Eat the }.
   2795   Lex.Lex();
   2796 
   2797   // Verify function is ok.
   2798   return PFS.FinishFunction();
   2799 }
   2800 
   2801 /// ParseBasicBlock
   2802 ///   ::= LabelStr? Instruction*
   2803 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
   2804   // If this basic block starts out with a name, remember it.
   2805   std::string Name;
   2806   LocTy NameLoc = Lex.getLoc();
   2807   if (Lex.getKind() == lltok::LabelStr) {
   2808     Name = Lex.getStrVal();
   2809     Lex.Lex();
   2810   }
   2811 
   2812   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
   2813   if (BB == 0) return true;
   2814 
   2815   std::string NameStr;
   2816 
   2817   // Parse the instructions in this block until we get a terminator.
   2818   Instruction *Inst;
   2819   SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
   2820   do {
   2821     // This instruction may have three possibilities for a name: a) none
   2822     // specified, b) name specified "%foo =", c) number specified: "%4 =".
   2823     LocTy NameLoc = Lex.getLoc();
   2824     int NameID = -1;
   2825     NameStr = "";
   2826 
   2827     if (Lex.getKind() == lltok::LocalVarID) {
   2828       NameID = Lex.getUIntVal();
   2829       Lex.Lex();
   2830       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
   2831         return true;
   2832     } else if (Lex.getKind() == lltok::LocalVar) {
   2833       NameStr = Lex.getStrVal();
   2834       Lex.Lex();
   2835       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
   2836         return true;
   2837     }
   2838 
   2839     switch (ParseInstruction(Inst, BB, PFS)) {
   2840     default: llvm_unreachable("Unknown ParseInstruction result!");
   2841     case InstError: return true;
   2842     case InstNormal:
   2843       BB->getInstList().push_back(Inst);
   2844 
   2845       // With a normal result, we check to see if the instruction is followed by
   2846       // a comma and metadata.
   2847       if (EatIfPresent(lltok::comma))
   2848         if (ParseInstructionMetadata(Inst, &PFS))
   2849           return true;
   2850       break;
   2851     case InstExtraComma:
   2852       BB->getInstList().push_back(Inst);
   2853 
   2854       // If the instruction parser ate an extra comma at the end of it, it
   2855       // *must* be followed by metadata.
   2856       if (ParseInstructionMetadata(Inst, &PFS))
   2857         return true;
   2858       break;
   2859     }
   2860 
   2861     // Set the name on the instruction.
   2862     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
   2863   } while (!isa<TerminatorInst>(Inst));
   2864 
   2865   return false;
   2866 }
   2867 
   2868 //===----------------------------------------------------------------------===//
   2869 // Instruction Parsing.
   2870 //===----------------------------------------------------------------------===//
   2871 
   2872 /// ParseInstruction - Parse one of the many different instructions.
   2873 ///
   2874 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
   2875                                PerFunctionState &PFS) {
   2876   lltok::Kind Token = Lex.getKind();
   2877   if (Token == lltok::Eof)
   2878     return TokError("found end of file when expecting more instructions");
   2879   LocTy Loc = Lex.getLoc();
   2880   unsigned KeywordVal = Lex.getUIntVal();
   2881   Lex.Lex();  // Eat the keyword.
   2882 
   2883   switch (Token) {
   2884   default:                    return Error(Loc, "expected instruction opcode");
   2885   // Terminator Instructions.
   2886   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
   2887   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
   2888   case lltok::kw_br:          return ParseBr(Inst, PFS);
   2889   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
   2890   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
   2891   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
   2892   case lltok::kw_resume:      return ParseResume(Inst, PFS);
   2893   // Binary Operators.
   2894   case lltok::kw_add:
   2895   case lltok::kw_sub:
   2896   case lltok::kw_mul:
   2897   case lltok::kw_shl: {
   2898     bool NUW = EatIfPresent(lltok::kw_nuw);
   2899     bool NSW = EatIfPresent(lltok::kw_nsw);
   2900     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
   2901 
   2902     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
   2903 
   2904     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
   2905     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
   2906     return false;
   2907   }
   2908   case lltok::kw_fadd:
   2909   case lltok::kw_fsub:
   2910   case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
   2911 
   2912   case lltok::kw_sdiv:
   2913   case lltok::kw_udiv:
   2914   case lltok::kw_lshr:
   2915   case lltok::kw_ashr: {
   2916     bool Exact = EatIfPresent(lltok::kw_exact);
   2917 
   2918     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
   2919     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
   2920     return false;
   2921   }
   2922 
   2923   case lltok::kw_urem:
   2924   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
   2925   case lltok::kw_fdiv:
   2926   case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
   2927   case lltok::kw_and:
   2928   case lltok::kw_or:
   2929   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
   2930   case lltok::kw_icmp:
   2931   case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
   2932   // Casts.
   2933   case lltok::kw_trunc:
   2934   case lltok::kw_zext:
   2935   case lltok::kw_sext:
   2936   case lltok::kw_fptrunc:
   2937   case lltok::kw_fpext:
   2938   case lltok::kw_bitcast:
   2939   case lltok::kw_uitofp:
   2940   case lltok::kw_sitofp:
   2941   case lltok::kw_fptoui:
   2942   case lltok::kw_fptosi:
   2943   case lltok::kw_inttoptr:
   2944   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
   2945   // Other.
   2946   case lltok::kw_select:         return ParseSelect(Inst, PFS);
   2947   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
   2948   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
   2949   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
   2950   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
   2951   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
   2952   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
   2953   case lltok::kw_call:           return ParseCall(Inst, PFS, false);
   2954   case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
   2955   // Memory.
   2956   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
   2957   case lltok::kw_load:           return ParseLoad(Inst, PFS);
   2958   case lltok::kw_store:          return ParseStore(Inst, PFS);
   2959   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
   2960   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
   2961   case lltok::kw_fence:          return ParseFence(Inst, PFS);
   2962   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
   2963   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
   2964   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
   2965   }
   2966 }
   2967 
   2968 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
   2969 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
   2970   if (Opc == Instruction::FCmp) {
   2971     switch (Lex.getKind()) {
   2972     default: TokError("expected fcmp predicate (e.g. 'oeq')");
   2973     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
   2974     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
   2975     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
   2976     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
   2977     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
   2978     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
   2979     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
   2980     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
   2981     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
   2982     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
   2983     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
   2984     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
   2985     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
   2986     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
   2987     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
   2988     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
   2989     }
   2990   } else {
   2991     switch (Lex.getKind()) {
   2992     default: TokError("expected icmp predicate (e.g. 'eq')");
   2993     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
   2994     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
   2995     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
   2996     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
   2997     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
   2998     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
   2999     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
   3000     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
   3001     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
   3002     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
   3003     }
   3004   }
   3005   Lex.Lex();
   3006   return false;
   3007 }
   3008 
   3009 //===----------------------------------------------------------------------===//
   3010 // Terminator Instructions.
   3011 //===----------------------------------------------------------------------===//
   3012 
   3013 /// ParseRet - Parse a return instruction.
   3014 ///   ::= 'ret' void (',' !dbg, !1)*
   3015 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
   3016 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
   3017                         PerFunctionState &PFS) {
   3018   SMLoc TypeLoc = Lex.getLoc();
   3019   Type *Ty = 0;
   3020   if (ParseType(Ty, true /*void allowed*/)) return true;
   3021 
   3022   Type *ResType = PFS.getFunction().getReturnType();
   3023 
   3024   if (Ty->isVoidTy()) {
   3025     if (!ResType->isVoidTy())
   3026       return Error(TypeLoc, "value doesn't match function result type '" +
   3027                    getTypeString(ResType) + "'");
   3028 
   3029     Inst = ReturnInst::Create(Context);
   3030     return false;
   3031   }
   3032 
   3033   Value *RV;
   3034   if (ParseValue(Ty, RV, PFS)) return true;
   3035 
   3036   if (ResType != RV->getType())
   3037     return Error(TypeLoc, "value doesn't match function result type '" +
   3038                  getTypeString(ResType) + "'");
   3039 
   3040   Inst = ReturnInst::Create(Context, RV);
   3041   return false;
   3042 }
   3043 
   3044 
   3045 /// ParseBr
   3046 ///   ::= 'br' TypeAndValue
   3047 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   3048 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
   3049   LocTy Loc, Loc2;
   3050   Value *Op0;
   3051   BasicBlock *Op1, *Op2;
   3052   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
   3053 
   3054   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
   3055     Inst = BranchInst::Create(BB);
   3056     return false;
   3057   }
   3058 
   3059   if (Op0->getType() != Type::getInt1Ty(Context))
   3060     return Error(Loc, "branch condition must have 'i1' type");
   3061 
   3062   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
   3063       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
   3064       ParseToken(lltok::comma, "expected ',' after true destination") ||
   3065       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
   3066     return true;
   3067 
   3068   Inst = BranchInst::Create(Op1, Op2, Op0);
   3069   return false;
   3070 }
   3071 
   3072 /// ParseSwitch
   3073 ///  Instruction
   3074 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
   3075 ///  JumpTable
   3076 ///    ::= (TypeAndValue ',' TypeAndValue)*
   3077 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
   3078   LocTy CondLoc, BBLoc;
   3079   Value *Cond;
   3080   BasicBlock *DefaultBB;
   3081   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
   3082       ParseToken(lltok::comma, "expected ',' after switch condition") ||
   3083       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
   3084       ParseToken(lltok::lsquare, "expected '[' with switch table"))
   3085     return true;
   3086 
   3087   if (!Cond->getType()->isIntegerTy())
   3088     return Error(CondLoc, "switch condition must have integer type");
   3089 
   3090   // Parse the jump table pairs.
   3091   SmallPtrSet<Value*, 32> SeenCases;
   3092   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
   3093   while (Lex.getKind() != lltok::rsquare) {
   3094     Value *Constant;
   3095     BasicBlock *DestBB;
   3096 
   3097     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
   3098         ParseToken(lltok::comma, "expected ',' after case value") ||
   3099         ParseTypeAndBasicBlock(DestBB, PFS))
   3100       return true;
   3101 
   3102     if (!SeenCases.insert(Constant))
   3103       return Error(CondLoc, "duplicate case value in switch");
   3104     if (!isa<ConstantInt>(Constant))
   3105       return Error(CondLoc, "case value is not a constant integer");
   3106 
   3107     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
   3108   }
   3109 
   3110   Lex.Lex();  // Eat the ']'.
   3111 
   3112   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
   3113   for (unsigned i = 0, e = Table.size(); i != e; ++i)
   3114     SI->addCase(Table[i].first, Table[i].second);
   3115   Inst = SI;
   3116   return false;
   3117 }
   3118 
   3119 /// ParseIndirectBr
   3120 ///  Instruction
   3121 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
   3122 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
   3123   LocTy AddrLoc;
   3124   Value *Address;
   3125   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
   3126       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
   3127       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
   3128     return true;
   3129 
   3130   if (!Address->getType()->isPointerTy())
   3131     return Error(AddrLoc, "indirectbr address must have pointer type");
   3132 
   3133   // Parse the destination list.
   3134   SmallVector<BasicBlock*, 16> DestList;
   3135 
   3136   if (Lex.getKind() != lltok::rsquare) {
   3137     BasicBlock *DestBB;
   3138     if (ParseTypeAndBasicBlock(DestBB, PFS))
   3139       return true;
   3140     DestList.push_back(DestBB);
   3141 
   3142     while (EatIfPresent(lltok::comma)) {
   3143       if (ParseTypeAndBasicBlock(DestBB, PFS))
   3144         return true;
   3145       DestList.push_back(DestBB);
   3146     }
   3147   }
   3148 
   3149   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
   3150     return true;
   3151 
   3152   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
   3153   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
   3154     IBI->addDestination(DestList[i]);
   3155   Inst = IBI;
   3156   return false;
   3157 }
   3158 
   3159 
   3160 /// ParseInvoke
   3161 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
   3162 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
   3163 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
   3164   LocTy CallLoc = Lex.getLoc();
   3165   Attributes RetAttrs, FnAttrs;
   3166   CallingConv::ID CC;
   3167   Type *RetType = 0;
   3168   LocTy RetTypeLoc;
   3169   ValID CalleeID;
   3170   SmallVector<ParamInfo, 16> ArgList;
   3171 
   3172   BasicBlock *NormalBB, *UnwindBB;
   3173   if (ParseOptionalCallingConv(CC) ||
   3174       ParseOptionalAttrs(RetAttrs, 1) ||
   3175       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
   3176       ParseValID(CalleeID) ||
   3177       ParseParameterList(ArgList, PFS) ||
   3178       ParseOptionalAttrs(FnAttrs, 2) ||
   3179       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
   3180       ParseTypeAndBasicBlock(NormalBB, PFS) ||
   3181       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
   3182       ParseTypeAndBasicBlock(UnwindBB, PFS))
   3183     return true;
   3184 
   3185   // If RetType is a non-function pointer type, then this is the short syntax
   3186   // for the call, which means that RetType is just the return type.  Infer the
   3187   // rest of the function argument types from the arguments that are present.
   3188   PointerType *PFTy = 0;
   3189   FunctionType *Ty = 0;
   3190   if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
   3191       !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
   3192     // Pull out the types of all of the arguments...
   3193     std::vector<Type*> ParamTypes;
   3194     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
   3195       ParamTypes.push_back(ArgList[i].V->getType());
   3196 
   3197     if (!FunctionType::isValidReturnType(RetType))
   3198       return Error(RetTypeLoc, "Invalid result type for LLVM function");
   3199 
   3200     Ty = FunctionType::get(RetType, ParamTypes, false);
   3201     PFTy = PointerType::getUnqual(Ty);
   3202   }
   3203 
   3204   // Look up the callee.
   3205   Value *Callee;
   3206   if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
   3207 
   3208   // Set up the Attributes for the function.
   3209   SmallVector<AttributeWithIndex, 8> Attrs;
   3210   if (RetAttrs != Attribute::None)
   3211     Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
   3212 
   3213   SmallVector<Value*, 8> Args;
   3214 
   3215   // Loop through FunctionType's arguments and ensure they are specified
   3216   // correctly.  Also, gather any parameter attributes.
   3217   FunctionType::param_iterator I = Ty->param_begin();
   3218   FunctionType::param_iterator E = Ty->param_end();
   3219   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   3220     Type *ExpectedTy = 0;
   3221     if (I != E) {
   3222       ExpectedTy = *I++;
   3223     } else if (!Ty->isVarArg()) {
   3224       return Error(ArgList[i].Loc, "too many arguments specified");
   3225     }
   3226 
   3227     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
   3228       return Error(ArgList[i].Loc, "argument is not of expected type '" +
   3229                    getTypeString(ExpectedTy) + "'");
   3230     Args.push_back(ArgList[i].V);
   3231     if (ArgList[i].Attrs != Attribute::None)
   3232       Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
   3233   }
   3234 
   3235   if (I != E)
   3236     return Error(CallLoc, "not enough parameters specified for call");
   3237 
   3238   if (FnAttrs != Attribute::None)
   3239     Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
   3240 
   3241   // Finish off the Attributes and check them
   3242   AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
   3243 
   3244   InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
   3245   II->setCallingConv(CC);
   3246   II->setAttributes(PAL);
   3247   Inst = II;
   3248   return false;
   3249 }
   3250 
   3251 /// ParseResume
   3252 ///   ::= 'resume' TypeAndValue
   3253 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
   3254   Value *Exn; LocTy ExnLoc;
   3255   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
   3256     return true;
   3257 
   3258   ResumeInst *RI = ResumeInst::Create(Exn);
   3259   Inst = RI;
   3260   return false;
   3261 }
   3262 
   3263 //===----------------------------------------------------------------------===//
   3264 // Binary Operators.
   3265 //===----------------------------------------------------------------------===//
   3266 
   3267 /// ParseArithmetic
   3268 ///  ::= ArithmeticOps TypeAndValue ',' Value
   3269 ///
   3270 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
   3271 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
   3272 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
   3273                                unsigned Opc, unsigned OperandType) {
   3274   LocTy Loc; Value *LHS, *RHS;
   3275   if (ParseTypeAndValue(LHS, Loc, PFS) ||
   3276       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
   3277       ParseValue(LHS->getType(), RHS, PFS))
   3278     return true;
   3279 
   3280   bool Valid;
   3281   switch (OperandType) {
   3282   default: llvm_unreachable("Unknown operand type!");
   3283   case 0: // int or FP.
   3284     Valid = LHS->getType()->isIntOrIntVectorTy() ||
   3285             LHS->getType()->isFPOrFPVectorTy();
   3286     break;
   3287   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
   3288   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
   3289   }
   3290 
   3291   if (!Valid)
   3292     return Error(Loc, "invalid operand type for instruction");
   3293 
   3294   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   3295   return false;
   3296 }
   3297 
   3298 /// ParseLogical
   3299 ///  ::= ArithmeticOps TypeAndValue ',' Value {
   3300 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
   3301                             unsigned Opc) {
   3302   LocTy Loc; Value *LHS, *RHS;
   3303   if (ParseTypeAndValue(LHS, Loc, PFS) ||
   3304       ParseToken(lltok::comma, "expected ',' in logical operation") ||
   3305       ParseValue(LHS->getType(), RHS, PFS))
   3306     return true;
   3307 
   3308   if (!LHS->getType()->isIntOrIntVectorTy())
   3309     return Error(Loc,"instruction requires integer or integer vector operands");
   3310 
   3311   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   3312   return false;
   3313 }
   3314 
   3315 
   3316 /// ParseCompare
   3317 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
   3318 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
   3319 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
   3320                             unsigned Opc) {
   3321   // Parse the integer/fp comparison predicate.
   3322   LocTy Loc;
   3323   unsigned Pred;
   3324   Value *LHS, *RHS;
   3325   if (ParseCmpPredicate(Pred, Opc) ||
   3326       ParseTypeAndValue(LHS, Loc, PFS) ||
   3327       ParseToken(lltok::comma, "expected ',' after compare value") ||
   3328       ParseValue(LHS->getType(), RHS, PFS))
   3329     return true;
   3330 
   3331   if (Opc == Instruction::FCmp) {
   3332     if (!LHS->getType()->isFPOrFPVectorTy())
   3333       return Error(Loc, "fcmp requires floating point operands");
   3334     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
   3335   } else {
   3336     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
   3337     if (!LHS->getType()->isIntOrIntVectorTy() &&
   3338         !LHS->getType()->getScalarType()->isPointerTy())
   3339       return Error(Loc, "icmp requires integer operands");
   3340     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
   3341   }
   3342   return false;
   3343 }
   3344 
   3345 //===----------------------------------------------------------------------===//
   3346 // Other Instructions.
   3347 //===----------------------------------------------------------------------===//
   3348 
   3349 
   3350 /// ParseCast
   3351 ///   ::= CastOpc TypeAndValue 'to' Type
   3352 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
   3353                          unsigned Opc) {
   3354   LocTy Loc;
   3355   Value *Op;
   3356   Type *DestTy = 0;
   3357   if (ParseTypeAndValue(Op, Loc, PFS) ||
   3358       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
   3359       ParseType(DestTy))
   3360     return true;
   3361 
   3362   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
   3363     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
   3364     return Error(Loc, "invalid cast opcode for cast from '" +
   3365                  getTypeString(Op->getType()) + "' to '" +
   3366                  getTypeString(DestTy) + "'");
   3367   }
   3368   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
   3369   return false;
   3370 }
   3371 
   3372 /// ParseSelect
   3373 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   3374 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
   3375   LocTy Loc;
   3376   Value *Op0, *Op1, *Op2;
   3377   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   3378       ParseToken(lltok::comma, "expected ',' after select condition") ||
   3379       ParseTypeAndValue(Op1, PFS) ||
   3380       ParseToken(lltok::comma, "expected ',' after select value") ||
   3381       ParseTypeAndValue(Op2, PFS))
   3382     return true;
   3383 
   3384   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
   3385     return Error(Loc, Reason);
   3386 
   3387   Inst = SelectInst::Create(Op0, Op1, Op2);
   3388   return false;
   3389 }
   3390 
   3391 /// ParseVA_Arg
   3392 ///   ::= 'va_arg' TypeAndValue ',' Type
   3393 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
   3394   Value *Op;
   3395   Type *EltTy = 0;
   3396   LocTy TypeLoc;
   3397   if (ParseTypeAndValue(Op, PFS) ||
   3398       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
   3399       ParseType(EltTy, TypeLoc))
   3400     return true;
   3401 
   3402   if (!EltTy->isFirstClassType())
   3403     return Error(TypeLoc, "va_arg requires operand with first class type");
   3404 
   3405   Inst = new VAArgInst(Op, EltTy);
   3406   return false;
   3407 }
   3408 
   3409 /// ParseExtractElement
   3410 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
   3411 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
   3412   LocTy Loc;
   3413   Value *Op0, *Op1;
   3414   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   3415       ParseToken(lltok::comma, "expected ',' after extract value") ||
   3416       ParseTypeAndValue(Op1, PFS))
   3417     return true;
   3418 
   3419   if (!ExtractElementInst::isValidOperands(Op0, Op1))
   3420     return Error(Loc, "invalid extractelement operands");
   3421 
   3422   Inst = ExtractElementInst::Create(Op0, Op1);
   3423   return false;
   3424 }
   3425 
   3426 /// ParseInsertElement
   3427 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   3428 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
   3429   LocTy Loc;
   3430   Value *Op0, *Op1, *Op2;
   3431   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   3432       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   3433       ParseTypeAndValue(Op1, PFS) ||
   3434       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   3435       ParseTypeAndValue(Op2, PFS))
   3436     return true;
   3437 
   3438   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
   3439     return Error(Loc, "invalid insertelement operands");
   3440 
   3441   Inst = InsertElementInst::Create(Op0, Op1, Op2);
   3442   return false;
   3443 }
   3444 
   3445 /// ParseShuffleVector
   3446 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   3447 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
   3448   LocTy Loc;
   3449   Value *Op0, *Op1, *Op2;
   3450   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   3451       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
   3452       ParseTypeAndValue(Op1, PFS) ||
   3453       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
   3454       ParseTypeAndValue(Op2, PFS))
   3455     return true;
   3456 
   3457   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
   3458     return Error(Loc, "invalid shufflevector operands");
   3459 
   3460   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
   3461   return false;
   3462 }
   3463 
   3464 /// ParsePHI
   3465 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
   3466 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
   3467   Type *Ty = 0;  LocTy TypeLoc;
   3468   Value *Op0, *Op1;
   3469 
   3470   if (ParseType(Ty, TypeLoc) ||
   3471       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
   3472       ParseValue(Ty, Op0, PFS) ||
   3473       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   3474       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
   3475       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
   3476     return true;
   3477 
   3478   bool AteExtraComma = false;
   3479   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
   3480   while (1) {
   3481     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
   3482 
   3483     if (!EatIfPresent(lltok::comma))
   3484       break;
   3485 
   3486     if (Lex.getKind() == lltok::MetadataVar) {
   3487       AteExtraComma = true;
   3488       break;
   3489     }
   3490 
   3491     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
   3492         ParseValue(Ty, Op0, PFS) ||
   3493         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   3494         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
   3495         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
   3496       return true;
   3497   }
   3498 
   3499   if (!Ty->isFirstClassType())
   3500     return Error(TypeLoc, "phi node must have first class type");
   3501 
   3502   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
   3503   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
   3504     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
   3505   Inst = PN;
   3506   return AteExtraComma ? InstExtraComma : InstNormal;
   3507 }
   3508 
   3509 /// ParseLandingPad
   3510 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
   3511 /// Clause
   3512 ///   ::= 'catch' TypeAndValue
   3513 ///   ::= 'filter'
   3514 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
   3515 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
   3516   Type *Ty = 0; LocTy TyLoc;
   3517   Value *PersFn; LocTy PersFnLoc;
   3518 
   3519   if (ParseType(Ty, TyLoc) ||
   3520       ParseToken(lltok::kw_personality, "expected 'personality'") ||
   3521       ParseTypeAndValue(PersFn, PersFnLoc, PFS))
   3522     return true;
   3523 
   3524   LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
   3525   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
   3526 
   3527   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
   3528     LandingPadInst::ClauseType CT;
   3529     if (EatIfPresent(lltok::kw_catch))
   3530       CT = LandingPadInst::Catch;
   3531     else if (EatIfPresent(lltok::kw_filter))
   3532       CT = LandingPadInst::Filter;
   3533     else
   3534       return TokError("expected 'catch' or 'filter' clause type");
   3535 
   3536     Value *V; LocTy VLoc;
   3537     if (ParseTypeAndValue(V, VLoc, PFS)) {
   3538       delete LP;
   3539       return true;
   3540     }
   3541 
   3542     // A 'catch' type expects a non-array constant. A filter clause expects an
   3543     // array constant.
   3544     if (CT == LandingPadInst::Catch) {
   3545       if (isa<ArrayType>(V->getType()))
   3546         Error(VLoc, "'catch' clause has an invalid type");
   3547     } else {
   3548       if (!isa<ArrayType>(V->getType()))
   3549         Error(VLoc, "'filter' clause has an invalid type");
   3550     }
   3551 
   3552     LP->addClause(V);
   3553   }
   3554 
   3555   Inst = LP;
   3556   return false;
   3557 }
   3558 
   3559 /// ParseCall
   3560 ///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
   3561 ///       ParameterList OptionalAttrs
   3562 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
   3563                          bool isTail) {
   3564   Attributes RetAttrs, FnAttrs;
   3565   CallingConv::ID CC;
   3566   Type *RetType = 0;
   3567   LocTy RetTypeLoc;
   3568   ValID CalleeID;
   3569   SmallVector<ParamInfo, 16> ArgList;
   3570   LocTy CallLoc = Lex.getLoc();
   3571 
   3572   if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
   3573       ParseOptionalCallingConv(CC) ||
   3574       ParseOptionalAttrs(RetAttrs, 1) ||
   3575       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
   3576       ParseValID(CalleeID) ||
   3577       ParseParameterList(ArgList, PFS) ||
   3578       ParseOptionalAttrs(FnAttrs, 2))
   3579     return true;
   3580 
   3581   // If RetType is a non-function pointer type, then this is the short syntax
   3582   // for the call, which means that RetType is just the return type.  Infer the
   3583   // rest of the function argument types from the arguments that are present.
   3584   PointerType *PFTy = 0;
   3585   FunctionType *Ty = 0;
   3586   if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
   3587       !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
   3588     // Pull out the types of all of the arguments...
   3589     std::vector<Type*> ParamTypes;
   3590     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
   3591       ParamTypes.push_back(ArgList[i].V->getType());
   3592 
   3593     if (!FunctionType::isValidReturnType(RetType))
   3594       return Error(RetTypeLoc, "Invalid result type for LLVM function");
   3595 
   3596     Ty = FunctionType::get(RetType, ParamTypes, false);
   3597     PFTy = PointerType::getUnqual(Ty);
   3598   }
   3599 
   3600   // Look up the callee.
   3601   Value *Callee;
   3602   if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
   3603 
   3604   // Set up the Attributes for the function.
   3605   SmallVector<AttributeWithIndex, 8> Attrs;
   3606   if (RetAttrs != Attribute::None)
   3607     Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
   3608 
   3609   SmallVector<Value*, 8> Args;
   3610 
   3611   // Loop through FunctionType's arguments and ensure they are specified
   3612   // correctly.  Also, gather any parameter attributes.
   3613   FunctionType::param_iterator I = Ty->param_begin();
   3614   FunctionType::param_iterator E = Ty->param_end();
   3615   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   3616     Type *ExpectedTy = 0;
   3617     if (I != E) {
   3618       ExpectedTy = *I++;
   3619     } else if (!Ty->isVarArg()) {
   3620       return Error(ArgList[i].Loc, "too many arguments specified");
   3621     }
   3622 
   3623     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
   3624       return Error(ArgList[i].Loc, "argument is not of expected type '" +
   3625                    getTypeString(ExpectedTy) + "'");
   3626     Args.push_back(ArgList[i].V);
   3627     if (ArgList[i].Attrs != Attribute::None)
   3628       Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
   3629   }
   3630 
   3631   if (I != E)
   3632     return Error(CallLoc, "not enough parameters specified for call");
   3633 
   3634   if (FnAttrs != Attribute::None)
   3635     Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
   3636 
   3637   // Finish off the Attributes and check them
   3638   AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
   3639 
   3640   CallInst *CI = CallInst::Create(Callee, Args);
   3641   CI->setTailCall(isTail);
   3642   CI->setCallingConv(CC);
   3643   CI->setAttributes(PAL);
   3644   Inst = CI;
   3645   return false;
   3646 }
   3647 
   3648 //===----------------------------------------------------------------------===//
   3649 // Memory Instructions.
   3650 //===----------------------------------------------------------------------===//
   3651 
   3652 /// ParseAlloc
   3653 ///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
   3654 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
   3655   Value *Size = 0;
   3656   LocTy SizeLoc;
   3657   unsigned Alignment = 0;
   3658   Type *Ty = 0;
   3659   if (ParseType(Ty)) return true;
   3660 
   3661   bool AteExtraComma = false;
   3662   if (EatIfPresent(lltok::comma)) {
   3663     if (Lex.getKind() == lltok::kw_align) {
   3664       if (ParseOptionalAlignment(Alignment)) return true;
   3665     } else if (Lex.getKind() == lltok::MetadataVar) {
   3666       AteExtraComma = true;
   3667     } else {
   3668       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
   3669           ParseOptionalCommaAlign(Alignment, AteExtraComma))
   3670         return true;
   3671     }
   3672   }
   3673 
   3674   if (Size && !Size->getType()->isIntegerTy())
   3675     return Error(SizeLoc, "element count must have integer type");
   3676 
   3677   Inst = new AllocaInst(Ty, Size, Alignment);
   3678   return AteExtraComma ? InstExtraComma : InstNormal;
   3679 }
   3680 
   3681 /// ParseLoad
   3682 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
   3683 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
   3684 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
   3685 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
   3686   Value *Val; LocTy Loc;
   3687   unsigned Alignment = 0;
   3688   bool AteExtraComma = false;
   3689   bool isAtomic = false;
   3690   AtomicOrdering Ordering = NotAtomic;
   3691   SynchronizationScope Scope = CrossThread;
   3692 
   3693   if (Lex.getKind() == lltok::kw_atomic) {
   3694     isAtomic = true;
   3695     Lex.Lex();
   3696   }
   3697 
   3698   bool isVolatile = false;
   3699   if (Lex.getKind() == lltok::kw_volatile) {
   3700     isVolatile = true;
   3701     Lex.Lex();
   3702   }
   3703 
   3704   if (ParseTypeAndValue(Val, Loc, PFS) ||
   3705       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
   3706       ParseOptionalCommaAlign(Alignment, AteExtraComma))
   3707     return true;
   3708 
   3709   if (!Val->getType()->isPointerTy() ||
   3710       !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
   3711     return Error(Loc, "load operand must be a pointer to a first class type");
   3712   if (isAtomic && !Alignment)
   3713     return Error(Loc, "atomic load must have explicit non-zero alignment");
   3714   if (Ordering == Release || Ordering == AcquireRelease)
   3715     return Error(Loc, "atomic load cannot use Release ordering");
   3716 
   3717   Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
   3718   return AteExtraComma ? InstExtraComma : InstNormal;
   3719 }
   3720 
   3721 /// ParseStore
   3722 
   3723 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
   3724 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
   3725 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
   3726 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
   3727   Value *Val, *Ptr; LocTy Loc, PtrLoc;
   3728   unsigned Alignment = 0;
   3729   bool AteExtraComma = false;
   3730   bool isAtomic = false;
   3731   AtomicOrdering Ordering = NotAtomic;
   3732   SynchronizationScope Scope = CrossThread;
   3733 
   3734   if (Lex.getKind() == lltok::kw_atomic) {
   3735     isAtomic = true;
   3736     Lex.Lex();
   3737   }
   3738 
   3739   bool isVolatile = false;
   3740   if (Lex.getKind() == lltok::kw_volatile) {
   3741     isVolatile = true;
   3742     Lex.Lex();
   3743   }
   3744 
   3745   if (ParseTypeAndValue(Val, Loc, PFS) ||
   3746       ParseToken(lltok::comma, "expected ',' after store operand") ||
   3747       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
   3748       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
   3749       ParseOptionalCommaAlign(Alignment, AteExtraComma))
   3750     return true;
   3751 
   3752   if (!Ptr->getType()->isPointerTy())
   3753     return Error(PtrLoc, "store operand must be a pointer");
   3754   if (!Val->getType()->isFirstClassType())
   3755     return Error(Loc, "store operand must be a first class value");
   3756   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
   3757     return Error(Loc, "stored value and pointer type do not match");
   3758   if (isAtomic && !Alignment)
   3759     return Error(Loc, "atomic store must have explicit non-zero alignment");
   3760   if (Ordering == Acquire || Ordering == AcquireRelease)
   3761     return Error(Loc, "atomic store cannot use Acquire ordering");
   3762 
   3763   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
   3764   return AteExtraComma ? InstExtraComma : InstNormal;
   3765 }
   3766 
   3767 /// ParseCmpXchg
   3768 ///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
   3769 ///       'singlethread'? AtomicOrdering
   3770 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
   3771   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
   3772   bool AteExtraComma = false;
   3773   AtomicOrdering Ordering = NotAtomic;
   3774   SynchronizationScope Scope = CrossThread;
   3775   bool isVolatile = false;
   3776 
   3777   if (EatIfPresent(lltok::kw_volatile))
   3778     isVolatile = true;
   3779 
   3780   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
   3781       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
   3782       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
   3783       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
   3784       ParseTypeAndValue(New, NewLoc, PFS) ||
   3785       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
   3786     return true;
   3787 
   3788   if (Ordering == Unordered)
   3789     return TokError("cmpxchg cannot be unordered");
   3790   if (!Ptr->getType()->isPointerTy())
   3791     return Error(PtrLoc, "cmpxchg operand must be a pointer");
   3792   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
   3793     return Error(CmpLoc, "compare value and pointer type do not match");
   3794   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
   3795     return Error(NewLoc, "new value and pointer type do not match");
   3796   if (!New->getType()->isIntegerTy())
   3797     return Error(NewLoc, "cmpxchg operand must be an integer");
   3798   unsigned Size = New->getType()->getPrimitiveSizeInBits();
   3799   if (Size < 8 || (Size & (Size - 1)))
   3800     return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
   3801                          " integer");
   3802 
   3803   AtomicCmpXchgInst *CXI =
   3804     new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
   3805   CXI->setVolatile(isVolatile);
   3806   Inst = CXI;
   3807   return AteExtraComma ? InstExtraComma : InstNormal;
   3808 }
   3809 
   3810 /// ParseAtomicRMW
   3811 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
   3812 ///       'singlethread'? AtomicOrdering
   3813 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
   3814   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
   3815   bool AteExtraComma = false;
   3816   AtomicOrdering Ordering = NotAtomic;
   3817   SynchronizationScope Scope = CrossThread;
   3818   bool isVolatile = false;
   3819   AtomicRMWInst::BinOp Operation;
   3820 
   3821   if (EatIfPresent(lltok::kw_volatile))
   3822     isVolatile = true;
   3823 
   3824   switch (Lex.getKind()) {
   3825   default: return TokError("expected binary operation in atomicrmw");
   3826   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
   3827   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
   3828   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
   3829   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
   3830   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
   3831   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
   3832   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
   3833   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
   3834   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
   3835   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
   3836   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
   3837   }
   3838   Lex.Lex();  // Eat the operation.
   3839 
   3840   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
   3841       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
   3842       ParseTypeAndValue(Val, ValLoc, PFS) ||
   3843       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
   3844     return true;
   3845 
   3846   if (Ordering == Unordered)
   3847     return TokError("atomicrmw cannot be unordered");
   3848   if (!Ptr->getType()->isPointerTy())
   3849     return Error(PtrLoc, "atomicrmw operand must be a pointer");
   3850   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
   3851     return Error(ValLoc, "atomicrmw value and pointer type do not match");
   3852   if (!Val->getType()->isIntegerTy())
   3853     return Error(ValLoc, "atomicrmw operand must be an integer");
   3854   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
   3855   if (Size < 8 || (Size & (Size - 1)))
   3856     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
   3857                          " integer");
   3858 
   3859   AtomicRMWInst *RMWI =
   3860     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
   3861   RMWI->setVolatile(isVolatile);
   3862   Inst = RMWI;
   3863   return AteExtraComma ? InstExtraComma : InstNormal;
   3864 }
   3865 
   3866 /// ParseFence
   3867 ///   ::= 'fence' 'singlethread'? AtomicOrdering
   3868 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
   3869   AtomicOrdering Ordering = NotAtomic;
   3870   SynchronizationScope Scope = CrossThread;
   3871   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
   3872     return true;
   3873 
   3874   if (Ordering == Unordered)
   3875     return TokError("fence cannot be unordered");
   3876   if (Ordering == Monotonic)
   3877     return TokError("fence cannot be monotonic");
   3878 
   3879   Inst = new FenceInst(Context, Ordering, Scope);
   3880   return InstNormal;
   3881 }
   3882 
   3883 /// ParseGetElementPtr
   3884 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
   3885 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
   3886   Value *Ptr = 0;
   3887   Value *Val = 0;
   3888   LocTy Loc, EltLoc;
   3889 
   3890   bool InBounds = EatIfPresent(lltok::kw_inbounds);
   3891 
   3892   if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
   3893 
   3894   if (!Ptr->getType()->getScalarType()->isPointerTy())
   3895     return Error(Loc, "base of getelementptr must be a pointer");
   3896 
   3897   SmallVector<Value*, 16> Indices;
   3898   bool AteExtraComma = false;
   3899   while (EatIfPresent(lltok::comma)) {
   3900     if (Lex.getKind() == lltok::MetadataVar) {
   3901       AteExtraComma = true;
   3902       break;
   3903     }
   3904     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
   3905     if (!Val->getType()->getScalarType()->isIntegerTy())
   3906       return Error(EltLoc, "getelementptr index must be an integer");
   3907     if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
   3908       return Error(EltLoc, "getelementptr index type missmatch");
   3909     if (Val->getType()->isVectorTy()) {
   3910       unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
   3911       unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
   3912       if (ValNumEl != PtrNumEl)
   3913         return Error(EltLoc,
   3914           "getelementptr vector index has a wrong number of elements");
   3915     }
   3916     Indices.push_back(Val);
   3917   }
   3918 
   3919   if (Val && Val->getType()->isVectorTy() && Indices.size() != 1)
   3920     return Error(EltLoc, "vector getelementptrs must have a single index");
   3921 
   3922   if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
   3923     return Error(Loc, "invalid getelementptr indices");
   3924   Inst = GetElementPtrInst::Create(Ptr, Indices);
   3925   if (InBounds)
   3926     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
   3927   return AteExtraComma ? InstExtraComma : InstNormal;
   3928 }
   3929 
   3930 /// ParseExtractValue
   3931 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
   3932 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
   3933   Value *Val; LocTy Loc;
   3934   SmallVector<unsigned, 4> Indices;
   3935   bool AteExtraComma;
   3936   if (ParseTypeAndValue(Val, Loc, PFS) ||
   3937       ParseIndexList(Indices, AteExtraComma))
   3938     return true;
   3939 
   3940   if (!Val->getType()->isAggregateType())
   3941     return Error(Loc, "extractvalue operand must be aggregate type");
   3942 
   3943   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
   3944     return Error(Loc, "invalid indices for extractvalue");
   3945   Inst = ExtractValueInst::Create(Val, Indices);
   3946   return AteExtraComma ? InstExtraComma : InstNormal;
   3947 }
   3948 
   3949 /// ParseInsertValue
   3950 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
   3951 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
   3952   Value *Val0, *Val1; LocTy Loc0, Loc1;
   3953   SmallVector<unsigned, 4> Indices;
   3954   bool AteExtraComma;
   3955   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
   3956       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
   3957       ParseTypeAndValue(Val1, Loc1, PFS) ||
   3958       ParseIndexList(Indices, AteExtraComma))
   3959     return true;
   3960 
   3961   if (!Val0->getType()->isAggregateType())
   3962     return Error(Loc0, "insertvalue operand must be aggregate type");
   3963 
   3964   if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
   3965     return Error(Loc0, "invalid indices for insertvalue");
   3966   Inst = InsertValueInst::Create(Val0, Val1, Indices);
   3967   return AteExtraComma ? InstExtraComma : InstNormal;
   3968 }
   3969 
   3970 //===----------------------------------------------------------------------===//
   3971 // Embedded metadata.
   3972 //===----------------------------------------------------------------------===//
   3973 
   3974 /// ParseMDNodeVector
   3975 ///   ::= Element (',' Element)*
   3976 /// Element
   3977 ///   ::= 'null' | TypeAndValue
   3978 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
   3979                                  PerFunctionState *PFS) {
   3980   // Check for an empty list.
   3981   if (Lex.getKind() == lltok::rbrace)
   3982     return false;
   3983 
   3984   do {
   3985     // Null is a special case since it is typeless.
   3986     if (EatIfPresent(lltok::kw_null)) {
   3987       Elts.push_back(0);
   3988       continue;
   3989     }
   3990 
   3991     Value *V = 0;
   3992     if (ParseTypeAndValue(V, PFS)) return true;
   3993     Elts.push_back(V);
   3994   } while (EatIfPresent(lltok::comma));
   3995 
   3996   return false;
   3997 }
   3998