1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/AutoUpgrade.h" 16 #include "llvm/CallingConv.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/InlineAsm.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/Operator.h" 23 #include "llvm/ValueSymbolTable.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/raw_ostream.h" 27 using namespace llvm; 28 29 static std::string getTypeString(Type *T) { 30 std::string Result; 31 raw_string_ostream Tmp(Result); 32 Tmp << *T; 33 return Tmp.str(); 34 } 35 36 /// Run: module ::= toplevelentity* 37 bool LLParser::Run() { 38 // Prime the lexer. 39 Lex.Lex(); 40 41 return ParseTopLevelEntities() || 42 ValidateEndOfModule(); 43 } 44 45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 46 /// module. 47 bool LLParser::ValidateEndOfModule() { 48 // Handle any instruction metadata forward references. 49 if (!ForwardRefInstMetadata.empty()) { 50 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator 51 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end(); 52 I != E; ++I) { 53 Instruction *Inst = I->first; 54 const std::vector<MDRef> &MDList = I->second; 55 56 for (unsigned i = 0, e = MDList.size(); i != e; ++i) { 57 unsigned SlotNo = MDList[i].MDSlot; 58 59 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0) 60 return Error(MDList[i].Loc, "use of undefined metadata '!" + 61 Twine(SlotNo) + "'"); 62 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]); 63 } 64 } 65 ForwardRefInstMetadata.clear(); 66 } 67 68 69 // If there are entries in ForwardRefBlockAddresses at this point, they are 70 // references after the function was defined. Resolve those now. 71 while (!ForwardRefBlockAddresses.empty()) { 72 // Okay, we are referencing an already-parsed function, resolve them now. 73 Function *TheFn = 0; 74 const ValID &Fn = ForwardRefBlockAddresses.begin()->first; 75 if (Fn.Kind == ValID::t_GlobalName) 76 TheFn = M->getFunction(Fn.StrVal); 77 else if (Fn.UIntVal < NumberedVals.size()) 78 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]); 79 80 if (TheFn == 0) 81 return Error(Fn.Loc, "unknown function referenced by blockaddress"); 82 83 // Resolve all these references. 84 if (ResolveForwardRefBlockAddresses(TheFn, 85 ForwardRefBlockAddresses.begin()->second, 86 0)) 87 return true; 88 89 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin()); 90 } 91 92 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) 93 if (NumberedTypes[i].second.isValid()) 94 return Error(NumberedTypes[i].second, 95 "use of undefined type '%" + Twine(i) + "'"); 96 97 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 98 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 99 if (I->second.second.isValid()) 100 return Error(I->second.second, 101 "use of undefined type named '" + I->getKey() + "'"); 102 103 if (!ForwardRefVals.empty()) 104 return Error(ForwardRefVals.begin()->second.second, 105 "use of undefined value '@" + ForwardRefVals.begin()->first + 106 "'"); 107 108 if (!ForwardRefValIDs.empty()) 109 return Error(ForwardRefValIDs.begin()->second.second, 110 "use of undefined value '@" + 111 Twine(ForwardRefValIDs.begin()->first) + "'"); 112 113 if (!ForwardRefMDNodes.empty()) 114 return Error(ForwardRefMDNodes.begin()->second.second, 115 "use of undefined metadata '!" + 116 Twine(ForwardRefMDNodes.begin()->first) + "'"); 117 118 119 // Look for intrinsic functions and CallInst that need to be upgraded 120 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 121 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove 122 123 return false; 124 } 125 126 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, 127 std::vector<std::pair<ValID, GlobalValue*> > &Refs, 128 PerFunctionState *PFS) { 129 // Loop over all the references, resolving them. 130 for (unsigned i = 0, e = Refs.size(); i != e; ++i) { 131 BasicBlock *Res; 132 if (PFS) { 133 if (Refs[i].first.Kind == ValID::t_LocalName) 134 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc); 135 else 136 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc); 137 } else if (Refs[i].first.Kind == ValID::t_LocalID) { 138 return Error(Refs[i].first.Loc, 139 "cannot take address of numeric label after the function is defined"); 140 } else { 141 Res = dyn_cast_or_null<BasicBlock>( 142 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal)); 143 } 144 145 if (Res == 0) 146 return Error(Refs[i].first.Loc, 147 "referenced value is not a basic block"); 148 149 // Get the BlockAddress for this and update references to use it. 150 BlockAddress *BA = BlockAddress::get(TheFn, Res); 151 Refs[i].second->replaceAllUsesWith(BA); 152 Refs[i].second->eraseFromParent(); 153 } 154 return false; 155 } 156 157 158 //===----------------------------------------------------------------------===// 159 // Top-Level Entities 160 //===----------------------------------------------------------------------===// 161 162 bool LLParser::ParseTopLevelEntities() { 163 while (1) { 164 switch (Lex.getKind()) { 165 default: return TokError("expected top-level entity"); 166 case lltok::Eof: return false; 167 case lltok::kw_declare: if (ParseDeclare()) return true; break; 168 case lltok::kw_define: if (ParseDefine()) return true; break; 169 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 170 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 171 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 172 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 173 case lltok::LocalVar: if (ParseNamedType()) return true; break; 174 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 175 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 176 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 177 case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break; 178 179 // The Global variable production with no name can have many different 180 // optional leading prefixes, the production is: 181 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 182 // OptionalAddrSpace OptionalUnNammedAddr 183 // ('constant'|'global') ... 184 case lltok::kw_private: // OptionalLinkage 185 case lltok::kw_linker_private: // OptionalLinkage 186 case lltok::kw_linker_private_weak: // OptionalLinkage 187 case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage 188 case lltok::kw_internal: // OptionalLinkage 189 case lltok::kw_weak: // OptionalLinkage 190 case lltok::kw_weak_odr: // OptionalLinkage 191 case lltok::kw_linkonce: // OptionalLinkage 192 case lltok::kw_linkonce_odr: // OptionalLinkage 193 case lltok::kw_appending: // OptionalLinkage 194 case lltok::kw_dllexport: // OptionalLinkage 195 case lltok::kw_common: // OptionalLinkage 196 case lltok::kw_dllimport: // OptionalLinkage 197 case lltok::kw_extern_weak: // OptionalLinkage 198 case lltok::kw_external: { // OptionalLinkage 199 unsigned Linkage, Visibility; 200 if (ParseOptionalLinkage(Linkage) || 201 ParseOptionalVisibility(Visibility) || 202 ParseGlobal("", SMLoc(), Linkage, true, Visibility)) 203 return true; 204 break; 205 } 206 case lltok::kw_default: // OptionalVisibility 207 case lltok::kw_hidden: // OptionalVisibility 208 case lltok::kw_protected: { // OptionalVisibility 209 unsigned Visibility; 210 if (ParseOptionalVisibility(Visibility) || 211 ParseGlobal("", SMLoc(), 0, false, Visibility)) 212 return true; 213 break; 214 } 215 216 case lltok::kw_thread_local: // OptionalThreadLocal 217 case lltok::kw_addrspace: // OptionalAddrSpace 218 case lltok::kw_constant: // GlobalType 219 case lltok::kw_global: // GlobalType 220 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true; 221 break; 222 } 223 } 224 } 225 226 227 /// toplevelentity 228 /// ::= 'module' 'asm' STRINGCONSTANT 229 bool LLParser::ParseModuleAsm() { 230 assert(Lex.getKind() == lltok::kw_module); 231 Lex.Lex(); 232 233 std::string AsmStr; 234 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 235 ParseStringConstant(AsmStr)) return true; 236 237 M->appendModuleInlineAsm(AsmStr); 238 return false; 239 } 240 241 /// toplevelentity 242 /// ::= 'target' 'triple' '=' STRINGCONSTANT 243 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 244 bool LLParser::ParseTargetDefinition() { 245 assert(Lex.getKind() == lltok::kw_target); 246 std::string Str; 247 switch (Lex.Lex()) { 248 default: return TokError("unknown target property"); 249 case lltok::kw_triple: 250 Lex.Lex(); 251 if (ParseToken(lltok::equal, "expected '=' after target triple") || 252 ParseStringConstant(Str)) 253 return true; 254 M->setTargetTriple(Str); 255 return false; 256 case lltok::kw_datalayout: 257 Lex.Lex(); 258 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 259 ParseStringConstant(Str)) 260 return true; 261 M->setDataLayout(Str); 262 return false; 263 } 264 } 265 266 /// toplevelentity 267 /// ::= 'deplibs' '=' '[' ']' 268 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 269 bool LLParser::ParseDepLibs() { 270 assert(Lex.getKind() == lltok::kw_deplibs); 271 Lex.Lex(); 272 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 273 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 274 return true; 275 276 if (EatIfPresent(lltok::rsquare)) 277 return false; 278 279 std::string Str; 280 if (ParseStringConstant(Str)) return true; 281 M->addLibrary(Str); 282 283 while (EatIfPresent(lltok::comma)) { 284 if (ParseStringConstant(Str)) return true; 285 M->addLibrary(Str); 286 } 287 288 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 289 } 290 291 /// ParseUnnamedType: 292 /// ::= LocalVarID '=' 'type' type 293 bool LLParser::ParseUnnamedType() { 294 LocTy TypeLoc = Lex.getLoc(); 295 unsigned TypeID = Lex.getUIntVal(); 296 Lex.Lex(); // eat LocalVarID; 297 298 if (ParseToken(lltok::equal, "expected '=' after name") || 299 ParseToken(lltok::kw_type, "expected 'type' after '='")) 300 return true; 301 302 if (TypeID >= NumberedTypes.size()) 303 NumberedTypes.resize(TypeID+1); 304 305 Type *Result = 0; 306 if (ParseStructDefinition(TypeLoc, "", 307 NumberedTypes[TypeID], Result)) return true; 308 309 if (!isa<StructType>(Result)) { 310 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 311 if (Entry.first) 312 return Error(TypeLoc, "non-struct types may not be recursive"); 313 Entry.first = Result; 314 Entry.second = SMLoc(); 315 } 316 317 return false; 318 } 319 320 321 /// toplevelentity 322 /// ::= LocalVar '=' 'type' type 323 bool LLParser::ParseNamedType() { 324 std::string Name = Lex.getStrVal(); 325 LocTy NameLoc = Lex.getLoc(); 326 Lex.Lex(); // eat LocalVar. 327 328 if (ParseToken(lltok::equal, "expected '=' after name") || 329 ParseToken(lltok::kw_type, "expected 'type' after name")) 330 return true; 331 332 Type *Result = 0; 333 if (ParseStructDefinition(NameLoc, Name, 334 NamedTypes[Name], Result)) return true; 335 336 if (!isa<StructType>(Result)) { 337 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 338 if (Entry.first) 339 return Error(NameLoc, "non-struct types may not be recursive"); 340 Entry.first = Result; 341 Entry.second = SMLoc(); 342 } 343 344 return false; 345 } 346 347 348 /// toplevelentity 349 /// ::= 'declare' FunctionHeader 350 bool LLParser::ParseDeclare() { 351 assert(Lex.getKind() == lltok::kw_declare); 352 Lex.Lex(); 353 354 Function *F; 355 return ParseFunctionHeader(F, false); 356 } 357 358 /// toplevelentity 359 /// ::= 'define' FunctionHeader '{' ... 360 bool LLParser::ParseDefine() { 361 assert(Lex.getKind() == lltok::kw_define); 362 Lex.Lex(); 363 364 Function *F; 365 return ParseFunctionHeader(F, true) || 366 ParseFunctionBody(*F); 367 } 368 369 /// ParseGlobalType 370 /// ::= 'constant' 371 /// ::= 'global' 372 bool LLParser::ParseGlobalType(bool &IsConstant) { 373 if (Lex.getKind() == lltok::kw_constant) 374 IsConstant = true; 375 else if (Lex.getKind() == lltok::kw_global) 376 IsConstant = false; 377 else { 378 IsConstant = false; 379 return TokError("expected 'global' or 'constant'"); 380 } 381 Lex.Lex(); 382 return false; 383 } 384 385 /// ParseUnnamedGlobal: 386 /// OptionalVisibility ALIAS ... 387 /// OptionalLinkage OptionalVisibility ... -> global variable 388 /// GlobalID '=' OptionalVisibility ALIAS ... 389 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable 390 bool LLParser::ParseUnnamedGlobal() { 391 unsigned VarID = NumberedVals.size(); 392 std::string Name; 393 LocTy NameLoc = Lex.getLoc(); 394 395 // Handle the GlobalID form. 396 if (Lex.getKind() == lltok::GlobalID) { 397 if (Lex.getUIntVal() != VarID) 398 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 399 Twine(VarID) + "'"); 400 Lex.Lex(); // eat GlobalID; 401 402 if (ParseToken(lltok::equal, "expected '=' after name")) 403 return true; 404 } 405 406 bool HasLinkage; 407 unsigned Linkage, Visibility; 408 if (ParseOptionalLinkage(Linkage, HasLinkage) || 409 ParseOptionalVisibility(Visibility)) 410 return true; 411 412 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 413 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 414 return ParseAlias(Name, NameLoc, Visibility); 415 } 416 417 /// ParseNamedGlobal: 418 /// GlobalVar '=' OptionalVisibility ALIAS ... 419 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable 420 bool LLParser::ParseNamedGlobal() { 421 assert(Lex.getKind() == lltok::GlobalVar); 422 LocTy NameLoc = Lex.getLoc(); 423 std::string Name = Lex.getStrVal(); 424 Lex.Lex(); 425 426 bool HasLinkage; 427 unsigned Linkage, Visibility; 428 if (ParseToken(lltok::equal, "expected '=' in global variable") || 429 ParseOptionalLinkage(Linkage, HasLinkage) || 430 ParseOptionalVisibility(Visibility)) 431 return true; 432 433 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 434 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 435 return ParseAlias(Name, NameLoc, Visibility); 436 } 437 438 // MDString: 439 // ::= '!' STRINGCONSTANT 440 bool LLParser::ParseMDString(MDString *&Result) { 441 std::string Str; 442 if (ParseStringConstant(Str)) return true; 443 Result = MDString::get(Context, Str); 444 return false; 445 } 446 447 // MDNode: 448 // ::= '!' MDNodeNumber 449 // 450 /// This version of ParseMDNodeID returns the slot number and null in the case 451 /// of a forward reference. 452 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) { 453 // !{ ..., !42, ... } 454 if (ParseUInt32(SlotNo)) return true; 455 456 // Check existing MDNode. 457 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0) 458 Result = NumberedMetadata[SlotNo]; 459 else 460 Result = 0; 461 return false; 462 } 463 464 bool LLParser::ParseMDNodeID(MDNode *&Result) { 465 // !{ ..., !42, ... } 466 unsigned MID = 0; 467 if (ParseMDNodeID(Result, MID)) return true; 468 469 // If not a forward reference, just return it now. 470 if (Result) return false; 471 472 // Otherwise, create MDNode forward reference. 473 MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>()); 474 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); 475 476 if (NumberedMetadata.size() <= MID) 477 NumberedMetadata.resize(MID+1); 478 NumberedMetadata[MID] = FwdNode; 479 Result = FwdNode; 480 return false; 481 } 482 483 /// ParseNamedMetadata: 484 /// !foo = !{ !1, !2 } 485 bool LLParser::ParseNamedMetadata() { 486 assert(Lex.getKind() == lltok::MetadataVar); 487 std::string Name = Lex.getStrVal(); 488 Lex.Lex(); 489 490 if (ParseToken(lltok::equal, "expected '=' here") || 491 ParseToken(lltok::exclaim, "Expected '!' here") || 492 ParseToken(lltok::lbrace, "Expected '{' here")) 493 return true; 494 495 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 496 if (Lex.getKind() != lltok::rbrace) 497 do { 498 if (ParseToken(lltok::exclaim, "Expected '!' here")) 499 return true; 500 501 MDNode *N = 0; 502 if (ParseMDNodeID(N)) return true; 503 NMD->addOperand(N); 504 } while (EatIfPresent(lltok::comma)); 505 506 if (ParseToken(lltok::rbrace, "expected end of metadata node")) 507 return true; 508 509 return false; 510 } 511 512 /// ParseStandaloneMetadata: 513 /// !42 = !{...} 514 bool LLParser::ParseStandaloneMetadata() { 515 assert(Lex.getKind() == lltok::exclaim); 516 Lex.Lex(); 517 unsigned MetadataID = 0; 518 519 LocTy TyLoc; 520 Type *Ty = 0; 521 SmallVector<Value *, 16> Elts; 522 if (ParseUInt32(MetadataID) || 523 ParseToken(lltok::equal, "expected '=' here") || 524 ParseType(Ty, TyLoc) || 525 ParseToken(lltok::exclaim, "Expected '!' here") || 526 ParseToken(lltok::lbrace, "Expected '{' here") || 527 ParseMDNodeVector(Elts, NULL) || 528 ParseToken(lltok::rbrace, "expected end of metadata node")) 529 return true; 530 531 MDNode *Init = MDNode::get(Context, Elts); 532 533 // See if this was forward referenced, if so, handle it. 534 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator 535 FI = ForwardRefMDNodes.find(MetadataID); 536 if (FI != ForwardRefMDNodes.end()) { 537 MDNode *Temp = FI->second.first; 538 Temp->replaceAllUsesWith(Init); 539 MDNode::deleteTemporary(Temp); 540 ForwardRefMDNodes.erase(FI); 541 542 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 543 } else { 544 if (MetadataID >= NumberedMetadata.size()) 545 NumberedMetadata.resize(MetadataID+1); 546 547 if (NumberedMetadata[MetadataID] != 0) 548 return TokError("Metadata id is already used"); 549 NumberedMetadata[MetadataID] = Init; 550 } 551 552 return false; 553 } 554 555 /// ParseAlias: 556 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee 557 /// Aliasee 558 /// ::= TypeAndValue 559 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' 560 /// ::= 'getelementptr' 'inbounds'? '(' ... ')' 561 /// 562 /// Everything through visibility has already been parsed. 563 /// 564 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, 565 unsigned Visibility) { 566 assert(Lex.getKind() == lltok::kw_alias); 567 Lex.Lex(); 568 unsigned Linkage; 569 LocTy LinkageLoc = Lex.getLoc(); 570 if (ParseOptionalLinkage(Linkage)) 571 return true; 572 573 if (Linkage != GlobalValue::ExternalLinkage && 574 Linkage != GlobalValue::WeakAnyLinkage && 575 Linkage != GlobalValue::WeakODRLinkage && 576 Linkage != GlobalValue::InternalLinkage && 577 Linkage != GlobalValue::PrivateLinkage && 578 Linkage != GlobalValue::LinkerPrivateLinkage && 579 Linkage != GlobalValue::LinkerPrivateWeakLinkage && 580 Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage) 581 return Error(LinkageLoc, "invalid linkage type for alias"); 582 583 Constant *Aliasee; 584 LocTy AliaseeLoc = Lex.getLoc(); 585 if (Lex.getKind() != lltok::kw_bitcast && 586 Lex.getKind() != lltok::kw_getelementptr) { 587 if (ParseGlobalTypeAndValue(Aliasee)) return true; 588 } else { 589 // The bitcast dest type is not present, it is implied by the dest type. 590 ValID ID; 591 if (ParseValID(ID)) return true; 592 if (ID.Kind != ValID::t_Constant) 593 return Error(AliaseeLoc, "invalid aliasee"); 594 Aliasee = ID.ConstantVal; 595 } 596 597 if (!Aliasee->getType()->isPointerTy()) 598 return Error(AliaseeLoc, "alias must have pointer type"); 599 600 // Okay, create the alias but do not insert it into the module yet. 601 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), 602 (GlobalValue::LinkageTypes)Linkage, Name, 603 Aliasee); 604 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 605 606 // See if this value already exists in the symbol table. If so, it is either 607 // a redefinition or a definition of a forward reference. 608 if (GlobalValue *Val = M->getNamedValue(Name)) { 609 // See if this was a redefinition. If so, there is no entry in 610 // ForwardRefVals. 611 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 612 I = ForwardRefVals.find(Name); 613 if (I == ForwardRefVals.end()) 614 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 615 616 // Otherwise, this was a definition of forward ref. Verify that types 617 // agree. 618 if (Val->getType() != GA->getType()) 619 return Error(NameLoc, 620 "forward reference and definition of alias have different types"); 621 622 // If they agree, just RAUW the old value with the alias and remove the 623 // forward ref info. 624 Val->replaceAllUsesWith(GA); 625 Val->eraseFromParent(); 626 ForwardRefVals.erase(I); 627 } 628 629 // Insert into the module, we know its name won't collide now. 630 M->getAliasList().push_back(GA); 631 assert(GA->getName() == Name && "Should not be a name conflict!"); 632 633 return false; 634 } 635 636 /// ParseGlobal 637 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal 638 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 639 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 640 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 641 /// 642 /// Everything through visibility has been parsed already. 643 /// 644 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 645 unsigned Linkage, bool HasLinkage, 646 unsigned Visibility) { 647 unsigned AddrSpace; 648 bool ThreadLocal, IsConstant, UnnamedAddr; 649 LocTy UnnamedAddrLoc; 650 LocTy TyLoc; 651 652 Type *Ty = 0; 653 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) || 654 ParseOptionalAddrSpace(AddrSpace) || 655 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 656 &UnnamedAddrLoc) || 657 ParseGlobalType(IsConstant) || 658 ParseType(Ty, TyLoc)) 659 return true; 660 661 // If the linkage is specified and is external, then no initializer is 662 // present. 663 Constant *Init = 0; 664 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && 665 Linkage != GlobalValue::ExternalWeakLinkage && 666 Linkage != GlobalValue::ExternalLinkage)) { 667 if (ParseGlobalValue(Ty, Init)) 668 return true; 669 } 670 671 if (Ty->isFunctionTy() || Ty->isLabelTy()) 672 return Error(TyLoc, "invalid type for global variable"); 673 674 GlobalVariable *GV = 0; 675 676 // See if the global was forward referenced, if so, use the global. 677 if (!Name.empty()) { 678 if (GlobalValue *GVal = M->getNamedValue(Name)) { 679 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 680 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 681 GV = cast<GlobalVariable>(GVal); 682 } 683 } else { 684 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 685 I = ForwardRefValIDs.find(NumberedVals.size()); 686 if (I != ForwardRefValIDs.end()) { 687 GV = cast<GlobalVariable>(I->second.first); 688 ForwardRefValIDs.erase(I); 689 } 690 } 691 692 if (GV == 0) { 693 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, 694 Name, 0, false, AddrSpace); 695 } else { 696 if (GV->getType()->getElementType() != Ty) 697 return Error(TyLoc, 698 "forward reference and definition of global have different types"); 699 700 // Move the forward-reference to the correct spot in the module. 701 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 702 } 703 704 if (Name.empty()) 705 NumberedVals.push_back(GV); 706 707 // Set the parsed properties on the global. 708 if (Init) 709 GV->setInitializer(Init); 710 GV->setConstant(IsConstant); 711 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 712 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 713 GV->setThreadLocal(ThreadLocal); 714 GV->setUnnamedAddr(UnnamedAddr); 715 716 // Parse attributes on the global. 717 while (Lex.getKind() == lltok::comma) { 718 Lex.Lex(); 719 720 if (Lex.getKind() == lltok::kw_section) { 721 Lex.Lex(); 722 GV->setSection(Lex.getStrVal()); 723 if (ParseToken(lltok::StringConstant, "expected global section string")) 724 return true; 725 } else if (Lex.getKind() == lltok::kw_align) { 726 unsigned Alignment; 727 if (ParseOptionalAlignment(Alignment)) return true; 728 GV->setAlignment(Alignment); 729 } else { 730 TokError("unknown global variable property!"); 731 } 732 } 733 734 return false; 735 } 736 737 738 //===----------------------------------------------------------------------===// 739 // GlobalValue Reference/Resolution Routines. 740 //===----------------------------------------------------------------------===// 741 742 /// GetGlobalVal - Get a value with the specified name or ID, creating a 743 /// forward reference record if needed. This can return null if the value 744 /// exists but does not have the right type. 745 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 746 LocTy Loc) { 747 PointerType *PTy = dyn_cast<PointerType>(Ty); 748 if (PTy == 0) { 749 Error(Loc, "global variable reference must have pointer type"); 750 return 0; 751 } 752 753 // Look this name up in the normal function symbol table. 754 GlobalValue *Val = 755 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 756 757 // If this is a forward reference for the value, see if we already created a 758 // forward ref record. 759 if (Val == 0) { 760 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 761 I = ForwardRefVals.find(Name); 762 if (I != ForwardRefVals.end()) 763 Val = I->second.first; 764 } 765 766 // If we have the value in the symbol table or fwd-ref table, return it. 767 if (Val) { 768 if (Val->getType() == Ty) return Val; 769 Error(Loc, "'@" + Name + "' defined with type '" + 770 getTypeString(Val->getType()) + "'"); 771 return 0; 772 } 773 774 // Otherwise, create a new forward reference for this value and remember it. 775 GlobalValue *FwdVal; 776 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 777 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 778 else 779 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 780 GlobalValue::ExternalWeakLinkage, 0, Name); 781 782 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 783 return FwdVal; 784 } 785 786 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 787 PointerType *PTy = dyn_cast<PointerType>(Ty); 788 if (PTy == 0) { 789 Error(Loc, "global variable reference must have pointer type"); 790 return 0; 791 } 792 793 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 794 795 // If this is a forward reference for the value, see if we already created a 796 // forward ref record. 797 if (Val == 0) { 798 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 799 I = ForwardRefValIDs.find(ID); 800 if (I != ForwardRefValIDs.end()) 801 Val = I->second.first; 802 } 803 804 // If we have the value in the symbol table or fwd-ref table, return it. 805 if (Val) { 806 if (Val->getType() == Ty) return Val; 807 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 808 getTypeString(Val->getType()) + "'"); 809 return 0; 810 } 811 812 // Otherwise, create a new forward reference for this value and remember it. 813 GlobalValue *FwdVal; 814 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 815 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); 816 else 817 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 818 GlobalValue::ExternalWeakLinkage, 0, ""); 819 820 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 821 return FwdVal; 822 } 823 824 825 //===----------------------------------------------------------------------===// 826 // Helper Routines. 827 //===----------------------------------------------------------------------===// 828 829 /// ParseToken - If the current token has the specified kind, eat it and return 830 /// success. Otherwise, emit the specified error and return failure. 831 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 832 if (Lex.getKind() != T) 833 return TokError(ErrMsg); 834 Lex.Lex(); 835 return false; 836 } 837 838 /// ParseStringConstant 839 /// ::= StringConstant 840 bool LLParser::ParseStringConstant(std::string &Result) { 841 if (Lex.getKind() != lltok::StringConstant) 842 return TokError("expected string constant"); 843 Result = Lex.getStrVal(); 844 Lex.Lex(); 845 return false; 846 } 847 848 /// ParseUInt32 849 /// ::= uint32 850 bool LLParser::ParseUInt32(unsigned &Val) { 851 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 852 return TokError("expected integer"); 853 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 854 if (Val64 != unsigned(Val64)) 855 return TokError("expected 32-bit integer (too large)"); 856 Val = Val64; 857 Lex.Lex(); 858 return false; 859 } 860 861 862 /// ParseOptionalAddrSpace 863 /// := /*empty*/ 864 /// := 'addrspace' '(' uint32 ')' 865 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 866 AddrSpace = 0; 867 if (!EatIfPresent(lltok::kw_addrspace)) 868 return false; 869 return ParseToken(lltok::lparen, "expected '(' in address space") || 870 ParseUInt32(AddrSpace) || 871 ParseToken(lltok::rparen, "expected ')' in address space"); 872 } 873 874 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind 875 /// indicates what kind of attribute list this is: 0: function arg, 1: result, 876 /// 2: function attr. 877 bool LLParser::ParseOptionalAttrs(Attributes &Attrs, unsigned AttrKind) { 878 Attrs = Attribute::None; 879 LocTy AttrLoc = Lex.getLoc(); 880 881 while (1) { 882 switch (Lex.getKind()) { 883 default: // End of attributes. 884 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly)) 885 return Error(AttrLoc, "invalid use of function-only attribute"); 886 887 // As a hack, we allow "align 2" on functions as a synonym for 888 // "alignstack 2". 889 if (AttrKind == 2 && 890 (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment))) 891 return Error(AttrLoc, "invalid use of attribute on a function"); 892 893 if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly)) 894 return Error(AttrLoc, "invalid use of parameter-only attribute"); 895 896 return false; 897 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break; 898 case lltok::kw_signext: Attrs |= Attribute::SExt; break; 899 case lltok::kw_inreg: Attrs |= Attribute::InReg; break; 900 case lltok::kw_sret: Attrs |= Attribute::StructRet; break; 901 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break; 902 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break; 903 case lltok::kw_byval: Attrs |= Attribute::ByVal; break; 904 case lltok::kw_nest: Attrs |= Attribute::Nest; break; 905 906 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break; 907 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break; 908 case lltok::kw_uwtable: Attrs |= Attribute::UWTable; break; 909 case lltok::kw_returns_twice: Attrs |= Attribute::ReturnsTwice; break; 910 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break; 911 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break; 912 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break; 913 case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break; 914 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break; 915 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break; 916 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break; 917 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break; 918 case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break; 919 case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break; 920 case lltok::kw_naked: Attrs |= Attribute::Naked; break; 921 case lltok::kw_nonlazybind: Attrs |= Attribute::NonLazyBind; break; 922 case lltok::kw_address_safety: Attrs |= Attribute::AddressSafety; break; 923 924 case lltok::kw_alignstack: { 925 unsigned Alignment; 926 if (ParseOptionalStackAlignment(Alignment)) 927 return true; 928 Attrs |= Attribute::constructStackAlignmentFromInt(Alignment); 929 continue; 930 } 931 932 case lltok::kw_align: { 933 unsigned Alignment; 934 if (ParseOptionalAlignment(Alignment)) 935 return true; 936 Attrs |= Attribute::constructAlignmentFromInt(Alignment); 937 continue; 938 } 939 940 } 941 Lex.Lex(); 942 } 943 } 944 945 /// ParseOptionalLinkage 946 /// ::= /*empty*/ 947 /// ::= 'private' 948 /// ::= 'linker_private' 949 /// ::= 'linker_private_weak' 950 /// ::= 'linker_private_weak_def_auto' 951 /// ::= 'internal' 952 /// ::= 'weak' 953 /// ::= 'weak_odr' 954 /// ::= 'linkonce' 955 /// ::= 'linkonce_odr' 956 /// ::= 'available_externally' 957 /// ::= 'appending' 958 /// ::= 'dllexport' 959 /// ::= 'common' 960 /// ::= 'dllimport' 961 /// ::= 'extern_weak' 962 /// ::= 'external' 963 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 964 HasLinkage = false; 965 switch (Lex.getKind()) { 966 default: Res=GlobalValue::ExternalLinkage; return false; 967 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 968 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; 969 case lltok::kw_linker_private_weak: 970 Res = GlobalValue::LinkerPrivateWeakLinkage; 971 break; 972 case lltok::kw_linker_private_weak_def_auto: 973 Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage; 974 break; 975 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 976 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 977 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 978 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 979 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 980 case lltok::kw_available_externally: 981 Res = GlobalValue::AvailableExternallyLinkage; 982 break; 983 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 984 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; 985 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 986 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; 987 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 988 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 989 } 990 Lex.Lex(); 991 HasLinkage = true; 992 return false; 993 } 994 995 /// ParseOptionalVisibility 996 /// ::= /*empty*/ 997 /// ::= 'default' 998 /// ::= 'hidden' 999 /// ::= 'protected' 1000 /// 1001 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1002 switch (Lex.getKind()) { 1003 default: Res = GlobalValue::DefaultVisibility; return false; 1004 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1005 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1006 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1007 } 1008 Lex.Lex(); 1009 return false; 1010 } 1011 1012 /// ParseOptionalCallingConv 1013 /// ::= /*empty*/ 1014 /// ::= 'ccc' 1015 /// ::= 'fastcc' 1016 /// ::= 'coldcc' 1017 /// ::= 'x86_stdcallcc' 1018 /// ::= 'x86_fastcallcc' 1019 /// ::= 'x86_thiscallcc' 1020 /// ::= 'arm_apcscc' 1021 /// ::= 'arm_aapcscc' 1022 /// ::= 'arm_aapcs_vfpcc' 1023 /// ::= 'msp430_intrcc' 1024 /// ::= 'ptx_kernel' 1025 /// ::= 'ptx_device' 1026 /// ::= 'cc' UINT 1027 /// 1028 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) { 1029 switch (Lex.getKind()) { 1030 default: CC = CallingConv::C; return false; 1031 case lltok::kw_ccc: CC = CallingConv::C; break; 1032 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1033 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1034 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1035 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1036 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1037 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1038 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1039 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1040 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1041 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1042 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1043 case lltok::kw_cc: { 1044 unsigned ArbitraryCC; 1045 Lex.Lex(); 1046 if (ParseUInt32(ArbitraryCC)) 1047 return true; 1048 CC = static_cast<CallingConv::ID>(ArbitraryCC); 1049 return false; 1050 } 1051 } 1052 1053 Lex.Lex(); 1054 return false; 1055 } 1056 1057 /// ParseInstructionMetadata 1058 /// ::= !dbg !42 (',' !dbg !57)* 1059 bool LLParser::ParseInstructionMetadata(Instruction *Inst, 1060 PerFunctionState *PFS) { 1061 do { 1062 if (Lex.getKind() != lltok::MetadataVar) 1063 return TokError("expected metadata after comma"); 1064 1065 std::string Name = Lex.getStrVal(); 1066 unsigned MDK = M->getMDKindID(Name); 1067 Lex.Lex(); 1068 1069 MDNode *Node; 1070 SMLoc Loc = Lex.getLoc(); 1071 1072 if (ParseToken(lltok::exclaim, "expected '!' here")) 1073 return true; 1074 1075 // This code is similar to that of ParseMetadataValue, however it needs to 1076 // have special-case code for a forward reference; see the comments on 1077 // ForwardRefInstMetadata for details. Also, MDStrings are not supported 1078 // at the top level here. 1079 if (Lex.getKind() == lltok::lbrace) { 1080 ValID ID; 1081 if (ParseMetadataListValue(ID, PFS)) 1082 return true; 1083 assert(ID.Kind == ValID::t_MDNode); 1084 Inst->setMetadata(MDK, ID.MDNodeVal); 1085 } else { 1086 unsigned NodeID = 0; 1087 if (ParseMDNodeID(Node, NodeID)) 1088 return true; 1089 if (Node) { 1090 // If we got the node, add it to the instruction. 1091 Inst->setMetadata(MDK, Node); 1092 } else { 1093 MDRef R = { Loc, MDK, NodeID }; 1094 // Otherwise, remember that this should be resolved later. 1095 ForwardRefInstMetadata[Inst].push_back(R); 1096 } 1097 } 1098 1099 // If this is the end of the list, we're done. 1100 } while (EatIfPresent(lltok::comma)); 1101 return false; 1102 } 1103 1104 /// ParseOptionalAlignment 1105 /// ::= /* empty */ 1106 /// ::= 'align' 4 1107 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1108 Alignment = 0; 1109 if (!EatIfPresent(lltok::kw_align)) 1110 return false; 1111 LocTy AlignLoc = Lex.getLoc(); 1112 if (ParseUInt32(Alignment)) return true; 1113 if (!isPowerOf2_32(Alignment)) 1114 return Error(AlignLoc, "alignment is not a power of two"); 1115 if (Alignment > Value::MaximumAlignment) 1116 return Error(AlignLoc, "huge alignments are not supported yet"); 1117 return false; 1118 } 1119 1120 /// ParseOptionalCommaAlign 1121 /// ::= 1122 /// ::= ',' align 4 1123 /// 1124 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1125 /// end. 1126 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1127 bool &AteExtraComma) { 1128 AteExtraComma = false; 1129 while (EatIfPresent(lltok::comma)) { 1130 // Metadata at the end is an early exit. 1131 if (Lex.getKind() == lltok::MetadataVar) { 1132 AteExtraComma = true; 1133 return false; 1134 } 1135 1136 if (Lex.getKind() != lltok::kw_align) 1137 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1138 1139 if (ParseOptionalAlignment(Alignment)) return true; 1140 } 1141 1142 return false; 1143 } 1144 1145 /// ParseScopeAndOrdering 1146 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1147 /// else: ::= 1148 /// 1149 /// This sets Scope and Ordering to the parsed values. 1150 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1151 AtomicOrdering &Ordering) { 1152 if (!isAtomic) 1153 return false; 1154 1155 Scope = CrossThread; 1156 if (EatIfPresent(lltok::kw_singlethread)) 1157 Scope = SingleThread; 1158 switch (Lex.getKind()) { 1159 default: return TokError("Expected ordering on atomic instruction"); 1160 case lltok::kw_unordered: Ordering = Unordered; break; 1161 case lltok::kw_monotonic: Ordering = Monotonic; break; 1162 case lltok::kw_acquire: Ordering = Acquire; break; 1163 case lltok::kw_release: Ordering = Release; break; 1164 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1165 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1166 } 1167 Lex.Lex(); 1168 return false; 1169 } 1170 1171 /// ParseOptionalStackAlignment 1172 /// ::= /* empty */ 1173 /// ::= 'alignstack' '(' 4 ')' 1174 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1175 Alignment = 0; 1176 if (!EatIfPresent(lltok::kw_alignstack)) 1177 return false; 1178 LocTy ParenLoc = Lex.getLoc(); 1179 if (!EatIfPresent(lltok::lparen)) 1180 return Error(ParenLoc, "expected '('"); 1181 LocTy AlignLoc = Lex.getLoc(); 1182 if (ParseUInt32(Alignment)) return true; 1183 ParenLoc = Lex.getLoc(); 1184 if (!EatIfPresent(lltok::rparen)) 1185 return Error(ParenLoc, "expected ')'"); 1186 if (!isPowerOf2_32(Alignment)) 1187 return Error(AlignLoc, "stack alignment is not a power of two"); 1188 return false; 1189 } 1190 1191 /// ParseIndexList - This parses the index list for an insert/extractvalue 1192 /// instruction. This sets AteExtraComma in the case where we eat an extra 1193 /// comma at the end of the line and find that it is followed by metadata. 1194 /// Clients that don't allow metadata can call the version of this function that 1195 /// only takes one argument. 1196 /// 1197 /// ParseIndexList 1198 /// ::= (',' uint32)+ 1199 /// 1200 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1201 bool &AteExtraComma) { 1202 AteExtraComma = false; 1203 1204 if (Lex.getKind() != lltok::comma) 1205 return TokError("expected ',' as start of index list"); 1206 1207 while (EatIfPresent(lltok::comma)) { 1208 if (Lex.getKind() == lltok::MetadataVar) { 1209 AteExtraComma = true; 1210 return false; 1211 } 1212 unsigned Idx = 0; 1213 if (ParseUInt32(Idx)) return true; 1214 Indices.push_back(Idx); 1215 } 1216 1217 return false; 1218 } 1219 1220 //===----------------------------------------------------------------------===// 1221 // Type Parsing. 1222 //===----------------------------------------------------------------------===// 1223 1224 /// ParseType - Parse a type. 1225 bool LLParser::ParseType(Type *&Result, bool AllowVoid) { 1226 SMLoc TypeLoc = Lex.getLoc(); 1227 switch (Lex.getKind()) { 1228 default: 1229 return TokError("expected type"); 1230 case lltok::Type: 1231 // Type ::= 'float' | 'void' (etc) 1232 Result = Lex.getTyVal(); 1233 Lex.Lex(); 1234 break; 1235 case lltok::lbrace: 1236 // Type ::= StructType 1237 if (ParseAnonStructType(Result, false)) 1238 return true; 1239 break; 1240 case lltok::lsquare: 1241 // Type ::= '[' ... ']' 1242 Lex.Lex(); // eat the lsquare. 1243 if (ParseArrayVectorType(Result, false)) 1244 return true; 1245 break; 1246 case lltok::less: // Either vector or packed struct. 1247 // Type ::= '<' ... '>' 1248 Lex.Lex(); 1249 if (Lex.getKind() == lltok::lbrace) { 1250 if (ParseAnonStructType(Result, true) || 1251 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1252 return true; 1253 } else if (ParseArrayVectorType(Result, true)) 1254 return true; 1255 break; 1256 case lltok::LocalVar: { 1257 // Type ::= %foo 1258 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1259 1260 // If the type hasn't been defined yet, create a forward definition and 1261 // remember where that forward def'n was seen (in case it never is defined). 1262 if (Entry.first == 0) { 1263 Entry.first = StructType::create(Context, Lex.getStrVal()); 1264 Entry.second = Lex.getLoc(); 1265 } 1266 Result = Entry.first; 1267 Lex.Lex(); 1268 break; 1269 } 1270 1271 case lltok::LocalVarID: { 1272 // Type ::= %4 1273 if (Lex.getUIntVal() >= NumberedTypes.size()) 1274 NumberedTypes.resize(Lex.getUIntVal()+1); 1275 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1276 1277 // If the type hasn't been defined yet, create a forward definition and 1278 // remember where that forward def'n was seen (in case it never is defined). 1279 if (Entry.first == 0) { 1280 Entry.first = StructType::create(Context); 1281 Entry.second = Lex.getLoc(); 1282 } 1283 Result = Entry.first; 1284 Lex.Lex(); 1285 break; 1286 } 1287 } 1288 1289 // Parse the type suffixes. 1290 while (1) { 1291 switch (Lex.getKind()) { 1292 // End of type. 1293 default: 1294 if (!AllowVoid && Result->isVoidTy()) 1295 return Error(TypeLoc, "void type only allowed for function results"); 1296 return false; 1297 1298 // Type ::= Type '*' 1299 case lltok::star: 1300 if (Result->isLabelTy()) 1301 return TokError("basic block pointers are invalid"); 1302 if (Result->isVoidTy()) 1303 return TokError("pointers to void are invalid - use i8* instead"); 1304 if (!PointerType::isValidElementType(Result)) 1305 return TokError("pointer to this type is invalid"); 1306 Result = PointerType::getUnqual(Result); 1307 Lex.Lex(); 1308 break; 1309 1310 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1311 case lltok::kw_addrspace: { 1312 if (Result->isLabelTy()) 1313 return TokError("basic block pointers are invalid"); 1314 if (Result->isVoidTy()) 1315 return TokError("pointers to void are invalid; use i8* instead"); 1316 if (!PointerType::isValidElementType(Result)) 1317 return TokError("pointer to this type is invalid"); 1318 unsigned AddrSpace; 1319 if (ParseOptionalAddrSpace(AddrSpace) || 1320 ParseToken(lltok::star, "expected '*' in address space")) 1321 return true; 1322 1323 Result = PointerType::get(Result, AddrSpace); 1324 break; 1325 } 1326 1327 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1328 case lltok::lparen: 1329 if (ParseFunctionType(Result)) 1330 return true; 1331 break; 1332 } 1333 } 1334 } 1335 1336 /// ParseParameterList 1337 /// ::= '(' ')' 1338 /// ::= '(' Arg (',' Arg)* ')' 1339 /// Arg 1340 /// ::= Type OptionalAttributes Value OptionalAttributes 1341 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1342 PerFunctionState &PFS) { 1343 if (ParseToken(lltok::lparen, "expected '(' in call")) 1344 return true; 1345 1346 while (Lex.getKind() != lltok::rparen) { 1347 // If this isn't the first argument, we need a comma. 1348 if (!ArgList.empty() && 1349 ParseToken(lltok::comma, "expected ',' in argument list")) 1350 return true; 1351 1352 // Parse the argument. 1353 LocTy ArgLoc; 1354 Type *ArgTy = 0; 1355 Attributes ArgAttrs1; 1356 Attributes ArgAttrs2; 1357 Value *V; 1358 if (ParseType(ArgTy, ArgLoc)) 1359 return true; 1360 1361 // Otherwise, handle normal operands. 1362 if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS)) 1363 return true; 1364 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2)); 1365 } 1366 1367 Lex.Lex(); // Lex the ')'. 1368 return false; 1369 } 1370 1371 1372 1373 /// ParseArgumentList - Parse the argument list for a function type or function 1374 /// prototype. 1375 /// ::= '(' ArgTypeListI ')' 1376 /// ArgTypeListI 1377 /// ::= /*empty*/ 1378 /// ::= '...' 1379 /// ::= ArgTypeList ',' '...' 1380 /// ::= ArgType (',' ArgType)* 1381 /// 1382 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 1383 bool &isVarArg){ 1384 isVarArg = false; 1385 assert(Lex.getKind() == lltok::lparen); 1386 Lex.Lex(); // eat the (. 1387 1388 if (Lex.getKind() == lltok::rparen) { 1389 // empty 1390 } else if (Lex.getKind() == lltok::dotdotdot) { 1391 isVarArg = true; 1392 Lex.Lex(); 1393 } else { 1394 LocTy TypeLoc = Lex.getLoc(); 1395 Type *ArgTy = 0; 1396 Attributes Attrs; 1397 std::string Name; 1398 1399 if (ParseType(ArgTy) || 1400 ParseOptionalAttrs(Attrs, 0)) return true; 1401 1402 if (ArgTy->isVoidTy()) 1403 return Error(TypeLoc, "argument can not have void type"); 1404 1405 if (Lex.getKind() == lltok::LocalVar) { 1406 Name = Lex.getStrVal(); 1407 Lex.Lex(); 1408 } 1409 1410 if (!FunctionType::isValidArgumentType(ArgTy)) 1411 return Error(TypeLoc, "invalid type for function argument"); 1412 1413 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); 1414 1415 while (EatIfPresent(lltok::comma)) { 1416 // Handle ... at end of arg list. 1417 if (EatIfPresent(lltok::dotdotdot)) { 1418 isVarArg = true; 1419 break; 1420 } 1421 1422 // Otherwise must be an argument type. 1423 TypeLoc = Lex.getLoc(); 1424 if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true; 1425 1426 if (ArgTy->isVoidTy()) 1427 return Error(TypeLoc, "argument can not have void type"); 1428 1429 if (Lex.getKind() == lltok::LocalVar) { 1430 Name = Lex.getStrVal(); 1431 Lex.Lex(); 1432 } else { 1433 Name = ""; 1434 } 1435 1436 if (!ArgTy->isFirstClassType()) 1437 return Error(TypeLoc, "invalid type for function argument"); 1438 1439 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); 1440 } 1441 } 1442 1443 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1444 } 1445 1446 /// ParseFunctionType 1447 /// ::= Type ArgumentList OptionalAttrs 1448 bool LLParser::ParseFunctionType(Type *&Result) { 1449 assert(Lex.getKind() == lltok::lparen); 1450 1451 if (!FunctionType::isValidReturnType(Result)) 1452 return TokError("invalid function return type"); 1453 1454 SmallVector<ArgInfo, 8> ArgList; 1455 bool isVarArg; 1456 if (ParseArgumentList(ArgList, isVarArg)) 1457 return true; 1458 1459 // Reject names on the arguments lists. 1460 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 1461 if (!ArgList[i].Name.empty()) 1462 return Error(ArgList[i].Loc, "argument name invalid in function type"); 1463 if (ArgList[i].Attrs) 1464 return Error(ArgList[i].Loc, 1465 "argument attributes invalid in function type"); 1466 } 1467 1468 SmallVector<Type*, 16> ArgListTy; 1469 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 1470 ArgListTy.push_back(ArgList[i].Ty); 1471 1472 Result = FunctionType::get(Result, ArgListTy, isVarArg); 1473 return false; 1474 } 1475 1476 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 1477 /// other structs. 1478 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 1479 SmallVector<Type*, 8> Elts; 1480 if (ParseStructBody(Elts)) return true; 1481 1482 Result = StructType::get(Context, Elts, Packed); 1483 return false; 1484 } 1485 1486 /// ParseStructDefinition - Parse a struct in a 'type' definition. 1487 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 1488 std::pair<Type*, LocTy> &Entry, 1489 Type *&ResultTy) { 1490 // If the type was already defined, diagnose the redefinition. 1491 if (Entry.first && !Entry.second.isValid()) 1492 return Error(TypeLoc, "redefinition of type"); 1493 1494 // If we have opaque, just return without filling in the definition for the 1495 // struct. This counts as a definition as far as the .ll file goes. 1496 if (EatIfPresent(lltok::kw_opaque)) { 1497 // This type is being defined, so clear the location to indicate this. 1498 Entry.second = SMLoc(); 1499 1500 // If this type number has never been uttered, create it. 1501 if (Entry.first == 0) 1502 Entry.first = StructType::create(Context, Name); 1503 ResultTy = Entry.first; 1504 return false; 1505 } 1506 1507 // If the type starts with '<', then it is either a packed struct or a vector. 1508 bool isPacked = EatIfPresent(lltok::less); 1509 1510 // If we don't have a struct, then we have a random type alias, which we 1511 // accept for compatibility with old files. These types are not allowed to be 1512 // forward referenced and not allowed to be recursive. 1513 if (Lex.getKind() != lltok::lbrace) { 1514 if (Entry.first) 1515 return Error(TypeLoc, "forward references to non-struct type"); 1516 1517 ResultTy = 0; 1518 if (isPacked) 1519 return ParseArrayVectorType(ResultTy, true); 1520 return ParseType(ResultTy); 1521 } 1522 1523 // This type is being defined, so clear the location to indicate this. 1524 Entry.second = SMLoc(); 1525 1526 // If this type number has never been uttered, create it. 1527 if (Entry.first == 0) 1528 Entry.first = StructType::create(Context, Name); 1529 1530 StructType *STy = cast<StructType>(Entry.first); 1531 1532 SmallVector<Type*, 8> Body; 1533 if (ParseStructBody(Body) || 1534 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 1535 return true; 1536 1537 STy->setBody(Body, isPacked); 1538 ResultTy = STy; 1539 return false; 1540 } 1541 1542 1543 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 1544 /// StructType 1545 /// ::= '{' '}' 1546 /// ::= '{' Type (',' Type)* '}' 1547 /// ::= '<' '{' '}' '>' 1548 /// ::= '<' '{' Type (',' Type)* '}' '>' 1549 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 1550 assert(Lex.getKind() == lltok::lbrace); 1551 Lex.Lex(); // Consume the '{' 1552 1553 // Handle the empty struct. 1554 if (EatIfPresent(lltok::rbrace)) 1555 return false; 1556 1557 LocTy EltTyLoc = Lex.getLoc(); 1558 Type *Ty = 0; 1559 if (ParseType(Ty)) return true; 1560 Body.push_back(Ty); 1561 1562 if (!StructType::isValidElementType(Ty)) 1563 return Error(EltTyLoc, "invalid element type for struct"); 1564 1565 while (EatIfPresent(lltok::comma)) { 1566 EltTyLoc = Lex.getLoc(); 1567 if (ParseType(Ty)) return true; 1568 1569 if (!StructType::isValidElementType(Ty)) 1570 return Error(EltTyLoc, "invalid element type for struct"); 1571 1572 Body.push_back(Ty); 1573 } 1574 1575 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 1576 } 1577 1578 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 1579 /// token has already been consumed. 1580 /// Type 1581 /// ::= '[' APSINTVAL 'x' Types ']' 1582 /// ::= '<' APSINTVAL 'x' Types '>' 1583 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 1584 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 1585 Lex.getAPSIntVal().getBitWidth() > 64) 1586 return TokError("expected number in address space"); 1587 1588 LocTy SizeLoc = Lex.getLoc(); 1589 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 1590 Lex.Lex(); 1591 1592 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 1593 return true; 1594 1595 LocTy TypeLoc = Lex.getLoc(); 1596 Type *EltTy = 0; 1597 if (ParseType(EltTy)) return true; 1598 1599 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 1600 "expected end of sequential type")) 1601 return true; 1602 1603 if (isVector) { 1604 if (Size == 0) 1605 return Error(SizeLoc, "zero element vector is illegal"); 1606 if ((unsigned)Size != Size) 1607 return Error(SizeLoc, "size too large for vector"); 1608 if (!VectorType::isValidElementType(EltTy)) 1609 return Error(TypeLoc, 1610 "vector element type must be fp, integer or a pointer to these types"); 1611 Result = VectorType::get(EltTy, unsigned(Size)); 1612 } else { 1613 if (!ArrayType::isValidElementType(EltTy)) 1614 return Error(TypeLoc, "invalid array element type"); 1615 Result = ArrayType::get(EltTy, Size); 1616 } 1617 return false; 1618 } 1619 1620 //===----------------------------------------------------------------------===// 1621 // Function Semantic Analysis. 1622 //===----------------------------------------------------------------------===// 1623 1624 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 1625 int functionNumber) 1626 : P(p), F(f), FunctionNumber(functionNumber) { 1627 1628 // Insert unnamed arguments into the NumberedVals list. 1629 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 1630 AI != E; ++AI) 1631 if (!AI->hasName()) 1632 NumberedVals.push_back(AI); 1633 } 1634 1635 LLParser::PerFunctionState::~PerFunctionState() { 1636 // If there were any forward referenced non-basicblock values, delete them. 1637 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator 1638 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) 1639 if (!isa<BasicBlock>(I->second.first)) { 1640 I->second.first->replaceAllUsesWith( 1641 UndefValue::get(I->second.first->getType())); 1642 delete I->second.first; 1643 I->second.first = 0; 1644 } 1645 1646 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1647 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) 1648 if (!isa<BasicBlock>(I->second.first)) { 1649 I->second.first->replaceAllUsesWith( 1650 UndefValue::get(I->second.first->getType())); 1651 delete I->second.first; 1652 I->second.first = 0; 1653 } 1654 } 1655 1656 bool LLParser::PerFunctionState::FinishFunction() { 1657 // Check to see if someone took the address of labels in this block. 1658 if (!P.ForwardRefBlockAddresses.empty()) { 1659 ValID FunctionID; 1660 if (!F.getName().empty()) { 1661 FunctionID.Kind = ValID::t_GlobalName; 1662 FunctionID.StrVal = F.getName(); 1663 } else { 1664 FunctionID.Kind = ValID::t_GlobalID; 1665 FunctionID.UIntVal = FunctionNumber; 1666 } 1667 1668 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator 1669 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID); 1670 if (FRBAI != P.ForwardRefBlockAddresses.end()) { 1671 // Resolve all these references. 1672 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this)) 1673 return true; 1674 1675 P.ForwardRefBlockAddresses.erase(FRBAI); 1676 } 1677 } 1678 1679 if (!ForwardRefVals.empty()) 1680 return P.Error(ForwardRefVals.begin()->second.second, 1681 "use of undefined value '%" + ForwardRefVals.begin()->first + 1682 "'"); 1683 if (!ForwardRefValIDs.empty()) 1684 return P.Error(ForwardRefValIDs.begin()->second.second, 1685 "use of undefined value '%" + 1686 Twine(ForwardRefValIDs.begin()->first) + "'"); 1687 return false; 1688 } 1689 1690 1691 /// GetVal - Get a value with the specified name or ID, creating a 1692 /// forward reference record if needed. This can return null if the value 1693 /// exists but does not have the right type. 1694 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, 1695 Type *Ty, LocTy Loc) { 1696 // Look this name up in the normal function symbol table. 1697 Value *Val = F.getValueSymbolTable().lookup(Name); 1698 1699 // If this is a forward reference for the value, see if we already created a 1700 // forward ref record. 1701 if (Val == 0) { 1702 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1703 I = ForwardRefVals.find(Name); 1704 if (I != ForwardRefVals.end()) 1705 Val = I->second.first; 1706 } 1707 1708 // If we have the value in the symbol table or fwd-ref table, return it. 1709 if (Val) { 1710 if (Val->getType() == Ty) return Val; 1711 if (Ty->isLabelTy()) 1712 P.Error(Loc, "'%" + Name + "' is not a basic block"); 1713 else 1714 P.Error(Loc, "'%" + Name + "' defined with type '" + 1715 getTypeString(Val->getType()) + "'"); 1716 return 0; 1717 } 1718 1719 // Don't make placeholders with invalid type. 1720 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1721 P.Error(Loc, "invalid use of a non-first-class type"); 1722 return 0; 1723 } 1724 1725 // Otherwise, create a new forward reference for this value and remember it. 1726 Value *FwdVal; 1727 if (Ty->isLabelTy()) 1728 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 1729 else 1730 FwdVal = new Argument(Ty, Name); 1731 1732 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1733 return FwdVal; 1734 } 1735 1736 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, 1737 LocTy Loc) { 1738 // Look this name up in the normal function symbol table. 1739 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 1740 1741 // If this is a forward reference for the value, see if we already created a 1742 // forward ref record. 1743 if (Val == 0) { 1744 std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1745 I = ForwardRefValIDs.find(ID); 1746 if (I != ForwardRefValIDs.end()) 1747 Val = I->second.first; 1748 } 1749 1750 // If we have the value in the symbol table or fwd-ref table, return it. 1751 if (Val) { 1752 if (Val->getType() == Ty) return Val; 1753 if (Ty->isLabelTy()) 1754 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 1755 else 1756 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 1757 getTypeString(Val->getType()) + "'"); 1758 return 0; 1759 } 1760 1761 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1762 P.Error(Loc, "invalid use of a non-first-class type"); 1763 return 0; 1764 } 1765 1766 // Otherwise, create a new forward reference for this value and remember it. 1767 Value *FwdVal; 1768 if (Ty->isLabelTy()) 1769 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 1770 else 1771 FwdVal = new Argument(Ty); 1772 1773 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1774 return FwdVal; 1775 } 1776 1777 /// SetInstName - After an instruction is parsed and inserted into its 1778 /// basic block, this installs its name. 1779 bool LLParser::PerFunctionState::SetInstName(int NameID, 1780 const std::string &NameStr, 1781 LocTy NameLoc, Instruction *Inst) { 1782 // If this instruction has void type, it cannot have a name or ID specified. 1783 if (Inst->getType()->isVoidTy()) { 1784 if (NameID != -1 || !NameStr.empty()) 1785 return P.Error(NameLoc, "instructions returning void cannot have a name"); 1786 return false; 1787 } 1788 1789 // If this was a numbered instruction, verify that the instruction is the 1790 // expected value and resolve any forward references. 1791 if (NameStr.empty()) { 1792 // If neither a name nor an ID was specified, just use the next ID. 1793 if (NameID == -1) 1794 NameID = NumberedVals.size(); 1795 1796 if (unsigned(NameID) != NumberedVals.size()) 1797 return P.Error(NameLoc, "instruction expected to be numbered '%" + 1798 Twine(NumberedVals.size()) + "'"); 1799 1800 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = 1801 ForwardRefValIDs.find(NameID); 1802 if (FI != ForwardRefValIDs.end()) { 1803 if (FI->second.first->getType() != Inst->getType()) 1804 return P.Error(NameLoc, "instruction forward referenced with type '" + 1805 getTypeString(FI->second.first->getType()) + "'"); 1806 FI->second.first->replaceAllUsesWith(Inst); 1807 delete FI->second.first; 1808 ForwardRefValIDs.erase(FI); 1809 } 1810 1811 NumberedVals.push_back(Inst); 1812 return false; 1813 } 1814 1815 // Otherwise, the instruction had a name. Resolve forward refs and set it. 1816 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1817 FI = ForwardRefVals.find(NameStr); 1818 if (FI != ForwardRefVals.end()) { 1819 if (FI->second.first->getType() != Inst->getType()) 1820 return P.Error(NameLoc, "instruction forward referenced with type '" + 1821 getTypeString(FI->second.first->getType()) + "'"); 1822 FI->second.first->replaceAllUsesWith(Inst); 1823 delete FI->second.first; 1824 ForwardRefVals.erase(FI); 1825 } 1826 1827 // Set the name on the instruction. 1828 Inst->setName(NameStr); 1829 1830 if (Inst->getName() != NameStr) 1831 return P.Error(NameLoc, "multiple definition of local value named '" + 1832 NameStr + "'"); 1833 return false; 1834 } 1835 1836 /// GetBB - Get a basic block with the specified name or ID, creating a 1837 /// forward reference record if needed. 1838 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 1839 LocTy Loc) { 1840 return cast_or_null<BasicBlock>(GetVal(Name, 1841 Type::getLabelTy(F.getContext()), Loc)); 1842 } 1843 1844 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 1845 return cast_or_null<BasicBlock>(GetVal(ID, 1846 Type::getLabelTy(F.getContext()), Loc)); 1847 } 1848 1849 /// DefineBB - Define the specified basic block, which is either named or 1850 /// unnamed. If there is an error, this returns null otherwise it returns 1851 /// the block being defined. 1852 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 1853 LocTy Loc) { 1854 BasicBlock *BB; 1855 if (Name.empty()) 1856 BB = GetBB(NumberedVals.size(), Loc); 1857 else 1858 BB = GetBB(Name, Loc); 1859 if (BB == 0) return 0; // Already diagnosed error. 1860 1861 // Move the block to the end of the function. Forward ref'd blocks are 1862 // inserted wherever they happen to be referenced. 1863 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 1864 1865 // Remove the block from forward ref sets. 1866 if (Name.empty()) { 1867 ForwardRefValIDs.erase(NumberedVals.size()); 1868 NumberedVals.push_back(BB); 1869 } else { 1870 // BB forward references are already in the function symbol table. 1871 ForwardRefVals.erase(Name); 1872 } 1873 1874 return BB; 1875 } 1876 1877 //===----------------------------------------------------------------------===// 1878 // Constants. 1879 //===----------------------------------------------------------------------===// 1880 1881 /// ParseValID - Parse an abstract value that doesn't necessarily have a 1882 /// type implied. For example, if we parse "4" we don't know what integer type 1883 /// it has. The value will later be combined with its type and checked for 1884 /// sanity. PFS is used to convert function-local operands of metadata (since 1885 /// metadata operands are not just parsed here but also converted to values). 1886 /// PFS can be null when we are not parsing metadata values inside a function. 1887 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 1888 ID.Loc = Lex.getLoc(); 1889 switch (Lex.getKind()) { 1890 default: return TokError("expected value token"); 1891 case lltok::GlobalID: // @42 1892 ID.UIntVal = Lex.getUIntVal(); 1893 ID.Kind = ValID::t_GlobalID; 1894 break; 1895 case lltok::GlobalVar: // @foo 1896 ID.StrVal = Lex.getStrVal(); 1897 ID.Kind = ValID::t_GlobalName; 1898 break; 1899 case lltok::LocalVarID: // %42 1900 ID.UIntVal = Lex.getUIntVal(); 1901 ID.Kind = ValID::t_LocalID; 1902 break; 1903 case lltok::LocalVar: // %foo 1904 ID.StrVal = Lex.getStrVal(); 1905 ID.Kind = ValID::t_LocalName; 1906 break; 1907 case lltok::exclaim: // !42, !{...}, or !"foo" 1908 return ParseMetadataValue(ID, PFS); 1909 case lltok::APSInt: 1910 ID.APSIntVal = Lex.getAPSIntVal(); 1911 ID.Kind = ValID::t_APSInt; 1912 break; 1913 case lltok::APFloat: 1914 ID.APFloatVal = Lex.getAPFloatVal(); 1915 ID.Kind = ValID::t_APFloat; 1916 break; 1917 case lltok::kw_true: 1918 ID.ConstantVal = ConstantInt::getTrue(Context); 1919 ID.Kind = ValID::t_Constant; 1920 break; 1921 case lltok::kw_false: 1922 ID.ConstantVal = ConstantInt::getFalse(Context); 1923 ID.Kind = ValID::t_Constant; 1924 break; 1925 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 1926 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 1927 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 1928 1929 case lltok::lbrace: { 1930 // ValID ::= '{' ConstVector '}' 1931 Lex.Lex(); 1932 SmallVector<Constant*, 16> Elts; 1933 if (ParseGlobalValueVector(Elts) || 1934 ParseToken(lltok::rbrace, "expected end of struct constant")) 1935 return true; 1936 1937 ID.ConstantStructElts = new Constant*[Elts.size()]; 1938 ID.UIntVal = Elts.size(); 1939 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 1940 ID.Kind = ValID::t_ConstantStruct; 1941 return false; 1942 } 1943 case lltok::less: { 1944 // ValID ::= '<' ConstVector '>' --> Vector. 1945 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 1946 Lex.Lex(); 1947 bool isPackedStruct = EatIfPresent(lltok::lbrace); 1948 1949 SmallVector<Constant*, 16> Elts; 1950 LocTy FirstEltLoc = Lex.getLoc(); 1951 if (ParseGlobalValueVector(Elts) || 1952 (isPackedStruct && 1953 ParseToken(lltok::rbrace, "expected end of packed struct")) || 1954 ParseToken(lltok::greater, "expected end of constant")) 1955 return true; 1956 1957 if (isPackedStruct) { 1958 ID.ConstantStructElts = new Constant*[Elts.size()]; 1959 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 1960 ID.UIntVal = Elts.size(); 1961 ID.Kind = ValID::t_PackedConstantStruct; 1962 return false; 1963 } 1964 1965 if (Elts.empty()) 1966 return Error(ID.Loc, "constant vector must not be empty"); 1967 1968 if (!Elts[0]->getType()->isIntegerTy() && 1969 !Elts[0]->getType()->isFloatingPointTy() && 1970 !Elts[0]->getType()->isPointerTy()) 1971 return Error(FirstEltLoc, 1972 "vector elements must have integer, pointer or floating point type"); 1973 1974 // Verify that all the vector elements have the same type. 1975 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 1976 if (Elts[i]->getType() != Elts[0]->getType()) 1977 return Error(FirstEltLoc, 1978 "vector element #" + Twine(i) + 1979 " is not of type '" + getTypeString(Elts[0]->getType())); 1980 1981 ID.ConstantVal = ConstantVector::get(Elts); 1982 ID.Kind = ValID::t_Constant; 1983 return false; 1984 } 1985 case lltok::lsquare: { // Array Constant 1986 Lex.Lex(); 1987 SmallVector<Constant*, 16> Elts; 1988 LocTy FirstEltLoc = Lex.getLoc(); 1989 if (ParseGlobalValueVector(Elts) || 1990 ParseToken(lltok::rsquare, "expected end of array constant")) 1991 return true; 1992 1993 // Handle empty element. 1994 if (Elts.empty()) { 1995 // Use undef instead of an array because it's inconvenient to determine 1996 // the element type at this point, there being no elements to examine. 1997 ID.Kind = ValID::t_EmptyArray; 1998 return false; 1999 } 2000 2001 if (!Elts[0]->getType()->isFirstClassType()) 2002 return Error(FirstEltLoc, "invalid array element type: " + 2003 getTypeString(Elts[0]->getType())); 2004 2005 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2006 2007 // Verify all elements are correct type! 2008 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2009 if (Elts[i]->getType() != Elts[0]->getType()) 2010 return Error(FirstEltLoc, 2011 "array element #" + Twine(i) + 2012 " is not of type '" + getTypeString(Elts[0]->getType())); 2013 } 2014 2015 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2016 ID.Kind = ValID::t_Constant; 2017 return false; 2018 } 2019 case lltok::kw_c: // c "foo" 2020 Lex.Lex(); 2021 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2022 false); 2023 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2024 ID.Kind = ValID::t_Constant; 2025 return false; 2026 2027 case lltok::kw_asm: { 2028 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT 2029 bool HasSideEffect, AlignStack; 2030 Lex.Lex(); 2031 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2032 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2033 ParseStringConstant(ID.StrVal) || 2034 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2035 ParseToken(lltok::StringConstant, "expected constraint string")) 2036 return true; 2037 ID.StrVal2 = Lex.getStrVal(); 2038 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1); 2039 ID.Kind = ValID::t_InlineAsm; 2040 return false; 2041 } 2042 2043 case lltok::kw_blockaddress: { 2044 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2045 Lex.Lex(); 2046 2047 ValID Fn, Label; 2048 LocTy FnLoc, LabelLoc; 2049 2050 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2051 ParseValID(Fn) || 2052 ParseToken(lltok::comma, "expected comma in block address expression")|| 2053 ParseValID(Label) || 2054 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2055 return true; 2056 2057 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2058 return Error(Fn.Loc, "expected function name in blockaddress"); 2059 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2060 return Error(Label.Loc, "expected basic block name in blockaddress"); 2061 2062 // Make a global variable as a placeholder for this reference. 2063 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), 2064 false, GlobalValue::InternalLinkage, 2065 0, ""); 2066 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef)); 2067 ID.ConstantVal = FwdRef; 2068 ID.Kind = ValID::t_Constant; 2069 return false; 2070 } 2071 2072 case lltok::kw_trunc: 2073 case lltok::kw_zext: 2074 case lltok::kw_sext: 2075 case lltok::kw_fptrunc: 2076 case lltok::kw_fpext: 2077 case lltok::kw_bitcast: 2078 case lltok::kw_uitofp: 2079 case lltok::kw_sitofp: 2080 case lltok::kw_fptoui: 2081 case lltok::kw_fptosi: 2082 case lltok::kw_inttoptr: 2083 case lltok::kw_ptrtoint: { 2084 unsigned Opc = Lex.getUIntVal(); 2085 Type *DestTy = 0; 2086 Constant *SrcVal; 2087 Lex.Lex(); 2088 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2089 ParseGlobalTypeAndValue(SrcVal) || 2090 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2091 ParseType(DestTy) || 2092 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2093 return true; 2094 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2095 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2096 getTypeString(SrcVal->getType()) + "' to '" + 2097 getTypeString(DestTy) + "'"); 2098 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2099 SrcVal, DestTy); 2100 ID.Kind = ValID::t_Constant; 2101 return false; 2102 } 2103 case lltok::kw_extractvalue: { 2104 Lex.Lex(); 2105 Constant *Val; 2106 SmallVector<unsigned, 4> Indices; 2107 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2108 ParseGlobalTypeAndValue(Val) || 2109 ParseIndexList(Indices) || 2110 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2111 return true; 2112 2113 if (!Val->getType()->isAggregateType()) 2114 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2115 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2116 return Error(ID.Loc, "invalid indices for extractvalue"); 2117 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2118 ID.Kind = ValID::t_Constant; 2119 return false; 2120 } 2121 case lltok::kw_insertvalue: { 2122 Lex.Lex(); 2123 Constant *Val0, *Val1; 2124 SmallVector<unsigned, 4> Indices; 2125 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2126 ParseGlobalTypeAndValue(Val0) || 2127 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2128 ParseGlobalTypeAndValue(Val1) || 2129 ParseIndexList(Indices) || 2130 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2131 return true; 2132 if (!Val0->getType()->isAggregateType()) 2133 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2134 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 2135 return Error(ID.Loc, "invalid indices for insertvalue"); 2136 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2137 ID.Kind = ValID::t_Constant; 2138 return false; 2139 } 2140 case lltok::kw_icmp: 2141 case lltok::kw_fcmp: { 2142 unsigned PredVal, Opc = Lex.getUIntVal(); 2143 Constant *Val0, *Val1; 2144 Lex.Lex(); 2145 if (ParseCmpPredicate(PredVal, Opc) || 2146 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2147 ParseGlobalTypeAndValue(Val0) || 2148 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2149 ParseGlobalTypeAndValue(Val1) || 2150 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2151 return true; 2152 2153 if (Val0->getType() != Val1->getType()) 2154 return Error(ID.Loc, "compare operands must have the same type"); 2155 2156 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2157 2158 if (Opc == Instruction::FCmp) { 2159 if (!Val0->getType()->isFPOrFPVectorTy()) 2160 return Error(ID.Loc, "fcmp requires floating point operands"); 2161 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2162 } else { 2163 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2164 if (!Val0->getType()->isIntOrIntVectorTy() && 2165 !Val0->getType()->getScalarType()->isPointerTy()) 2166 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2167 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2168 } 2169 ID.Kind = ValID::t_Constant; 2170 return false; 2171 } 2172 2173 // Binary Operators. 2174 case lltok::kw_add: 2175 case lltok::kw_fadd: 2176 case lltok::kw_sub: 2177 case lltok::kw_fsub: 2178 case lltok::kw_mul: 2179 case lltok::kw_fmul: 2180 case lltok::kw_udiv: 2181 case lltok::kw_sdiv: 2182 case lltok::kw_fdiv: 2183 case lltok::kw_urem: 2184 case lltok::kw_srem: 2185 case lltok::kw_frem: 2186 case lltok::kw_shl: 2187 case lltok::kw_lshr: 2188 case lltok::kw_ashr: { 2189 bool NUW = false; 2190 bool NSW = false; 2191 bool Exact = false; 2192 unsigned Opc = Lex.getUIntVal(); 2193 Constant *Val0, *Val1; 2194 Lex.Lex(); 2195 LocTy ModifierLoc = Lex.getLoc(); 2196 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2197 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2198 if (EatIfPresent(lltok::kw_nuw)) 2199 NUW = true; 2200 if (EatIfPresent(lltok::kw_nsw)) { 2201 NSW = true; 2202 if (EatIfPresent(lltok::kw_nuw)) 2203 NUW = true; 2204 } 2205 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2206 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2207 if (EatIfPresent(lltok::kw_exact)) 2208 Exact = true; 2209 } 2210 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2211 ParseGlobalTypeAndValue(Val0) || 2212 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2213 ParseGlobalTypeAndValue(Val1) || 2214 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2215 return true; 2216 if (Val0->getType() != Val1->getType()) 2217 return Error(ID.Loc, "operands of constexpr must have same type"); 2218 if (!Val0->getType()->isIntOrIntVectorTy()) { 2219 if (NUW) 2220 return Error(ModifierLoc, "nuw only applies to integer operations"); 2221 if (NSW) 2222 return Error(ModifierLoc, "nsw only applies to integer operations"); 2223 } 2224 // Check that the type is valid for the operator. 2225 switch (Opc) { 2226 case Instruction::Add: 2227 case Instruction::Sub: 2228 case Instruction::Mul: 2229 case Instruction::UDiv: 2230 case Instruction::SDiv: 2231 case Instruction::URem: 2232 case Instruction::SRem: 2233 case Instruction::Shl: 2234 case Instruction::AShr: 2235 case Instruction::LShr: 2236 if (!Val0->getType()->isIntOrIntVectorTy()) 2237 return Error(ID.Loc, "constexpr requires integer operands"); 2238 break; 2239 case Instruction::FAdd: 2240 case Instruction::FSub: 2241 case Instruction::FMul: 2242 case Instruction::FDiv: 2243 case Instruction::FRem: 2244 if (!Val0->getType()->isFPOrFPVectorTy()) 2245 return Error(ID.Loc, "constexpr requires fp operands"); 2246 break; 2247 default: llvm_unreachable("Unknown binary operator!"); 2248 } 2249 unsigned Flags = 0; 2250 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2251 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 2252 if (Exact) Flags |= PossiblyExactOperator::IsExact; 2253 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 2254 ID.ConstantVal = C; 2255 ID.Kind = ValID::t_Constant; 2256 return false; 2257 } 2258 2259 // Logical Operations 2260 case lltok::kw_and: 2261 case lltok::kw_or: 2262 case lltok::kw_xor: { 2263 unsigned Opc = Lex.getUIntVal(); 2264 Constant *Val0, *Val1; 2265 Lex.Lex(); 2266 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 2267 ParseGlobalTypeAndValue(Val0) || 2268 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 2269 ParseGlobalTypeAndValue(Val1) || 2270 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 2271 return true; 2272 if (Val0->getType() != Val1->getType()) 2273 return Error(ID.Loc, "operands of constexpr must have same type"); 2274 if (!Val0->getType()->isIntOrIntVectorTy()) 2275 return Error(ID.Loc, 2276 "constexpr requires integer or integer vector operands"); 2277 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 2278 ID.Kind = ValID::t_Constant; 2279 return false; 2280 } 2281 2282 case lltok::kw_getelementptr: 2283 case lltok::kw_shufflevector: 2284 case lltok::kw_insertelement: 2285 case lltok::kw_extractelement: 2286 case lltok::kw_select: { 2287 unsigned Opc = Lex.getUIntVal(); 2288 SmallVector<Constant*, 16> Elts; 2289 bool InBounds = false; 2290 Lex.Lex(); 2291 if (Opc == Instruction::GetElementPtr) 2292 InBounds = EatIfPresent(lltok::kw_inbounds); 2293 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || 2294 ParseGlobalValueVector(Elts) || 2295 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 2296 return true; 2297 2298 if (Opc == Instruction::GetElementPtr) { 2299 if (Elts.size() == 0 || 2300 !Elts[0]->getType()->getScalarType()->isPointerTy()) 2301 return Error(ID.Loc, "getelementptr requires pointer operand"); 2302 2303 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2304 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices)) 2305 return Error(ID.Loc, "invalid indices for getelementptr"); 2306 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices, 2307 InBounds); 2308 } else if (Opc == Instruction::Select) { 2309 if (Elts.size() != 3) 2310 return Error(ID.Loc, "expected three operands to select"); 2311 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 2312 Elts[2])) 2313 return Error(ID.Loc, Reason); 2314 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 2315 } else if (Opc == Instruction::ShuffleVector) { 2316 if (Elts.size() != 3) 2317 return Error(ID.Loc, "expected three operands to shufflevector"); 2318 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2319 return Error(ID.Loc, "invalid operands to shufflevector"); 2320 ID.ConstantVal = 2321 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 2322 } else if (Opc == Instruction::ExtractElement) { 2323 if (Elts.size() != 2) 2324 return Error(ID.Loc, "expected two operands to extractelement"); 2325 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 2326 return Error(ID.Loc, "invalid extractelement operands"); 2327 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 2328 } else { 2329 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 2330 if (Elts.size() != 3) 2331 return Error(ID.Loc, "expected three operands to insertelement"); 2332 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2333 return Error(ID.Loc, "invalid insertelement operands"); 2334 ID.ConstantVal = 2335 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 2336 } 2337 2338 ID.Kind = ValID::t_Constant; 2339 return false; 2340 } 2341 } 2342 2343 Lex.Lex(); 2344 return false; 2345 } 2346 2347 /// ParseGlobalValue - Parse a global value with the specified type. 2348 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 2349 C = 0; 2350 ValID ID; 2351 Value *V = NULL; 2352 bool Parsed = ParseValID(ID) || 2353 ConvertValIDToValue(Ty, ID, V, NULL); 2354 if (V && !(C = dyn_cast<Constant>(V))) 2355 return Error(ID.Loc, "global values must be constants"); 2356 return Parsed; 2357 } 2358 2359 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 2360 Type *Ty = 0; 2361 return ParseType(Ty) || 2362 ParseGlobalValue(Ty, V); 2363 } 2364 2365 /// ParseGlobalValueVector 2366 /// ::= /*empty*/ 2367 /// ::= TypeAndValue (',' TypeAndValue)* 2368 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { 2369 // Empty list. 2370 if (Lex.getKind() == lltok::rbrace || 2371 Lex.getKind() == lltok::rsquare || 2372 Lex.getKind() == lltok::greater || 2373 Lex.getKind() == lltok::rparen) 2374 return false; 2375 2376 Constant *C; 2377 if (ParseGlobalTypeAndValue(C)) return true; 2378 Elts.push_back(C); 2379 2380 while (EatIfPresent(lltok::comma)) { 2381 if (ParseGlobalTypeAndValue(C)) return true; 2382 Elts.push_back(C); 2383 } 2384 2385 return false; 2386 } 2387 2388 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) { 2389 assert(Lex.getKind() == lltok::lbrace); 2390 Lex.Lex(); 2391 2392 SmallVector<Value*, 16> Elts; 2393 if (ParseMDNodeVector(Elts, PFS) || 2394 ParseToken(lltok::rbrace, "expected end of metadata node")) 2395 return true; 2396 2397 ID.MDNodeVal = MDNode::get(Context, Elts); 2398 ID.Kind = ValID::t_MDNode; 2399 return false; 2400 } 2401 2402 /// ParseMetadataValue 2403 /// ::= !42 2404 /// ::= !{...} 2405 /// ::= !"string" 2406 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) { 2407 assert(Lex.getKind() == lltok::exclaim); 2408 Lex.Lex(); 2409 2410 // MDNode: 2411 // !{ ... } 2412 if (Lex.getKind() == lltok::lbrace) 2413 return ParseMetadataListValue(ID, PFS); 2414 2415 // Standalone metadata reference 2416 // !42 2417 if (Lex.getKind() == lltok::APSInt) { 2418 if (ParseMDNodeID(ID.MDNodeVal)) return true; 2419 ID.Kind = ValID::t_MDNode; 2420 return false; 2421 } 2422 2423 // MDString: 2424 // ::= '!' STRINGCONSTANT 2425 if (ParseMDString(ID.MDStringVal)) return true; 2426 ID.Kind = ValID::t_MDString; 2427 return false; 2428 } 2429 2430 2431 //===----------------------------------------------------------------------===// 2432 // Function Parsing. 2433 //===----------------------------------------------------------------------===// 2434 2435 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 2436 PerFunctionState *PFS) { 2437 if (Ty->isFunctionTy()) 2438 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 2439 2440 switch (ID.Kind) { 2441 case ValID::t_LocalID: 2442 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2443 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 2444 return (V == 0); 2445 case ValID::t_LocalName: 2446 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2447 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 2448 return (V == 0); 2449 case ValID::t_InlineAsm: { 2450 PointerType *PTy = dyn_cast<PointerType>(Ty); 2451 FunctionType *FTy = 2452 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; 2453 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) 2454 return Error(ID.Loc, "invalid type for inline asm constraint string"); 2455 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1); 2456 return false; 2457 } 2458 case ValID::t_MDNode: 2459 if (!Ty->isMetadataTy()) 2460 return Error(ID.Loc, "metadata value must have metadata type"); 2461 V = ID.MDNodeVal; 2462 return false; 2463 case ValID::t_MDString: 2464 if (!Ty->isMetadataTy()) 2465 return Error(ID.Loc, "metadata value must have metadata type"); 2466 V = ID.MDStringVal; 2467 return false; 2468 case ValID::t_GlobalName: 2469 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 2470 return V == 0; 2471 case ValID::t_GlobalID: 2472 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 2473 return V == 0; 2474 case ValID::t_APSInt: 2475 if (!Ty->isIntegerTy()) 2476 return Error(ID.Loc, "integer constant must have integer type"); 2477 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 2478 V = ConstantInt::get(Context, ID.APSIntVal); 2479 return false; 2480 case ValID::t_APFloat: 2481 if (!Ty->isFloatingPointTy() || 2482 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 2483 return Error(ID.Loc, "floating point constant invalid for type"); 2484 2485 // The lexer has no type info, so builds all half, float, and double FP 2486 // constants as double. Fix this here. Long double does not need this. 2487 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 2488 bool Ignored; 2489 if (Ty->isHalfTy()) 2490 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 2491 &Ignored); 2492 else if (Ty->isFloatTy()) 2493 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 2494 &Ignored); 2495 } 2496 V = ConstantFP::get(Context, ID.APFloatVal); 2497 2498 if (V->getType() != Ty) 2499 return Error(ID.Loc, "floating point constant does not have type '" + 2500 getTypeString(Ty) + "'"); 2501 2502 return false; 2503 case ValID::t_Null: 2504 if (!Ty->isPointerTy()) 2505 return Error(ID.Loc, "null must be a pointer type"); 2506 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 2507 return false; 2508 case ValID::t_Undef: 2509 // FIXME: LabelTy should not be a first-class type. 2510 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2511 return Error(ID.Loc, "invalid type for undef constant"); 2512 V = UndefValue::get(Ty); 2513 return false; 2514 case ValID::t_EmptyArray: 2515 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 2516 return Error(ID.Loc, "invalid empty array initializer"); 2517 V = UndefValue::get(Ty); 2518 return false; 2519 case ValID::t_Zero: 2520 // FIXME: LabelTy should not be a first-class type. 2521 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2522 return Error(ID.Loc, "invalid type for null constant"); 2523 V = Constant::getNullValue(Ty); 2524 return false; 2525 case ValID::t_Constant: 2526 if (ID.ConstantVal->getType() != Ty) 2527 return Error(ID.Loc, "constant expression type mismatch"); 2528 2529 V = ID.ConstantVal; 2530 return false; 2531 case ValID::t_ConstantStruct: 2532 case ValID::t_PackedConstantStruct: 2533 if (StructType *ST = dyn_cast<StructType>(Ty)) { 2534 if (ST->getNumElements() != ID.UIntVal) 2535 return Error(ID.Loc, 2536 "initializer with struct type has wrong # elements"); 2537 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 2538 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 2539 2540 // Verify that the elements are compatible with the structtype. 2541 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 2542 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 2543 return Error(ID.Loc, "element " + Twine(i) + 2544 " of struct initializer doesn't match struct element type"); 2545 2546 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts, 2547 ID.UIntVal)); 2548 } else 2549 return Error(ID.Loc, "constant expression type mismatch"); 2550 return false; 2551 } 2552 llvm_unreachable("Invalid ValID"); 2553 } 2554 2555 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 2556 V = 0; 2557 ValID ID; 2558 return ParseValID(ID, PFS) || 2559 ConvertValIDToValue(Ty, ID, V, PFS); 2560 } 2561 2562 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 2563 Type *Ty = 0; 2564 return ParseType(Ty) || 2565 ParseValue(Ty, V, PFS); 2566 } 2567 2568 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 2569 PerFunctionState &PFS) { 2570 Value *V; 2571 Loc = Lex.getLoc(); 2572 if (ParseTypeAndValue(V, PFS)) return true; 2573 if (!isa<BasicBlock>(V)) 2574 return Error(Loc, "expected a basic block"); 2575 BB = cast<BasicBlock>(V); 2576 return false; 2577 } 2578 2579 2580 /// FunctionHeader 2581 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 2582 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 2583 /// OptionalAlign OptGC 2584 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 2585 // Parse the linkage. 2586 LocTy LinkageLoc = Lex.getLoc(); 2587 unsigned Linkage; 2588 2589 unsigned Visibility; 2590 Attributes RetAttrs; 2591 CallingConv::ID CC; 2592 Type *RetType = 0; 2593 LocTy RetTypeLoc = Lex.getLoc(); 2594 if (ParseOptionalLinkage(Linkage) || 2595 ParseOptionalVisibility(Visibility) || 2596 ParseOptionalCallingConv(CC) || 2597 ParseOptionalAttrs(RetAttrs, 1) || 2598 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 2599 return true; 2600 2601 // Verify that the linkage is ok. 2602 switch ((GlobalValue::LinkageTypes)Linkage) { 2603 case GlobalValue::ExternalLinkage: 2604 break; // always ok. 2605 case GlobalValue::DLLImportLinkage: 2606 case GlobalValue::ExternalWeakLinkage: 2607 if (isDefine) 2608 return Error(LinkageLoc, "invalid linkage for function definition"); 2609 break; 2610 case GlobalValue::PrivateLinkage: 2611 case GlobalValue::LinkerPrivateLinkage: 2612 case GlobalValue::LinkerPrivateWeakLinkage: 2613 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: 2614 case GlobalValue::InternalLinkage: 2615 case GlobalValue::AvailableExternallyLinkage: 2616 case GlobalValue::LinkOnceAnyLinkage: 2617 case GlobalValue::LinkOnceODRLinkage: 2618 case GlobalValue::WeakAnyLinkage: 2619 case GlobalValue::WeakODRLinkage: 2620 case GlobalValue::DLLExportLinkage: 2621 if (!isDefine) 2622 return Error(LinkageLoc, "invalid linkage for function declaration"); 2623 break; 2624 case GlobalValue::AppendingLinkage: 2625 case GlobalValue::CommonLinkage: 2626 return Error(LinkageLoc, "invalid function linkage type"); 2627 } 2628 2629 if (!FunctionType::isValidReturnType(RetType)) 2630 return Error(RetTypeLoc, "invalid function return type"); 2631 2632 LocTy NameLoc = Lex.getLoc(); 2633 2634 std::string FunctionName; 2635 if (Lex.getKind() == lltok::GlobalVar) { 2636 FunctionName = Lex.getStrVal(); 2637 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 2638 unsigned NameID = Lex.getUIntVal(); 2639 2640 if (NameID != NumberedVals.size()) 2641 return TokError("function expected to be numbered '%" + 2642 Twine(NumberedVals.size()) + "'"); 2643 } else { 2644 return TokError("expected function name"); 2645 } 2646 2647 Lex.Lex(); 2648 2649 if (Lex.getKind() != lltok::lparen) 2650 return TokError("expected '(' in function argument list"); 2651 2652 SmallVector<ArgInfo, 8> ArgList; 2653 bool isVarArg; 2654 Attributes FuncAttrs; 2655 std::string Section; 2656 unsigned Alignment; 2657 std::string GC; 2658 bool UnnamedAddr; 2659 LocTy UnnamedAddrLoc; 2660 2661 if (ParseArgumentList(ArgList, isVarArg) || 2662 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 2663 &UnnamedAddrLoc) || 2664 ParseOptionalAttrs(FuncAttrs, 2) || 2665 (EatIfPresent(lltok::kw_section) && 2666 ParseStringConstant(Section)) || 2667 ParseOptionalAlignment(Alignment) || 2668 (EatIfPresent(lltok::kw_gc) && 2669 ParseStringConstant(GC))) 2670 return true; 2671 2672 // If the alignment was parsed as an attribute, move to the alignment field. 2673 if (FuncAttrs & Attribute::Alignment) { 2674 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs); 2675 FuncAttrs &= ~Attribute::Alignment; 2676 } 2677 2678 // Okay, if we got here, the function is syntactically valid. Convert types 2679 // and do semantic checks. 2680 std::vector<Type*> ParamTypeList; 2681 SmallVector<AttributeWithIndex, 8> Attrs; 2682 2683 if (RetAttrs != Attribute::None) 2684 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 2685 2686 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2687 ParamTypeList.push_back(ArgList[i].Ty); 2688 if (ArgList[i].Attrs != Attribute::None) 2689 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 2690 } 2691 2692 if (FuncAttrs != Attribute::None) 2693 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs)); 2694 2695 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); 2696 2697 if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy()) 2698 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 2699 2700 FunctionType *FT = 2701 FunctionType::get(RetType, ParamTypeList, isVarArg); 2702 PointerType *PFT = PointerType::getUnqual(FT); 2703 2704 Fn = 0; 2705 if (!FunctionName.empty()) { 2706 // If this was a definition of a forward reference, remove the definition 2707 // from the forward reference table and fill in the forward ref. 2708 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = 2709 ForwardRefVals.find(FunctionName); 2710 if (FRVI != ForwardRefVals.end()) { 2711 Fn = M->getFunction(FunctionName); 2712 if (Fn->getType() != PFT) 2713 return Error(FRVI->second.second, "invalid forward reference to " 2714 "function '" + FunctionName + "' with wrong type!"); 2715 2716 ForwardRefVals.erase(FRVI); 2717 } else if ((Fn = M->getFunction(FunctionName))) { 2718 // Reject redefinitions. 2719 return Error(NameLoc, "invalid redefinition of function '" + 2720 FunctionName + "'"); 2721 } else if (M->getNamedValue(FunctionName)) { 2722 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 2723 } 2724 2725 } else { 2726 // If this is a definition of a forward referenced function, make sure the 2727 // types agree. 2728 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I 2729 = ForwardRefValIDs.find(NumberedVals.size()); 2730 if (I != ForwardRefValIDs.end()) { 2731 Fn = cast<Function>(I->second.first); 2732 if (Fn->getType() != PFT) 2733 return Error(NameLoc, "type of definition and forward reference of '@" + 2734 Twine(NumberedVals.size()) + "' disagree"); 2735 ForwardRefValIDs.erase(I); 2736 } 2737 } 2738 2739 if (Fn == 0) 2740 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 2741 else // Move the forward-reference to the correct spot in the module. 2742 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 2743 2744 if (FunctionName.empty()) 2745 NumberedVals.push_back(Fn); 2746 2747 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 2748 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 2749 Fn->setCallingConv(CC); 2750 Fn->setAttributes(PAL); 2751 Fn->setUnnamedAddr(UnnamedAddr); 2752 Fn->setAlignment(Alignment); 2753 Fn->setSection(Section); 2754 if (!GC.empty()) Fn->setGC(GC.c_str()); 2755 2756 // Add all of the arguments we parsed to the function. 2757 Function::arg_iterator ArgIt = Fn->arg_begin(); 2758 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 2759 // If the argument has a name, insert it into the argument symbol table. 2760 if (ArgList[i].Name.empty()) continue; 2761 2762 // Set the name, if it conflicted, it will be auto-renamed. 2763 ArgIt->setName(ArgList[i].Name); 2764 2765 if (ArgIt->getName() != ArgList[i].Name) 2766 return Error(ArgList[i].Loc, "redefinition of argument '%" + 2767 ArgList[i].Name + "'"); 2768 } 2769 2770 return false; 2771 } 2772 2773 2774 /// ParseFunctionBody 2775 /// ::= '{' BasicBlock+ '}' 2776 /// 2777 bool LLParser::ParseFunctionBody(Function &Fn) { 2778 if (Lex.getKind() != lltok::lbrace) 2779 return TokError("expected '{' in function body"); 2780 Lex.Lex(); // eat the {. 2781 2782 int FunctionNumber = -1; 2783 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 2784 2785 PerFunctionState PFS(*this, Fn, FunctionNumber); 2786 2787 // We need at least one basic block. 2788 if (Lex.getKind() == lltok::rbrace) 2789 return TokError("function body requires at least one basic block"); 2790 2791 while (Lex.getKind() != lltok::rbrace) 2792 if (ParseBasicBlock(PFS)) return true; 2793 2794 // Eat the }. 2795 Lex.Lex(); 2796 2797 // Verify function is ok. 2798 return PFS.FinishFunction(); 2799 } 2800 2801 /// ParseBasicBlock 2802 /// ::= LabelStr? Instruction* 2803 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 2804 // If this basic block starts out with a name, remember it. 2805 std::string Name; 2806 LocTy NameLoc = Lex.getLoc(); 2807 if (Lex.getKind() == lltok::LabelStr) { 2808 Name = Lex.getStrVal(); 2809 Lex.Lex(); 2810 } 2811 2812 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 2813 if (BB == 0) return true; 2814 2815 std::string NameStr; 2816 2817 // Parse the instructions in this block until we get a terminator. 2818 Instruction *Inst; 2819 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst; 2820 do { 2821 // This instruction may have three possibilities for a name: a) none 2822 // specified, b) name specified "%foo =", c) number specified: "%4 =". 2823 LocTy NameLoc = Lex.getLoc(); 2824 int NameID = -1; 2825 NameStr = ""; 2826 2827 if (Lex.getKind() == lltok::LocalVarID) { 2828 NameID = Lex.getUIntVal(); 2829 Lex.Lex(); 2830 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 2831 return true; 2832 } else if (Lex.getKind() == lltok::LocalVar) { 2833 NameStr = Lex.getStrVal(); 2834 Lex.Lex(); 2835 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 2836 return true; 2837 } 2838 2839 switch (ParseInstruction(Inst, BB, PFS)) { 2840 default: llvm_unreachable("Unknown ParseInstruction result!"); 2841 case InstError: return true; 2842 case InstNormal: 2843 BB->getInstList().push_back(Inst); 2844 2845 // With a normal result, we check to see if the instruction is followed by 2846 // a comma and metadata. 2847 if (EatIfPresent(lltok::comma)) 2848 if (ParseInstructionMetadata(Inst, &PFS)) 2849 return true; 2850 break; 2851 case InstExtraComma: 2852 BB->getInstList().push_back(Inst); 2853 2854 // If the instruction parser ate an extra comma at the end of it, it 2855 // *must* be followed by metadata. 2856 if (ParseInstructionMetadata(Inst, &PFS)) 2857 return true; 2858 break; 2859 } 2860 2861 // Set the name on the instruction. 2862 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 2863 } while (!isa<TerminatorInst>(Inst)); 2864 2865 return false; 2866 } 2867 2868 //===----------------------------------------------------------------------===// 2869 // Instruction Parsing. 2870 //===----------------------------------------------------------------------===// 2871 2872 /// ParseInstruction - Parse one of the many different instructions. 2873 /// 2874 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 2875 PerFunctionState &PFS) { 2876 lltok::Kind Token = Lex.getKind(); 2877 if (Token == lltok::Eof) 2878 return TokError("found end of file when expecting more instructions"); 2879 LocTy Loc = Lex.getLoc(); 2880 unsigned KeywordVal = Lex.getUIntVal(); 2881 Lex.Lex(); // Eat the keyword. 2882 2883 switch (Token) { 2884 default: return Error(Loc, "expected instruction opcode"); 2885 // Terminator Instructions. 2886 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 2887 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 2888 case lltok::kw_br: return ParseBr(Inst, PFS); 2889 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 2890 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 2891 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 2892 case lltok::kw_resume: return ParseResume(Inst, PFS); 2893 // Binary Operators. 2894 case lltok::kw_add: 2895 case lltok::kw_sub: 2896 case lltok::kw_mul: 2897 case lltok::kw_shl: { 2898 bool NUW = EatIfPresent(lltok::kw_nuw); 2899 bool NSW = EatIfPresent(lltok::kw_nsw); 2900 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 2901 2902 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 2903 2904 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 2905 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 2906 return false; 2907 } 2908 case lltok::kw_fadd: 2909 case lltok::kw_fsub: 2910 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 2911 2912 case lltok::kw_sdiv: 2913 case lltok::kw_udiv: 2914 case lltok::kw_lshr: 2915 case lltok::kw_ashr: { 2916 bool Exact = EatIfPresent(lltok::kw_exact); 2917 2918 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 2919 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 2920 return false; 2921 } 2922 2923 case lltok::kw_urem: 2924 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 2925 case lltok::kw_fdiv: 2926 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 2927 case lltok::kw_and: 2928 case lltok::kw_or: 2929 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 2930 case lltok::kw_icmp: 2931 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); 2932 // Casts. 2933 case lltok::kw_trunc: 2934 case lltok::kw_zext: 2935 case lltok::kw_sext: 2936 case lltok::kw_fptrunc: 2937 case lltok::kw_fpext: 2938 case lltok::kw_bitcast: 2939 case lltok::kw_uitofp: 2940 case lltok::kw_sitofp: 2941 case lltok::kw_fptoui: 2942 case lltok::kw_fptosi: 2943 case lltok::kw_inttoptr: 2944 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 2945 // Other. 2946 case lltok::kw_select: return ParseSelect(Inst, PFS); 2947 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 2948 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 2949 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 2950 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 2951 case lltok::kw_phi: return ParsePHI(Inst, PFS); 2952 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 2953 case lltok::kw_call: return ParseCall(Inst, PFS, false); 2954 case lltok::kw_tail: return ParseCall(Inst, PFS, true); 2955 // Memory. 2956 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 2957 case lltok::kw_load: return ParseLoad(Inst, PFS); 2958 case lltok::kw_store: return ParseStore(Inst, PFS); 2959 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 2960 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 2961 case lltok::kw_fence: return ParseFence(Inst, PFS); 2962 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 2963 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 2964 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 2965 } 2966 } 2967 2968 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 2969 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 2970 if (Opc == Instruction::FCmp) { 2971 switch (Lex.getKind()) { 2972 default: TokError("expected fcmp predicate (e.g. 'oeq')"); 2973 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 2974 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 2975 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 2976 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 2977 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 2978 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 2979 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 2980 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 2981 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 2982 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 2983 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 2984 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 2985 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 2986 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 2987 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 2988 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 2989 } 2990 } else { 2991 switch (Lex.getKind()) { 2992 default: TokError("expected icmp predicate (e.g. 'eq')"); 2993 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 2994 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 2995 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 2996 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 2997 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 2998 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 2999 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 3000 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 3001 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 3002 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 3003 } 3004 } 3005 Lex.Lex(); 3006 return false; 3007 } 3008 3009 //===----------------------------------------------------------------------===// 3010 // Terminator Instructions. 3011 //===----------------------------------------------------------------------===// 3012 3013 /// ParseRet - Parse a return instruction. 3014 /// ::= 'ret' void (',' !dbg, !1)* 3015 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 3016 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 3017 PerFunctionState &PFS) { 3018 SMLoc TypeLoc = Lex.getLoc(); 3019 Type *Ty = 0; 3020 if (ParseType(Ty, true /*void allowed*/)) return true; 3021 3022 Type *ResType = PFS.getFunction().getReturnType(); 3023 3024 if (Ty->isVoidTy()) { 3025 if (!ResType->isVoidTy()) 3026 return Error(TypeLoc, "value doesn't match function result type '" + 3027 getTypeString(ResType) + "'"); 3028 3029 Inst = ReturnInst::Create(Context); 3030 return false; 3031 } 3032 3033 Value *RV; 3034 if (ParseValue(Ty, RV, PFS)) return true; 3035 3036 if (ResType != RV->getType()) 3037 return Error(TypeLoc, "value doesn't match function result type '" + 3038 getTypeString(ResType) + "'"); 3039 3040 Inst = ReturnInst::Create(Context, RV); 3041 return false; 3042 } 3043 3044 3045 /// ParseBr 3046 /// ::= 'br' TypeAndValue 3047 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3048 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 3049 LocTy Loc, Loc2; 3050 Value *Op0; 3051 BasicBlock *Op1, *Op2; 3052 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 3053 3054 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 3055 Inst = BranchInst::Create(BB); 3056 return false; 3057 } 3058 3059 if (Op0->getType() != Type::getInt1Ty(Context)) 3060 return Error(Loc, "branch condition must have 'i1' type"); 3061 3062 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 3063 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 3064 ParseToken(lltok::comma, "expected ',' after true destination") || 3065 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 3066 return true; 3067 3068 Inst = BranchInst::Create(Op1, Op2, Op0); 3069 return false; 3070 } 3071 3072 /// ParseSwitch 3073 /// Instruction 3074 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 3075 /// JumpTable 3076 /// ::= (TypeAndValue ',' TypeAndValue)* 3077 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 3078 LocTy CondLoc, BBLoc; 3079 Value *Cond; 3080 BasicBlock *DefaultBB; 3081 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 3082 ParseToken(lltok::comma, "expected ',' after switch condition") || 3083 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 3084 ParseToken(lltok::lsquare, "expected '[' with switch table")) 3085 return true; 3086 3087 if (!Cond->getType()->isIntegerTy()) 3088 return Error(CondLoc, "switch condition must have integer type"); 3089 3090 // Parse the jump table pairs. 3091 SmallPtrSet<Value*, 32> SeenCases; 3092 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 3093 while (Lex.getKind() != lltok::rsquare) { 3094 Value *Constant; 3095 BasicBlock *DestBB; 3096 3097 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 3098 ParseToken(lltok::comma, "expected ',' after case value") || 3099 ParseTypeAndBasicBlock(DestBB, PFS)) 3100 return true; 3101 3102 if (!SeenCases.insert(Constant)) 3103 return Error(CondLoc, "duplicate case value in switch"); 3104 if (!isa<ConstantInt>(Constant)) 3105 return Error(CondLoc, "case value is not a constant integer"); 3106 3107 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 3108 } 3109 3110 Lex.Lex(); // Eat the ']'. 3111 3112 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 3113 for (unsigned i = 0, e = Table.size(); i != e; ++i) 3114 SI->addCase(Table[i].first, Table[i].second); 3115 Inst = SI; 3116 return false; 3117 } 3118 3119 /// ParseIndirectBr 3120 /// Instruction 3121 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 3122 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 3123 LocTy AddrLoc; 3124 Value *Address; 3125 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 3126 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 3127 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 3128 return true; 3129 3130 if (!Address->getType()->isPointerTy()) 3131 return Error(AddrLoc, "indirectbr address must have pointer type"); 3132 3133 // Parse the destination list. 3134 SmallVector<BasicBlock*, 16> DestList; 3135 3136 if (Lex.getKind() != lltok::rsquare) { 3137 BasicBlock *DestBB; 3138 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3139 return true; 3140 DestList.push_back(DestBB); 3141 3142 while (EatIfPresent(lltok::comma)) { 3143 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3144 return true; 3145 DestList.push_back(DestBB); 3146 } 3147 } 3148 3149 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 3150 return true; 3151 3152 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 3153 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 3154 IBI->addDestination(DestList[i]); 3155 Inst = IBI; 3156 return false; 3157 } 3158 3159 3160 /// ParseInvoke 3161 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 3162 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 3163 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 3164 LocTy CallLoc = Lex.getLoc(); 3165 Attributes RetAttrs, FnAttrs; 3166 CallingConv::ID CC; 3167 Type *RetType = 0; 3168 LocTy RetTypeLoc; 3169 ValID CalleeID; 3170 SmallVector<ParamInfo, 16> ArgList; 3171 3172 BasicBlock *NormalBB, *UnwindBB; 3173 if (ParseOptionalCallingConv(CC) || 3174 ParseOptionalAttrs(RetAttrs, 1) || 3175 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3176 ParseValID(CalleeID) || 3177 ParseParameterList(ArgList, PFS) || 3178 ParseOptionalAttrs(FnAttrs, 2) || 3179 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 3180 ParseTypeAndBasicBlock(NormalBB, PFS) || 3181 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 3182 ParseTypeAndBasicBlock(UnwindBB, PFS)) 3183 return true; 3184 3185 // If RetType is a non-function pointer type, then this is the short syntax 3186 // for the call, which means that RetType is just the return type. Infer the 3187 // rest of the function argument types from the arguments that are present. 3188 PointerType *PFTy = 0; 3189 FunctionType *Ty = 0; 3190 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3191 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3192 // Pull out the types of all of the arguments... 3193 std::vector<Type*> ParamTypes; 3194 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3195 ParamTypes.push_back(ArgList[i].V->getType()); 3196 3197 if (!FunctionType::isValidReturnType(RetType)) 3198 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3199 3200 Ty = FunctionType::get(RetType, ParamTypes, false); 3201 PFTy = PointerType::getUnqual(Ty); 3202 } 3203 3204 // Look up the callee. 3205 Value *Callee; 3206 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3207 3208 // Set up the Attributes for the function. 3209 SmallVector<AttributeWithIndex, 8> Attrs; 3210 if (RetAttrs != Attribute::None) 3211 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 3212 3213 SmallVector<Value*, 8> Args; 3214 3215 // Loop through FunctionType's arguments and ensure they are specified 3216 // correctly. Also, gather any parameter attributes. 3217 FunctionType::param_iterator I = Ty->param_begin(); 3218 FunctionType::param_iterator E = Ty->param_end(); 3219 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3220 Type *ExpectedTy = 0; 3221 if (I != E) { 3222 ExpectedTy = *I++; 3223 } else if (!Ty->isVarArg()) { 3224 return Error(ArgList[i].Loc, "too many arguments specified"); 3225 } 3226 3227 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3228 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3229 getTypeString(ExpectedTy) + "'"); 3230 Args.push_back(ArgList[i].V); 3231 if (ArgList[i].Attrs != Attribute::None) 3232 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3233 } 3234 3235 if (I != E) 3236 return Error(CallLoc, "not enough parameters specified for call"); 3237 3238 if (FnAttrs != Attribute::None) 3239 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); 3240 3241 // Finish off the Attributes and check them 3242 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); 3243 3244 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args); 3245 II->setCallingConv(CC); 3246 II->setAttributes(PAL); 3247 Inst = II; 3248 return false; 3249 } 3250 3251 /// ParseResume 3252 /// ::= 'resume' TypeAndValue 3253 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 3254 Value *Exn; LocTy ExnLoc; 3255 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 3256 return true; 3257 3258 ResumeInst *RI = ResumeInst::Create(Exn); 3259 Inst = RI; 3260 return false; 3261 } 3262 3263 //===----------------------------------------------------------------------===// 3264 // Binary Operators. 3265 //===----------------------------------------------------------------------===// 3266 3267 /// ParseArithmetic 3268 /// ::= ArithmeticOps TypeAndValue ',' Value 3269 /// 3270 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 3271 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 3272 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 3273 unsigned Opc, unsigned OperandType) { 3274 LocTy Loc; Value *LHS, *RHS; 3275 if (ParseTypeAndValue(LHS, Loc, PFS) || 3276 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 3277 ParseValue(LHS->getType(), RHS, PFS)) 3278 return true; 3279 3280 bool Valid; 3281 switch (OperandType) { 3282 default: llvm_unreachable("Unknown operand type!"); 3283 case 0: // int or FP. 3284 Valid = LHS->getType()->isIntOrIntVectorTy() || 3285 LHS->getType()->isFPOrFPVectorTy(); 3286 break; 3287 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 3288 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 3289 } 3290 3291 if (!Valid) 3292 return Error(Loc, "invalid operand type for instruction"); 3293 3294 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3295 return false; 3296 } 3297 3298 /// ParseLogical 3299 /// ::= ArithmeticOps TypeAndValue ',' Value { 3300 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 3301 unsigned Opc) { 3302 LocTy Loc; Value *LHS, *RHS; 3303 if (ParseTypeAndValue(LHS, Loc, PFS) || 3304 ParseToken(lltok::comma, "expected ',' in logical operation") || 3305 ParseValue(LHS->getType(), RHS, PFS)) 3306 return true; 3307 3308 if (!LHS->getType()->isIntOrIntVectorTy()) 3309 return Error(Loc,"instruction requires integer or integer vector operands"); 3310 3311 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3312 return false; 3313 } 3314 3315 3316 /// ParseCompare 3317 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 3318 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 3319 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 3320 unsigned Opc) { 3321 // Parse the integer/fp comparison predicate. 3322 LocTy Loc; 3323 unsigned Pred; 3324 Value *LHS, *RHS; 3325 if (ParseCmpPredicate(Pred, Opc) || 3326 ParseTypeAndValue(LHS, Loc, PFS) || 3327 ParseToken(lltok::comma, "expected ',' after compare value") || 3328 ParseValue(LHS->getType(), RHS, PFS)) 3329 return true; 3330 3331 if (Opc == Instruction::FCmp) { 3332 if (!LHS->getType()->isFPOrFPVectorTy()) 3333 return Error(Loc, "fcmp requires floating point operands"); 3334 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3335 } else { 3336 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 3337 if (!LHS->getType()->isIntOrIntVectorTy() && 3338 !LHS->getType()->getScalarType()->isPointerTy()) 3339 return Error(Loc, "icmp requires integer operands"); 3340 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3341 } 3342 return false; 3343 } 3344 3345 //===----------------------------------------------------------------------===// 3346 // Other Instructions. 3347 //===----------------------------------------------------------------------===// 3348 3349 3350 /// ParseCast 3351 /// ::= CastOpc TypeAndValue 'to' Type 3352 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 3353 unsigned Opc) { 3354 LocTy Loc; 3355 Value *Op; 3356 Type *DestTy = 0; 3357 if (ParseTypeAndValue(Op, Loc, PFS) || 3358 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 3359 ParseType(DestTy)) 3360 return true; 3361 3362 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 3363 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 3364 return Error(Loc, "invalid cast opcode for cast from '" + 3365 getTypeString(Op->getType()) + "' to '" + 3366 getTypeString(DestTy) + "'"); 3367 } 3368 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 3369 return false; 3370 } 3371 3372 /// ParseSelect 3373 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3374 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 3375 LocTy Loc; 3376 Value *Op0, *Op1, *Op2; 3377 if (ParseTypeAndValue(Op0, Loc, PFS) || 3378 ParseToken(lltok::comma, "expected ',' after select condition") || 3379 ParseTypeAndValue(Op1, PFS) || 3380 ParseToken(lltok::comma, "expected ',' after select value") || 3381 ParseTypeAndValue(Op2, PFS)) 3382 return true; 3383 3384 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 3385 return Error(Loc, Reason); 3386 3387 Inst = SelectInst::Create(Op0, Op1, Op2); 3388 return false; 3389 } 3390 3391 /// ParseVA_Arg 3392 /// ::= 'va_arg' TypeAndValue ',' Type 3393 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 3394 Value *Op; 3395 Type *EltTy = 0; 3396 LocTy TypeLoc; 3397 if (ParseTypeAndValue(Op, PFS) || 3398 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 3399 ParseType(EltTy, TypeLoc)) 3400 return true; 3401 3402 if (!EltTy->isFirstClassType()) 3403 return Error(TypeLoc, "va_arg requires operand with first class type"); 3404 3405 Inst = new VAArgInst(Op, EltTy); 3406 return false; 3407 } 3408 3409 /// ParseExtractElement 3410 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 3411 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 3412 LocTy Loc; 3413 Value *Op0, *Op1; 3414 if (ParseTypeAndValue(Op0, Loc, PFS) || 3415 ParseToken(lltok::comma, "expected ',' after extract value") || 3416 ParseTypeAndValue(Op1, PFS)) 3417 return true; 3418 3419 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 3420 return Error(Loc, "invalid extractelement operands"); 3421 3422 Inst = ExtractElementInst::Create(Op0, Op1); 3423 return false; 3424 } 3425 3426 /// ParseInsertElement 3427 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3428 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 3429 LocTy Loc; 3430 Value *Op0, *Op1, *Op2; 3431 if (ParseTypeAndValue(Op0, Loc, PFS) || 3432 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3433 ParseTypeAndValue(Op1, PFS) || 3434 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3435 ParseTypeAndValue(Op2, PFS)) 3436 return true; 3437 3438 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 3439 return Error(Loc, "invalid insertelement operands"); 3440 3441 Inst = InsertElementInst::Create(Op0, Op1, Op2); 3442 return false; 3443 } 3444 3445 /// ParseShuffleVector 3446 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3447 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 3448 LocTy Loc; 3449 Value *Op0, *Op1, *Op2; 3450 if (ParseTypeAndValue(Op0, Loc, PFS) || 3451 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 3452 ParseTypeAndValue(Op1, PFS) || 3453 ParseToken(lltok::comma, "expected ',' after shuffle value") || 3454 ParseTypeAndValue(Op2, PFS)) 3455 return true; 3456 3457 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 3458 return Error(Loc, "invalid shufflevector operands"); 3459 3460 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 3461 return false; 3462 } 3463 3464 /// ParsePHI 3465 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 3466 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 3467 Type *Ty = 0; LocTy TypeLoc; 3468 Value *Op0, *Op1; 3469 3470 if (ParseType(Ty, TypeLoc) || 3471 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3472 ParseValue(Ty, Op0, PFS) || 3473 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3474 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3475 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3476 return true; 3477 3478 bool AteExtraComma = false; 3479 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 3480 while (1) { 3481 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 3482 3483 if (!EatIfPresent(lltok::comma)) 3484 break; 3485 3486 if (Lex.getKind() == lltok::MetadataVar) { 3487 AteExtraComma = true; 3488 break; 3489 } 3490 3491 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3492 ParseValue(Ty, Op0, PFS) || 3493 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3494 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3495 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3496 return true; 3497 } 3498 3499 if (!Ty->isFirstClassType()) 3500 return Error(TypeLoc, "phi node must have first class type"); 3501 3502 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 3503 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 3504 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 3505 Inst = PN; 3506 return AteExtraComma ? InstExtraComma : InstNormal; 3507 } 3508 3509 /// ParseLandingPad 3510 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 3511 /// Clause 3512 /// ::= 'catch' TypeAndValue 3513 /// ::= 'filter' 3514 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 3515 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 3516 Type *Ty = 0; LocTy TyLoc; 3517 Value *PersFn; LocTy PersFnLoc; 3518 3519 if (ParseType(Ty, TyLoc) || 3520 ParseToken(lltok::kw_personality, "expected 'personality'") || 3521 ParseTypeAndValue(PersFn, PersFnLoc, PFS)) 3522 return true; 3523 3524 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0); 3525 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 3526 3527 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 3528 LandingPadInst::ClauseType CT; 3529 if (EatIfPresent(lltok::kw_catch)) 3530 CT = LandingPadInst::Catch; 3531 else if (EatIfPresent(lltok::kw_filter)) 3532 CT = LandingPadInst::Filter; 3533 else 3534 return TokError("expected 'catch' or 'filter' clause type"); 3535 3536 Value *V; LocTy VLoc; 3537 if (ParseTypeAndValue(V, VLoc, PFS)) { 3538 delete LP; 3539 return true; 3540 } 3541 3542 // A 'catch' type expects a non-array constant. A filter clause expects an 3543 // array constant. 3544 if (CT == LandingPadInst::Catch) { 3545 if (isa<ArrayType>(V->getType())) 3546 Error(VLoc, "'catch' clause has an invalid type"); 3547 } else { 3548 if (!isa<ArrayType>(V->getType())) 3549 Error(VLoc, "'filter' clause has an invalid type"); 3550 } 3551 3552 LP->addClause(V); 3553 } 3554 3555 Inst = LP; 3556 return false; 3557 } 3558 3559 /// ParseCall 3560 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value 3561 /// ParameterList OptionalAttrs 3562 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 3563 bool isTail) { 3564 Attributes RetAttrs, FnAttrs; 3565 CallingConv::ID CC; 3566 Type *RetType = 0; 3567 LocTy RetTypeLoc; 3568 ValID CalleeID; 3569 SmallVector<ParamInfo, 16> ArgList; 3570 LocTy CallLoc = Lex.getLoc(); 3571 3572 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || 3573 ParseOptionalCallingConv(CC) || 3574 ParseOptionalAttrs(RetAttrs, 1) || 3575 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3576 ParseValID(CalleeID) || 3577 ParseParameterList(ArgList, PFS) || 3578 ParseOptionalAttrs(FnAttrs, 2)) 3579 return true; 3580 3581 // If RetType is a non-function pointer type, then this is the short syntax 3582 // for the call, which means that RetType is just the return type. Infer the 3583 // rest of the function argument types from the arguments that are present. 3584 PointerType *PFTy = 0; 3585 FunctionType *Ty = 0; 3586 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3587 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3588 // Pull out the types of all of the arguments... 3589 std::vector<Type*> ParamTypes; 3590 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3591 ParamTypes.push_back(ArgList[i].V->getType()); 3592 3593 if (!FunctionType::isValidReturnType(RetType)) 3594 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3595 3596 Ty = FunctionType::get(RetType, ParamTypes, false); 3597 PFTy = PointerType::getUnqual(Ty); 3598 } 3599 3600 // Look up the callee. 3601 Value *Callee; 3602 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3603 3604 // Set up the Attributes for the function. 3605 SmallVector<AttributeWithIndex, 8> Attrs; 3606 if (RetAttrs != Attribute::None) 3607 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 3608 3609 SmallVector<Value*, 8> Args; 3610 3611 // Loop through FunctionType's arguments and ensure they are specified 3612 // correctly. Also, gather any parameter attributes. 3613 FunctionType::param_iterator I = Ty->param_begin(); 3614 FunctionType::param_iterator E = Ty->param_end(); 3615 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3616 Type *ExpectedTy = 0; 3617 if (I != E) { 3618 ExpectedTy = *I++; 3619 } else if (!Ty->isVarArg()) { 3620 return Error(ArgList[i].Loc, "too many arguments specified"); 3621 } 3622 3623 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3624 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3625 getTypeString(ExpectedTy) + "'"); 3626 Args.push_back(ArgList[i].V); 3627 if (ArgList[i].Attrs != Attribute::None) 3628 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3629 } 3630 3631 if (I != E) 3632 return Error(CallLoc, "not enough parameters specified for call"); 3633 3634 if (FnAttrs != Attribute::None) 3635 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); 3636 3637 // Finish off the Attributes and check them 3638 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); 3639 3640 CallInst *CI = CallInst::Create(Callee, Args); 3641 CI->setTailCall(isTail); 3642 CI->setCallingConv(CC); 3643 CI->setAttributes(PAL); 3644 Inst = CI; 3645 return false; 3646 } 3647 3648 //===----------------------------------------------------------------------===// 3649 // Memory Instructions. 3650 //===----------------------------------------------------------------------===// 3651 3652 /// ParseAlloc 3653 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)? 3654 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 3655 Value *Size = 0; 3656 LocTy SizeLoc; 3657 unsigned Alignment = 0; 3658 Type *Ty = 0; 3659 if (ParseType(Ty)) return true; 3660 3661 bool AteExtraComma = false; 3662 if (EatIfPresent(lltok::comma)) { 3663 if (Lex.getKind() == lltok::kw_align) { 3664 if (ParseOptionalAlignment(Alignment)) return true; 3665 } else if (Lex.getKind() == lltok::MetadataVar) { 3666 AteExtraComma = true; 3667 } else { 3668 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 3669 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3670 return true; 3671 } 3672 } 3673 3674 if (Size && !Size->getType()->isIntegerTy()) 3675 return Error(SizeLoc, "element count must have integer type"); 3676 3677 Inst = new AllocaInst(Ty, Size, Alignment); 3678 return AteExtraComma ? InstExtraComma : InstNormal; 3679 } 3680 3681 /// ParseLoad 3682 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 3683 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 3684 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3685 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 3686 Value *Val; LocTy Loc; 3687 unsigned Alignment = 0; 3688 bool AteExtraComma = false; 3689 bool isAtomic = false; 3690 AtomicOrdering Ordering = NotAtomic; 3691 SynchronizationScope Scope = CrossThread; 3692 3693 if (Lex.getKind() == lltok::kw_atomic) { 3694 isAtomic = true; 3695 Lex.Lex(); 3696 } 3697 3698 bool isVolatile = false; 3699 if (Lex.getKind() == lltok::kw_volatile) { 3700 isVolatile = true; 3701 Lex.Lex(); 3702 } 3703 3704 if (ParseTypeAndValue(Val, Loc, PFS) || 3705 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3706 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3707 return true; 3708 3709 if (!Val->getType()->isPointerTy() || 3710 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) 3711 return Error(Loc, "load operand must be a pointer to a first class type"); 3712 if (isAtomic && !Alignment) 3713 return Error(Loc, "atomic load must have explicit non-zero alignment"); 3714 if (Ordering == Release || Ordering == AcquireRelease) 3715 return Error(Loc, "atomic load cannot use Release ordering"); 3716 3717 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope); 3718 return AteExtraComma ? InstExtraComma : InstNormal; 3719 } 3720 3721 /// ParseStore 3722 3723 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 3724 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 3725 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3726 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 3727 Value *Val, *Ptr; LocTy Loc, PtrLoc; 3728 unsigned Alignment = 0; 3729 bool AteExtraComma = false; 3730 bool isAtomic = false; 3731 AtomicOrdering Ordering = NotAtomic; 3732 SynchronizationScope Scope = CrossThread; 3733 3734 if (Lex.getKind() == lltok::kw_atomic) { 3735 isAtomic = true; 3736 Lex.Lex(); 3737 } 3738 3739 bool isVolatile = false; 3740 if (Lex.getKind() == lltok::kw_volatile) { 3741 isVolatile = true; 3742 Lex.Lex(); 3743 } 3744 3745 if (ParseTypeAndValue(Val, Loc, PFS) || 3746 ParseToken(lltok::comma, "expected ',' after store operand") || 3747 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3748 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3749 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3750 return true; 3751 3752 if (!Ptr->getType()->isPointerTy()) 3753 return Error(PtrLoc, "store operand must be a pointer"); 3754 if (!Val->getType()->isFirstClassType()) 3755 return Error(Loc, "store operand must be a first class value"); 3756 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3757 return Error(Loc, "stored value and pointer type do not match"); 3758 if (isAtomic && !Alignment) 3759 return Error(Loc, "atomic store must have explicit non-zero alignment"); 3760 if (Ordering == Acquire || Ordering == AcquireRelease) 3761 return Error(Loc, "atomic store cannot use Acquire ordering"); 3762 3763 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 3764 return AteExtraComma ? InstExtraComma : InstNormal; 3765 } 3766 3767 /// ParseCmpXchg 3768 /// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue 3769 /// 'singlethread'? AtomicOrdering 3770 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 3771 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 3772 bool AteExtraComma = false; 3773 AtomicOrdering Ordering = NotAtomic; 3774 SynchronizationScope Scope = CrossThread; 3775 bool isVolatile = false; 3776 3777 if (EatIfPresent(lltok::kw_volatile)) 3778 isVolatile = true; 3779 3780 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3781 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 3782 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 3783 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 3784 ParseTypeAndValue(New, NewLoc, PFS) || 3785 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3786 return true; 3787 3788 if (Ordering == Unordered) 3789 return TokError("cmpxchg cannot be unordered"); 3790 if (!Ptr->getType()->isPointerTy()) 3791 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 3792 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 3793 return Error(CmpLoc, "compare value and pointer type do not match"); 3794 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 3795 return Error(NewLoc, "new value and pointer type do not match"); 3796 if (!New->getType()->isIntegerTy()) 3797 return Error(NewLoc, "cmpxchg operand must be an integer"); 3798 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 3799 if (Size < 8 || (Size & (Size - 1))) 3800 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 3801 " integer"); 3802 3803 AtomicCmpXchgInst *CXI = 3804 new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope); 3805 CXI->setVolatile(isVolatile); 3806 Inst = CXI; 3807 return AteExtraComma ? InstExtraComma : InstNormal; 3808 } 3809 3810 /// ParseAtomicRMW 3811 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 3812 /// 'singlethread'? AtomicOrdering 3813 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 3814 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 3815 bool AteExtraComma = false; 3816 AtomicOrdering Ordering = NotAtomic; 3817 SynchronizationScope Scope = CrossThread; 3818 bool isVolatile = false; 3819 AtomicRMWInst::BinOp Operation; 3820 3821 if (EatIfPresent(lltok::kw_volatile)) 3822 isVolatile = true; 3823 3824 switch (Lex.getKind()) { 3825 default: return TokError("expected binary operation in atomicrmw"); 3826 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 3827 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 3828 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 3829 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 3830 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 3831 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 3832 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 3833 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 3834 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 3835 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 3836 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 3837 } 3838 Lex.Lex(); // Eat the operation. 3839 3840 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3841 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 3842 ParseTypeAndValue(Val, ValLoc, PFS) || 3843 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3844 return true; 3845 3846 if (Ordering == Unordered) 3847 return TokError("atomicrmw cannot be unordered"); 3848 if (!Ptr->getType()->isPointerTy()) 3849 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 3850 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3851 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 3852 if (!Val->getType()->isIntegerTy()) 3853 return Error(ValLoc, "atomicrmw operand must be an integer"); 3854 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 3855 if (Size < 8 || (Size & (Size - 1))) 3856 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 3857 " integer"); 3858 3859 AtomicRMWInst *RMWI = 3860 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 3861 RMWI->setVolatile(isVolatile); 3862 Inst = RMWI; 3863 return AteExtraComma ? InstExtraComma : InstNormal; 3864 } 3865 3866 /// ParseFence 3867 /// ::= 'fence' 'singlethread'? AtomicOrdering 3868 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 3869 AtomicOrdering Ordering = NotAtomic; 3870 SynchronizationScope Scope = CrossThread; 3871 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3872 return true; 3873 3874 if (Ordering == Unordered) 3875 return TokError("fence cannot be unordered"); 3876 if (Ordering == Monotonic) 3877 return TokError("fence cannot be monotonic"); 3878 3879 Inst = new FenceInst(Context, Ordering, Scope); 3880 return InstNormal; 3881 } 3882 3883 /// ParseGetElementPtr 3884 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 3885 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 3886 Value *Ptr = 0; 3887 Value *Val = 0; 3888 LocTy Loc, EltLoc; 3889 3890 bool InBounds = EatIfPresent(lltok::kw_inbounds); 3891 3892 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; 3893 3894 if (!Ptr->getType()->getScalarType()->isPointerTy()) 3895 return Error(Loc, "base of getelementptr must be a pointer"); 3896 3897 SmallVector<Value*, 16> Indices; 3898 bool AteExtraComma = false; 3899 while (EatIfPresent(lltok::comma)) { 3900 if (Lex.getKind() == lltok::MetadataVar) { 3901 AteExtraComma = true; 3902 break; 3903 } 3904 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 3905 if (!Val->getType()->getScalarType()->isIntegerTy()) 3906 return Error(EltLoc, "getelementptr index must be an integer"); 3907 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy()) 3908 return Error(EltLoc, "getelementptr index type missmatch"); 3909 if (Val->getType()->isVectorTy()) { 3910 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements(); 3911 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements(); 3912 if (ValNumEl != PtrNumEl) 3913 return Error(EltLoc, 3914 "getelementptr vector index has a wrong number of elements"); 3915 } 3916 Indices.push_back(Val); 3917 } 3918 3919 if (Val && Val->getType()->isVectorTy() && Indices.size() != 1) 3920 return Error(EltLoc, "vector getelementptrs must have a single index"); 3921 3922 if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices)) 3923 return Error(Loc, "invalid getelementptr indices"); 3924 Inst = GetElementPtrInst::Create(Ptr, Indices); 3925 if (InBounds) 3926 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 3927 return AteExtraComma ? InstExtraComma : InstNormal; 3928 } 3929 3930 /// ParseExtractValue 3931 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 3932 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 3933 Value *Val; LocTy Loc; 3934 SmallVector<unsigned, 4> Indices; 3935 bool AteExtraComma; 3936 if (ParseTypeAndValue(Val, Loc, PFS) || 3937 ParseIndexList(Indices, AteExtraComma)) 3938 return true; 3939 3940 if (!Val->getType()->isAggregateType()) 3941 return Error(Loc, "extractvalue operand must be aggregate type"); 3942 3943 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3944 return Error(Loc, "invalid indices for extractvalue"); 3945 Inst = ExtractValueInst::Create(Val, Indices); 3946 return AteExtraComma ? InstExtraComma : InstNormal; 3947 } 3948 3949 /// ParseInsertValue 3950 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 3951 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 3952 Value *Val0, *Val1; LocTy Loc0, Loc1; 3953 SmallVector<unsigned, 4> Indices; 3954 bool AteExtraComma; 3955 if (ParseTypeAndValue(Val0, Loc0, PFS) || 3956 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 3957 ParseTypeAndValue(Val1, Loc1, PFS) || 3958 ParseIndexList(Indices, AteExtraComma)) 3959 return true; 3960 3961 if (!Val0->getType()->isAggregateType()) 3962 return Error(Loc0, "insertvalue operand must be aggregate type"); 3963 3964 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 3965 return Error(Loc0, "invalid indices for insertvalue"); 3966 Inst = InsertValueInst::Create(Val0, Val1, Indices); 3967 return AteExtraComma ? InstExtraComma : InstNormal; 3968 } 3969 3970 //===----------------------------------------------------------------------===// 3971 // Embedded metadata. 3972 //===----------------------------------------------------------------------===// 3973 3974 /// ParseMDNodeVector 3975 /// ::= Element (',' Element)* 3976 /// Element 3977 /// ::= 'null' | TypeAndValue 3978 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts, 3979 PerFunctionState *PFS) { 3980 // Check for an empty list. 3981 if (Lex.getKind() == lltok::rbrace) 3982 return false; 3983 3984 do { 3985 // Null is a special case since it is typeless. 3986 if (EatIfPresent(lltok::kw_null)) { 3987 Elts.push_back(0); 3988 continue; 3989 } 3990 3991 Value *V = 0; 3992 if (ParseTypeAndValue(V, PFS)) return true; 3993 Elts.push_back(V); 3994 } while (EatIfPresent(lltok::comma)); 3995 3996 return false; 3997 } 3998