Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitAnd, visitOr, and visitXor functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Intrinsics.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/Transforms/Utils/CmpInstAnalysis.h"
     18 #include "llvm/Support/ConstantRange.h"
     19 #include "llvm/Support/PatternMatch.h"
     20 using namespace llvm;
     21 using namespace PatternMatch;
     22 
     23 
     24 /// AddOne - Add one to a ConstantInt.
     25 static Constant *AddOne(Constant *C) {
     26   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     27 }
     28 /// SubOne - Subtract one from a ConstantInt.
     29 static Constant *SubOne(ConstantInt *C) {
     30   return ConstantInt::get(C->getContext(), C->getValue()-1);
     31 }
     32 
     33 /// isFreeToInvert - Return true if the specified value is free to invert (apply
     34 /// ~ to).  This happens in cases where the ~ can be eliminated.
     35 static inline bool isFreeToInvert(Value *V) {
     36   // ~(~(X)) -> X.
     37   if (BinaryOperator::isNot(V))
     38     return true;
     39 
     40   // Constants can be considered to be not'ed values.
     41   if (isa<ConstantInt>(V))
     42     return true;
     43 
     44   // Compares can be inverted if they have a single use.
     45   if (CmpInst *CI = dyn_cast<CmpInst>(V))
     46     return CI->hasOneUse();
     47 
     48   return false;
     49 }
     50 
     51 static inline Value *dyn_castNotVal(Value *V) {
     52   // If this is not(not(x)) don't return that this is a not: we want the two
     53   // not's to be folded first.
     54   if (BinaryOperator::isNot(V)) {
     55     Value *Operand = BinaryOperator::getNotArgument(V);
     56     if (!isFreeToInvert(Operand))
     57       return Operand;
     58   }
     59 
     60   // Constants can be considered to be not'ed values...
     61   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
     62     return ConstantInt::get(C->getType(), ~C->getValue());
     63   return 0;
     64 }
     65 
     66 /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
     67 /// predicate into a three bit mask. It also returns whether it is an ordered
     68 /// predicate by reference.
     69 static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
     70   isOrdered = false;
     71   switch (CC) {
     72   case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
     73   case FCmpInst::FCMP_UNO:                   return 0;  // 000
     74   case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
     75   case FCmpInst::FCMP_UGT:                   return 1;  // 001
     76   case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
     77   case FCmpInst::FCMP_UEQ:                   return 2;  // 010
     78   case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
     79   case FCmpInst::FCMP_UGE:                   return 3;  // 011
     80   case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
     81   case FCmpInst::FCMP_ULT:                   return 4;  // 100
     82   case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
     83   case FCmpInst::FCMP_UNE:                   return 5;  // 101
     84   case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
     85   case FCmpInst::FCMP_ULE:                   return 6;  // 110
     86     // True -> 7
     87   default:
     88     // Not expecting FCMP_FALSE and FCMP_TRUE;
     89     llvm_unreachable("Unexpected FCmp predicate!");
     90   }
     91 }
     92 
     93 /// getNewICmpValue - This is the complement of getICmpCode, which turns an
     94 /// opcode and two operands into either a constant true or false, or a brand
     95 /// new ICmp instruction. The sign is passed in to determine which kind
     96 /// of predicate to use in the new icmp instruction.
     97 static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
     98                               InstCombiner::BuilderTy *Builder) {
     99   ICmpInst::Predicate NewPred;
    100   if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
    101     return NewConstant;
    102   return Builder->CreateICmp(NewPred, LHS, RHS);
    103 }
    104 
    105 /// getFCmpValue - This is the complement of getFCmpCode, which turns an
    106 /// opcode and two operands into either a FCmp instruction. isordered is passed
    107 /// in to determine which kind of predicate to use in the new fcmp instruction.
    108 static Value *getFCmpValue(bool isordered, unsigned code,
    109                            Value *LHS, Value *RHS,
    110                            InstCombiner::BuilderTy *Builder) {
    111   CmpInst::Predicate Pred;
    112   switch (code) {
    113   default: llvm_unreachable("Illegal FCmp code!");
    114   case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
    115   case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
    116   case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
    117   case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
    118   case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
    119   case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
    120   case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
    121   case 7:
    122     if (!isordered) return ConstantInt::getTrue(LHS->getContext());
    123     Pred = FCmpInst::FCMP_ORD; break;
    124   }
    125   return Builder->CreateFCmp(Pred, LHS, RHS);
    126 }
    127 
    128 // OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
    129 // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
    130 // guaranteed to be a binary operator.
    131 Instruction *InstCombiner::OptAndOp(Instruction *Op,
    132                                     ConstantInt *OpRHS,
    133                                     ConstantInt *AndRHS,
    134                                     BinaryOperator &TheAnd) {
    135   Value *X = Op->getOperand(0);
    136   Constant *Together = 0;
    137   if (!Op->isShift())
    138     Together = ConstantExpr::getAnd(AndRHS, OpRHS);
    139 
    140   switch (Op->getOpcode()) {
    141   case Instruction::Xor:
    142     if (Op->hasOneUse()) {
    143       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
    144       Value *And = Builder->CreateAnd(X, AndRHS);
    145       And->takeName(Op);
    146       return BinaryOperator::CreateXor(And, Together);
    147     }
    148     break;
    149   case Instruction::Or:
    150     if (Op->hasOneUse()){
    151       if (Together != OpRHS) {
    152         // (X | C1) & C2 --> (X | (C1&C2)) & C2
    153         Value *Or = Builder->CreateOr(X, Together);
    154         Or->takeName(Op);
    155         return BinaryOperator::CreateAnd(Or, AndRHS);
    156       }
    157 
    158       ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
    159       if (TogetherCI && !TogetherCI->isZero()){
    160         // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
    161         // NOTE: This reduces the number of bits set in the & mask, which
    162         // can expose opportunities for store narrowing.
    163         Together = ConstantExpr::getXor(AndRHS, Together);
    164         Value *And = Builder->CreateAnd(X, Together);
    165         And->takeName(Op);
    166         return BinaryOperator::CreateOr(And, OpRHS);
    167       }
    168     }
    169 
    170     break;
    171   case Instruction::Add:
    172     if (Op->hasOneUse()) {
    173       // Adding a one to a single bit bit-field should be turned into an XOR
    174       // of the bit.  First thing to check is to see if this AND is with a
    175       // single bit constant.
    176       const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
    177 
    178       // If there is only one bit set.
    179       if (AndRHSV.isPowerOf2()) {
    180         // Ok, at this point, we know that we are masking the result of the
    181         // ADD down to exactly one bit.  If the constant we are adding has
    182         // no bits set below this bit, then we can eliminate the ADD.
    183         const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
    184 
    185         // Check to see if any bits below the one bit set in AndRHSV are set.
    186         if ((AddRHS & (AndRHSV-1)) == 0) {
    187           // If not, the only thing that can effect the output of the AND is
    188           // the bit specified by AndRHSV.  If that bit is set, the effect of
    189           // the XOR is to toggle the bit.  If it is clear, then the ADD has
    190           // no effect.
    191           if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
    192             TheAnd.setOperand(0, X);
    193             return &TheAnd;
    194           } else {
    195             // Pull the XOR out of the AND.
    196             Value *NewAnd = Builder->CreateAnd(X, AndRHS);
    197             NewAnd->takeName(Op);
    198             return BinaryOperator::CreateXor(NewAnd, AndRHS);
    199           }
    200         }
    201       }
    202     }
    203     break;
    204 
    205   case Instruction::Shl: {
    206     // We know that the AND will not produce any of the bits shifted in, so if
    207     // the anded constant includes them, clear them now!
    208     //
    209     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    210     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    211     APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
    212     ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
    213                                        AndRHS->getValue() & ShlMask);
    214 
    215     if (CI->getValue() == ShlMask)
    216       // Masking out bits that the shift already masks.
    217       return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
    218 
    219     if (CI != AndRHS) {                  // Reducing bits set in and.
    220       TheAnd.setOperand(1, CI);
    221       return &TheAnd;
    222     }
    223     break;
    224   }
    225   case Instruction::LShr: {
    226     // We know that the AND will not produce any of the bits shifted in, so if
    227     // the anded constant includes them, clear them now!  This only applies to
    228     // unsigned shifts, because a signed shr may bring in set bits!
    229     //
    230     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    231     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    232     APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    233     ConstantInt *CI = ConstantInt::get(Op->getContext(),
    234                                        AndRHS->getValue() & ShrMask);
    235 
    236     if (CI->getValue() == ShrMask)
    237       // Masking out bits that the shift already masks.
    238       return ReplaceInstUsesWith(TheAnd, Op);
    239 
    240     if (CI != AndRHS) {
    241       TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
    242       return &TheAnd;
    243     }
    244     break;
    245   }
    246   case Instruction::AShr:
    247     // Signed shr.
    248     // See if this is shifting in some sign extension, then masking it out
    249     // with an and.
    250     if (Op->hasOneUse()) {
    251       uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    252       uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    253       APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    254       Constant *C = ConstantInt::get(Op->getContext(),
    255                                      AndRHS->getValue() & ShrMask);
    256       if (C == AndRHS) {          // Masking out bits shifted in.
    257         // (Val ashr C1) & C2 -> (Val lshr C1) & C2
    258         // Make the argument unsigned.
    259         Value *ShVal = Op->getOperand(0);
    260         ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
    261         return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
    262       }
    263     }
    264     break;
    265   }
    266   return 0;
    267 }
    268 
    269 
    270 /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
    271 /// true, otherwise (V < Lo || V >= Hi).  In practice, we emit the more efficient
    272 /// (V-Lo) <u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
    273 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
    274 /// insert new instructions.
    275 Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
    276                                      bool isSigned, bool Inside) {
    277   assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
    278             ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
    279          "Lo is not <= Hi in range emission code!");
    280 
    281   if (Inside) {
    282     if (Lo == Hi)  // Trivially false.
    283       return ConstantInt::getFalse(V->getContext());
    284 
    285     // V >= Min && V < Hi --> V < Hi
    286     if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    287       ICmpInst::Predicate pred = (isSigned ?
    288         ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
    289       return Builder->CreateICmp(pred, V, Hi);
    290     }
    291 
    292     // Emit V-Lo <u Hi-Lo
    293     Constant *NegLo = ConstantExpr::getNeg(Lo);
    294     Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    295     Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
    296     return Builder->CreateICmpULT(Add, UpperBound);
    297   }
    298 
    299   if (Lo == Hi)  // Trivially true.
    300     return ConstantInt::getTrue(V->getContext());
    301 
    302   // V < Min || V >= Hi -> V > Hi-1
    303   Hi = SubOne(cast<ConstantInt>(Hi));
    304   if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    305     ICmpInst::Predicate pred = (isSigned ?
    306         ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
    307     return Builder->CreateICmp(pred, V, Hi);
    308   }
    309 
    310   // Emit V-Lo >u Hi-1-Lo
    311   // Note that Hi has already had one subtracted from it, above.
    312   ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
    313   Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    314   Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
    315   return Builder->CreateICmpUGT(Add, LowerBound);
    316 }
    317 
    318 // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
    319 // any number of 0s on either side.  The 1s are allowed to wrap from LSB to
    320 // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
    321 // not, since all 1s are not contiguous.
    322 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
    323   const APInt& V = Val->getValue();
    324   uint32_t BitWidth = Val->getType()->getBitWidth();
    325   if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
    326 
    327   // look for the first zero bit after the run of ones
    328   MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
    329   // look for the first non-zero bit
    330   ME = V.getActiveBits();
    331   return true;
    332 }
    333 
    334 /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
    335 /// where isSub determines whether the operator is a sub.  If we can fold one of
    336 /// the following xforms:
    337 ///
    338 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
    339 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    340 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    341 ///
    342 /// return (A +/- B).
    343 ///
    344 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
    345                                         ConstantInt *Mask, bool isSub,
    346                                         Instruction &I) {
    347   Instruction *LHSI = dyn_cast<Instruction>(LHS);
    348   if (!LHSI || LHSI->getNumOperands() != 2 ||
    349       !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
    350 
    351   ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
    352 
    353   switch (LHSI->getOpcode()) {
    354   default: return 0;
    355   case Instruction::And:
    356     if (ConstantExpr::getAnd(N, Mask) == Mask) {
    357       // If the AndRHS is a power of two minus one (0+1+), this is simple.
    358       if ((Mask->getValue().countLeadingZeros() +
    359            Mask->getValue().countPopulation()) ==
    360           Mask->getValue().getBitWidth())
    361         break;
    362 
    363       // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
    364       // part, we don't need any explicit masks to take them out of A.  If that
    365       // is all N is, ignore it.
    366       uint32_t MB = 0, ME = 0;
    367       if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
    368         uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
    369         APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
    370         if (MaskedValueIsZero(RHS, Mask))
    371           break;
    372       }
    373     }
    374     return 0;
    375   case Instruction::Or:
    376   case Instruction::Xor:
    377     // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
    378     if ((Mask->getValue().countLeadingZeros() +
    379          Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
    380         && ConstantExpr::getAnd(N, Mask)->isNullValue())
    381       break;
    382     return 0;
    383   }
    384 
    385   if (isSub)
    386     return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
    387   return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
    388 }
    389 
    390 /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
    391 /// One of A and B is considered the mask, the other the value. This is
    392 /// described as the "AMask" or "BMask" part of the enum. If the enum
    393 /// contains only "Mask", then both A and B can be considered masks.
    394 /// If A is the mask, then it was proven, that (A & C) == C. This
    395 /// is trivial if C == A, or C == 0. If both A and C are constants, this
    396 /// proof is also easy.
    397 /// For the following explanations we assume that A is the mask.
    398 /// The part "AllOnes" declares, that the comparison is true only
    399 /// if (A & B) == A, or all bits of A are set in B.
    400 ///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
    401 /// The part "AllZeroes" declares, that the comparison is true only
    402 /// if (A & B) == 0, or all bits of A are cleared in B.
    403 ///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
    404 /// The part "Mixed" declares, that (A & B) == C and C might or might not
    405 /// contain any number of one bits and zero bits.
    406 ///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
    407 /// The Part "Not" means, that in above descriptions "==" should be replaced
    408 /// by "!=".
    409 ///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
    410 /// If the mask A contains a single bit, then the following is equivalent:
    411 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
    412 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
    413 enum MaskedICmpType {
    414   FoldMskICmp_AMask_AllOnes           =     1,
    415   FoldMskICmp_AMask_NotAllOnes        =     2,
    416   FoldMskICmp_BMask_AllOnes           =     4,
    417   FoldMskICmp_BMask_NotAllOnes        =     8,
    418   FoldMskICmp_Mask_AllZeroes          =    16,
    419   FoldMskICmp_Mask_NotAllZeroes       =    32,
    420   FoldMskICmp_AMask_Mixed             =    64,
    421   FoldMskICmp_AMask_NotMixed          =   128,
    422   FoldMskICmp_BMask_Mixed             =   256,
    423   FoldMskICmp_BMask_NotMixed          =   512
    424 };
    425 
    426 /// return the set of pattern classes (from MaskedICmpType)
    427 /// that (icmp SCC (A & B), C) satisfies
    428 static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
    429                                     ICmpInst::Predicate SCC)
    430 {
    431   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
    432   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    433   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    434   bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
    435   bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
    436                     ACst->getValue().isPowerOf2());
    437   bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
    438                     BCst->getValue().isPowerOf2());
    439   unsigned result = 0;
    440   if (CCst != 0 && CCst->isZero()) {
    441     // if C is zero, then both A and B qualify as mask
    442     result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
    443                           FoldMskICmp_Mask_AllZeroes |
    444                           FoldMskICmp_AMask_Mixed |
    445                           FoldMskICmp_BMask_Mixed)
    446                        : (FoldMskICmp_Mask_NotAllZeroes |
    447                           FoldMskICmp_Mask_NotAllZeroes |
    448                           FoldMskICmp_AMask_NotMixed |
    449                           FoldMskICmp_BMask_NotMixed));
    450     if (icmp_abit)
    451       result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
    452                             FoldMskICmp_AMask_NotMixed)
    453                          : (FoldMskICmp_AMask_AllOnes |
    454                             FoldMskICmp_AMask_Mixed));
    455     if (icmp_bbit)
    456       result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
    457                             FoldMskICmp_BMask_NotMixed)
    458                          : (FoldMskICmp_BMask_AllOnes |
    459                             FoldMskICmp_BMask_Mixed));
    460     return result;
    461   }
    462   if (A == C) {
    463     result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
    464                           FoldMskICmp_AMask_Mixed)
    465                        : (FoldMskICmp_AMask_NotAllOnes |
    466                           FoldMskICmp_AMask_NotMixed));
    467     if (icmp_abit)
    468       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    469                             FoldMskICmp_AMask_NotMixed)
    470                          : (FoldMskICmp_Mask_AllZeroes |
    471                             FoldMskICmp_AMask_Mixed));
    472   }
    473   else if (ACst != 0 && CCst != 0 &&
    474         ConstantExpr::getAnd(ACst, CCst) == CCst) {
    475     result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
    476                        : FoldMskICmp_AMask_NotMixed);
    477   }
    478   if (B == C)
    479   {
    480     result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
    481                           FoldMskICmp_BMask_Mixed)
    482                        : (FoldMskICmp_BMask_NotAllOnes |
    483                           FoldMskICmp_BMask_NotMixed));
    484     if (icmp_bbit)
    485       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    486                             FoldMskICmp_BMask_NotMixed)
    487                          : (FoldMskICmp_Mask_AllZeroes |
    488                             FoldMskICmp_BMask_Mixed));
    489   }
    490   else if (BCst != 0 && CCst != 0 &&
    491         ConstantExpr::getAnd(BCst, CCst) == CCst) {
    492     result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
    493                        : FoldMskICmp_BMask_NotMixed);
    494   }
    495   return result;
    496 }
    497 
    498 /// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z)
    499 /// if possible. The returned predicate is either == or !=. Returns false if
    500 /// decomposition fails.
    501 static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
    502                                  Value *&X, Value *&Y, Value *&Z) {
    503   // X < 0 is equivalent to (X & SignBit) != 0.
    504   if (I->getPredicate() == ICmpInst::ICMP_SLT)
    505     if (ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
    506       if (C->isZero()) {
    507         X = I->getOperand(0);
    508         Y = ConstantInt::get(I->getContext(),
    509                              APInt::getSignBit(C->getBitWidth()));
    510         Pred = ICmpInst::ICMP_NE;
    511         Z = C;
    512         return true;
    513       }
    514 
    515   // X > -1 is equivalent to (X & SignBit) == 0.
    516   if (I->getPredicate() == ICmpInst::ICMP_SGT)
    517     if (ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
    518       if (C->isAllOnesValue()) {
    519         X = I->getOperand(0);
    520         Y = ConstantInt::get(I->getContext(),
    521                              APInt::getSignBit(C->getBitWidth()));
    522         Pred = ICmpInst::ICMP_EQ;
    523         Z = ConstantInt::getNullValue(C->getType());
    524         return true;
    525       }
    526 
    527   return false;
    528 }
    529 
    530 /// foldLogOpOfMaskedICmpsHelper:
    531 /// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    532 /// return the set of pattern classes (from MaskedICmpType)
    533 /// that both LHS and RHS satisfy
    534 static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
    535                                              Value*& B, Value*& C,
    536                                              Value*& D, Value*& E,
    537                                              ICmpInst *LHS, ICmpInst *RHS,
    538                                              ICmpInst::Predicate &LHSCC,
    539                                              ICmpInst::Predicate &RHSCC) {
    540   if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
    541   // vectors are not (yet?) supported
    542   if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
    543 
    544   // Here comes the tricky part:
    545   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
    546   // and L11 & L12 == L21 & L22. The same goes for RHS.
    547   // Now we must find those components L** and R**, that are equal, so
    548   // that we can extract the parameters A, B, C, D, and E for the canonical
    549   // above.
    550   Value *L1 = LHS->getOperand(0);
    551   Value *L2 = LHS->getOperand(1);
    552   Value *L11,*L12,*L21,*L22;
    553   // Check whether the icmp can be decomposed into a bit test.
    554   if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
    555     L21 = L22 = L1 = 0;
    556   } else {
    557     // Look for ANDs in the LHS icmp.
    558     if (match(L1, m_And(m_Value(L11), m_Value(L12)))) {
    559       if (!match(L2, m_And(m_Value(L21), m_Value(L22))))
    560         L21 = L22 = 0;
    561     } else {
    562       if (!match(L2, m_And(m_Value(L11), m_Value(L12))))
    563         return 0;
    564       std::swap(L1, L2);
    565       L21 = L22 = 0;
    566     }
    567   }
    568 
    569   // Bail if LHS was a icmp that can't be decomposed into an equality.
    570   if (!ICmpInst::isEquality(LHSCC))
    571     return 0;
    572 
    573   Value *R1 = RHS->getOperand(0);
    574   Value *R2 = RHS->getOperand(1);
    575   Value *R11,*R12;
    576   bool ok = false;
    577   if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
    578     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    579       A = R11; D = R12;
    580     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    581       A = R12; D = R11;
    582     } else {
    583       return 0;
    584     }
    585     E = R2; R1 = 0; ok = true;
    586   } else if (match(R1, m_And(m_Value(R11), m_Value(R12)))) {
    587     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    588       A = R11; D = R12; E = R2; ok = true;
    589     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    590       A = R12; D = R11; E = R2; ok = true;
    591     }
    592   }
    593 
    594   // Bail if RHS was a icmp that can't be decomposed into an equality.
    595   if (!ICmpInst::isEquality(RHSCC))
    596     return 0;
    597 
    598   // Look for ANDs in on the right side of the RHS icmp.
    599   if (!ok && match(R2, m_And(m_Value(R11), m_Value(R12)))) {
    600     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    601       A = R11; D = R12; E = R1; ok = true;
    602     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    603       A = R12; D = R11; E = R1; ok = true;
    604     } else {
    605       return 0;
    606     }
    607   }
    608   if (!ok)
    609     return 0;
    610 
    611   if (L11 == A) {
    612     B = L12; C = L2;
    613   }
    614   else if (L12 == A) {
    615     B = L11; C = L2;
    616   }
    617   else if (L21 == A) {
    618     B = L22; C = L1;
    619   }
    620   else if (L22 == A) {
    621     B = L21; C = L1;
    622   }
    623 
    624   unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
    625   unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
    626   return left_type & right_type;
    627 }
    628 /// foldLogOpOfMaskedICmps:
    629 /// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    630 /// into a single (icmp(A & X) ==/!= Y)
    631 static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
    632                                      ICmpInst::Predicate NEWCC,
    633                                      llvm::InstCombiner::BuilderTy* Builder) {
    634   Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
    635   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    636   unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
    637                                                LHSCC, RHSCC);
    638   if (mask == 0) return 0;
    639   assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
    640          "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
    641 
    642   if (NEWCC == ICmpInst::ICMP_NE)
    643     mask >>= 1; // treat "Not"-states as normal states
    644 
    645   if (mask & FoldMskICmp_Mask_AllZeroes) {
    646     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
    647     // -> (icmp eq (A & (B|D)), 0)
    648     Value* newOr = Builder->CreateOr(B, D);
    649     Value* newAnd = Builder->CreateAnd(A, newOr);
    650     // we can't use C as zero, because we might actually handle
    651     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
    652     // with B and D, having a single bit set
    653     Value* zero = Constant::getNullValue(A->getType());
    654     return Builder->CreateICmp(NEWCC, newAnd, zero);
    655   }
    656   else if (mask & FoldMskICmp_BMask_AllOnes) {
    657     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
    658     // -> (icmp eq (A & (B|D)), (B|D))
    659     Value* newOr = Builder->CreateOr(B, D);
    660     Value* newAnd = Builder->CreateAnd(A, newOr);
    661     return Builder->CreateICmp(NEWCC, newAnd, newOr);
    662   }
    663   else if (mask & FoldMskICmp_AMask_AllOnes) {
    664     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
    665     // -> (icmp eq (A & (B&D)), A)
    666     Value* newAnd1 = Builder->CreateAnd(B, D);
    667     Value* newAnd = Builder->CreateAnd(A, newAnd1);
    668     return Builder->CreateICmp(NEWCC, newAnd, A);
    669   }
    670   else if (mask & FoldMskICmp_BMask_Mixed) {
    671     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
    672     // We already know that B & C == C && D & E == E.
    673     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
    674     // C and E, which are shared by both the mask B and the mask D, don't
    675     // contradict, then we can transform to
    676     // -> (icmp eq (A & (B|D)), (C|E))
    677     // Currently, we only handle the case of B, C, D, and E being constant.
    678     ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    679     if (BCst == 0) return 0;
    680     ConstantInt *DCst = dyn_cast<ConstantInt>(D);
    681     if (DCst == 0) return 0;
    682     // we can't simply use C and E, because we might actually handle
    683     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
    684     // with B and D, having a single bit set
    685 
    686     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    687     if (CCst == 0) return 0;
    688     if (LHSCC != NEWCC)
    689       CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
    690     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
    691     if (ECst == 0) return 0;
    692     if (RHSCC != NEWCC)
    693       ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
    694     ConstantInt* MCst = dyn_cast<ConstantInt>(
    695       ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
    696                            ConstantExpr::getXor(CCst, ECst)) );
    697     // if there is a conflict we should actually return a false for the
    698     // whole construct
    699     if (!MCst->isZero())
    700       return 0;
    701     Value *newOr1 = Builder->CreateOr(B, D);
    702     Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
    703     Value *newAnd = Builder->CreateAnd(A, newOr1);
    704     return Builder->CreateICmp(NEWCC, newAnd, newOr2);
    705   }
    706   return 0;
    707 }
    708 
    709 /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
    710 Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
    711   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    712 
    713   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
    714   if (PredicatesFoldable(LHSCC, RHSCC)) {
    715     if (LHS->getOperand(0) == RHS->getOperand(1) &&
    716         LHS->getOperand(1) == RHS->getOperand(0))
    717       LHS->swapOperands();
    718     if (LHS->getOperand(0) == RHS->getOperand(0) &&
    719         LHS->getOperand(1) == RHS->getOperand(1)) {
    720       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
    721       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
    722       bool isSigned = LHS->isSigned() || RHS->isSigned();
    723       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
    724     }
    725   }
    726 
    727   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
    728   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
    729     return V;
    730 
    731   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
    732   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
    733   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
    734   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
    735   if (LHSCst == 0 || RHSCst == 0) return 0;
    736 
    737   if (LHSCst == RHSCst && LHSCC == RHSCC) {
    738     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
    739     // where C is a power of 2
    740     if (LHSCC == ICmpInst::ICMP_ULT &&
    741         LHSCst->getValue().isPowerOf2()) {
    742       Value *NewOr = Builder->CreateOr(Val, Val2);
    743       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    744     }
    745 
    746     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
    747     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
    748       Value *NewOr = Builder->CreateOr(Val, Val2);
    749       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    750     }
    751   }
    752 
    753   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
    754   // where CMAX is the all ones value for the truncated type,
    755   // iff the lower bits of C2 and CA are zero.
    756   if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
    757       LHS->hasOneUse() && RHS->hasOneUse()) {
    758     Value *V;
    759     ConstantInt *AndCst, *SmallCst = 0, *BigCst = 0;
    760 
    761     // (trunc x) == C1 & (and x, CA) == C2
    762     if (match(Val2, m_Trunc(m_Value(V))) &&
    763         match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    764       SmallCst = RHSCst;
    765       BigCst = LHSCst;
    766     }
    767     // (and x, CA) == C2 & (trunc x) == C1
    768     else if (match(Val, m_Trunc(m_Value(V))) &&
    769              match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    770       SmallCst = LHSCst;
    771       BigCst = RHSCst;
    772     }
    773 
    774     if (SmallCst && BigCst) {
    775       unsigned BigBitSize = BigCst->getType()->getBitWidth();
    776       unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
    777 
    778       // Check that the low bits are zero.
    779       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
    780       if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
    781         Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
    782         APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
    783         Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
    784         return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
    785       }
    786     }
    787   }
    788 
    789   // From here on, we only handle:
    790   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
    791   if (Val != Val2) return 0;
    792 
    793   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
    794   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
    795       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
    796       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
    797       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
    798     return 0;
    799 
    800   // Make a constant range that's the intersection of the two icmp ranges.
    801   // If the intersection is empty, we know that the result is false.
    802   ConstantRange LHSRange =
    803     ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
    804   ConstantRange RHSRange =
    805     ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
    806 
    807   if (LHSRange.intersectWith(RHSRange).isEmptySet())
    808     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    809 
    810   // We can't fold (ugt x, C) & (sgt x, C2).
    811   if (!PredicatesFoldable(LHSCC, RHSCC))
    812     return 0;
    813 
    814   // Ensure that the larger constant is on the RHS.
    815   bool ShouldSwap;
    816   if (CmpInst::isSigned(LHSCC) ||
    817       (ICmpInst::isEquality(LHSCC) &&
    818        CmpInst::isSigned(RHSCC)))
    819     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
    820   else
    821     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
    822 
    823   if (ShouldSwap) {
    824     std::swap(LHS, RHS);
    825     std::swap(LHSCst, RHSCst);
    826     std::swap(LHSCC, RHSCC);
    827   }
    828 
    829   // At this point, we know we have two icmp instructions
    830   // comparing a value against two constants and and'ing the result
    831   // together.  Because of the above check, we know that we only have
    832   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
    833   // (from the icmp folding check above), that the two constants
    834   // are not equal and that the larger constant is on the RHS
    835   assert(LHSCst != RHSCst && "Compares not folded above?");
    836 
    837   switch (LHSCC) {
    838   default: llvm_unreachable("Unknown integer condition code!");
    839   case ICmpInst::ICMP_EQ:
    840     switch (RHSCC) {
    841     default: llvm_unreachable("Unknown integer condition code!");
    842     case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
    843     case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
    844     case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
    845       return LHS;
    846     }
    847   case ICmpInst::ICMP_NE:
    848     switch (RHSCC) {
    849     default: llvm_unreachable("Unknown integer condition code!");
    850     case ICmpInst::ICMP_ULT:
    851       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
    852         return Builder->CreateICmpULT(Val, LHSCst);
    853       break;                        // (X != 13 & X u< 15) -> no change
    854     case ICmpInst::ICMP_SLT:
    855       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
    856         return Builder->CreateICmpSLT(Val, LHSCst);
    857       break;                        // (X != 13 & X s< 15) -> no change
    858     case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
    859     case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
    860     case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
    861       return RHS;
    862     case ICmpInst::ICMP_NE:
    863       if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
    864         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
    865         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
    866         return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1));
    867       }
    868       break;                        // (X != 13 & X != 15) -> no change
    869     }
    870     break;
    871   case ICmpInst::ICMP_ULT:
    872     switch (RHSCC) {
    873     default: llvm_unreachable("Unknown integer condition code!");
    874     case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
    875     case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
    876       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    877     case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
    878       break;
    879     case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
    880     case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
    881       return LHS;
    882     case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
    883       break;
    884     }
    885     break;
    886   case ICmpInst::ICMP_SLT:
    887     switch (RHSCC) {
    888     default: llvm_unreachable("Unknown integer condition code!");
    889     case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
    890       break;
    891     case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
    892     case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
    893       return LHS;
    894     case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
    895       break;
    896     }
    897     break;
    898   case ICmpInst::ICMP_UGT:
    899     switch (RHSCC) {
    900     default: llvm_unreachable("Unknown integer condition code!");
    901     case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
    902     case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
    903       return RHS;
    904     case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
    905       break;
    906     case ICmpInst::ICMP_NE:
    907       if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
    908         return Builder->CreateICmp(LHSCC, Val, RHSCst);
    909       break;                        // (X u> 13 & X != 15) -> no change
    910     case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
    911       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
    912     case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
    913       break;
    914     }
    915     break;
    916   case ICmpInst::ICMP_SGT:
    917     switch (RHSCC) {
    918     default: llvm_unreachable("Unknown integer condition code!");
    919     case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
    920     case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
    921       return RHS;
    922     case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
    923       break;
    924     case ICmpInst::ICMP_NE:
    925       if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
    926         return Builder->CreateICmp(LHSCC, Val, RHSCst);
    927       break;                        // (X s> 13 & X != 15) -> no change
    928     case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
    929       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
    930     case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
    931       break;
    932     }
    933     break;
    934   }
    935 
    936   return 0;
    937 }
    938 
    939 /// FoldAndOfFCmps - Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of
    940 /// instcombine, this returns a Value which should already be inserted into the
    941 /// function.
    942 Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
    943   if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
    944       RHS->getPredicate() == FCmpInst::FCMP_ORD) {
    945     // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
    946     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
    947       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
    948         // If either of the constants are nans, then the whole thing returns
    949         // false.
    950         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
    951           return ConstantInt::getFalse(LHS->getContext());
    952         return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
    953       }
    954 
    955     // Handle vector zeros.  This occurs because the canonical form of
    956     // "fcmp ord x,x" is "fcmp ord x, 0".
    957     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
    958         isa<ConstantAggregateZero>(RHS->getOperand(1)))
    959       return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
    960     return 0;
    961   }
    962 
    963   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
    964   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
    965   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
    966 
    967 
    968   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
    969     // Swap RHS operands to match LHS.
    970     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
    971     std::swap(Op1LHS, Op1RHS);
    972   }
    973 
    974   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
    975     // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
    976     if (Op0CC == Op1CC)
    977       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
    978     if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
    979       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    980     if (Op0CC == FCmpInst::FCMP_TRUE)
    981       return RHS;
    982     if (Op1CC == FCmpInst::FCMP_TRUE)
    983       return LHS;
    984 
    985     bool Op0Ordered;
    986     bool Op1Ordered;
    987     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
    988     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
    989     // uno && ord -> false
    990     if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered)
    991         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    992     if (Op1Pred == 0) {
    993       std::swap(LHS, RHS);
    994       std::swap(Op0Pred, Op1Pred);
    995       std::swap(Op0Ordered, Op1Ordered);
    996     }
    997     if (Op0Pred == 0) {
    998       // uno && ueq -> uno && (uno || eq) -> uno
    999       // ord && olt -> ord && (ord && lt) -> olt
   1000       if (!Op0Ordered && (Op0Ordered == Op1Ordered))
   1001         return LHS;
   1002       if (Op0Ordered && (Op0Ordered == Op1Ordered))
   1003         return RHS;
   1004 
   1005       // uno && oeq -> uno && (ord && eq) -> false
   1006       if (!Op0Ordered)
   1007         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1008       // ord && ueq -> ord && (uno || eq) -> oeq
   1009       return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
   1010     }
   1011   }
   1012 
   1013   return 0;
   1014 }
   1015 
   1016 
   1017 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
   1018   bool Changed = SimplifyAssociativeOrCommutative(I);
   1019   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1020 
   1021   if (Value *V = SimplifyAndInst(Op0, Op1, TD))
   1022     return ReplaceInstUsesWith(I, V);
   1023 
   1024   // (A|B)&(A|C) -> A|(B&C) etc
   1025   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1026     return ReplaceInstUsesWith(I, V);
   1027 
   1028   // See if we can simplify any instructions used by the instruction whose sole
   1029   // purpose is to compute bits we don't care about.
   1030   if (SimplifyDemandedInstructionBits(I))
   1031     return &I;
   1032 
   1033   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
   1034     const APInt &AndRHSMask = AndRHS->getValue();
   1035 
   1036     // Optimize a variety of ((val OP C1) & C2) combinations...
   1037     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   1038       Value *Op0LHS = Op0I->getOperand(0);
   1039       Value *Op0RHS = Op0I->getOperand(1);
   1040       switch (Op0I->getOpcode()) {
   1041       default: break;
   1042       case Instruction::Xor:
   1043       case Instruction::Or: {
   1044         // If the mask is only needed on one incoming arm, push it up.
   1045         if (!Op0I->hasOneUse()) break;
   1046 
   1047         APInt NotAndRHS(~AndRHSMask);
   1048         if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
   1049           // Not masking anything out for the LHS, move to RHS.
   1050           Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
   1051                                              Op0RHS->getName()+".masked");
   1052           return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
   1053         }
   1054         if (!isa<Constant>(Op0RHS) &&
   1055             MaskedValueIsZero(Op0RHS, NotAndRHS)) {
   1056           // Not masking anything out for the RHS, move to LHS.
   1057           Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
   1058                                              Op0LHS->getName()+".masked");
   1059           return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
   1060         }
   1061 
   1062         break;
   1063       }
   1064       case Instruction::Add:
   1065         // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
   1066         // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1067         // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1068         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
   1069           return BinaryOperator::CreateAnd(V, AndRHS);
   1070         if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
   1071           return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
   1072         break;
   1073 
   1074       case Instruction::Sub:
   1075         // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
   1076         // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1077         // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1078         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
   1079           return BinaryOperator::CreateAnd(V, AndRHS);
   1080 
   1081         // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
   1082         // has 1's for all bits that the subtraction with A might affect.
   1083         if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
   1084           uint32_t BitWidth = AndRHSMask.getBitWidth();
   1085           uint32_t Zeros = AndRHSMask.countLeadingZeros();
   1086           APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
   1087 
   1088           if (MaskedValueIsZero(Op0LHS, Mask)) {
   1089             Value *NewNeg = Builder->CreateNeg(Op0RHS);
   1090             return BinaryOperator::CreateAnd(NewNeg, AndRHS);
   1091           }
   1092         }
   1093         break;
   1094 
   1095       case Instruction::Shl:
   1096       case Instruction::LShr:
   1097         // (1 << x) & 1 --> zext(x == 0)
   1098         // (1 >> x) & 1 --> zext(x == 0)
   1099         if (AndRHSMask == 1 && Op0LHS == AndRHS) {
   1100           Value *NewICmp =
   1101             Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
   1102           return new ZExtInst(NewICmp, I.getType());
   1103         }
   1104         break;
   1105       }
   1106 
   1107       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
   1108         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
   1109           return Res;
   1110     }
   1111 
   1112     // If this is an integer truncation, and if the source is an 'and' with
   1113     // immediate, transform it.  This frequently occurs for bitfield accesses.
   1114     {
   1115       Value *X = 0; ConstantInt *YC = 0;
   1116       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
   1117         // Change: and (trunc (and X, YC) to T), C2
   1118         // into  : and (trunc X to T), trunc(YC) & C2
   1119         // This will fold the two constants together, which may allow
   1120         // other simplifications.
   1121         Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
   1122         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
   1123         C3 = ConstantExpr::getAnd(C3, AndRHS);
   1124         return BinaryOperator::CreateAnd(NewCast, C3);
   1125       }
   1126     }
   1127 
   1128     // Try to fold constant and into select arguments.
   1129     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1130       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1131         return R;
   1132     if (isa<PHINode>(Op0))
   1133       if (Instruction *NV = FoldOpIntoPhi(I))
   1134         return NV;
   1135   }
   1136 
   1137 
   1138   // (~A & ~B) == (~(A | B)) - De Morgan's Law
   1139   if (Value *Op0NotVal = dyn_castNotVal(Op0))
   1140     if (Value *Op1NotVal = dyn_castNotVal(Op1))
   1141       if (Op0->hasOneUse() && Op1->hasOneUse()) {
   1142         Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
   1143                                       I.getName()+".demorgan");
   1144         return BinaryOperator::CreateNot(Or);
   1145       }
   1146 
   1147   {
   1148     Value *A = 0, *B = 0, *C = 0, *D = 0;
   1149     // (A|B) & ~(A&B) -> A^B
   1150     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   1151         match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1152         ((A == C && B == D) || (A == D && B == C)))
   1153       return BinaryOperator::CreateXor(A, B);
   1154 
   1155     // ~(A&B) & (A|B) -> A^B
   1156     if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
   1157         match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1158         ((A == C && B == D) || (A == D && B == C)))
   1159       return BinaryOperator::CreateXor(A, B);
   1160 
   1161     // A&(A^B) => A & ~B
   1162     {
   1163       Value *tmpOp0 = Op0;
   1164       Value *tmpOp1 = Op1;
   1165       if (Op0->hasOneUse() &&
   1166           match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   1167         if (A == Op1 || B == Op1 ) {
   1168           tmpOp1 = Op0;
   1169           tmpOp0 = Op1;
   1170           // Simplify below
   1171         }
   1172       }
   1173 
   1174       if (tmpOp1->hasOneUse() &&
   1175           match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
   1176         if (B == tmpOp0) {
   1177           std::swap(A, B);
   1178         }
   1179         // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
   1180         // A is originally -1 (or a vector of -1 and undefs), then we enter
   1181         // an endless loop. By checking that A is non-constant we ensure that
   1182         // we will never get to the loop.
   1183         if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
   1184           return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
   1185       }
   1186     }
   1187 
   1188     // (A&((~A)|B)) -> A&B
   1189     if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
   1190         match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
   1191       return BinaryOperator::CreateAnd(A, Op1);
   1192     if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
   1193         match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
   1194       return BinaryOperator::CreateAnd(A, Op0);
   1195   }
   1196 
   1197   if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
   1198     if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
   1199       if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1200         return ReplaceInstUsesWith(I, Res);
   1201 
   1202   // If and'ing two fcmp, try combine them into one.
   1203   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   1204     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   1205       if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1206         return ReplaceInstUsesWith(I, Res);
   1207 
   1208 
   1209   // fold (and (cast A), (cast B)) -> (cast (and A, B))
   1210   if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
   1211     if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
   1212       Type *SrcTy = Op0C->getOperand(0)->getType();
   1213       if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
   1214           SrcTy == Op1C->getOperand(0)->getType() &&
   1215           SrcTy->isIntOrIntVectorTy()) {
   1216         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
   1217 
   1218         // Only do this if the casts both really cause code to be generated.
   1219         if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   1220             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   1221           Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
   1222           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   1223         }
   1224 
   1225         // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
   1226         // cast is otherwise not optimizable.  This happens for vector sexts.
   1227         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   1228           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   1229             if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1230               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1231 
   1232         // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
   1233         // cast is otherwise not optimizable.  This happens for vector sexts.
   1234         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   1235           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   1236             if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1237               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1238       }
   1239     }
   1240 
   1241   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
   1242   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
   1243     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
   1244       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
   1245           SI0->getOperand(1) == SI1->getOperand(1) &&
   1246           (SI0->hasOneUse() || SI1->hasOneUse())) {
   1247         Value *NewOp =
   1248           Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
   1249                              SI0->getName());
   1250         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
   1251                                       SI1->getOperand(1));
   1252       }
   1253   }
   1254 
   1255   return Changed ? &I : 0;
   1256 }
   1257 
   1258 /// CollectBSwapParts - Analyze the specified subexpression and see if it is
   1259 /// capable of providing pieces of a bswap.  The subexpression provides pieces
   1260 /// of a bswap if it is proven that each of the non-zero bytes in the output of
   1261 /// the expression came from the corresponding "byte swapped" byte in some other
   1262 /// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
   1263 /// we know that the expression deposits the low byte of %X into the high byte
   1264 /// of the bswap result and that all other bytes are zero.  This expression is
   1265 /// accepted, the high byte of ByteValues is set to X to indicate a correct
   1266 /// match.
   1267 ///
   1268 /// This function returns true if the match was unsuccessful and false if so.
   1269 /// On entry to the function the "OverallLeftShift" is a signed integer value
   1270 /// indicating the number of bytes that the subexpression is later shifted.  For
   1271 /// example, if the expression is later right shifted by 16 bits, the
   1272 /// OverallLeftShift value would be -2 on entry.  This is used to specify which
   1273 /// byte of ByteValues is actually being set.
   1274 ///
   1275 /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
   1276 /// byte is masked to zero by a user.  For example, in (X & 255), X will be
   1277 /// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
   1278 /// this function to working on up to 32-byte (256 bit) values.  ByteMask is
   1279 /// always in the local (OverallLeftShift) coordinate space.
   1280 ///
   1281 static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
   1282                               SmallVector<Value*, 8> &ByteValues) {
   1283   if (Instruction *I = dyn_cast<Instruction>(V)) {
   1284     // If this is an or instruction, it may be an inner node of the bswap.
   1285     if (I->getOpcode() == Instruction::Or) {
   1286       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1287                                ByteValues) ||
   1288              CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
   1289                                ByteValues);
   1290     }
   1291 
   1292     // If this is a logical shift by a constant multiple of 8, recurse with
   1293     // OverallLeftShift and ByteMask adjusted.
   1294     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
   1295       unsigned ShAmt =
   1296         cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
   1297       // Ensure the shift amount is defined and of a byte value.
   1298       if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
   1299         return true;
   1300 
   1301       unsigned ByteShift = ShAmt >> 3;
   1302       if (I->getOpcode() == Instruction::Shl) {
   1303         // X << 2 -> collect(X, +2)
   1304         OverallLeftShift += ByteShift;
   1305         ByteMask >>= ByteShift;
   1306       } else {
   1307         // X >>u 2 -> collect(X, -2)
   1308         OverallLeftShift -= ByteShift;
   1309         ByteMask <<= ByteShift;
   1310         ByteMask &= (~0U >> (32-ByteValues.size()));
   1311       }
   1312 
   1313       if (OverallLeftShift >= (int)ByteValues.size()) return true;
   1314       if (OverallLeftShift <= -(int)ByteValues.size()) return true;
   1315 
   1316       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1317                                ByteValues);
   1318     }
   1319 
   1320     // If this is a logical 'and' with a mask that clears bytes, clear the
   1321     // corresponding bytes in ByteMask.
   1322     if (I->getOpcode() == Instruction::And &&
   1323         isa<ConstantInt>(I->getOperand(1))) {
   1324       // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
   1325       unsigned NumBytes = ByteValues.size();
   1326       APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
   1327       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
   1328 
   1329       for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
   1330         // If this byte is masked out by a later operation, we don't care what
   1331         // the and mask is.
   1332         if ((ByteMask & (1 << i)) == 0)
   1333           continue;
   1334 
   1335         // If the AndMask is all zeros for this byte, clear the bit.
   1336         APInt MaskB = AndMask & Byte;
   1337         if (MaskB == 0) {
   1338           ByteMask &= ~(1U << i);
   1339           continue;
   1340         }
   1341 
   1342         // If the AndMask is not all ones for this byte, it's not a bytezap.
   1343         if (MaskB != Byte)
   1344           return true;
   1345 
   1346         // Otherwise, this byte is kept.
   1347       }
   1348 
   1349       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1350                                ByteValues);
   1351     }
   1352   }
   1353 
   1354   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
   1355   // the input value to the bswap.  Some observations: 1) if more than one byte
   1356   // is demanded from this input, then it could not be successfully assembled
   1357   // into a byteswap.  At least one of the two bytes would not be aligned with
   1358   // their ultimate destination.
   1359   if (!isPowerOf2_32(ByteMask)) return true;
   1360   unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
   1361 
   1362   // 2) The input and ultimate destinations must line up: if byte 3 of an i32
   1363   // is demanded, it needs to go into byte 0 of the result.  This means that the
   1364   // byte needs to be shifted until it lands in the right byte bucket.  The
   1365   // shift amount depends on the position: if the byte is coming from the high
   1366   // part of the value (e.g. byte 3) then it must be shifted right.  If from the
   1367   // low part, it must be shifted left.
   1368   unsigned DestByteNo = InputByteNo + OverallLeftShift;
   1369   if (ByteValues.size()-1-DestByteNo != InputByteNo)
   1370     return true;
   1371 
   1372   // If the destination byte value is already defined, the values are or'd
   1373   // together, which isn't a bswap (unless it's an or of the same bits).
   1374   if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
   1375     return true;
   1376   ByteValues[DestByteNo] = V;
   1377   return false;
   1378 }
   1379 
   1380 /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
   1381 /// If so, insert the new bswap intrinsic and return it.
   1382 Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
   1383   IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
   1384   if (!ITy || ITy->getBitWidth() % 16 ||
   1385       // ByteMask only allows up to 32-byte values.
   1386       ITy->getBitWidth() > 32*8)
   1387     return 0;   // Can only bswap pairs of bytes.  Can't do vectors.
   1388 
   1389   /// ByteValues - For each byte of the result, we keep track of which value
   1390   /// defines each byte.
   1391   SmallVector<Value*, 8> ByteValues;
   1392   ByteValues.resize(ITy->getBitWidth()/8);
   1393 
   1394   // Try to find all the pieces corresponding to the bswap.
   1395   uint32_t ByteMask = ~0U >> (32-ByteValues.size());
   1396   if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
   1397     return 0;
   1398 
   1399   // Check to see if all of the bytes come from the same value.
   1400   Value *V = ByteValues[0];
   1401   if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
   1402 
   1403   // Check to make sure that all of the bytes come from the same value.
   1404   for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
   1405     if (ByteValues[i] != V)
   1406       return 0;
   1407   Module *M = I.getParent()->getParent()->getParent();
   1408   Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
   1409   return CallInst::Create(F, V);
   1410 }
   1411 
   1412 /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
   1413 /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
   1414 /// we can simplify this expression to "cond ? C : D or B".
   1415 static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
   1416                                          Value *C, Value *D) {
   1417   // If A is not a select of -1/0, this cannot match.
   1418   Value *Cond = 0;
   1419   if (!match(A, m_SExt(m_Value(Cond))) ||
   1420       !Cond->getType()->isIntegerTy(1))
   1421     return 0;
   1422 
   1423   // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
   1424   if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
   1425     return SelectInst::Create(Cond, C, B);
   1426   if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
   1427     return SelectInst::Create(Cond, C, B);
   1428 
   1429   // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
   1430   if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
   1431     return SelectInst::Create(Cond, C, D);
   1432   if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
   1433     return SelectInst::Create(Cond, C, D);
   1434   return 0;
   1435 }
   1436 
   1437 /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
   1438 Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
   1439   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
   1440 
   1441   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
   1442   if (PredicatesFoldable(LHSCC, RHSCC)) {
   1443     if (LHS->getOperand(0) == RHS->getOperand(1) &&
   1444         LHS->getOperand(1) == RHS->getOperand(0))
   1445       LHS->swapOperands();
   1446     if (LHS->getOperand(0) == RHS->getOperand(0) &&
   1447         LHS->getOperand(1) == RHS->getOperand(1)) {
   1448       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   1449       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
   1450       bool isSigned = LHS->isSigned() || RHS->isSigned();
   1451       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
   1452     }
   1453   }
   1454 
   1455   // handle (roughly):
   1456   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
   1457   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_NE, Builder))
   1458     return V;
   1459 
   1460   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
   1461   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
   1462   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
   1463   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
   1464   if (LHSCst == 0 || RHSCst == 0) return 0;
   1465 
   1466   if (LHSCst == RHSCst && LHSCC == RHSCC) {
   1467     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
   1468     if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
   1469       Value *NewOr = Builder->CreateOr(Val, Val2);
   1470       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
   1471     }
   1472   }
   1473 
   1474   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
   1475   //   iff C2 + CA == C1.
   1476   if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
   1477     ConstantInt *AddCst;
   1478     if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
   1479       if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
   1480         return Builder->CreateICmpULE(Val, LHSCst);
   1481   }
   1482 
   1483   // From here on, we only handle:
   1484   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
   1485   if (Val != Val2) return 0;
   1486 
   1487   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
   1488   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
   1489       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
   1490       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
   1491       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
   1492     return 0;
   1493 
   1494   // We can't fold (ugt x, C) | (sgt x, C2).
   1495   if (!PredicatesFoldable(LHSCC, RHSCC))
   1496     return 0;
   1497 
   1498   // Ensure that the larger constant is on the RHS.
   1499   bool ShouldSwap;
   1500   if (CmpInst::isSigned(LHSCC) ||
   1501       (ICmpInst::isEquality(LHSCC) &&
   1502        CmpInst::isSigned(RHSCC)))
   1503     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
   1504   else
   1505     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
   1506 
   1507   if (ShouldSwap) {
   1508     std::swap(LHS, RHS);
   1509     std::swap(LHSCst, RHSCst);
   1510     std::swap(LHSCC, RHSCC);
   1511   }
   1512 
   1513   // At this point, we know we have two icmp instructions
   1514   // comparing a value against two constants and or'ing the result
   1515   // together.  Because of the above check, we know that we only have
   1516   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
   1517   // icmp folding check above), that the two constants are not
   1518   // equal.
   1519   assert(LHSCst != RHSCst && "Compares not folded above?");
   1520 
   1521   switch (LHSCC) {
   1522   default: llvm_unreachable("Unknown integer condition code!");
   1523   case ICmpInst::ICMP_EQ:
   1524     switch (RHSCC) {
   1525     default: llvm_unreachable("Unknown integer condition code!");
   1526     case ICmpInst::ICMP_EQ:
   1527       if (LHSCst == SubOne(RHSCst)) {
   1528         // (X == 13 | X == 14) -> X-13 <u 2
   1529         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
   1530         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
   1531         AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
   1532         return Builder->CreateICmpULT(Add, AddCST);
   1533       }
   1534       break;                         // (X == 13 | X == 15) -> no change
   1535     case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
   1536     case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
   1537       break;
   1538     case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
   1539     case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
   1540     case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
   1541       return RHS;
   1542     }
   1543     break;
   1544   case ICmpInst::ICMP_NE:
   1545     switch (RHSCC) {
   1546     default: llvm_unreachable("Unknown integer condition code!");
   1547     case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
   1548     case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
   1549     case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
   1550       return LHS;
   1551     case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
   1552     case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
   1553     case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
   1554       return ConstantInt::getTrue(LHS->getContext());
   1555     }
   1556   case ICmpInst::ICMP_ULT:
   1557     switch (RHSCC) {
   1558     default: llvm_unreachable("Unknown integer condition code!");
   1559     case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
   1560       break;
   1561     case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
   1562       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   1563       // this can cause overflow.
   1564       if (RHSCst->isMaxValue(false))
   1565         return LHS;
   1566       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
   1567     case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
   1568       break;
   1569     case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
   1570     case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
   1571       return RHS;
   1572     case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
   1573       break;
   1574     }
   1575     break;
   1576   case ICmpInst::ICMP_SLT:
   1577     switch (RHSCC) {
   1578     default: llvm_unreachable("Unknown integer condition code!");
   1579     case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
   1580       break;
   1581     case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
   1582       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   1583       // this can cause overflow.
   1584       if (RHSCst->isMaxValue(true))
   1585         return LHS;
   1586       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
   1587     case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
   1588       break;
   1589     case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
   1590     case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
   1591       return RHS;
   1592     case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
   1593       break;
   1594     }
   1595     break;
   1596   case ICmpInst::ICMP_UGT:
   1597     switch (RHSCC) {
   1598     default: llvm_unreachable("Unknown integer condition code!");
   1599     case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
   1600     case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
   1601       return LHS;
   1602     case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
   1603       break;
   1604     case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
   1605     case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
   1606       return ConstantInt::getTrue(LHS->getContext());
   1607     case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
   1608       break;
   1609     }
   1610     break;
   1611   case ICmpInst::ICMP_SGT:
   1612     switch (RHSCC) {
   1613     default: llvm_unreachable("Unknown integer condition code!");
   1614     case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
   1615     case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
   1616       return LHS;
   1617     case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
   1618       break;
   1619     case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
   1620     case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
   1621       return ConstantInt::getTrue(LHS->getContext());
   1622     case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
   1623       break;
   1624     }
   1625     break;
   1626   }
   1627   return 0;
   1628 }
   1629 
   1630 /// FoldOrOfFCmps - Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of
   1631 /// instcombine, this returns a Value which should already be inserted into the
   1632 /// function.
   1633 Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
   1634   if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
   1635       RHS->getPredicate() == FCmpInst::FCMP_UNO &&
   1636       LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
   1637     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
   1638       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
   1639         // If either of the constants are nans, then the whole thing returns
   1640         // true.
   1641         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
   1642           return ConstantInt::getTrue(LHS->getContext());
   1643 
   1644         // Otherwise, no need to compare the two constants, compare the
   1645         // rest.
   1646         return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   1647       }
   1648 
   1649     // Handle vector zeros.  This occurs because the canonical form of
   1650     // "fcmp uno x,x" is "fcmp uno x, 0".
   1651     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
   1652         isa<ConstantAggregateZero>(RHS->getOperand(1)))
   1653       return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   1654 
   1655     return 0;
   1656   }
   1657 
   1658   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
   1659   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
   1660   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
   1661 
   1662   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
   1663     // Swap RHS operands to match LHS.
   1664     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
   1665     std::swap(Op1LHS, Op1RHS);
   1666   }
   1667   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
   1668     // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
   1669     if (Op0CC == Op1CC)
   1670       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
   1671     if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
   1672       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
   1673     if (Op0CC == FCmpInst::FCMP_FALSE)
   1674       return RHS;
   1675     if (Op1CC == FCmpInst::FCMP_FALSE)
   1676       return LHS;
   1677     bool Op0Ordered;
   1678     bool Op1Ordered;
   1679     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
   1680     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
   1681     if (Op0Ordered == Op1Ordered) {
   1682       // If both are ordered or unordered, return a new fcmp with
   1683       // or'ed predicates.
   1684       return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
   1685     }
   1686   }
   1687   return 0;
   1688 }
   1689 
   1690 /// FoldOrWithConstants - This helper function folds:
   1691 ///
   1692 ///     ((A | B) & C1) | (B & C2)
   1693 ///
   1694 /// into:
   1695 ///
   1696 ///     (A & C1) | B
   1697 ///
   1698 /// when the XOR of the two constants is "all ones" (-1).
   1699 Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
   1700                                                Value *A, Value *B, Value *C) {
   1701   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
   1702   if (!CI1) return 0;
   1703 
   1704   Value *V1 = 0;
   1705   ConstantInt *CI2 = 0;
   1706   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
   1707 
   1708   APInt Xor = CI1->getValue() ^ CI2->getValue();
   1709   if (!Xor.isAllOnesValue()) return 0;
   1710 
   1711   if (V1 == A || V1 == B) {
   1712     Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
   1713     return BinaryOperator::CreateOr(NewOp, V1);
   1714   }
   1715 
   1716   return 0;
   1717 }
   1718 
   1719 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
   1720   bool Changed = SimplifyAssociativeOrCommutative(I);
   1721   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1722 
   1723   if (Value *V = SimplifyOrInst(Op0, Op1, TD))
   1724     return ReplaceInstUsesWith(I, V);
   1725 
   1726   // (A&B)|(A&C) -> A&(B|C) etc
   1727   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1728     return ReplaceInstUsesWith(I, V);
   1729 
   1730   // See if we can simplify any instructions used by the instruction whose sole
   1731   // purpose is to compute bits we don't care about.
   1732   if (SimplifyDemandedInstructionBits(I))
   1733     return &I;
   1734 
   1735   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   1736     ConstantInt *C1 = 0; Value *X = 0;
   1737     // (X & C1) | C2 --> (X | C2) & (C1|C2)
   1738     // iff (C1 & C2) == 0.
   1739     if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
   1740         (RHS->getValue() & C1->getValue()) != 0 &&
   1741         Op0->hasOneUse()) {
   1742       Value *Or = Builder->CreateOr(X, RHS);
   1743       Or->takeName(Op0);
   1744       return BinaryOperator::CreateAnd(Or,
   1745                          ConstantInt::get(I.getContext(),
   1746                                           RHS->getValue() | C1->getValue()));
   1747     }
   1748 
   1749     // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
   1750     if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
   1751         Op0->hasOneUse()) {
   1752       Value *Or = Builder->CreateOr(X, RHS);
   1753       Or->takeName(Op0);
   1754       return BinaryOperator::CreateXor(Or,
   1755                  ConstantInt::get(I.getContext(),
   1756                                   C1->getValue() & ~RHS->getValue()));
   1757     }
   1758 
   1759     // Try to fold constant and into select arguments.
   1760     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1761       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1762         return R;
   1763 
   1764     if (isa<PHINode>(Op0))
   1765       if (Instruction *NV = FoldOpIntoPhi(I))
   1766         return NV;
   1767   }
   1768 
   1769   Value *A = 0, *B = 0;
   1770   ConstantInt *C1 = 0, *C2 = 0;
   1771 
   1772   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
   1773   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
   1774   if (match(Op0, m_Or(m_Value(), m_Value())) ||
   1775       match(Op1, m_Or(m_Value(), m_Value())) ||
   1776       (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
   1777        match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
   1778     if (Instruction *BSwap = MatchBSwap(I))
   1779       return BSwap;
   1780   }
   1781 
   1782   // (X^C)|Y -> (X|Y)^C iff Y&C == 0
   1783   if (Op0->hasOneUse() &&
   1784       match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   1785       MaskedValueIsZero(Op1, C1->getValue())) {
   1786     Value *NOr = Builder->CreateOr(A, Op1);
   1787     NOr->takeName(Op0);
   1788     return BinaryOperator::CreateXor(NOr, C1);
   1789   }
   1790 
   1791   // Y|(X^C) -> (X|Y)^C iff Y&C == 0
   1792   if (Op1->hasOneUse() &&
   1793       match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   1794       MaskedValueIsZero(Op0, C1->getValue())) {
   1795     Value *NOr = Builder->CreateOr(A, Op0);
   1796     NOr->takeName(Op0);
   1797     return BinaryOperator::CreateXor(NOr, C1);
   1798   }
   1799 
   1800   // (A & C)|(B & D)
   1801   Value *C = 0, *D = 0;
   1802   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
   1803       match(Op1, m_And(m_Value(B), m_Value(D)))) {
   1804     Value *V1 = 0, *V2 = 0;
   1805     C1 = dyn_cast<ConstantInt>(C);
   1806     C2 = dyn_cast<ConstantInt>(D);
   1807     if (C1 && C2) {  // (A & C1)|(B & C2)
   1808       // If we have: ((V + N) & C1) | (V & C2)
   1809       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
   1810       // replace with V+N.
   1811       if (C1->getValue() == ~C2->getValue()) {
   1812         if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
   1813             match(A, m_Add(m_Value(V1), m_Value(V2)))) {
   1814           // Add commutes, try both ways.
   1815           if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
   1816             return ReplaceInstUsesWith(I, A);
   1817           if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
   1818             return ReplaceInstUsesWith(I, A);
   1819         }
   1820         // Or commutes, try both ways.
   1821         if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
   1822             match(B, m_Add(m_Value(V1), m_Value(V2)))) {
   1823           // Add commutes, try both ways.
   1824           if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
   1825             return ReplaceInstUsesWith(I, B);
   1826           if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
   1827             return ReplaceInstUsesWith(I, B);
   1828         }
   1829       }
   1830 
   1831       if ((C1->getValue() & C2->getValue()) == 0) {
   1832         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
   1833         // iff (C1&C2) == 0 and (N&~C1) == 0
   1834         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
   1835             ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) ||  // (V|N)
   1836              (V2 == B && MaskedValueIsZero(V1, ~C1->getValue()))))   // (N|V)
   1837           return BinaryOperator::CreateAnd(A,
   1838                                ConstantInt::get(A->getContext(),
   1839                                                 C1->getValue()|C2->getValue()));
   1840         // Or commutes, try both ways.
   1841         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
   1842             ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) ||  // (V|N)
   1843              (V2 == A && MaskedValueIsZero(V1, ~C2->getValue()))))   // (N|V)
   1844           return BinaryOperator::CreateAnd(B,
   1845                                ConstantInt::get(B->getContext(),
   1846                                                 C1->getValue()|C2->getValue()));
   1847 
   1848         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
   1849         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
   1850         ConstantInt *C3 = 0, *C4 = 0;
   1851         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
   1852             (C3->getValue() & ~C1->getValue()) == 0 &&
   1853             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
   1854             (C4->getValue() & ~C2->getValue()) == 0) {
   1855           V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
   1856           return BinaryOperator::CreateAnd(V2,
   1857                                ConstantInt::get(B->getContext(),
   1858                                                 C1->getValue()|C2->getValue()));
   1859         }
   1860       }
   1861     }
   1862 
   1863     // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
   1864     // Don't do this for vector select idioms, the code generator doesn't handle
   1865     // them well yet.
   1866     if (!I.getType()->isVectorTy()) {
   1867       if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
   1868         return Match;
   1869       if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
   1870         return Match;
   1871       if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
   1872         return Match;
   1873       if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
   1874         return Match;
   1875     }
   1876 
   1877     // ((A&~B)|(~A&B)) -> A^B
   1878     if ((match(C, m_Not(m_Specific(D))) &&
   1879          match(B, m_Not(m_Specific(A)))))
   1880       return BinaryOperator::CreateXor(A, D);
   1881     // ((~B&A)|(~A&B)) -> A^B
   1882     if ((match(A, m_Not(m_Specific(D))) &&
   1883          match(B, m_Not(m_Specific(C)))))
   1884       return BinaryOperator::CreateXor(C, D);
   1885     // ((A&~B)|(B&~A)) -> A^B
   1886     if ((match(C, m_Not(m_Specific(B))) &&
   1887          match(D, m_Not(m_Specific(A)))))
   1888       return BinaryOperator::CreateXor(A, B);
   1889     // ((~B&A)|(B&~A)) -> A^B
   1890     if ((match(A, m_Not(m_Specific(B))) &&
   1891          match(D, m_Not(m_Specific(C)))))
   1892       return BinaryOperator::CreateXor(C, B);
   1893 
   1894     // ((A|B)&1)|(B&-2) -> (A&1) | B
   1895     if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
   1896         match(A, m_Or(m_Specific(B), m_Value(V1)))) {
   1897       Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
   1898       if (Ret) return Ret;
   1899     }
   1900     // (B&-2)|((A|B)&1) -> (A&1) | B
   1901     if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
   1902         match(B, m_Or(m_Value(V1), m_Specific(A)))) {
   1903       Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
   1904       if (Ret) return Ret;
   1905     }
   1906   }
   1907 
   1908   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
   1909   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
   1910     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
   1911       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
   1912           SI0->getOperand(1) == SI1->getOperand(1) &&
   1913           (SI0->hasOneUse() || SI1->hasOneUse())) {
   1914         Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
   1915                                          SI0->getName());
   1916         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
   1917                                       SI1->getOperand(1));
   1918       }
   1919   }
   1920 
   1921   // (~A | ~B) == (~(A & B)) - De Morgan's Law
   1922   if (Value *Op0NotVal = dyn_castNotVal(Op0))
   1923     if (Value *Op1NotVal = dyn_castNotVal(Op1))
   1924       if (Op0->hasOneUse() && Op1->hasOneUse()) {
   1925         Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
   1926                                         I.getName()+".demorgan");
   1927         return BinaryOperator::CreateNot(And);
   1928       }
   1929 
   1930   // Canonicalize xor to the RHS.
   1931   bool SwappedForXor = false;
   1932   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
   1933     std::swap(Op0, Op1);
   1934     SwappedForXor = true;
   1935   }
   1936 
   1937   // A | ( A ^ B) -> A |  B
   1938   // A | (~A ^ B) -> A | ~B
   1939   // (A & B) | (A ^ B)
   1940   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
   1941     if (Op0 == A || Op0 == B)
   1942       return BinaryOperator::CreateOr(A, B);
   1943 
   1944     if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
   1945         match(Op0, m_And(m_Specific(B), m_Specific(A))))
   1946       return BinaryOperator::CreateOr(A, B);
   1947 
   1948     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
   1949       Value *Not = Builder->CreateNot(B, B->getName()+".not");
   1950       return BinaryOperator::CreateOr(Not, Op0);
   1951     }
   1952     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
   1953       Value *Not = Builder->CreateNot(A, A->getName()+".not");
   1954       return BinaryOperator::CreateOr(Not, Op0);
   1955     }
   1956   }
   1957 
   1958   // A | ~(A | B) -> A | ~B
   1959   // A | ~(A ^ B) -> A | ~B
   1960   if (match(Op1, m_Not(m_Value(A))))
   1961     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
   1962       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
   1963           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
   1964                                B->getOpcode() == Instruction::Xor)) {
   1965         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
   1966                                                  B->getOperand(0);
   1967         Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
   1968         return BinaryOperator::CreateOr(Not, Op0);
   1969       }
   1970 
   1971   if (SwappedForXor)
   1972     std::swap(Op0, Op1);
   1973 
   1974   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
   1975     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
   1976       if (Value *Res = FoldOrOfICmps(LHS, RHS))
   1977         return ReplaceInstUsesWith(I, Res);
   1978 
   1979   // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
   1980   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   1981     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   1982       if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   1983         return ReplaceInstUsesWith(I, Res);
   1984 
   1985   // fold (or (cast A), (cast B)) -> (cast (or A, B))
   1986   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   1987     CastInst *Op1C = dyn_cast<CastInst>(Op1);
   1988     if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
   1989       Type *SrcTy = Op0C->getOperand(0)->getType();
   1990       if (SrcTy == Op1C->getOperand(0)->getType() &&
   1991           SrcTy->isIntOrIntVectorTy()) {
   1992         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
   1993 
   1994         if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
   1995             // Only do this if the casts both really cause code to be
   1996             // generated.
   1997             ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   1998             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   1999           Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
   2000           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   2001         }
   2002 
   2003         // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
   2004         // cast is otherwise not optimizable.  This happens for vector sexts.
   2005         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   2006           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   2007             if (Value *Res = FoldOrOfICmps(LHS, RHS))
   2008               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2009 
   2010         // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
   2011         // cast is otherwise not optimizable.  This happens for vector sexts.
   2012         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   2013           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   2014             if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   2015               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2016       }
   2017     }
   2018   }
   2019 
   2020   // or(sext(A), B) -> A ? -1 : B where A is an i1
   2021   // or(A, sext(B)) -> B ? -1 : A where B is an i1
   2022   if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2023     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
   2024   if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2025     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
   2026 
   2027   // Note: If we've gotten to the point of visiting the outer OR, then the
   2028   // inner one couldn't be simplified.  If it was a constant, then it won't
   2029   // be simplified by a later pass either, so we try swapping the inner/outer
   2030   // ORs in the hopes that we'll be able to simplify it this way.
   2031   // (X|C) | V --> (X|V) | C
   2032   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
   2033       match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
   2034     Value *Inner = Builder->CreateOr(A, Op1);
   2035     Inner->takeName(Op0);
   2036     return BinaryOperator::CreateOr(Inner, C1);
   2037   }
   2038 
   2039   return Changed ? &I : 0;
   2040 }
   2041 
   2042 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
   2043   bool Changed = SimplifyAssociativeOrCommutative(I);
   2044   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2045 
   2046   if (Value *V = SimplifyXorInst(Op0, Op1, TD))
   2047     return ReplaceInstUsesWith(I, V);
   2048 
   2049   // (A&B)^(A&C) -> A&(B^C) etc
   2050   if (Value *V = SimplifyUsingDistributiveLaws(I))
   2051     return ReplaceInstUsesWith(I, V);
   2052 
   2053   // See if we can simplify any instructions used by the instruction whose sole
   2054   // purpose is to compute bits we don't care about.
   2055   if (SimplifyDemandedInstructionBits(I))
   2056     return &I;
   2057 
   2058   // Is this a ~ operation?
   2059   if (Value *NotOp = dyn_castNotVal(&I)) {
   2060     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
   2061       if (Op0I->getOpcode() == Instruction::And ||
   2062           Op0I->getOpcode() == Instruction::Or) {
   2063         // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
   2064         // ~(~X | Y) === (X & ~Y) - De Morgan's Law
   2065         if (dyn_castNotVal(Op0I->getOperand(1)))
   2066           Op0I->swapOperands();
   2067         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
   2068           Value *NotY =
   2069             Builder->CreateNot(Op0I->getOperand(1),
   2070                                Op0I->getOperand(1)->getName()+".not");
   2071           if (Op0I->getOpcode() == Instruction::And)
   2072             return BinaryOperator::CreateOr(Op0NotVal, NotY);
   2073           return BinaryOperator::CreateAnd(Op0NotVal, NotY);
   2074         }
   2075 
   2076         // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
   2077         // ~(X | Y) === (~X & ~Y) - De Morgan's Law
   2078         if (isFreeToInvert(Op0I->getOperand(0)) &&
   2079             isFreeToInvert(Op0I->getOperand(1))) {
   2080           Value *NotX =
   2081             Builder->CreateNot(Op0I->getOperand(0), "notlhs");
   2082           Value *NotY =
   2083             Builder->CreateNot(Op0I->getOperand(1), "notrhs");
   2084           if (Op0I->getOpcode() == Instruction::And)
   2085             return BinaryOperator::CreateOr(NotX, NotY);
   2086           return BinaryOperator::CreateAnd(NotX, NotY);
   2087         }
   2088 
   2089       } else if (Op0I->getOpcode() == Instruction::AShr) {
   2090         // ~(~X >>s Y) --> (X >>s Y)
   2091         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
   2092           return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
   2093       }
   2094     }
   2095   }
   2096 
   2097 
   2098   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   2099     if (RHS->isOne() && Op0->hasOneUse())
   2100       // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
   2101       if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
   2102         return CmpInst::Create(CI->getOpcode(),
   2103                                CI->getInversePredicate(),
   2104                                CI->getOperand(0), CI->getOperand(1));
   2105 
   2106     // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
   2107     if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2108       if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
   2109         if (CI->hasOneUse() && Op0C->hasOneUse()) {
   2110           Instruction::CastOps Opcode = Op0C->getOpcode();
   2111           if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
   2112               (RHS == ConstantExpr::getCast(Opcode,
   2113                                            ConstantInt::getTrue(I.getContext()),
   2114                                             Op0C->getDestTy()))) {
   2115             CI->setPredicate(CI->getInversePredicate());
   2116             return CastInst::Create(Opcode, CI, Op0C->getType());
   2117           }
   2118         }
   2119       }
   2120     }
   2121 
   2122     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   2123       // ~(c-X) == X-c-1 == X+(-c-1)
   2124       if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
   2125         if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
   2126           Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
   2127           Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
   2128                                       ConstantInt::get(I.getType(), 1));
   2129           return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
   2130         }
   2131 
   2132       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
   2133         if (Op0I->getOpcode() == Instruction::Add) {
   2134           // ~(X-c) --> (-c-1)-X
   2135           if (RHS->isAllOnesValue()) {
   2136             Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
   2137             return BinaryOperator::CreateSub(
   2138                            ConstantExpr::getSub(NegOp0CI,
   2139                                       ConstantInt::get(I.getType(), 1)),
   2140                                       Op0I->getOperand(0));
   2141           } else if (RHS->getValue().isSignBit()) {
   2142             // (X + C) ^ signbit -> (X + C + signbit)
   2143             Constant *C = ConstantInt::get(I.getContext(),
   2144                                            RHS->getValue() + Op0CI->getValue());
   2145             return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
   2146 
   2147           }
   2148         } else if (Op0I->getOpcode() == Instruction::Or) {
   2149           // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
   2150           if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
   2151             Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
   2152             // Anything in both C1 and C2 is known to be zero, remove it from
   2153             // NewRHS.
   2154             Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
   2155             NewRHS = ConstantExpr::getAnd(NewRHS,
   2156                                        ConstantExpr::getNot(CommonBits));
   2157             Worklist.Add(Op0I);
   2158             I.setOperand(0, Op0I->getOperand(0));
   2159             I.setOperand(1, NewRHS);
   2160             return &I;
   2161           }
   2162         }
   2163       }
   2164     }
   2165 
   2166     // Try to fold constant and into select arguments.
   2167     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   2168       if (Instruction *R = FoldOpIntoSelect(I, SI))
   2169         return R;
   2170     if (isa<PHINode>(Op0))
   2171       if (Instruction *NV = FoldOpIntoPhi(I))
   2172         return NV;
   2173   }
   2174 
   2175   BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
   2176   if (Op1I) {
   2177     Value *A, *B;
   2178     if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
   2179       if (A == Op0) {              // B^(B|A) == (A|B)^B
   2180         Op1I->swapOperands();
   2181         I.swapOperands();
   2182         std::swap(Op0, Op1);
   2183       } else if (B == Op0) {       // B^(A|B) == (A|B)^B
   2184         I.swapOperands();     // Simplified below.
   2185         std::swap(Op0, Op1);
   2186       }
   2187     } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
   2188                Op1I->hasOneUse()){
   2189       if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
   2190         Op1I->swapOperands();
   2191         std::swap(A, B);
   2192       }
   2193       if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
   2194         I.swapOperands();     // Simplified below.
   2195         std::swap(Op0, Op1);
   2196       }
   2197     }
   2198   }
   2199 
   2200   BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
   2201   if (Op0I) {
   2202     Value *A, *B;
   2203     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2204         Op0I->hasOneUse()) {
   2205       if (A == Op1)                                  // (B|A)^B == (A|B)^B
   2206         std::swap(A, B);
   2207       if (B == Op1)                                  // (A|B)^B == A & ~B
   2208         return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
   2209     } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2210                Op0I->hasOneUse()){
   2211       if (A == Op1)                                        // (A&B)^A -> (B&A)^A
   2212         std::swap(A, B);
   2213       if (B == Op1 &&                                      // (B&A)^A == ~B & A
   2214           !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
   2215         return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
   2216       }
   2217     }
   2218   }
   2219 
   2220   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
   2221   if (Op0I && Op1I && Op0I->isShift() &&
   2222       Op0I->getOpcode() == Op1I->getOpcode() &&
   2223       Op0I->getOperand(1) == Op1I->getOperand(1) &&
   2224       (Op0I->hasOneUse() || Op1I->hasOneUse())) {
   2225     Value *NewOp =
   2226       Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
   2227                          Op0I->getName());
   2228     return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
   2229                                   Op1I->getOperand(1));
   2230   }
   2231 
   2232   if (Op0I && Op1I) {
   2233     Value *A, *B, *C, *D;
   2234     // (A & B)^(A | B) -> A ^ B
   2235     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2236         match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
   2237       if ((A == C && B == D) || (A == D && B == C))
   2238         return BinaryOperator::CreateXor(A, B);
   2239     }
   2240     // (A | B)^(A & B) -> A ^ B
   2241     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2242         match(Op1I, m_And(m_Value(C), m_Value(D)))) {
   2243       if ((A == C && B == D) || (A == D && B == C))
   2244         return BinaryOperator::CreateXor(A, B);
   2245     }
   2246   }
   2247 
   2248   // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
   2249   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
   2250     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
   2251       if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
   2252         if (LHS->getOperand(0) == RHS->getOperand(1) &&
   2253             LHS->getOperand(1) == RHS->getOperand(0))
   2254           LHS->swapOperands();
   2255         if (LHS->getOperand(0) == RHS->getOperand(0) &&
   2256             LHS->getOperand(1) == RHS->getOperand(1)) {
   2257           Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   2258           unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
   2259           bool isSigned = LHS->isSigned() || RHS->isSigned();
   2260           return ReplaceInstUsesWith(I,
   2261                                getNewICmpValue(isSigned, Code, Op0, Op1,
   2262                                                Builder));
   2263         }
   2264       }
   2265 
   2266   // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
   2267   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2268     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
   2269       if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
   2270         Type *SrcTy = Op0C->getOperand(0)->getType();
   2271         if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
   2272             // Only do this if the casts both really cause code to be generated.
   2273             ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
   2274                                I.getType()) &&
   2275             ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
   2276                                I.getType())) {
   2277           Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
   2278                                             Op1C->getOperand(0), I.getName());
   2279           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   2280         }
   2281       }
   2282   }
   2283 
   2284   return Changed ? &I : 0;
   2285 }
   2286