Home | History | Annotate | Download | only in CodeGen
      1 //==- ScheduleDAGInstrs.h - MachineInstr Scheduling --------------*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the ScheduleDAGInstrs class, which implements
     11 // scheduling for a MachineInstr-based dependency graph.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef SCHEDULEDAGINSTRS_H
     16 #define SCHEDULEDAGINSTRS_H
     17 
     18 #include "llvm/CodeGen/MachineDominators.h"
     19 #include "llvm/CodeGen/MachineLoopInfo.h"
     20 #include "llvm/CodeGen/ScheduleDAG.h"
     21 #include "llvm/Support/Compiler.h"
     22 #include "llvm/Target/TargetRegisterInfo.h"
     23 #include "llvm/ADT/SmallSet.h"
     24 #include "llvm/ADT/SparseSet.h"
     25 #include <map>
     26 
     27 namespace llvm {
     28   class MachineLoopInfo;
     29   class MachineDominatorTree;
     30   class LiveIntervals;
     31   class RegPressureTracker;
     32 
     33   /// LoopDependencies - This class analyzes loop-oriented register
     34   /// dependencies, which are used to guide scheduling decisions.
     35   /// For example, loop induction variable increments should be
     36   /// scheduled as soon as possible after the variable's last use.
     37   ///
     38   class LoopDependencies {
     39     const MachineDominatorTree &MDT;
     40 
     41   public:
     42     typedef std::map<unsigned, std::pair<const MachineOperand *, unsigned> >
     43       LoopDeps;
     44     LoopDeps Deps;
     45 
     46     LoopDependencies(const MachineDominatorTree &mdt) : MDT(mdt) {}
     47 
     48     /// VisitLoop - Clear out any previous state and analyze the given loop.
     49     ///
     50     void VisitLoop(const MachineLoop *Loop) {
     51       assert(Deps.empty() && "stale loop dependencies");
     52 
     53       MachineBasicBlock *Header = Loop->getHeader();
     54       SmallSet<unsigned, 8> LoopLiveIns;
     55       for (MachineBasicBlock::livein_iterator LI = Header->livein_begin(),
     56            LE = Header->livein_end(); LI != LE; ++LI)
     57         LoopLiveIns.insert(*LI);
     58 
     59       const MachineDomTreeNode *Node = MDT.getNode(Header);
     60       const MachineBasicBlock *MBB = Node->getBlock();
     61       assert(Loop->contains(MBB) &&
     62              "Loop does not contain header!");
     63       VisitRegion(Node, MBB, Loop, LoopLiveIns);
     64     }
     65 
     66   private:
     67     void VisitRegion(const MachineDomTreeNode *Node,
     68                      const MachineBasicBlock *MBB,
     69                      const MachineLoop *Loop,
     70                      const SmallSet<unsigned, 8> &LoopLiveIns) {
     71       unsigned Count = 0;
     72       for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
     73            I != E; ++I) {
     74         const MachineInstr *MI = I;
     75         if (MI->isDebugValue())
     76           continue;
     77         for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
     78           const MachineOperand &MO = MI->getOperand(i);
     79           if (!MO.isReg() || !MO.isUse())
     80             continue;
     81           unsigned MOReg = MO.getReg();
     82           if (LoopLiveIns.count(MOReg))
     83             Deps.insert(std::make_pair(MOReg, std::make_pair(&MO, Count)));
     84         }
     85         ++Count; // Not every iteration due to dbg_value above.
     86       }
     87 
     88       const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
     89       for (std::vector<MachineDomTreeNode*>::const_iterator I =
     90            Children.begin(), E = Children.end(); I != E; ++I) {
     91         const MachineDomTreeNode *ChildNode = *I;
     92         MachineBasicBlock *ChildBlock = ChildNode->getBlock();
     93         if (Loop->contains(ChildBlock))
     94           VisitRegion(ChildNode, ChildBlock, Loop, LoopLiveIns);
     95       }
     96     }
     97   };
     98 
     99   /// An individual mapping from virtual register number to SUnit.
    100   struct VReg2SUnit {
    101     unsigned VirtReg;
    102     SUnit *SU;
    103 
    104     VReg2SUnit(unsigned reg, SUnit *su): VirtReg(reg), SU(su) {}
    105 
    106     unsigned getSparseSetIndex() const {
    107       return TargetRegisterInfo::virtReg2Index(VirtReg);
    108     }
    109   };
    110 
    111   /// Record a physical register access.
    112   /// For non data-dependent uses, OpIdx == -1.
    113   struct PhysRegSUOper {
    114     SUnit *SU;
    115     int OpIdx;
    116 
    117     PhysRegSUOper(SUnit *su, int op): SU(su), OpIdx(op) {}
    118   };
    119 
    120   /// Combine a SparseSet with a 1x1 vector to track physical registers.
    121   /// The SparseSet allows iterating over the (few) live registers for quickly
    122   /// comparing against a regmask or clearing the set.
    123   ///
    124   /// Storage for the map is allocated once for the pass. The map can be
    125   /// cleared between scheduling regions without freeing unused entries.
    126   class Reg2SUnitsMap {
    127     SparseSet<unsigned> PhysRegSet;
    128     std::vector<std::vector<PhysRegSUOper> > SUnits;
    129   public:
    130     typedef SparseSet<unsigned>::const_iterator const_iterator;
    131 
    132     // Allow iteration over register numbers (keys) in the map. If needed, we
    133     // can provide an iterator over SUnits (values) as well.
    134     const_iterator reg_begin() const { return PhysRegSet.begin(); }
    135     const_iterator reg_end() const { return PhysRegSet.end(); }
    136 
    137     /// Initialize the map with the number of registers.
    138     /// If the map is already large enough, no allocation occurs.
    139     /// For simplicity we expect the map to be empty().
    140     void setRegLimit(unsigned Limit);
    141 
    142     /// Returns true if the map is empty.
    143     bool empty() const { return PhysRegSet.empty(); }
    144 
    145     /// Clear the map without deallocating storage.
    146     void clear();
    147 
    148     bool contains(unsigned Reg) const { return PhysRegSet.count(Reg); }
    149 
    150     /// If this register is mapped, return its existing SUnits vector.
    151     /// Otherwise map the register and return an empty SUnits vector.
    152     std::vector<PhysRegSUOper> &operator[](unsigned Reg) {
    153       bool New = PhysRegSet.insert(Reg).second;
    154       assert((!New || SUnits[Reg].empty()) && "stale SUnits vector");
    155       (void)New;
    156       return SUnits[Reg];
    157     }
    158 
    159     /// Erase an existing element without freeing memory.
    160     void erase(unsigned Reg) {
    161       PhysRegSet.erase(Reg);
    162       SUnits[Reg].clear();
    163     }
    164   };
    165 
    166   /// Use SparseSet as a SparseMap by relying on the fact that it never
    167   /// compares ValueT's, only unsigned keys. This allows the set to be cleared
    168   /// between scheduling regions in constant time as long as ValueT does not
    169   /// require a destructor.
    170   typedef SparseSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2SUnitMap;
    171 
    172   /// ScheduleDAGInstrs - A ScheduleDAG subclass for scheduling lists of
    173   /// MachineInstrs.
    174   class ScheduleDAGInstrs : public ScheduleDAG {
    175   protected:
    176     const MachineLoopInfo &MLI;
    177     const MachineDominatorTree &MDT;
    178     const MachineFrameInfo *MFI;
    179     const InstrItineraryData *InstrItins;
    180 
    181     /// Live Intervals provides reaching defs in preRA scheduling.
    182     LiveIntervals *LIS;
    183 
    184     /// isPostRA flag indicates vregs cannot be present.
    185     bool IsPostRA;
    186 
    187     /// UnitLatencies (misnamed) flag avoids computing def-use latencies, using
    188     /// the def-side latency only.
    189     bool UnitLatencies;
    190 
    191     /// The standard DAG builder does not normally include terminators as DAG
    192     /// nodes because it does not create the necessary dependencies to prevent
    193     /// reordering. A specialized scheduler can overide
    194     /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate
    195     /// it has taken responsibility for scheduling the terminator correctly.
    196     bool CanHandleTerminators;
    197 
    198     /// State specific to the current scheduling region.
    199     /// ------------------------------------------------
    200 
    201     /// The block in which to insert instructions
    202     MachineBasicBlock *BB;
    203 
    204     /// The beginning of the range to be scheduled.
    205     MachineBasicBlock::iterator RegionBegin;
    206 
    207     /// The end of the range to be scheduled.
    208     MachineBasicBlock::iterator RegionEnd;
    209 
    210     /// The index in BB of RegionEnd.
    211     unsigned EndIndex;
    212 
    213     /// After calling BuildSchedGraph, each machine instruction in the current
    214     /// scheduling region is mapped to an SUnit.
    215     DenseMap<MachineInstr*, SUnit*> MISUnitMap;
    216 
    217     /// State internal to DAG building.
    218     /// -------------------------------
    219 
    220     /// Defs, Uses - Remember where defs and uses of each register are as we
    221     /// iterate upward through the instructions. This is allocated here instead
    222     /// of inside BuildSchedGraph to avoid the need for it to be initialized and
    223     /// destructed for each block.
    224     Reg2SUnitsMap Defs;
    225     Reg2SUnitsMap Uses;
    226 
    227     /// Track the last instructon in this region defining each virtual register.
    228     VReg2SUnitMap VRegDefs;
    229 
    230     /// PendingLoads - Remember where unknown loads are after the most recent
    231     /// unknown store, as we iterate. As with Defs and Uses, this is here
    232     /// to minimize construction/destruction.
    233     std::vector<SUnit *> PendingLoads;
    234 
    235     /// LoopRegs - Track which registers are used for loop-carried dependencies.
    236     ///
    237     LoopDependencies LoopRegs;
    238 
    239     /// DbgValues - Remember instruction that precedes DBG_VALUE.
    240     /// These are generated by buildSchedGraph but persist so they can be
    241     /// referenced when emitting the final schedule.
    242     typedef std::vector<std::pair<MachineInstr *, MachineInstr *> >
    243       DbgValueVector;
    244     DbgValueVector DbgValues;
    245     MachineInstr *FirstDbgValue;
    246 
    247   public:
    248     explicit ScheduleDAGInstrs(MachineFunction &mf,
    249                                const MachineLoopInfo &mli,
    250                                const MachineDominatorTree &mdt,
    251                                bool IsPostRAFlag,
    252                                LiveIntervals *LIS = 0);
    253 
    254     virtual ~ScheduleDAGInstrs() {}
    255 
    256     /// begin - Return an iterator to the top of the current scheduling region.
    257     MachineBasicBlock::iterator begin() const { return RegionBegin; }
    258 
    259     /// end - Return an iterator to the bottom of the current scheduling region.
    260     MachineBasicBlock::iterator end() const { return RegionEnd; }
    261 
    262     /// newSUnit - Creates a new SUnit and return a ptr to it.
    263     SUnit *newSUnit(MachineInstr *MI);
    264 
    265     /// getSUnit - Return an existing SUnit for this MI, or NULL.
    266     SUnit *getSUnit(MachineInstr *MI) const;
    267 
    268     /// startBlock - Prepare to perform scheduling in the given block.
    269     virtual void startBlock(MachineBasicBlock *BB);
    270 
    271     /// finishBlock - Clean up after scheduling in the given block.
    272     virtual void finishBlock();
    273 
    274     /// Initialize the scheduler state for the next scheduling region.
    275     virtual void enterRegion(MachineBasicBlock *bb,
    276                              MachineBasicBlock::iterator begin,
    277                              MachineBasicBlock::iterator end,
    278                              unsigned endcount);
    279 
    280     /// Notify that the scheduler has finished scheduling the current region.
    281     virtual void exitRegion();
    282 
    283     /// buildSchedGraph - Build SUnits from the MachineBasicBlock that we are
    284     /// input.
    285     void buildSchedGraph(AliasAnalysis *AA, RegPressureTracker *RPTracker = 0);
    286 
    287     /// addSchedBarrierDeps - Add dependencies from instructions in the current
    288     /// list of instructions being scheduled to scheduling barrier. We want to
    289     /// make sure instructions which define registers that are either used by
    290     /// the terminator or are live-out are properly scheduled. This is
    291     /// especially important when the definition latency of the return value(s)
    292     /// are too high to be hidden by the branch or when the liveout registers
    293     /// used by instructions in the fallthrough block.
    294     void addSchedBarrierDeps();
    295 
    296     /// computeLatency - Compute node latency.
    297     ///
    298     virtual void computeLatency(SUnit *SU);
    299 
    300     /// schedule - Order nodes according to selected style, filling
    301     /// in the Sequence member.
    302     ///
    303     /// Typically, a scheduling algorithm will implement schedule() without
    304     /// overriding enterRegion() or exitRegion().
    305     virtual void schedule() = 0;
    306 
    307     /// finalizeSchedule - Allow targets to perform final scheduling actions at
    308     /// the level of the whole MachineFunction. By default does nothing.
    309     virtual void finalizeSchedule() {}
    310 
    311     virtual void dumpNode(const SUnit *SU) const;
    312 
    313     /// Return a label for a DAG node that points to an instruction.
    314     virtual std::string getGraphNodeLabel(const SUnit *SU) const;
    315 
    316     /// Return a label for the region of code covered by the DAG.
    317     virtual std::string getDAGName() const;
    318 
    319   protected:
    320     void initSUnits();
    321     void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx);
    322     void addPhysRegDeps(SUnit *SU, unsigned OperIdx);
    323     void addVRegDefDeps(SUnit *SU, unsigned OperIdx);
    324     void addVRegUseDeps(SUnit *SU, unsigned OperIdx);
    325   };
    326 
    327   /// newSUnit - Creates a new SUnit and return a ptr to it.
    328   inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) {
    329 #ifndef NDEBUG
    330     const SUnit *Addr = SUnits.empty() ? 0 : &SUnits[0];
    331 #endif
    332     SUnits.push_back(SUnit(MI, (unsigned)SUnits.size()));
    333     assert((Addr == 0 || Addr == &SUnits[0]) &&
    334            "SUnits std::vector reallocated on the fly!");
    335     SUnits.back().OrigNode = &SUnits.back();
    336     return &SUnits.back();
    337   }
    338 
    339   /// getSUnit - Return an existing SUnit for this MI, or NULL.
    340   inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const {
    341     DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI);
    342     if (I == MISUnitMap.end())
    343       return 0;
    344     return I->second;
    345   }
    346 } // namespace llvm
    347 
    348 #endif
    349