Home | History | Annotate | Download | only in Analysis
      1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines routines for folding instructions into constants.
     11 //
     12 // Also, to supplement the basic VMCore ConstantExpr simplifications,
     13 // this file defines some additional folding routines that can make use of
     14 // TargetData information. These functions cannot go in VMCore due to library
     15 // dependency issues.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/Analysis/ConstantFolding.h"
     20 #include "llvm/Constants.h"
     21 #include "llvm/DerivedTypes.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/GlobalVariable.h"
     24 #include "llvm/Instructions.h"
     25 #include "llvm/Intrinsics.h"
     26 #include "llvm/Operator.h"
     27 #include "llvm/Analysis/ValueTracking.h"
     28 #include "llvm/Target/TargetData.h"
     29 #include "llvm/Target/TargetLibraryInfo.h"
     30 #include "llvm/ADT/SmallVector.h"
     31 #include "llvm/ADT/StringMap.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/GetElementPtrTypeIterator.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Support/FEnv.h"
     36 #include <cerrno>
     37 #include <cmath>
     38 using namespace llvm;
     39 
     40 //===----------------------------------------------------------------------===//
     41 // Constant Folding internal helper functions
     42 //===----------------------------------------------------------------------===//
     43 
     44 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
     45 /// TargetData.  This always returns a non-null constant, but it may be a
     46 /// ConstantExpr if unfoldable.
     47 static Constant *FoldBitCast(Constant *C, Type *DestTy,
     48                              const TargetData &TD) {
     49   // Catch the obvious splat cases.
     50   if (C->isNullValue() && !DestTy->isX86_MMXTy())
     51     return Constant::getNullValue(DestTy);
     52   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
     53     return Constant::getAllOnesValue(DestTy);
     54 
     55   // Handle a vector->integer cast.
     56   if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
     57     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
     58     if (CDV == 0)
     59       return ConstantExpr::getBitCast(C, DestTy);
     60 
     61     unsigned NumSrcElts = CDV->getType()->getNumElements();
     62 
     63     Type *SrcEltTy = CDV->getType()->getElementType();
     64 
     65     // If the vector is a vector of floating point, convert it to vector of int
     66     // to simplify things.
     67     if (SrcEltTy->isFloatingPointTy()) {
     68       unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
     69       Type *SrcIVTy =
     70         VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
     71       // Ask VMCore to do the conversion now that #elts line up.
     72       C = ConstantExpr::getBitCast(C, SrcIVTy);
     73       CDV = cast<ConstantDataVector>(C);
     74     }
     75 
     76     // Now that we know that the input value is a vector of integers, just shift
     77     // and insert them into our result.
     78     unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
     79     APInt Result(IT->getBitWidth(), 0);
     80     for (unsigned i = 0; i != NumSrcElts; ++i) {
     81       Result <<= BitShift;
     82       if (TD.isLittleEndian())
     83         Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
     84       else
     85         Result |= CDV->getElementAsInteger(i);
     86     }
     87 
     88     return ConstantInt::get(IT, Result);
     89   }
     90 
     91   // The code below only handles casts to vectors currently.
     92   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
     93   if (DestVTy == 0)
     94     return ConstantExpr::getBitCast(C, DestTy);
     95 
     96   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
     97   // vector so the code below can handle it uniformly.
     98   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
     99     Constant *Ops = C; // don't take the address of C!
    100     return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
    101   }
    102 
    103   // If this is a bitcast from constant vector -> vector, fold it.
    104   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
    105     return ConstantExpr::getBitCast(C, DestTy);
    106 
    107   // If the element types match, VMCore can fold it.
    108   unsigned NumDstElt = DestVTy->getNumElements();
    109   unsigned NumSrcElt = C->getType()->getVectorNumElements();
    110   if (NumDstElt == NumSrcElt)
    111     return ConstantExpr::getBitCast(C, DestTy);
    112 
    113   Type *SrcEltTy = C->getType()->getVectorElementType();
    114   Type *DstEltTy = DestVTy->getElementType();
    115 
    116   // Otherwise, we're changing the number of elements in a vector, which
    117   // requires endianness information to do the right thing.  For example,
    118   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    119   // folds to (little endian):
    120   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
    121   // and to (big endian):
    122   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
    123 
    124   // First thing is first.  We only want to think about integer here, so if
    125   // we have something in FP form, recast it as integer.
    126   if (DstEltTy->isFloatingPointTy()) {
    127     // Fold to an vector of integers with same size as our FP type.
    128     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
    129     Type *DestIVTy =
    130       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
    131     // Recursively handle this integer conversion, if possible.
    132     C = FoldBitCast(C, DestIVTy, TD);
    133 
    134     // Finally, VMCore can handle this now that #elts line up.
    135     return ConstantExpr::getBitCast(C, DestTy);
    136   }
    137 
    138   // Okay, we know the destination is integer, if the input is FP, convert
    139   // it to integer first.
    140   if (SrcEltTy->isFloatingPointTy()) {
    141     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
    142     Type *SrcIVTy =
    143       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
    144     // Ask VMCore to do the conversion now that #elts line up.
    145     C = ConstantExpr::getBitCast(C, SrcIVTy);
    146     // If VMCore wasn't able to fold it, bail out.
    147     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
    148         !isa<ConstantDataVector>(C))
    149       return C;
    150   }
    151 
    152   // Now we know that the input and output vectors are both integer vectors
    153   // of the same size, and that their #elements is not the same.  Do the
    154   // conversion here, which depends on whether the input or output has
    155   // more elements.
    156   bool isLittleEndian = TD.isLittleEndian();
    157 
    158   SmallVector<Constant*, 32> Result;
    159   if (NumDstElt < NumSrcElt) {
    160     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
    161     Constant *Zero = Constant::getNullValue(DstEltTy);
    162     unsigned Ratio = NumSrcElt/NumDstElt;
    163     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
    164     unsigned SrcElt = 0;
    165     for (unsigned i = 0; i != NumDstElt; ++i) {
    166       // Build each element of the result.
    167       Constant *Elt = Zero;
    168       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
    169       for (unsigned j = 0; j != Ratio; ++j) {
    170         Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
    171         if (!Src)  // Reject constantexpr elements.
    172           return ConstantExpr::getBitCast(C, DestTy);
    173 
    174         // Zero extend the element to the right size.
    175         Src = ConstantExpr::getZExt(Src, Elt->getType());
    176 
    177         // Shift it to the right place, depending on endianness.
    178         Src = ConstantExpr::getShl(Src,
    179                                    ConstantInt::get(Src->getType(), ShiftAmt));
    180         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
    181 
    182         // Mix it in.
    183         Elt = ConstantExpr::getOr(Elt, Src);
    184       }
    185       Result.push_back(Elt);
    186     }
    187     return ConstantVector::get(Result);
    188   }
    189 
    190   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    191   unsigned Ratio = NumDstElt/NumSrcElt;
    192   unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
    193 
    194   // Loop over each source value, expanding into multiple results.
    195   for (unsigned i = 0; i != NumSrcElt; ++i) {
    196     Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
    197     if (!Src)  // Reject constantexpr elements.
    198       return ConstantExpr::getBitCast(C, DestTy);
    199 
    200     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
    201     for (unsigned j = 0; j != Ratio; ++j) {
    202       // Shift the piece of the value into the right place, depending on
    203       // endianness.
    204       Constant *Elt = ConstantExpr::getLShr(Src,
    205                                   ConstantInt::get(Src->getType(), ShiftAmt));
    206       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
    207 
    208       // Truncate and remember this piece.
    209       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
    210     }
    211   }
    212 
    213   return ConstantVector::get(Result);
    214 }
    215 
    216 
    217 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
    218 /// from a global, return the global and the constant.  Because of
    219 /// constantexprs, this function is recursive.
    220 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
    221                                        int64_t &Offset, const TargetData &TD) {
    222   // Trivial case, constant is the global.
    223   if ((GV = dyn_cast<GlobalValue>(C))) {
    224     Offset = 0;
    225     return true;
    226   }
    227 
    228   // Otherwise, if this isn't a constant expr, bail out.
    229   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    230   if (!CE) return false;
    231 
    232   // Look through ptr->int and ptr->ptr casts.
    233   if (CE->getOpcode() == Instruction::PtrToInt ||
    234       CE->getOpcode() == Instruction::BitCast)
    235     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
    236 
    237   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
    238   if (CE->getOpcode() == Instruction::GetElementPtr) {
    239     // Cannot compute this if the element type of the pointer is missing size
    240     // info.
    241     if (!cast<PointerType>(CE->getOperand(0)->getType())
    242                  ->getElementType()->isSized())
    243       return false;
    244 
    245     // If the base isn't a global+constant, we aren't either.
    246     if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
    247       return false;
    248 
    249     // Otherwise, add any offset that our operands provide.
    250     gep_type_iterator GTI = gep_type_begin(CE);
    251     for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
    252          i != e; ++i, ++GTI) {
    253       ConstantInt *CI = dyn_cast<ConstantInt>(*i);
    254       if (!CI) return false;  // Index isn't a simple constant?
    255       if (CI->isZero()) continue;  // Not adding anything.
    256 
    257       if (StructType *ST = dyn_cast<StructType>(*GTI)) {
    258         // N = N + Offset
    259         Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
    260       } else {
    261         SequentialType *SQT = cast<SequentialType>(*GTI);
    262         Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
    263       }
    264     }
    265     return true;
    266   }
    267 
    268   return false;
    269 }
    270 
    271 /// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
    272 /// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
    273 /// pointer to copy results into and BytesLeft is the number of bytes left in
    274 /// the CurPtr buffer.  TD is the target data.
    275 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
    276                                unsigned char *CurPtr, unsigned BytesLeft,
    277                                const TargetData &TD) {
    278   assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
    279          "Out of range access");
    280 
    281   // If this element is zero or undefined, we can just return since *CurPtr is
    282   // zero initialized.
    283   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
    284     return true;
    285 
    286   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    287     if (CI->getBitWidth() > 64 ||
    288         (CI->getBitWidth() & 7) != 0)
    289       return false;
    290 
    291     uint64_t Val = CI->getZExtValue();
    292     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
    293 
    294     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
    295       CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
    296       ++ByteOffset;
    297     }
    298     return true;
    299   }
    300 
    301   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    302     if (CFP->getType()->isDoubleTy()) {
    303       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
    304       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
    305     }
    306     if (CFP->getType()->isFloatTy()){
    307       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
    308       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
    309     }
    310     return false;
    311   }
    312 
    313   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
    314     const StructLayout *SL = TD.getStructLayout(CS->getType());
    315     unsigned Index = SL->getElementContainingOffset(ByteOffset);
    316     uint64_t CurEltOffset = SL->getElementOffset(Index);
    317     ByteOffset -= CurEltOffset;
    318 
    319     while (1) {
    320       // If the element access is to the element itself and not to tail padding,
    321       // read the bytes from the element.
    322       uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
    323 
    324       if (ByteOffset < EltSize &&
    325           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
    326                               BytesLeft, TD))
    327         return false;
    328 
    329       ++Index;
    330 
    331       // Check to see if we read from the last struct element, if so we're done.
    332       if (Index == CS->getType()->getNumElements())
    333         return true;
    334 
    335       // If we read all of the bytes we needed from this element we're done.
    336       uint64_t NextEltOffset = SL->getElementOffset(Index);
    337 
    338       if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
    339         return true;
    340 
    341       // Move to the next element of the struct.
    342       CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
    343       BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
    344       ByteOffset = 0;
    345       CurEltOffset = NextEltOffset;
    346     }
    347     // not reached.
    348   }
    349 
    350   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
    351       isa<ConstantDataSequential>(C)) {
    352     Type *EltTy = cast<SequentialType>(C->getType())->getElementType();
    353     uint64_t EltSize = TD.getTypeAllocSize(EltTy);
    354     uint64_t Index = ByteOffset / EltSize;
    355     uint64_t Offset = ByteOffset - Index * EltSize;
    356     uint64_t NumElts;
    357     if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
    358       NumElts = AT->getNumElements();
    359     else
    360       NumElts = cast<VectorType>(C->getType())->getNumElements();
    361 
    362     for (; Index != NumElts; ++Index) {
    363       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
    364                               BytesLeft, TD))
    365         return false;
    366 
    367       uint64_t BytesWritten = EltSize - Offset;
    368       assert(BytesWritten <= EltSize && "Not indexing into this element?");
    369       if (BytesWritten >= BytesLeft)
    370         return true;
    371 
    372       Offset = 0;
    373       BytesLeft -= BytesWritten;
    374       CurPtr += BytesWritten;
    375     }
    376     return true;
    377   }
    378 
    379   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    380     if (CE->getOpcode() == Instruction::IntToPtr &&
    381         CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
    382       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
    383                                 BytesLeft, TD);
    384   }
    385 
    386   // Otherwise, unknown initializer type.
    387   return false;
    388 }
    389 
    390 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
    391                                                  const TargetData &TD) {
    392   Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
    393   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
    394 
    395   // If this isn't an integer load we can't fold it directly.
    396   if (!IntType) {
    397     // If this is a float/double load, we can try folding it as an int32/64 load
    398     // and then bitcast the result.  This can be useful for union cases.  Note
    399     // that address spaces don't matter here since we're not going to result in
    400     // an actual new load.
    401     Type *MapTy;
    402     if (LoadTy->isFloatTy())
    403       MapTy = Type::getInt32PtrTy(C->getContext());
    404     else if (LoadTy->isDoubleTy())
    405       MapTy = Type::getInt64PtrTy(C->getContext());
    406     else if (LoadTy->isVectorTy()) {
    407       MapTy = IntegerType::get(C->getContext(),
    408                                TD.getTypeAllocSizeInBits(LoadTy));
    409       MapTy = PointerType::getUnqual(MapTy);
    410     } else
    411       return 0;
    412 
    413     C = FoldBitCast(C, MapTy, TD);
    414     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
    415       return FoldBitCast(Res, LoadTy, TD);
    416     return 0;
    417   }
    418 
    419   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
    420   if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
    421 
    422   GlobalValue *GVal;
    423   int64_t Offset;
    424   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
    425     return 0;
    426 
    427   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
    428   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
    429       !GV->getInitializer()->getType()->isSized())
    430     return 0;
    431 
    432   // If we're loading off the beginning of the global, some bytes may be valid,
    433   // but we don't try to handle this.
    434   if (Offset < 0) return 0;
    435 
    436   // If we're not accessing anything in this constant, the result is undefined.
    437   if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
    438     return UndefValue::get(IntType);
    439 
    440   unsigned char RawBytes[32] = {0};
    441   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
    442                           BytesLoaded, TD))
    443     return 0;
    444 
    445   APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
    446   for (unsigned i = 1; i != BytesLoaded; ++i) {
    447     ResultVal <<= 8;
    448     ResultVal |= RawBytes[BytesLoaded-1-i];
    449   }
    450 
    451   return ConstantInt::get(IntType->getContext(), ResultVal);
    452 }
    453 
    454 /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
    455 /// produce if it is constant and determinable.  If this is not determinable,
    456 /// return null.
    457 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
    458                                              const TargetData *TD) {
    459   // First, try the easy cases:
    460   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
    461     if (GV->isConstant() && GV->hasDefinitiveInitializer())
    462       return GV->getInitializer();
    463 
    464   // If the loaded value isn't a constant expr, we can't handle it.
    465   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    466   if (!CE) return 0;
    467 
    468   if (CE->getOpcode() == Instruction::GetElementPtr) {
    469     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
    470       if (GV->isConstant() && GV->hasDefinitiveInitializer())
    471         if (Constant *V =
    472              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
    473           return V;
    474   }
    475 
    476   // Instead of loading constant c string, use corresponding integer value
    477   // directly if string length is small enough.
    478   StringRef Str;
    479   if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
    480     unsigned StrLen = Str.size();
    481     Type *Ty = cast<PointerType>(CE->getType())->getElementType();
    482     unsigned NumBits = Ty->getPrimitiveSizeInBits();
    483     // Replace load with immediate integer if the result is an integer or fp
    484     // value.
    485     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
    486         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
    487       APInt StrVal(NumBits, 0);
    488       APInt SingleChar(NumBits, 0);
    489       if (TD->isLittleEndian()) {
    490         for (signed i = StrLen-1; i >= 0; i--) {
    491           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
    492           StrVal = (StrVal << 8) | SingleChar;
    493         }
    494       } else {
    495         for (unsigned i = 0; i < StrLen; i++) {
    496           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
    497           StrVal = (StrVal << 8) | SingleChar;
    498         }
    499         // Append NULL at the end.
    500         SingleChar = 0;
    501         StrVal = (StrVal << 8) | SingleChar;
    502       }
    503 
    504       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
    505       if (Ty->isFloatingPointTy())
    506         Res = ConstantExpr::getBitCast(Res, Ty);
    507       return Res;
    508     }
    509   }
    510 
    511   // If this load comes from anywhere in a constant global, and if the global
    512   // is all undef or zero, we know what it loads.
    513   if (GlobalVariable *GV =
    514         dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
    515     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
    516       Type *ResTy = cast<PointerType>(C->getType())->getElementType();
    517       if (GV->getInitializer()->isNullValue())
    518         return Constant::getNullValue(ResTy);
    519       if (isa<UndefValue>(GV->getInitializer()))
    520         return UndefValue::get(ResTy);
    521     }
    522   }
    523 
    524   // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
    525   // currently don't do any of this for big endian systems.  It can be
    526   // generalized in the future if someone is interested.
    527   if (TD && TD->isLittleEndian())
    528     return FoldReinterpretLoadFromConstPtr(CE, *TD);
    529   return 0;
    530 }
    531 
    532 static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
    533   if (LI->isVolatile()) return 0;
    534 
    535   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
    536     return ConstantFoldLoadFromConstPtr(C, TD);
    537 
    538   return 0;
    539 }
    540 
    541 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
    542 /// Attempt to symbolically evaluate the result of a binary operator merging
    543 /// these together.  If target data info is available, it is provided as TD,
    544 /// otherwise TD is null.
    545 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
    546                                            Constant *Op1, const TargetData *TD){
    547   // SROA
    548 
    549   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
    550   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
    551   // bits.
    552 
    553 
    554   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
    555   // constant.  This happens frequently when iterating over a global array.
    556   if (Opc == Instruction::Sub && TD) {
    557     GlobalValue *GV1, *GV2;
    558     int64_t Offs1, Offs2;
    559 
    560     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
    561       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
    562           GV1 == GV2) {
    563         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
    564         return ConstantInt::get(Op0->getType(), Offs1-Offs2);
    565       }
    566   }
    567 
    568   return 0;
    569 }
    570 
    571 /// CastGEPIndices - If array indices are not pointer-sized integers,
    572 /// explicitly cast them so that they aren't implicitly casted by the
    573 /// getelementptr.
    574 static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
    575                                 Type *ResultTy, const TargetData *TD,
    576                                 const TargetLibraryInfo *TLI) {
    577   if (!TD) return 0;
    578   Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
    579 
    580   bool Any = false;
    581   SmallVector<Constant*, 32> NewIdxs;
    582   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
    583     if ((i == 1 ||
    584          !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
    585                                                         Ops.slice(1, i-1)))) &&
    586         Ops[i]->getType() != IntPtrTy) {
    587       Any = true;
    588       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
    589                                                                       true,
    590                                                                       IntPtrTy,
    591                                                                       true),
    592                                               Ops[i], IntPtrTy));
    593     } else
    594       NewIdxs.push_back(Ops[i]);
    595   }
    596   if (!Any) return 0;
    597 
    598   Constant *C =
    599     ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
    600   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    601     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
    602       C = Folded;
    603   return C;
    604 }
    605 
    606 /// Strip the pointer casts, but preserve the address space information.
    607 static Constant* StripPtrCastKeepAS(Constant* Ptr) {
    608   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
    609   PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
    610   Ptr = cast<Constant>(Ptr->stripPointerCasts());
    611   PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
    612 
    613   // Preserve the address space number of the pointer.
    614   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
    615     NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
    616       OldPtrTy->getAddressSpace());
    617     Ptr = ConstantExpr::getBitCast(Ptr, NewPtrTy);
    618   }
    619   return Ptr;
    620 }
    621 
    622 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
    623 /// constant expression, do so.
    624 static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
    625                                          Type *ResultTy, const TargetData *TD,
    626                                          const TargetLibraryInfo *TLI) {
    627   Constant *Ptr = Ops[0];
    628   if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
    629       !Ptr->getType()->isPointerTy())
    630     return 0;
    631 
    632   Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
    633 
    634   // If this is a constant expr gep that is effectively computing an
    635   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
    636   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
    637     if (!isa<ConstantInt>(Ops[i])) {
    638 
    639       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
    640       // "inttoptr (sub (ptrtoint Ptr), V)"
    641       if (Ops.size() == 2 &&
    642           cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
    643         ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
    644         assert((CE == 0 || CE->getType() == IntPtrTy) &&
    645                "CastGEPIndices didn't canonicalize index types!");
    646         if (CE && CE->getOpcode() == Instruction::Sub &&
    647             CE->getOperand(0)->isNullValue()) {
    648           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
    649           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
    650           Res = ConstantExpr::getIntToPtr(Res, ResultTy);
    651           if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
    652             Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
    653           return Res;
    654         }
    655       }
    656       return 0;
    657     }
    658 
    659   unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
    660   APInt Offset =
    661     APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
    662                                          makeArrayRef((Value *const*)
    663                                                         Ops.data() + 1,
    664                                                       Ops.size() - 1)));
    665   Ptr = StripPtrCastKeepAS(Ptr);
    666 
    667   // If this is a GEP of a GEP, fold it all into a single GEP.
    668   while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
    669     SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
    670 
    671     // Do not try the incorporate the sub-GEP if some index is not a number.
    672     bool AllConstantInt = true;
    673     for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
    674       if (!isa<ConstantInt>(NestedOps[i])) {
    675         AllConstantInt = false;
    676         break;
    677       }
    678     if (!AllConstantInt)
    679       break;
    680 
    681     Ptr = cast<Constant>(GEP->getOperand(0));
    682     Offset += APInt(BitWidth,
    683                     TD->getIndexedOffset(Ptr->getType(), NestedOps));
    684     Ptr = StripPtrCastKeepAS(Ptr);
    685   }
    686 
    687   // If the base value for this address is a literal integer value, fold the
    688   // getelementptr to the resulting integer value casted to the pointer type.
    689   APInt BasePtr(BitWidth, 0);
    690   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
    691     if (CE->getOpcode() == Instruction::IntToPtr)
    692       if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
    693         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
    694   if (Ptr->isNullValue() || BasePtr != 0) {
    695     Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
    696     return ConstantExpr::getIntToPtr(C, ResultTy);
    697   }
    698 
    699   // Otherwise form a regular getelementptr. Recompute the indices so that
    700   // we eliminate over-indexing of the notional static type array bounds.
    701   // This makes it easy to determine if the getelementptr is "inbounds".
    702   // Also, this helps GlobalOpt do SROA on GlobalVariables.
    703   Type *Ty = Ptr->getType();
    704   assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
    705   SmallVector<Constant*, 32> NewIdxs;
    706   do {
    707     if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
    708       if (ATy->isPointerTy()) {
    709         // The only pointer indexing we'll do is on the first index of the GEP.
    710         if (!NewIdxs.empty())
    711           break;
    712 
    713         // Only handle pointers to sized types, not pointers to functions.
    714         if (!ATy->getElementType()->isSized())
    715           return 0;
    716       }
    717 
    718       // Determine which element of the array the offset points into.
    719       APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
    720       IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
    721       if (ElemSize == 0)
    722         // The element size is 0. This may be [0 x Ty]*, so just use a zero
    723         // index for this level and proceed to the next level to see if it can
    724         // accommodate the offset.
    725         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
    726       else {
    727         // The element size is non-zero divide the offset by the element
    728         // size (rounding down), to compute the index at this level.
    729         APInt NewIdx = Offset.udiv(ElemSize);
    730         Offset -= NewIdx * ElemSize;
    731         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
    732       }
    733       Ty = ATy->getElementType();
    734     } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
    735       // If we end up with an offset that isn't valid for this struct type, we
    736       // can't re-form this GEP in a regular form, so bail out. The pointer
    737       // operand likely went through casts that are necessary to make the GEP
    738       // sensible.
    739       const StructLayout &SL = *TD->getStructLayout(STy);
    740       if (Offset.uge(SL.getSizeInBytes()))
    741         break;
    742 
    743       // Determine which field of the struct the offset points into. The
    744       // getZExtValue is fine as we've already ensured that the offset is
    745       // within the range representable by the StructLayout API.
    746       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
    747       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
    748                                          ElIdx));
    749       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
    750       Ty = STy->getTypeAtIndex(ElIdx);
    751     } else {
    752       // We've reached some non-indexable type.
    753       break;
    754     }
    755   } while (Ty != cast<PointerType>(ResultTy)->getElementType());
    756 
    757   // If we haven't used up the entire offset by descending the static
    758   // type, then the offset is pointing into the middle of an indivisible
    759   // member, so we can't simplify it.
    760   if (Offset != 0)
    761     return 0;
    762 
    763   // Create a GEP.
    764   Constant *C =
    765     ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
    766   assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
    767          "Computed GetElementPtr has unexpected type!");
    768 
    769   // If we ended up indexing a member with a type that doesn't match
    770   // the type of what the original indices indexed, add a cast.
    771   if (Ty != cast<PointerType>(ResultTy)->getElementType())
    772     C = FoldBitCast(C, ResultTy, *TD);
    773 
    774   return C;
    775 }
    776 
    777 
    778 
    779 //===----------------------------------------------------------------------===//
    780 // Constant Folding public APIs
    781 //===----------------------------------------------------------------------===//
    782 
    783 /// ConstantFoldInstruction - Try to constant fold the specified instruction.
    784 /// If successful, the constant result is returned, if not, null is returned.
    785 /// Note that this fails if not all of the operands are constant.  Otherwise,
    786 /// this function can only fail when attempting to fold instructions like loads
    787 /// and stores, which have no constant expression form.
    788 Constant *llvm::ConstantFoldInstruction(Instruction *I,
    789                                         const TargetData *TD,
    790                                         const TargetLibraryInfo *TLI) {
    791   // Handle PHI nodes quickly here...
    792   if (PHINode *PN = dyn_cast<PHINode>(I)) {
    793     Constant *CommonValue = 0;
    794 
    795     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    796       Value *Incoming = PN->getIncomingValue(i);
    797       // If the incoming value is undef then skip it.  Note that while we could
    798       // skip the value if it is equal to the phi node itself we choose not to
    799       // because that would break the rule that constant folding only applies if
    800       // all operands are constants.
    801       if (isa<UndefValue>(Incoming))
    802         continue;
    803       // If the incoming value is not a constant, then give up.
    804       Constant *C = dyn_cast<Constant>(Incoming);
    805       if (!C)
    806         return 0;
    807       // Fold the PHI's operands.
    808       if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
    809         C = ConstantFoldConstantExpression(NewC, TD, TLI);
    810       // If the incoming value is a different constant to
    811       // the one we saw previously, then give up.
    812       if (CommonValue && C != CommonValue)
    813         return 0;
    814       CommonValue = C;
    815     }
    816 
    817 
    818     // If we reach here, all incoming values are the same constant or undef.
    819     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
    820   }
    821 
    822   // Scan the operand list, checking to see if they are all constants, if so,
    823   // hand off to ConstantFoldInstOperands.
    824   SmallVector<Constant*, 8> Ops;
    825   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
    826     Constant *Op = dyn_cast<Constant>(*i);
    827     if (!Op)
    828       return 0;  // All operands not constant!
    829 
    830     // Fold the Instruction's operands.
    831     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
    832       Op = ConstantFoldConstantExpression(NewCE, TD, TLI);
    833 
    834     Ops.push_back(Op);
    835   }
    836 
    837   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
    838     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
    839                                            TD, TLI);
    840 
    841   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    842     return ConstantFoldLoadInst(LI, TD);
    843 
    844   if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
    845     return ConstantExpr::getInsertValue(
    846                                 cast<Constant>(IVI->getAggregateOperand()),
    847                                 cast<Constant>(IVI->getInsertedValueOperand()),
    848                                 IVI->getIndices());
    849 
    850   if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
    851     return ConstantExpr::getExtractValue(
    852                                     cast<Constant>(EVI->getAggregateOperand()),
    853                                     EVI->getIndices());
    854 
    855   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
    856 }
    857 
    858 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
    859 /// using the specified TargetData.  If successful, the constant result is
    860 /// result is returned, if not, null is returned.
    861 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
    862                                                const TargetData *TD,
    863                                                const TargetLibraryInfo *TLI) {
    864   SmallVector<Constant*, 8> Ops;
    865   for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
    866        i != e; ++i) {
    867     Constant *NewC = cast<Constant>(*i);
    868     // Recursively fold the ConstantExpr's operands.
    869     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
    870       NewC = ConstantFoldConstantExpression(NewCE, TD, TLI);
    871     Ops.push_back(NewC);
    872   }
    873 
    874   if (CE->isCompare())
    875     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
    876                                            TD, TLI);
    877   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
    878 }
    879 
    880 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
    881 /// specified opcode and operands.  If successful, the constant result is
    882 /// returned, if not, null is returned.  Note that this function can fail when
    883 /// attempting to fold instructions like loads and stores, which have no
    884 /// constant expression form.
    885 ///
    886 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
    887 /// information, due to only being passed an opcode and operands. Constant
    888 /// folding using this function strips this information.
    889 ///
    890 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
    891                                          ArrayRef<Constant *> Ops,
    892                                          const TargetData *TD,
    893                                          const TargetLibraryInfo *TLI) {
    894   // Handle easy binops first.
    895   if (Instruction::isBinaryOp(Opcode)) {
    896     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
    897       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
    898         return C;
    899 
    900     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
    901   }
    902 
    903   switch (Opcode) {
    904   default: return 0;
    905   case Instruction::ICmp:
    906   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
    907   case Instruction::Call:
    908     if (Function *F = dyn_cast<Function>(Ops.back()))
    909       if (canConstantFoldCallTo(F))
    910         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
    911     return 0;
    912   case Instruction::PtrToInt:
    913     // If the input is a inttoptr, eliminate the pair.  This requires knowing
    914     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
    915     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
    916       if (TD && CE->getOpcode() == Instruction::IntToPtr) {
    917         Constant *Input = CE->getOperand(0);
    918         unsigned InWidth = Input->getType()->getScalarSizeInBits();
    919         if (TD->getPointerSizeInBits() < InWidth) {
    920           Constant *Mask =
    921             ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
    922                                                   TD->getPointerSizeInBits()));
    923           Input = ConstantExpr::getAnd(Input, Mask);
    924         }
    925         // Do a zext or trunc to get to the dest size.
    926         return ConstantExpr::getIntegerCast(Input, DestTy, false);
    927       }
    928     }
    929     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
    930   case Instruction::IntToPtr:
    931     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
    932     // the int size is >= the ptr size.  This requires knowing the width of a
    933     // pointer, so it can't be done in ConstantExpr::getCast.
    934     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
    935       if (TD &&
    936           TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
    937           CE->getOpcode() == Instruction::PtrToInt)
    938         return FoldBitCast(CE->getOperand(0), DestTy, *TD);
    939 
    940     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
    941   case Instruction::Trunc:
    942   case Instruction::ZExt:
    943   case Instruction::SExt:
    944   case Instruction::FPTrunc:
    945   case Instruction::FPExt:
    946   case Instruction::UIToFP:
    947   case Instruction::SIToFP:
    948   case Instruction::FPToUI:
    949   case Instruction::FPToSI:
    950       return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
    951   case Instruction::BitCast:
    952     if (TD)
    953       return FoldBitCast(Ops[0], DestTy, *TD);
    954     return ConstantExpr::getBitCast(Ops[0], DestTy);
    955   case Instruction::Select:
    956     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
    957   case Instruction::ExtractElement:
    958     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
    959   case Instruction::InsertElement:
    960     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
    961   case Instruction::ShuffleVector:
    962     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
    963   case Instruction::GetElementPtr:
    964     if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
    965       return C;
    966     if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
    967       return C;
    968 
    969     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
    970   }
    971 }
    972 
    973 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
    974 /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
    975 /// returns a constant expression of the specified operands.
    976 ///
    977 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
    978                                                 Constant *Ops0, Constant *Ops1,
    979                                                 const TargetData *TD,
    980                                                 const TargetLibraryInfo *TLI) {
    981   // fold: icmp (inttoptr x), null         -> icmp x, 0
    982   // fold: icmp (ptrtoint x), 0            -> icmp x, null
    983   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
    984   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
    985   //
    986   // ConstantExpr::getCompare cannot do this, because it doesn't have TD
    987   // around to know if bit truncation is happening.
    988   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
    989     if (TD && Ops1->isNullValue()) {
    990       Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
    991       if (CE0->getOpcode() == Instruction::IntToPtr) {
    992         // Convert the integer value to the right size to ensure we get the
    993         // proper extension or truncation.
    994         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
    995                                                    IntPtrTy, false);
    996         Constant *Null = Constant::getNullValue(C->getType());
    997         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
    998       }
    999 
   1000       // Only do this transformation if the int is intptrty in size, otherwise
   1001       // there is a truncation or extension that we aren't modeling.
   1002       if (CE0->getOpcode() == Instruction::PtrToInt &&
   1003           CE0->getType() == IntPtrTy) {
   1004         Constant *C = CE0->getOperand(0);
   1005         Constant *Null = Constant::getNullValue(C->getType());
   1006         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
   1007       }
   1008     }
   1009 
   1010     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
   1011       if (TD && CE0->getOpcode() == CE1->getOpcode()) {
   1012         Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
   1013 
   1014         if (CE0->getOpcode() == Instruction::IntToPtr) {
   1015           // Convert the integer value to the right size to ensure we get the
   1016           // proper extension or truncation.
   1017           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
   1018                                                       IntPtrTy, false);
   1019           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
   1020                                                       IntPtrTy, false);
   1021           return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
   1022         }
   1023 
   1024         // Only do this transformation if the int is intptrty in size, otherwise
   1025         // there is a truncation or extension that we aren't modeling.
   1026         if ((CE0->getOpcode() == Instruction::PtrToInt &&
   1027              CE0->getType() == IntPtrTy &&
   1028              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
   1029           return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
   1030                                                  CE1->getOperand(0), TD, TLI);
   1031       }
   1032     }
   1033 
   1034     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
   1035     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
   1036     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
   1037         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
   1038       Constant *LHS =
   1039         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
   1040                                         TD, TLI);
   1041       Constant *RHS =
   1042         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
   1043                                         TD, TLI);
   1044       unsigned OpC =
   1045         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
   1046       Constant *Ops[] = { LHS, RHS };
   1047       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
   1048     }
   1049   }
   1050 
   1051   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
   1052 }
   1053 
   1054 
   1055 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
   1056 /// getelementptr constantexpr, return the constant value being addressed by the
   1057 /// constant expression, or null if something is funny and we can't decide.
   1058 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
   1059                                                        ConstantExpr *CE) {
   1060   if (!CE->getOperand(1)->isNullValue())
   1061     return 0;  // Do not allow stepping over the value!
   1062 
   1063   // Loop over all of the operands, tracking down which value we are
   1064   // addressing.
   1065   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
   1066     C = C->getAggregateElement(CE->getOperand(i));
   1067     if (C == 0) return 0;
   1068   }
   1069   return C;
   1070 }
   1071 
   1072 /// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
   1073 /// indices (with an *implied* zero pointer index that is not in the list),
   1074 /// return the constant value being addressed by a virtual load, or null if
   1075 /// something is funny and we can't decide.
   1076 Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
   1077                                                   ArrayRef<Constant*> Indices) {
   1078   // Loop over all of the operands, tracking down which value we are
   1079   // addressing.
   1080   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
   1081     C = C->getAggregateElement(Indices[i]);
   1082     if (C == 0) return 0;
   1083   }
   1084   return C;
   1085 }
   1086 
   1087 
   1088 //===----------------------------------------------------------------------===//
   1089 //  Constant Folding for Calls
   1090 //
   1091 
   1092 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
   1093 /// the specified function.
   1094 bool
   1095 llvm::canConstantFoldCallTo(const Function *F) {
   1096   switch (F->getIntrinsicID()) {
   1097   case Intrinsic::sqrt:
   1098   case Intrinsic::pow:
   1099   case Intrinsic::powi:
   1100   case Intrinsic::bswap:
   1101   case Intrinsic::ctpop:
   1102   case Intrinsic::ctlz:
   1103   case Intrinsic::cttz:
   1104   case Intrinsic::sadd_with_overflow:
   1105   case Intrinsic::uadd_with_overflow:
   1106   case Intrinsic::ssub_with_overflow:
   1107   case Intrinsic::usub_with_overflow:
   1108   case Intrinsic::smul_with_overflow:
   1109   case Intrinsic::umul_with_overflow:
   1110   case Intrinsic::convert_from_fp16:
   1111   case Intrinsic::convert_to_fp16:
   1112   case Intrinsic::x86_sse_cvtss2si:
   1113   case Intrinsic::x86_sse_cvtss2si64:
   1114   case Intrinsic::x86_sse_cvttss2si:
   1115   case Intrinsic::x86_sse_cvttss2si64:
   1116   case Intrinsic::x86_sse2_cvtsd2si:
   1117   case Intrinsic::x86_sse2_cvtsd2si64:
   1118   case Intrinsic::x86_sse2_cvttsd2si:
   1119   case Intrinsic::x86_sse2_cvttsd2si64:
   1120     return true;
   1121   default:
   1122     return false;
   1123   case 0: break;
   1124   }
   1125 
   1126   if (!F->hasName()) return false;
   1127   StringRef Name = F->getName();
   1128 
   1129   // In these cases, the check of the length is required.  We don't want to
   1130   // return true for a name like "cos\0blah" which strcmp would return equal to
   1131   // "cos", but has length 8.
   1132   switch (Name[0]) {
   1133   default: return false;
   1134   case 'a':
   1135     return Name == "acos" || Name == "asin" ||
   1136       Name == "atan" || Name == "atan2";
   1137   case 'c':
   1138     return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
   1139   case 'e':
   1140     return Name == "exp" || Name == "exp2";
   1141   case 'f':
   1142     return Name == "fabs" || Name == "fmod" || Name == "floor";
   1143   case 'l':
   1144     return Name == "log" || Name == "log10";
   1145   case 'p':
   1146     return Name == "pow";
   1147   case 's':
   1148     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
   1149       Name == "sinf" || Name == "sqrtf";
   1150   case 't':
   1151     return Name == "tan" || Name == "tanh";
   1152   }
   1153 }
   1154 
   1155 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
   1156                                 Type *Ty) {
   1157   sys::llvm_fenv_clearexcept();
   1158   V = NativeFP(V);
   1159   if (sys::llvm_fenv_testexcept()) {
   1160     sys::llvm_fenv_clearexcept();
   1161     return 0;
   1162   }
   1163 
   1164   if (Ty->isFloatTy())
   1165     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   1166   if (Ty->isDoubleTy())
   1167     return ConstantFP::get(Ty->getContext(), APFloat(V));
   1168   llvm_unreachable("Can only constant fold float/double");
   1169 }
   1170 
   1171 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
   1172                                       double V, double W, Type *Ty) {
   1173   sys::llvm_fenv_clearexcept();
   1174   V = NativeFP(V, W);
   1175   if (sys::llvm_fenv_testexcept()) {
   1176     sys::llvm_fenv_clearexcept();
   1177     return 0;
   1178   }
   1179 
   1180   if (Ty->isFloatTy())
   1181     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   1182   if (Ty->isDoubleTy())
   1183     return ConstantFP::get(Ty->getContext(), APFloat(V));
   1184   llvm_unreachable("Can only constant fold float/double");
   1185 }
   1186 
   1187 /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
   1188 /// conversion of a constant floating point. If roundTowardZero is false, the
   1189 /// default IEEE rounding is used (toward nearest, ties to even). This matches
   1190 /// the behavior of the non-truncating SSE instructions in the default rounding
   1191 /// mode. The desired integer type Ty is used to select how many bits are
   1192 /// available for the result. Returns null if the conversion cannot be
   1193 /// performed, otherwise returns the Constant value resulting from the
   1194 /// conversion.
   1195 static Constant *ConstantFoldConvertToInt(const APFloat &Val,
   1196                                           bool roundTowardZero, Type *Ty) {
   1197   // All of these conversion intrinsics form an integer of at most 64bits.
   1198   unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
   1199   assert(ResultWidth <= 64 &&
   1200          "Can only constant fold conversions to 64 and 32 bit ints");
   1201 
   1202   uint64_t UIntVal;
   1203   bool isExact = false;
   1204   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
   1205                                               : APFloat::rmNearestTiesToEven;
   1206   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
   1207                                                   /*isSigned=*/true, mode,
   1208                                                   &isExact);
   1209   if (status != APFloat::opOK && status != APFloat::opInexact)
   1210     return 0;
   1211   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
   1212 }
   1213 
   1214 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
   1215 /// with the specified arguments, returning null if unsuccessful.
   1216 Constant *
   1217 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
   1218                        const TargetLibraryInfo *TLI) {
   1219   if (!F->hasName()) return 0;
   1220   StringRef Name = F->getName();
   1221 
   1222   Type *Ty = F->getReturnType();
   1223   if (Operands.size() == 1) {
   1224     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
   1225       if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
   1226         APFloat Val(Op->getValueAPF());
   1227 
   1228         bool lost = false;
   1229         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
   1230 
   1231         return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
   1232       }
   1233       if (!TLI)
   1234         return 0;
   1235 
   1236       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
   1237         return 0;
   1238 
   1239       /// We only fold functions with finite arguments. Folding NaN and inf is
   1240       /// likely to be aborted with an exception anyway, and some host libms
   1241       /// have known errors raising exceptions.
   1242       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
   1243         return 0;
   1244 
   1245       /// Currently APFloat versions of these functions do not exist, so we use
   1246       /// the host native double versions.  Float versions are not called
   1247       /// directly but for all these it is true (float)(f((double)arg)) ==
   1248       /// f(arg).  Long double not supported yet.
   1249       double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
   1250                                      Op->getValueAPF().convertToDouble();
   1251       switch (Name[0]) {
   1252       case 'a':
   1253         if (Name == "acos" && TLI->has(LibFunc::acos))
   1254           return ConstantFoldFP(acos, V, Ty);
   1255         else if (Name == "asin" && TLI->has(LibFunc::asin))
   1256           return ConstantFoldFP(asin, V, Ty);
   1257         else if (Name == "atan" && TLI->has(LibFunc::atan))
   1258           return ConstantFoldFP(atan, V, Ty);
   1259         break;
   1260       case 'c':
   1261         if (Name == "ceil" && TLI->has(LibFunc::ceil))
   1262           return ConstantFoldFP(ceil, V, Ty);
   1263         else if (Name == "cos" && TLI->has(LibFunc::cos))
   1264           return ConstantFoldFP(cos, V, Ty);
   1265         else if (Name == "cosh" && TLI->has(LibFunc::cosh))
   1266           return ConstantFoldFP(cosh, V, Ty);
   1267         else if (Name == "cosf" && TLI->has(LibFunc::cosf))
   1268           return ConstantFoldFP(cos, V, Ty);
   1269         break;
   1270       case 'e':
   1271         if (Name == "exp" && TLI->has(LibFunc::exp))
   1272           return ConstantFoldFP(exp, V, Ty);
   1273 
   1274         if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
   1275           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
   1276           // C99 library.
   1277           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
   1278         }
   1279         break;
   1280       case 'f':
   1281         if (Name == "fabs" && TLI->has(LibFunc::fabs))
   1282           return ConstantFoldFP(fabs, V, Ty);
   1283         else if (Name == "floor" && TLI->has(LibFunc::floor))
   1284           return ConstantFoldFP(floor, V, Ty);
   1285         break;
   1286       case 'l':
   1287         if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
   1288           return ConstantFoldFP(log, V, Ty);
   1289         else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
   1290           return ConstantFoldFP(log10, V, Ty);
   1291         else if (F->getIntrinsicID() == Intrinsic::sqrt &&
   1292                  (Ty->isFloatTy() || Ty->isDoubleTy())) {
   1293           if (V >= -0.0)
   1294             return ConstantFoldFP(sqrt, V, Ty);
   1295           else // Undefined
   1296             return Constant::getNullValue(Ty);
   1297         }
   1298         break;
   1299       case 's':
   1300         if (Name == "sin" && TLI->has(LibFunc::sin))
   1301           return ConstantFoldFP(sin, V, Ty);
   1302         else if (Name == "sinh" && TLI->has(LibFunc::sinh))
   1303           return ConstantFoldFP(sinh, V, Ty);
   1304         else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
   1305           return ConstantFoldFP(sqrt, V, Ty);
   1306         else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
   1307           return ConstantFoldFP(sqrt, V, Ty);
   1308         else if (Name == "sinf" && TLI->has(LibFunc::sinf))
   1309           return ConstantFoldFP(sin, V, Ty);
   1310         break;
   1311       case 't':
   1312         if (Name == "tan" && TLI->has(LibFunc::tan))
   1313           return ConstantFoldFP(tan, V, Ty);
   1314         else if (Name == "tanh" && TLI->has(LibFunc::tanh))
   1315           return ConstantFoldFP(tanh, V, Ty);
   1316         break;
   1317       default:
   1318         break;
   1319       }
   1320       return 0;
   1321     }
   1322 
   1323     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
   1324       switch (F->getIntrinsicID()) {
   1325       case Intrinsic::bswap:
   1326         return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
   1327       case Intrinsic::ctpop:
   1328         return ConstantInt::get(Ty, Op->getValue().countPopulation());
   1329       case Intrinsic::convert_from_fp16: {
   1330         APFloat Val(Op->getValue());
   1331 
   1332         bool lost = false;
   1333         APFloat::opStatus status =
   1334           Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
   1335 
   1336         // Conversion is always precise.
   1337         (void)status;
   1338         assert(status == APFloat::opOK && !lost &&
   1339                "Precision lost during fp16 constfolding");
   1340 
   1341         return ConstantFP::get(F->getContext(), Val);
   1342       }
   1343       default:
   1344         return 0;
   1345       }
   1346     }
   1347 
   1348     // Support ConstantVector in case we have an Undef in the top.
   1349     if (isa<ConstantVector>(Operands[0]) ||
   1350         isa<ConstantDataVector>(Operands[0])) {
   1351       Constant *Op = cast<Constant>(Operands[0]);
   1352       switch (F->getIntrinsicID()) {
   1353       default: break;
   1354       case Intrinsic::x86_sse_cvtss2si:
   1355       case Intrinsic::x86_sse_cvtss2si64:
   1356       case Intrinsic::x86_sse2_cvtsd2si:
   1357       case Intrinsic::x86_sse2_cvtsd2si64:
   1358         if (ConstantFP *FPOp =
   1359               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
   1360           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
   1361                                           /*roundTowardZero=*/false, Ty);
   1362       case Intrinsic::x86_sse_cvttss2si:
   1363       case Intrinsic::x86_sse_cvttss2si64:
   1364       case Intrinsic::x86_sse2_cvttsd2si:
   1365       case Intrinsic::x86_sse2_cvttsd2si64:
   1366         if (ConstantFP *FPOp =
   1367               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
   1368           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
   1369                                           /*roundTowardZero=*/true, Ty);
   1370       }
   1371     }
   1372 
   1373     if (isa<UndefValue>(Operands[0])) {
   1374       if (F->getIntrinsicID() == Intrinsic::bswap)
   1375         return Operands[0];
   1376       return 0;
   1377     }
   1378 
   1379     return 0;
   1380   }
   1381 
   1382   if (Operands.size() == 2) {
   1383     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
   1384       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
   1385         return 0;
   1386       double Op1V = Ty->isFloatTy() ?
   1387                       (double)Op1->getValueAPF().convertToFloat() :
   1388                       Op1->getValueAPF().convertToDouble();
   1389       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
   1390         if (Op2->getType() != Op1->getType())
   1391           return 0;
   1392 
   1393         double Op2V = Ty->isFloatTy() ?
   1394                       (double)Op2->getValueAPF().convertToFloat():
   1395                       Op2->getValueAPF().convertToDouble();
   1396 
   1397         if (F->getIntrinsicID() == Intrinsic::pow) {
   1398           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1399         }
   1400         if (!TLI)
   1401           return 0;
   1402         if (Name == "pow" && TLI->has(LibFunc::pow))
   1403           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1404         if (Name == "fmod" && TLI->has(LibFunc::fmod))
   1405           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
   1406         if (Name == "atan2" && TLI->has(LibFunc::atan2))
   1407           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
   1408       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
   1409         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
   1410           return ConstantFP::get(F->getContext(),
   1411                                  APFloat((float)std::pow((float)Op1V,
   1412                                                  (int)Op2C->getZExtValue())));
   1413         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
   1414           return ConstantFP::get(F->getContext(),
   1415                                  APFloat((double)std::pow((double)Op1V,
   1416                                                    (int)Op2C->getZExtValue())));
   1417       }
   1418       return 0;
   1419     }
   1420 
   1421     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
   1422       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
   1423         switch (F->getIntrinsicID()) {
   1424         default: break;
   1425         case Intrinsic::sadd_with_overflow:
   1426         case Intrinsic::uadd_with_overflow:
   1427         case Intrinsic::ssub_with_overflow:
   1428         case Intrinsic::usub_with_overflow:
   1429         case Intrinsic::smul_with_overflow:
   1430         case Intrinsic::umul_with_overflow: {
   1431           APInt Res;
   1432           bool Overflow;
   1433           switch (F->getIntrinsicID()) {
   1434           default: llvm_unreachable("Invalid case");
   1435           case Intrinsic::sadd_with_overflow:
   1436             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
   1437             break;
   1438           case Intrinsic::uadd_with_overflow:
   1439             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
   1440             break;
   1441           case Intrinsic::ssub_with_overflow:
   1442             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
   1443             break;
   1444           case Intrinsic::usub_with_overflow:
   1445             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
   1446             break;
   1447           case Intrinsic::smul_with_overflow:
   1448             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
   1449             break;
   1450           case Intrinsic::umul_with_overflow:
   1451             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
   1452             break;
   1453           }
   1454           Constant *Ops[] = {
   1455             ConstantInt::get(F->getContext(), Res),
   1456             ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
   1457           };
   1458           return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
   1459         }
   1460         case Intrinsic::cttz:
   1461           // FIXME: This should check for Op2 == 1, and become unreachable if
   1462           // Op1 == 0.
   1463           return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
   1464         case Intrinsic::ctlz:
   1465           // FIXME: This should check for Op2 == 1, and become unreachable if
   1466           // Op1 == 0.
   1467           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
   1468         }
   1469       }
   1470 
   1471       return 0;
   1472     }
   1473     return 0;
   1474   }
   1475   return 0;
   1476 }
   1477