Home | History | Annotate | Download | only in BitWriter_2_9
      1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Bitcode writer implementation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ReaderWriter_2_9.h"
     15 #include "llvm/Bitcode/BitstreamWriter.h"
     16 #include "llvm/Bitcode/LLVMBitCodes.h"
     17 #include "ValueEnumerator.h"
     18 #include "llvm/Constants.h"
     19 #include "llvm/DerivedTypes.h"
     20 #include "llvm/InlineAsm.h"
     21 #include "llvm/Instructions.h"
     22 #include "llvm/Module.h"
     23 #include "llvm/Operator.h"
     24 #include "llvm/ValueSymbolTable.h"
     25 #include "llvm/ADT/Triple.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/MathExtras.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include "llvm/Support/Program.h"
     30 #include <cctype>
     31 #include <map>
     32 using namespace llvm;
     33 
     34 // Redefine older bitcode opcodes for use here. Note that these come from
     35 // LLVM 2.7 (which is what HC shipped with).
     36 #define METADATA_NODE_2_7             2
     37 #define METADATA_FN_NODE_2_7          3
     38 #define METADATA_NAMED_NODE_2_7       5
     39 #define METADATA_ATTACHMENT_2_7       7
     40 #define FUNC_CODE_INST_CALL_2_7       22
     41 #define FUNC_CODE_DEBUG_LOC_2_7       32
     42 
     43 // Redefine older bitcode opcodes for use here. Note that these come from
     44 // LLVM 2.7 - 3.0.
     45 #define TYPE_BLOCK_ID_OLD_3_0 10
     46 #define TYPE_SYMTAB_BLOCK_ID_OLD_3_0 13
     47 #define TYPE_CODE_STRUCT_OLD_3_0 10
     48 
     49 /// These are manifest constants used by the bitcode writer. They do not need to
     50 /// be kept in sync with the reader, but need to be consistent within this file.
     51 enum {
     52   CurVersion = 0,
     53 
     54   // VALUE_SYMTAB_BLOCK abbrev id's.
     55   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     56   VST_ENTRY_7_ABBREV,
     57   VST_ENTRY_6_ABBREV,
     58   VST_BBENTRY_6_ABBREV,
     59 
     60   // CONSTANTS_BLOCK abbrev id's.
     61   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     62   CONSTANTS_INTEGER_ABBREV,
     63   CONSTANTS_CE_CAST_Abbrev,
     64   CONSTANTS_NULL_Abbrev,
     65 
     66   // FUNCTION_BLOCK abbrev id's.
     67   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     68   FUNCTION_INST_BINOP_ABBREV,
     69   FUNCTION_INST_BINOP_FLAGS_ABBREV,
     70   FUNCTION_INST_CAST_ABBREV,
     71   FUNCTION_INST_RET_VOID_ABBREV,
     72   FUNCTION_INST_RET_VAL_ABBREV,
     73   FUNCTION_INST_UNREACHABLE_ABBREV
     74 };
     75 
     76 
     77 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
     78   switch (Opcode) {
     79   default: llvm_unreachable("Unknown cast instruction!");
     80   case Instruction::Trunc   : return bitc::CAST_TRUNC;
     81   case Instruction::ZExt    : return bitc::CAST_ZEXT;
     82   case Instruction::SExt    : return bitc::CAST_SEXT;
     83   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
     84   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
     85   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
     86   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
     87   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
     88   case Instruction::FPExt   : return bitc::CAST_FPEXT;
     89   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
     90   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
     91   case Instruction::BitCast : return bitc::CAST_BITCAST;
     92   }
     93 }
     94 
     95 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
     96   switch (Opcode) {
     97   default: llvm_unreachable("Unknown binary instruction!");
     98   case Instruction::Add:
     99   case Instruction::FAdd: return bitc::BINOP_ADD;
    100   case Instruction::Sub:
    101   case Instruction::FSub: return bitc::BINOP_SUB;
    102   case Instruction::Mul:
    103   case Instruction::FMul: return bitc::BINOP_MUL;
    104   case Instruction::UDiv: return bitc::BINOP_UDIV;
    105   case Instruction::FDiv:
    106   case Instruction::SDiv: return bitc::BINOP_SDIV;
    107   case Instruction::URem: return bitc::BINOP_UREM;
    108   case Instruction::FRem:
    109   case Instruction::SRem: return bitc::BINOP_SREM;
    110   case Instruction::Shl:  return bitc::BINOP_SHL;
    111   case Instruction::LShr: return bitc::BINOP_LSHR;
    112   case Instruction::AShr: return bitc::BINOP_ASHR;
    113   case Instruction::And:  return bitc::BINOP_AND;
    114   case Instruction::Or:   return bitc::BINOP_OR;
    115   case Instruction::Xor:  return bitc::BINOP_XOR;
    116   }
    117 }
    118 
    119 static void WriteStringRecord(unsigned Code, StringRef Str,
    120                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
    121   SmallVector<unsigned, 64> Vals;
    122 
    123   // Code: [strchar x N]
    124   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    125     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
    126       AbbrevToUse = 0;
    127     Vals.push_back(Str[i]);
    128   }
    129 
    130   // Emit the finished record.
    131   Stream.EmitRecord(Code, Vals, AbbrevToUse);
    132 }
    133 
    134 // Emit information about parameter attributes.
    135 static void WriteAttributeTable(const llvm_2_9::ValueEnumerator &VE,
    136                                 BitstreamWriter &Stream) {
    137   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
    138   if (Attrs.empty()) return;
    139 
    140   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
    141 
    142   SmallVector<uint64_t, 64> Record;
    143   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
    144     const AttrListPtr &A = Attrs[i];
    145     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
    146       const AttributeWithIndex &PAWI = A.getSlot(i);
    147       Record.push_back(PAWI.Index);
    148 
    149       // FIXME: remove in LLVM 3.0
    150       // Store the alignment in the bitcode as a 16-bit raw value instead of a
    151       // 5-bit log2 encoded value. Shift the bits above the alignment up by
    152       // 11 bits.
    153       uint64_t FauxAttr = PAWI.Attrs.Raw() & 0xffff;
    154       if (PAWI.Attrs & Attribute::Alignment)
    155         FauxAttr |= (1ull<<16)<<
    156             (((PAWI.Attrs & Attribute::Alignment).Raw()-1) >> 16);
    157       FauxAttr |= (PAWI.Attrs.Raw() & (0x3FFull << 21)) << 11;
    158 
    159       Record.push_back(FauxAttr);
    160     }
    161 
    162     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
    163     Record.clear();
    164   }
    165 
    166   Stream.ExitBlock();
    167 }
    168 
    169 static void WriteTypeSymbolTable(const llvm_2_9::ValueEnumerator &VE,
    170                                  BitstreamWriter &Stream) {
    171   const llvm_2_9::ValueEnumerator::TypeList &TypeList = VE.getTypes();
    172   Stream.EnterSubblock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0, 3);
    173 
    174   // 7-bit fixed width VST_CODE_ENTRY strings.
    175   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    176   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
    177   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    178                             Log2_32_Ceil(VE.getTypes().size()+1)));
    179   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    181   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
    182 
    183   SmallVector<unsigned, 64> NameVals;
    184 
    185   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    186     Type *T = TypeList[i];
    187 
    188     switch (T->getTypeID()) {
    189     case Type::StructTyID: {
    190       StructType *ST = cast<StructType>(T);
    191       if (ST->isLiteral()) {
    192         // Skip anonymous struct definitions in type symbol table
    193         // FIXME(srhines)
    194         break;
    195       }
    196 
    197       // TST_ENTRY: [typeid, namechar x N]
    198       NameVals.push_back(i);
    199 
    200       const std::string &Str = ST->getName();
    201       bool is7Bit = true;
    202       for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    203         NameVals.push_back((unsigned char)Str[i]);
    204         if (Str[i] & 128)
    205           is7Bit = false;
    206       }
    207 
    208       // Emit the finished record.
    209       Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
    210       NameVals.clear();
    211 
    212       break;
    213     }
    214     default: break;
    215     }
    216   }
    217 
    218 #if 0
    219   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
    220        TI != TE; ++TI) {
    221     // TST_ENTRY: [typeid, namechar x N]
    222     NameVals.push_back(VE.getTypeID(TI->second));
    223 
    224     const std::string &Str = TI->first;
    225     bool is7Bit = true;
    226     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    227       NameVals.push_back((unsigned char)Str[i]);
    228       if (Str[i] & 128)
    229         is7Bit = false;
    230     }
    231 
    232     // Emit the finished record.
    233     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
    234     NameVals.clear();
    235   }
    236 #endif
    237 
    238   Stream.ExitBlock();
    239 }
    240 
    241 /// WriteTypeTable - Write out the type table for a module.
    242 static void WriteTypeTable(const llvm_2_9::ValueEnumerator &VE,
    243                            BitstreamWriter &Stream) {
    244   const llvm_2_9::ValueEnumerator::TypeList &TypeList = VE.getTypes();
    245 
    246   Stream.EnterSubblock(TYPE_BLOCK_ID_OLD_3_0, 4 /*count from # abbrevs */);
    247   SmallVector<uint64_t, 64> TypeVals;
    248 
    249   // Abbrev for TYPE_CODE_POINTER.
    250   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    251   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
    252   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    253                             Log2_32_Ceil(VE.getTypes().size()+1)));
    254   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
    255   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
    256 
    257   // Abbrev for TYPE_CODE_FUNCTION.
    258   Abbv = new BitCodeAbbrev();
    259   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD));
    260   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
    261   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
    262   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    263   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    264                             Log2_32_Ceil(VE.getTypes().size()+1)));
    265   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
    266 
    267 #if 0
    268   // Abbrev for TYPE_CODE_STRUCT_ANON.
    269   Abbv = new BitCodeAbbrev();
    270   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
    271   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    272   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    273   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    274                             Log2_32_Ceil(VE.getTypes().size()+1)));
    275   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
    276 
    277   // Abbrev for TYPE_CODE_STRUCT_NAME.
    278   Abbv = new BitCodeAbbrev();
    279   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
    280   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    281   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    282   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
    283 
    284   // Abbrev for TYPE_CODE_STRUCT_NAMED.
    285   Abbv = new BitCodeAbbrev();
    286   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
    287   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    288   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    289   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    290                             Log2_32_Ceil(VE.getTypes().size()+1)));
    291   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
    292 #endif
    293 
    294   // Abbrev for TYPE_CODE_STRUCT.
    295   Abbv = new BitCodeAbbrev();
    296   Abbv->Add(BitCodeAbbrevOp(TYPE_CODE_STRUCT_OLD_3_0));
    297   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    298   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    299   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    300                             Log2_32_Ceil(VE.getTypes().size()+1)));
    301   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
    302 
    303   // Abbrev for TYPE_CODE_ARRAY.
    304   Abbv = new BitCodeAbbrev();
    305   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
    306   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
    307   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    308                             Log2_32_Ceil(VE.getTypes().size()+1)));
    309   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
    310 
    311   // Emit an entry count so the reader can reserve space.
    312   TypeVals.push_back(TypeList.size());
    313   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
    314   TypeVals.clear();
    315 
    316   // Loop over all of the types, emitting each in turn.
    317   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    318     Type *T = TypeList[i];
    319     int AbbrevToUse = 0;
    320     unsigned Code = 0;
    321 
    322     switch (T->getTypeID()) {
    323     default: llvm_unreachable("Unknown type!");
    324     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
    325     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
    326     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
    327     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
    328     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
    329     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
    330     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
    331     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
    332     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
    333     case Type::IntegerTyID:
    334       // INTEGER: [width]
    335       Code = bitc::TYPE_CODE_INTEGER;
    336       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
    337       break;
    338     case Type::PointerTyID: {
    339       PointerType *PTy = cast<PointerType>(T);
    340       // POINTER: [pointee type, address space]
    341       Code = bitc::TYPE_CODE_POINTER;
    342       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
    343       unsigned AddressSpace = PTy->getAddressSpace();
    344       TypeVals.push_back(AddressSpace);
    345       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
    346       break;
    347     }
    348     case Type::FunctionTyID: {
    349       FunctionType *FT = cast<FunctionType>(T);
    350       // FUNCTION: [isvararg, attrid, retty, paramty x N]
    351       Code = bitc::TYPE_CODE_FUNCTION_OLD;
    352       TypeVals.push_back(FT->isVarArg());
    353       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
    354       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
    355       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
    356         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
    357       AbbrevToUse = FunctionAbbrev;
    358       break;
    359     }
    360     case Type::StructTyID: {
    361       StructType *ST = cast<StructType>(T);
    362       // STRUCT: [ispacked, eltty x N]
    363       TypeVals.push_back(ST->isPacked());
    364       // Output all of the element types.
    365       for (StructType::element_iterator I = ST->element_begin(),
    366            E = ST->element_end(); I != E; ++I)
    367         TypeVals.push_back(VE.getTypeID(*I));
    368       AbbrevToUse = StructAbbrev;
    369       break;
    370     }
    371     case Type::ArrayTyID: {
    372       ArrayType *AT = cast<ArrayType>(T);
    373       // ARRAY: [numelts, eltty]
    374       Code = bitc::TYPE_CODE_ARRAY;
    375       TypeVals.push_back(AT->getNumElements());
    376       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
    377       AbbrevToUse = ArrayAbbrev;
    378       break;
    379     }
    380     case Type::VectorTyID: {
    381       VectorType *VT = cast<VectorType>(T);
    382       // VECTOR [numelts, eltty]
    383       Code = bitc::TYPE_CODE_VECTOR;
    384       TypeVals.push_back(VT->getNumElements());
    385       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
    386       break;
    387     }
    388     }
    389 
    390     // Emit the finished record.
    391     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
    392     TypeVals.clear();
    393   }
    394 
    395   Stream.ExitBlock();
    396 
    397   WriteTypeSymbolTable(VE, Stream);
    398 }
    399 
    400 static unsigned getEncodedLinkage(const GlobalValue *GV) {
    401   switch (GV->getLinkage()) {
    402   case GlobalValue::ExternalLinkage:                 return 0;
    403   case GlobalValue::WeakAnyLinkage:                  return 1;
    404   case GlobalValue::AppendingLinkage:                return 2;
    405   case GlobalValue::InternalLinkage:                 return 3;
    406   case GlobalValue::LinkOnceAnyLinkage:              return 4;
    407   case GlobalValue::DLLImportLinkage:                return 5;
    408   case GlobalValue::DLLExportLinkage:                return 6;
    409   case GlobalValue::ExternalWeakLinkage:             return 7;
    410   case GlobalValue::CommonLinkage:                   return 8;
    411   case GlobalValue::PrivateLinkage:                  return 9;
    412   case GlobalValue::WeakODRLinkage:                  return 10;
    413   case GlobalValue::LinkOnceODRLinkage:              return 11;
    414   case GlobalValue::AvailableExternallyLinkage:      return 12;
    415   case GlobalValue::LinkerPrivateLinkage:            return 13;
    416   case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
    417   case GlobalValue::LinkOnceODRAutoHideLinkage:      return 15;
    418   }
    419   llvm_unreachable("Invalid linkage");
    420 }
    421 
    422 static unsigned getEncodedVisibility(const GlobalValue *GV) {
    423   switch (GV->getVisibility()) {
    424   default: llvm_unreachable("Invalid visibility!");
    425   case GlobalValue::DefaultVisibility:   return 0;
    426   case GlobalValue::HiddenVisibility:    return 1;
    427   case GlobalValue::ProtectedVisibility: return 2;
    428   }
    429 }
    430 
    431 // Emit top-level description of module, including target triple, inline asm,
    432 // descriptors for global variables, and function prototype info.
    433 static void WriteModuleInfo(const Module *M,
    434                             const llvm_2_9::ValueEnumerator &VE,
    435                             BitstreamWriter &Stream) {
    436   // Emit the list of dependent libraries for the Module.
    437   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
    438     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
    439 
    440   // Emit various pieces of data attached to a module.
    441   if (!M->getTargetTriple().empty())
    442     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
    443                       0/*TODO*/, Stream);
    444   if (!M->getDataLayout().empty())
    445     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
    446                       0/*TODO*/, Stream);
    447   if (!M->getModuleInlineAsm().empty())
    448     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
    449                       0/*TODO*/, Stream);
    450 
    451   // Emit information about sections and GC, computing how many there are. Also
    452   // compute the maximum alignment value.
    453   std::map<std::string, unsigned> SectionMap;
    454   std::map<std::string, unsigned> GCMap;
    455   unsigned MaxAlignment = 0;
    456   unsigned MaxGlobalType = 0;
    457   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
    458        GV != E; ++GV) {
    459     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
    460     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
    461 
    462     if (!GV->hasSection()) continue;
    463     // Give section names unique ID's.
    464     unsigned &Entry = SectionMap[GV->getSection()];
    465     if (Entry != 0) continue;
    466     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
    467                       0/*TODO*/, Stream);
    468     Entry = SectionMap.size();
    469   }
    470   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    471     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
    472     if (F->hasSection()) {
    473       // Give section names unique ID's.
    474       unsigned &Entry = SectionMap[F->getSection()];
    475       if (!Entry) {
    476         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
    477                           0/*TODO*/, Stream);
    478         Entry = SectionMap.size();
    479       }
    480     }
    481     if (F->hasGC()) {
    482       // Same for GC names.
    483       unsigned &Entry = GCMap[F->getGC()];
    484       if (!Entry) {
    485         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
    486                           0/*TODO*/, Stream);
    487         Entry = GCMap.size();
    488       }
    489     }
    490   }
    491 
    492   // Emit abbrev for globals, now that we know # sections and max alignment.
    493   unsigned SimpleGVarAbbrev = 0;
    494   if (!M->global_empty()) {
    495     // Add an abbrev for common globals with no visibility or thread localness.
    496     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    497     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
    498     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    499                               Log2_32_Ceil(MaxGlobalType+1)));
    500     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
    501     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
    502     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
    503     if (MaxAlignment == 0)                                      // Alignment.
    504       Abbv->Add(BitCodeAbbrevOp(0));
    505     else {
    506       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
    507       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    508                                Log2_32_Ceil(MaxEncAlignment+1)));
    509     }
    510     if (SectionMap.empty())                                    // Section.
    511       Abbv->Add(BitCodeAbbrevOp(0));
    512     else
    513       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    514                                Log2_32_Ceil(SectionMap.size()+1)));
    515     // Don't bother emitting vis + thread local.
    516     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
    517   }
    518 
    519   // Emit the global variable information.
    520   SmallVector<unsigned, 64> Vals;
    521   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
    522        GV != E; ++GV) {
    523     unsigned AbbrevToUse = 0;
    524 
    525     // GLOBALVAR: [type, isconst, initid,
    526     //             linkage, alignment, section, visibility, threadlocal,
    527     //             unnamed_addr]
    528     Vals.push_back(VE.getTypeID(GV->getType()));
    529     Vals.push_back(GV->isConstant());
    530     Vals.push_back(GV->isDeclaration() ? 0 :
    531                    (VE.getValueID(GV->getInitializer()) + 1));
    532     Vals.push_back(getEncodedLinkage(GV));
    533     Vals.push_back(Log2_32(GV->getAlignment())+1);
    534     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
    535     if (GV->isThreadLocal() ||
    536         GV->getVisibility() != GlobalValue::DefaultVisibility ||
    537         GV->hasUnnamedAddr()) {
    538       Vals.push_back(getEncodedVisibility(GV));
    539       Vals.push_back(GV->isThreadLocal());
    540       Vals.push_back(GV->hasUnnamedAddr());
    541     } else {
    542       AbbrevToUse = SimpleGVarAbbrev;
    543     }
    544 
    545     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
    546     Vals.clear();
    547   }
    548 
    549   // Emit the function proto information.
    550   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    551     // FUNCTION:  [type, callingconv, isproto, paramattr,
    552     //             linkage, alignment, section, visibility, gc, unnamed_addr]
    553     Vals.push_back(VE.getTypeID(F->getType()));
    554     Vals.push_back(F->getCallingConv());
    555     Vals.push_back(F->isDeclaration());
    556     Vals.push_back(getEncodedLinkage(F));
    557     Vals.push_back(VE.getAttributeID(F->getAttributes()));
    558     Vals.push_back(Log2_32(F->getAlignment())+1);
    559     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
    560     Vals.push_back(getEncodedVisibility(F));
    561     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
    562     Vals.push_back(F->hasUnnamedAddr());
    563 
    564     unsigned AbbrevToUse = 0;
    565     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
    566     Vals.clear();
    567   }
    568 
    569   // Emit the alias information.
    570   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
    571        AI != E; ++AI) {
    572     Vals.push_back(VE.getTypeID(AI->getType()));
    573     Vals.push_back(VE.getValueID(AI->getAliasee()));
    574     Vals.push_back(getEncodedLinkage(AI));
    575     Vals.push_back(getEncodedVisibility(AI));
    576     unsigned AbbrevToUse = 0;
    577     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
    578     Vals.clear();
    579   }
    580 }
    581 
    582 static uint64_t GetOptimizationFlags(const Value *V) {
    583   uint64_t Flags = 0;
    584 
    585   if (const OverflowingBinaryOperator *OBO =
    586         dyn_cast<OverflowingBinaryOperator>(V)) {
    587     if (OBO->hasNoSignedWrap())
    588       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
    589     if (OBO->hasNoUnsignedWrap())
    590       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
    591   } else if (const PossiblyExactOperator *PEO =
    592                dyn_cast<PossiblyExactOperator>(V)) {
    593     if (PEO->isExact())
    594       Flags |= 1 << bitc::PEO_EXACT;
    595   }
    596 
    597   return Flags;
    598 }
    599 
    600 static void WriteMDNode(const MDNode *N,
    601                         const llvm_2_9::ValueEnumerator &VE,
    602                         BitstreamWriter &Stream,
    603                         SmallVector<uint64_t, 64> &Record) {
    604   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    605     if (N->getOperand(i)) {
    606       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
    607       Record.push_back(VE.getValueID(N->getOperand(i)));
    608     } else {
    609       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
    610       Record.push_back(0);
    611     }
    612   }
    613   unsigned MDCode = N->isFunctionLocal() ? METADATA_FN_NODE_2_7 :
    614                                            METADATA_NODE_2_7;
    615   Stream.EmitRecord(MDCode, Record, 0);
    616   Record.clear();
    617 }
    618 
    619 static void WriteModuleMetadata(const Module *M,
    620                                 const llvm_2_9::ValueEnumerator &VE,
    621                                 BitstreamWriter &Stream) {
    622   const llvm_2_9::ValueEnumerator::ValueList &Vals = VE.getMDValues();
    623   bool StartedMetadataBlock = false;
    624   unsigned MDSAbbrev = 0;
    625   SmallVector<uint64_t, 64> Record;
    626   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
    627 
    628     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
    629       if (!N->isFunctionLocal() || !N->getFunction()) {
    630         if (!StartedMetadataBlock) {
    631           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    632           StartedMetadataBlock = true;
    633         }
    634         WriteMDNode(N, VE, Stream, Record);
    635       }
    636     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
    637       if (!StartedMetadataBlock)  {
    638         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    639 
    640         // Abbrev for METADATA_STRING.
    641         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    642         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
    643         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    644         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    645         MDSAbbrev = Stream.EmitAbbrev(Abbv);
    646         StartedMetadataBlock = true;
    647       }
    648 
    649       // Code: [strchar x N]
    650       Record.append(MDS->begin(), MDS->end());
    651 
    652       // Emit the finished record.
    653       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
    654       Record.clear();
    655     }
    656   }
    657 
    658   // Write named metadata.
    659   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
    660        E = M->named_metadata_end(); I != E; ++I) {
    661     const NamedMDNode *NMD = I;
    662     if (!StartedMetadataBlock)  {
    663       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    664       StartedMetadataBlock = true;
    665     }
    666 
    667     // Write name.
    668     StringRef Str = NMD->getName();
    669     for (unsigned i = 0, e = Str.size(); i != e; ++i)
    670       Record.push_back(Str[i]);
    671     Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
    672     Record.clear();
    673 
    674     // Write named metadata operands.
    675     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
    676       Record.push_back(VE.getValueID(NMD->getOperand(i)));
    677     Stream.EmitRecord(METADATA_NAMED_NODE_2_7, Record, 0);
    678     Record.clear();
    679   }
    680 
    681   if (StartedMetadataBlock)
    682     Stream.ExitBlock();
    683 }
    684 
    685 static void WriteFunctionLocalMetadata(const Function &F,
    686                                        const llvm_2_9::ValueEnumerator &VE,
    687                                        BitstreamWriter &Stream) {
    688   bool StartedMetadataBlock = false;
    689   SmallVector<uint64_t, 64> Record;
    690   const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
    691   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
    692     if (const MDNode *N = Vals[i])
    693       if (N->isFunctionLocal() && N->getFunction() == &F) {
    694         if (!StartedMetadataBlock) {
    695           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    696           StartedMetadataBlock = true;
    697         }
    698         WriteMDNode(N, VE, Stream, Record);
    699       }
    700 
    701   if (StartedMetadataBlock)
    702     Stream.ExitBlock();
    703 }
    704 
    705 static void WriteMetadataAttachment(const Function &F,
    706                                     const llvm_2_9::ValueEnumerator &VE,
    707                                     BitstreamWriter &Stream) {
    708   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
    709 
    710   SmallVector<uint64_t, 64> Record;
    711 
    712   // Write metadata attachments
    713   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
    714   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
    715 
    716   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    717     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
    718          I != E; ++I) {
    719       MDs.clear();
    720       I->getAllMetadataOtherThanDebugLoc(MDs);
    721 
    722       // If no metadata, ignore instruction.
    723       if (MDs.empty()) continue;
    724 
    725       Record.push_back(VE.getInstructionID(I));
    726 
    727       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
    728         Record.push_back(MDs[i].first);
    729         Record.push_back(VE.getValueID(MDs[i].second));
    730       }
    731       Stream.EmitRecord(METADATA_ATTACHMENT_2_7, Record, 0);
    732       Record.clear();
    733     }
    734 
    735   Stream.ExitBlock();
    736 }
    737 
    738 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
    739   SmallVector<uint64_t, 64> Record;
    740 
    741   // Write metadata kinds
    742   // METADATA_KIND - [n x [id, name]]
    743   SmallVector<StringRef, 4> Names;
    744   M->getMDKindNames(Names);
    745 
    746   if (Names.empty()) return;
    747 
    748   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    749 
    750   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
    751     Record.push_back(MDKindID);
    752     StringRef KName = Names[MDKindID];
    753     Record.append(KName.begin(), KName.end());
    754 
    755     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
    756     Record.clear();
    757   }
    758 
    759   Stream.ExitBlock();
    760 }
    761 
    762 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
    763                            const llvm_2_9::ValueEnumerator &VE,
    764                            BitstreamWriter &Stream, bool isGlobal) {
    765   if (FirstVal == LastVal) return;
    766 
    767   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
    768 
    769   unsigned AggregateAbbrev = 0;
    770   unsigned String8Abbrev = 0;
    771   unsigned CString7Abbrev = 0;
    772   unsigned CString6Abbrev = 0;
    773   // If this is a constant pool for the module, emit module-specific abbrevs.
    774   if (isGlobal) {
    775     // Abbrev for CST_CODE_AGGREGATE.
    776     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    777     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
    778     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    779     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
    780     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
    781 
    782     // Abbrev for CST_CODE_STRING.
    783     Abbv = new BitCodeAbbrev();
    784     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
    785     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    786     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    787     String8Abbrev = Stream.EmitAbbrev(Abbv);
    788     // Abbrev for CST_CODE_CSTRING.
    789     Abbv = new BitCodeAbbrev();
    790     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    791     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    792     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    793     CString7Abbrev = Stream.EmitAbbrev(Abbv);
    794     // Abbrev for CST_CODE_CSTRING.
    795     Abbv = new BitCodeAbbrev();
    796     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    797     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    798     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    799     CString6Abbrev = Stream.EmitAbbrev(Abbv);
    800   }
    801 
    802   SmallVector<uint64_t, 64> Record;
    803 
    804   const llvm_2_9::ValueEnumerator::ValueList &Vals = VE.getValues();
    805   Type *LastTy = 0;
    806   for (unsigned i = FirstVal; i != LastVal; ++i) {
    807     const Value *V = Vals[i].first;
    808     // If we need to switch types, do so now.
    809     if (V->getType() != LastTy) {
    810       LastTy = V->getType();
    811       Record.push_back(VE.getTypeID(LastTy));
    812       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
    813                         CONSTANTS_SETTYPE_ABBREV);
    814       Record.clear();
    815     }
    816 
    817     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
    818       Record.push_back(unsigned(IA->hasSideEffects()) |
    819                        unsigned(IA->isAlignStack()) << 1);
    820 
    821       // Add the asm string.
    822       const std::string &AsmStr = IA->getAsmString();
    823       Record.push_back(AsmStr.size());
    824       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
    825         Record.push_back(AsmStr[i]);
    826 
    827       // Add the constraint string.
    828       const std::string &ConstraintStr = IA->getConstraintString();
    829       Record.push_back(ConstraintStr.size());
    830       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
    831         Record.push_back(ConstraintStr[i]);
    832       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
    833       Record.clear();
    834       continue;
    835     }
    836     const Constant *C = cast<Constant>(V);
    837     unsigned Code = -1U;
    838     unsigned AbbrevToUse = 0;
    839     if (C->isNullValue()) {
    840       Code = bitc::CST_CODE_NULL;
    841     } else if (isa<UndefValue>(C)) {
    842       Code = bitc::CST_CODE_UNDEF;
    843     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
    844       if (IV->getBitWidth() <= 64) {
    845         uint64_t V = IV->getSExtValue();
    846         if ((int64_t)V >= 0)
    847           Record.push_back(V << 1);
    848         else
    849           Record.push_back((-V << 1) | 1);
    850         Code = bitc::CST_CODE_INTEGER;
    851         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
    852       } else {                             // Wide integers, > 64 bits in size.
    853         // We have an arbitrary precision integer value to write whose
    854         // bit width is > 64. However, in canonical unsigned integer
    855         // format it is likely that the high bits are going to be zero.
    856         // So, we only write the number of active words.
    857         unsigned NWords = IV->getValue().getActiveWords();
    858         const uint64_t *RawWords = IV->getValue().getRawData();
    859         for (unsigned i = 0; i != NWords; ++i) {
    860           int64_t V = RawWords[i];
    861           if (V >= 0)
    862             Record.push_back(V << 1);
    863           else
    864             Record.push_back((-V << 1) | 1);
    865         }
    866         Code = bitc::CST_CODE_WIDE_INTEGER;
    867       }
    868     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    869       Code = bitc::CST_CODE_FLOAT;
    870       Type *Ty = CFP->getType();
    871       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
    872         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    873       } else if (Ty->isX86_FP80Ty()) {
    874         // api needed to prevent premature destruction
    875         // bits are not in the same order as a normal i80 APInt, compensate.
    876         APInt api = CFP->getValueAPF().bitcastToAPInt();
    877         const uint64_t *p = api.getRawData();
    878         Record.push_back((p[1] << 48) | (p[0] >> 16));
    879         Record.push_back(p[0] & 0xffffLL);
    880       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
    881         APInt api = CFP->getValueAPF().bitcastToAPInt();
    882         const uint64_t *p = api.getRawData();
    883         Record.push_back(p[0]);
    884         Record.push_back(p[1]);
    885       } else {
    886         assert (0 && "Unknown FP type!");
    887       }
    888     } else if (isa<ConstantDataSequential>(C) &&
    889                cast<ConstantDataSequential>(C)->isString()) {
    890       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
    891       // Emit constant strings specially.
    892       unsigned NumElts = Str->getNumElements();
    893       // If this is a null-terminated string, use the denser CSTRING encoding.
    894       if (Str->isCString()) {
    895         Code = bitc::CST_CODE_CSTRING;
    896         --NumElts;  // Don't encode the null, which isn't allowed by char6.
    897       } else {
    898         Code = bitc::CST_CODE_STRING;
    899         AbbrevToUse = String8Abbrev;
    900       }
    901       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
    902       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
    903       for (unsigned i = 0; i != NumElts; ++i) {
    904         unsigned char V = Str->getElementAsInteger(i);
    905         Record.push_back(V);
    906         isCStr7 &= (V & 128) == 0;
    907         if (isCStrChar6)
    908           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
    909       }
    910 
    911       if (isCStrChar6)
    912         AbbrevToUse = CString6Abbrev;
    913       else if (isCStr7)
    914         AbbrevToUse = CString7Abbrev;
    915     } else if (const ConstantDataSequential *CDS =
    916                   dyn_cast<ConstantDataSequential>(C)) {
    917       // We must replace ConstantDataSequential's representation with the
    918       // legacy ConstantArray/ConstantVector/ConstantStruct version.
    919       // ValueEnumerator is similarly modified to mark the appropriate
    920       // Constants as used (so they are emitted).
    921       Code = bitc::CST_CODE_AGGREGATE;
    922       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
    923         Record.push_back(VE.getValueID(CDS->getElementAsConstant(i)));
    924       AbbrevToUse = AggregateAbbrev;
    925     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
    926                isa<ConstantVector>(C)) {
    927       Code = bitc::CST_CODE_AGGREGATE;
    928       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
    929         Record.push_back(VE.getValueID(C->getOperand(i)));
    930       AbbrevToUse = AggregateAbbrev;
    931     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    932       switch (CE->getOpcode()) {
    933       default:
    934         if (Instruction::isCast(CE->getOpcode())) {
    935           Code = bitc::CST_CODE_CE_CAST;
    936           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
    937           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    938           Record.push_back(VE.getValueID(C->getOperand(0)));
    939           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
    940         } else {
    941           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
    942           Code = bitc::CST_CODE_CE_BINOP;
    943           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
    944           Record.push_back(VE.getValueID(C->getOperand(0)));
    945           Record.push_back(VE.getValueID(C->getOperand(1)));
    946           uint64_t Flags = GetOptimizationFlags(CE);
    947           if (Flags != 0)
    948             Record.push_back(Flags);
    949         }
    950         break;
    951       case Instruction::GetElementPtr:
    952         Code = bitc::CST_CODE_CE_GEP;
    953         if (cast<GEPOperator>(C)->isInBounds())
    954           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
    955         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
    956           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
    957           Record.push_back(VE.getValueID(C->getOperand(i)));
    958         }
    959         break;
    960       case Instruction::Select:
    961         Code = bitc::CST_CODE_CE_SELECT;
    962         Record.push_back(VE.getValueID(C->getOperand(0)));
    963         Record.push_back(VE.getValueID(C->getOperand(1)));
    964         Record.push_back(VE.getValueID(C->getOperand(2)));
    965         break;
    966       case Instruction::ExtractElement:
    967         Code = bitc::CST_CODE_CE_EXTRACTELT;
    968         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    969         Record.push_back(VE.getValueID(C->getOperand(0)));
    970         Record.push_back(VE.getValueID(C->getOperand(1)));
    971         break;
    972       case Instruction::InsertElement:
    973         Code = bitc::CST_CODE_CE_INSERTELT;
    974         Record.push_back(VE.getValueID(C->getOperand(0)));
    975         Record.push_back(VE.getValueID(C->getOperand(1)));
    976         Record.push_back(VE.getValueID(C->getOperand(2)));
    977         break;
    978       case Instruction::ShuffleVector:
    979         // If the return type and argument types are the same, this is a
    980         // standard shufflevector instruction.  If the types are different,
    981         // then the shuffle is widening or truncating the input vectors, and
    982         // the argument type must also be encoded.
    983         if (C->getType() == C->getOperand(0)->getType()) {
    984           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
    985         } else {
    986           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
    987           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    988         }
    989         Record.push_back(VE.getValueID(C->getOperand(0)));
    990         Record.push_back(VE.getValueID(C->getOperand(1)));
    991         Record.push_back(VE.getValueID(C->getOperand(2)));
    992         break;
    993       case Instruction::ICmp:
    994       case Instruction::FCmp:
    995         Code = bitc::CST_CODE_CE_CMP;
    996         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    997         Record.push_back(VE.getValueID(C->getOperand(0)));
    998         Record.push_back(VE.getValueID(C->getOperand(1)));
    999         Record.push_back(CE->getPredicate());
   1000         break;
   1001       }
   1002     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
   1003       Code = bitc::CST_CODE_BLOCKADDRESS;
   1004       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
   1005       Record.push_back(VE.getValueID(BA->getFunction()));
   1006       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
   1007     } else {
   1008 #ifndef NDEBUG
   1009       C->dump();
   1010 #endif
   1011       llvm_unreachable("Unknown constant!");
   1012     }
   1013     Stream.EmitRecord(Code, Record, AbbrevToUse);
   1014     Record.clear();
   1015   }
   1016 
   1017   Stream.ExitBlock();
   1018 }
   1019 
   1020 static void WriteModuleConstants(const llvm_2_9::ValueEnumerator &VE,
   1021                                  BitstreamWriter &Stream) {
   1022   const llvm_2_9::ValueEnumerator::ValueList &Vals = VE.getValues();
   1023 
   1024   // Find the first constant to emit, which is the first non-globalvalue value.
   1025   // We know globalvalues have been emitted by WriteModuleInfo.
   1026   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
   1027     if (!isa<GlobalValue>(Vals[i].first)) {
   1028       WriteConstants(i, Vals.size(), VE, Stream, true);
   1029       return;
   1030     }
   1031   }
   1032 }
   1033 
   1034 /// PushValueAndType - The file has to encode both the value and type id for
   1035 /// many values, because we need to know what type to create for forward
   1036 /// references.  However, most operands are not forward references, so this type
   1037 /// field is not needed.
   1038 ///
   1039 /// This function adds V's value ID to Vals.  If the value ID is higher than the
   1040 /// instruction ID, then it is a forward reference, and it also includes the
   1041 /// type ID.
   1042 static bool PushValueAndType(const Value *V, unsigned InstID,
   1043                              SmallVector<unsigned, 64> &Vals,
   1044                              llvm_2_9::ValueEnumerator &VE) {
   1045   unsigned ValID = VE.getValueID(V);
   1046   Vals.push_back(ValID);
   1047   if (ValID >= InstID) {
   1048     Vals.push_back(VE.getTypeID(V->getType()));
   1049     return true;
   1050   }
   1051   return false;
   1052 }
   1053 
   1054 /// WriteInstruction - Emit an instruction to the specified stream.
   1055 static void WriteInstruction(const Instruction &I, unsigned InstID,
   1056                              llvm_2_9::ValueEnumerator &VE,
   1057                              BitstreamWriter &Stream,
   1058                              SmallVector<unsigned, 64> &Vals) {
   1059   unsigned Code = 0;
   1060   unsigned AbbrevToUse = 0;
   1061   VE.setInstructionID(&I);
   1062   switch (I.getOpcode()) {
   1063   default:
   1064     if (Instruction::isCast(I.getOpcode())) {
   1065       Code = bitc::FUNC_CODE_INST_CAST;
   1066       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1067         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
   1068       Vals.push_back(VE.getTypeID(I.getType()));
   1069       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
   1070     } else {
   1071       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
   1072       Code = bitc::FUNC_CODE_INST_BINOP;
   1073       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1074         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
   1075       Vals.push_back(VE.getValueID(I.getOperand(1)));
   1076       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
   1077       uint64_t Flags = GetOptimizationFlags(&I);
   1078       if (Flags != 0) {
   1079         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
   1080           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
   1081         Vals.push_back(Flags);
   1082       }
   1083     }
   1084     break;
   1085 
   1086   case Instruction::GetElementPtr:
   1087     Code = bitc::FUNC_CODE_INST_GEP;
   1088     if (cast<GEPOperator>(&I)->isInBounds())
   1089       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
   1090     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1091       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1092     break;
   1093   case Instruction::ExtractValue: {
   1094     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
   1095     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1096     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
   1097     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
   1098       Vals.push_back(*i);
   1099     break;
   1100   }
   1101   case Instruction::InsertValue: {
   1102     Code = bitc::FUNC_CODE_INST_INSERTVAL;
   1103     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1104     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1105     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
   1106     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
   1107       Vals.push_back(*i);
   1108     break;
   1109   }
   1110   case Instruction::Select:
   1111     Code = bitc::FUNC_CODE_INST_VSELECT;
   1112     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1113     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1114     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1115     break;
   1116   case Instruction::ExtractElement:
   1117     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
   1118     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1119     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1120     break;
   1121   case Instruction::InsertElement:
   1122     Code = bitc::FUNC_CODE_INST_INSERTELT;
   1123     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1124     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1125     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1126     break;
   1127   case Instruction::ShuffleVector:
   1128     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
   1129     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1130     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1131     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1132     break;
   1133   case Instruction::ICmp:
   1134   case Instruction::FCmp:
   1135     // compare returning Int1Ty or vector of Int1Ty
   1136     Code = bitc::FUNC_CODE_INST_CMP2;
   1137     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1138     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1139     Vals.push_back(cast<CmpInst>(I).getPredicate());
   1140     break;
   1141 
   1142   case Instruction::Ret:
   1143     {
   1144       Code = bitc::FUNC_CODE_INST_RET;
   1145       unsigned NumOperands = I.getNumOperands();
   1146       if (NumOperands == 0)
   1147         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
   1148       else if (NumOperands == 1) {
   1149         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1150           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
   1151       } else {
   1152         for (unsigned i = 0, e = NumOperands; i != e; ++i)
   1153           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1154       }
   1155     }
   1156     break;
   1157   case Instruction::Br:
   1158     {
   1159       Code = bitc::FUNC_CODE_INST_BR;
   1160       BranchInst &II = cast<BranchInst>(I);
   1161       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
   1162       if (II.isConditional()) {
   1163         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
   1164         Vals.push_back(VE.getValueID(II.getCondition()));
   1165       }
   1166     }
   1167     break;
   1168   case Instruction::Switch:
   1169     {
   1170       Code = bitc::FUNC_CODE_INST_SWITCH;
   1171       SwitchInst &SI = cast<SwitchInst>(I);
   1172 
   1173       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
   1174       Vals.push_back(VE.getValueID(SI.getCondition()));
   1175       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
   1176       for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
   1177            i != e; ++i) {
   1178         IntegersSubset& CaseRanges = i.getCaseValueEx();
   1179 
   1180         if (CaseRanges.isSingleNumber()) {
   1181           Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(0).toConstantInt()));
   1182           Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
   1183         } else if (CaseRanges.isSingleNumbersOnly()) {
   1184           for (unsigned ri = 0, rn = CaseRanges.getNumItems();
   1185                ri != rn; ++ri) {
   1186             Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(ri).toConstantInt()));
   1187             Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
   1188           }
   1189         } else {
   1190           llvm_unreachable("Not single number?");
   1191         }
   1192       }
   1193     }
   1194     break;
   1195   case Instruction::IndirectBr:
   1196     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
   1197     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1198     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1199       Vals.push_back(VE.getValueID(I.getOperand(i)));
   1200     break;
   1201 
   1202   case Instruction::Invoke: {
   1203     const InvokeInst *II = cast<InvokeInst>(&I);
   1204     const Value *Callee(II->getCalledValue());
   1205     PointerType *PTy = cast<PointerType>(Callee->getType());
   1206     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1207     Code = bitc::FUNC_CODE_INST_INVOKE;
   1208 
   1209     Vals.push_back(VE.getAttributeID(II->getAttributes()));
   1210     Vals.push_back(II->getCallingConv());
   1211     Vals.push_back(VE.getValueID(II->getNormalDest()));
   1212     Vals.push_back(VE.getValueID(II->getUnwindDest()));
   1213     PushValueAndType(Callee, InstID, Vals, VE);
   1214 
   1215     // Emit value #'s for the fixed parameters.
   1216     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1217       Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
   1218 
   1219     // Emit type/value pairs for varargs params.
   1220     if (FTy->isVarArg()) {
   1221       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
   1222            i != e; ++i)
   1223         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
   1224     }
   1225     break;
   1226   }
   1227   case Instruction::Unreachable:
   1228     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
   1229     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
   1230     break;
   1231 
   1232   case Instruction::PHI: {
   1233     const PHINode &PN = cast<PHINode>(I);
   1234     Code = bitc::FUNC_CODE_INST_PHI;
   1235     Vals.push_back(VE.getTypeID(PN.getType()));
   1236     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   1237       Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
   1238       Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
   1239     }
   1240     break;
   1241   }
   1242 
   1243   case Instruction::Alloca:
   1244     Code = bitc::FUNC_CODE_INST_ALLOCA;
   1245     Vals.push_back(VE.getTypeID(I.getType()));
   1246     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1247     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
   1248     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
   1249     break;
   1250 
   1251   case Instruction::Load:
   1252     Code = bitc::FUNC_CODE_INST_LOAD;
   1253     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
   1254       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
   1255 
   1256     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
   1257     Vals.push_back(cast<LoadInst>(I).isVolatile());
   1258     break;
   1259   case Instruction::Store:
   1260     Code = bitc::FUNC_CODE_INST_STORE;
   1261     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
   1262     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
   1263     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
   1264     Vals.push_back(cast<StoreInst>(I).isVolatile());
   1265     break;
   1266   case Instruction::Call: {
   1267     const CallInst &CI = cast<CallInst>(I);
   1268     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
   1269     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1270 
   1271     Code = FUNC_CODE_INST_CALL_2_7;
   1272 
   1273     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
   1274     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
   1275     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
   1276 
   1277     // Emit value #'s for the fixed parameters.
   1278     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1279       Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
   1280 
   1281     // Emit type/value pairs for varargs params.
   1282     if (FTy->isVarArg()) {
   1283       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
   1284            i != e; ++i)
   1285         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
   1286     }
   1287     break;
   1288   }
   1289   case Instruction::VAArg:
   1290     Code = bitc::FUNC_CODE_INST_VAARG;
   1291     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
   1292     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
   1293     Vals.push_back(VE.getTypeID(I.getType())); // restype.
   1294     break;
   1295   }
   1296 
   1297   Stream.EmitRecord(Code, Vals, AbbrevToUse);
   1298   Vals.clear();
   1299 }
   1300 
   1301 // Emit names for globals/functions etc.
   1302 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
   1303                                   const llvm_2_9::ValueEnumerator &VE,
   1304                                   BitstreamWriter &Stream) {
   1305   if (VST.empty()) return;
   1306   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
   1307 
   1308   // FIXME: Set up the abbrev, we know how many values there are!
   1309   // FIXME: We know if the type names can use 7-bit ascii.
   1310   SmallVector<unsigned, 64> NameVals;
   1311 
   1312   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
   1313        SI != SE; ++SI) {
   1314 
   1315     const ValueName &Name = *SI;
   1316 
   1317     // Figure out the encoding to use for the name.
   1318     bool is7Bit = true;
   1319     bool isChar6 = true;
   1320     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
   1321          C != E; ++C) {
   1322       if (isChar6)
   1323         isChar6 = BitCodeAbbrevOp::isChar6(*C);
   1324       if ((unsigned char)*C & 128) {
   1325         is7Bit = false;
   1326         break;  // don't bother scanning the rest.
   1327       }
   1328     }
   1329 
   1330     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
   1331 
   1332     // VST_ENTRY:   [valueid, namechar x N]
   1333     // VST_BBENTRY: [bbid, namechar x N]
   1334     unsigned Code;
   1335     if (isa<BasicBlock>(SI->getValue())) {
   1336       Code = bitc::VST_CODE_BBENTRY;
   1337       if (isChar6)
   1338         AbbrevToUse = VST_BBENTRY_6_ABBREV;
   1339     } else {
   1340       Code = bitc::VST_CODE_ENTRY;
   1341       if (isChar6)
   1342         AbbrevToUse = VST_ENTRY_6_ABBREV;
   1343       else if (is7Bit)
   1344         AbbrevToUse = VST_ENTRY_7_ABBREV;
   1345     }
   1346 
   1347     NameVals.push_back(VE.getValueID(SI->getValue()));
   1348     for (const char *P = Name.getKeyData(),
   1349          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
   1350       NameVals.push_back((unsigned char)*P);
   1351 
   1352     // Emit the finished record.
   1353     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
   1354     NameVals.clear();
   1355   }
   1356   Stream.ExitBlock();
   1357 }
   1358 
   1359 /// WriteFunction - Emit a function body to the module stream.
   1360 static void WriteFunction(const Function &F, llvm_2_9::ValueEnumerator &VE,
   1361                           BitstreamWriter &Stream) {
   1362   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
   1363   VE.incorporateFunction(F);
   1364 
   1365   SmallVector<unsigned, 64> Vals;
   1366 
   1367   // Emit the number of basic blocks, so the reader can create them ahead of
   1368   // time.
   1369   Vals.push_back(VE.getBasicBlocks().size());
   1370   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
   1371   Vals.clear();
   1372 
   1373   // If there are function-local constants, emit them now.
   1374   unsigned CstStart, CstEnd;
   1375   VE.getFunctionConstantRange(CstStart, CstEnd);
   1376   WriteConstants(CstStart, CstEnd, VE, Stream, false);
   1377 
   1378   // If there is function-local metadata, emit it now.
   1379   WriteFunctionLocalMetadata(F, VE, Stream);
   1380 
   1381   // Keep a running idea of what the instruction ID is.
   1382   unsigned InstID = CstEnd;
   1383 
   1384   bool NeedsMetadataAttachment = false;
   1385 
   1386   DebugLoc LastDL;
   1387 
   1388   // Finally, emit all the instructions, in order.
   1389   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
   1390     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
   1391          I != E; ++I) {
   1392       WriteInstruction(*I, InstID, VE, Stream, Vals);
   1393 
   1394       if (!I->getType()->isVoidTy())
   1395         ++InstID;
   1396 
   1397       // If the instruction has metadata, write a metadata attachment later.
   1398       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
   1399 
   1400       // If the instruction has a debug location, emit it.
   1401       DebugLoc DL = I->getDebugLoc();
   1402       if (DL.isUnknown()) {
   1403         // nothing todo.
   1404       } else if (DL == LastDL) {
   1405         // Just repeat the same debug loc as last time.
   1406         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
   1407       } else {
   1408         MDNode *Scope, *IA;
   1409         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
   1410 
   1411         Vals.push_back(DL.getLine());
   1412         Vals.push_back(DL.getCol());
   1413         Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
   1414         Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
   1415         Stream.EmitRecord(FUNC_CODE_DEBUG_LOC_2_7, Vals);
   1416         Vals.clear();
   1417 
   1418         LastDL = DL;
   1419       }
   1420     }
   1421 
   1422   // Emit names for all the instructions etc.
   1423   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
   1424 
   1425   if (NeedsMetadataAttachment)
   1426     WriteMetadataAttachment(F, VE, Stream);
   1427   VE.purgeFunction();
   1428   Stream.ExitBlock();
   1429 }
   1430 
   1431 // Emit blockinfo, which defines the standard abbreviations etc.
   1432 static void WriteBlockInfo(const llvm_2_9::ValueEnumerator &VE,
   1433                            BitstreamWriter &Stream) {
   1434   // We only want to emit block info records for blocks that have multiple
   1435   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
   1436   // blocks can defined their abbrevs inline.
   1437   Stream.EnterBlockInfoBlock(2);
   1438 
   1439   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
   1440     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1441     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
   1442     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1443     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1444     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   1445     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1446                                    Abbv) != VST_ENTRY_8_ABBREV)
   1447       llvm_unreachable("Unexpected abbrev ordering!");
   1448   }
   1449 
   1450   { // 7-bit fixed width VST_ENTRY strings.
   1451     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1452     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1453     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1454     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1455     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   1456     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1457                                    Abbv) != VST_ENTRY_7_ABBREV)
   1458       llvm_unreachable("Unexpected abbrev ordering!");
   1459   }
   1460   { // 6-bit char6 VST_ENTRY strings.
   1461     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1462     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1463     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1464     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1465     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1466     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1467                                    Abbv) != VST_ENTRY_6_ABBREV)
   1468       llvm_unreachable("Unexpected abbrev ordering!");
   1469   }
   1470   { // 6-bit char6 VST_BBENTRY strings.
   1471     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1472     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
   1473     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1474     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1475     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1476     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1477                                    Abbv) != VST_BBENTRY_6_ABBREV)
   1478       llvm_unreachable("Unexpected abbrev ordering!");
   1479   }
   1480 
   1481 
   1482 
   1483   { // SETTYPE abbrev for CONSTANTS_BLOCK.
   1484     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1485     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
   1486     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   1487                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1488     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1489                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
   1490       llvm_unreachable("Unexpected abbrev ordering!");
   1491   }
   1492 
   1493   { // INTEGER abbrev for CONSTANTS_BLOCK.
   1494     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1495     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
   1496     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1497     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1498                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
   1499       llvm_unreachable("Unexpected abbrev ordering!");
   1500   }
   1501 
   1502   { // CE_CAST abbrev for CONSTANTS_BLOCK.
   1503     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1504     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
   1505     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
   1506     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
   1507                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1508     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
   1509 
   1510     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1511                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
   1512       llvm_unreachable("Unexpected abbrev ordering!");
   1513   }
   1514   { // NULL abbrev for CONSTANTS_BLOCK.
   1515     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1516     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
   1517     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1518                                    Abbv) != CONSTANTS_NULL_Abbrev)
   1519       llvm_unreachable("Unexpected abbrev ordering!");
   1520   }
   1521 
   1522   // FIXME: This should only use space for first class types!
   1523 
   1524   { // INST_LOAD abbrev for FUNCTION_BLOCK.
   1525     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1526     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
   1527     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
   1528     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
   1529     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
   1530     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1531                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
   1532       llvm_unreachable("Unexpected abbrev ordering!");
   1533   }
   1534   { // INST_BINOP abbrev for FUNCTION_BLOCK.
   1535     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1536     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1537     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1538     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1539     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1540     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1541                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
   1542       llvm_unreachable("Unexpected abbrev ordering!");
   1543   }
   1544   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
   1545     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1546     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1547     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1548     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1549     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1550     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
   1551     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1552                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
   1553       llvm_unreachable("Unexpected abbrev ordering!");
   1554   }
   1555   { // INST_CAST abbrev for FUNCTION_BLOCK.
   1556     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1557     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
   1558     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
   1559     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
   1560                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1561     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
   1562     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1563                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
   1564       llvm_unreachable("Unexpected abbrev ordering!");
   1565   }
   1566 
   1567   { // INST_RET abbrev for FUNCTION_BLOCK.
   1568     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1569     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1570     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1571                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
   1572       llvm_unreachable("Unexpected abbrev ordering!");
   1573   }
   1574   { // INST_RET abbrev for FUNCTION_BLOCK.
   1575     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1576     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1577     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
   1578     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1579                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
   1580       llvm_unreachable("Unexpected abbrev ordering!");
   1581   }
   1582   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
   1583     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1584     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
   1585     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1586                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
   1587       llvm_unreachable("Unexpected abbrev ordering!");
   1588   }
   1589 
   1590   Stream.ExitBlock();
   1591 }
   1592 
   1593 
   1594 /// WriteModule - Emit the specified module to the bitstream.
   1595 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
   1596   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
   1597 
   1598   // Emit the version number if it is non-zero.
   1599   if (CurVersion) {
   1600     SmallVector<unsigned, 1> Vals;
   1601     Vals.push_back(CurVersion);
   1602     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
   1603   }
   1604 
   1605   // Analyze the module, enumerating globals, functions, etc.
   1606   llvm_2_9::ValueEnumerator VE(M);
   1607 
   1608   // Emit blockinfo, which defines the standard abbreviations etc.
   1609   WriteBlockInfo(VE, Stream);
   1610 
   1611   // Emit information about parameter attributes.
   1612   WriteAttributeTable(VE, Stream);
   1613 
   1614   // Emit information describing all of the types in the module.
   1615   WriteTypeTable(VE, Stream);
   1616 
   1617   // Emit top-level description of module, including target triple, inline asm,
   1618   // descriptors for global variables, and function prototype info.
   1619   WriteModuleInfo(M, VE, Stream);
   1620 
   1621   // Emit constants.
   1622   WriteModuleConstants(VE, Stream);
   1623 
   1624   // Emit metadata.
   1625   WriteModuleMetadata(M, VE, Stream);
   1626 
   1627   // Emit function bodies.
   1628   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
   1629     if (!F->isDeclaration())
   1630       WriteFunction(*F, VE, Stream);
   1631 
   1632   // Emit metadata.
   1633   WriteModuleMetadataStore(M, Stream);
   1634 
   1635   // Emit names for globals/functions etc.
   1636   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
   1637 
   1638   Stream.ExitBlock();
   1639 }
   1640 
   1641 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
   1642 /// header and trailer to make it compatible with the system archiver.  To do
   1643 /// this we emit the following header, and then emit a trailer that pads the
   1644 /// file out to be a multiple of 16 bytes.
   1645 ///
   1646 /// struct bc_header {
   1647 ///   uint32_t Magic;         // 0x0B17C0DE
   1648 ///   uint32_t Version;       // Version, currently always 0.
   1649 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
   1650 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
   1651 ///   uint32_t CPUType;       // CPU specifier.
   1652 ///   ... potentially more later ...
   1653 /// };
   1654 enum {
   1655   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
   1656   DarwinBCHeaderSize = 5*4
   1657 };
   1658 
   1659 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
   1660                                uint32_t &Position) {
   1661   Buffer[Position + 0] = (unsigned char) (Value >>  0);
   1662   Buffer[Position + 1] = (unsigned char) (Value >>  8);
   1663   Buffer[Position + 2] = (unsigned char) (Value >> 16);
   1664   Buffer[Position + 3] = (unsigned char) (Value >> 24);
   1665   Position += 4;
   1666 }
   1667 
   1668 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
   1669                                          const Triple &TT) {
   1670   unsigned CPUType = ~0U;
   1671 
   1672   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
   1673   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
   1674   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
   1675   // specific constants here because they are implicitly part of the Darwin ABI.
   1676   enum {
   1677     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
   1678     DARWIN_CPU_TYPE_X86        = 7,
   1679     DARWIN_CPU_TYPE_ARM        = 12,
   1680     DARWIN_CPU_TYPE_POWERPC    = 18
   1681   };
   1682 
   1683   Triple::ArchType Arch = TT.getArch();
   1684   if (Arch == Triple::x86_64)
   1685     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
   1686   else if (Arch == Triple::x86)
   1687     CPUType = DARWIN_CPU_TYPE_X86;
   1688   else if (Arch == Triple::ppc)
   1689     CPUType = DARWIN_CPU_TYPE_POWERPC;
   1690   else if (Arch == Triple::ppc64)
   1691     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
   1692   else if (Arch == Triple::arm || Arch == Triple::thumb)
   1693     CPUType = DARWIN_CPU_TYPE_ARM;
   1694 
   1695   // Traditional Bitcode starts after header.
   1696   assert(Buffer.size() >= DarwinBCHeaderSize &&
   1697          "Expected header size to be reserved");
   1698   unsigned BCOffset = DarwinBCHeaderSize;
   1699   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
   1700 
   1701   // Write the magic and version.
   1702   unsigned Position = 0;
   1703   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
   1704   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
   1705   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
   1706   WriteInt32ToBuffer(BCSize     , Buffer, Position);
   1707   WriteInt32ToBuffer(CPUType    , Buffer, Position);
   1708 
   1709   // If the file is not a multiple of 16 bytes, insert dummy padding.
   1710   while (Buffer.size() & 15)
   1711     Buffer.push_back(0);
   1712 }
   1713 
   1714 /// WriteBitcodeToFile - Write the specified module to the specified output
   1715 /// stream.
   1716 void llvm_2_9::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
   1717   SmallVector<char, 1024> Buffer;
   1718   Buffer.reserve(256*1024);
   1719 
   1720   // If this is darwin or another generic macho target, reserve space for the
   1721   // header.
   1722   Triple TT(M->getTargetTriple());
   1723   if (TT.isOSDarwin())
   1724     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
   1725 
   1726   // Emit the module into the buffer.
   1727   {
   1728     BitstreamWriter Stream(Buffer);
   1729 
   1730     // Emit the file header.
   1731     Stream.Emit((unsigned)'B', 8);
   1732     Stream.Emit((unsigned)'C', 8);
   1733     Stream.Emit(0x0, 4);
   1734     Stream.Emit(0xC, 4);
   1735     Stream.Emit(0xE, 4);
   1736     Stream.Emit(0xD, 4);
   1737 
   1738     // Emit the module.
   1739     WriteModule(M, Stream);
   1740   }
   1741 
   1742   if (TT.isOSDarwin())
   1743     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
   1744 
   1745   // Write the generated bitstream to "Out".
   1746   Out.write((char*)&Buffer.front(), Buffer.size());
   1747 }
   1748