Home | History | Annotate | Download | only in CodeGen
      1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the generic RegisterCoalescer interface which
     11 // is used as the common interface used by all clients and
     12 // implementations of register coalescing.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "regalloc"
     17 #include "RegisterCoalescer.h"
     18 #include "llvm/ADT/OwningPtr.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/Analysis/AliasAnalysis.h"
     23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     24 #include "llvm/CodeGen/LiveRangeEdit.h"
     25 #include "llvm/CodeGen/MachineFrameInfo.h"
     26 #include "llvm/CodeGen/MachineInstr.h"
     27 #include "llvm/CodeGen/MachineLoopInfo.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/Passes.h"
     30 #include "llvm/CodeGen/RegisterClassInfo.h"
     31 #include "llvm/CodeGen/VirtRegMap.h"
     32 #include "llvm/IR/Value.h"
     33 #include "llvm/Pass.h"
     34 #include "llvm/Support/CommandLine.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include "llvm/Target/TargetInstrInfo.h"
     39 #include "llvm/Target/TargetMachine.h"
     40 #include "llvm/Target/TargetRegisterInfo.h"
     41 #include "llvm/Target/TargetSubtargetInfo.h"
     42 #include <algorithm>
     43 #include <cmath>
     44 using namespace llvm;
     45 
     46 STATISTIC(numJoins    , "Number of interval joins performed");
     47 STATISTIC(numCrossRCs , "Number of cross class joins performed");
     48 STATISTIC(numCommutes , "Number of instruction commuting performed");
     49 STATISTIC(numExtends  , "Number of copies extended");
     50 STATISTIC(NumReMats   , "Number of instructions re-materialized");
     51 STATISTIC(NumInflated , "Number of register classes inflated");
     52 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
     53 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
     54 
     55 static cl::opt<bool>
     56 EnableJoining("join-liveintervals",
     57               cl::desc("Coalesce copies (default=true)"),
     58               cl::init(true));
     59 
     60 // Temporary flag to test critical edge unsplitting.
     61 static cl::opt<bool>
     62 EnableJoinSplits("join-splitedges",
     63   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
     64 
     65 // Temporary flag to test global copy optimization.
     66 static cl::opt<cl::boolOrDefault>
     67 EnableGlobalCopies("join-globalcopies",
     68   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
     69   cl::init(cl::BOU_UNSET), cl::Hidden);
     70 
     71 static cl::opt<bool>
     72 VerifyCoalescing("verify-coalescing",
     73          cl::desc("Verify machine instrs before and after register coalescing"),
     74          cl::Hidden);
     75 
     76 namespace {
     77   class RegisterCoalescer : public MachineFunctionPass,
     78                             private LiveRangeEdit::Delegate {
     79     MachineFunction* MF;
     80     MachineRegisterInfo* MRI;
     81     const TargetMachine* TM;
     82     const TargetRegisterInfo* TRI;
     83     const TargetInstrInfo* TII;
     84     LiveIntervals *LIS;
     85     const MachineLoopInfo* Loops;
     86     AliasAnalysis *AA;
     87     RegisterClassInfo RegClassInfo;
     88 
     89     /// \brief True if the coalescer should aggressively coalesce global copies
     90     /// in favor of keeping local copies.
     91     bool JoinGlobalCopies;
     92 
     93     /// \brief True if the coalescer should aggressively coalesce fall-thru
     94     /// blocks exclusively containing copies.
     95     bool JoinSplitEdges;
     96 
     97     /// WorkList - Copy instructions yet to be coalesced.
     98     SmallVector<MachineInstr*, 8> WorkList;
     99     SmallVector<MachineInstr*, 8> LocalWorkList;
    100 
    101     /// ErasedInstrs - Set of instruction pointers that have been erased, and
    102     /// that may be present in WorkList.
    103     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
    104 
    105     /// Dead instructions that are about to be deleted.
    106     SmallVector<MachineInstr*, 8> DeadDefs;
    107 
    108     /// Virtual registers to be considered for register class inflation.
    109     SmallVector<unsigned, 8> InflateRegs;
    110 
    111     /// Recursively eliminate dead defs in DeadDefs.
    112     void eliminateDeadDefs();
    113 
    114     /// LiveRangeEdit callback.
    115     void LRE_WillEraseInstruction(MachineInstr *MI);
    116 
    117     /// coalesceLocals - coalesce the LocalWorkList.
    118     void coalesceLocals();
    119 
    120     /// joinAllIntervals - join compatible live intervals
    121     void joinAllIntervals();
    122 
    123     /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
    124     /// copies that cannot yet be coalesced into WorkList.
    125     void copyCoalesceInMBB(MachineBasicBlock *MBB);
    126 
    127     /// copyCoalesceWorkList - Try to coalesce all copies in CurrList. Return
    128     /// true if any progress was made.
    129     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
    130 
    131     /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
    132     /// which are the src/dst of the copy instruction CopyMI.  This returns
    133     /// true if the copy was successfully coalesced away. If it is not
    134     /// currently possible to coalesce this interval, but it may be possible if
    135     /// other things get coalesced, then it returns true by reference in
    136     /// 'Again'.
    137     bool joinCopy(MachineInstr *TheCopy, bool &Again);
    138 
    139     /// joinIntervals - Attempt to join these two intervals.  On failure, this
    140     /// returns false.  The output "SrcInt" will not have been modified, so we
    141     /// can use this information below to update aliases.
    142     bool joinIntervals(CoalescerPair &CP);
    143 
    144     /// Attempt joining two virtual registers. Return true on success.
    145     bool joinVirtRegs(CoalescerPair &CP);
    146 
    147     /// Attempt joining with a reserved physreg.
    148     bool joinReservedPhysReg(CoalescerPair &CP);
    149 
    150     /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
    151     /// the source value number is defined by a copy from the destination reg
    152     /// see if we can merge these two destination reg valno# into a single
    153     /// value number, eliminating a copy.
    154     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
    155 
    156     /// hasOtherReachingDefs - Return true if there are definitions of IntB
    157     /// other than BValNo val# that can reach uses of AValno val# of IntA.
    158     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
    159                               VNInfo *AValNo, VNInfo *BValNo);
    160 
    161     /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
    162     /// If the source value number is defined by a commutable instruction and
    163     /// its other operand is coalesced to the copy dest register, see if we
    164     /// can transform the copy into a noop by commuting the definition.
    165     bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
    166 
    167     /// reMaterializeTrivialDef - If the source of a copy is defined by a
    168     /// trivial computation, replace the copy by rematerialize the definition.
    169     bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI);
    170 
    171     /// canJoinPhys - Return true if a physreg copy should be joined.
    172     bool canJoinPhys(const CoalescerPair &CP);
    173 
    174     /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
    175     /// update the subregister number if it is not zero. If DstReg is a
    176     /// physical register and the existing subregister number of the def / use
    177     /// being updated is not zero, make sure to set it to the correct physical
    178     /// subregister.
    179     void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
    180 
    181     /// eliminateUndefCopy - Handle copies of undef values.
    182     bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
    183 
    184   public:
    185     static char ID; // Class identification, replacement for typeinfo
    186     RegisterCoalescer() : MachineFunctionPass(ID) {
    187       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
    188     }
    189 
    190     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    191 
    192     virtual void releaseMemory();
    193 
    194     /// runOnMachineFunction - pass entry point
    195     virtual bool runOnMachineFunction(MachineFunction&);
    196 
    197     /// print - Implement the dump method.
    198     virtual void print(raw_ostream &O, const Module* = 0) const;
    199   };
    200 } /// end anonymous namespace
    201 
    202 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
    203 
    204 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
    205                       "Simple Register Coalescing", false, false)
    206 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    207 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    208 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    209 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    210 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
    211                     "Simple Register Coalescing", false, false)
    212 
    213 char RegisterCoalescer::ID = 0;
    214 
    215 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
    216                         unsigned &Src, unsigned &Dst,
    217                         unsigned &SrcSub, unsigned &DstSub) {
    218   if (MI->isCopy()) {
    219     Dst = MI->getOperand(0).getReg();
    220     DstSub = MI->getOperand(0).getSubReg();
    221     Src = MI->getOperand(1).getReg();
    222     SrcSub = MI->getOperand(1).getSubReg();
    223   } else if (MI->isSubregToReg()) {
    224     Dst = MI->getOperand(0).getReg();
    225     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
    226                                       MI->getOperand(3).getImm());
    227     Src = MI->getOperand(2).getReg();
    228     SrcSub = MI->getOperand(2).getSubReg();
    229   } else
    230     return false;
    231   return true;
    232 }
    233 
    234 // Return true if this block should be vacated by the coalescer to eliminate
    235 // branches. The important cases to handle in the coalescer are critical edges
    236 // split during phi elimination which contain only copies. Simple blocks that
    237 // contain non-branches should also be vacated, but this can be handled by an
    238 // earlier pass similar to early if-conversion.
    239 static bool isSplitEdge(const MachineBasicBlock *MBB) {
    240   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
    241     return false;
    242 
    243   for (MachineBasicBlock::const_iterator MII = MBB->begin(), E = MBB->end();
    244        MII != E; ++MII) {
    245     if (!MII->isCopyLike() && !MII->isUnconditionalBranch())
    246       return false;
    247   }
    248   return true;
    249 }
    250 
    251 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
    252   SrcReg = DstReg = 0;
    253   SrcIdx = DstIdx = 0;
    254   NewRC = 0;
    255   Flipped = CrossClass = false;
    256 
    257   unsigned Src, Dst, SrcSub, DstSub;
    258   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
    259     return false;
    260   Partial = SrcSub || DstSub;
    261 
    262   // If one register is a physreg, it must be Dst.
    263   if (TargetRegisterInfo::isPhysicalRegister(Src)) {
    264     if (TargetRegisterInfo::isPhysicalRegister(Dst))
    265       return false;
    266     std::swap(Src, Dst);
    267     std::swap(SrcSub, DstSub);
    268     Flipped = true;
    269   }
    270 
    271   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
    272 
    273   if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
    274     // Eliminate DstSub on a physreg.
    275     if (DstSub) {
    276       Dst = TRI.getSubReg(Dst, DstSub);
    277       if (!Dst) return false;
    278       DstSub = 0;
    279     }
    280 
    281     // Eliminate SrcSub by picking a corresponding Dst superregister.
    282     if (SrcSub) {
    283       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
    284       if (!Dst) return false;
    285       SrcSub = 0;
    286     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
    287       return false;
    288     }
    289   } else {
    290     // Both registers are virtual.
    291     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
    292     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
    293 
    294     // Both registers have subreg indices.
    295     if (SrcSub && DstSub) {
    296       // Copies between different sub-registers are never coalescable.
    297       if (Src == Dst && SrcSub != DstSub)
    298         return false;
    299 
    300       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
    301                                          SrcIdx, DstIdx);
    302       if (!NewRC)
    303         return false;
    304     } else if (DstSub) {
    305       // SrcReg will be merged with a sub-register of DstReg.
    306       SrcIdx = DstSub;
    307       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
    308     } else if (SrcSub) {
    309       // DstReg will be merged with a sub-register of SrcReg.
    310       DstIdx = SrcSub;
    311       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
    312     } else {
    313       // This is a straight copy without sub-registers.
    314       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
    315     }
    316 
    317     // The combined constraint may be impossible to satisfy.
    318     if (!NewRC)
    319       return false;
    320 
    321     // Prefer SrcReg to be a sub-register of DstReg.
    322     // FIXME: Coalescer should support subregs symmetrically.
    323     if (DstIdx && !SrcIdx) {
    324       std::swap(Src, Dst);
    325       std::swap(SrcIdx, DstIdx);
    326       Flipped = !Flipped;
    327     }
    328 
    329     CrossClass = NewRC != DstRC || NewRC != SrcRC;
    330   }
    331   // Check our invariants
    332   assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
    333   assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
    334          "Cannot have a physical SubIdx");
    335   SrcReg = Src;
    336   DstReg = Dst;
    337   return true;
    338 }
    339 
    340 bool CoalescerPair::flip() {
    341   if (TargetRegisterInfo::isPhysicalRegister(DstReg))
    342     return false;
    343   std::swap(SrcReg, DstReg);
    344   std::swap(SrcIdx, DstIdx);
    345   Flipped = !Flipped;
    346   return true;
    347 }
    348 
    349 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
    350   if (!MI)
    351     return false;
    352   unsigned Src, Dst, SrcSub, DstSub;
    353   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
    354     return false;
    355 
    356   // Find the virtual register that is SrcReg.
    357   if (Dst == SrcReg) {
    358     std::swap(Src, Dst);
    359     std::swap(SrcSub, DstSub);
    360   } else if (Src != SrcReg) {
    361     return false;
    362   }
    363 
    364   // Now check that Dst matches DstReg.
    365   if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
    366     if (!TargetRegisterInfo::isPhysicalRegister(Dst))
    367       return false;
    368     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
    369     // DstSub could be set for a physreg from INSERT_SUBREG.
    370     if (DstSub)
    371       Dst = TRI.getSubReg(Dst, DstSub);
    372     // Full copy of Src.
    373     if (!SrcSub)
    374       return DstReg == Dst;
    375     // This is a partial register copy. Check that the parts match.
    376     return TRI.getSubReg(DstReg, SrcSub) == Dst;
    377   } else {
    378     // DstReg is virtual.
    379     if (DstReg != Dst)
    380       return false;
    381     // Registers match, do the subregisters line up?
    382     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
    383            TRI.composeSubRegIndices(DstIdx, DstSub);
    384   }
    385 }
    386 
    387 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
    388   AU.setPreservesCFG();
    389   AU.addRequired<AliasAnalysis>();
    390   AU.addRequired<LiveIntervals>();
    391   AU.addPreserved<LiveIntervals>();
    392   AU.addPreserved<SlotIndexes>();
    393   AU.addRequired<MachineLoopInfo>();
    394   AU.addPreserved<MachineLoopInfo>();
    395   AU.addPreservedID(MachineDominatorsID);
    396   MachineFunctionPass::getAnalysisUsage(AU);
    397 }
    398 
    399 void RegisterCoalescer::eliminateDeadDefs() {
    400   SmallVector<LiveInterval*, 8> NewRegs;
    401   LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs);
    402 }
    403 
    404 // Callback from eliminateDeadDefs().
    405 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
    406   // MI may be in WorkList. Make sure we don't visit it.
    407   ErasedInstrs.insert(MI);
    408 }
    409 
    410 /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
    411 /// being the source and IntB being the dest, thus this defines a value number
    412 /// in IntB.  If the source value number (in IntA) is defined by a copy from B,
    413 /// see if we can merge these two pieces of B into a single value number,
    414 /// eliminating a copy.  For example:
    415 ///
    416 ///  A3 = B0
    417 ///    ...
    418 ///  B1 = A3      <- this copy
    419 ///
    420 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
    421 /// value number to be replaced with B0 (which simplifies the B liveinterval).
    422 ///
    423 /// This returns true if an interval was modified.
    424 ///
    425 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
    426                                              MachineInstr *CopyMI) {
    427   assert(!CP.isPartial() && "This doesn't work for partial copies.");
    428   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
    429 
    430   LiveInterval &IntA =
    431     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
    432   LiveInterval &IntB =
    433     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
    434   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
    435 
    436   // BValNo is a value number in B that is defined by a copy from A.  'B3' in
    437   // the example above.
    438   LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
    439   if (BLR == IntB.end()) return false;
    440   VNInfo *BValNo = BLR->valno;
    441 
    442   // Get the location that B is defined at.  Two options: either this value has
    443   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
    444   // can't process it.
    445   if (BValNo->def != CopyIdx) return false;
    446 
    447   // AValNo is the value number in A that defines the copy, A3 in the example.
    448   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
    449   LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
    450   // The live range might not exist after fun with physreg coalescing.
    451   if (ALR == IntA.end()) return false;
    452   VNInfo *AValNo = ALR->valno;
    453 
    454   // If AValNo is defined as a copy from IntB, we can potentially process this.
    455   // Get the instruction that defines this value number.
    456   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
    457   // Don't allow any partial copies, even if isCoalescable() allows them.
    458   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
    459     return false;
    460 
    461   // Get the LiveRange in IntB that this value number starts with.
    462   LiveInterval::iterator ValLR =
    463     IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
    464   if (ValLR == IntB.end())
    465     return false;
    466 
    467   // Make sure that the end of the live range is inside the same block as
    468   // CopyMI.
    469   MachineInstr *ValLREndInst =
    470     LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
    471   if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
    472     return false;
    473 
    474   // Okay, we now know that ValLR ends in the same block that the CopyMI
    475   // live-range starts.  If there are no intervening live ranges between them in
    476   // IntB, we can merge them.
    477   if (ValLR+1 != BLR) return false;
    478 
    479   DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
    480 
    481   SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
    482   // We are about to delete CopyMI, so need to remove it as the 'instruction
    483   // that defines this value #'. Update the valnum with the new defining
    484   // instruction #.
    485   BValNo->def = FillerStart;
    486 
    487   // Okay, we can merge them.  We need to insert a new liverange:
    488   // [ValLR.end, BLR.begin) of either value number, then we merge the
    489   // two value numbers.
    490   IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
    491 
    492   // Okay, merge "B1" into the same value number as "B0".
    493   if (BValNo != ValLR->valno)
    494     IntB.MergeValueNumberInto(BValNo, ValLR->valno);
    495   DEBUG(dbgs() << "   result = " << IntB << '\n');
    496 
    497   // If the source instruction was killing the source register before the
    498   // merge, unset the isKill marker given the live range has been extended.
    499   int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
    500   if (UIdx != -1) {
    501     ValLREndInst->getOperand(UIdx).setIsKill(false);
    502   }
    503 
    504   // Rewrite the copy. If the copy instruction was killing the destination
    505   // register before the merge, find the last use and trim the live range. That
    506   // will also add the isKill marker.
    507   CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
    508   if (ALR->end == CopyIdx)
    509     LIS->shrinkToUses(&IntA);
    510 
    511   ++numExtends;
    512   return true;
    513 }
    514 
    515 /// hasOtherReachingDefs - Return true if there are definitions of IntB
    516 /// other than BValNo val# that can reach uses of AValno val# of IntA.
    517 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
    518                                              LiveInterval &IntB,
    519                                              VNInfo *AValNo,
    520                                              VNInfo *BValNo) {
    521   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
    522   // the PHI values.
    523   if (LIS->hasPHIKill(IntA, AValNo))
    524     return true;
    525 
    526   for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
    527        AI != AE; ++AI) {
    528     if (AI->valno != AValNo) continue;
    529     LiveInterval::Ranges::iterator BI =
    530       std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
    531     if (BI != IntB.ranges.begin())
    532       --BI;
    533     for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
    534       if (BI->valno == BValNo)
    535         continue;
    536       if (BI->start <= AI->start && BI->end > AI->start)
    537         return true;
    538       if (BI->start > AI->start && BI->start < AI->end)
    539         return true;
    540     }
    541   }
    542   return false;
    543 }
    544 
    545 /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
    546 /// IntA being the source and IntB being the dest, thus this defines a value
    547 /// number in IntB.  If the source value number (in IntA) is defined by a
    548 /// commutable instruction and its other operand is coalesced to the copy dest
    549 /// register, see if we can transform the copy into a noop by commuting the
    550 /// definition. For example,
    551 ///
    552 ///  A3 = op A2 B0<kill>
    553 ///    ...
    554 ///  B1 = A3      <- this copy
    555 ///    ...
    556 ///     = op A3   <- more uses
    557 ///
    558 /// ==>
    559 ///
    560 ///  B2 = op B0 A2<kill>
    561 ///    ...
    562 ///  B1 = B2      <- now an identify copy
    563 ///    ...
    564 ///     = op B2   <- more uses
    565 ///
    566 /// This returns true if an interval was modified.
    567 ///
    568 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
    569                                                  MachineInstr *CopyMI) {
    570   assert (!CP.isPhys());
    571 
    572   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
    573 
    574   LiveInterval &IntA =
    575     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
    576   LiveInterval &IntB =
    577     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
    578 
    579   // BValNo is a value number in B that is defined by a copy from A. 'B3' in
    580   // the example above.
    581   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
    582   if (!BValNo || BValNo->def != CopyIdx)
    583     return false;
    584 
    585   assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
    586 
    587   // AValNo is the value number in A that defines the copy, A3 in the example.
    588   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
    589   assert(AValNo && "COPY source not live");
    590   if (AValNo->isPHIDef() || AValNo->isUnused())
    591     return false;
    592   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
    593   if (!DefMI)
    594     return false;
    595   if (!DefMI->isCommutable())
    596     return false;
    597   // If DefMI is a two-address instruction then commuting it will change the
    598   // destination register.
    599   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
    600   assert(DefIdx != -1);
    601   unsigned UseOpIdx;
    602   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
    603     return false;
    604   unsigned Op1, Op2, NewDstIdx;
    605   if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
    606     return false;
    607   if (Op1 == UseOpIdx)
    608     NewDstIdx = Op2;
    609   else if (Op2 == UseOpIdx)
    610     NewDstIdx = Op1;
    611   else
    612     return false;
    613 
    614   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
    615   unsigned NewReg = NewDstMO.getReg();
    616   if (NewReg != IntB.reg || !LiveRangeQuery(IntB, AValNo->def).isKill())
    617     return false;
    618 
    619   // Make sure there are no other definitions of IntB that would reach the
    620   // uses which the new definition can reach.
    621   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
    622     return false;
    623 
    624   // If some of the uses of IntA.reg is already coalesced away, return false.
    625   // It's not possible to determine whether it's safe to perform the coalescing.
    626   for (MachineRegisterInfo::use_nodbg_iterator UI =
    627          MRI->use_nodbg_begin(IntA.reg),
    628        UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
    629     MachineInstr *UseMI = &*UI;
    630     SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
    631     LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
    632     if (ULR == IntA.end() || ULR->valno != AValNo)
    633       continue;
    634     // If this use is tied to a def, we can't rewrite the register.
    635     if (UseMI->isRegTiedToDefOperand(UI.getOperandNo()))
    636       return false;
    637   }
    638 
    639   DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
    640                << *DefMI);
    641 
    642   // At this point we have decided that it is legal to do this
    643   // transformation.  Start by commuting the instruction.
    644   MachineBasicBlock *MBB = DefMI->getParent();
    645   MachineInstr *NewMI = TII->commuteInstruction(DefMI);
    646   if (!NewMI)
    647     return false;
    648   if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
    649       TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
    650       !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
    651     return false;
    652   if (NewMI != DefMI) {
    653     LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
    654     MachineBasicBlock::iterator Pos = DefMI;
    655     MBB->insert(Pos, NewMI);
    656     MBB->erase(DefMI);
    657   }
    658   unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
    659   NewMI->getOperand(OpIdx).setIsKill();
    660 
    661   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
    662   // A = or A, B
    663   // ...
    664   // B = A
    665   // ...
    666   // C = A<kill>
    667   // ...
    668   //   = B
    669 
    670   // Update uses of IntA of the specific Val# with IntB.
    671   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
    672          UE = MRI->use_end(); UI != UE;) {
    673     MachineOperand &UseMO = UI.getOperand();
    674     MachineInstr *UseMI = &*UI;
    675     ++UI;
    676     if (UseMI->isDebugValue()) {
    677       // FIXME These don't have an instruction index.  Not clear we have enough
    678       // info to decide whether to do this replacement or not.  For now do it.
    679       UseMO.setReg(NewReg);
    680       continue;
    681     }
    682     SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
    683     LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
    684     if (ULR == IntA.end() || ULR->valno != AValNo)
    685       continue;
    686     // Kill flags are no longer accurate. They are recomputed after RA.
    687     UseMO.setIsKill(false);
    688     if (TargetRegisterInfo::isPhysicalRegister(NewReg))
    689       UseMO.substPhysReg(NewReg, *TRI);
    690     else
    691       UseMO.setReg(NewReg);
    692     if (UseMI == CopyMI)
    693       continue;
    694     if (!UseMI->isCopy())
    695       continue;
    696     if (UseMI->getOperand(0).getReg() != IntB.reg ||
    697         UseMI->getOperand(0).getSubReg())
    698       continue;
    699 
    700     // This copy will become a noop. If it's defining a new val#, merge it into
    701     // BValNo.
    702     SlotIndex DefIdx = UseIdx.getRegSlot();
    703     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
    704     if (!DVNI)
    705       continue;
    706     DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
    707     assert(DVNI->def == DefIdx);
    708     BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
    709     ErasedInstrs.insert(UseMI);
    710     LIS->RemoveMachineInstrFromMaps(UseMI);
    711     UseMI->eraseFromParent();
    712   }
    713 
    714   // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
    715   // is updated.
    716   VNInfo *ValNo = BValNo;
    717   ValNo->def = AValNo->def;
    718   for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
    719        AI != AE; ++AI) {
    720     if (AI->valno != AValNo) continue;
    721     IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
    722   }
    723   DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
    724 
    725   IntA.removeValNo(AValNo);
    726   DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
    727   ++numCommutes;
    728   return true;
    729 }
    730 
    731 /// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
    732 /// computation, replace the copy by rematerialize the definition.
    733 bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
    734                                                 MachineInstr *CopyMI) {
    735   unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
    736   unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
    737   if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
    738     return false;
    739 
    740   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
    741   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
    742   LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
    743   assert(SrcLR != SrcInt.end() && "Live range not found!");
    744   VNInfo *ValNo = SrcLR->valno;
    745   if (ValNo->isPHIDef() || ValNo->isUnused())
    746     return false;
    747   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
    748   if (!DefMI)
    749     return false;
    750   assert(DefMI && "Defining instruction disappeared");
    751   if (!DefMI->isAsCheapAsAMove())
    752     return false;
    753   if (!TII->isTriviallyReMaterializable(DefMI, AA))
    754     return false;
    755   bool SawStore = false;
    756   if (!DefMI->isSafeToMove(TII, AA, SawStore))
    757     return false;
    758   const MCInstrDesc &MCID = DefMI->getDesc();
    759   if (MCID.getNumDefs() != 1)
    760     return false;
    761   // Only support subregister destinations when the def is read-undef.
    762   MachineOperand &DstOperand = CopyMI->getOperand(0);
    763   if (DstOperand.getSubReg() && !DstOperand.isUndef())
    764     return false;
    765   if (!DefMI->isImplicitDef()) {
    766     // Make sure the copy destination register class fits the instruction
    767     // definition register class. The mismatch can happen as a result of earlier
    768     // extract_subreg, insert_subreg, subreg_to_reg coalescing.
    769     const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI, *MF);
    770     if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
    771       if (!MRI->constrainRegClass(DstReg, RC))
    772         return false;
    773     } else if (!RC->contains(DstReg))
    774       return false;
    775   }
    776 
    777   MachineBasicBlock *MBB = CopyMI->getParent();
    778   MachineBasicBlock::iterator MII =
    779     llvm::next(MachineBasicBlock::iterator(CopyMI));
    780   TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
    781   MachineInstr *NewMI = prior(MII);
    782 
    783   // The original DefMI may have been a subregister def, but the full register
    784   // class of its destination matches the destination of CopyMI, and CopyMI is
    785   // either a full register def or is read-undef. Therefore we can clear the
    786   // subregister index on the rematerialized instruction.
    787   NewMI->getOperand(0).setSubReg(0);
    788 
    789   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
    790   // We need to remember these so we can add intervals once we insert
    791   // NewMI into SlotIndexes.
    792   SmallVector<unsigned, 4> NewMIImplDefs;
    793   for (unsigned i = NewMI->getDesc().getNumOperands(),
    794          e = NewMI->getNumOperands(); i != e; ++i) {
    795     MachineOperand &MO = NewMI->getOperand(i);
    796     if (MO.isReg()) {
    797       assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
    798              TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
    799       NewMIImplDefs.push_back(MO.getReg());
    800     }
    801   }
    802 
    803   // CopyMI may have implicit operands, transfer them over to the newly
    804   // rematerialized instruction. And update implicit def interval valnos.
    805   for (unsigned i = CopyMI->getDesc().getNumOperands(),
    806          e = CopyMI->getNumOperands(); i != e; ++i) {
    807     MachineOperand &MO = CopyMI->getOperand(i);
    808     if (MO.isReg()) {
    809       assert(MO.isImplicit() && "No explicit operands after implict operands.");
    810       // Discard VReg implicit defs.
    811       if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
    812         NewMI->addOperand(MO);
    813       }
    814     }
    815   }
    816 
    817   LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
    818 
    819   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
    820   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
    821     unsigned Reg = NewMIImplDefs[i];
    822     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
    823       if (LiveInterval *LI = LIS->getCachedRegUnit(*Units))
    824         LI->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
    825   }
    826 
    827   CopyMI->eraseFromParent();
    828   ErasedInstrs.insert(CopyMI);
    829   DEBUG(dbgs() << "Remat: " << *NewMI);
    830   ++NumReMats;
    831 
    832   // The source interval can become smaller because we removed a use.
    833   LIS->shrinkToUses(&SrcInt, &DeadDefs);
    834   if (!DeadDefs.empty())
    835     eliminateDeadDefs();
    836 
    837   return true;
    838 }
    839 
    840 /// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
    841 /// values, it only removes local variables. When we have a copy like:
    842 ///
    843 ///   %vreg1 = COPY %vreg2<undef>
    844 ///
    845 /// We delete the copy and remove the corresponding value number from %vreg1.
    846 /// Any uses of that value number are marked as <undef>.
    847 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
    848                                            const CoalescerPair &CP) {
    849   SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
    850   LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
    851   if (SrcInt->liveAt(Idx))
    852     return false;
    853   LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
    854   if (DstInt->liveAt(Idx))
    855     return false;
    856 
    857   // No intervals are live-in to CopyMI - it is undef.
    858   if (CP.isFlipped())
    859     DstInt = SrcInt;
    860   SrcInt = 0;
    861 
    862   VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
    863   assert(DeadVNI && "No value defined in DstInt");
    864   DstInt->removeValNo(DeadVNI);
    865 
    866   // Find new undef uses.
    867   for (MachineRegisterInfo::reg_nodbg_iterator
    868          I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
    869        I != E; ++I) {
    870     MachineOperand &MO = I.getOperand();
    871     if (MO.isDef() || MO.isUndef())
    872       continue;
    873     MachineInstr *MI = MO.getParent();
    874     SlotIndex Idx = LIS->getInstructionIndex(MI);
    875     if (DstInt->liveAt(Idx))
    876       continue;
    877     MO.setIsUndef(true);
    878     DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
    879   }
    880   return true;
    881 }
    882 
    883 /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
    884 /// update the subregister number if it is not zero. If DstReg is a
    885 /// physical register and the existing subregister number of the def / use
    886 /// being updated is not zero, make sure to set it to the correct physical
    887 /// subregister.
    888 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
    889                                           unsigned DstReg,
    890                                           unsigned SubIdx) {
    891   bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    892   LiveInterval *DstInt = DstIsPhys ? 0 : &LIS->getInterval(DstReg);
    893 
    894   SmallPtrSet<MachineInstr*, 8> Visited;
    895   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
    896        MachineInstr *UseMI = I.skipInstruction();) {
    897     // Each instruction can only be rewritten once because sub-register
    898     // composition is not always idempotent. When SrcReg != DstReg, rewriting
    899     // the UseMI operands removes them from the SrcReg use-def chain, but when
    900     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
    901     // operands mentioning the virtual register.
    902     if (SrcReg == DstReg && !Visited.insert(UseMI))
    903       continue;
    904 
    905     SmallVector<unsigned,8> Ops;
    906     bool Reads, Writes;
    907     tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
    908 
    909     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
    910     // because SrcReg is a sub-register.
    911     if (DstInt && !Reads && SubIdx)
    912       Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
    913 
    914     // Replace SrcReg with DstReg in all UseMI operands.
    915     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    916       MachineOperand &MO = UseMI->getOperand(Ops[i]);
    917 
    918       // Adjust <undef> flags in case of sub-register joins. We don't want to
    919       // turn a full def into a read-modify-write sub-register def and vice
    920       // versa.
    921       if (SubIdx && MO.isDef())
    922         MO.setIsUndef(!Reads);
    923 
    924       if (DstIsPhys)
    925         MO.substPhysReg(DstReg, *TRI);
    926       else
    927         MO.substVirtReg(DstReg, SubIdx, *TRI);
    928     }
    929 
    930     DEBUG({
    931         dbgs() << "\t\tupdated: ";
    932         if (!UseMI->isDebugValue())
    933           dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
    934         dbgs() << *UseMI;
    935       });
    936   }
    937 }
    938 
    939 /// canJoinPhys - Return true if a copy involving a physreg should be joined.
    940 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
    941   /// Always join simple intervals that are defined by a single copy from a
    942   /// reserved register. This doesn't increase register pressure, so it is
    943   /// always beneficial.
    944   if (!MRI->isReserved(CP.getDstReg())) {
    945     DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
    946     return false;
    947   }
    948 
    949   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
    950   if (CP.isFlipped() && JoinVInt.containsOneValue())
    951     return true;
    952 
    953   DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
    954   return false;
    955 }
    956 
    957 /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
    958 /// which are the src/dst of the copy instruction CopyMI.  This returns true
    959 /// if the copy was successfully coalesced away. If it is not currently
    960 /// possible to coalesce this interval, but it may be possible if other
    961 /// things get coalesced, then it returns true by reference in 'Again'.
    962 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
    963 
    964   Again = false;
    965   DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
    966 
    967   CoalescerPair CP(*TRI);
    968   if (!CP.setRegisters(CopyMI)) {
    969     DEBUG(dbgs() << "\tNot coalescable.\n");
    970     return false;
    971   }
    972 
    973   // Dead code elimination. This really should be handled by MachineDCE, but
    974   // sometimes dead copies slip through, and we can't generate invalid live
    975   // ranges.
    976   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
    977     DEBUG(dbgs() << "\tCopy is dead.\n");
    978     DeadDefs.push_back(CopyMI);
    979     eliminateDeadDefs();
    980     return true;
    981   }
    982 
    983   // Eliminate undefs.
    984   if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
    985     DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
    986     LIS->RemoveMachineInstrFromMaps(CopyMI);
    987     CopyMI->eraseFromParent();
    988     return false;  // Not coalescable.
    989   }
    990 
    991   // Coalesced copies are normally removed immediately, but transformations
    992   // like removeCopyByCommutingDef() can inadvertently create identity copies.
    993   // When that happens, just join the values and remove the copy.
    994   if (CP.getSrcReg() == CP.getDstReg()) {
    995     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
    996     DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
    997     LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(CopyMI));
    998     if (VNInfo *DefVNI = LRQ.valueDefined()) {
    999       VNInfo *ReadVNI = LRQ.valueIn();
   1000       assert(ReadVNI && "No value before copy and no <undef> flag.");
   1001       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
   1002       LI.MergeValueNumberInto(DefVNI, ReadVNI);
   1003       DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
   1004     }
   1005     LIS->RemoveMachineInstrFromMaps(CopyMI);
   1006     CopyMI->eraseFromParent();
   1007     return true;
   1008   }
   1009 
   1010   // Enforce policies.
   1011   if (CP.isPhys()) {
   1012     DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
   1013                  << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
   1014                  << '\n');
   1015     if (!canJoinPhys(CP)) {
   1016       // Before giving up coalescing, if definition of source is defined by
   1017       // trivial computation, try rematerializing it.
   1018       if (reMaterializeTrivialDef(CP, CopyMI))
   1019         return true;
   1020       return false;
   1021     }
   1022   } else {
   1023     DEBUG({
   1024       dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
   1025              << " with ";
   1026       if (CP.getDstIdx() && CP.getSrcIdx())
   1027         dbgs() << PrintReg(CP.getDstReg()) << " in "
   1028                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
   1029                << PrintReg(CP.getSrcReg()) << " in "
   1030                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
   1031       else
   1032         dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
   1033                << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
   1034     });
   1035 
   1036     // When possible, let DstReg be the larger interval.
   1037     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
   1038                            LIS->getInterval(CP.getDstReg()).ranges.size())
   1039       CP.flip();
   1040   }
   1041 
   1042   // Okay, attempt to join these two intervals.  On failure, this returns false.
   1043   // Otherwise, if one of the intervals being joined is a physreg, this method
   1044   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
   1045   // been modified, so we can use this information below to update aliases.
   1046   if (!joinIntervals(CP)) {
   1047     // Coalescing failed.
   1048 
   1049     // If definition of source is defined by trivial computation, try
   1050     // rematerializing it.
   1051     if (reMaterializeTrivialDef(CP, CopyMI))
   1052       return true;
   1053 
   1054     // If we can eliminate the copy without merging the live ranges, do so now.
   1055     if (!CP.isPartial() && !CP.isPhys()) {
   1056       if (adjustCopiesBackFrom(CP, CopyMI) ||
   1057           removeCopyByCommutingDef(CP, CopyMI)) {
   1058         LIS->RemoveMachineInstrFromMaps(CopyMI);
   1059         CopyMI->eraseFromParent();
   1060         DEBUG(dbgs() << "\tTrivial!\n");
   1061         return true;
   1062       }
   1063     }
   1064 
   1065     // Otherwise, we are unable to join the intervals.
   1066     DEBUG(dbgs() << "\tInterference!\n");
   1067     Again = true;  // May be possible to coalesce later.
   1068     return false;
   1069   }
   1070 
   1071   // Coalescing to a virtual register that is of a sub-register class of the
   1072   // other. Make sure the resulting register is set to the right register class.
   1073   if (CP.isCrossClass()) {
   1074     ++numCrossRCs;
   1075     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
   1076   }
   1077 
   1078   // Removing sub-register copies can ease the register class constraints.
   1079   // Make sure we attempt to inflate the register class of DstReg.
   1080   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
   1081     InflateRegs.push_back(CP.getDstReg());
   1082 
   1083   // CopyMI has been erased by joinIntervals at this point. Remove it from
   1084   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
   1085   // to the work list. This keeps ErasedInstrs from growing needlessly.
   1086   ErasedInstrs.erase(CopyMI);
   1087 
   1088   // Rewrite all SrcReg operands to DstReg.
   1089   // Also update DstReg operands to include DstIdx if it is set.
   1090   if (CP.getDstIdx())
   1091     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
   1092   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
   1093 
   1094   // SrcReg is guaranteed to be the register whose live interval that is
   1095   // being merged.
   1096   LIS->removeInterval(CP.getSrcReg());
   1097 
   1098   // Update regalloc hint.
   1099   TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
   1100 
   1101   DEBUG({
   1102     dbgs() << "\tJoined. Result = " << PrintReg(CP.getDstReg(), TRI);
   1103     if (!CP.isPhys())
   1104       dbgs() << LIS->getInterval(CP.getDstReg());
   1105      dbgs() << '\n';
   1106   });
   1107 
   1108   ++numJoins;
   1109   return true;
   1110 }
   1111 
   1112 /// Attempt joining with a reserved physreg.
   1113 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
   1114   assert(CP.isPhys() && "Must be a physreg copy");
   1115   assert(MRI->isReserved(CP.getDstReg()) && "Not a reserved register");
   1116   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
   1117   DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
   1118                << '\n');
   1119 
   1120   assert(CP.isFlipped() && RHS.containsOneValue() &&
   1121          "Invalid join with reserved register");
   1122 
   1123   // Optimization for reserved registers like ESP. We can only merge with a
   1124   // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
   1125   // The live range of the reserved register will look like a set of dead defs
   1126   // - we don't properly track the live range of reserved registers.
   1127 
   1128   // Deny any overlapping intervals.  This depends on all the reserved
   1129   // register live ranges to look like dead defs.
   1130   for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI)
   1131     if (RHS.overlaps(LIS->getRegUnit(*UI))) {
   1132       DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
   1133       return false;
   1134     }
   1135 
   1136   // Skip any value computations, we are not adding new values to the
   1137   // reserved register.  Also skip merging the live ranges, the reserved
   1138   // register live range doesn't need to be accurate as long as all the
   1139   // defs are there.
   1140 
   1141   // Delete the identity copy.
   1142   MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg);
   1143   LIS->RemoveMachineInstrFromMaps(CopyMI);
   1144   CopyMI->eraseFromParent();
   1145 
   1146   // We don't track kills for reserved registers.
   1147   MRI->clearKillFlags(CP.getSrcReg());
   1148 
   1149   return true;
   1150 }
   1151 
   1152 //===----------------------------------------------------------------------===//
   1153 //                 Interference checking and interval joining
   1154 //===----------------------------------------------------------------------===//
   1155 //
   1156 // In the easiest case, the two live ranges being joined are disjoint, and
   1157 // there is no interference to consider. It is quite common, though, to have
   1158 // overlapping live ranges, and we need to check if the interference can be
   1159 // resolved.
   1160 //
   1161 // The live range of a single SSA value forms a sub-tree of the dominator tree.
   1162 // This means that two SSA values overlap if and only if the def of one value
   1163 // is contained in the live range of the other value. As a special case, the
   1164 // overlapping values can be defined at the same index.
   1165 //
   1166 // The interference from an overlapping def can be resolved in these cases:
   1167 //
   1168 // 1. Coalescable copies. The value is defined by a copy that would become an
   1169 //    identity copy after joining SrcReg and DstReg. The copy instruction will
   1170 //    be removed, and the value will be merged with the source value.
   1171 //
   1172 //    There can be several copies back and forth, causing many values to be
   1173 //    merged into one. We compute a list of ultimate values in the joined live
   1174 //    range as well as a mappings from the old value numbers.
   1175 //
   1176 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
   1177 //    predecessors have a live out value. It doesn't cause real interference,
   1178 //    and can be merged into the value it overlaps. Like a coalescable copy, it
   1179 //    can be erased after joining.
   1180 //
   1181 // 3. Copy of external value. The overlapping def may be a copy of a value that
   1182 //    is already in the other register. This is like a coalescable copy, but
   1183 //    the live range of the source register must be trimmed after erasing the
   1184 //    copy instruction:
   1185 //
   1186 //      %src = COPY %ext
   1187 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
   1188 //
   1189 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
   1190 //    defining one lane at a time:
   1191 //
   1192 //      %dst:ssub0<def,read-undef> = FOO
   1193 //      %src = BAR
   1194 //      %dst:ssub1<def> = COPY %src
   1195 //
   1196 //    The live range of %src overlaps the %dst value defined by FOO, but
   1197 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
   1198 //    which was undef anyway.
   1199 //
   1200 //    The value mapping is more complicated in this case. The final live range
   1201 //    will have different value numbers for both FOO and BAR, but there is no
   1202 //    simple mapping from old to new values. It may even be necessary to add
   1203 //    new PHI values.
   1204 //
   1205 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
   1206 //    is live, but never read. This can happen because we don't compute
   1207 //    individual live ranges per lane.
   1208 //
   1209 //      %dst<def> = FOO
   1210 //      %src = BAR
   1211 //      %dst:ssub1<def> = COPY %src
   1212 //
   1213 //    This kind of interference is only resolved locally. If the clobbered
   1214 //    lane value escapes the block, the join is aborted.
   1215 
   1216 namespace {
   1217 /// Track information about values in a single virtual register about to be
   1218 /// joined. Objects of this class are always created in pairs - one for each
   1219 /// side of the CoalescerPair.
   1220 class JoinVals {
   1221   LiveInterval &LI;
   1222 
   1223   // Location of this register in the final joined register.
   1224   // Either CP.DstIdx or CP.SrcIdx.
   1225   unsigned SubIdx;
   1226 
   1227   // Values that will be present in the final live range.
   1228   SmallVectorImpl<VNInfo*> &NewVNInfo;
   1229 
   1230   const CoalescerPair &CP;
   1231   LiveIntervals *LIS;
   1232   SlotIndexes *Indexes;
   1233   const TargetRegisterInfo *TRI;
   1234 
   1235   // Value number assignments. Maps value numbers in LI to entries in NewVNInfo.
   1236   // This is suitable for passing to LiveInterval::join().
   1237   SmallVector<int, 8> Assignments;
   1238 
   1239   // Conflict resolution for overlapping values.
   1240   enum ConflictResolution {
   1241     // No overlap, simply keep this value.
   1242     CR_Keep,
   1243 
   1244     // Merge this value into OtherVNI and erase the defining instruction.
   1245     // Used for IMPLICIT_DEF, coalescable copies, and copies from external
   1246     // values.
   1247     CR_Erase,
   1248 
   1249     // Merge this value into OtherVNI but keep the defining instruction.
   1250     // This is for the special case where OtherVNI is defined by the same
   1251     // instruction.
   1252     CR_Merge,
   1253 
   1254     // Keep this value, and have it replace OtherVNI where possible. This
   1255     // complicates value mapping since OtherVNI maps to two different values
   1256     // before and after this def.
   1257     // Used when clobbering undefined or dead lanes.
   1258     CR_Replace,
   1259 
   1260     // Unresolved conflict. Visit later when all values have been mapped.
   1261     CR_Unresolved,
   1262 
   1263     // Unresolvable conflict. Abort the join.
   1264     CR_Impossible
   1265   };
   1266 
   1267   // Per-value info for LI. The lane bit masks are all relative to the final
   1268   // joined register, so they can be compared directly between SrcReg and
   1269   // DstReg.
   1270   struct Val {
   1271     ConflictResolution Resolution;
   1272 
   1273     // Lanes written by this def, 0 for unanalyzed values.
   1274     unsigned WriteLanes;
   1275 
   1276     // Lanes with defined values in this register. Other lanes are undef and
   1277     // safe to clobber.
   1278     unsigned ValidLanes;
   1279 
   1280     // Value in LI being redefined by this def.
   1281     VNInfo *RedefVNI;
   1282 
   1283     // Value in the other live range that overlaps this def, if any.
   1284     VNInfo *OtherVNI;
   1285 
   1286     // Is this value an IMPLICIT_DEF that can be erased?
   1287     //
   1288     // IMPLICIT_DEF values should only exist at the end of a basic block that
   1289     // is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
   1290     // safely erased if they are overlapping a live value in the other live
   1291     // interval.
   1292     //
   1293     // Weird control flow graphs and incomplete PHI handling in
   1294     // ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
   1295     // longer live ranges. Such IMPLICIT_DEF values should be treated like
   1296     // normal values.
   1297     bool ErasableImplicitDef;
   1298 
   1299     // True when the live range of this value will be pruned because of an
   1300     // overlapping CR_Replace value in the other live range.
   1301     bool Pruned;
   1302 
   1303     // True once Pruned above has been computed.
   1304     bool PrunedComputed;
   1305 
   1306     Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
   1307             RedefVNI(0), OtherVNI(0), ErasableImplicitDef(false),
   1308             Pruned(false), PrunedComputed(false) {}
   1309 
   1310     bool isAnalyzed() const { return WriteLanes != 0; }
   1311   };
   1312 
   1313   // One entry per value number in LI.
   1314   SmallVector<Val, 8> Vals;
   1315 
   1316   unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef);
   1317   VNInfo *stripCopies(VNInfo *VNI);
   1318   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
   1319   void computeAssignment(unsigned ValNo, JoinVals &Other);
   1320   bool taintExtent(unsigned, unsigned, JoinVals&,
   1321                    SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
   1322   bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned);
   1323   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
   1324 
   1325 public:
   1326   JoinVals(LiveInterval &li, unsigned subIdx,
   1327            SmallVectorImpl<VNInfo*> &newVNInfo,
   1328            const CoalescerPair &cp,
   1329            LiveIntervals *lis,
   1330            const TargetRegisterInfo *tri)
   1331     : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis),
   1332       Indexes(LIS->getSlotIndexes()), TRI(tri),
   1333       Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums())
   1334   {}
   1335 
   1336   /// Analyze defs in LI and compute a value mapping in NewVNInfo.
   1337   /// Returns false if any conflicts were impossible to resolve.
   1338   bool mapValues(JoinVals &Other);
   1339 
   1340   /// Try to resolve conflicts that require all values to be mapped.
   1341   /// Returns false if any conflicts were impossible to resolve.
   1342   bool resolveConflicts(JoinVals &Other);
   1343 
   1344   /// Prune the live range of values in Other.LI where they would conflict with
   1345   /// CR_Replace values in LI. Collect end points for restoring the live range
   1346   /// after joining.
   1347   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints);
   1348 
   1349   /// Erase any machine instructions that have been coalesced away.
   1350   /// Add erased instructions to ErasedInstrs.
   1351   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
   1352   /// the erased instrs.
   1353   void eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
   1354                    SmallVectorImpl<unsigned> &ShrinkRegs);
   1355 
   1356   /// Get the value assignments suitable for passing to LiveInterval::join.
   1357   const int *getAssignments() const { return Assignments.data(); }
   1358 };
   1359 } // end anonymous namespace
   1360 
   1361 /// Compute the bitmask of lanes actually written by DefMI.
   1362 /// Set Redef if there are any partial register definitions that depend on the
   1363 /// previous value of the register.
   1364 unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) {
   1365   unsigned L = 0;
   1366   for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) {
   1367     if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef())
   1368       continue;
   1369     L |= TRI->getSubRegIndexLaneMask(
   1370            TRI->composeSubRegIndices(SubIdx, MO->getSubReg()));
   1371     if (MO->readsReg())
   1372       Redef = true;
   1373   }
   1374   return L;
   1375 }
   1376 
   1377 /// Find the ultimate value that VNI was copied from.
   1378 VNInfo *JoinVals::stripCopies(VNInfo *VNI) {
   1379   while (!VNI->isPHIDef()) {
   1380     MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def);
   1381     assert(MI && "No defining instruction");
   1382     if (!MI->isFullCopy())
   1383       break;
   1384     unsigned Reg = MI->getOperand(1).getReg();
   1385     if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1386       break;
   1387     LiveRangeQuery LRQ(LIS->getInterval(Reg), VNI->def);
   1388     if (!LRQ.valueIn())
   1389       break;
   1390     VNI = LRQ.valueIn();
   1391   }
   1392   return VNI;
   1393 }
   1394 
   1395 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
   1396 /// Return a conflict resolution when possible, but leave the hard cases as
   1397 /// CR_Unresolved.
   1398 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
   1399 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
   1400 /// The recursion always goes upwards in the dominator tree, making loops
   1401 /// impossible.
   1402 JoinVals::ConflictResolution
   1403 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
   1404   Val &V = Vals[ValNo];
   1405   assert(!V.isAnalyzed() && "Value has already been analyzed!");
   1406   VNInfo *VNI = LI.getValNumInfo(ValNo);
   1407   if (VNI->isUnused()) {
   1408     V.WriteLanes = ~0u;
   1409     return CR_Keep;
   1410   }
   1411 
   1412   // Get the instruction defining this value, compute the lanes written.
   1413   const MachineInstr *DefMI = 0;
   1414   if (VNI->isPHIDef()) {
   1415     // Conservatively assume that all lanes in a PHI are valid.
   1416     V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx);
   1417   } else {
   1418     DefMI = Indexes->getInstructionFromIndex(VNI->def);
   1419     bool Redef = false;
   1420     V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
   1421 
   1422     // If this is a read-modify-write instruction, there may be more valid
   1423     // lanes than the ones written by this instruction.
   1424     // This only covers partial redef operands. DefMI may have normal use
   1425     // operands reading the register. They don't contribute valid lanes.
   1426     //
   1427     // This adds ssub1 to the set of valid lanes in %src:
   1428     //
   1429     //   %src:ssub1<def> = FOO
   1430     //
   1431     // This leaves only ssub1 valid, making any other lanes undef:
   1432     //
   1433     //   %src:ssub1<def,read-undef> = FOO %src:ssub2
   1434     //
   1435     // The <read-undef> flag on the def operand means that old lane values are
   1436     // not important.
   1437     if (Redef) {
   1438       V.RedefVNI = LiveRangeQuery(LI, VNI->def).valueIn();
   1439       assert(V.RedefVNI && "Instruction is reading nonexistent value");
   1440       computeAssignment(V.RedefVNI->id, Other);
   1441       V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
   1442     }
   1443 
   1444     // An IMPLICIT_DEF writes undef values.
   1445     if (DefMI->isImplicitDef()) {
   1446       // We normally expect IMPLICIT_DEF values to be live only until the end
   1447       // of their block. If the value is really live longer and gets pruned in
   1448       // another block, this flag is cleared again.
   1449       V.ErasableImplicitDef = true;
   1450       V.ValidLanes &= ~V.WriteLanes;
   1451     }
   1452   }
   1453 
   1454   // Find the value in Other that overlaps VNI->def, if any.
   1455   LiveRangeQuery OtherLRQ(Other.LI, VNI->def);
   1456 
   1457   // It is possible that both values are defined by the same instruction, or
   1458   // the values are PHIs defined in the same block. When that happens, the two
   1459   // values should be merged into one, but not into any preceding value.
   1460   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
   1461   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
   1462     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
   1463 
   1464     // One value stays, the other is merged. Keep the earlier one, or the first
   1465     // one we see.
   1466     if (OtherVNI->def < VNI->def)
   1467       Other.computeAssignment(OtherVNI->id, *this);
   1468     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
   1469       // This is an early-clobber def overlapping a live-in value in the other
   1470       // register. Not mergeable.
   1471       V.OtherVNI = OtherLRQ.valueIn();
   1472       return CR_Impossible;
   1473     }
   1474     V.OtherVNI = OtherVNI;
   1475     Val &OtherV = Other.Vals[OtherVNI->id];
   1476     // Keep this value, check for conflicts when analyzing OtherVNI.
   1477     if (!OtherV.isAnalyzed())
   1478       return CR_Keep;
   1479     // Both sides have been analyzed now.
   1480     // Allow overlapping PHI values. Any real interference would show up in a
   1481     // predecessor, the PHI itself can't introduce any conflicts.
   1482     if (VNI->isPHIDef())
   1483       return CR_Merge;
   1484     if (V.ValidLanes & OtherV.ValidLanes)
   1485       // Overlapping lanes can't be resolved.
   1486       return CR_Impossible;
   1487     else
   1488       return CR_Merge;
   1489   }
   1490 
   1491   // No simultaneous def. Is Other live at the def?
   1492   V.OtherVNI = OtherLRQ.valueIn();
   1493   if (!V.OtherVNI)
   1494     // No overlap, no conflict.
   1495     return CR_Keep;
   1496 
   1497   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
   1498 
   1499   // We have overlapping values, or possibly a kill of Other.
   1500   // Recursively compute assignments up the dominator tree.
   1501   Other.computeAssignment(V.OtherVNI->id, *this);
   1502   Val &OtherV = Other.Vals[V.OtherVNI->id];
   1503 
   1504   // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
   1505   // This shouldn't normally happen, but ProcessImplicitDefs can leave such
   1506   // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
   1507   // technically.
   1508   //
   1509   // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try
   1510   // to erase the IMPLICIT_DEF instruction.
   1511   if (OtherV.ErasableImplicitDef && DefMI &&
   1512       DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
   1513     DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
   1514                  << " extends into BB#" << DefMI->getParent()->getNumber()
   1515                  << ", keeping it.\n");
   1516     OtherV.ErasableImplicitDef = false;
   1517   }
   1518 
   1519   // Allow overlapping PHI values. Any real interference would show up in a
   1520   // predecessor, the PHI itself can't introduce any conflicts.
   1521   if (VNI->isPHIDef())
   1522     return CR_Replace;
   1523 
   1524   // Check for simple erasable conflicts.
   1525   if (DefMI->isImplicitDef())
   1526     return CR_Erase;
   1527 
   1528   // Include the non-conflict where DefMI is a coalescable copy that kills
   1529   // OtherVNI. We still want the copy erased and value numbers merged.
   1530   if (CP.isCoalescable(DefMI)) {
   1531     // Some of the lanes copied from OtherVNI may be undef, making them undef
   1532     // here too.
   1533     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
   1534     return CR_Erase;
   1535   }
   1536 
   1537   // This may not be a real conflict if DefMI simply kills Other and defines
   1538   // VNI.
   1539   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
   1540     return CR_Keep;
   1541 
   1542   // Handle the case where VNI and OtherVNI can be proven to be identical:
   1543   //
   1544   //   %other = COPY %ext
   1545   //   %this  = COPY %ext <-- Erase this copy
   1546   //
   1547   if (DefMI->isFullCopy() && !CP.isPartial() &&
   1548       stripCopies(VNI) == stripCopies(V.OtherVNI))
   1549     return CR_Erase;
   1550 
   1551   // If the lanes written by this instruction were all undef in OtherVNI, it is
   1552   // still safe to join the live ranges. This can't be done with a simple value
   1553   // mapping, though - OtherVNI will map to multiple values:
   1554   //
   1555   //   1 %dst:ssub0 = FOO                <-- OtherVNI
   1556   //   2 %src = BAR                      <-- VNI
   1557   //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
   1558   //   4 BAZ %dst<kill>
   1559   //   5 QUUX %src<kill>
   1560   //
   1561   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
   1562   // handles this complex value mapping.
   1563   if ((V.WriteLanes & OtherV.ValidLanes) == 0)
   1564     return CR_Replace;
   1565 
   1566   // If the other live range is killed by DefMI and the live ranges are still
   1567   // overlapping, it must be because we're looking at an early clobber def:
   1568   //
   1569   //   %dst<def,early-clobber> = ASM %src<kill>
   1570   //
   1571   // In this case, it is illegal to merge the two live ranges since the early
   1572   // clobber def would clobber %src before it was read.
   1573   if (OtherLRQ.isKill()) {
   1574     // This case where the def doesn't overlap the kill is handled above.
   1575     assert(VNI->def.isEarlyClobber() &&
   1576            "Only early clobber defs can overlap a kill");
   1577     return CR_Impossible;
   1578   }
   1579 
   1580   // VNI is clobbering live lanes in OtherVNI, but there is still the
   1581   // possibility that no instructions actually read the clobbered lanes.
   1582   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
   1583   // Otherwise Other.LI wouldn't be live here.
   1584   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
   1585     return CR_Impossible;
   1586 
   1587   // We need to verify that no instructions are reading the clobbered lanes. To
   1588   // save compile time, we'll only check that locally. Don't allow the tainted
   1589   // value to escape the basic block.
   1590   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
   1591   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
   1592     return CR_Impossible;
   1593 
   1594   // There are still some things that could go wrong besides clobbered lanes
   1595   // being read, for example OtherVNI may be only partially redefined in MBB,
   1596   // and some clobbered lanes could escape the block. Save this analysis for
   1597   // resolveConflicts() when all values have been mapped. We need to know
   1598   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
   1599   // that now - the recursive analyzeValue() calls must go upwards in the
   1600   // dominator tree.
   1601   return CR_Unresolved;
   1602 }
   1603 
   1604 /// Compute the value assignment for ValNo in LI.
   1605 /// This may be called recursively by analyzeValue(), but never for a ValNo on
   1606 /// the stack.
   1607 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
   1608   Val &V = Vals[ValNo];
   1609   if (V.isAnalyzed()) {
   1610     // Recursion should always move up the dominator tree, so ValNo is not
   1611     // supposed to reappear before it has been assigned.
   1612     assert(Assignments[ValNo] != -1 && "Bad recursion?");
   1613     return;
   1614   }
   1615   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
   1616   case CR_Erase:
   1617   case CR_Merge:
   1618     // Merge this ValNo into OtherVNI.
   1619     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
   1620     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
   1621     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
   1622     DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@'
   1623                  << LI.getValNumInfo(ValNo)->def << " into "
   1624                  << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@'
   1625                  << V.OtherVNI->def << " --> @"
   1626                  << NewVNInfo[Assignments[ValNo]]->def << '\n');
   1627     break;
   1628   case CR_Replace:
   1629   case CR_Unresolved:
   1630     // The other value is going to be pruned if this join is successful.
   1631     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
   1632     Other.Vals[V.OtherVNI->id].Pruned = true;
   1633     // Fall through.
   1634   default:
   1635     // This value number needs to go in the final joined live range.
   1636     Assignments[ValNo] = NewVNInfo.size();
   1637     NewVNInfo.push_back(LI.getValNumInfo(ValNo));
   1638     break;
   1639   }
   1640 }
   1641 
   1642 bool JoinVals::mapValues(JoinVals &Other) {
   1643   for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
   1644     computeAssignment(i, Other);
   1645     if (Vals[i].Resolution == CR_Impossible) {
   1646       DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i
   1647                    << '@' << LI.getValNumInfo(i)->def << '\n');
   1648       return false;
   1649     }
   1650   }
   1651   return true;
   1652 }
   1653 
   1654 /// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute
   1655 /// the extent of the tainted lanes in the block.
   1656 ///
   1657 /// Multiple values in Other.LI can be affected since partial redefinitions can
   1658 /// preserve previously tainted lanes.
   1659 ///
   1660 ///   1 %dst = VLOAD           <-- Define all lanes in %dst
   1661 ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
   1662 ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
   1663 ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
   1664 ///
   1665 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
   1666 /// entry to TaintedVals.
   1667 ///
   1668 /// Returns false if the tainted lanes extend beyond the basic block.
   1669 bool JoinVals::
   1670 taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
   1671             SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
   1672   VNInfo *VNI = LI.getValNumInfo(ValNo);
   1673   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
   1674   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
   1675 
   1676   // Scan Other.LI from VNI.def to MBBEnd.
   1677   LiveInterval::iterator OtherI = Other.LI.find(VNI->def);
   1678   assert(OtherI != Other.LI.end() && "No conflict?");
   1679   do {
   1680     // OtherI is pointing to a tainted value. Abort the join if the tainted
   1681     // lanes escape the block.
   1682     SlotIndex End = OtherI->end;
   1683     if (End >= MBBEnd) {
   1684       DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':'
   1685                    << OtherI->valno->id << '@' << OtherI->start << '\n');
   1686       return false;
   1687     }
   1688     DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':'
   1689                  << OtherI->valno->id << '@' << OtherI->start
   1690                  << " to " << End << '\n');
   1691     // A dead def is not a problem.
   1692     if (End.isDead())
   1693       break;
   1694     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
   1695 
   1696     // Check for another def in the MBB.
   1697     if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd)
   1698       break;
   1699 
   1700     // Lanes written by the new def are no longer tainted.
   1701     const Val &OV = Other.Vals[OtherI->valno->id];
   1702     TaintedLanes &= ~OV.WriteLanes;
   1703     if (!OV.RedefVNI)
   1704       break;
   1705   } while (TaintedLanes);
   1706   return true;
   1707 }
   1708 
   1709 /// Return true if MI uses any of the given Lanes from Reg.
   1710 /// This does not include partial redefinitions of Reg.
   1711 bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx,
   1712                          unsigned Lanes) {
   1713   if (MI->isDebugValue())
   1714     return false;
   1715   for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
   1716     if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg)
   1717       continue;
   1718     if (!MO->readsReg())
   1719       continue;
   1720     if (Lanes & TRI->getSubRegIndexLaneMask(
   1721                   TRI->composeSubRegIndices(SubIdx, MO->getSubReg())))
   1722       return true;
   1723   }
   1724   return false;
   1725 }
   1726 
   1727 bool JoinVals::resolveConflicts(JoinVals &Other) {
   1728   for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
   1729     Val &V = Vals[i];
   1730     assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
   1731     if (V.Resolution != CR_Unresolved)
   1732       continue;
   1733     DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i
   1734                  << '@' << LI.getValNumInfo(i)->def << '\n');
   1735     ++NumLaneConflicts;
   1736     assert(V.OtherVNI && "Inconsistent conflict resolution.");
   1737     VNInfo *VNI = LI.getValNumInfo(i);
   1738     const Val &OtherV = Other.Vals[V.OtherVNI->id];
   1739 
   1740     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
   1741     // join, those lanes will be tainted with a wrong value. Get the extent of
   1742     // the tainted lanes.
   1743     unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
   1744     SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent;
   1745     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
   1746       // Tainted lanes would extend beyond the basic block.
   1747       return false;
   1748 
   1749     assert(!TaintExtent.empty() && "There should be at least one conflict.");
   1750 
   1751     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
   1752     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
   1753     MachineBasicBlock::iterator MI = MBB->begin();
   1754     if (!VNI->isPHIDef()) {
   1755       MI = Indexes->getInstructionFromIndex(VNI->def);
   1756       // No need to check the instruction defining VNI for reads.
   1757       ++MI;
   1758     }
   1759     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
   1760            "Interference ends on VNI->def. Should have been handled earlier");
   1761     MachineInstr *LastMI =
   1762       Indexes->getInstructionFromIndex(TaintExtent.front().first);
   1763     assert(LastMI && "Range must end at a proper instruction");
   1764     unsigned TaintNum = 0;
   1765     for(;;) {
   1766       assert(MI != MBB->end() && "Bad LastMI");
   1767       if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) {
   1768         DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
   1769         return false;
   1770       }
   1771       // LastMI is the last instruction to use the current value.
   1772       if (&*MI == LastMI) {
   1773         if (++TaintNum == TaintExtent.size())
   1774           break;
   1775         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
   1776         assert(LastMI && "Range must end at a proper instruction");
   1777         TaintedLanes = TaintExtent[TaintNum].second;
   1778       }
   1779       ++MI;
   1780     }
   1781 
   1782     // The tainted lanes are unused.
   1783     V.Resolution = CR_Replace;
   1784     ++NumLaneResolves;
   1785   }
   1786   return true;
   1787 }
   1788 
   1789 // Determine if ValNo is a copy of a value number in LI or Other.LI that will
   1790 // be pruned:
   1791 //
   1792 //   %dst = COPY %src
   1793 //   %src = COPY %dst  <-- This value to be pruned.
   1794 //   %dst = COPY %src  <-- This value is a copy of a pruned value.
   1795 //
   1796 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
   1797   Val &V = Vals[ValNo];
   1798   if (V.Pruned || V.PrunedComputed)
   1799     return V.Pruned;
   1800 
   1801   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
   1802     return V.Pruned;
   1803 
   1804   // Follow copies up the dominator tree and check if any intermediate value
   1805   // has been pruned.
   1806   V.PrunedComputed = true;
   1807   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
   1808   return V.Pruned;
   1809 }
   1810 
   1811 void JoinVals::pruneValues(JoinVals &Other,
   1812                            SmallVectorImpl<SlotIndex> &EndPoints) {
   1813   for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
   1814     SlotIndex Def = LI.getValNumInfo(i)->def;
   1815     switch (Vals[i].Resolution) {
   1816     case CR_Keep:
   1817       break;
   1818     case CR_Replace: {
   1819       // This value takes precedence over the value in Other.LI.
   1820       LIS->pruneValue(&Other.LI, Def, &EndPoints);
   1821       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
   1822       // instructions are only inserted to provide a live-out value for PHI
   1823       // predecessors, so the instruction should simply go away once its value
   1824       // has been replaced.
   1825       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
   1826       bool EraseImpDef = OtherV.ErasableImplicitDef &&
   1827                          OtherV.Resolution == CR_Keep;
   1828       if (!Def.isBlock()) {
   1829         // Remove <def,read-undef> flags. This def is now a partial redef.
   1830         // Also remove <def,dead> flags since the joined live range will
   1831         // continue past this instruction.
   1832         for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
   1833              MO.isValid(); ++MO)
   1834           if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg) {
   1835             MO->setIsUndef(EraseImpDef);
   1836             MO->setIsDead(false);
   1837           }
   1838         // This value will reach instructions below, but we need to make sure
   1839         // the live range also reaches the instruction at Def.
   1840         if (!EraseImpDef)
   1841           EndPoints.push_back(Def);
   1842       }
   1843       DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def
   1844                    << ": " << Other.LI << '\n');
   1845       break;
   1846     }
   1847     case CR_Erase:
   1848     case CR_Merge:
   1849       if (isPrunedValue(i, Other)) {
   1850         // This value is ultimately a copy of a pruned value in LI or Other.LI.
   1851         // We can no longer trust the value mapping computed by
   1852         // computeAssignment(), the value that was originally copied could have
   1853         // been replaced.
   1854         LIS->pruneValue(&LI, Def, &EndPoints);
   1855         DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at "
   1856                      << Def << ": " << LI << '\n');
   1857       }
   1858       break;
   1859     case CR_Unresolved:
   1860     case CR_Impossible:
   1861       llvm_unreachable("Unresolved conflicts");
   1862     }
   1863   }
   1864 }
   1865 
   1866 void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
   1867                            SmallVectorImpl<unsigned> &ShrinkRegs) {
   1868   for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
   1869     // Get the def location before markUnused() below invalidates it.
   1870     SlotIndex Def = LI.getValNumInfo(i)->def;
   1871     switch (Vals[i].Resolution) {
   1872     case CR_Keep:
   1873       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
   1874       // longer. The IMPLICIT_DEF instructions are only inserted by
   1875       // PHIElimination to guarantee that all PHI predecessors have a value.
   1876       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
   1877         break;
   1878       // Remove value number i from LI. Note that this VNInfo is still present
   1879       // in NewVNInfo, so it will appear as an unused value number in the final
   1880       // joined interval.
   1881       LI.getValNumInfo(i)->markUnused();
   1882       LI.removeValNo(LI.getValNumInfo(i));
   1883       DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LI << '\n');
   1884       // FALL THROUGH.
   1885 
   1886     case CR_Erase: {
   1887       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
   1888       assert(MI && "No instruction to erase");
   1889       if (MI->isCopy()) {
   1890         unsigned Reg = MI->getOperand(1).getReg();
   1891         if (TargetRegisterInfo::isVirtualRegister(Reg) &&
   1892             Reg != CP.getSrcReg() && Reg != CP.getDstReg())
   1893           ShrinkRegs.push_back(Reg);
   1894       }
   1895       ErasedInstrs.insert(MI);
   1896       DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
   1897       LIS->RemoveMachineInstrFromMaps(MI);
   1898       MI->eraseFromParent();
   1899       break;
   1900     }
   1901     default:
   1902       break;
   1903     }
   1904   }
   1905 }
   1906 
   1907 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
   1908   SmallVector<VNInfo*, 16> NewVNInfo;
   1909   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
   1910   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
   1911   JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI);
   1912   JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI);
   1913 
   1914   DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
   1915                << "\n\t\tLHS = " << PrintReg(CP.getDstReg()) << ' ' << LHS
   1916                << '\n');
   1917 
   1918   // First compute NewVNInfo and the simple value mappings.
   1919   // Detect impossible conflicts early.
   1920   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
   1921     return false;
   1922 
   1923   // Some conflicts can only be resolved after all values have been mapped.
   1924   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
   1925     return false;
   1926 
   1927   // All clear, the live ranges can be merged.
   1928 
   1929   // The merging algorithm in LiveInterval::join() can't handle conflicting
   1930   // value mappings, so we need to remove any live ranges that overlap a
   1931   // CR_Replace resolution. Collect a set of end points that can be used to
   1932   // restore the live range after joining.
   1933   SmallVector<SlotIndex, 8> EndPoints;
   1934   LHSVals.pruneValues(RHSVals, EndPoints);
   1935   RHSVals.pruneValues(LHSVals, EndPoints);
   1936 
   1937   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
   1938   // registers to require trimming.
   1939   SmallVector<unsigned, 8> ShrinkRegs;
   1940   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
   1941   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
   1942   while (!ShrinkRegs.empty())
   1943     LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
   1944 
   1945   // Join RHS into LHS.
   1946   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo,
   1947            MRI);
   1948 
   1949   // Kill flags are going to be wrong if the live ranges were overlapping.
   1950   // Eventually, we should simply clear all kill flags when computing live
   1951   // ranges. They are reinserted after register allocation.
   1952   MRI->clearKillFlags(LHS.reg);
   1953   MRI->clearKillFlags(RHS.reg);
   1954 
   1955   if (EndPoints.empty())
   1956     return true;
   1957 
   1958   // Recompute the parts of the live range we had to remove because of
   1959   // CR_Replace conflicts.
   1960   DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
   1961                << " points: " << LHS << '\n');
   1962   LIS->extendToIndices(&LHS, EndPoints);
   1963   return true;
   1964 }
   1965 
   1966 /// joinIntervals - Attempt to join these two intervals.  On failure, this
   1967 /// returns false.
   1968 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
   1969   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
   1970 }
   1971 
   1972 namespace {
   1973 // Information concerning MBB coalescing priority.
   1974 struct MBBPriorityInfo {
   1975   MachineBasicBlock *MBB;
   1976   unsigned Depth;
   1977   bool IsSplit;
   1978 
   1979   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
   1980     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
   1981 };
   1982 }
   1983 
   1984 // C-style comparator that sorts first based on the loop depth of the basic
   1985 // block (the unsigned), and then on the MBB number.
   1986 //
   1987 // EnableGlobalCopies assumes that the primary sort key is loop depth.
   1988 static int compareMBBPriority(const void *L, const void *R) {
   1989   const MBBPriorityInfo *LHS = static_cast<const MBBPriorityInfo*>(L);
   1990   const MBBPriorityInfo *RHS = static_cast<const MBBPriorityInfo*>(R);
   1991   // Deeper loops first
   1992   if (LHS->Depth != RHS->Depth)
   1993     return LHS->Depth > RHS->Depth ? -1 : 1;
   1994 
   1995   // Try to unsplit critical edges next.
   1996   if (LHS->IsSplit != RHS->IsSplit)
   1997     return LHS->IsSplit ? -1 : 1;
   1998 
   1999   // Prefer blocks that are more connected in the CFG. This takes care of
   2000   // the most difficult copies first while intervals are short.
   2001   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
   2002   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
   2003   if (cl != cr)
   2004     return cl > cr ? -1 : 1;
   2005 
   2006   // As a last resort, sort by block number.
   2007   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
   2008 }
   2009 
   2010 /// \returns true if the given copy uses or defines a local live range.
   2011 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
   2012   if (!Copy->isCopy())
   2013     return false;
   2014 
   2015   unsigned SrcReg = Copy->getOperand(1).getReg();
   2016   unsigned DstReg = Copy->getOperand(0).getReg();
   2017   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
   2018       || TargetRegisterInfo::isPhysicalRegister(DstReg))
   2019     return false;
   2020 
   2021   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
   2022     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
   2023 }
   2024 
   2025 // Try joining WorkList copies starting from index From.
   2026 // Null out any successful joins.
   2027 bool RegisterCoalescer::
   2028 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
   2029   bool Progress = false;
   2030   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
   2031     if (!CurrList[i])
   2032       continue;
   2033     // Skip instruction pointers that have already been erased, for example by
   2034     // dead code elimination.
   2035     if (ErasedInstrs.erase(CurrList[i])) {
   2036       CurrList[i] = 0;
   2037       continue;
   2038     }
   2039     bool Again = false;
   2040     bool Success = joinCopy(CurrList[i], Again);
   2041     Progress |= Success;
   2042     if (Success || !Again)
   2043       CurrList[i] = 0;
   2044   }
   2045   return Progress;
   2046 }
   2047 
   2048 void
   2049 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
   2050   DEBUG(dbgs() << MBB->getName() << ":\n");
   2051 
   2052   // Collect all copy-like instructions in MBB. Don't start coalescing anything
   2053   // yet, it might invalidate the iterator.
   2054   const unsigned PrevSize = WorkList.size();
   2055   if (JoinGlobalCopies) {
   2056     // Coalesce copies bottom-up to coalesce local defs before local uses. They
   2057     // are not inherently easier to resolve, but slightly preferable until we
   2058     // have local live range splitting. In particular this is required by
   2059     // cmp+jmp macro fusion.
   2060     for (MachineBasicBlock::reverse_iterator
   2061            MII = MBB->rbegin(), E = MBB->rend(); MII != E; ++MII) {
   2062       if (!MII->isCopyLike())
   2063         continue;
   2064       if (isLocalCopy(&(*MII), LIS))
   2065         LocalWorkList.push_back(&(*MII));
   2066       else
   2067         WorkList.push_back(&(*MII));
   2068     }
   2069   }
   2070   else {
   2071      for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
   2072           MII != E; ++MII)
   2073        if (MII->isCopyLike())
   2074          WorkList.push_back(MII);
   2075   }
   2076   // Try coalescing the collected copies immediately, and remove the nulls.
   2077   // This prevents the WorkList from getting too large since most copies are
   2078   // joinable on the first attempt.
   2079   MutableArrayRef<MachineInstr*>
   2080     CurrList(WorkList.begin() + PrevSize, WorkList.end());
   2081   if (copyCoalesceWorkList(CurrList))
   2082     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
   2083                                (MachineInstr*)0), WorkList.end());
   2084 }
   2085 
   2086 void RegisterCoalescer::coalesceLocals() {
   2087   copyCoalesceWorkList(LocalWorkList);
   2088   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
   2089     if (LocalWorkList[j])
   2090       WorkList.push_back(LocalWorkList[j]);
   2091   }
   2092   LocalWorkList.clear();
   2093 }
   2094 
   2095 void RegisterCoalescer::joinAllIntervals() {
   2096   DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
   2097   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
   2098 
   2099   std::vector<MBBPriorityInfo> MBBs;
   2100   MBBs.reserve(MF->size());
   2101   for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
   2102     MachineBasicBlock *MBB = I;
   2103     MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
   2104                                    JoinSplitEdges && isSplitEdge(MBB)));
   2105   }
   2106   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
   2107 
   2108   // Coalesce intervals in MBB priority order.
   2109   unsigned CurrDepth = UINT_MAX;
   2110   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
   2111     // Try coalescing the collected local copies for deeper loops.
   2112     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
   2113       coalesceLocals();
   2114       CurrDepth = MBBs[i].Depth;
   2115     }
   2116     copyCoalesceInMBB(MBBs[i].MBB);
   2117   }
   2118   coalesceLocals();
   2119 
   2120   // Joining intervals can allow other intervals to be joined.  Iteratively join
   2121   // until we make no progress.
   2122   while (copyCoalesceWorkList(WorkList))
   2123     /* empty */ ;
   2124 }
   2125 
   2126 void RegisterCoalescer::releaseMemory() {
   2127   ErasedInstrs.clear();
   2128   WorkList.clear();
   2129   DeadDefs.clear();
   2130   InflateRegs.clear();
   2131 }
   2132 
   2133 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
   2134   MF = &fn;
   2135   MRI = &fn.getRegInfo();
   2136   TM = &fn.getTarget();
   2137   TRI = TM->getRegisterInfo();
   2138   TII = TM->getInstrInfo();
   2139   LIS = &getAnalysis<LiveIntervals>();
   2140   AA = &getAnalysis<AliasAnalysis>();
   2141   Loops = &getAnalysis<MachineLoopInfo>();
   2142 
   2143   const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>();
   2144   if (EnableGlobalCopies == cl::BOU_UNSET)
   2145     JoinGlobalCopies = ST.enableMachineScheduler();
   2146   else
   2147     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
   2148 
   2149   // The MachineScheduler does not currently require JoinSplitEdges. This will
   2150   // either be enabled unconditionally or replaced by a more general live range
   2151   // splitting optimization.
   2152   JoinSplitEdges = EnableJoinSplits;
   2153 
   2154   DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
   2155                << "********** Function: " << MF->getName() << '\n');
   2156 
   2157   if (VerifyCoalescing)
   2158     MF->verify(this, "Before register coalescing");
   2159 
   2160   RegClassInfo.runOnMachineFunction(fn);
   2161 
   2162   // Join (coalesce) intervals if requested.
   2163   if (EnableJoining)
   2164     joinAllIntervals();
   2165 
   2166   // After deleting a lot of copies, register classes may be less constrained.
   2167   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
   2168   // DPR inflation.
   2169   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
   2170   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
   2171                     InflateRegs.end());
   2172   DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
   2173   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
   2174     unsigned Reg = InflateRegs[i];
   2175     if (MRI->reg_nodbg_empty(Reg))
   2176       continue;
   2177     if (MRI->recomputeRegClass(Reg, *TM)) {
   2178       DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
   2179                    << MRI->getRegClass(Reg)->getName() << '\n');
   2180       ++NumInflated;
   2181     }
   2182   }
   2183 
   2184   DEBUG(dump());
   2185   if (VerifyCoalescing)
   2186     MF->verify(this, "After register coalescing");
   2187   return true;
   2188 }
   2189 
   2190 /// print - Implement the dump method.
   2191 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
   2192    LIS->print(O, m);
   2193 }
   2194