1 //===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the Hexagon hardware 11 // loop instruction. The hardware loop can perform loop branches with a 12 // zero-cycle overhead. 13 // 14 // The pattern that defines the induction variable can changed depending on 15 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 16 // normalizes induction variables, and the Loop Strength Reduction pass 17 // run by 'llc' may also make changes to the induction variable. 18 // The pattern detected by this phase is due to running Strength Reduction. 19 // 20 // Criteria for hardware loops: 21 // - Countable loops (w/ ind. var for a trip count) 22 // - Assumes loops are normalized by IndVarSimplify 23 // - Try inner-most loops first 24 // - No nested hardware loops. 25 // - No function calls in loops. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #define DEBUG_TYPE "hwloops" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/PassSupport.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetInstrInfo.h" 43 #include "Hexagon.h" 44 #include "HexagonTargetMachine.h" 45 46 #include <algorithm> 47 #include <vector> 48 49 using namespace llvm; 50 51 #ifndef NDEBUG 52 static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden, cl::init(-1)); 53 #endif 54 55 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 56 57 namespace llvm { 58 void initializeHexagonHardwareLoopsPass(PassRegistry&); 59 } 60 61 namespace { 62 class CountValue; 63 struct HexagonHardwareLoops : public MachineFunctionPass { 64 MachineLoopInfo *MLI; 65 MachineRegisterInfo *MRI; 66 MachineDominatorTree *MDT; 67 const HexagonTargetMachine *TM; 68 const HexagonInstrInfo *TII; 69 const HexagonRegisterInfo *TRI; 70 #ifndef NDEBUG 71 static int Counter; 72 #endif 73 74 public: 75 static char ID; 76 77 HexagonHardwareLoops() : MachineFunctionPass(ID) { 78 initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry()); 79 } 80 81 virtual bool runOnMachineFunction(MachineFunction &MF); 82 83 const char *getPassName() const { return "Hexagon Hardware Loops"; } 84 85 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 86 AU.addRequired<MachineDominatorTree>(); 87 AU.addRequired<MachineLoopInfo>(); 88 MachineFunctionPass::getAnalysisUsage(AU); 89 } 90 91 private: 92 /// Kinds of comparisons in the compare instructions. 93 struct Comparison { 94 enum Kind { 95 EQ = 0x01, 96 NE = 0x02, 97 L = 0x04, // Less-than property. 98 G = 0x08, // Greater-than property. 99 U = 0x40, // Unsigned property. 100 LTs = L, 101 LEs = L | EQ, 102 GTs = G, 103 GEs = G | EQ, 104 LTu = L | U, 105 LEu = L | EQ | U, 106 GTu = G | U, 107 GEu = G | EQ | U 108 }; 109 110 static Kind getSwappedComparison(Kind Cmp) { 111 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 112 if ((Cmp & L) || (Cmp & G)) 113 return (Kind)(Cmp ^ (L|G)); 114 return Cmp; 115 } 116 }; 117 118 /// \brief Find the register that contains the loop controlling 119 /// induction variable. 120 /// If successful, it will return true and set the \p Reg, \p IVBump 121 /// and \p IVOp arguments. Otherwise it will return false. 122 /// The returned induction register is the register R that follows the 123 /// following induction pattern: 124 /// loop: 125 /// R = phi ..., [ R.next, LatchBlock ] 126 /// R.next = R + #bump 127 /// if (R.next < #N) goto loop 128 /// IVBump is the immediate value added to R, and IVOp is the instruction 129 /// "R.next = R + #bump". 130 bool findInductionRegister(MachineLoop *L, unsigned &Reg, 131 int64_t &IVBump, MachineInstr *&IVOp) const; 132 133 /// \brief Analyze the statements in a loop to determine if the loop 134 /// has a computable trip count and, if so, return a value that represents 135 /// the trip count expression. 136 CountValue *getLoopTripCount(MachineLoop *L, 137 SmallVector<MachineInstr*, 2> &OldInsts); 138 139 /// \brief Return the expression that represents the number of times 140 /// a loop iterates. The function takes the operands that represent the 141 /// loop start value, loop end value, and induction value. Based upon 142 /// these operands, the function attempts to compute the trip count. 143 /// If the trip count is not directly available (as an immediate value, 144 /// or a register), the function will attempt to insert computation of it 145 /// to the loop's preheader. 146 CountValue *computeCount(MachineLoop *Loop, 147 const MachineOperand *Start, 148 const MachineOperand *End, 149 unsigned IVReg, 150 int64_t IVBump, 151 Comparison::Kind Cmp) const; 152 153 /// \brief Return true if the instruction is not valid within a hardware 154 /// loop. 155 bool isInvalidLoopOperation(const MachineInstr *MI) const; 156 157 /// \brief Return true if the loop contains an instruction that inhibits 158 /// using the hardware loop. 159 bool containsInvalidInstruction(MachineLoop *L) const; 160 161 /// \brief Given a loop, check if we can convert it to a hardware loop. 162 /// If so, then perform the conversion and return true. 163 bool convertToHardwareLoop(MachineLoop *L); 164 165 /// \brief Return true if the instruction is now dead. 166 bool isDead(const MachineInstr *MI, 167 SmallVector<MachineInstr*, 1> &DeadPhis) const; 168 169 /// \brief Remove the instruction if it is now dead. 170 void removeIfDead(MachineInstr *MI); 171 172 /// \brief Make sure that the "bump" instruction executes before the 173 /// compare. We need that for the IV fixup, so that the compare 174 /// instruction would not use a bumped value that has not yet been 175 /// defined. If the instructions are out of order, try to reorder them. 176 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 177 178 /// \brief Get the instruction that loads an immediate value into \p R, 179 /// or 0 if such an instruction does not exist. 180 MachineInstr *defWithImmediate(unsigned R); 181 182 /// \brief Get the immediate value referenced to by \p MO, either for 183 /// immediate operands, or for register operands, where the register 184 /// was defined with an immediate value. 185 int64_t getImmediate(MachineOperand &MO); 186 187 /// \brief Reset the given machine operand to now refer to a new immediate 188 /// value. Assumes that the operand was already referencing an immediate 189 /// value, either directly, or via a register. 190 void setImmediate(MachineOperand &MO, int64_t Val); 191 192 /// \brief Fix the data flow of the induction varible. 193 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 194 /// | 195 /// +-> back to phi 196 /// where "bump" is the increment of the induction variable: 197 /// iv = iv + #const. 198 /// Due to some prior code transformations, the actual flow may look 199 /// like this: 200 /// phi -+-> bump ---> back to phi 201 /// | 202 /// +-> comparison-in-latch (against upper_bound-bump), 203 /// i.e. the comparison that controls the loop execution may be using 204 /// the value of the induction variable from before the increment. 205 /// 206 /// Return true if the loop's flow is the desired one (i.e. it's 207 /// either been fixed, or no fixing was necessary). 208 /// Otherwise, return false. This can happen if the induction variable 209 /// couldn't be identified, or if the value in the latch's comparison 210 /// cannot be adjusted to reflect the post-bump value. 211 bool fixupInductionVariable(MachineLoop *L); 212 213 /// \brief Given a loop, if it does not have a preheader, create one. 214 /// Return the block that is the preheader. 215 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 216 }; 217 218 char HexagonHardwareLoops::ID = 0; 219 #ifndef NDEBUG 220 int HexagonHardwareLoops::Counter = 0; 221 #endif 222 223 /// \brief Abstraction for a trip count of a loop. A smaller vesrsion 224 /// of the MachineOperand class without the concerns of changing the 225 /// operand representation. 226 class CountValue { 227 public: 228 enum CountValueType { 229 CV_Register, 230 CV_Immediate 231 }; 232 private: 233 CountValueType Kind; 234 union Values { 235 struct { 236 unsigned Reg; 237 unsigned Sub; 238 } R; 239 unsigned ImmVal; 240 } Contents; 241 242 public: 243 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { 244 Kind = t; 245 if (Kind == CV_Register) { 246 Contents.R.Reg = v; 247 Contents.R.Sub = u; 248 } else { 249 Contents.ImmVal = v; 250 } 251 } 252 bool isReg() const { return Kind == CV_Register; } 253 bool isImm() const { return Kind == CV_Immediate; } 254 255 unsigned getReg() const { 256 assert(isReg() && "Wrong CountValue accessor"); 257 return Contents.R.Reg; 258 } 259 unsigned getSubReg() const { 260 assert(isReg() && "Wrong CountValue accessor"); 261 return Contents.R.Sub; 262 } 263 unsigned getImm() const { 264 assert(isImm() && "Wrong CountValue accessor"); 265 return Contents.ImmVal; 266 } 267 268 void print(raw_ostream &OS, const TargetMachine *TM = 0) const { 269 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 270 if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); } 271 if (isImm()) { OS << Contents.ImmVal; } 272 } 273 }; 274 } // end anonymous namespace 275 276 277 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 278 "Hexagon Hardware Loops", false, false) 279 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 280 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 281 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 282 "Hexagon Hardware Loops", false, false) 283 284 285 /// \brief Returns true if the instruction is a hardware loop instruction. 286 static bool isHardwareLoop(const MachineInstr *MI) { 287 return MI->getOpcode() == Hexagon::LOOP0_r || 288 MI->getOpcode() == Hexagon::LOOP0_i; 289 } 290 291 FunctionPass *llvm::createHexagonHardwareLoops() { 292 return new HexagonHardwareLoops(); 293 } 294 295 296 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 297 DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 298 299 bool Changed = false; 300 301 MLI = &getAnalysis<MachineLoopInfo>(); 302 MRI = &MF.getRegInfo(); 303 MDT = &getAnalysis<MachineDominatorTree>(); 304 TM = static_cast<const HexagonTargetMachine*>(&MF.getTarget()); 305 TII = static_cast<const HexagonInstrInfo*>(TM->getInstrInfo()); 306 TRI = static_cast<const HexagonRegisterInfo*>(TM->getRegisterInfo()); 307 308 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); 309 I != E; ++I) { 310 MachineLoop *L = *I; 311 if (!L->getParentLoop()) 312 Changed |= convertToHardwareLoop(L); 313 } 314 315 return Changed; 316 } 317 318 319 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 320 unsigned &Reg, 321 int64_t &IVBump, 322 MachineInstr *&IVOp 323 ) const { 324 MachineBasicBlock *Header = L->getHeader(); 325 MachineBasicBlock *Preheader = L->getLoopPreheader(); 326 MachineBasicBlock *Latch = L->getLoopLatch(); 327 if (!Header || !Preheader || !Latch) 328 return false; 329 330 // This pair represents an induction register together with an immediate 331 // value that will be added to it in each loop iteration. 332 typedef std::pair<unsigned,int64_t> RegisterBump; 333 334 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 335 // from an induction operation 336 // R.next = R + bump 337 // where bump is an immediate value. 338 typedef std::map<unsigned,RegisterBump> InductionMap; 339 340 InductionMap IndMap; 341 342 typedef MachineBasicBlock::instr_iterator instr_iterator; 343 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 344 I != E && I->isPHI(); ++I) { 345 MachineInstr *Phi = &*I; 346 347 // Have a PHI instruction. Get the operand that corresponds to the 348 // latch block, and see if is a result of an addition of form "reg+imm", 349 // where the "reg" is defined by the PHI node we are looking at. 350 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 351 if (Phi->getOperand(i+1).getMBB() != Latch) 352 continue; 353 354 unsigned PhiOpReg = Phi->getOperand(i).getReg(); 355 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 356 unsigned UpdOpc = DI->getOpcode(); 357 bool isAdd = (UpdOpc == Hexagon::ADD_ri); 358 359 if (isAdd) { 360 // If the register operand to the add is the PHI we're 361 // looking at, this meets the induction pattern. 362 unsigned IndReg = DI->getOperand(1).getReg(); 363 if (MRI->getVRegDef(IndReg) == Phi) { 364 unsigned UpdReg = DI->getOperand(0).getReg(); 365 int64_t V = DI->getOperand(2).getImm(); 366 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 367 } 368 } 369 } // for (i) 370 } // for (instr) 371 372 SmallVector<MachineOperand,2> Cond; 373 MachineBasicBlock *TB = 0, *FB = 0; 374 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); 375 if (NotAnalyzed) 376 return false; 377 378 unsigned CSz = Cond.size(); 379 assert (CSz == 1 || CSz == 2); 380 unsigned PredR = Cond[CSz-1].getReg(); 381 382 MachineInstr *PredI = MRI->getVRegDef(PredR); 383 if (!PredI->isCompare()) 384 return false; 385 386 unsigned CmpReg1 = 0, CmpReg2 = 0; 387 int CmpImm = 0, CmpMask = 0; 388 bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2, 389 CmpMask, CmpImm); 390 // Fail if the compare was not analyzed, or it's not comparing a register 391 // with an immediate value. Not checking the mask here, since we handle 392 // the individual compare opcodes (including CMPb) later on. 393 if (!CmpAnalyzed) 394 return false; 395 396 // Exactly one of the input registers to the comparison should be among 397 // the induction registers. 398 InductionMap::iterator IndMapEnd = IndMap.end(); 399 InductionMap::iterator F = IndMapEnd; 400 if (CmpReg1 != 0) { 401 InductionMap::iterator F1 = IndMap.find(CmpReg1); 402 if (F1 != IndMapEnd) 403 F = F1; 404 } 405 if (CmpReg2 != 0) { 406 InductionMap::iterator F2 = IndMap.find(CmpReg2); 407 if (F2 != IndMapEnd) { 408 if (F != IndMapEnd) 409 return false; 410 F = F2; 411 } 412 } 413 if (F == IndMapEnd) 414 return false; 415 416 Reg = F->second.first; 417 IVBump = F->second.second; 418 IVOp = MRI->getVRegDef(F->first); 419 return true; 420 } 421 422 423 /// \brief Analyze the statements in a loop to determine if the loop has 424 /// a computable trip count and, if so, return a value that represents 425 /// the trip count expression. 426 /// 427 /// This function iterates over the phi nodes in the loop to check for 428 /// induction variable patterns that are used in the calculation for 429 /// the number of time the loop is executed. 430 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 431 SmallVector<MachineInstr*, 2> &OldInsts) { 432 MachineBasicBlock *TopMBB = L->getTopBlock(); 433 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 434 assert(PI != TopMBB->pred_end() && 435 "Loop must have more than one incoming edge!"); 436 MachineBasicBlock *Backedge = *PI++; 437 if (PI == TopMBB->pred_end()) // dead loop? 438 return 0; 439 MachineBasicBlock *Incoming = *PI++; 440 if (PI != TopMBB->pred_end()) // multiple backedges? 441 return 0; 442 443 // Make sure there is one incoming and one backedge and determine which 444 // is which. 445 if (L->contains(Incoming)) { 446 if (L->contains(Backedge)) 447 return 0; 448 std::swap(Incoming, Backedge); 449 } else if (!L->contains(Backedge)) 450 return 0; 451 452 // Look for the cmp instruction to determine if we can get a useful trip 453 // count. The trip count can be either a register or an immediate. The 454 // location of the value depends upon the type (reg or imm). 455 MachineBasicBlock *Latch = L->getLoopLatch(); 456 if (!Latch) 457 return 0; 458 459 unsigned IVReg = 0; 460 int64_t IVBump = 0; 461 MachineInstr *IVOp; 462 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 463 if (!FoundIV) 464 return 0; 465 466 MachineBasicBlock *Preheader = L->getLoopPreheader(); 467 468 MachineOperand *InitialValue = 0; 469 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 470 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 471 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 472 if (MBB == Preheader) 473 InitialValue = &IV_Phi->getOperand(i); 474 else if (MBB == Latch) 475 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 476 } 477 if (!InitialValue) 478 return 0; 479 480 SmallVector<MachineOperand,2> Cond; 481 MachineBasicBlock *TB = 0, *FB = 0; 482 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); 483 if (NotAnalyzed) 484 return 0; 485 486 MachineBasicBlock *Header = L->getHeader(); 487 // TB must be non-null. If FB is also non-null, one of them must be 488 // the header. Otherwise, branch to TB could be exiting the loop, and 489 // the fall through can go to the header. 490 assert (TB && "Latch block without a branch?"); 491 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 492 if (!TB || (FB && TB != Header && FB != Header)) 493 return 0; 494 495 // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch 496 // to put imm(0), followed by P in the vector Cond. 497 // If TB is not the header, it means that the "not-taken" path must lead 498 // to the header. 499 bool Negated = (Cond.size() > 1) ^ (TB != Header); 500 unsigned PredReg = Cond[Cond.size()-1].getReg(); 501 MachineInstr *CondI = MRI->getVRegDef(PredReg); 502 unsigned CondOpc = CondI->getOpcode(); 503 504 unsigned CmpReg1 = 0, CmpReg2 = 0; 505 int Mask = 0, ImmValue = 0; 506 bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2, 507 Mask, ImmValue); 508 if (!AnalyzedCmp) 509 return 0; 510 511 // The comparison operator type determines how we compute the loop 512 // trip count. 513 OldInsts.push_back(CondI); 514 OldInsts.push_back(IVOp); 515 516 // Sadly, the following code gets information based on the position 517 // of the operands in the compare instruction. This has to be done 518 // this way, because the comparisons check for a specific relationship 519 // between the operands (e.g. is-less-than), rather than to find out 520 // what relationship the operands are in (as on PPC). 521 Comparison::Kind Cmp; 522 bool isSwapped = false; 523 const MachineOperand &Op1 = CondI->getOperand(1); 524 const MachineOperand &Op2 = CondI->getOperand(2); 525 const MachineOperand *EndValue = 0; 526 527 if (Op1.isReg()) { 528 if (Op2.isImm() || Op1.getReg() == IVReg) 529 EndValue = &Op2; 530 else { 531 EndValue = &Op1; 532 isSwapped = true; 533 } 534 } 535 536 if (!EndValue) 537 return 0; 538 539 switch (CondOpc) { 540 case Hexagon::CMPEQri: 541 case Hexagon::CMPEQrr: 542 Cmp = !Negated ? Comparison::EQ : Comparison::NE; 543 break; 544 case Hexagon::CMPLTrr: 545 Cmp = !Negated ? Comparison::LTs : Comparison::GEs; 546 break; 547 case Hexagon::CMPLTUrr: 548 Cmp = !Negated ? Comparison::LTu : Comparison::GEu; 549 break; 550 case Hexagon::CMPGTUri: 551 case Hexagon::CMPGTUrr: 552 Cmp = !Negated ? Comparison::GTu : Comparison::LEu; 553 break; 554 case Hexagon::CMPGTri: 555 case Hexagon::CMPGTrr: 556 Cmp = !Negated ? Comparison::GTs : Comparison::LEs; 557 break; 558 // Very limited support for byte/halfword compares. 559 case Hexagon::CMPbEQri_V4: 560 case Hexagon::CMPhEQri_V4: { 561 if (IVBump != 1) 562 return 0; 563 564 int64_t InitV, EndV; 565 // Since the comparisons are "ri", the EndValue should be an 566 // immediate. Check it just in case. 567 assert(EndValue->isImm() && "Unrecognized latch comparison"); 568 EndV = EndValue->getImm(); 569 // Allow InitialValue to be a register defined with an immediate. 570 if (InitialValue->isReg()) { 571 if (!defWithImmediate(InitialValue->getReg())) 572 return 0; 573 InitV = getImmediate(*InitialValue); 574 } else { 575 assert(InitialValue->isImm()); 576 InitV = InitialValue->getImm(); 577 } 578 if (InitV >= EndV) 579 return 0; 580 if (CondOpc == Hexagon::CMPbEQri_V4) { 581 if (!isInt<8>(InitV) || !isInt<8>(EndV)) 582 return 0; 583 } else { // Hexagon::CMPhEQri_V4 584 if (!isInt<16>(InitV) || !isInt<16>(EndV)) 585 return 0; 586 } 587 Cmp = !Negated ? Comparison::EQ : Comparison::NE; 588 break; 589 } 590 default: 591 return 0; 592 } 593 594 if (isSwapped) 595 Cmp = Comparison::getSwappedComparison(Cmp); 596 597 if (InitialValue->isReg()) { 598 unsigned R = InitialValue->getReg(); 599 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 600 if (!MDT->properlyDominates(DefBB, Header)) 601 return 0; 602 OldInsts.push_back(MRI->getVRegDef(R)); 603 } 604 if (EndValue->isReg()) { 605 unsigned R = EndValue->getReg(); 606 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 607 if (!MDT->properlyDominates(DefBB, Header)) 608 return 0; 609 } 610 611 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 612 } 613 614 /// \brief Helper function that returns the expression that represents the 615 /// number of times a loop iterates. The function takes the operands that 616 /// represent the loop start value, loop end value, and induction value. 617 /// Based upon these operands, the function attempts to compute the trip count. 618 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 619 const MachineOperand *Start, 620 const MachineOperand *End, 621 unsigned IVReg, 622 int64_t IVBump, 623 Comparison::Kind Cmp) const { 624 // Cannot handle comparison EQ, i.e. while (A == B). 625 if (Cmp == Comparison::EQ) 626 return 0; 627 628 // Check if either the start or end values are an assignment of an immediate. 629 // If so, use the immediate value rather than the register. 630 if (Start->isReg()) { 631 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 632 if (StartValInstr && StartValInstr->getOpcode() == Hexagon::TFRI) 633 Start = &StartValInstr->getOperand(1); 634 } 635 if (End->isReg()) { 636 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 637 if (EndValInstr && EndValInstr->getOpcode() == Hexagon::TFRI) 638 End = &EndValInstr->getOperand(1); 639 } 640 641 assert (Start->isReg() || Start->isImm()); 642 assert (End->isReg() || End->isImm()); 643 644 bool CmpLess = Cmp & Comparison::L; 645 bool CmpGreater = Cmp & Comparison::G; 646 bool CmpHasEqual = Cmp & Comparison::EQ; 647 648 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 649 // If loop executes while iv is "less" with the iv value going down, then 650 // the iv must wrap. 651 if (CmpLess && IVBump < 0) 652 return 0; 653 // If loop executes while iv is "greater" with the iv value going up, then 654 // the iv must wrap. 655 if (CmpGreater && IVBump > 0) 656 return 0; 657 658 if (Start->isImm() && End->isImm()) { 659 // Both, start and end are immediates. 660 int64_t StartV = Start->getImm(); 661 int64_t EndV = End->getImm(); 662 int64_t Dist = EndV - StartV; 663 if (Dist == 0) 664 return 0; 665 666 bool Exact = (Dist % IVBump) == 0; 667 668 if (Cmp == Comparison::NE) { 669 if (!Exact) 670 return 0; 671 if ((Dist < 0) ^ (IVBump < 0)) 672 return 0; 673 } 674 675 // For comparisons that include the final value (i.e. include equality 676 // with the final value), we need to increase the distance by 1. 677 if (CmpHasEqual) 678 Dist = Dist > 0 ? Dist+1 : Dist-1; 679 680 // assert (CmpLess => Dist > 0); 681 assert ((!CmpLess || Dist > 0) && "Loop should never iterate!"); 682 // assert (CmpGreater => Dist < 0); 683 assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!"); 684 685 // "Normalized" distance, i.e. with the bump set to +-1. 686 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump-1)) / IVBump 687 : (-Dist + (-IVBump-1)) / (-IVBump); 688 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 689 690 uint64_t Count = Dist1; 691 692 if (Count > 0xFFFFFFFFULL) 693 return 0; 694 695 return new CountValue(CountValue::CV_Immediate, Count); 696 } 697 698 // A general case: Start and End are some values, but the actual 699 // iteration count may not be available. If it is not, insert 700 // a computation of it into the preheader. 701 702 // If the induction variable bump is not a power of 2, quit. 703 // Othwerise we'd need a general integer division. 704 if (!isPowerOf2_64(abs(IVBump))) 705 return 0; 706 707 MachineBasicBlock *PH = Loop->getLoopPreheader(); 708 assert (PH && "Should have a preheader by now"); 709 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 710 DebugLoc DL = (InsertPos != PH->end()) ? InsertPos->getDebugLoc() 711 : DebugLoc(); 712 713 // If Start is an immediate and End is a register, the trip count 714 // will be "reg - imm". Hexagon's "subtract immediate" instruction 715 // is actually "reg + -imm". 716 717 // If the loop IV is going downwards, i.e. if the bump is negative, 718 // then the iteration count (computed as End-Start) will need to be 719 // negated. To avoid the negation, just swap Start and End. 720 if (IVBump < 0) { 721 std::swap(Start, End); 722 IVBump = -IVBump; 723 } 724 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 725 // Signedness, and "including equality" are preserved. 726 727 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 728 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 729 730 int64_t StartV = 0, EndV = 0; 731 if (Start->isImm()) 732 StartV = Start->getImm(); 733 if (End->isImm()) 734 EndV = End->getImm(); 735 736 int64_t AdjV = 0; 737 // To compute the iteration count, we would need this computation: 738 // Count = (End - Start + (IVBump-1)) / IVBump 739 // or, when CmpHasEqual: 740 // Count = (End - Start + (IVBump-1)+1) / IVBump 741 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 742 // generating an instruction specifically to add it if we can adjust 743 // the immediate values for Start or End. 744 745 if (CmpHasEqual) { 746 // Need to add 1 to the total iteration count. 747 if (Start->isImm()) 748 StartV--; 749 else if (End->isImm()) 750 EndV++; 751 else 752 AdjV += 1; 753 } 754 755 if (Cmp != Comparison::NE) { 756 if (Start->isImm()) 757 StartV -= (IVBump-1); 758 else if (End->isImm()) 759 EndV += (IVBump-1); 760 else 761 AdjV += (IVBump-1); 762 } 763 764 unsigned R = 0, SR = 0; 765 if (Start->isReg()) { 766 R = Start->getReg(); 767 SR = Start->getSubReg(); 768 } else { 769 R = End->getReg(); 770 SR = End->getSubReg(); 771 } 772 const TargetRegisterClass *RC = MRI->getRegClass(R); 773 // Hardware loops cannot handle 64-bit registers. If it's a double 774 // register, it has to have a subregister. 775 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 776 return 0; 777 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 778 779 // Compute DistR (register with the distance between Start and End). 780 unsigned DistR, DistSR; 781 782 // Avoid special case, where the start value is an imm(0). 783 if (Start->isImm() && StartV == 0) { 784 DistR = End->getReg(); 785 DistSR = End->getSubReg(); 786 } else { 787 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::SUB_rr) : 788 (RegToImm ? TII->get(Hexagon::SUB_ri) : 789 TII->get(Hexagon::ADD_ri)); 790 unsigned SubR = MRI->createVirtualRegister(IntRC); 791 MachineInstrBuilder SubIB = 792 BuildMI(*PH, InsertPos, DL, SubD, SubR); 793 794 if (RegToReg) { 795 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 796 .addReg(Start->getReg(), 0, Start->getSubReg()); 797 } else if (RegToImm) { 798 SubIB.addImm(EndV) 799 .addReg(Start->getReg(), 0, Start->getSubReg()); 800 } else { // ImmToReg 801 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 802 .addImm(-StartV); 803 } 804 DistR = SubR; 805 DistSR = 0; 806 } 807 808 // From DistR, compute AdjR (register with the adjusted distance). 809 unsigned AdjR, AdjSR; 810 811 if (AdjV == 0) { 812 AdjR = DistR; 813 AdjSR = DistSR; 814 } else { 815 // Generate CountR = ADD DistR, AdjVal 816 unsigned AddR = MRI->createVirtualRegister(IntRC); 817 const MCInstrDesc &AddD = TII->get(Hexagon::ADD_ri); 818 BuildMI(*PH, InsertPos, DL, AddD, AddR) 819 .addReg(DistR, 0, DistSR) 820 .addImm(AdjV); 821 822 AdjR = AddR; 823 AdjSR = 0; 824 } 825 826 // From AdjR, compute CountR (register with the final count). 827 unsigned CountR, CountSR; 828 829 if (IVBump == 1) { 830 CountR = AdjR; 831 CountSR = AdjSR; 832 } else { 833 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 834 unsigned Shift = Log2_32(IVBump); 835 836 // Generate NormR = LSR DistR, Shift. 837 unsigned LsrR = MRI->createVirtualRegister(IntRC); 838 const MCInstrDesc &LsrD = TII->get(Hexagon::LSR_ri); 839 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 840 .addReg(AdjR, 0, AdjSR) 841 .addImm(Shift); 842 843 CountR = LsrR; 844 CountSR = 0; 845 } 846 847 return new CountValue(CountValue::CV_Register, CountR, CountSR); 848 } 849 850 851 /// \brief Return true if the operation is invalid within hardware loop. 852 bool HexagonHardwareLoops::isInvalidLoopOperation( 853 const MachineInstr *MI) const { 854 855 // call is not allowed because the callee may use a hardware loop 856 if (MI->getDesc().isCall()) 857 return true; 858 859 // do not allow nested hardware loops 860 if (isHardwareLoop(MI)) 861 return true; 862 863 // check if the instruction defines a hardware loop register 864 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 865 const MachineOperand &MO = MI->getOperand(i); 866 if (!MO.isReg() || !MO.isDef()) 867 continue; 868 unsigned R = MO.getReg(); 869 if (R == Hexagon::LC0 || R == Hexagon::LC1 || 870 R == Hexagon::SA0 || R == Hexagon::SA1) 871 return true; 872 } 873 return false; 874 } 875 876 877 /// \brief - Return true if the loop contains an instruction that inhibits 878 /// the use of the hardware loop function. 879 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const { 880 const std::vector<MachineBasicBlock*> Blocks = L->getBlocks(); 881 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 882 MachineBasicBlock *MBB = Blocks[i]; 883 for (MachineBasicBlock::iterator 884 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { 885 const MachineInstr *MI = &*MII; 886 if (isInvalidLoopOperation(MI)) 887 return true; 888 } 889 } 890 return false; 891 } 892 893 894 /// \brief Returns true if the instruction is dead. This was essentially 895 /// copied from DeadMachineInstructionElim::isDead, but with special cases 896 /// for inline asm, physical registers and instructions with side effects 897 /// removed. 898 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 899 SmallVector<MachineInstr*, 1> &DeadPhis) const { 900 // Examine each operand. 901 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 902 const MachineOperand &MO = MI->getOperand(i); 903 if (!MO.isReg() || !MO.isDef()) 904 continue; 905 906 unsigned Reg = MO.getReg(); 907 if (MRI->use_nodbg_empty(Reg)) 908 continue; 909 910 typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator; 911 912 // This instruction has users, but if the only user is the phi node for the 913 // parent block, and the only use of that phi node is this instruction, then 914 // this instruction is dead: both it (and the phi node) can be removed. 915 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 916 use_nodbg_iterator End = MRI->use_nodbg_end(); 917 if (llvm::next(I) != End || !I.getOperand().getParent()->isPHI()) 918 return false; 919 920 MachineInstr *OnePhi = I.getOperand().getParent(); 921 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 922 const MachineOperand &OPO = OnePhi->getOperand(j); 923 if (!OPO.isReg() || !OPO.isDef()) 924 continue; 925 926 unsigned OPReg = OPO.getReg(); 927 use_nodbg_iterator nextJ; 928 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 929 J != End; J = nextJ) { 930 nextJ = llvm::next(J); 931 MachineOperand &Use = J.getOperand(); 932 MachineInstr *UseMI = Use.getParent(); 933 934 // If the phi node has a user that is not MI, bail... 935 if (MI != UseMI) 936 return false; 937 } 938 } 939 DeadPhis.push_back(OnePhi); 940 } 941 942 // If there are no defs with uses, the instruction is dead. 943 return true; 944 } 945 946 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 947 // This procedure was essentially copied from DeadMachineInstructionElim. 948 949 SmallVector<MachineInstr*, 1> DeadPhis; 950 if (isDead(MI, DeadPhis)) { 951 DEBUG(dbgs() << "HW looping will remove: " << *MI); 952 953 // It is possible that some DBG_VALUE instructions refer to this 954 // instruction. Examine each def operand for such references; 955 // if found, mark the DBG_VALUE as undef (but don't delete it). 956 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 957 const MachineOperand &MO = MI->getOperand(i); 958 if (!MO.isReg() || !MO.isDef()) 959 continue; 960 unsigned Reg = MO.getReg(); 961 MachineRegisterInfo::use_iterator nextI; 962 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), 963 E = MRI->use_end(); I != E; I = nextI) { 964 nextI = llvm::next(I); // I is invalidated by the setReg 965 MachineOperand &Use = I.getOperand(); 966 MachineInstr *UseMI = Use.getParent(); 967 if (UseMI == MI) 968 continue; 969 if (Use.isDebug()) 970 UseMI->getOperand(0).setReg(0U); 971 // This may also be a "instr -> phi -> instr" case which can 972 // be removed too. 973 } 974 } 975 976 MI->eraseFromParent(); 977 for (unsigned i = 0; i < DeadPhis.size(); ++i) 978 DeadPhis[i]->eraseFromParent(); 979 } 980 } 981 982 /// \brief Check if the loop is a candidate for converting to a hardware 983 /// loop. If so, then perform the transformation. 984 /// 985 /// This function works on innermost loops first. A loop can be converted 986 /// if it is a counting loop; either a register value or an immediate. 987 /// 988 /// The code makes several assumptions about the representation of the loop 989 /// in llvm. 990 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) { 991 // This is just for sanity. 992 assert(L->getHeader() && "Loop without a header?"); 993 994 bool Changed = false; 995 // Process nested loops first. 996 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 997 Changed |= convertToHardwareLoop(*I); 998 999 // If a nested loop has been converted, then we can't convert this loop. 1000 if (Changed) 1001 return Changed; 1002 1003 #ifndef NDEBUG 1004 // Stop trying after reaching the limit (if any). 1005 int Limit = HWLoopLimit; 1006 if (Limit >= 0) { 1007 if (Counter >= HWLoopLimit) 1008 return false; 1009 Counter++; 1010 } 1011 #endif 1012 1013 // Does the loop contain any invalid instructions? 1014 if (containsInvalidInstruction(L)) 1015 return false; 1016 1017 // Is the induction variable bump feeding the latch condition? 1018 if (!fixupInductionVariable(L)) 1019 return false; 1020 1021 MachineBasicBlock *LastMBB = L->getExitingBlock(); 1022 // Don't generate hw loop if the loop has more than one exit. 1023 if (LastMBB == 0) 1024 return false; 1025 1026 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1027 if (LastI == LastMBB->end()) 1028 return false; 1029 1030 // Ensure the loop has a preheader: the loop instruction will be 1031 // placed there. 1032 bool NewPreheader = false; 1033 MachineBasicBlock *Preheader = L->getLoopPreheader(); 1034 if (!Preheader) { 1035 Preheader = createPreheaderForLoop(L); 1036 if (!Preheader) 1037 return false; 1038 NewPreheader = true; 1039 } 1040 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1041 1042 SmallVector<MachineInstr*, 2> OldInsts; 1043 // Are we able to determine the trip count for the loop? 1044 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1045 if (TripCount == 0) 1046 return false; 1047 1048 // Is the trip count available in the preheader? 1049 if (TripCount->isReg()) { 1050 // There will be a use of the register inserted into the preheader, 1051 // so make sure that the register is actually defined at that point. 1052 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1053 MachineBasicBlock *BBDef = TCDef->getParent(); 1054 if (!NewPreheader) { 1055 if (!MDT->dominates(BBDef, Preheader)) 1056 return false; 1057 } else { 1058 // If we have just created a preheader, the dominator tree won't be 1059 // aware of it. Check if the definition of the register dominates 1060 // the header, but is not the header itself. 1061 if (!MDT->properlyDominates(BBDef, L->getHeader())) 1062 return false; 1063 } 1064 } 1065 1066 // Determine the loop start. 1067 MachineBasicBlock *LoopStart = L->getTopBlock(); 1068 if (L->getLoopLatch() != LastMBB) { 1069 // When the exit and latch are not the same, use the latch block as the 1070 // start. 1071 // The loop start address is used only after the 1st iteration, and the 1072 // loop latch may contains instrs. that need to be executed after the 1073 // first iteration. 1074 LoopStart = L->getLoopLatch(); 1075 // Make sure the latch is a successor of the exit, otherwise it won't work. 1076 if (!LastMBB->isSuccessor(LoopStart)) 1077 return false; 1078 } 1079 1080 // Convert the loop to a hardware loop. 1081 DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1082 DebugLoc DL; 1083 if (InsertPos != Preheader->end()) 1084 DL = InsertPos->getDebugLoc(); 1085 1086 if (TripCount->isReg()) { 1087 // Create a copy of the loop count register. 1088 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1089 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1090 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1091 // Add the Loop instruction to the beginning of the loop. 1092 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r)) 1093 .addMBB(LoopStart) 1094 .addReg(CountReg); 1095 } else { 1096 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1097 // Add the Loop immediate instruction to the beginning of the loop, 1098 // if the immediate fits in the instructions. Otherwise, we need to 1099 // create a new virtual register. 1100 int64_t CountImm = TripCount->getImm(); 1101 if (!TII->isValidOffset(Hexagon::LOOP0_i, CountImm)) { 1102 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1103 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::TFRI), CountReg) 1104 .addImm(CountImm); 1105 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r)) 1106 .addMBB(LoopStart).addReg(CountReg); 1107 } else 1108 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_i)) 1109 .addMBB(LoopStart).addImm(CountImm); 1110 } 1111 1112 // Make sure the loop start always has a reference in the CFG. We need 1113 // to create a BlockAddress operand to get this mechanism to work both the 1114 // MachineBasicBlock and BasicBlock objects need the flag set. 1115 LoopStart->setHasAddressTaken(); 1116 // This line is needed to set the hasAddressTaken flag on the BasicBlock 1117 // object. 1118 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 1119 1120 // Replace the loop branch with an endloop instruction. 1121 DebugLoc LastIDL = LastI->getDebugLoc(); 1122 BuildMI(*LastMBB, LastI, LastIDL, 1123 TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart); 1124 1125 // The loop ends with either: 1126 // - a conditional branch followed by an unconditional branch, or 1127 // - a conditional branch to the loop start. 1128 if (LastI->getOpcode() == Hexagon::JMP_c || 1129 LastI->getOpcode() == Hexagon::JMP_cNot) { 1130 // Delete one and change/add an uncond. branch to out of the loop. 1131 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1132 LastI = LastMBB->erase(LastI); 1133 if (!L->contains(BranchTarget)) { 1134 if (LastI != LastMBB->end()) 1135 LastI = LastMBB->erase(LastI); 1136 SmallVector<MachineOperand, 0> Cond; 1137 TII->InsertBranch(*LastMBB, BranchTarget, 0, Cond, LastIDL); 1138 } 1139 } else { 1140 // Conditional branch to loop start; just delete it. 1141 LastMBB->erase(LastI); 1142 } 1143 delete TripCount; 1144 1145 // The induction operation and the comparison may now be 1146 // unneeded. If these are unneeded, then remove them. 1147 for (unsigned i = 0; i < OldInsts.size(); ++i) 1148 removeIfDead(OldInsts[i]); 1149 1150 ++NumHWLoops; 1151 return true; 1152 } 1153 1154 1155 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1156 MachineInstr *CmpI) { 1157 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1158 1159 MachineBasicBlock *BB = BumpI->getParent(); 1160 if (CmpI->getParent() != BB) 1161 return false; 1162 1163 typedef MachineBasicBlock::instr_iterator instr_iterator; 1164 // Check if things are in order to begin with. 1165 for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I) 1166 if (&*I == CmpI) 1167 return true; 1168 1169 // Out of order. 1170 unsigned PredR = CmpI->getOperand(0).getReg(); 1171 bool FoundBump = false; 1172 instr_iterator CmpIt = CmpI, NextIt = llvm::next(CmpIt); 1173 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1174 MachineInstr *In = &*I; 1175 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1176 MachineOperand &MO = In->getOperand(i); 1177 if (MO.isReg() && MO.isUse()) { 1178 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1179 return false; 1180 } 1181 } 1182 1183 if (In == BumpI) { 1184 instr_iterator After = BumpI; 1185 instr_iterator From = CmpI; 1186 BB->splice(llvm::next(After), BB, From); 1187 FoundBump = true; 1188 break; 1189 } 1190 } 1191 assert (FoundBump && "Cannot determine instruction order"); 1192 return FoundBump; 1193 } 1194 1195 1196 MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) { 1197 MachineInstr *DI = MRI->getVRegDef(R); 1198 unsigned DOpc = DI->getOpcode(); 1199 switch (DOpc) { 1200 case Hexagon::TFRI: 1201 case Hexagon::TFRI64: 1202 case Hexagon::CONST32_Int_Real: 1203 case Hexagon::CONST64_Int_Real: 1204 return DI; 1205 } 1206 return 0; 1207 } 1208 1209 1210 int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) { 1211 if (MO.isImm()) 1212 return MO.getImm(); 1213 assert(MO.isReg()); 1214 unsigned R = MO.getReg(); 1215 MachineInstr *DI = defWithImmediate(R); 1216 assert(DI && "Need an immediate operand"); 1217 // All currently supported "define-with-immediate" instructions have the 1218 // actual immediate value in the operand(1). 1219 int64_t v = DI->getOperand(1).getImm(); 1220 return v; 1221 } 1222 1223 1224 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1225 if (MO.isImm()) { 1226 MO.setImm(Val); 1227 return; 1228 } 1229 1230 assert(MO.isReg()); 1231 unsigned R = MO.getReg(); 1232 MachineInstr *DI = defWithImmediate(R); 1233 if (MRI->hasOneNonDBGUse(R)) { 1234 // If R has only one use, then just change its defining instruction to 1235 // the new immediate value. 1236 DI->getOperand(1).setImm(Val); 1237 return; 1238 } 1239 1240 const TargetRegisterClass *RC = MRI->getRegClass(R); 1241 unsigned NewR = MRI->createVirtualRegister(RC); 1242 MachineBasicBlock &B = *DI->getParent(); 1243 DebugLoc DL = DI->getDebugLoc(); 1244 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR) 1245 .addImm(Val); 1246 MO.setReg(NewR); 1247 } 1248 1249 1250 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1251 MachineBasicBlock *Header = L->getHeader(); 1252 MachineBasicBlock *Preheader = L->getLoopPreheader(); 1253 MachineBasicBlock *Latch = L->getLoopLatch(); 1254 1255 if (!Header || !Preheader || !Latch) 1256 return false; 1257 1258 // These data structures follow the same concept as the corresponding 1259 // ones in findInductionRegister (where some comments are). 1260 typedef std::pair<unsigned,int64_t> RegisterBump; 1261 typedef std::pair<unsigned,RegisterBump> RegisterInduction; 1262 typedef std::set<RegisterInduction> RegisterInductionSet; 1263 1264 // Register candidates for induction variables, with their associated bumps. 1265 RegisterInductionSet IndRegs; 1266 1267 // Look for induction patterns: 1268 // vreg1 = PHI ..., [ latch, vreg2 ] 1269 // vreg2 = ADD vreg1, imm 1270 typedef MachineBasicBlock::instr_iterator instr_iterator; 1271 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1272 I != E && I->isPHI(); ++I) { 1273 MachineInstr *Phi = &*I; 1274 1275 // Have a PHI instruction. 1276 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1277 if (Phi->getOperand(i+1).getMBB() != Latch) 1278 continue; 1279 1280 unsigned PhiReg = Phi->getOperand(i).getReg(); 1281 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1282 unsigned UpdOpc = DI->getOpcode(); 1283 bool isAdd = (UpdOpc == Hexagon::ADD_ri); 1284 1285 if (isAdd) { 1286 // If the register operand to the add/sub is the PHI we are looking 1287 // at, this meets the induction pattern. 1288 unsigned IndReg = DI->getOperand(1).getReg(); 1289 if (MRI->getVRegDef(IndReg) == Phi) { 1290 unsigned UpdReg = DI->getOperand(0).getReg(); 1291 int64_t V = DI->getOperand(2).getImm(); 1292 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1293 } 1294 } 1295 } // for (i) 1296 } // for (instr) 1297 1298 if (IndRegs.empty()) 1299 return false; 1300 1301 MachineBasicBlock *TB = 0, *FB = 0; 1302 SmallVector<MachineOperand,2> Cond; 1303 // AnalyzeBranch returns true if it fails to analyze branch. 1304 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); 1305 if (NotAnalyzed) 1306 return false; 1307 1308 // Check if the latch branch is unconditional. 1309 if (Cond.empty()) 1310 return false; 1311 1312 if (TB != Header && FB != Header) 1313 // The latch does not go back to the header. Not a latch we know and love. 1314 return false; 1315 1316 // Expecting a predicate register as a condition. It won't be a hardware 1317 // predicate register at this point yet, just a vreg. 1318 // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) 1319 // into Cond, followed by the predicate register. For non-negated branches 1320 // it's just the register. 1321 unsigned CSz = Cond.size(); 1322 if (CSz != 1 && CSz != 2) 1323 return false; 1324 1325 unsigned P = Cond[CSz-1].getReg(); 1326 MachineInstr *PredDef = MRI->getVRegDef(P); 1327 1328 if (!PredDef->isCompare()) 1329 return false; 1330 1331 SmallSet<unsigned,2> CmpRegs; 1332 MachineOperand *CmpImmOp = 0; 1333 1334 // Go over all operands to the compare and look for immediate and register 1335 // operands. Assume that if the compare has a single register use and a 1336 // single immediate operand, then the register is being compared with the 1337 // immediate value. 1338 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1339 MachineOperand &MO = PredDef->getOperand(i); 1340 if (MO.isReg()) { 1341 // Skip all implicit references. In one case there was: 1342 // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use> 1343 if (MO.isImplicit()) 1344 continue; 1345 if (MO.isUse()) { 1346 unsigned R = MO.getReg(); 1347 if (!defWithImmediate(R)) { 1348 CmpRegs.insert(MO.getReg()); 1349 continue; 1350 } 1351 // Consider the register to be the "immediate" operand. 1352 if (CmpImmOp) 1353 return false; 1354 CmpImmOp = &MO; 1355 } 1356 } else if (MO.isImm()) { 1357 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1358 return false; 1359 CmpImmOp = &MO; 1360 } 1361 } 1362 1363 if (CmpRegs.empty()) 1364 return false; 1365 1366 // Check if the compared register follows the order we want. Fix if needed. 1367 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1368 I != E; ++I) { 1369 // This is a success. If the register used in the comparison is one that 1370 // we have identified as a bumped (updated) induction register, there is 1371 // nothing to do. 1372 if (CmpRegs.count(I->first)) 1373 return true; 1374 1375 // Otherwise, if the register being compared comes out of a PHI node, 1376 // and has been recognized as following the induction pattern, and is 1377 // compared against an immediate, we can fix it. 1378 const RegisterBump &RB = I->second; 1379 if (CmpRegs.count(RB.first)) { 1380 if (!CmpImmOp) 1381 return false; 1382 1383 int64_t CmpImm = getImmediate(*CmpImmOp); 1384 int64_t V = RB.second; 1385 if (V > 0 && CmpImm+V < CmpImm) // Overflow (64-bit). 1386 return false; 1387 if (V < 0 && CmpImm+V > CmpImm) // Overflow (64-bit). 1388 return false; 1389 CmpImm += V; 1390 // Some forms of cmp-immediate allow u9 and s10. Assume the worst case 1391 // scenario, i.e. an 8-bit value. 1392 if (CmpImmOp->isImm() && !isInt<8>(CmpImm)) 1393 return false; 1394 1395 // Make sure that the compare happens after the bump. Otherwise, 1396 // after the fixup, the compare would use a yet-undefined register. 1397 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1398 bool Order = orderBumpCompare(BumpI, PredDef); 1399 if (!Order) 1400 return false; 1401 1402 // Finally, fix the compare instruction. 1403 setImmediate(*CmpImmOp, CmpImm); 1404 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1405 MachineOperand &MO = PredDef->getOperand(i); 1406 if (MO.isReg() && MO.getReg() == RB.first) { 1407 MO.setReg(I->first); 1408 return true; 1409 } 1410 } 1411 } 1412 } 1413 1414 return false; 1415 } 1416 1417 1418 /// \brief Create a preheader for a given loop. 1419 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1420 MachineLoop *L) { 1421 if (MachineBasicBlock *TmpPH = L->getLoopPreheader()) 1422 return TmpPH; 1423 1424 MachineBasicBlock *Header = L->getHeader(); 1425 MachineBasicBlock *Latch = L->getLoopLatch(); 1426 MachineFunction *MF = Header->getParent(); 1427 DebugLoc DL; 1428 1429 if (!Latch || Header->hasAddressTaken()) 1430 return 0; 1431 1432 typedef MachineBasicBlock::instr_iterator instr_iterator; 1433 typedef MachineBasicBlock::pred_iterator pred_iterator; 1434 1435 // Verify that all existing predecessors have analyzable branches 1436 // (or no branches at all). 1437 typedef std::vector<MachineBasicBlock*> MBBVector; 1438 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1439 SmallVector<MachineOperand,2> Tmp1; 1440 MachineBasicBlock *TB = 0, *FB = 0; 1441 1442 if (TII->AnalyzeBranch(*Latch, TB, FB, Tmp1, false)) 1443 return 0; 1444 1445 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1446 MachineBasicBlock *PB = *I; 1447 if (PB != Latch) { 1448 bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false); 1449 if (NotAnalyzed) 1450 return 0; 1451 } 1452 } 1453 1454 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1455 MF->insert(Header, NewPH); 1456 1457 if (Header->pred_size() > 2) { 1458 // Ensure that the header has only two predecessors: the preheader and 1459 // the loop latch. Any additional predecessors of the header should 1460 // join at the newly created preheader. Inspect all PHI nodes from the 1461 // header and create appropriate corresponding PHI nodes in the preheader. 1462 1463 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1464 I != E && I->isPHI(); ++I) { 1465 MachineInstr *PN = &*I; 1466 1467 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1468 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1469 NewPH->insert(NewPH->end(), NewPN); 1470 1471 unsigned PR = PN->getOperand(0).getReg(); 1472 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1473 unsigned NewPR = MRI->createVirtualRegister(RC); 1474 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1475 1476 // Copy all non-latch operands of a header's PHI node to the newly 1477 // created PHI node in the preheader. 1478 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1479 unsigned PredR = PN->getOperand(i).getReg(); 1480 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1481 if (PredB == Latch) 1482 continue; 1483 1484 NewPN->addOperand(MachineOperand::CreateReg(PredR, false)); 1485 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1486 } 1487 1488 // Remove copied operands from the old PHI node and add the value 1489 // coming from the preheader's PHI. 1490 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1491 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1492 if (PredB != Latch) { 1493 PN->RemoveOperand(i+1); 1494 PN->RemoveOperand(i); 1495 } 1496 } 1497 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1498 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1499 } 1500 1501 } else { 1502 assert(Header->pred_size() == 2); 1503 1504 // The header has only two predecessors, but the non-latch predecessor 1505 // is not a preheader (e.g. it has other successors, etc.) 1506 // In such a case we don't need any extra PHI nodes in the new preheader, 1507 // all we need is to adjust existing PHIs in the header to now refer to 1508 // the new preheader. 1509 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1510 I != E && I->isPHI(); ++I) { 1511 MachineInstr *PN = &*I; 1512 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1513 MachineOperand &MO = PN->getOperand(i+1); 1514 if (MO.getMBB() != Latch) 1515 MO.setMBB(NewPH); 1516 } 1517 } 1518 } 1519 1520 // "Reroute" the CFG edges to link in the new preheader. 1521 // If any of the predecessors falls through to the header, insert a branch 1522 // to the new preheader in that place. 1523 SmallVector<MachineOperand,1> Tmp2; 1524 SmallVector<MachineOperand,1> EmptyCond; 1525 1526 TB = FB = 0; 1527 1528 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1529 MachineBasicBlock *PB = *I; 1530 if (PB != Latch) { 1531 Tmp2.clear(); 1532 bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false); 1533 (void)NotAnalyzed; // supress compiler warning 1534 assert (!NotAnalyzed && "Should be analyzable!"); 1535 if (TB != Header && (Tmp2.empty() || FB != Header)) 1536 TII->InsertBranch(*PB, NewPH, 0, EmptyCond, DL); 1537 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1538 } 1539 } 1540 1541 // It can happen that the latch block will fall through into the header. 1542 // Insert an unconditional branch to the header. 1543 TB = FB = 0; 1544 bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false); 1545 (void)LatchNotAnalyzed; // supress compiler warning 1546 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1547 if (!TB && !FB) 1548 TII->InsertBranch(*Latch, Header, 0, EmptyCond, DL); 1549 1550 // Finally, the branch from the preheader to the header. 1551 TII->InsertBranch(*NewPH, Header, 0, EmptyCond, DL); 1552 NewPH->addSuccessor(Header); 1553 1554 return NewPH; 1555 } 1556