Home | History | Annotate | Download | only in X86
      1 //===-- X86CodeEmitter.cpp - Convert X86 code to machine code -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the pass that transforms the X86 machine instructions into
     11 // relocatable machine code.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "x86-emitter"
     16 #include "X86.h"
     17 #include "X86InstrInfo.h"
     18 #include "X86JITInfo.h"
     19 #include "X86Relocations.h"
     20 #include "X86Subtarget.h"
     21 #include "X86TargetMachine.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/CodeGen/JITCodeEmitter.h"
     24 #include "llvm/CodeGen/MachineFunctionPass.h"
     25 #include "llvm/CodeGen/MachineInstr.h"
     26 #include "llvm/CodeGen/MachineModuleInfo.h"
     27 #include "llvm/CodeGen/Passes.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/MC/MCCodeEmitter.h"
     30 #include "llvm/MC/MCExpr.h"
     31 #include "llvm/MC/MCInst.h"
     32 #include "llvm/PassManager.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/ErrorHandling.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetOptions.h"
     37 using namespace llvm;
     38 
     39 STATISTIC(NumEmitted, "Number of machine instructions emitted");
     40 
     41 namespace {
     42   template<class CodeEmitter>
     43   class Emitter : public MachineFunctionPass {
     44     const X86InstrInfo  *II;
     45     const DataLayout    *TD;
     46     X86TargetMachine    &TM;
     47     CodeEmitter         &MCE;
     48     MachineModuleInfo   *MMI;
     49     intptr_t PICBaseOffset;
     50     bool Is64BitMode;
     51     bool IsPIC;
     52   public:
     53     static char ID;
     54     explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
     55       : MachineFunctionPass(ID), II(0), TD(0), TM(tm),
     56       MCE(mce), PICBaseOffset(0), Is64BitMode(false),
     57       IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
     58     Emitter(X86TargetMachine &tm, CodeEmitter &mce,
     59             const X86InstrInfo &ii, const DataLayout &td, bool is64)
     60       : MachineFunctionPass(ID), II(&ii), TD(&td), TM(tm),
     61       MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
     62       IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
     63 
     64     bool runOnMachineFunction(MachineFunction &MF);
     65 
     66     virtual const char *getPassName() const {
     67       return "X86 Machine Code Emitter";
     68     }
     69 
     70     void emitOpcodePrefix(uint64_t TSFlags, int MemOperand,
     71                           const MachineInstr &MI,
     72                           const MCInstrDesc *Desc) const;
     73 
     74     void emitVEXOpcodePrefix(uint64_t TSFlags, int MemOperand,
     75                              const MachineInstr &MI,
     76                              const MCInstrDesc *Desc) const;
     77 
     78     void emitSegmentOverridePrefix(uint64_t TSFlags,
     79                                    int MemOperand,
     80                                    const MachineInstr &MI) const;
     81 
     82     void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc);
     83 
     84     void getAnalysisUsage(AnalysisUsage &AU) const {
     85       AU.setPreservesAll();
     86       AU.addRequired<MachineModuleInfo>();
     87       MachineFunctionPass::getAnalysisUsage(AU);
     88     }
     89 
     90   private:
     91     void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
     92     void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
     93                            intptr_t Disp = 0, intptr_t PCAdj = 0,
     94                            bool Indirect = false);
     95     void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
     96     void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
     97                               intptr_t PCAdj = 0);
     98     void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
     99                               intptr_t PCAdj = 0);
    100 
    101     void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
    102                                intptr_t Adj = 0, bool IsPCRel = true);
    103 
    104     void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
    105     void emitRegModRMByte(unsigned RegOpcodeField);
    106     void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
    107     void emitConstant(uint64_t Val, unsigned Size);
    108 
    109     void emitMemModRMByte(const MachineInstr &MI,
    110                           unsigned Op, unsigned RegOpcodeField,
    111                           intptr_t PCAdj = 0);
    112 
    113     unsigned getX86RegNum(unsigned RegNo) const {
    114       const TargetRegisterInfo *TRI = TM.getRegisterInfo();
    115       return TRI->getEncodingValue(RegNo) & 0x7;
    116     }
    117 
    118     unsigned char getVEXRegisterEncoding(const MachineInstr &MI,
    119                                          unsigned OpNum) const;
    120   };
    121 
    122 template<class CodeEmitter>
    123   char Emitter<CodeEmitter>::ID = 0;
    124 } // end anonymous namespace.
    125 
    126 /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
    127 /// to the specified JITCodeEmitter object.
    128 FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
    129                                                 JITCodeEmitter &JCE) {
    130   return new Emitter<JITCodeEmitter>(TM, JCE);
    131 }
    132 
    133 template<class CodeEmitter>
    134 bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
    135   MMI = &getAnalysis<MachineModuleInfo>();
    136   MCE.setModuleInfo(MMI);
    137 
    138   II = TM.getInstrInfo();
    139   TD = TM.getDataLayout();
    140   Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
    141   IsPIC = TM.getRelocationModel() == Reloc::PIC_;
    142 
    143   do {
    144     DEBUG(dbgs() << "JITTing function '" << MF.getName() << "'\n");
    145     MCE.startFunction(MF);
    146     for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
    147          MBB != E; ++MBB) {
    148       MCE.StartMachineBasicBlock(MBB);
    149       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
    150            I != E; ++I) {
    151         const MCInstrDesc &Desc = I->getDesc();
    152         emitInstruction(*I, &Desc);
    153         // MOVPC32r is basically a call plus a pop instruction.
    154         if (Desc.getOpcode() == X86::MOVPC32r)
    155           emitInstruction(*I, &II->get(X86::POP32r));
    156         ++NumEmitted;  // Keep track of the # of mi's emitted
    157       }
    158     }
    159   } while (MCE.finishFunction(MF));
    160 
    161   return false;
    162 }
    163 
    164 /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
    165 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
    166 /// size, and 3) use of X86-64 extended registers.
    167 static unsigned determineREX(const MachineInstr &MI) {
    168   unsigned REX = 0;
    169   const MCInstrDesc &Desc = MI.getDesc();
    170 
    171   // Pseudo instructions do not need REX prefix byte.
    172   if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
    173     return 0;
    174   if (Desc.TSFlags & X86II::REX_W)
    175     REX |= 1 << 3;
    176 
    177   unsigned NumOps = Desc.getNumOperands();
    178   if (NumOps) {
    179     bool isTwoAddr = NumOps > 1 &&
    180       Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
    181 
    182     // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
    183     unsigned i = isTwoAddr ? 1 : 0;
    184     for (unsigned e = NumOps; i != e; ++i) {
    185       const MachineOperand& MO = MI.getOperand(i);
    186       if (MO.isReg()) {
    187         unsigned Reg = MO.getReg();
    188         if (X86II::isX86_64NonExtLowByteReg(Reg))
    189           REX |= 0x40;
    190       }
    191     }
    192 
    193     switch (Desc.TSFlags & X86II::FormMask) {
    194       case X86II::MRMInitReg:
    195         if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
    196           REX |= (1 << 0) | (1 << 2);
    197         break;
    198       case X86II::MRMSrcReg: {
    199         if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
    200           REX |= 1 << 2;
    201         i = isTwoAddr ? 2 : 1;
    202         for (unsigned e = NumOps; i != e; ++i) {
    203           const MachineOperand& MO = MI.getOperand(i);
    204           if (X86InstrInfo::isX86_64ExtendedReg(MO))
    205             REX |= 1 << 0;
    206         }
    207         break;
    208       }
    209       case X86II::MRMSrcMem: {
    210         if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
    211           REX |= 1 << 2;
    212         unsigned Bit = 0;
    213         i = isTwoAddr ? 2 : 1;
    214         for (; i != NumOps; ++i) {
    215           const MachineOperand& MO = MI.getOperand(i);
    216           if (MO.isReg()) {
    217             if (X86InstrInfo::isX86_64ExtendedReg(MO))
    218               REX |= 1 << Bit;
    219             Bit++;
    220           }
    221         }
    222         break;
    223       }
    224       case X86II::MRM0m: case X86II::MRM1m:
    225       case X86II::MRM2m: case X86II::MRM3m:
    226       case X86II::MRM4m: case X86II::MRM5m:
    227       case X86II::MRM6m: case X86II::MRM7m:
    228       case X86II::MRMDestMem: {
    229         unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
    230         i = isTwoAddr ? 1 : 0;
    231         if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e)))
    232           REX |= 1 << 2;
    233         unsigned Bit = 0;
    234         for (; i != e; ++i) {
    235           const MachineOperand& MO = MI.getOperand(i);
    236           if (MO.isReg()) {
    237             if (X86InstrInfo::isX86_64ExtendedReg(MO))
    238               REX |= 1 << Bit;
    239             Bit++;
    240           }
    241         }
    242         break;
    243       }
    244       default: {
    245         if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
    246           REX |= 1 << 0;
    247         i = isTwoAddr ? 2 : 1;
    248         for (unsigned e = NumOps; i != e; ++i) {
    249           const MachineOperand& MO = MI.getOperand(i);
    250           if (X86InstrInfo::isX86_64ExtendedReg(MO))
    251             REX |= 1 << 2;
    252         }
    253         break;
    254       }
    255     }
    256   }
    257   return REX;
    258 }
    259 
    260 
    261 /// emitPCRelativeBlockAddress - This method keeps track of the information
    262 /// necessary to resolve the address of this block later and emits a dummy
    263 /// value.
    264 ///
    265 template<class CodeEmitter>
    266 void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
    267   // Remember where this reference was and where it is to so we can
    268   // deal with it later.
    269   MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
    270                                              X86::reloc_pcrel_word, MBB));
    271   MCE.emitWordLE(0);
    272 }
    273 
    274 /// emitGlobalAddress - Emit the specified address to the code stream assuming
    275 /// this is part of a "take the address of a global" instruction.
    276 ///
    277 template<class CodeEmitter>
    278 void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV,
    279                                 unsigned Reloc,
    280                                 intptr_t Disp /* = 0 */,
    281                                 intptr_t PCAdj /* = 0 */,
    282                                 bool Indirect /* = false */) {
    283   intptr_t RelocCST = Disp;
    284   if (Reloc == X86::reloc_picrel_word)
    285     RelocCST = PICBaseOffset;
    286   else if (Reloc == X86::reloc_pcrel_word)
    287     RelocCST = PCAdj;
    288   MachineRelocation MR = Indirect
    289     ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
    290                                            const_cast<GlobalValue *>(GV),
    291                                            RelocCST, false)
    292     : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
    293                                const_cast<GlobalValue *>(GV), RelocCST, false);
    294   MCE.addRelocation(MR);
    295   // The relocated value will be added to the displacement
    296   if (Reloc == X86::reloc_absolute_dword)
    297     MCE.emitDWordLE(Disp);
    298   else
    299     MCE.emitWordLE((int32_t)Disp);
    300 }
    301 
    302 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
    303 /// be emitted to the current location in the function, and allow it to be PC
    304 /// relative.
    305 template<class CodeEmitter>
    306 void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
    307                                                      unsigned Reloc) {
    308   intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
    309 
    310   // X86 never needs stubs because instruction selection will always pick
    311   // an instruction sequence that is large enough to hold any address
    312   // to a symbol.
    313   // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall)
    314   bool NeedStub = false;
    315   MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
    316                                                  Reloc, ES, RelocCST,
    317                                                  0, NeedStub));
    318   if (Reloc == X86::reloc_absolute_dword)
    319     MCE.emitDWordLE(0);
    320   else
    321     MCE.emitWordLE(0);
    322 }
    323 
    324 /// emitConstPoolAddress - Arrange for the address of an constant pool
    325 /// to be emitted to the current location in the function, and allow it to be PC
    326 /// relative.
    327 template<class CodeEmitter>
    328 void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
    329                                    intptr_t Disp /* = 0 */,
    330                                    intptr_t PCAdj /* = 0 */) {
    331   intptr_t RelocCST = 0;
    332   if (Reloc == X86::reloc_picrel_word)
    333     RelocCST = PICBaseOffset;
    334   else if (Reloc == X86::reloc_pcrel_word)
    335     RelocCST = PCAdj;
    336   MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
    337                                                     Reloc, CPI, RelocCST));
    338   // The relocated value will be added to the displacement
    339   if (Reloc == X86::reloc_absolute_dword)
    340     MCE.emitDWordLE(Disp);
    341   else
    342     MCE.emitWordLE((int32_t)Disp);
    343 }
    344 
    345 /// emitJumpTableAddress - Arrange for the address of a jump table to
    346 /// be emitted to the current location in the function, and allow it to be PC
    347 /// relative.
    348 template<class CodeEmitter>
    349 void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
    350                                    intptr_t PCAdj /* = 0 */) {
    351   intptr_t RelocCST = 0;
    352   if (Reloc == X86::reloc_picrel_word)
    353     RelocCST = PICBaseOffset;
    354   else if (Reloc == X86::reloc_pcrel_word)
    355     RelocCST = PCAdj;
    356   MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
    357                                                     Reloc, JTI, RelocCST));
    358   // The relocated value will be added to the displacement
    359   if (Reloc == X86::reloc_absolute_dword)
    360     MCE.emitDWordLE(0);
    361   else
    362     MCE.emitWordLE(0);
    363 }
    364 
    365 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
    366                                       unsigned RM) {
    367   assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
    368   return RM | (RegOpcode << 3) | (Mod << 6);
    369 }
    370 
    371 template<class CodeEmitter>
    372 void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
    373                                             unsigned RegOpcodeFld){
    374   MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
    375 }
    376 
    377 template<class CodeEmitter>
    378 void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
    379   MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
    380 }
    381 
    382 template<class CodeEmitter>
    383 void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
    384                                        unsigned Index,
    385                                        unsigned Base) {
    386   // SIB byte is in the same format as the ModRMByte...
    387   MCE.emitByte(ModRMByte(SS, Index, Base));
    388 }
    389 
    390 template<class CodeEmitter>
    391 void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
    392   // Output the constant in little endian byte order...
    393   for (unsigned i = 0; i != Size; ++i) {
    394     MCE.emitByte(Val & 255);
    395     Val >>= 8;
    396   }
    397 }
    398 
    399 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
    400 /// sign-extended field.
    401 static bool isDisp8(int Value) {
    402   return Value == (signed char)Value;
    403 }
    404 
    405 static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
    406                               const TargetMachine &TM) {
    407   // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
    408   // mechanism as 32-bit mode.
    409   if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
    410       !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
    411     return false;
    412 
    413   // Return true if this is a reference to a stub containing the address of the
    414   // global, not the global itself.
    415   return isGlobalStubReference(GVOp.getTargetFlags());
    416 }
    417 
    418 template<class CodeEmitter>
    419 void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
    420                                                  int DispVal,
    421                                                  intptr_t Adj /* = 0 */,
    422                                                  bool IsPCRel /* = true */) {
    423   // If this is a simple integer displacement that doesn't require a relocation,
    424   // emit it now.
    425   if (!RelocOp) {
    426     emitConstant(DispVal, 4);
    427     return;
    428   }
    429 
    430   // Otherwise, this is something that requires a relocation.  Emit it as such
    431   // now.
    432   unsigned RelocType = Is64BitMode ?
    433     (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
    434     : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
    435   if (RelocOp->isGlobal()) {
    436     // In 64-bit static small code model, we could potentially emit absolute.
    437     // But it's probably not beneficial. If the MCE supports using RIP directly
    438     // do it, otherwise fallback to absolute (this is determined by IsPCRel).
    439     //  89 05 00 00 00 00     mov    %eax,0(%rip)  # PC-relative
    440     //  89 04 25 00 00 00 00  mov    %eax,0x0      # Absolute
    441     bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
    442     emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
    443                       Adj, Indirect);
    444   } else if (RelocOp->isSymbol()) {
    445     emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
    446   } else if (RelocOp->isCPI()) {
    447     emitConstPoolAddress(RelocOp->getIndex(), RelocType,
    448                          RelocOp->getOffset(), Adj);
    449   } else {
    450     assert(RelocOp->isJTI() && "Unexpected machine operand!");
    451     emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
    452   }
    453 }
    454 
    455 template<class CodeEmitter>
    456 void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
    457                                             unsigned Op,unsigned RegOpcodeField,
    458                                             intptr_t PCAdj) {
    459   const MachineOperand &Op3 = MI.getOperand(Op+3);
    460   int DispVal = 0;
    461   const MachineOperand *DispForReloc = 0;
    462 
    463   // Figure out what sort of displacement we have to handle here.
    464   if (Op3.isGlobal()) {
    465     DispForReloc = &Op3;
    466   } else if (Op3.isSymbol()) {
    467     DispForReloc = &Op3;
    468   } else if (Op3.isCPI()) {
    469     if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
    470       DispForReloc = &Op3;
    471     } else {
    472       DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
    473       DispVal += Op3.getOffset();
    474     }
    475   } else if (Op3.isJTI()) {
    476     if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
    477       DispForReloc = &Op3;
    478     } else {
    479       DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
    480     }
    481   } else {
    482     DispVal = Op3.getImm();
    483   }
    484 
    485   const MachineOperand &Base     = MI.getOperand(Op);
    486   const MachineOperand &Scale    = MI.getOperand(Op+1);
    487   const MachineOperand &IndexReg = MI.getOperand(Op+2);
    488 
    489   unsigned BaseReg = Base.getReg();
    490 
    491   // Handle %rip relative addressing.
    492   if (BaseReg == X86::RIP ||
    493       (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
    494     assert(IndexReg.getReg() == 0 && Is64BitMode &&
    495            "Invalid rip-relative address");
    496     MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
    497     emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
    498     return;
    499   }
    500 
    501   // Indicate that the displacement will use an pcrel or absolute reference
    502   // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
    503   // while others, unless explicit asked to use RIP, use absolute references.
    504   bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
    505 
    506   // Is a SIB byte needed?
    507   // If no BaseReg, issue a RIP relative instruction only if the MCE can
    508   // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
    509   // 2-7) and absolute references.
    510   unsigned BaseRegNo = -1U;
    511   if (BaseReg != 0 && BaseReg != X86::RIP)
    512     BaseRegNo = getX86RegNum(BaseReg);
    513 
    514   if (// The SIB byte must be used if there is an index register.
    515       IndexReg.getReg() == 0 &&
    516       // The SIB byte must be used if the base is ESP/RSP/R12, all of which
    517       // encode to an R/M value of 4, which indicates that a SIB byte is
    518       // present.
    519       BaseRegNo != N86::ESP &&
    520       // If there is no base register and we're in 64-bit mode, we need a SIB
    521       // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
    522       (!Is64BitMode || BaseReg != 0)) {
    523     if (BaseReg == 0 ||          // [disp32]     in X86-32 mode
    524         BaseReg == X86::RIP) {   // [disp32+RIP] in X86-64 mode
    525       MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
    526       emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
    527       return;
    528     }
    529 
    530     // If the base is not EBP/ESP and there is no displacement, use simple
    531     // indirect register encoding, this handles addresses like [EAX].  The
    532     // encoding for [EBP] with no displacement means [disp32] so we handle it
    533     // by emitting a displacement of 0 below.
    534     if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
    535       MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
    536       return;
    537     }
    538 
    539     // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
    540     if (!DispForReloc && isDisp8(DispVal)) {
    541       MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
    542       emitConstant(DispVal, 1);
    543       return;
    544     }
    545 
    546     // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
    547     MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
    548     emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
    549     return;
    550   }
    551 
    552   // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
    553   assert(IndexReg.getReg() != X86::ESP &&
    554          IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
    555 
    556   bool ForceDisp32 = false;
    557   bool ForceDisp8  = false;
    558   if (BaseReg == 0) {
    559     // If there is no base register, we emit the special case SIB byte with
    560     // MOD=0, BASE=4, to JUST get the index, scale, and displacement.
    561     MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
    562     ForceDisp32 = true;
    563   } else if (DispForReloc) {
    564     // Emit the normal disp32 encoding.
    565     MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
    566     ForceDisp32 = true;
    567   } else if (DispVal == 0 && BaseRegNo != N86::EBP) {
    568     // Emit no displacement ModR/M byte
    569     MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
    570   } else if (isDisp8(DispVal)) {
    571     // Emit the disp8 encoding...
    572     MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
    573     ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
    574   } else {
    575     // Emit the normal disp32 encoding...
    576     MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
    577   }
    578 
    579   // Calculate what the SS field value should be...
    580   static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
    581   unsigned SS = SSTable[Scale.getImm()];
    582 
    583   if (BaseReg == 0) {
    584     // Handle the SIB byte for the case where there is no base, see Intel
    585     // Manual 2A, table 2-7. The displacement has already been output.
    586     unsigned IndexRegNo;
    587     if (IndexReg.getReg())
    588       IndexRegNo = getX86RegNum(IndexReg.getReg());
    589     else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
    590       IndexRegNo = 4;
    591     emitSIBByte(SS, IndexRegNo, 5);
    592   } else {
    593     unsigned BaseRegNo = getX86RegNum(BaseReg);
    594     unsigned IndexRegNo;
    595     if (IndexReg.getReg())
    596       IndexRegNo = getX86RegNum(IndexReg.getReg());
    597     else
    598       IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
    599     emitSIBByte(SS, IndexRegNo, BaseRegNo);
    600   }
    601 
    602   // Do we need to output a displacement?
    603   if (ForceDisp8) {
    604     emitConstant(DispVal, 1);
    605   } else if (DispVal != 0 || ForceDisp32) {
    606     emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
    607   }
    608 }
    609 
    610 static const MCInstrDesc *UpdateOp(MachineInstr &MI, const X86InstrInfo *II,
    611                                    unsigned Opcode) {
    612   const MCInstrDesc *Desc = &II->get(Opcode);
    613   MI.setDesc(*Desc);
    614   return Desc;
    615 }
    616 
    617 /// Is16BitMemOperand - Return true if the specified instruction has
    618 /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
    619 static bool Is16BitMemOperand(const MachineInstr &MI, unsigned Op) {
    620   const MachineOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    621   const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    622 
    623   if ((BaseReg.getReg() != 0 &&
    624        X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
    625       (IndexReg.getReg() != 0 &&
    626        X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
    627     return true;
    628   return false;
    629 }
    630 
    631 /// Is32BitMemOperand - Return true if the specified instruction has
    632 /// a 32-bit memory operand. Op specifies the operand # of the memoperand.
    633 static bool Is32BitMemOperand(const MachineInstr &MI, unsigned Op) {
    634   const MachineOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    635   const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    636 
    637   if ((BaseReg.getReg() != 0 &&
    638        X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
    639       (IndexReg.getReg() != 0 &&
    640        X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
    641     return true;
    642   return false;
    643 }
    644 
    645 /// Is64BitMemOperand - Return true if the specified instruction has
    646 /// a 64-bit memory operand. Op specifies the operand # of the memoperand.
    647 #ifndef NDEBUG
    648 static bool Is64BitMemOperand(const MachineInstr &MI, unsigned Op) {
    649   const MachineOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    650   const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    651 
    652   if ((BaseReg.getReg() != 0 &&
    653        X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
    654       (IndexReg.getReg() != 0 &&
    655        X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
    656     return true;
    657   return false;
    658 }
    659 #endif
    660 
    661 template<class CodeEmitter>
    662 void Emitter<CodeEmitter>::emitOpcodePrefix(uint64_t TSFlags,
    663                                             int MemOperand,
    664                                             const MachineInstr &MI,
    665                                             const MCInstrDesc *Desc) const {
    666   // Emit the lock opcode prefix as needed.
    667   if (Desc->TSFlags & X86II::LOCK)
    668     MCE.emitByte(0xF0);
    669 
    670   // Emit segment override opcode prefix as needed.
    671   emitSegmentOverridePrefix(TSFlags, MemOperand, MI);
    672 
    673   // Emit the repeat opcode prefix as needed.
    674   if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP)
    675     MCE.emitByte(0xF3);
    676 
    677   // Emit the address size opcode prefix as needed.
    678   bool need_address_override;
    679   if (TSFlags & X86II::AdSize) {
    680     need_address_override = true;
    681   } else if (MemOperand == -1) {
    682     need_address_override = false;
    683   } else if (Is64BitMode) {
    684     assert(!Is16BitMemOperand(MI, MemOperand));
    685     need_address_override = Is32BitMemOperand(MI, MemOperand);
    686   } else {
    687     assert(!Is64BitMemOperand(MI, MemOperand));
    688     need_address_override = Is16BitMemOperand(MI, MemOperand);
    689   }
    690 
    691   if (need_address_override)
    692     MCE.emitByte(0x67);
    693 
    694   // Emit the operand size opcode prefix as needed.
    695   if (TSFlags & X86II::OpSize)
    696     MCE.emitByte(0x66);
    697 
    698   bool Need0FPrefix = false;
    699   switch (Desc->TSFlags & X86II::Op0Mask) {
    700     case X86II::TB:  // Two-byte opcode prefix
    701     case X86II::T8:  // 0F 38
    702     case X86II::TA:  // 0F 3A
    703     case X86II::A6:  // 0F A6
    704     case X86II::A7:  // 0F A7
    705       Need0FPrefix = true;
    706       break;
    707     case X86II::REP: break; // already handled.
    708     case X86II::T8XS: // F3 0F 38
    709     case X86II::XS:   // F3 0F
    710       MCE.emitByte(0xF3);
    711       Need0FPrefix = true;
    712       break;
    713     case X86II::T8XD: // F2 0F 38
    714     case X86II::TAXD: // F2 0F 3A
    715     case X86II::XD:   // F2 0F
    716       MCE.emitByte(0xF2);
    717       Need0FPrefix = true;
    718       break;
    719     case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
    720     case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
    721       MCE.emitByte(0xD8+
    722                    (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
    723                     >> X86II::Op0Shift));
    724       break; // Two-byte opcode prefix
    725     default: llvm_unreachable("Invalid prefix!");
    726     case 0: break;  // No prefix!
    727   }
    728 
    729   // Handle REX prefix.
    730   if (Is64BitMode) {
    731     if (unsigned REX = determineREX(MI))
    732       MCE.emitByte(0x40 | REX);
    733   }
    734 
    735   // 0x0F escape code must be emitted just before the opcode.
    736   if (Need0FPrefix)
    737     MCE.emitByte(0x0F);
    738 
    739   switch (Desc->TSFlags & X86II::Op0Mask) {
    740     case X86II::T8XD:  // F2 0F 38
    741     case X86II::T8XS:  // F3 0F 38
    742     case X86II::T8:    // 0F 38
    743       MCE.emitByte(0x38);
    744       break;
    745     case X86II::TAXD:  // F2 0F 38
    746     case X86II::TA:    // 0F 3A
    747       MCE.emitByte(0x3A);
    748       break;
    749     case X86II::A6:    // 0F A6
    750       MCE.emitByte(0xA6);
    751       break;
    752     case X86II::A7:    // 0F A7
    753       MCE.emitByte(0xA7);
    754       break;
    755   }
    756 }
    757 
    758 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
    759 // 0-7 and the difference between the 2 groups is given by the REX prefix.
    760 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
    761 // in 1's complement form, example:
    762 //
    763 //  ModRM field => XMM9 => 1
    764 //  VEX.VVVV    => XMM9 => ~9
    765 //
    766 // See table 4-35 of Intel AVX Programming Reference for details.
    767 template<class CodeEmitter>
    768 unsigned char
    769 Emitter<CodeEmitter>::getVEXRegisterEncoding(const MachineInstr &MI,
    770                                              unsigned OpNum) const {
    771   unsigned SrcReg = MI.getOperand(OpNum).getReg();
    772   unsigned SrcRegNum = getX86RegNum(MI.getOperand(OpNum).getReg());
    773   if (X86II::isX86_64ExtendedReg(SrcReg))
    774     SrcRegNum |= 8;
    775 
    776   // The registers represented through VEX_VVVV should
    777   // be encoded in 1's complement form.
    778   return (~SrcRegNum) & 0xf;
    779 }
    780 
    781 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
    782 template<class CodeEmitter>
    783 void Emitter<CodeEmitter>::emitSegmentOverridePrefix(uint64_t TSFlags,
    784                                                  int MemOperand,
    785                                                  const MachineInstr &MI) const {
    786   switch (TSFlags & X86II::SegOvrMask) {
    787     default: llvm_unreachable("Invalid segment!");
    788     case 0:
    789       // No segment override, check for explicit one on memory operand.
    790       if (MemOperand != -1) {   // If the instruction has a memory operand.
    791         switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
    792           default: llvm_unreachable("Unknown segment register!");
    793           case 0: break;
    794           case X86::CS: MCE.emitByte(0x2E); break;
    795           case X86::SS: MCE.emitByte(0x36); break;
    796           case X86::DS: MCE.emitByte(0x3E); break;
    797           case X86::ES: MCE.emitByte(0x26); break;
    798           case X86::FS: MCE.emitByte(0x64); break;
    799           case X86::GS: MCE.emitByte(0x65); break;
    800         }
    801       }
    802       break;
    803     case X86II::FS:
    804       MCE.emitByte(0x64);
    805       break;
    806     case X86II::GS:
    807       MCE.emitByte(0x65);
    808       break;
    809   }
    810 }
    811 
    812 template<class CodeEmitter>
    813 void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags,
    814                                                int MemOperand,
    815                                                const MachineInstr &MI,
    816                                                const MCInstrDesc *Desc) const {
    817   bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
    818   bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
    819   bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
    820 
    821   // VEX_R: opcode externsion equivalent to REX.R in
    822   // 1's complement (inverted) form
    823   //
    824   //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
    825   //  0: Same as REX_R=1 (64 bit mode only)
    826   //
    827   unsigned char VEX_R = 0x1;
    828 
    829   // VEX_X: equivalent to REX.X, only used when a
    830   // register is used for index in SIB Byte.
    831   //
    832   //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
    833   //  0: Same as REX.X=1 (64-bit mode only)
    834   unsigned char VEX_X = 0x1;
    835 
    836   // VEX_B:
    837   //
    838   //  1: Same as REX_B=0 (ignored in 32-bit mode)
    839   //  0: Same as REX_B=1 (64 bit mode only)
    840   //
    841   unsigned char VEX_B = 0x1;
    842 
    843   // VEX_W: opcode specific (use like REX.W, or used for
    844   // opcode extension, or ignored, depending on the opcode byte)
    845   unsigned char VEX_W = 0;
    846 
    847   // XOP: Use XOP prefix byte 0x8f instead of VEX.
    848   unsigned char XOP = 0;
    849 
    850   // VEX_5M (VEX m-mmmmm field):
    851   //
    852   //  0b00000: Reserved for future use
    853   //  0b00001: implied 0F leading opcode
    854   //  0b00010: implied 0F 38 leading opcode bytes
    855   //  0b00011: implied 0F 3A leading opcode bytes
    856   //  0b00100-0b11111: Reserved for future use
    857   //  0b01000: XOP map select - 08h instructions with imm byte
    858   //  0b10001: XOP map select - 09h instructions with no imm byte
    859   unsigned char VEX_5M = 0x1;
    860 
    861   // VEX_4V (VEX vvvv field): a register specifier
    862   // (in 1's complement form) or 1111 if unused.
    863   unsigned char VEX_4V = 0xf;
    864 
    865   // VEX_L (Vector Length):
    866   //
    867   //  0: scalar or 128-bit vector
    868   //  1: 256-bit vector
    869   //
    870   unsigned char VEX_L = 0;
    871 
    872   // VEX_PP: opcode extension providing equivalent
    873   // functionality of a SIMD prefix
    874   //
    875   //  0b00: None
    876   //  0b01: 66
    877   //  0b10: F3
    878   //  0b11: F2
    879   //
    880   unsigned char VEX_PP = 0;
    881 
    882   // Encode the operand size opcode prefix as needed.
    883   if (TSFlags & X86II::OpSize)
    884     VEX_PP = 0x01;
    885 
    886   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
    887     VEX_W = 1;
    888 
    889   if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
    890     XOP = 1;
    891 
    892   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
    893     VEX_L = 1;
    894 
    895   switch (TSFlags & X86II::Op0Mask) {
    896     default: llvm_unreachable("Invalid prefix!");
    897     case X86II::T8:  // 0F 38
    898       VEX_5M = 0x2;
    899       break;
    900     case X86II::TA:  // 0F 3A
    901       VEX_5M = 0x3;
    902       break;
    903     case X86II::T8XS: // F3 0F 38
    904       VEX_PP = 0x2;
    905       VEX_5M = 0x2;
    906       break;
    907     case X86II::T8XD: // F2 0F 38
    908       VEX_PP = 0x3;
    909       VEX_5M = 0x2;
    910       break;
    911     case X86II::TAXD: // F2 0F 3A
    912       VEX_PP = 0x3;
    913       VEX_5M = 0x3;
    914       break;
    915     case X86II::XS:  // F3 0F
    916       VEX_PP = 0x2;
    917       break;
    918     case X86II::XD:  // F2 0F
    919       VEX_PP = 0x3;
    920       break;
    921     case X86II::XOP8:
    922       VEX_5M = 0x8;
    923       break;
    924     case X86II::XOP9:
    925       VEX_5M = 0x9;
    926       break;
    927     case X86II::A6:  // Bypass: Not used by VEX
    928     case X86II::A7:  // Bypass: Not used by VEX
    929     case X86II::TB:  // Bypass: Not used by VEX
    930     case 0:
    931       break;  // No prefix!
    932   }
    933 
    934 
    935   // Classify VEX_B, VEX_4V, VEX_R, VEX_X
    936   unsigned NumOps = Desc->getNumOperands();
    937   unsigned CurOp = 0;
    938   if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
    939     ++CurOp;
    940   else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
    941     assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
    942     // Special case for GATHER with 2 TIED_TO operands
    943     // Skip the first 2 operands: dst, mask_wb
    944     CurOp += 2;
    945   }
    946 
    947   switch (TSFlags & X86II::FormMask) {
    948     case X86II::MRMInitReg:
    949       // Duplicate register.
    950       if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    951         VEX_R = 0x0;
    952 
    953       if (HasVEX_4V)
    954         VEX_4V = getVEXRegisterEncoding(MI, CurOp);
    955       if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    956         VEX_B = 0x0;
    957       if (HasVEX_4VOp3)
    958         VEX_4V = getVEXRegisterEncoding(MI, CurOp);
    959       break;
    960     case X86II::MRMDestMem: {
    961       // MRMDestMem instructions forms:
    962       //  MemAddr, src1(ModR/M)
    963       //  MemAddr, src1(VEX_4V), src2(ModR/M)
    964       //  MemAddr, src1(ModR/M), imm8
    965       //
    966       if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
    967         VEX_B = 0x0;
    968       if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
    969         VEX_X = 0x0;
    970 
    971       CurOp = X86::AddrNumOperands;
    972       if (HasVEX_4V)
    973         VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
    974 
    975       const MachineOperand &MO = MI.getOperand(CurOp);
    976       if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
    977         VEX_R = 0x0;
    978       break;
    979     }
    980     case X86II::MRMSrcMem:
    981       // MRMSrcMem instructions forms:
    982       //  src1(ModR/M), MemAddr
    983       //  src1(ModR/M), src2(VEX_4V), MemAddr
    984       //  src1(ModR/M), MemAddr, imm8
    985       //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
    986       //
    987       //  FMA4:
    988       //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
    989       //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
    990       if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
    991         VEX_R = 0x0;
    992 
    993       if (HasVEX_4V)
    994         VEX_4V = getVEXRegisterEncoding(MI, 1);
    995 
    996       if (X86II::isX86_64ExtendedReg(
    997                           MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
    998         VEX_B = 0x0;
    999       if (X86II::isX86_64ExtendedReg(
   1000                           MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
   1001         VEX_X = 0x0;
   1002 
   1003       if (HasVEX_4VOp3)
   1004         VEX_4V = getVEXRegisterEncoding(MI, X86::AddrNumOperands+1);
   1005       break;
   1006     case X86II::MRM0m: case X86II::MRM1m:
   1007     case X86II::MRM2m: case X86II::MRM3m:
   1008     case X86II::MRM4m: case X86II::MRM5m:
   1009     case X86II::MRM6m: case X86II::MRM7m: {
   1010       // MRM[0-9]m instructions forms:
   1011       //  MemAddr
   1012       //  src1(VEX_4V), MemAddr
   1013       if (HasVEX_4V)
   1014         VEX_4V = getVEXRegisterEncoding(MI, 0);
   1015 
   1016       if (X86II::isX86_64ExtendedReg(
   1017                           MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
   1018         VEX_B = 0x0;
   1019       if (X86II::isX86_64ExtendedReg(
   1020                           MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
   1021         VEX_X = 0x0;
   1022       break;
   1023     }
   1024     case X86II::MRMSrcReg:
   1025       // MRMSrcReg instructions forms:
   1026       //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
   1027       //  dst(ModR/M), src1(ModR/M)
   1028       //  dst(ModR/M), src1(ModR/M), imm8
   1029       //
   1030       if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
   1031         VEX_R = 0x0;
   1032       CurOp++;
   1033 
   1034       if (HasVEX_4V)
   1035         VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
   1036 
   1037       if (HasMemOp4) // Skip second register source (encoded in I8IMM)
   1038         CurOp++;
   1039 
   1040       if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
   1041         VEX_B = 0x0;
   1042       CurOp++;
   1043       if (HasVEX_4VOp3)
   1044         VEX_4V = getVEXRegisterEncoding(MI, CurOp);
   1045       break;
   1046     case X86II::MRMDestReg:
   1047       // MRMDestReg instructions forms:
   1048       //  dst(ModR/M), src(ModR/M)
   1049       //  dst(ModR/M), src(ModR/M), imm8
   1050       //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
   1051       if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
   1052         VEX_B = 0x0;
   1053       CurOp++;
   1054 
   1055       if (HasVEX_4V)
   1056         VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
   1057 
   1058       if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
   1059         VEX_R = 0x0;
   1060       break;
   1061     case X86II::MRM0r: case X86II::MRM1r:
   1062     case X86II::MRM2r: case X86II::MRM3r:
   1063     case X86II::MRM4r: case X86II::MRM5r:
   1064     case X86II::MRM6r: case X86II::MRM7r:
   1065       // MRM0r-MRM7r instructions forms:
   1066       //  dst(VEX_4V), src(ModR/M), imm8
   1067       VEX_4V = getVEXRegisterEncoding(MI, 0);
   1068       if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
   1069         VEX_B = 0x0;
   1070       break;
   1071     default: // RawFrm
   1072       break;
   1073   }
   1074 
   1075   // Emit segment override opcode prefix as needed.
   1076   emitSegmentOverridePrefix(TSFlags, MemOperand, MI);
   1077 
   1078   // VEX opcode prefix can have 2 or 3 bytes
   1079   //
   1080   //  3 bytes:
   1081   //    +-----+ +--------------+ +-------------------+
   1082   //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
   1083   //    +-----+ +--------------+ +-------------------+
   1084   //  2 bytes:
   1085   //    +-----+ +-------------------+
   1086   //    | C5h | | R | vvvv | L | pp |
   1087   //    +-----+ +-------------------+
   1088   //
   1089   unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
   1090 
   1091   if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
   1092     MCE.emitByte(0xC5);
   1093     MCE.emitByte(LastByte | (VEX_R << 7));
   1094     return;
   1095   }
   1096 
   1097   // 3 byte VEX prefix
   1098   MCE.emitByte(XOP ? 0x8F : 0xC4);
   1099   MCE.emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M);
   1100   MCE.emitByte(LastByte | (VEX_W << 7));
   1101 }
   1102 
   1103 template<class CodeEmitter>
   1104 void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
   1105                                            const MCInstrDesc *Desc) {
   1106   DEBUG(dbgs() << MI);
   1107 
   1108   // If this is a pseudo instruction, lower it.
   1109   switch (Desc->getOpcode()) {
   1110   case X86::ADD16rr_DB:      Desc = UpdateOp(MI, II, X86::OR16rr); break;
   1111   case X86::ADD32rr_DB:      Desc = UpdateOp(MI, II, X86::OR32rr); break;
   1112   case X86::ADD64rr_DB:      Desc = UpdateOp(MI, II, X86::OR64rr); break;
   1113   case X86::ADD16ri_DB:      Desc = UpdateOp(MI, II, X86::OR16ri); break;
   1114   case X86::ADD32ri_DB:      Desc = UpdateOp(MI, II, X86::OR32ri); break;
   1115   case X86::ADD64ri32_DB:    Desc = UpdateOp(MI, II, X86::OR64ri32); break;
   1116   case X86::ADD16ri8_DB:     Desc = UpdateOp(MI, II, X86::OR16ri8); break;
   1117   case X86::ADD32ri8_DB:     Desc = UpdateOp(MI, II, X86::OR32ri8); break;
   1118   case X86::ADD64ri8_DB:     Desc = UpdateOp(MI, II, X86::OR64ri8); break;
   1119   case X86::ACQUIRE_MOV8rm:  Desc = UpdateOp(MI, II, X86::MOV8rm); break;
   1120   case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break;
   1121   case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break;
   1122   case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break;
   1123   case X86::RELEASE_MOV8mr:  Desc = UpdateOp(MI, II, X86::MOV8mr); break;
   1124   case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break;
   1125   case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break;
   1126   case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break;
   1127   }
   1128 
   1129 
   1130   MCE.processDebugLoc(MI.getDebugLoc(), true);
   1131 
   1132   unsigned Opcode = Desc->Opcode;
   1133 
   1134   // If this is a two-address instruction, skip one of the register operands.
   1135   unsigned NumOps = Desc->getNumOperands();
   1136   unsigned CurOp = 0;
   1137   if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
   1138     ++CurOp;
   1139   else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
   1140     assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
   1141     // Special case for GATHER with 2 TIED_TO operands
   1142     // Skip the first 2 operands: dst, mask_wb
   1143     CurOp += 2;
   1144   }
   1145 
   1146   uint64_t TSFlags = Desc->TSFlags;
   1147 
   1148   // Is this instruction encoded using the AVX VEX prefix?
   1149   bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
   1150   // It uses the VEX.VVVV field?
   1151   bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
   1152   bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
   1153   bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
   1154   const unsigned MemOp4_I8IMMOperand = 2;
   1155 
   1156   // Determine where the memory operand starts, if present.
   1157   int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
   1158   if (MemoryOperand != -1) MemoryOperand += CurOp;
   1159 
   1160   if (!HasVEXPrefix)
   1161     emitOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
   1162   else
   1163     emitVEXOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
   1164 
   1165   unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags);
   1166   switch (TSFlags & X86II::FormMask) {
   1167   default:
   1168     llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
   1169   case X86II::Pseudo:
   1170     // Remember the current PC offset, this is the PIC relocation
   1171     // base address.
   1172     switch (Opcode) {
   1173     default:
   1174       llvm_unreachable("pseudo instructions should be removed before code"
   1175                        " emission");
   1176     // Do nothing for Int_MemBarrier - it's just a comment.  Add a debug
   1177     // to make it slightly easier to see.
   1178     case X86::Int_MemBarrier:
   1179       DEBUG(dbgs() << "#MEMBARRIER\n");
   1180       break;
   1181 
   1182     case TargetOpcode::INLINEASM:
   1183       // We allow inline assembler nodes with empty bodies - they can
   1184       // implicitly define registers, which is ok for JIT.
   1185       if (MI.getOperand(0).getSymbolName()[0])
   1186         report_fatal_error("JIT does not support inline asm!");
   1187       break;
   1188     case TargetOpcode::PROLOG_LABEL:
   1189     case TargetOpcode::GC_LABEL:
   1190     case TargetOpcode::EH_LABEL:
   1191       MCE.emitLabel(MI.getOperand(0).getMCSymbol());
   1192       break;
   1193 
   1194     case TargetOpcode::IMPLICIT_DEF:
   1195     case TargetOpcode::KILL:
   1196       break;
   1197     case X86::MOVPC32r: {
   1198       // This emits the "call" portion of this pseudo instruction.
   1199       MCE.emitByte(BaseOpcode);
   1200       emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags));
   1201       // Remember PIC base.
   1202       PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
   1203       X86JITInfo *JTI = TM.getJITInfo();
   1204       JTI->setPICBase(MCE.getCurrentPCValue());
   1205       break;
   1206     }
   1207     }
   1208     CurOp = NumOps;
   1209     break;
   1210   case X86II::RawFrm: {
   1211     MCE.emitByte(BaseOpcode);
   1212 
   1213     if (CurOp == NumOps)
   1214       break;
   1215 
   1216     const MachineOperand &MO = MI.getOperand(CurOp++);
   1217 
   1218     DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
   1219     DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n");
   1220     DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n");
   1221     DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n");
   1222     DEBUG(dbgs() << "isImm " << MO.isImm() << "\n");
   1223 
   1224     if (MO.isMBB()) {
   1225       emitPCRelativeBlockAddress(MO.getMBB());
   1226       break;
   1227     }
   1228 
   1229     if (MO.isGlobal()) {
   1230       emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
   1231                         MO.getOffset(), 0);
   1232       break;
   1233     }
   1234 
   1235     if (MO.isSymbol()) {
   1236       emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
   1237       break;
   1238     }
   1239 
   1240     // FIXME: Only used by hackish MCCodeEmitter, remove when dead.
   1241     if (MO.isJTI()) {
   1242       emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
   1243       break;
   1244     }
   1245 
   1246     assert(MO.isImm() && "Unknown RawFrm operand!");
   1247     if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
   1248       // Fix up immediate operand for pc relative calls.
   1249       intptr_t Imm = (intptr_t)MO.getImm();
   1250       Imm = Imm - MCE.getCurrentPCValue() - 4;
   1251       emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags));
   1252     } else
   1253       emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
   1254     break;
   1255   }
   1256 
   1257   case X86II::AddRegFrm: {
   1258     MCE.emitByte(BaseOpcode +
   1259                  getX86RegNum(MI.getOperand(CurOp++).getReg()));
   1260 
   1261     if (CurOp == NumOps)
   1262       break;
   1263 
   1264     const MachineOperand &MO1 = MI.getOperand(CurOp++);
   1265     unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
   1266     if (MO1.isImm()) {
   1267       emitConstant(MO1.getImm(), Size);
   1268       break;
   1269     }
   1270 
   1271     unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
   1272       : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
   1273     if (Opcode == X86::MOV64ri64i32)
   1274       rt = X86::reloc_absolute_word;  // FIXME: add X86II flag?
   1275     // This should not occur on Darwin for relocatable objects.
   1276     if (Opcode == X86::MOV64ri)
   1277       rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
   1278     if (MO1.isGlobal()) {
   1279       bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
   1280       emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
   1281                         Indirect);
   1282     } else if (MO1.isSymbol())
   1283       emitExternalSymbolAddress(MO1.getSymbolName(), rt);
   1284     else if (MO1.isCPI())
   1285       emitConstPoolAddress(MO1.getIndex(), rt);
   1286     else if (MO1.isJTI())
   1287       emitJumpTableAddress(MO1.getIndex(), rt);
   1288     break;
   1289   }
   1290 
   1291   case X86II::MRMDestReg: {
   1292     MCE.emitByte(BaseOpcode);
   1293 
   1294     unsigned SrcRegNum = CurOp+1;
   1295     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1296       SrcRegNum++;
   1297 
   1298     emitRegModRMByte(MI.getOperand(CurOp).getReg(),
   1299                      getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
   1300     CurOp = SrcRegNum + 1;
   1301     break;
   1302   }
   1303   case X86II::MRMDestMem: {
   1304     MCE.emitByte(BaseOpcode);
   1305 
   1306     unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
   1307     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1308       SrcRegNum++;
   1309     emitMemModRMByte(MI, CurOp,
   1310                      getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
   1311     CurOp = SrcRegNum + 1;
   1312     break;
   1313   }
   1314 
   1315   case X86II::MRMSrcReg: {
   1316     MCE.emitByte(BaseOpcode);
   1317 
   1318     unsigned SrcRegNum = CurOp+1;
   1319     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1320       ++SrcRegNum;
   1321 
   1322     if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
   1323       ++SrcRegNum;
   1324 
   1325     emitRegModRMByte(MI.getOperand(SrcRegNum).getReg(),
   1326                      getX86RegNum(MI.getOperand(CurOp).getReg()));
   1327     // 2 operands skipped with HasMemOp4, compensate accordingly
   1328     CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
   1329     if (HasVEX_4VOp3)
   1330       ++CurOp;
   1331     break;
   1332   }
   1333   case X86II::MRMSrcMem: {
   1334     int AddrOperands = X86::AddrNumOperands;
   1335     unsigned FirstMemOp = CurOp+1;
   1336     if (HasVEX_4V) {
   1337       ++AddrOperands;
   1338       ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
   1339     }
   1340     if (HasMemOp4) // Skip second register source (encoded in I8IMM)
   1341       ++FirstMemOp;
   1342 
   1343     MCE.emitByte(BaseOpcode);
   1344 
   1345     intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
   1346       X86II::getSizeOfImm(Desc->TSFlags) : 0;
   1347     emitMemModRMByte(MI, FirstMemOp,
   1348                      getX86RegNum(MI.getOperand(CurOp).getReg()),PCAdj);
   1349     CurOp += AddrOperands + 1;
   1350     if (HasVEX_4VOp3)
   1351       ++CurOp;
   1352     break;
   1353   }
   1354 
   1355   case X86II::MRM0r: case X86II::MRM1r:
   1356   case X86II::MRM2r: case X86II::MRM3r:
   1357   case X86II::MRM4r: case X86II::MRM5r:
   1358   case X86II::MRM6r: case X86II::MRM7r: {
   1359     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
   1360       ++CurOp;
   1361     MCE.emitByte(BaseOpcode);
   1362     emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
   1363                      (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
   1364 
   1365     if (CurOp == NumOps)
   1366       break;
   1367 
   1368     const MachineOperand &MO1 = MI.getOperand(CurOp++);
   1369     unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
   1370     if (MO1.isImm()) {
   1371       emitConstant(MO1.getImm(), Size);
   1372       break;
   1373     }
   1374 
   1375     unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
   1376       : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
   1377     if (Opcode == X86::MOV64ri32)
   1378       rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag?
   1379     if (MO1.isGlobal()) {
   1380       bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
   1381       emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
   1382                         Indirect);
   1383     } else if (MO1.isSymbol())
   1384       emitExternalSymbolAddress(MO1.getSymbolName(), rt);
   1385     else if (MO1.isCPI())
   1386       emitConstPoolAddress(MO1.getIndex(), rt);
   1387     else if (MO1.isJTI())
   1388       emitJumpTableAddress(MO1.getIndex(), rt);
   1389     break;
   1390   }
   1391 
   1392   case X86II::MRM0m: case X86II::MRM1m:
   1393   case X86II::MRM2m: case X86II::MRM3m:
   1394   case X86II::MRM4m: case X86II::MRM5m:
   1395   case X86II::MRM6m: case X86II::MRM7m: {
   1396     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
   1397       ++CurOp;
   1398     intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
   1399       (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
   1400           X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;
   1401 
   1402     MCE.emitByte(BaseOpcode);
   1403     emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
   1404                      PCAdj);
   1405     CurOp += X86::AddrNumOperands;
   1406 
   1407     if (CurOp == NumOps)
   1408       break;
   1409 
   1410     const MachineOperand &MO = MI.getOperand(CurOp++);
   1411     unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
   1412     if (MO.isImm()) {
   1413       emitConstant(MO.getImm(), Size);
   1414       break;
   1415     }
   1416 
   1417     unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
   1418       : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
   1419     if (Opcode == X86::MOV64mi32)
   1420       rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag?
   1421     if (MO.isGlobal()) {
   1422       bool Indirect = gvNeedsNonLazyPtr(MO, TM);
   1423       emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
   1424                         Indirect);
   1425     } else if (MO.isSymbol())
   1426       emitExternalSymbolAddress(MO.getSymbolName(), rt);
   1427     else if (MO.isCPI())
   1428       emitConstPoolAddress(MO.getIndex(), rt);
   1429     else if (MO.isJTI())
   1430       emitJumpTableAddress(MO.getIndex(), rt);
   1431     break;
   1432   }
   1433 
   1434   case X86II::MRMInitReg:
   1435     MCE.emitByte(BaseOpcode);
   1436     // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
   1437     emitRegModRMByte(MI.getOperand(CurOp).getReg(),
   1438                      getX86RegNum(MI.getOperand(CurOp).getReg()));
   1439     ++CurOp;
   1440     break;
   1441 
   1442   case X86II::MRM_C1:
   1443     MCE.emitByte(BaseOpcode);
   1444     MCE.emitByte(0xC1);
   1445     break;
   1446   case X86II::MRM_C8:
   1447     MCE.emitByte(BaseOpcode);
   1448     MCE.emitByte(0xC8);
   1449     break;
   1450   case X86II::MRM_C9:
   1451     MCE.emitByte(BaseOpcode);
   1452     MCE.emitByte(0xC9);
   1453     break;
   1454   case X86II::MRM_E8:
   1455     MCE.emitByte(BaseOpcode);
   1456     MCE.emitByte(0xE8);
   1457     break;
   1458   case X86II::MRM_F0:
   1459     MCE.emitByte(BaseOpcode);
   1460     MCE.emitByte(0xF0);
   1461     break;
   1462   }
   1463 
   1464   while (CurOp != NumOps && NumOps - CurOp <= 2) {
   1465     // The last source register of a 4 operand instruction in AVX is encoded
   1466     // in bits[7:4] of a immediate byte.
   1467     if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
   1468       const MachineOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
   1469                                                          : CurOp);
   1470       ++CurOp;
   1471       unsigned RegNum = getX86RegNum(MO.getReg()) << 4;
   1472       if (X86II::isX86_64ExtendedReg(MO.getReg()))
   1473         RegNum |= 1 << 7;
   1474       // If there is an additional 5th operand it must be an immediate, which
   1475       // is encoded in bits[3:0]
   1476       if (CurOp != NumOps) {
   1477         const MachineOperand &MIMM = MI.getOperand(CurOp++);
   1478         if (MIMM.isImm()) {
   1479           unsigned Val = MIMM.getImm();
   1480           assert(Val < 16 && "Immediate operand value out of range");
   1481           RegNum |= Val;
   1482         }
   1483       }
   1484       emitConstant(RegNum, 1);
   1485     } else {
   1486       emitConstant(MI.getOperand(CurOp++).getImm(),
   1487                    X86II::getSizeOfImm(Desc->TSFlags));
   1488     }
   1489   }
   1490 
   1491   if (!MI.isVariadic() && CurOp != NumOps) {
   1492 #ifndef NDEBUG
   1493     dbgs() << "Cannot encode all operands of: " << MI << "\n";
   1494 #endif
   1495     llvm_unreachable(0);
   1496   }
   1497 
   1498   MCE.processDebugLoc(MI.getDebugLoc(), false);
   1499 }
   1500