Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the PPCISelLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "PPCISelLowering.h"
     15 #include "MCTargetDesc/PPCPredicates.h"
     16 #include "PPCMachineFunctionInfo.h"
     17 #include "PPCPerfectShuffle.h"
     18 #include "PPCTargetMachine.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/CodeGen/CallingConvLower.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineFunction.h"
     23 #include "llvm/CodeGen/MachineInstrBuilder.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/CodeGen/SelectionDAG.h"
     26 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     27 #include "llvm/IR/CallingConv.h"
     28 #include "llvm/IR/Constants.h"
     29 #include "llvm/IR/DerivedTypes.h"
     30 #include "llvm/IR/Function.h"
     31 #include "llvm/IR/Intrinsics.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetOptions.h"
     37 using namespace llvm;
     38 
     39 static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
     40                                        CCValAssign::LocInfo &LocInfo,
     41                                        ISD::ArgFlagsTy &ArgFlags,
     42                                        CCState &State);
     43 static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
     44                                               MVT &LocVT,
     45                                               CCValAssign::LocInfo &LocInfo,
     46                                               ISD::ArgFlagsTy &ArgFlags,
     47                                               CCState &State);
     48 static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
     49                                                 MVT &LocVT,
     50                                                 CCValAssign::LocInfo &LocInfo,
     51                                                 ISD::ArgFlagsTy &ArgFlags,
     52                                                 CCState &State);
     53 
     54 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
     55 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
     56 
     57 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
     58 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
     59 
     60 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
     61 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
     62 
     63 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
     64   if (TM.getSubtargetImpl()->isDarwin())
     65     return new TargetLoweringObjectFileMachO();
     66 
     67   return new TargetLoweringObjectFileELF();
     68 }
     69 
     70 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
     71   : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
     72   const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
     73 
     74   setPow2DivIsCheap();
     75 
     76   // Use _setjmp/_longjmp instead of setjmp/longjmp.
     77   setUseUnderscoreSetJmp(true);
     78   setUseUnderscoreLongJmp(true);
     79 
     80   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
     81   // arguments are at least 4/8 bytes aligned.
     82   bool isPPC64 = Subtarget->isPPC64();
     83   setMinStackArgumentAlignment(isPPC64 ? 8:4);
     84 
     85   // Set up the register classes.
     86   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
     87   addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
     88   addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
     89 
     90   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
     91   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
     92   setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
     93 
     94   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
     95 
     96   // PowerPC has pre-inc load and store's.
     97   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
     98   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
     99   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
    100   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
    101   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
    102   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
    103   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
    104   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
    105   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
    106   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
    107 
    108   // This is used in the ppcf128->int sequence.  Note it has different semantics
    109   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
    110   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
    111 
    112   // We do not currently implement these libm ops for PowerPC.
    113   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
    114   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
    115   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
    116   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
    117   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
    118 
    119   // PowerPC has no SREM/UREM instructions
    120   setOperationAction(ISD::SREM, MVT::i32, Expand);
    121   setOperationAction(ISD::UREM, MVT::i32, Expand);
    122   setOperationAction(ISD::SREM, MVT::i64, Expand);
    123   setOperationAction(ISD::UREM, MVT::i64, Expand);
    124 
    125   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
    126   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    127   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    128   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
    129   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    130   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    131   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    132   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
    133   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
    134 
    135   // We don't support sin/cos/sqrt/fmod/pow
    136   setOperationAction(ISD::FSIN , MVT::f64, Expand);
    137   setOperationAction(ISD::FCOS , MVT::f64, Expand);
    138   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
    139   setOperationAction(ISD::FREM , MVT::f64, Expand);
    140   setOperationAction(ISD::FPOW , MVT::f64, Expand);
    141   setOperationAction(ISD::FMA  , MVT::f64, Legal);
    142   setOperationAction(ISD::FSIN , MVT::f32, Expand);
    143   setOperationAction(ISD::FCOS , MVT::f32, Expand);
    144   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
    145   setOperationAction(ISD::FREM , MVT::f32, Expand);
    146   setOperationAction(ISD::FPOW , MVT::f32, Expand);
    147   setOperationAction(ISD::FMA  , MVT::f32, Legal);
    148 
    149   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    150 
    151   // If we're enabling GP optimizations, use hardware square root
    152   if (!Subtarget->hasFSQRT()) {
    153     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
    154     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
    155   }
    156 
    157   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    158   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    159 
    160   // PowerPC does not have BSWAP, CTPOP or CTTZ
    161   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
    162   setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
    163   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
    164   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
    165   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
    166   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
    167   setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
    168   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
    169   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
    170   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
    171 
    172   // PowerPC does not have ROTR
    173   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
    174   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
    175 
    176   // PowerPC does not have Select
    177   setOperationAction(ISD::SELECT, MVT::i32, Expand);
    178   setOperationAction(ISD::SELECT, MVT::i64, Expand);
    179   setOperationAction(ISD::SELECT, MVT::f32, Expand);
    180   setOperationAction(ISD::SELECT, MVT::f64, Expand);
    181 
    182   // PowerPC wants to turn select_cc of FP into fsel when possible.
    183   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    184   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    185 
    186   // PowerPC wants to optimize integer setcc a bit
    187   setOperationAction(ISD::SETCC, MVT::i32, Custom);
    188 
    189   // PowerPC does not have BRCOND which requires SetCC
    190   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    191 
    192   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
    193 
    194   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
    195   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    196 
    197   // PowerPC does not have [U|S]INT_TO_FP
    198   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
    199   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
    200 
    201   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
    202   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
    203   setOperationAction(ISD::BITCAST, MVT::i64, Expand);
    204   setOperationAction(ISD::BITCAST, MVT::f64, Expand);
    205 
    206   // We cannot sextinreg(i1).  Expand to shifts.
    207   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    208 
    209   setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
    210   setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
    211   setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
    212   setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
    213 
    214 
    215   // We want to legalize GlobalAddress and ConstantPool nodes into the
    216   // appropriate instructions to materialize the address.
    217   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
    218   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    219   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
    220   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
    221   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
    222   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
    223   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    224   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
    225   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
    226   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
    227 
    228   // TRAP is legal.
    229   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    230 
    231   // TRAMPOLINE is custom lowered.
    232   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    233   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    234 
    235   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
    236   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
    237 
    238   if (Subtarget->isSVR4ABI()) {
    239     if (isPPC64) {
    240       // VAARG always uses double-word chunks, so promote anything smaller.
    241       setOperationAction(ISD::VAARG, MVT::i1, Promote);
    242       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
    243       setOperationAction(ISD::VAARG, MVT::i8, Promote);
    244       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
    245       setOperationAction(ISD::VAARG, MVT::i16, Promote);
    246       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
    247       setOperationAction(ISD::VAARG, MVT::i32, Promote);
    248       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
    249       setOperationAction(ISD::VAARG, MVT::Other, Expand);
    250     } else {
    251       // VAARG is custom lowered with the 32-bit SVR4 ABI.
    252       setOperationAction(ISD::VAARG, MVT::Other, Custom);
    253       setOperationAction(ISD::VAARG, MVT::i64, Custom);
    254     }
    255   } else
    256     setOperationAction(ISD::VAARG, MVT::Other, Expand);
    257 
    258   // Use the default implementation.
    259   setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
    260   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    261   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
    262   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
    263   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
    264   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
    265 
    266   // We want to custom lower some of our intrinsics.
    267   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    268 
    269   // Comparisons that require checking two conditions.
    270   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
    271   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
    272   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
    273   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
    274   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
    275   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
    276   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
    277   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
    278   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
    279   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
    280   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
    281   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
    282 
    283   if (Subtarget->has64BitSupport()) {
    284     // They also have instructions for converting between i64 and fp.
    285     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    286     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
    287     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    288     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    289     // This is just the low 32 bits of a (signed) fp->i64 conversion.
    290     // We cannot do this with Promote because i64 is not a legal type.
    291     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    292 
    293     // FIXME: disable this lowered code.  This generates 64-bit register values,
    294     // and we don't model the fact that the top part is clobbered by calls.  We
    295     // need to flag these together so that the value isn't live across a call.
    296     //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    297   } else {
    298     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
    299     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
    300   }
    301 
    302   if (Subtarget->use64BitRegs()) {
    303     // 64-bit PowerPC implementations can support i64 types directly
    304     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
    305     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
    306     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
    307     // 64-bit PowerPC wants to expand i128 shifts itself.
    308     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
    309     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
    310     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
    311   } else {
    312     // 32-bit PowerPC wants to expand i64 shifts itself.
    313     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    314     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    315     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    316   }
    317 
    318   if (Subtarget->hasAltivec()) {
    319     // First set operation action for all vector types to expand. Then we
    320     // will selectively turn on ones that can be effectively codegen'd.
    321     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    322          i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
    323       MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
    324 
    325       // add/sub are legal for all supported vector VT's.
    326       setOperationAction(ISD::ADD , VT, Legal);
    327       setOperationAction(ISD::SUB , VT, Legal);
    328 
    329       // We promote all shuffles to v16i8.
    330       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
    331       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
    332 
    333       // We promote all non-typed operations to v4i32.
    334       setOperationAction(ISD::AND   , VT, Promote);
    335       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
    336       setOperationAction(ISD::OR    , VT, Promote);
    337       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
    338       setOperationAction(ISD::XOR   , VT, Promote);
    339       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
    340       setOperationAction(ISD::LOAD  , VT, Promote);
    341       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
    342       setOperationAction(ISD::SELECT, VT, Promote);
    343       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
    344       setOperationAction(ISD::STORE, VT, Promote);
    345       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
    346 
    347       // No other operations are legal.
    348       setOperationAction(ISD::MUL , VT, Expand);
    349       setOperationAction(ISD::SDIV, VT, Expand);
    350       setOperationAction(ISD::SREM, VT, Expand);
    351       setOperationAction(ISD::UDIV, VT, Expand);
    352       setOperationAction(ISD::UREM, VT, Expand);
    353       setOperationAction(ISD::FDIV, VT, Expand);
    354       setOperationAction(ISD::FNEG, VT, Expand);
    355       setOperationAction(ISD::FSQRT, VT, Expand);
    356       setOperationAction(ISD::FLOG, VT, Expand);
    357       setOperationAction(ISD::FLOG10, VT, Expand);
    358       setOperationAction(ISD::FLOG2, VT, Expand);
    359       setOperationAction(ISD::FEXP, VT, Expand);
    360       setOperationAction(ISD::FEXP2, VT, Expand);
    361       setOperationAction(ISD::FSIN, VT, Expand);
    362       setOperationAction(ISD::FCOS, VT, Expand);
    363       setOperationAction(ISD::FABS, VT, Expand);
    364       setOperationAction(ISD::FPOWI, VT, Expand);
    365       setOperationAction(ISD::FFLOOR, VT, Expand);
    366       setOperationAction(ISD::FCEIL,  VT, Expand);
    367       setOperationAction(ISD::FTRUNC, VT, Expand);
    368       setOperationAction(ISD::FRINT,  VT, Expand);
    369       setOperationAction(ISD::FNEARBYINT, VT, Expand);
    370       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
    371       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
    372       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
    373       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    374       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    375       setOperationAction(ISD::UDIVREM, VT, Expand);
    376       setOperationAction(ISD::SDIVREM, VT, Expand);
    377       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
    378       setOperationAction(ISD::FPOW, VT, Expand);
    379       setOperationAction(ISD::CTPOP, VT, Expand);
    380       setOperationAction(ISD::CTLZ, VT, Expand);
    381       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
    382       setOperationAction(ISD::CTTZ, VT, Expand);
    383       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
    384       setOperationAction(ISD::VSELECT, VT, Expand);
    385       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    386 
    387       for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    388            j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
    389         MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
    390         setTruncStoreAction(VT, InnerVT, Expand);
    391       }
    392       setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
    393       setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
    394       setLoadExtAction(ISD::EXTLOAD, VT, Expand);
    395     }
    396 
    397     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
    398     // with merges, splats, etc.
    399     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
    400 
    401     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
    402     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
    403     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
    404     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
    405     setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
    406     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
    407     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
    408     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
    409     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
    410     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
    411     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
    412     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
    413     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
    414     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
    415 
    416     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
    417     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
    418     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
    419     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
    420 
    421     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
    422     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
    423     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    424     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    425     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
    426 
    427     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
    428     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
    429 
    430     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
    431     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
    432     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
    433     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
    434 
    435     // Altivec does not contain unordered floating-point compare instructions
    436     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
    437     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
    438     setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
    439     setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
    440     setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
    441     setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
    442   }
    443 
    444   if (Subtarget->has64BitSupport()) {
    445     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
    446     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
    447   }
    448 
    449   setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
    450   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
    451   setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
    452   setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
    453 
    454   setBooleanContents(ZeroOrOneBooleanContent);
    455   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
    456 
    457   if (isPPC64) {
    458     setStackPointerRegisterToSaveRestore(PPC::X1);
    459     setExceptionPointerRegister(PPC::X3);
    460     setExceptionSelectorRegister(PPC::X4);
    461   } else {
    462     setStackPointerRegisterToSaveRestore(PPC::R1);
    463     setExceptionPointerRegister(PPC::R3);
    464     setExceptionSelectorRegister(PPC::R4);
    465   }
    466 
    467   // We have target-specific dag combine patterns for the following nodes:
    468   setTargetDAGCombine(ISD::SINT_TO_FP);
    469   setTargetDAGCombine(ISD::STORE);
    470   setTargetDAGCombine(ISD::BR_CC);
    471   setTargetDAGCombine(ISD::BSWAP);
    472 
    473   // Darwin long double math library functions have $LDBL128 appended.
    474   if (Subtarget->isDarwin()) {
    475     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
    476     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
    477     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
    478     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
    479     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
    480     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
    481     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
    482     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
    483     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
    484     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
    485   }
    486 
    487   setMinFunctionAlignment(2);
    488   if (PPCSubTarget.isDarwin())
    489     setPrefFunctionAlignment(4);
    490 
    491   if (isPPC64 && Subtarget->isJITCodeModel())
    492     // Temporary workaround for the inability of PPC64 JIT to handle jump
    493     // tables.
    494     setSupportJumpTables(false);
    495 
    496   setInsertFencesForAtomic(true);
    497 
    498   setSchedulingPreference(Sched::Hybrid);
    499 
    500   computeRegisterProperties();
    501 
    502   // The Freescale cores does better with aggressive inlining of memcpy and
    503   // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
    504   if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
    505       Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
    506     MaxStoresPerMemset = 32;
    507     MaxStoresPerMemsetOptSize = 16;
    508     MaxStoresPerMemcpy = 32;
    509     MaxStoresPerMemcpyOptSize = 8;
    510     MaxStoresPerMemmove = 32;
    511     MaxStoresPerMemmoveOptSize = 8;
    512 
    513     setPrefFunctionAlignment(4);
    514     BenefitFromCodePlacementOpt = true;
    515   }
    516 }
    517 
    518 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    519 /// function arguments in the caller parameter area.
    520 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
    521   const TargetMachine &TM = getTargetMachine();
    522   // Darwin passes everything on 4 byte boundary.
    523   if (TM.getSubtarget<PPCSubtarget>().isDarwin())
    524     return 4;
    525 
    526   // 16byte and wider vectors are passed on 16byte boundary.
    527   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    528     if (VTy->getBitWidth() >= 128)
    529       return 16;
    530 
    531   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
    532    if (PPCSubTarget.isPPC64())
    533      return 8;
    534 
    535   return 4;
    536 }
    537 
    538 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
    539   switch (Opcode) {
    540   default: return 0;
    541   case PPCISD::FSEL:            return "PPCISD::FSEL";
    542   case PPCISD::FCFID:           return "PPCISD::FCFID";
    543   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
    544   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
    545   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
    546   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
    547   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
    548   case PPCISD::VPERM:           return "PPCISD::VPERM";
    549   case PPCISD::Hi:              return "PPCISD::Hi";
    550   case PPCISD::Lo:              return "PPCISD::Lo";
    551   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
    552   case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
    553   case PPCISD::LOAD:            return "PPCISD::LOAD";
    554   case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
    555   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
    556   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
    557   case PPCISD::SRL:             return "PPCISD::SRL";
    558   case PPCISD::SRA:             return "PPCISD::SRA";
    559   case PPCISD::SHL:             return "PPCISD::SHL";
    560   case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
    561   case PPCISD::STD_32:          return "PPCISD::STD_32";
    562   case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
    563   case PPCISD::CALL_NOP_SVR4:   return "PPCISD::CALL_NOP_SVR4";
    564   case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
    565   case PPCISD::NOP:             return "PPCISD::NOP";
    566   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
    567   case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
    568   case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
    569   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
    570   case PPCISD::MFCR:            return "PPCISD::MFCR";
    571   case PPCISD::VCMP:            return "PPCISD::VCMP";
    572   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
    573   case PPCISD::LBRX:            return "PPCISD::LBRX";
    574   case PPCISD::STBRX:           return "PPCISD::STBRX";
    575   case PPCISD::LARX:            return "PPCISD::LARX";
    576   case PPCISD::STCX:            return "PPCISD::STCX";
    577   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
    578   case PPCISD::MFFS:            return "PPCISD::MFFS";
    579   case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
    580   case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
    581   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
    582   case PPCISD::MTFSF:           return "PPCISD::MTFSF";
    583   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
    584   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
    585   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
    586   case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
    587   case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
    588   case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
    589   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
    590   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
    591   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
    592   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
    593   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
    594   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
    595   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
    596   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
    597   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
    598   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
    599   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
    600   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
    601   }
    602 }
    603 
    604 EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
    605   if (!VT.isVector())
    606     return MVT::i32;
    607   return VT.changeVectorElementTypeToInteger();
    608 }
    609 
    610 //===----------------------------------------------------------------------===//
    611 // Node matching predicates, for use by the tblgen matching code.
    612 //===----------------------------------------------------------------------===//
    613 
    614 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
    615 static bool isFloatingPointZero(SDValue Op) {
    616   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
    617     return CFP->getValueAPF().isZero();
    618   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
    619     // Maybe this has already been legalized into the constant pool?
    620     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
    621       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
    622         return CFP->getValueAPF().isZero();
    623   }
    624   return false;
    625 }
    626 
    627 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
    628 /// true if Op is undef or if it matches the specified value.
    629 static bool isConstantOrUndef(int Op, int Val) {
    630   return Op < 0 || Op == Val;
    631 }
    632 
    633 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    634 /// VPKUHUM instruction.
    635 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
    636   if (!isUnary) {
    637     for (unsigned i = 0; i != 16; ++i)
    638       if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
    639         return false;
    640   } else {
    641     for (unsigned i = 0; i != 8; ++i)
    642       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
    643           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
    644         return false;
    645   }
    646   return true;
    647 }
    648 
    649 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    650 /// VPKUWUM instruction.
    651 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
    652   if (!isUnary) {
    653     for (unsigned i = 0; i != 16; i += 2)
    654       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
    655           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
    656         return false;
    657   } else {
    658     for (unsigned i = 0; i != 8; i += 2)
    659       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
    660           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
    661           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
    662           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
    663         return false;
    664   }
    665   return true;
    666 }
    667 
    668 /// isVMerge - Common function, used to match vmrg* shuffles.
    669 ///
    670 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
    671                      unsigned LHSStart, unsigned RHSStart) {
    672   assert(N->getValueType(0) == MVT::v16i8 &&
    673          "PPC only supports shuffles by bytes!");
    674   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
    675          "Unsupported merge size!");
    676 
    677   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
    678     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
    679       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
    680                              LHSStart+j+i*UnitSize) ||
    681           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
    682                              RHSStart+j+i*UnitSize))
    683         return false;
    684     }
    685   return true;
    686 }
    687 
    688 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    689 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
    690 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    691                              bool isUnary) {
    692   if (!isUnary)
    693     return isVMerge(N, UnitSize, 8, 24);
    694   return isVMerge(N, UnitSize, 8, 8);
    695 }
    696 
    697 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    698 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
    699 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    700                              bool isUnary) {
    701   if (!isUnary)
    702     return isVMerge(N, UnitSize, 0, 16);
    703   return isVMerge(N, UnitSize, 0, 0);
    704 }
    705 
    706 
    707 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
    708 /// amount, otherwise return -1.
    709 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
    710   assert(N->getValueType(0) == MVT::v16i8 &&
    711          "PPC only supports shuffles by bytes!");
    712 
    713   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
    714 
    715   // Find the first non-undef value in the shuffle mask.
    716   unsigned i;
    717   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
    718     /*search*/;
    719 
    720   if (i == 16) return -1;  // all undef.
    721 
    722   // Otherwise, check to see if the rest of the elements are consecutively
    723   // numbered from this value.
    724   unsigned ShiftAmt = SVOp->getMaskElt(i);
    725   if (ShiftAmt < i) return -1;
    726   ShiftAmt -= i;
    727 
    728   if (!isUnary) {
    729     // Check the rest of the elements to see if they are consecutive.
    730     for (++i; i != 16; ++i)
    731       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
    732         return -1;
    733   } else {
    734     // Check the rest of the elements to see if they are consecutive.
    735     for (++i; i != 16; ++i)
    736       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
    737         return -1;
    738   }
    739   return ShiftAmt;
    740 }
    741 
    742 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
    743 /// specifies a splat of a single element that is suitable for input to
    744 /// VSPLTB/VSPLTH/VSPLTW.
    745 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
    746   assert(N->getValueType(0) == MVT::v16i8 &&
    747          (EltSize == 1 || EltSize == 2 || EltSize == 4));
    748 
    749   // This is a splat operation if each element of the permute is the same, and
    750   // if the value doesn't reference the second vector.
    751   unsigned ElementBase = N->getMaskElt(0);
    752 
    753   // FIXME: Handle UNDEF elements too!
    754   if (ElementBase >= 16)
    755     return false;
    756 
    757   // Check that the indices are consecutive, in the case of a multi-byte element
    758   // splatted with a v16i8 mask.
    759   for (unsigned i = 1; i != EltSize; ++i)
    760     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
    761       return false;
    762 
    763   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
    764     if (N->getMaskElt(i) < 0) continue;
    765     for (unsigned j = 0; j != EltSize; ++j)
    766       if (N->getMaskElt(i+j) != N->getMaskElt(j))
    767         return false;
    768   }
    769   return true;
    770 }
    771 
    772 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
    773 /// are -0.0.
    774 bool PPC::isAllNegativeZeroVector(SDNode *N) {
    775   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
    776 
    777   APInt APVal, APUndef;
    778   unsigned BitSize;
    779   bool HasAnyUndefs;
    780 
    781   if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
    782     if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
    783       return CFP->getValueAPF().isNegZero();
    784 
    785   return false;
    786 }
    787 
    788 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
    789 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
    790 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
    791   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
    792   assert(isSplatShuffleMask(SVOp, EltSize));
    793   return SVOp->getMaskElt(0) / EltSize;
    794 }
    795 
    796 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
    797 /// by using a vspltis[bhw] instruction of the specified element size, return
    798 /// the constant being splatted.  The ByteSize field indicates the number of
    799 /// bytes of each element [124] -> [bhw].
    800 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
    801   SDValue OpVal(0, 0);
    802 
    803   // If ByteSize of the splat is bigger than the element size of the
    804   // build_vector, then we have a case where we are checking for a splat where
    805   // multiple elements of the buildvector are folded together into a single
    806   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
    807   unsigned EltSize = 16/N->getNumOperands();
    808   if (EltSize < ByteSize) {
    809     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
    810     SDValue UniquedVals[4];
    811     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
    812 
    813     // See if all of the elements in the buildvector agree across.
    814     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    815       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
    816       // If the element isn't a constant, bail fully out.
    817       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
    818 
    819 
    820       if (UniquedVals[i&(Multiple-1)].getNode() == 0)
    821         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
    822       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
    823         return SDValue();  // no match.
    824     }
    825 
    826     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
    827     // either constant or undef values that are identical for each chunk.  See
    828     // if these chunks can form into a larger vspltis*.
    829 
    830     // Check to see if all of the leading entries are either 0 or -1.  If
    831     // neither, then this won't fit into the immediate field.
    832     bool LeadingZero = true;
    833     bool LeadingOnes = true;
    834     for (unsigned i = 0; i != Multiple-1; ++i) {
    835       if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
    836 
    837       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
    838       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
    839     }
    840     // Finally, check the least significant entry.
    841     if (LeadingZero) {
    842       if (UniquedVals[Multiple-1].getNode() == 0)
    843         return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
    844       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
    845       if (Val < 16)
    846         return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
    847     }
    848     if (LeadingOnes) {
    849       if (UniquedVals[Multiple-1].getNode() == 0)
    850         return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
    851       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
    852       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
    853         return DAG.getTargetConstant(Val, MVT::i32);
    854     }
    855 
    856     return SDValue();
    857   }
    858 
    859   // Check to see if this buildvec has a single non-undef value in its elements.
    860   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    861     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
    862     if (OpVal.getNode() == 0)
    863       OpVal = N->getOperand(i);
    864     else if (OpVal != N->getOperand(i))
    865       return SDValue();
    866   }
    867 
    868   if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
    869 
    870   unsigned ValSizeInBytes = EltSize;
    871   uint64_t Value = 0;
    872   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
    873     Value = CN->getZExtValue();
    874   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
    875     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
    876     Value = FloatToBits(CN->getValueAPF().convertToFloat());
    877   }
    878 
    879   // If the splat value is larger than the element value, then we can never do
    880   // this splat.  The only case that we could fit the replicated bits into our
    881   // immediate field for would be zero, and we prefer to use vxor for it.
    882   if (ValSizeInBytes < ByteSize) return SDValue();
    883 
    884   // If the element value is larger than the splat value, cut it in half and
    885   // check to see if the two halves are equal.  Continue doing this until we
    886   // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
    887   while (ValSizeInBytes > ByteSize) {
    888     ValSizeInBytes >>= 1;
    889 
    890     // If the top half equals the bottom half, we're still ok.
    891     if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
    892          (Value                        & ((1 << (8*ValSizeInBytes))-1)))
    893       return SDValue();
    894   }
    895 
    896   // Properly sign extend the value.
    897   int MaskVal = SignExtend32(Value, ByteSize * 8);
    898 
    899   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
    900   if (MaskVal == 0) return SDValue();
    901 
    902   // Finally, if this value fits in a 5 bit sext field, return it
    903   if (SignExtend32<5>(MaskVal) == MaskVal)
    904     return DAG.getTargetConstant(MaskVal, MVT::i32);
    905   return SDValue();
    906 }
    907 
    908 //===----------------------------------------------------------------------===//
    909 //  Addressing Mode Selection
    910 //===----------------------------------------------------------------------===//
    911 
    912 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
    913 /// or 64-bit immediate, and if the value can be accurately represented as a
    914 /// sign extension from a 16-bit value.  If so, this returns true and the
    915 /// immediate.
    916 static bool isIntS16Immediate(SDNode *N, short &Imm) {
    917   if (N->getOpcode() != ISD::Constant)
    918     return false;
    919 
    920   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
    921   if (N->getValueType(0) == MVT::i32)
    922     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
    923   else
    924     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
    925 }
    926 static bool isIntS16Immediate(SDValue Op, short &Imm) {
    927   return isIntS16Immediate(Op.getNode(), Imm);
    928 }
    929 
    930 
    931 /// SelectAddressRegReg - Given the specified addressed, check to see if it
    932 /// can be represented as an indexed [r+r] operation.  Returns false if it
    933 /// can be more efficiently represented with [r+imm].
    934 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
    935                                             SDValue &Index,
    936                                             SelectionDAG &DAG) const {
    937   short imm = 0;
    938   if (N.getOpcode() == ISD::ADD) {
    939     if (isIntS16Immediate(N.getOperand(1), imm))
    940       return false;    // r+i
    941     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
    942       return false;    // r+i
    943 
    944     Base = N.getOperand(0);
    945     Index = N.getOperand(1);
    946     return true;
    947   } else if (N.getOpcode() == ISD::OR) {
    948     if (isIntS16Immediate(N.getOperand(1), imm))
    949       return false;    // r+i can fold it if we can.
    950 
    951     // If this is an or of disjoint bitfields, we can codegen this as an add
    952     // (for better address arithmetic) if the LHS and RHS of the OR are provably
    953     // disjoint.
    954     APInt LHSKnownZero, LHSKnownOne;
    955     APInt RHSKnownZero, RHSKnownOne;
    956     DAG.ComputeMaskedBits(N.getOperand(0),
    957                           LHSKnownZero, LHSKnownOne);
    958 
    959     if (LHSKnownZero.getBoolValue()) {
    960       DAG.ComputeMaskedBits(N.getOperand(1),
    961                             RHSKnownZero, RHSKnownOne);
    962       // If all of the bits are known zero on the LHS or RHS, the add won't
    963       // carry.
    964       if (~(LHSKnownZero | RHSKnownZero) == 0) {
    965         Base = N.getOperand(0);
    966         Index = N.getOperand(1);
    967         return true;
    968       }
    969     }
    970   }
    971 
    972   return false;
    973 }
    974 
    975 /// Returns true if the address N can be represented by a base register plus
    976 /// a signed 16-bit displacement [r+imm], and if it is not better
    977 /// represented as reg+reg.
    978 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
    979                                             SDValue &Base,
    980                                             SelectionDAG &DAG) const {
    981   // FIXME dl should come from parent load or store, not from address
    982   DebugLoc dl = N.getDebugLoc();
    983   // If this can be more profitably realized as r+r, fail.
    984   if (SelectAddressRegReg(N, Disp, Base, DAG))
    985     return false;
    986 
    987   if (N.getOpcode() == ISD::ADD) {
    988     short imm = 0;
    989     if (isIntS16Immediate(N.getOperand(1), imm)) {
    990       Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
    991       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
    992         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
    993       } else {
    994         Base = N.getOperand(0);
    995       }
    996       return true; // [r+i]
    997     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
    998       // Match LOAD (ADD (X, Lo(G))).
    999       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
   1000              && "Cannot handle constant offsets yet!");
   1001       Disp = N.getOperand(1).getOperand(0);  // The global address.
   1002       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
   1003              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
   1004              Disp.getOpcode() == ISD::TargetConstantPool ||
   1005              Disp.getOpcode() == ISD::TargetJumpTable);
   1006       Base = N.getOperand(0);
   1007       return true;  // [&g+r]
   1008     }
   1009   } else if (N.getOpcode() == ISD::OR) {
   1010     short imm = 0;
   1011     if (isIntS16Immediate(N.getOperand(1), imm)) {
   1012       // If this is an or of disjoint bitfields, we can codegen this as an add
   1013       // (for better address arithmetic) if the LHS and RHS of the OR are
   1014       // provably disjoint.
   1015       APInt LHSKnownZero, LHSKnownOne;
   1016       DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
   1017 
   1018       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
   1019         // If all of the bits are known zero on the LHS or RHS, the add won't
   1020         // carry.
   1021         Base = N.getOperand(0);
   1022         Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
   1023         return true;
   1024       }
   1025     }
   1026   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
   1027     // Loading from a constant address.
   1028 
   1029     // If this address fits entirely in a 16-bit sext immediate field, codegen
   1030     // this as "d, 0"
   1031     short Imm;
   1032     if (isIntS16Immediate(CN, Imm)) {
   1033       Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
   1034       Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
   1035                              CN->getValueType(0));
   1036       return true;
   1037     }
   1038 
   1039     // Handle 32-bit sext immediates with LIS + addr mode.
   1040     if (CN->getValueType(0) == MVT::i32 ||
   1041         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
   1042       int Addr = (int)CN->getZExtValue();
   1043 
   1044       // Otherwise, break this down into an LIS + disp.
   1045       Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
   1046 
   1047       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
   1048       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
   1049       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
   1050       return true;
   1051     }
   1052   }
   1053 
   1054   Disp = DAG.getTargetConstant(0, getPointerTy());
   1055   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
   1056     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1057   else
   1058     Base = N;
   1059   return true;      // [r+0]
   1060 }
   1061 
   1062 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
   1063 /// represented as an indexed [r+r] operation.
   1064 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
   1065                                                 SDValue &Index,
   1066                                                 SelectionDAG &DAG) const {
   1067   // Check to see if we can easily represent this as an [r+r] address.  This
   1068   // will fail if it thinks that the address is more profitably represented as
   1069   // reg+imm, e.g. where imm = 0.
   1070   if (SelectAddressRegReg(N, Base, Index, DAG))
   1071     return true;
   1072 
   1073   // If the operand is an addition, always emit this as [r+r], since this is
   1074   // better (for code size, and execution, as the memop does the add for free)
   1075   // than emitting an explicit add.
   1076   if (N.getOpcode() == ISD::ADD) {
   1077     Base = N.getOperand(0);
   1078     Index = N.getOperand(1);
   1079     return true;
   1080   }
   1081 
   1082   // Otherwise, do it the hard way, using R0 as the base register.
   1083   Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
   1084                          N.getValueType());
   1085   Index = N;
   1086   return true;
   1087 }
   1088 
   1089 /// SelectAddressRegImmShift - Returns true if the address N can be
   1090 /// represented by a base register plus a signed 14-bit displacement
   1091 /// [r+imm*4].  Suitable for use by STD and friends.
   1092 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
   1093                                                  SDValue &Base,
   1094                                                  SelectionDAG &DAG) const {
   1095   // FIXME dl should come from the parent load or store, not the address
   1096   DebugLoc dl = N.getDebugLoc();
   1097   // If this can be more profitably realized as r+r, fail.
   1098   if (SelectAddressRegReg(N, Disp, Base, DAG))
   1099     return false;
   1100 
   1101   if (N.getOpcode() == ISD::ADD) {
   1102     short imm = 0;
   1103     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
   1104       Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
   1105       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
   1106         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1107       } else {
   1108         Base = N.getOperand(0);
   1109       }
   1110       return true; // [r+i]
   1111     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
   1112       // Match LOAD (ADD (X, Lo(G))).
   1113       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
   1114              && "Cannot handle constant offsets yet!");
   1115       Disp = N.getOperand(1).getOperand(0);  // The global address.
   1116       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
   1117              Disp.getOpcode() == ISD::TargetConstantPool ||
   1118              Disp.getOpcode() == ISD::TargetJumpTable);
   1119       Base = N.getOperand(0);
   1120       return true;  // [&g+r]
   1121     }
   1122   } else if (N.getOpcode() == ISD::OR) {
   1123     short imm = 0;
   1124     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
   1125       // If this is an or of disjoint bitfields, we can codegen this as an add
   1126       // (for better address arithmetic) if the LHS and RHS of the OR are
   1127       // provably disjoint.
   1128       APInt LHSKnownZero, LHSKnownOne;
   1129       DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
   1130       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
   1131         // If all of the bits are known zero on the LHS or RHS, the add won't
   1132         // carry.
   1133         Base = N.getOperand(0);
   1134         Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
   1135         return true;
   1136       }
   1137     }
   1138   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
   1139     // Loading from a constant address.  Verify low two bits are clear.
   1140     if ((CN->getZExtValue() & 3) == 0) {
   1141       // If this address fits entirely in a 14-bit sext immediate field, codegen
   1142       // this as "d, 0"
   1143       short Imm;
   1144       if (isIntS16Immediate(CN, Imm)) {
   1145         Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
   1146         Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
   1147                                CN->getValueType(0));
   1148         return true;
   1149       }
   1150 
   1151       // Fold the low-part of 32-bit absolute addresses into addr mode.
   1152       if (CN->getValueType(0) == MVT::i32 ||
   1153           (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
   1154         int Addr = (int)CN->getZExtValue();
   1155 
   1156         // Otherwise, break this down into an LIS + disp.
   1157         Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
   1158         Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
   1159         unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
   1160         Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
   1161         return true;
   1162       }
   1163     }
   1164   }
   1165 
   1166   Disp = DAG.getTargetConstant(0, getPointerTy());
   1167   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
   1168     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1169   else
   1170     Base = N;
   1171   return true;      // [r+0]
   1172 }
   1173 
   1174 
   1175 /// getPreIndexedAddressParts - returns true by value, base pointer and
   1176 /// offset pointer and addressing mode by reference if the node's address
   1177 /// can be legally represented as pre-indexed load / store address.
   1178 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   1179                                                   SDValue &Offset,
   1180                                                   ISD::MemIndexedMode &AM,
   1181                                                   SelectionDAG &DAG) const {
   1182   if (DisablePPCPreinc) return false;
   1183 
   1184   SDValue Ptr;
   1185   EVT VT;
   1186   unsigned Alignment;
   1187   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1188     Ptr = LD->getBasePtr();
   1189     VT = LD->getMemoryVT();
   1190     Alignment = LD->getAlignment();
   1191   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   1192     Ptr = ST->getBasePtr();
   1193     VT  = ST->getMemoryVT();
   1194     Alignment = ST->getAlignment();
   1195   } else
   1196     return false;
   1197 
   1198   // PowerPC doesn't have preinc load/store instructions for vectors.
   1199   if (VT.isVector())
   1200     return false;
   1201 
   1202   if (SelectAddressRegReg(Ptr, Offset, Base, DAG)) {
   1203     AM = ISD::PRE_INC;
   1204     return true;
   1205   }
   1206 
   1207   // LDU/STU use reg+imm*4, others use reg+imm.
   1208   if (VT != MVT::i64) {
   1209     // reg + imm
   1210     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
   1211       return false;
   1212   } else {
   1213     // LDU/STU need an address with at least 4-byte alignment.
   1214     if (Alignment < 4)
   1215       return false;
   1216 
   1217     // reg + imm * 4.
   1218     if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
   1219       return false;
   1220   }
   1221 
   1222   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1223     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
   1224     // sext i32 to i64 when addr mode is r+i.
   1225     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
   1226         LD->getExtensionType() == ISD::SEXTLOAD &&
   1227         isa<ConstantSDNode>(Offset))
   1228       return false;
   1229   }
   1230 
   1231   AM = ISD::PRE_INC;
   1232   return true;
   1233 }
   1234 
   1235 //===----------------------------------------------------------------------===//
   1236 //  LowerOperation implementation
   1237 //===----------------------------------------------------------------------===//
   1238 
   1239 /// GetLabelAccessInfo - Return true if we should reference labels using a
   1240 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
   1241 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
   1242                                unsigned &LoOpFlags, const GlobalValue *GV = 0) {
   1243   HiOpFlags = PPCII::MO_HA16;
   1244   LoOpFlags = PPCII::MO_LO16;
   1245 
   1246   // Don't use the pic base if not in PIC relocation model.  Or if we are on a
   1247   // non-darwin platform.  We don't support PIC on other platforms yet.
   1248   bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
   1249                TM.getSubtarget<PPCSubtarget>().isDarwin();
   1250   if (isPIC) {
   1251     HiOpFlags |= PPCII::MO_PIC_FLAG;
   1252     LoOpFlags |= PPCII::MO_PIC_FLAG;
   1253   }
   1254 
   1255   // If this is a reference to a global value that requires a non-lazy-ptr, make
   1256   // sure that instruction lowering adds it.
   1257   if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
   1258     HiOpFlags |= PPCII::MO_NLP_FLAG;
   1259     LoOpFlags |= PPCII::MO_NLP_FLAG;
   1260 
   1261     if (GV->hasHiddenVisibility()) {
   1262       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1263       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1264     }
   1265   }
   1266 
   1267   return isPIC;
   1268 }
   1269 
   1270 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
   1271                              SelectionDAG &DAG) {
   1272   EVT PtrVT = HiPart.getValueType();
   1273   SDValue Zero = DAG.getConstant(0, PtrVT);
   1274   DebugLoc DL = HiPart.getDebugLoc();
   1275 
   1276   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
   1277   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
   1278 
   1279   // With PIC, the first instruction is actually "GR+hi(&G)".
   1280   if (isPIC)
   1281     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
   1282                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
   1283 
   1284   // Generate non-pic code that has direct accesses to the constant pool.
   1285   // The address of the global is just (hi(&g)+lo(&g)).
   1286   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
   1287 }
   1288 
   1289 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
   1290                                              SelectionDAG &DAG) const {
   1291   EVT PtrVT = Op.getValueType();
   1292   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   1293   const Constant *C = CP->getConstVal();
   1294 
   1295   // 64-bit SVR4 ABI code is always position-independent.
   1296   // The actual address of the GlobalValue is stored in the TOC.
   1297   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
   1298     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
   1299     return DAG.getNode(PPCISD::TOC_ENTRY, CP->getDebugLoc(), MVT::i64, GA,
   1300                        DAG.getRegister(PPC::X2, MVT::i64));
   1301   }
   1302 
   1303   unsigned MOHiFlag, MOLoFlag;
   1304   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
   1305   SDValue CPIHi =
   1306     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
   1307   SDValue CPILo =
   1308     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
   1309   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
   1310 }
   1311 
   1312 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
   1313   EVT PtrVT = Op.getValueType();
   1314   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   1315 
   1316   // 64-bit SVR4 ABI code is always position-independent.
   1317   // The actual address of the GlobalValue is stored in the TOC.
   1318   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
   1319     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
   1320     return DAG.getNode(PPCISD::TOC_ENTRY, JT->getDebugLoc(), MVT::i64, GA,
   1321                        DAG.getRegister(PPC::X2, MVT::i64));
   1322   }
   1323 
   1324   unsigned MOHiFlag, MOLoFlag;
   1325   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
   1326   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
   1327   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
   1328   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
   1329 }
   1330 
   1331 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
   1332                                              SelectionDAG &DAG) const {
   1333   EVT PtrVT = Op.getValueType();
   1334 
   1335   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   1336 
   1337   unsigned MOHiFlag, MOLoFlag;
   1338   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
   1339   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
   1340   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
   1341   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
   1342 }
   1343 
   1344 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
   1345                                               SelectionDAG &DAG) const {
   1346 
   1347   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   1348   DebugLoc dl = GA->getDebugLoc();
   1349   const GlobalValue *GV = GA->getGlobal();
   1350   EVT PtrVT = getPointerTy();
   1351   bool is64bit = PPCSubTarget.isPPC64();
   1352 
   1353   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
   1354 
   1355   if (Model == TLSModel::LocalExec) {
   1356     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   1357                                                PPCII::MO_TPREL16_HA);
   1358     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   1359                                                PPCII::MO_TPREL16_LO);
   1360     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
   1361                                      is64bit ? MVT::i64 : MVT::i32);
   1362     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
   1363     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
   1364   }
   1365 
   1366   if (!is64bit)
   1367     llvm_unreachable("only local-exec is currently supported for ppc32");
   1368 
   1369   if (Model == TLSModel::InitialExec) {
   1370     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   1371     SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   1372     SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
   1373                                      PtrVT, GOTReg, TGA);
   1374     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
   1375                                    PtrVT, TGA, TPOffsetHi);
   1376     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGA);
   1377   }
   1378 
   1379   if (Model == TLSModel::GeneralDynamic) {
   1380     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   1381     SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   1382     SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
   1383                                      GOTReg, TGA);
   1384     SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
   1385                                    GOTEntryHi, TGA);
   1386 
   1387     // We need a chain node, and don't have one handy.  The underlying
   1388     // call has no side effects, so using the function entry node
   1389     // suffices.
   1390     SDValue Chain = DAG.getEntryNode();
   1391     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
   1392     SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
   1393     SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
   1394                                   PtrVT, ParmReg, TGA);
   1395     // The return value from GET_TLS_ADDR really is in X3 already, but
   1396     // some hacks are needed here to tie everything together.  The extra
   1397     // copies dissolve during subsequent transforms.
   1398     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
   1399     return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
   1400   }
   1401 
   1402   if (Model == TLSModel::LocalDynamic) {
   1403     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   1404     SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   1405     SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
   1406                                      GOTReg, TGA);
   1407     SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
   1408                                    GOTEntryHi, TGA);
   1409 
   1410     // We need a chain node, and don't have one handy.  The underlying
   1411     // call has no side effects, so using the function entry node
   1412     // suffices.
   1413     SDValue Chain = DAG.getEntryNode();
   1414     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
   1415     SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
   1416     SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
   1417                                   PtrVT, ParmReg, TGA);
   1418     // The return value from GET_TLSLD_ADDR really is in X3 already, but
   1419     // some hacks are needed here to tie everything together.  The extra
   1420     // copies dissolve during subsequent transforms.
   1421     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
   1422     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
   1423                                       Chain, ParmReg, TGA);
   1424     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
   1425   }
   1426 
   1427   llvm_unreachable("Unknown TLS model!");
   1428 }
   1429 
   1430 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
   1431                                               SelectionDAG &DAG) const {
   1432   EVT PtrVT = Op.getValueType();
   1433   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
   1434   DebugLoc DL = GSDN->getDebugLoc();
   1435   const GlobalValue *GV = GSDN->getGlobal();
   1436 
   1437   // 64-bit SVR4 ABI code is always position-independent.
   1438   // The actual address of the GlobalValue is stored in the TOC.
   1439   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
   1440     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
   1441     return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
   1442                        DAG.getRegister(PPC::X2, MVT::i64));
   1443   }
   1444 
   1445   unsigned MOHiFlag, MOLoFlag;
   1446   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
   1447 
   1448   SDValue GAHi =
   1449     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
   1450   SDValue GALo =
   1451     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
   1452 
   1453   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
   1454 
   1455   // If the global reference is actually to a non-lazy-pointer, we have to do an
   1456   // extra load to get the address of the global.
   1457   if (MOHiFlag & PPCII::MO_NLP_FLAG)
   1458     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
   1459                       false, false, false, 0);
   1460   return Ptr;
   1461 }
   1462 
   1463 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   1464   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   1465   DebugLoc dl = Op.getDebugLoc();
   1466 
   1467   // If we're comparing for equality to zero, expose the fact that this is
   1468   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
   1469   // fold the new nodes.
   1470   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1471     if (C->isNullValue() && CC == ISD::SETEQ) {
   1472       EVT VT = Op.getOperand(0).getValueType();
   1473       SDValue Zext = Op.getOperand(0);
   1474       if (VT.bitsLT(MVT::i32)) {
   1475         VT = MVT::i32;
   1476         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
   1477       }
   1478       unsigned Log2b = Log2_32(VT.getSizeInBits());
   1479       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
   1480       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
   1481                                 DAG.getConstant(Log2b, MVT::i32));
   1482       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
   1483     }
   1484     // Leave comparisons against 0 and -1 alone for now, since they're usually
   1485     // optimized.  FIXME: revisit this when we can custom lower all setcc
   1486     // optimizations.
   1487     if (C->isAllOnesValue() || C->isNullValue())
   1488       return SDValue();
   1489   }
   1490 
   1491   // If we have an integer seteq/setne, turn it into a compare against zero
   1492   // by xor'ing the rhs with the lhs, which is faster than setting a
   1493   // condition register, reading it back out, and masking the correct bit.  The
   1494   // normal approach here uses sub to do this instead of xor.  Using xor exposes
   1495   // the result to other bit-twiddling opportunities.
   1496   EVT LHSVT = Op.getOperand(0).getValueType();
   1497   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   1498     EVT VT = Op.getValueType();
   1499     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
   1500                                 Op.getOperand(1));
   1501     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
   1502   }
   1503   return SDValue();
   1504 }
   1505 
   1506 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
   1507                                       const PPCSubtarget &Subtarget) const {
   1508   SDNode *Node = Op.getNode();
   1509   EVT VT = Node->getValueType(0);
   1510   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1511   SDValue InChain = Node->getOperand(0);
   1512   SDValue VAListPtr = Node->getOperand(1);
   1513   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
   1514   DebugLoc dl = Node->getDebugLoc();
   1515 
   1516   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
   1517 
   1518   // gpr_index
   1519   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   1520                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
   1521                                     false, false, 0);
   1522   InChain = GprIndex.getValue(1);
   1523 
   1524   if (VT == MVT::i64) {
   1525     // Check if GprIndex is even
   1526     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
   1527                                  DAG.getConstant(1, MVT::i32));
   1528     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
   1529                                 DAG.getConstant(0, MVT::i32), ISD::SETNE);
   1530     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
   1531                                           DAG.getConstant(1, MVT::i32));
   1532     // Align GprIndex to be even if it isn't
   1533     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
   1534                            GprIndex);
   1535   }
   1536 
   1537   // fpr index is 1 byte after gpr
   1538   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   1539                                DAG.getConstant(1, MVT::i32));
   1540 
   1541   // fpr
   1542   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   1543                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
   1544                                     false, false, 0);
   1545   InChain = FprIndex.getValue(1);
   1546 
   1547   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   1548                                        DAG.getConstant(8, MVT::i32));
   1549 
   1550   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   1551                                         DAG.getConstant(4, MVT::i32));
   1552 
   1553   // areas
   1554   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
   1555                                      MachinePointerInfo(), false, false,
   1556                                      false, 0);
   1557   InChain = OverflowArea.getValue(1);
   1558 
   1559   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
   1560                                     MachinePointerInfo(), false, false,
   1561                                     false, 0);
   1562   InChain = RegSaveArea.getValue(1);
   1563 
   1564   // select overflow_area if index > 8
   1565   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
   1566                             DAG.getConstant(8, MVT::i32), ISD::SETLT);
   1567 
   1568   // adjustment constant gpr_index * 4/8
   1569   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
   1570                                     VT.isInteger() ? GprIndex : FprIndex,
   1571                                     DAG.getConstant(VT.isInteger() ? 4 : 8,
   1572                                                     MVT::i32));
   1573 
   1574   // OurReg = RegSaveArea + RegConstant
   1575   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
   1576                                RegConstant);
   1577 
   1578   // Floating types are 32 bytes into RegSaveArea
   1579   if (VT.isFloatingPoint())
   1580     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
   1581                          DAG.getConstant(32, MVT::i32));
   1582 
   1583   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
   1584   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   1585                                    VT.isInteger() ? GprIndex : FprIndex,
   1586                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1,
   1587                                                    MVT::i32));
   1588 
   1589   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
   1590                               VT.isInteger() ? VAListPtr : FprPtr,
   1591                               MachinePointerInfo(SV),
   1592                               MVT::i8, false, false, 0);
   1593 
   1594   // determine if we should load from reg_save_area or overflow_area
   1595   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
   1596 
   1597   // increase overflow_area by 4/8 if gpr/fpr > 8
   1598   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
   1599                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
   1600                                           MVT::i32));
   1601 
   1602   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
   1603                              OverflowAreaPlusN);
   1604 
   1605   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
   1606                               OverflowAreaPtr,
   1607                               MachinePointerInfo(),
   1608                               MVT::i32, false, false, 0);
   1609 
   1610   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
   1611                      false, false, false, 0);
   1612 }
   1613 
   1614 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
   1615                                                   SelectionDAG &DAG) const {
   1616   return Op.getOperand(0);
   1617 }
   1618 
   1619 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
   1620                                                 SelectionDAG &DAG) const {
   1621   SDValue Chain = Op.getOperand(0);
   1622   SDValue Trmp = Op.getOperand(1); // trampoline
   1623   SDValue FPtr = Op.getOperand(2); // nested function
   1624   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
   1625   DebugLoc dl = Op.getDebugLoc();
   1626 
   1627   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1628   bool isPPC64 = (PtrVT == MVT::i64);
   1629   Type *IntPtrTy =
   1630     DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
   1631                                                              *DAG.getContext());
   1632 
   1633   TargetLowering::ArgListTy Args;
   1634   TargetLowering::ArgListEntry Entry;
   1635 
   1636   Entry.Ty = IntPtrTy;
   1637   Entry.Node = Trmp; Args.push_back(Entry);
   1638 
   1639   // TrampSize == (isPPC64 ? 48 : 40);
   1640   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
   1641                                isPPC64 ? MVT::i64 : MVT::i32);
   1642   Args.push_back(Entry);
   1643 
   1644   Entry.Node = FPtr; Args.push_back(Entry);
   1645   Entry.Node = Nest; Args.push_back(Entry);
   1646 
   1647   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
   1648   TargetLowering::CallLoweringInfo CLI(Chain,
   1649                                        Type::getVoidTy(*DAG.getContext()),
   1650                                        false, false, false, false, 0,
   1651                                        CallingConv::C,
   1652                 /*isTailCall=*/false,
   1653                                        /*doesNotRet=*/false,
   1654                                        /*isReturnValueUsed=*/true,
   1655                 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
   1656                 Args, DAG, dl);
   1657   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   1658 
   1659   return CallResult.second;
   1660 }
   1661 
   1662 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
   1663                                         const PPCSubtarget &Subtarget) const {
   1664   MachineFunction &MF = DAG.getMachineFunction();
   1665   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1666 
   1667   DebugLoc dl = Op.getDebugLoc();
   1668 
   1669   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
   1670     // vastart just stores the address of the VarArgsFrameIndex slot into the
   1671     // memory location argument.
   1672     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1673     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   1674     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1675     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   1676                         MachinePointerInfo(SV),
   1677                         false, false, 0);
   1678   }
   1679 
   1680   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
   1681   // We suppose the given va_list is already allocated.
   1682   //
   1683   // typedef struct {
   1684   //  char gpr;     /* index into the array of 8 GPRs
   1685   //                 * stored in the register save area
   1686   //                 * gpr=0 corresponds to r3,
   1687   //                 * gpr=1 to r4, etc.
   1688   //                 */
   1689   //  char fpr;     /* index into the array of 8 FPRs
   1690   //                 * stored in the register save area
   1691   //                 * fpr=0 corresponds to f1,
   1692   //                 * fpr=1 to f2, etc.
   1693   //                 */
   1694   //  char *overflow_arg_area;
   1695   //                /* location on stack that holds
   1696   //                 * the next overflow argument
   1697   //                 */
   1698   //  char *reg_save_area;
   1699   //               /* where r3:r10 and f1:f8 (if saved)
   1700   //                * are stored
   1701   //                */
   1702   // } va_list[1];
   1703 
   1704 
   1705   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
   1706   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
   1707 
   1708 
   1709   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1710 
   1711   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
   1712                                             PtrVT);
   1713   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   1714                                  PtrVT);
   1715 
   1716   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
   1717   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
   1718 
   1719   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
   1720   SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
   1721 
   1722   uint64_t FPROffset = 1;
   1723   SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
   1724 
   1725   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1726 
   1727   // Store first byte : number of int regs
   1728   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
   1729                                          Op.getOperand(1),
   1730                                          MachinePointerInfo(SV),
   1731                                          MVT::i8, false, false, 0);
   1732   uint64_t nextOffset = FPROffset;
   1733   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
   1734                                   ConstFPROffset);
   1735 
   1736   // Store second byte : number of float regs
   1737   SDValue secondStore =
   1738     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
   1739                       MachinePointerInfo(SV, nextOffset), MVT::i8,
   1740                       false, false, 0);
   1741   nextOffset += StackOffset;
   1742   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
   1743 
   1744   // Store second word : arguments given on stack
   1745   SDValue thirdStore =
   1746     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
   1747                  MachinePointerInfo(SV, nextOffset),
   1748                  false, false, 0);
   1749   nextOffset += FrameOffset;
   1750   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
   1751 
   1752   // Store third word : arguments given in registers
   1753   return DAG.getStore(thirdStore, dl, FR, nextPtr,
   1754                       MachinePointerInfo(SV, nextOffset),
   1755                       false, false, 0);
   1756 
   1757 }
   1758 
   1759 #include "PPCGenCallingConv.inc"
   1760 
   1761 static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
   1762                                        CCValAssign::LocInfo &LocInfo,
   1763                                        ISD::ArgFlagsTy &ArgFlags,
   1764                                        CCState &State) {
   1765   return true;
   1766 }
   1767 
   1768 static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
   1769                                               MVT &LocVT,
   1770                                               CCValAssign::LocInfo &LocInfo,
   1771                                               ISD::ArgFlagsTy &ArgFlags,
   1772                                               CCState &State) {
   1773   static const uint16_t ArgRegs[] = {
   1774     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   1775     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   1776   };
   1777   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   1778 
   1779   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
   1780 
   1781   // Skip one register if the first unallocated register has an even register
   1782   // number and there are still argument registers available which have not been
   1783   // allocated yet. RegNum is actually an index into ArgRegs, which means we
   1784   // need to skip a register if RegNum is odd.
   1785   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
   1786     State.AllocateReg(ArgRegs[RegNum]);
   1787   }
   1788 
   1789   // Always return false here, as this function only makes sure that the first
   1790   // unallocated register has an odd register number and does not actually
   1791   // allocate a register for the current argument.
   1792   return false;
   1793 }
   1794 
   1795 static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
   1796                                                 MVT &LocVT,
   1797                                                 CCValAssign::LocInfo &LocInfo,
   1798                                                 ISD::ArgFlagsTy &ArgFlags,
   1799                                                 CCState &State) {
   1800   static const uint16_t ArgRegs[] = {
   1801     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   1802     PPC::F8
   1803   };
   1804 
   1805   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   1806 
   1807   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
   1808 
   1809   // If there is only one Floating-point register left we need to put both f64
   1810   // values of a split ppc_fp128 value on the stack.
   1811   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
   1812     State.AllocateReg(ArgRegs[RegNum]);
   1813   }
   1814 
   1815   // Always return false here, as this function only makes sure that the two f64
   1816   // values a ppc_fp128 value is split into are both passed in registers or both
   1817   // passed on the stack and does not actually allocate a register for the
   1818   // current argument.
   1819   return false;
   1820 }
   1821 
   1822 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
   1823 /// on Darwin.
   1824 static const uint16_t *GetFPR() {
   1825   static const uint16_t FPR[] = {
   1826     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   1827     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
   1828   };
   1829 
   1830   return FPR;
   1831 }
   1832 
   1833 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
   1834 /// the stack.
   1835 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
   1836                                        unsigned PtrByteSize) {
   1837   unsigned ArgSize = ArgVT.getSizeInBits()/8;
   1838   if (Flags.isByVal())
   1839     ArgSize = Flags.getByValSize();
   1840   ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   1841 
   1842   return ArgSize;
   1843 }
   1844 
   1845 SDValue
   1846 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
   1847                                         CallingConv::ID CallConv, bool isVarArg,
   1848                                         const SmallVectorImpl<ISD::InputArg>
   1849                                           &Ins,
   1850                                         DebugLoc dl, SelectionDAG &DAG,
   1851                                         SmallVectorImpl<SDValue> &InVals)
   1852                                           const {
   1853   if (PPCSubTarget.isSVR4ABI()) {
   1854     if (PPCSubTarget.isPPC64())
   1855       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
   1856                                          dl, DAG, InVals);
   1857     else
   1858       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
   1859                                          dl, DAG, InVals);
   1860   } else {
   1861     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
   1862                                        dl, DAG, InVals);
   1863   }
   1864 }
   1865 
   1866 SDValue
   1867 PPCTargetLowering::LowerFormalArguments_32SVR4(
   1868                                       SDValue Chain,
   1869                                       CallingConv::ID CallConv, bool isVarArg,
   1870                                       const SmallVectorImpl<ISD::InputArg>
   1871                                         &Ins,
   1872                                       DebugLoc dl, SelectionDAG &DAG,
   1873                                       SmallVectorImpl<SDValue> &InVals) const {
   1874 
   1875   // 32-bit SVR4 ABI Stack Frame Layout:
   1876   //              +-----------------------------------+
   1877   //        +-->  |            Back chain             |
   1878   //        |     +-----------------------------------+
   1879   //        |     | Floating-point register save area |
   1880   //        |     +-----------------------------------+
   1881   //        |     |    General register save area     |
   1882   //        |     +-----------------------------------+
   1883   //        |     |          CR save word             |
   1884   //        |     +-----------------------------------+
   1885   //        |     |         VRSAVE save word          |
   1886   //        |     +-----------------------------------+
   1887   //        |     |         Alignment padding         |
   1888   //        |     +-----------------------------------+
   1889   //        |     |     Vector register save area     |
   1890   //        |     +-----------------------------------+
   1891   //        |     |       Local variable space        |
   1892   //        |     +-----------------------------------+
   1893   //        |     |        Parameter list area        |
   1894   //        |     +-----------------------------------+
   1895   //        |     |           LR save word            |
   1896   //        |     +-----------------------------------+
   1897   // SP-->  +---  |            Back chain             |
   1898   //              +-----------------------------------+
   1899   //
   1900   // Specifications:
   1901   //   System V Application Binary Interface PowerPC Processor Supplement
   1902   //   AltiVec Technology Programming Interface Manual
   1903 
   1904   MachineFunction &MF = DAG.getMachineFunction();
   1905   MachineFrameInfo *MFI = MF.getFrameInfo();
   1906   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1907 
   1908   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1909   // Potential tail calls could cause overwriting of argument stack slots.
   1910   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   1911                        (CallConv == CallingConv::Fast));
   1912   unsigned PtrByteSize = 4;
   1913 
   1914   // Assign locations to all of the incoming arguments.
   1915   SmallVector<CCValAssign, 16> ArgLocs;
   1916   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1917                  getTargetMachine(), ArgLocs, *DAG.getContext());
   1918 
   1919   // Reserve space for the linkage area on the stack.
   1920   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
   1921 
   1922   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
   1923 
   1924   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1925     CCValAssign &VA = ArgLocs[i];
   1926 
   1927     // Arguments stored in registers.
   1928     if (VA.isRegLoc()) {
   1929       const TargetRegisterClass *RC;
   1930       EVT ValVT = VA.getValVT();
   1931 
   1932       switch (ValVT.getSimpleVT().SimpleTy) {
   1933         default:
   1934           llvm_unreachable("ValVT not supported by formal arguments Lowering");
   1935         case MVT::i32:
   1936           RC = &PPC::GPRCRegClass;
   1937           break;
   1938         case MVT::f32:
   1939           RC = &PPC::F4RCRegClass;
   1940           break;
   1941         case MVT::f64:
   1942           RC = &PPC::F8RCRegClass;
   1943           break;
   1944         case MVT::v16i8:
   1945         case MVT::v8i16:
   1946         case MVT::v4i32:
   1947         case MVT::v4f32:
   1948           RC = &PPC::VRRCRegClass;
   1949           break;
   1950       }
   1951 
   1952       // Transform the arguments stored in physical registers into virtual ones.
   1953       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   1954       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
   1955 
   1956       InVals.push_back(ArgValue);
   1957     } else {
   1958       // Argument stored in memory.
   1959       assert(VA.isMemLoc());
   1960 
   1961       unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
   1962       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
   1963                                       isImmutable);
   1964 
   1965       // Create load nodes to retrieve arguments from the stack.
   1966       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   1967       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
   1968                                    MachinePointerInfo(),
   1969                                    false, false, false, 0));
   1970     }
   1971   }
   1972 
   1973   // Assign locations to all of the incoming aggregate by value arguments.
   1974   // Aggregates passed by value are stored in the local variable space of the
   1975   // caller's stack frame, right above the parameter list area.
   1976   SmallVector<CCValAssign, 16> ByValArgLocs;
   1977   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1978                       getTargetMachine(), ByValArgLocs, *DAG.getContext());
   1979 
   1980   // Reserve stack space for the allocations in CCInfo.
   1981   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   1982 
   1983   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
   1984 
   1985   // Area that is at least reserved in the caller of this function.
   1986   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
   1987 
   1988   // Set the size that is at least reserved in caller of this function.  Tail
   1989   // call optimized function's reserved stack space needs to be aligned so that
   1990   // taking the difference between two stack areas will result in an aligned
   1991   // stack.
   1992   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   1993 
   1994   MinReservedArea =
   1995     std::max(MinReservedArea,
   1996              PPCFrameLowering::getMinCallFrameSize(false, false));
   1997 
   1998   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
   1999     getStackAlignment();
   2000   unsigned AlignMask = TargetAlign-1;
   2001   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
   2002 
   2003   FI->setMinReservedArea(MinReservedArea);
   2004 
   2005   SmallVector<SDValue, 8> MemOps;
   2006 
   2007   // If the function takes variable number of arguments, make a frame index for
   2008   // the start of the first vararg value... for expansion of llvm.va_start.
   2009   if (isVarArg) {
   2010     static const uint16_t GPArgRegs[] = {
   2011       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   2012       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   2013     };
   2014     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
   2015 
   2016     static const uint16_t FPArgRegs[] = {
   2017       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   2018       PPC::F8
   2019     };
   2020     const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
   2021 
   2022     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
   2023                                                           NumGPArgRegs));
   2024     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
   2025                                                           NumFPArgRegs));
   2026 
   2027     // Make room for NumGPArgRegs and NumFPArgRegs.
   2028     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
   2029                 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
   2030 
   2031     FuncInfo->setVarArgsStackOffset(
   2032       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   2033                              CCInfo.getNextStackOffset(), true));
   2034 
   2035     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
   2036     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2037 
   2038     // The fixed integer arguments of a variadic function are stored to the
   2039     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
   2040     // the result of va_next.
   2041     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
   2042       // Get an existing live-in vreg, or add a new one.
   2043       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
   2044       if (!VReg)
   2045         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
   2046 
   2047       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2048       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2049                                    MachinePointerInfo(), false, false, 0);
   2050       MemOps.push_back(Store);
   2051       // Increment the address by four for the next argument to store
   2052       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
   2053       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2054     }
   2055 
   2056     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
   2057     // is set.
   2058     // The double arguments are stored to the VarArgsFrameIndex
   2059     // on the stack.
   2060     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
   2061       // Get an existing live-in vreg, or add a new one.
   2062       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
   2063       if (!VReg)
   2064         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
   2065 
   2066       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
   2067       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2068                                    MachinePointerInfo(), false, false, 0);
   2069       MemOps.push_back(Store);
   2070       // Increment the address by eight for the next argument to store
   2071       SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
   2072                                          PtrVT);
   2073       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2074     }
   2075   }
   2076 
   2077   if (!MemOps.empty())
   2078     Chain = DAG.getNode(ISD::TokenFactor, dl,
   2079                         MVT::Other, &MemOps[0], MemOps.size());
   2080 
   2081   return Chain;
   2082 }
   2083 
   2084 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   2085 // value to MVT::i64 and then truncate to the correct register size.
   2086 SDValue
   2087 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
   2088                                      SelectionDAG &DAG, SDValue ArgVal,
   2089                                      DebugLoc dl) const {
   2090   if (Flags.isSExt())
   2091     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
   2092                          DAG.getValueType(ObjectVT));
   2093   else if (Flags.isZExt())
   2094     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
   2095                          DAG.getValueType(ObjectVT));
   2096 
   2097   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
   2098 }
   2099 
   2100 // Set the size that is at least reserved in caller of this function.  Tail
   2101 // call optimized functions' reserved stack space needs to be aligned so that
   2102 // taking the difference between two stack areas will result in an aligned
   2103 // stack.
   2104 void
   2105 PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
   2106                                       unsigned nAltivecParamsAtEnd,
   2107                                       unsigned MinReservedArea,
   2108                                       bool isPPC64) const {
   2109   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   2110   // Add the Altivec parameters at the end, if needed.
   2111   if (nAltivecParamsAtEnd) {
   2112     MinReservedArea = ((MinReservedArea+15)/16)*16;
   2113     MinReservedArea += 16*nAltivecParamsAtEnd;
   2114   }
   2115   MinReservedArea =
   2116     std::max(MinReservedArea,
   2117              PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
   2118   unsigned TargetAlign
   2119     = DAG.getMachineFunction().getTarget().getFrameLowering()->
   2120         getStackAlignment();
   2121   unsigned AlignMask = TargetAlign-1;
   2122   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
   2123   FI->setMinReservedArea(MinReservedArea);
   2124 }
   2125 
   2126 SDValue
   2127 PPCTargetLowering::LowerFormalArguments_64SVR4(
   2128                                       SDValue Chain,
   2129                                       CallingConv::ID CallConv, bool isVarArg,
   2130                                       const SmallVectorImpl<ISD::InputArg>
   2131                                         &Ins,
   2132                                       DebugLoc dl, SelectionDAG &DAG,
   2133                                       SmallVectorImpl<SDValue> &InVals) const {
   2134   // TODO: add description of PPC stack frame format, or at least some docs.
   2135   //
   2136   MachineFunction &MF = DAG.getMachineFunction();
   2137   MachineFrameInfo *MFI = MF.getFrameInfo();
   2138   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2139 
   2140   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2141   // Potential tail calls could cause overwriting of argument stack slots.
   2142   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   2143                        (CallConv == CallingConv::Fast));
   2144   unsigned PtrByteSize = 8;
   2145 
   2146   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
   2147   // Area that is at least reserved in caller of this function.
   2148   unsigned MinReservedArea = ArgOffset;
   2149 
   2150   static const uint16_t GPR[] = {
   2151     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   2152     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   2153   };
   2154 
   2155   static const uint16_t *FPR = GetFPR();
   2156 
   2157   static const uint16_t VR[] = {
   2158     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   2159     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   2160   };
   2161 
   2162   const unsigned Num_GPR_Regs = array_lengthof(GPR);
   2163   const unsigned Num_FPR_Regs = 13;
   2164   const unsigned Num_VR_Regs  = array_lengthof(VR);
   2165 
   2166   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   2167 
   2168   // Add DAG nodes to load the arguments or copy them out of registers.  On
   2169   // entry to a function on PPC, the arguments start after the linkage area,
   2170   // although the first ones are often in registers.
   2171 
   2172   SmallVector<SDValue, 8> MemOps;
   2173   unsigned nAltivecParamsAtEnd = 0;
   2174   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
   2175   unsigned CurArgIdx = 0;
   2176   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   2177     SDValue ArgVal;
   2178     bool needsLoad = false;
   2179     EVT ObjectVT = Ins[ArgNo].VT;
   2180     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
   2181     unsigned ArgSize = ObjSize;
   2182     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   2183     std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
   2184     CurArgIdx = Ins[ArgNo].OrigArgIndex;
   2185 
   2186     unsigned CurArgOffset = ArgOffset;
   2187 
   2188     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
   2189     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
   2190         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
   2191       if (isVarArg) {
   2192         MinReservedArea = ((MinReservedArea+15)/16)*16;
   2193         MinReservedArea += CalculateStackSlotSize(ObjectVT,
   2194                                                   Flags,
   2195                                                   PtrByteSize);
   2196       } else
   2197         nAltivecParamsAtEnd++;
   2198     } else
   2199       // Calculate min reserved area.
   2200       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
   2201                                                 Flags,
   2202                                                 PtrByteSize);
   2203 
   2204     // FIXME the codegen can be much improved in some cases.
   2205     // We do not have to keep everything in memory.
   2206     if (Flags.isByVal()) {
   2207       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   2208       ObjSize = Flags.getByValSize();
   2209       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2210       // Empty aggregate parameters do not take up registers.  Examples:
   2211       //   struct { } a;
   2212       //   union  { } b;
   2213       //   int c[0];
   2214       // etc.  However, we have to provide a place-holder in InVals, so
   2215       // pretend we have an 8-byte item at the current address for that
   2216       // purpose.
   2217       if (!ObjSize) {
   2218         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   2219         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2220         InVals.push_back(FIN);
   2221         continue;
   2222       }
   2223       // All aggregates smaller than 8 bytes must be passed right-justified.
   2224       if (ObjSize < PtrByteSize)
   2225         CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
   2226       // The value of the object is its address.
   2227       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
   2228       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2229       InVals.push_back(FIN);
   2230 
   2231       if (ObjSize < 8) {
   2232         if (GPR_idx != Num_GPR_Regs) {
   2233           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2234           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2235           SDValue Store;
   2236 
   2237           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
   2238             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
   2239                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
   2240             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
   2241                                       MachinePointerInfo(FuncArg, CurArgOffset),
   2242                                       ObjType, false, false, 0);
   2243           } else {
   2244             // For sizes that don't fit a truncating store (3, 5, 6, 7),
   2245             // store the whole register as-is to the parameter save area
   2246             // slot.  The address of the parameter was already calculated
   2247             // above (InVals.push_back(FIN)) to be the right-justified
   2248             // offset within the slot.  For this store, we need a new
   2249             // frame index that points at the beginning of the slot.
   2250             int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   2251             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2252             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2253                                  MachinePointerInfo(FuncArg, ArgOffset),
   2254                                  false, false, 0);
   2255           }
   2256 
   2257           MemOps.push_back(Store);
   2258           ++GPR_idx;
   2259         }
   2260         // Whether we copied from a register or not, advance the offset
   2261         // into the parameter save area by a full doubleword.
   2262         ArgOffset += PtrByteSize;
   2263         continue;
   2264       }
   2265 
   2266       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   2267         // Store whatever pieces of the object are in registers
   2268         // to memory.  ArgOffset will be the address of the beginning
   2269         // of the object.
   2270         if (GPR_idx != Num_GPR_Regs) {
   2271           unsigned VReg;
   2272           VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2273           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   2274           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2275           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2276           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2277                                        MachinePointerInfo(FuncArg, ArgOffset),
   2278                                        false, false, 0);
   2279           MemOps.push_back(Store);
   2280           ++GPR_idx;
   2281           ArgOffset += PtrByteSize;
   2282         } else {
   2283           ArgOffset += ArgSize - j;
   2284           break;
   2285         }
   2286       }
   2287       continue;
   2288     }
   2289 
   2290     switch (ObjectVT.getSimpleVT().SimpleTy) {
   2291     default: llvm_unreachable("Unhandled argument type!");
   2292     case MVT::i32:
   2293     case MVT::i64:
   2294       if (GPR_idx != Num_GPR_Regs) {
   2295         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2296         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   2297 
   2298         if (ObjectVT == MVT::i32)
   2299           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   2300           // value to MVT::i64 and then truncate to the correct register size.
   2301           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   2302 
   2303         ++GPR_idx;
   2304       } else {
   2305         needsLoad = true;
   2306         ArgSize = PtrByteSize;
   2307       }
   2308       ArgOffset += 8;
   2309       break;
   2310 
   2311     case MVT::f32:
   2312     case MVT::f64:
   2313       // Every 8 bytes of argument space consumes one of the GPRs available for
   2314       // argument passing.
   2315       if (GPR_idx != Num_GPR_Regs) {
   2316         ++GPR_idx;
   2317       }
   2318       if (FPR_idx != Num_FPR_Regs) {
   2319         unsigned VReg;
   2320 
   2321         if (ObjectVT == MVT::f32)
   2322           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
   2323         else
   2324           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
   2325 
   2326         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2327         ++FPR_idx;
   2328       } else {
   2329         needsLoad = true;
   2330         ArgSize = PtrByteSize;
   2331       }
   2332 
   2333       ArgOffset += 8;
   2334       break;
   2335     case MVT::v4f32:
   2336     case MVT::v4i32:
   2337     case MVT::v8i16:
   2338     case MVT::v16i8:
   2339       // Note that vector arguments in registers don't reserve stack space,
   2340       // except in varargs functions.
   2341       if (VR_idx != Num_VR_Regs) {
   2342         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   2343         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2344         if (isVarArg) {
   2345           while ((ArgOffset % 16) != 0) {
   2346             ArgOffset += PtrByteSize;
   2347             if (GPR_idx != Num_GPR_Regs)
   2348               GPR_idx++;
   2349           }
   2350           ArgOffset += 16;
   2351           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
   2352         }
   2353         ++VR_idx;
   2354       } else {
   2355         // Vectors are aligned.
   2356         ArgOffset = ((ArgOffset+15)/16)*16;
   2357         CurArgOffset = ArgOffset;
   2358         ArgOffset += 16;
   2359         needsLoad = true;
   2360       }
   2361       break;
   2362     }
   2363 
   2364     // We need to load the argument to a virtual register if we determined
   2365     // above that we ran out of physical registers of the appropriate type.
   2366     if (needsLoad) {
   2367       int FI = MFI->CreateFixedObject(ObjSize,
   2368                                       CurArgOffset + (ArgSize - ObjSize),
   2369                                       isImmutable);
   2370       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2371       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   2372                            false, false, false, 0);
   2373     }
   2374 
   2375     InVals.push_back(ArgVal);
   2376   }
   2377 
   2378   // Set the size that is at least reserved in caller of this function.  Tail
   2379   // call optimized functions' reserved stack space needs to be aligned so that
   2380   // taking the difference between two stack areas will result in an aligned
   2381   // stack.
   2382   setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
   2383 
   2384   // If the function takes variable number of arguments, make a frame index for
   2385   // the start of the first vararg value... for expansion of llvm.va_start.
   2386   if (isVarArg) {
   2387     int Depth = ArgOffset;
   2388 
   2389     FuncInfo->setVarArgsFrameIndex(
   2390       MFI->CreateFixedObject(PtrByteSize, Depth, true));
   2391     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2392 
   2393     // If this function is vararg, store any remaining integer argument regs
   2394     // to their spots on the stack so that they may be loaded by deferencing the
   2395     // result of va_next.
   2396     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
   2397       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2398       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2399       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2400                                    MachinePointerInfo(), false, false, 0);
   2401       MemOps.push_back(Store);
   2402       // Increment the address by four for the next argument to store
   2403       SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
   2404       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2405     }
   2406   }
   2407 
   2408   if (!MemOps.empty())
   2409     Chain = DAG.getNode(ISD::TokenFactor, dl,
   2410                         MVT::Other, &MemOps[0], MemOps.size());
   2411 
   2412   return Chain;
   2413 }
   2414 
   2415 SDValue
   2416 PPCTargetLowering::LowerFormalArguments_Darwin(
   2417                                       SDValue Chain,
   2418                                       CallingConv::ID CallConv, bool isVarArg,
   2419                                       const SmallVectorImpl<ISD::InputArg>
   2420                                         &Ins,
   2421                                       DebugLoc dl, SelectionDAG &DAG,
   2422                                       SmallVectorImpl<SDValue> &InVals) const {
   2423   // TODO: add description of PPC stack frame format, or at least some docs.
   2424   //
   2425   MachineFunction &MF = DAG.getMachineFunction();
   2426   MachineFrameInfo *MFI = MF.getFrameInfo();
   2427   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2428 
   2429   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2430   bool isPPC64 = PtrVT == MVT::i64;
   2431   // Potential tail calls could cause overwriting of argument stack slots.
   2432   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   2433                        (CallConv == CallingConv::Fast));
   2434   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   2435 
   2436   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
   2437   // Area that is at least reserved in caller of this function.
   2438   unsigned MinReservedArea = ArgOffset;
   2439 
   2440   static const uint16_t GPR_32[] = {           // 32-bit registers.
   2441     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   2442     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   2443   };
   2444   static const uint16_t GPR_64[] = {           // 64-bit registers.
   2445     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   2446     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   2447   };
   2448 
   2449   static const uint16_t *FPR = GetFPR();
   2450 
   2451   static const uint16_t VR[] = {
   2452     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   2453     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   2454   };
   2455 
   2456   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
   2457   const unsigned Num_FPR_Regs = 13;
   2458   const unsigned Num_VR_Regs  = array_lengthof( VR);
   2459 
   2460   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   2461 
   2462   const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
   2463 
   2464   // In 32-bit non-varargs functions, the stack space for vectors is after the
   2465   // stack space for non-vectors.  We do not use this space unless we have
   2466   // too many vectors to fit in registers, something that only occurs in
   2467   // constructed examples:), but we have to walk the arglist to figure
   2468   // that out...for the pathological case, compute VecArgOffset as the
   2469   // start of the vector parameter area.  Computing VecArgOffset is the
   2470   // entire point of the following loop.
   2471   unsigned VecArgOffset = ArgOffset;
   2472   if (!isVarArg && !isPPC64) {
   2473     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
   2474          ++ArgNo) {
   2475       EVT ObjectVT = Ins[ArgNo].VT;
   2476       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   2477 
   2478       if (Flags.isByVal()) {
   2479         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
   2480         unsigned ObjSize = Flags.getByValSize();
   2481         unsigned ArgSize =
   2482                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2483         VecArgOffset += ArgSize;
   2484         continue;
   2485       }
   2486 
   2487       switch(ObjectVT.getSimpleVT().SimpleTy) {
   2488       default: llvm_unreachable("Unhandled argument type!");
   2489       case MVT::i32:
   2490       case MVT::f32:
   2491         VecArgOffset += 4;
   2492         break;
   2493       case MVT::i64:  // PPC64
   2494       case MVT::f64:
   2495         // FIXME: We are guaranteed to be !isPPC64 at this point.
   2496         // Does MVT::i64 apply?
   2497         VecArgOffset += 8;
   2498         break;
   2499       case MVT::v4f32:
   2500       case MVT::v4i32:
   2501       case MVT::v8i16:
   2502       case MVT::v16i8:
   2503         // Nothing to do, we're only looking at Nonvector args here.
   2504         break;
   2505       }
   2506     }
   2507   }
   2508   // We've found where the vector parameter area in memory is.  Skip the
   2509   // first 12 parameters; these don't use that memory.
   2510   VecArgOffset = ((VecArgOffset+15)/16)*16;
   2511   VecArgOffset += 12*16;
   2512 
   2513   // Add DAG nodes to load the arguments or copy them out of registers.  On
   2514   // entry to a function on PPC, the arguments start after the linkage area,
   2515   // although the first ones are often in registers.
   2516 
   2517   SmallVector<SDValue, 8> MemOps;
   2518   unsigned nAltivecParamsAtEnd = 0;
   2519   // FIXME: FuncArg and Ins[ArgNo] must reference the same argument.
   2520   // When passing anonymous aggregates, this is currently not true.
   2521   // See LowerFormalArguments_64SVR4 for a fix.
   2522   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
   2523   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) {
   2524     SDValue ArgVal;
   2525     bool needsLoad = false;
   2526     EVT ObjectVT = Ins[ArgNo].VT;
   2527     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
   2528     unsigned ArgSize = ObjSize;
   2529     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   2530 
   2531     unsigned CurArgOffset = ArgOffset;
   2532 
   2533     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
   2534     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
   2535         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
   2536       if (isVarArg || isPPC64) {
   2537         MinReservedArea = ((MinReservedArea+15)/16)*16;
   2538         MinReservedArea += CalculateStackSlotSize(ObjectVT,
   2539                                                   Flags,
   2540                                                   PtrByteSize);
   2541       } else  nAltivecParamsAtEnd++;
   2542     } else
   2543       // Calculate min reserved area.
   2544       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
   2545                                                 Flags,
   2546                                                 PtrByteSize);
   2547 
   2548     // FIXME the codegen can be much improved in some cases.
   2549     // We do not have to keep everything in memory.
   2550     if (Flags.isByVal()) {
   2551       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   2552       ObjSize = Flags.getByValSize();
   2553       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2554       // Objects of size 1 and 2 are right justified, everything else is
   2555       // left justified.  This means the memory address is adjusted forwards.
   2556       if (ObjSize==1 || ObjSize==2) {
   2557         CurArgOffset = CurArgOffset + (4 - ObjSize);
   2558       }
   2559       // The value of the object is its address.
   2560       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
   2561       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2562       InVals.push_back(FIN);
   2563       if (ObjSize==1 || ObjSize==2) {
   2564         if (GPR_idx != Num_GPR_Regs) {
   2565           unsigned VReg;
   2566           if (isPPC64)
   2567             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2568           else
   2569             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2570           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2571           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
   2572           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
   2573                                             MachinePointerInfo(FuncArg,
   2574                                               CurArgOffset),
   2575                                             ObjType, false, false, 0);
   2576           MemOps.push_back(Store);
   2577           ++GPR_idx;
   2578         }
   2579 
   2580         ArgOffset += PtrByteSize;
   2581 
   2582         continue;
   2583       }
   2584       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   2585         // Store whatever pieces of the object are in registers
   2586         // to memory.  ArgOffset will be the address of the beginning
   2587         // of the object.
   2588         if (GPR_idx != Num_GPR_Regs) {
   2589           unsigned VReg;
   2590           if (isPPC64)
   2591             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2592           else
   2593             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2594           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   2595           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2596           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2597           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2598                                        MachinePointerInfo(FuncArg, ArgOffset),
   2599                                        false, false, 0);
   2600           MemOps.push_back(Store);
   2601           ++GPR_idx;
   2602           ArgOffset += PtrByteSize;
   2603         } else {
   2604           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
   2605           break;
   2606         }
   2607       }
   2608       continue;
   2609     }
   2610 
   2611     switch (ObjectVT.getSimpleVT().SimpleTy) {
   2612     default: llvm_unreachable("Unhandled argument type!");
   2613     case MVT::i32:
   2614       if (!isPPC64) {
   2615         if (GPR_idx != Num_GPR_Regs) {
   2616           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2617           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   2618           ++GPR_idx;
   2619         } else {
   2620           needsLoad = true;
   2621           ArgSize = PtrByteSize;
   2622         }
   2623         // All int arguments reserve stack space in the Darwin ABI.
   2624         ArgOffset += PtrByteSize;
   2625         break;
   2626       }
   2627       // FALLTHROUGH
   2628     case MVT::i64:  // PPC64
   2629       if (GPR_idx != Num_GPR_Regs) {
   2630         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2631         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   2632 
   2633         if (ObjectVT == MVT::i32)
   2634           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   2635           // value to MVT::i64 and then truncate to the correct register size.
   2636           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   2637 
   2638         ++GPR_idx;
   2639       } else {
   2640         needsLoad = true;
   2641         ArgSize = PtrByteSize;
   2642       }
   2643       // All int arguments reserve stack space in the Darwin ABI.
   2644       ArgOffset += 8;
   2645       break;
   2646 
   2647     case MVT::f32:
   2648     case MVT::f64:
   2649       // Every 4 bytes of argument space consumes one of the GPRs available for
   2650       // argument passing.
   2651       if (GPR_idx != Num_GPR_Regs) {
   2652         ++GPR_idx;
   2653         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
   2654           ++GPR_idx;
   2655       }
   2656       if (FPR_idx != Num_FPR_Regs) {
   2657         unsigned VReg;
   2658 
   2659         if (ObjectVT == MVT::f32)
   2660           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
   2661         else
   2662           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
   2663 
   2664         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2665         ++FPR_idx;
   2666       } else {
   2667         needsLoad = true;
   2668       }
   2669 
   2670       // All FP arguments reserve stack space in the Darwin ABI.
   2671       ArgOffset += isPPC64 ? 8 : ObjSize;
   2672       break;
   2673     case MVT::v4f32:
   2674     case MVT::v4i32:
   2675     case MVT::v8i16:
   2676     case MVT::v16i8:
   2677       // Note that vector arguments in registers don't reserve stack space,
   2678       // except in varargs functions.
   2679       if (VR_idx != Num_VR_Regs) {
   2680         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   2681         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2682         if (isVarArg) {
   2683           while ((ArgOffset % 16) != 0) {
   2684             ArgOffset += PtrByteSize;
   2685             if (GPR_idx != Num_GPR_Regs)
   2686               GPR_idx++;
   2687           }
   2688           ArgOffset += 16;
   2689           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
   2690         }
   2691         ++VR_idx;
   2692       } else {
   2693         if (!isVarArg && !isPPC64) {
   2694           // Vectors go after all the nonvectors.
   2695           CurArgOffset = VecArgOffset;
   2696           VecArgOffset += 16;
   2697         } else {
   2698           // Vectors are aligned.
   2699           ArgOffset = ((ArgOffset+15)/16)*16;
   2700           CurArgOffset = ArgOffset;
   2701           ArgOffset += 16;
   2702         }
   2703         needsLoad = true;
   2704       }
   2705       break;
   2706     }
   2707 
   2708     // We need to load the argument to a virtual register if we determined above
   2709     // that we ran out of physical registers of the appropriate type.
   2710     if (needsLoad) {
   2711       int FI = MFI->CreateFixedObject(ObjSize,
   2712                                       CurArgOffset + (ArgSize - ObjSize),
   2713                                       isImmutable);
   2714       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2715       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   2716                            false, false, false, 0);
   2717     }
   2718 
   2719     InVals.push_back(ArgVal);
   2720   }
   2721 
   2722   // Set the size that is at least reserved in caller of this function.  Tail
   2723   // call optimized functions' reserved stack space needs to be aligned so that
   2724   // taking the difference between two stack areas will result in an aligned
   2725   // stack.
   2726   setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
   2727 
   2728   // If the function takes variable number of arguments, make a frame index for
   2729   // the start of the first vararg value... for expansion of llvm.va_start.
   2730   if (isVarArg) {
   2731     int Depth = ArgOffset;
   2732 
   2733     FuncInfo->setVarArgsFrameIndex(
   2734       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   2735                              Depth, true));
   2736     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2737 
   2738     // If this function is vararg, store any remaining integer argument regs
   2739     // to their spots on the stack so that they may be loaded by deferencing the
   2740     // result of va_next.
   2741     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
   2742       unsigned VReg;
   2743 
   2744       if (isPPC64)
   2745         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2746       else
   2747         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2748 
   2749       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2750       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2751                                    MachinePointerInfo(), false, false, 0);
   2752       MemOps.push_back(Store);
   2753       // Increment the address by four for the next argument to store
   2754       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
   2755       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2756     }
   2757   }
   2758 
   2759   if (!MemOps.empty())
   2760     Chain = DAG.getNode(ISD::TokenFactor, dl,
   2761                         MVT::Other, &MemOps[0], MemOps.size());
   2762 
   2763   return Chain;
   2764 }
   2765 
   2766 /// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
   2767 /// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
   2768 static unsigned
   2769 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
   2770                                      bool isPPC64,
   2771                                      bool isVarArg,
   2772                                      unsigned CC,
   2773                                      const SmallVectorImpl<ISD::OutputArg>
   2774                                        &Outs,
   2775                                      const SmallVectorImpl<SDValue> &OutVals,
   2776                                      unsigned &nAltivecParamsAtEnd) {
   2777   // Count how many bytes are to be pushed on the stack, including the linkage
   2778   // area, and parameter passing area.  We start with 24/48 bytes, which is
   2779   // prereserved space for [SP][CR][LR][3 x unused].
   2780   unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
   2781   unsigned NumOps = Outs.size();
   2782   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   2783 
   2784   // Add up all the space actually used.
   2785   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
   2786   // they all go in registers, but we must reserve stack space for them for
   2787   // possible use by the caller.  In varargs or 64-bit calls, parameters are
   2788   // assigned stack space in order, with padding so Altivec parameters are
   2789   // 16-byte aligned.
   2790   nAltivecParamsAtEnd = 0;
   2791   for (unsigned i = 0; i != NumOps; ++i) {
   2792     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2793     EVT ArgVT = Outs[i].VT;
   2794     // Varargs Altivec parameters are padded to a 16 byte boundary.
   2795     if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
   2796         ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
   2797       if (!isVarArg && !isPPC64) {
   2798         // Non-varargs Altivec parameters go after all the non-Altivec
   2799         // parameters; handle those later so we know how much padding we need.
   2800         nAltivecParamsAtEnd++;
   2801         continue;
   2802       }
   2803       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
   2804       NumBytes = ((NumBytes+15)/16)*16;
   2805     }
   2806     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   2807   }
   2808 
   2809    // Allow for Altivec parameters at the end, if needed.
   2810   if (nAltivecParamsAtEnd) {
   2811     NumBytes = ((NumBytes+15)/16)*16;
   2812     NumBytes += 16*nAltivecParamsAtEnd;
   2813   }
   2814 
   2815   // The prolog code of the callee may store up to 8 GPR argument registers to
   2816   // the stack, allowing va_start to index over them in memory if its varargs.
   2817   // Because we cannot tell if this is needed on the caller side, we have to
   2818   // conservatively assume that it is needed.  As such, make sure we have at
   2819   // least enough stack space for the caller to store the 8 GPRs.
   2820   NumBytes = std::max(NumBytes,
   2821                       PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
   2822 
   2823   // Tail call needs the stack to be aligned.
   2824   if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
   2825     unsigned TargetAlign = DAG.getMachineFunction().getTarget().
   2826       getFrameLowering()->getStackAlignment();
   2827     unsigned AlignMask = TargetAlign-1;
   2828     NumBytes = (NumBytes + AlignMask) & ~AlignMask;
   2829   }
   2830 
   2831   return NumBytes;
   2832 }
   2833 
   2834 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
   2835 /// adjusted to accommodate the arguments for the tailcall.
   2836 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
   2837                                    unsigned ParamSize) {
   2838 
   2839   if (!isTailCall) return 0;
   2840 
   2841   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
   2842   unsigned CallerMinReservedArea = FI->getMinReservedArea();
   2843   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
   2844   // Remember only if the new adjustement is bigger.
   2845   if (SPDiff < FI->getTailCallSPDelta())
   2846     FI->setTailCallSPDelta(SPDiff);
   2847 
   2848   return SPDiff;
   2849 }
   2850 
   2851 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   2852 /// for tail call optimization. Targets which want to do tail call
   2853 /// optimization should implement this function.
   2854 bool
   2855 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   2856                                                      CallingConv::ID CalleeCC,
   2857                                                      bool isVarArg,
   2858                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   2859                                                      SelectionDAG& DAG) const {
   2860   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
   2861     return false;
   2862 
   2863   // Variable argument functions are not supported.
   2864   if (isVarArg)
   2865     return false;
   2866 
   2867   MachineFunction &MF = DAG.getMachineFunction();
   2868   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
   2869   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
   2870     // Functions containing by val parameters are not supported.
   2871     for (unsigned i = 0; i != Ins.size(); i++) {
   2872        ISD::ArgFlagsTy Flags = Ins[i].Flags;
   2873        if (Flags.isByVal()) return false;
   2874     }
   2875 
   2876     // Non PIC/GOT  tail calls are supported.
   2877     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
   2878       return true;
   2879 
   2880     // At the moment we can only do local tail calls (in same module, hidden
   2881     // or protected) if we are generating PIC.
   2882     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   2883       return G->getGlobal()->hasHiddenVisibility()
   2884           || G->getGlobal()->hasProtectedVisibility();
   2885   }
   2886 
   2887   return false;
   2888 }
   2889 
   2890 /// isCallCompatibleAddress - Return the immediate to use if the specified
   2891 /// 32-bit value is representable in the immediate field of a BxA instruction.
   2892 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
   2893   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   2894   if (!C) return 0;
   2895 
   2896   int Addr = C->getZExtValue();
   2897   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
   2898       SignExtend32<26>(Addr) != Addr)
   2899     return 0;  // Top 6 bits have to be sext of immediate.
   2900 
   2901   return DAG.getConstant((int)C->getZExtValue() >> 2,
   2902                          DAG.getTargetLoweringInfo().getPointerTy()).getNode();
   2903 }
   2904 
   2905 namespace {
   2906 
   2907 struct TailCallArgumentInfo {
   2908   SDValue Arg;
   2909   SDValue FrameIdxOp;
   2910   int       FrameIdx;
   2911 
   2912   TailCallArgumentInfo() : FrameIdx(0) {}
   2913 };
   2914 
   2915 }
   2916 
   2917 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
   2918 static void
   2919 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
   2920                                            SDValue Chain,
   2921                    const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
   2922                    SmallVector<SDValue, 8> &MemOpChains,
   2923                    DebugLoc dl) {
   2924   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
   2925     SDValue Arg = TailCallArgs[i].Arg;
   2926     SDValue FIN = TailCallArgs[i].FrameIdxOp;
   2927     int FI = TailCallArgs[i].FrameIdx;
   2928     // Store relative to framepointer.
   2929     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
   2930                                        MachinePointerInfo::getFixedStack(FI),
   2931                                        false, false, 0));
   2932   }
   2933 }
   2934 
   2935 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
   2936 /// the appropriate stack slot for the tail call optimized function call.
   2937 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
   2938                                                MachineFunction &MF,
   2939                                                SDValue Chain,
   2940                                                SDValue OldRetAddr,
   2941                                                SDValue OldFP,
   2942                                                int SPDiff,
   2943                                                bool isPPC64,
   2944                                                bool isDarwinABI,
   2945                                                DebugLoc dl) {
   2946   if (SPDiff) {
   2947     // Calculate the new stack slot for the return address.
   2948     int SlotSize = isPPC64 ? 8 : 4;
   2949     int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
   2950                                                                    isDarwinABI);
   2951     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
   2952                                                           NewRetAddrLoc, true);
   2953     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   2954     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
   2955     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
   2956                          MachinePointerInfo::getFixedStack(NewRetAddr),
   2957                          false, false, 0);
   2958 
   2959     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
   2960     // slot as the FP is never overwritten.
   2961     if (isDarwinABI) {
   2962       int NewFPLoc =
   2963         SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
   2964       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
   2965                                                           true);
   2966       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
   2967       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
   2968                            MachinePointerInfo::getFixedStack(NewFPIdx),
   2969                            false, false, 0);
   2970     }
   2971   }
   2972   return Chain;
   2973 }
   2974 
   2975 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
   2976 /// the position of the argument.
   2977 static void
   2978 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
   2979                          SDValue Arg, int SPDiff, unsigned ArgOffset,
   2980                       SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
   2981   int Offset = ArgOffset + SPDiff;
   2982   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
   2983   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
   2984   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   2985   SDValue FIN = DAG.getFrameIndex(FI, VT);
   2986   TailCallArgumentInfo Info;
   2987   Info.Arg = Arg;
   2988   Info.FrameIdxOp = FIN;
   2989   Info.FrameIdx = FI;
   2990   TailCallArguments.push_back(Info);
   2991 }
   2992 
   2993 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
   2994 /// stack slot. Returns the chain as result and the loaded frame pointers in
   2995 /// LROpOut/FPOpout. Used when tail calling.
   2996 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
   2997                                                         int SPDiff,
   2998                                                         SDValue Chain,
   2999                                                         SDValue &LROpOut,
   3000                                                         SDValue &FPOpOut,
   3001                                                         bool isDarwinABI,
   3002                                                         DebugLoc dl) const {
   3003   if (SPDiff) {
   3004     // Load the LR and FP stack slot for later adjusting.
   3005     EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
   3006     LROpOut = getReturnAddrFrameIndex(DAG);
   3007     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
   3008                           false, false, false, 0);
   3009     Chain = SDValue(LROpOut.getNode(), 1);
   3010 
   3011     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
   3012     // slot as the FP is never overwritten.
   3013     if (isDarwinABI) {
   3014       FPOpOut = getFramePointerFrameIndex(DAG);
   3015       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
   3016                             false, false, false, 0);
   3017       Chain = SDValue(FPOpOut.getNode(), 1);
   3018     }
   3019   }
   3020   return Chain;
   3021 }
   3022 
   3023 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
   3024 /// by "Src" to address "Dst" of size "Size".  Alignment information is
   3025 /// specified by the specific parameter attribute. The copy will be passed as
   3026 /// a byval function parameter.
   3027 /// Sometimes what we are copying is the end of a larger object, the part that
   3028 /// does not fit in registers.
   3029 static SDValue
   3030 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
   3031                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
   3032                           DebugLoc dl) {
   3033   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
   3034   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
   3035                        false, false, MachinePointerInfo(0),
   3036                        MachinePointerInfo(0));
   3037 }
   3038 
   3039 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
   3040 /// tail calls.
   3041 static void
   3042 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
   3043                  SDValue Arg, SDValue PtrOff, int SPDiff,
   3044                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
   3045                  bool isVector, SmallVector<SDValue, 8> &MemOpChains,
   3046                  SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
   3047                  DebugLoc dl) {
   3048   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3049   if (!isTailCall) {
   3050     if (isVector) {
   3051       SDValue StackPtr;
   3052       if (isPPC64)
   3053         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   3054       else
   3055         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   3056       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   3057                            DAG.getConstant(ArgOffset, PtrVT));
   3058     }
   3059     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   3060                                        MachinePointerInfo(), false, false, 0));
   3061   // Calculate and remember argument location.
   3062   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
   3063                                   TailCallArguments);
   3064 }
   3065 
   3066 static
   3067 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
   3068                      DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
   3069                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
   3070                      SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
   3071   MachineFunction &MF = DAG.getMachineFunction();
   3072 
   3073   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
   3074   // might overwrite each other in case of tail call optimization.
   3075   SmallVector<SDValue, 8> MemOpChains2;
   3076   // Do not flag preceding copytoreg stuff together with the following stuff.
   3077   InFlag = SDValue();
   3078   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
   3079                                     MemOpChains2, dl);
   3080   if (!MemOpChains2.empty())
   3081     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3082                         &MemOpChains2[0], MemOpChains2.size());
   3083 
   3084   // Store the return address to the appropriate stack slot.
   3085   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
   3086                                         isPPC64, isDarwinABI, dl);
   3087 
   3088   // Emit callseq_end just before tailcall node.
   3089   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   3090                              DAG.getIntPtrConstant(0, true), InFlag);
   3091   InFlag = Chain.getValue(1);
   3092 }
   3093 
   3094 static
   3095 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
   3096                      SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
   3097                      SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
   3098                      SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
   3099                      const PPCSubtarget &PPCSubTarget) {
   3100 
   3101   bool isPPC64 = PPCSubTarget.isPPC64();
   3102   bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
   3103 
   3104   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3105   NodeTys.push_back(MVT::Other);   // Returns a chain
   3106   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
   3107 
   3108   unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
   3109 
   3110   bool needIndirectCall = true;
   3111   if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
   3112     // If this is an absolute destination address, use the munged value.
   3113     Callee = SDValue(Dest, 0);
   3114     needIndirectCall = false;
   3115   }
   3116 
   3117   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   3118     // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
   3119     // Use indirect calls for ALL functions calls in JIT mode, since the
   3120     // far-call stubs may be outside relocation limits for a BL instruction.
   3121     if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
   3122       unsigned OpFlags = 0;
   3123       if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
   3124           (PPCSubTarget.getTargetTriple().isMacOSX() &&
   3125            PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
   3126           (G->getGlobal()->isDeclaration() ||
   3127            G->getGlobal()->isWeakForLinker())) {
   3128         // PC-relative references to external symbols should go through $stub,
   3129         // unless we're building with the leopard linker or later, which
   3130         // automatically synthesizes these stubs.
   3131         OpFlags = PPCII::MO_DARWIN_STUB;
   3132       }
   3133 
   3134       // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
   3135       // every direct call is) turn it into a TargetGlobalAddress /
   3136       // TargetExternalSymbol node so that legalize doesn't hack it.
   3137       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
   3138                                           Callee.getValueType(),
   3139                                           0, OpFlags);
   3140       needIndirectCall = false;
   3141     }
   3142   }
   3143 
   3144   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   3145     unsigned char OpFlags = 0;
   3146 
   3147     if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
   3148         (PPCSubTarget.getTargetTriple().isMacOSX() &&
   3149          PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
   3150       // PC-relative references to external symbols should go through $stub,
   3151       // unless we're building with the leopard linker or later, which
   3152       // automatically synthesizes these stubs.
   3153       OpFlags = PPCII::MO_DARWIN_STUB;
   3154     }
   3155 
   3156     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
   3157                                          OpFlags);
   3158     needIndirectCall = false;
   3159   }
   3160 
   3161   if (needIndirectCall) {
   3162     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
   3163     // to do the call, we can't use PPCISD::CALL.
   3164     SDValue MTCTROps[] = {Chain, Callee, InFlag};
   3165 
   3166     if (isSVR4ABI && isPPC64) {
   3167       // Function pointers in the 64-bit SVR4 ABI do not point to the function
   3168       // entry point, but to the function descriptor (the function entry point
   3169       // address is part of the function descriptor though).
   3170       // The function descriptor is a three doubleword structure with the
   3171       // following fields: function entry point, TOC base address and
   3172       // environment pointer.
   3173       // Thus for a call through a function pointer, the following actions need
   3174       // to be performed:
   3175       //   1. Save the TOC of the caller in the TOC save area of its stack
   3176       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
   3177       //   2. Load the address of the function entry point from the function
   3178       //      descriptor.
   3179       //   3. Load the TOC of the callee from the function descriptor into r2.
   3180       //   4. Load the environment pointer from the function descriptor into
   3181       //      r11.
   3182       //   5. Branch to the function entry point address.
   3183       //   6. On return of the callee, the TOC of the caller needs to be
   3184       //      restored (this is done in FinishCall()).
   3185       //
   3186       // All those operations are flagged together to ensure that no other
   3187       // operations can be scheduled in between. E.g. without flagging the
   3188       // operations together, a TOC access in the caller could be scheduled
   3189       // between the load of the callee TOC and the branch to the callee, which
   3190       // results in the TOC access going through the TOC of the callee instead
   3191       // of going through the TOC of the caller, which leads to incorrect code.
   3192 
   3193       // Load the address of the function entry point from the function
   3194       // descriptor.
   3195       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
   3196       SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
   3197                                         InFlag.getNode() ? 3 : 2);
   3198       Chain = LoadFuncPtr.getValue(1);
   3199       InFlag = LoadFuncPtr.getValue(2);
   3200 
   3201       // Load environment pointer into r11.
   3202       // Offset of the environment pointer within the function descriptor.
   3203       SDValue PtrOff = DAG.getIntPtrConstant(16);
   3204 
   3205       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
   3206       SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
   3207                                        InFlag);
   3208       Chain = LoadEnvPtr.getValue(1);
   3209       InFlag = LoadEnvPtr.getValue(2);
   3210 
   3211       SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
   3212                                         InFlag);
   3213       Chain = EnvVal.getValue(0);
   3214       InFlag = EnvVal.getValue(1);
   3215 
   3216       // Load TOC of the callee into r2. We are using a target-specific load
   3217       // with r2 hard coded, because the result of a target-independent load
   3218       // would never go directly into r2, since r2 is a reserved register (which
   3219       // prevents the register allocator from allocating it), resulting in an
   3220       // additional register being allocated and an unnecessary move instruction
   3221       // being generated.
   3222       VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   3223       SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
   3224                                        Callee, InFlag);
   3225       Chain = LoadTOCPtr.getValue(0);
   3226       InFlag = LoadTOCPtr.getValue(1);
   3227 
   3228       MTCTROps[0] = Chain;
   3229       MTCTROps[1] = LoadFuncPtr;
   3230       MTCTROps[2] = InFlag;
   3231     }
   3232 
   3233     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
   3234                         2 + (InFlag.getNode() != 0));
   3235     InFlag = Chain.getValue(1);
   3236 
   3237     NodeTys.clear();
   3238     NodeTys.push_back(MVT::Other);
   3239     NodeTys.push_back(MVT::Glue);
   3240     Ops.push_back(Chain);
   3241     CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
   3242     Callee.setNode(0);
   3243     // Add CTR register as callee so a bctr can be emitted later.
   3244     if (isTailCall)
   3245       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
   3246   }
   3247 
   3248   // If this is a direct call, pass the chain and the callee.
   3249   if (Callee.getNode()) {
   3250     Ops.push_back(Chain);
   3251     Ops.push_back(Callee);
   3252   }
   3253   // If this is a tail call add stack pointer delta.
   3254   if (isTailCall)
   3255     Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
   3256 
   3257   // Add argument registers to the end of the list so that they are known live
   3258   // into the call.
   3259   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   3260     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   3261                                   RegsToPass[i].second.getValueType()));
   3262 
   3263   return CallOpc;
   3264 }
   3265 
   3266 static
   3267 bool isLocalCall(const SDValue &Callee)
   3268 {
   3269   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   3270     return !G->getGlobal()->isDeclaration() &&
   3271            !G->getGlobal()->isWeakForLinker();
   3272   return false;
   3273 }
   3274 
   3275 SDValue
   3276 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   3277                                    CallingConv::ID CallConv, bool isVarArg,
   3278                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   3279                                    DebugLoc dl, SelectionDAG &DAG,
   3280                                    SmallVectorImpl<SDValue> &InVals) const {
   3281 
   3282   SmallVector<CCValAssign, 16> RVLocs;
   3283   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   3284                     getTargetMachine(), RVLocs, *DAG.getContext());
   3285   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
   3286 
   3287   // Copy all of the result registers out of their specified physreg.
   3288   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   3289     CCValAssign &VA = RVLocs[i];
   3290     assert(VA.isRegLoc() && "Can only return in registers!");
   3291 
   3292     SDValue Val = DAG.getCopyFromReg(Chain, dl,
   3293                                      VA.getLocReg(), VA.getLocVT(), InFlag);
   3294     Chain = Val.getValue(1);
   3295     InFlag = Val.getValue(2);
   3296 
   3297     switch (VA.getLocInfo()) {
   3298     default: llvm_unreachable("Unknown loc info!");
   3299     case CCValAssign::Full: break;
   3300     case CCValAssign::AExt:
   3301       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   3302       break;
   3303     case CCValAssign::ZExt:
   3304       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
   3305                         DAG.getValueType(VA.getValVT()));
   3306       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   3307       break;
   3308     case CCValAssign::SExt:
   3309       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
   3310                         DAG.getValueType(VA.getValVT()));
   3311       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   3312       break;
   3313     }
   3314 
   3315     InVals.push_back(Val);
   3316   }
   3317 
   3318   return Chain;
   3319 }
   3320 
   3321 SDValue
   3322 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
   3323                               bool isTailCall, bool isVarArg,
   3324                               SelectionDAG &DAG,
   3325                               SmallVector<std::pair<unsigned, SDValue>, 8>
   3326                                 &RegsToPass,
   3327                               SDValue InFlag, SDValue Chain,
   3328                               SDValue &Callee,
   3329                               int SPDiff, unsigned NumBytes,
   3330                               const SmallVectorImpl<ISD::InputArg> &Ins,
   3331                               SmallVectorImpl<SDValue> &InVals) const {
   3332   std::vector<EVT> NodeTys;
   3333   SmallVector<SDValue, 8> Ops;
   3334   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
   3335                                  isTailCall, RegsToPass, Ops, NodeTys,
   3336                                  PPCSubTarget);
   3337 
   3338   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
   3339   if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
   3340     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
   3341 
   3342   // When performing tail call optimization the callee pops its arguments off
   3343   // the stack. Account for this here so these bytes can be pushed back on in
   3344   // PPCFrameLowering::eliminateCallFramePseudoInstr.
   3345   int BytesCalleePops =
   3346     (CallConv == CallingConv::Fast &&
   3347      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
   3348 
   3349   // Add a register mask operand representing the call-preserved registers.
   3350   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   3351   const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
   3352   assert(Mask && "Missing call preserved mask for calling convention");
   3353   Ops.push_back(DAG.getRegisterMask(Mask));
   3354 
   3355   if (InFlag.getNode())
   3356     Ops.push_back(InFlag);
   3357 
   3358   // Emit tail call.
   3359   if (isTailCall) {
   3360     assert(((Callee.getOpcode() == ISD::Register &&
   3361              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
   3362             Callee.getOpcode() == ISD::TargetExternalSymbol ||
   3363             Callee.getOpcode() == ISD::TargetGlobalAddress ||
   3364             isa<ConstantSDNode>(Callee)) &&
   3365     "Expecting an global address, external symbol, absolute value or register");
   3366 
   3367     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
   3368   }
   3369 
   3370   // Add a NOP immediately after the branch instruction when using the 64-bit
   3371   // SVR4 ABI. At link time, if caller and callee are in a different module and
   3372   // thus have a different TOC, the call will be replaced with a call to a stub
   3373   // function which saves the current TOC, loads the TOC of the callee and
   3374   // branches to the callee. The NOP will be replaced with a load instruction
   3375   // which restores the TOC of the caller from the TOC save slot of the current
   3376   // stack frame. If caller and callee belong to the same module (and have the
   3377   // same TOC), the NOP will remain unchanged.
   3378 
   3379   bool needsTOCRestore = false;
   3380   if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
   3381     if (CallOpc == PPCISD::BCTRL_SVR4) {
   3382       // This is a call through a function pointer.
   3383       // Restore the caller TOC from the save area into R2.
   3384       // See PrepareCall() for more information about calls through function
   3385       // pointers in the 64-bit SVR4 ABI.
   3386       // We are using a target-specific load with r2 hard coded, because the
   3387       // result of a target-independent load would never go directly into r2,
   3388       // since r2 is a reserved register (which prevents the register allocator
   3389       // from allocating it), resulting in an additional register being
   3390       // allocated and an unnecessary move instruction being generated.
   3391       needsTOCRestore = true;
   3392     } else if ((CallOpc == PPCISD::CALL_SVR4) && !isLocalCall(Callee)) {
   3393       // Otherwise insert NOP for non-local calls.
   3394       CallOpc = PPCISD::CALL_NOP_SVR4;
   3395     }
   3396   }
   3397 
   3398   Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
   3399   InFlag = Chain.getValue(1);
   3400 
   3401   if (needsTOCRestore) {
   3402     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   3403     Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
   3404     InFlag = Chain.getValue(1);
   3405   }
   3406 
   3407   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   3408                              DAG.getIntPtrConstant(BytesCalleePops, true),
   3409                              InFlag);
   3410   if (!Ins.empty())
   3411     InFlag = Chain.getValue(1);
   3412 
   3413   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
   3414                          Ins, dl, DAG, InVals);
   3415 }
   3416 
   3417 SDValue
   3418 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   3419                              SmallVectorImpl<SDValue> &InVals) const {
   3420   SelectionDAG &DAG                     = CLI.DAG;
   3421   DebugLoc &dl                          = CLI.DL;
   3422   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
   3423   SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
   3424   SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
   3425   SDValue Chain                         = CLI.Chain;
   3426   SDValue Callee                        = CLI.Callee;
   3427   bool &isTailCall                      = CLI.IsTailCall;
   3428   CallingConv::ID CallConv              = CLI.CallConv;
   3429   bool isVarArg                         = CLI.IsVarArg;
   3430 
   3431   if (isTailCall)
   3432     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
   3433                                                    Ins, DAG);
   3434 
   3435   if (PPCSubTarget.isSVR4ABI()) {
   3436     if (PPCSubTarget.isPPC64())
   3437       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
   3438                               isTailCall, Outs, OutVals, Ins,
   3439                               dl, DAG, InVals);
   3440     else
   3441       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
   3442                               isTailCall, Outs, OutVals, Ins,
   3443                               dl, DAG, InVals);
   3444   }
   3445 
   3446   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
   3447                           isTailCall, Outs, OutVals, Ins,
   3448                           dl, DAG, InVals);
   3449 }
   3450 
   3451 SDValue
   3452 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
   3453                                     CallingConv::ID CallConv, bool isVarArg,
   3454                                     bool isTailCall,
   3455                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   3456                                     const SmallVectorImpl<SDValue> &OutVals,
   3457                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   3458                                     DebugLoc dl, SelectionDAG &DAG,
   3459                                     SmallVectorImpl<SDValue> &InVals) const {
   3460   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
   3461   // of the 32-bit SVR4 ABI stack frame layout.
   3462 
   3463   assert((CallConv == CallingConv::C ||
   3464           CallConv == CallingConv::Fast) && "Unknown calling convention!");
   3465 
   3466   unsigned PtrByteSize = 4;
   3467 
   3468   MachineFunction &MF = DAG.getMachineFunction();
   3469 
   3470   // Mark this function as potentially containing a function that contains a
   3471   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   3472   // and restoring the callers stack pointer in this functions epilog. This is
   3473   // done because by tail calling the called function might overwrite the value
   3474   // in this function's (MF) stack pointer stack slot 0(SP).
   3475   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   3476       CallConv == CallingConv::Fast)
   3477     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   3478 
   3479   // Count how many bytes are to be pushed on the stack, including the linkage
   3480   // area, parameter list area and the part of the local variable space which
   3481   // contains copies of aggregates which are passed by value.
   3482 
   3483   // Assign locations to all of the outgoing arguments.
   3484   SmallVector<CCValAssign, 16> ArgLocs;
   3485   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   3486                  getTargetMachine(), ArgLocs, *DAG.getContext());
   3487 
   3488   // Reserve space for the linkage area on the stack.
   3489   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
   3490 
   3491   if (isVarArg) {
   3492     // Handle fixed and variable vector arguments differently.
   3493     // Fixed vector arguments go into registers as long as registers are
   3494     // available. Variable vector arguments always go into memory.
   3495     unsigned NumArgs = Outs.size();
   3496 
   3497     for (unsigned i = 0; i != NumArgs; ++i) {
   3498       MVT ArgVT = Outs[i].VT;
   3499       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
   3500       bool Result;
   3501 
   3502       if (Outs[i].IsFixed) {
   3503         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
   3504                                CCInfo);
   3505       } else {
   3506         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
   3507                                       ArgFlags, CCInfo);
   3508       }
   3509 
   3510       if (Result) {
   3511 #ifndef NDEBUG
   3512         errs() << "Call operand #" << i << " has unhandled type "
   3513              << EVT(ArgVT).getEVTString() << "\n";
   3514 #endif
   3515         llvm_unreachable(0);
   3516       }
   3517     }
   3518   } else {
   3519     // All arguments are treated the same.
   3520     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
   3521   }
   3522 
   3523   // Assign locations to all of the outgoing aggregate by value arguments.
   3524   SmallVector<CCValAssign, 16> ByValArgLocs;
   3525   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   3526                       getTargetMachine(), ByValArgLocs, *DAG.getContext());
   3527 
   3528   // Reserve stack space for the allocations in CCInfo.
   3529   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   3530 
   3531   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
   3532 
   3533   // Size of the linkage area, parameter list area and the part of the local
   3534   // space variable where copies of aggregates which are passed by value are
   3535   // stored.
   3536   unsigned NumBytes = CCByValInfo.getNextStackOffset();
   3537 
   3538   // Calculate by how many bytes the stack has to be adjusted in case of tail
   3539   // call optimization.
   3540   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   3541 
   3542   // Adjust the stack pointer for the new arguments...
   3543   // These operations are automatically eliminated by the prolog/epilog pass
   3544   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
   3545   SDValue CallSeqStart = Chain;
   3546 
   3547   // Load the return address and frame pointer so it can be moved somewhere else
   3548   // later.
   3549   SDValue LROp, FPOp;
   3550   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
   3551                                        dl);
   3552 
   3553   // Set up a copy of the stack pointer for use loading and storing any
   3554   // arguments that may not fit in the registers available for argument
   3555   // passing.
   3556   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   3557 
   3558   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   3559   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   3560   SmallVector<SDValue, 8> MemOpChains;
   3561 
   3562   bool seenFloatArg = false;
   3563   // Walk the register/memloc assignments, inserting copies/loads.
   3564   for (unsigned i = 0, j = 0, e = ArgLocs.size();
   3565        i != e;
   3566        ++i) {
   3567     CCValAssign &VA = ArgLocs[i];
   3568     SDValue Arg = OutVals[i];
   3569     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   3570 
   3571     if (Flags.isByVal()) {
   3572       // Argument is an aggregate which is passed by value, thus we need to
   3573       // create a copy of it in the local variable space of the current stack
   3574       // frame (which is the stack frame of the caller) and pass the address of
   3575       // this copy to the callee.
   3576       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
   3577       CCValAssign &ByValVA = ByValArgLocs[j++];
   3578       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
   3579 
   3580       // Memory reserved in the local variable space of the callers stack frame.
   3581       unsigned LocMemOffset = ByValVA.getLocMemOffset();
   3582 
   3583       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   3584       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   3585 
   3586       // Create a copy of the argument in the local area of the current
   3587       // stack frame.
   3588       SDValue MemcpyCall =
   3589         CreateCopyOfByValArgument(Arg, PtrOff,
   3590                                   CallSeqStart.getNode()->getOperand(0),
   3591                                   Flags, DAG, dl);
   3592 
   3593       // This must go outside the CALLSEQ_START..END.
   3594       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   3595                            CallSeqStart.getNode()->getOperand(1));
   3596       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   3597                              NewCallSeqStart.getNode());
   3598       Chain = CallSeqStart = NewCallSeqStart;
   3599 
   3600       // Pass the address of the aggregate copy on the stack either in a
   3601       // physical register or in the parameter list area of the current stack
   3602       // frame to the callee.
   3603       Arg = PtrOff;
   3604     }
   3605 
   3606     if (VA.isRegLoc()) {
   3607       seenFloatArg |= VA.getLocVT().isFloatingPoint();
   3608       // Put argument in a physical register.
   3609       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   3610     } else {
   3611       // Put argument in the parameter list area of the current stack frame.
   3612       assert(VA.isMemLoc());
   3613       unsigned LocMemOffset = VA.getLocMemOffset();
   3614 
   3615       if (!isTailCall) {
   3616         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   3617         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   3618 
   3619         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   3620                                            MachinePointerInfo(),
   3621                                            false, false, 0));
   3622       } else {
   3623         // Calculate and remember argument location.
   3624         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
   3625                                  TailCallArguments);
   3626       }
   3627     }
   3628   }
   3629 
   3630   if (!MemOpChains.empty())
   3631     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3632                         &MemOpChains[0], MemOpChains.size());
   3633 
   3634   // Build a sequence of copy-to-reg nodes chained together with token chain
   3635   // and flag operands which copy the outgoing args into the appropriate regs.
   3636   SDValue InFlag;
   3637   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   3638     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   3639                              RegsToPass[i].second, InFlag);
   3640     InFlag = Chain.getValue(1);
   3641   }
   3642 
   3643   // Set CR bit 6 to true if this is a vararg call with floating args passed in
   3644   // registers.
   3645   if (isVarArg) {
   3646     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   3647     SDValue Ops[] = { Chain, InFlag };
   3648 
   3649     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
   3650                         dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
   3651 
   3652     InFlag = Chain.getValue(1);
   3653   }
   3654 
   3655   if (isTailCall)
   3656     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
   3657                     false, TailCallArguments);
   3658 
   3659   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
   3660                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
   3661                     Ins, InVals);
   3662 }
   3663 
   3664 // Copy an argument into memory, being careful to do this outside the
   3665 // call sequence for the call to which the argument belongs.
   3666 SDValue
   3667 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
   3668                                               SDValue CallSeqStart,
   3669                                               ISD::ArgFlagsTy Flags,
   3670                                               SelectionDAG &DAG,
   3671                                               DebugLoc dl) const {
   3672   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
   3673                         CallSeqStart.getNode()->getOperand(0),
   3674                         Flags, DAG, dl);
   3675   // The MEMCPY must go outside the CALLSEQ_START..END.
   3676   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   3677                              CallSeqStart.getNode()->getOperand(1));
   3678   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   3679                          NewCallSeqStart.getNode());
   3680   return NewCallSeqStart;
   3681 }
   3682 
   3683 SDValue
   3684 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
   3685                                     CallingConv::ID CallConv, bool isVarArg,
   3686                                     bool isTailCall,
   3687                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   3688                                     const SmallVectorImpl<SDValue> &OutVals,
   3689                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   3690                                     DebugLoc dl, SelectionDAG &DAG,
   3691                                     SmallVectorImpl<SDValue> &InVals) const {
   3692 
   3693   unsigned NumOps = Outs.size();
   3694 
   3695   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3696   unsigned PtrByteSize = 8;
   3697 
   3698   MachineFunction &MF = DAG.getMachineFunction();
   3699 
   3700   // Mark this function as potentially containing a function that contains a
   3701   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   3702   // and restoring the callers stack pointer in this functions epilog. This is
   3703   // done because by tail calling the called function might overwrite the value
   3704   // in this function's (MF) stack pointer stack slot 0(SP).
   3705   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   3706       CallConv == CallingConv::Fast)
   3707     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   3708 
   3709   unsigned nAltivecParamsAtEnd = 0;
   3710 
   3711   // Count how many bytes are to be pushed on the stack, including the linkage
   3712   // area, and parameter passing area.  We start with at least 48 bytes, which
   3713   // is reserved space for [SP][CR][LR][3 x unused].
   3714   // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
   3715   // of this call.
   3716   unsigned NumBytes =
   3717     CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
   3718                                          Outs, OutVals, nAltivecParamsAtEnd);
   3719 
   3720   // Calculate by how many bytes the stack has to be adjusted in case of tail
   3721   // call optimization.
   3722   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   3723 
   3724   // To protect arguments on the stack from being clobbered in a tail call,
   3725   // force all the loads to happen before doing any other lowering.
   3726   if (isTailCall)
   3727     Chain = DAG.getStackArgumentTokenFactor(Chain);
   3728 
   3729   // Adjust the stack pointer for the new arguments...
   3730   // These operations are automatically eliminated by the prolog/epilog pass
   3731   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
   3732   SDValue CallSeqStart = Chain;
   3733 
   3734   // Load the return address and frame pointer so it can be move somewhere else
   3735   // later.
   3736   SDValue LROp, FPOp;
   3737   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
   3738                                        dl);
   3739 
   3740   // Set up a copy of the stack pointer for use loading and storing any
   3741   // arguments that may not fit in the registers available for argument
   3742   // passing.
   3743   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   3744 
   3745   // Figure out which arguments are going to go in registers, and which in
   3746   // memory.  Also, if this is a vararg function, floating point operations
   3747   // must be stored to our stack, and loaded into integer regs as well, if
   3748   // any integer regs are available for argument passing.
   3749   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
   3750   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   3751 
   3752   static const uint16_t GPR[] = {
   3753     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   3754     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   3755   };
   3756   static const uint16_t *FPR = GetFPR();
   3757 
   3758   static const uint16_t VR[] = {
   3759     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   3760     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   3761   };
   3762   const unsigned NumGPRs = array_lengthof(GPR);
   3763   const unsigned NumFPRs = 13;
   3764   const unsigned NumVRs  = array_lengthof(VR);
   3765 
   3766   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   3767   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   3768 
   3769   SmallVector<SDValue, 8> MemOpChains;
   3770   for (unsigned i = 0; i != NumOps; ++i) {
   3771     SDValue Arg = OutVals[i];
   3772     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   3773 
   3774     // PtrOff will be used to store the current argument to the stack if a
   3775     // register cannot be found for it.
   3776     SDValue PtrOff;
   3777 
   3778     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
   3779 
   3780     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   3781 
   3782     // Promote integers to 64-bit values.
   3783     if (Arg.getValueType() == MVT::i32) {
   3784       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   3785       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   3786       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   3787     }
   3788 
   3789     // FIXME memcpy is used way more than necessary.  Correctness first.
   3790     // Note: "by value" is code for passing a structure by value, not
   3791     // basic types.
   3792     if (Flags.isByVal()) {
   3793       // Note: Size includes alignment padding, so
   3794       //   struct x { short a; char b; }
   3795       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
   3796       // These are the proper values we need for right-justifying the
   3797       // aggregate in a parameter register.
   3798       unsigned Size = Flags.getByValSize();
   3799 
   3800       // An empty aggregate parameter takes up no storage and no
   3801       // registers.
   3802       if (Size == 0)
   3803         continue;
   3804 
   3805       // All aggregates smaller than 8 bytes must be passed right-justified.
   3806       if (Size==1 || Size==2 || Size==4) {
   3807         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
   3808         if (GPR_idx != NumGPRs) {
   3809           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   3810                                         MachinePointerInfo(), VT,
   3811                                         false, false, 0);
   3812           MemOpChains.push_back(Load.getValue(1));
   3813           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3814 
   3815           ArgOffset += PtrByteSize;
   3816           continue;
   3817         }
   3818       }
   3819 
   3820       if (GPR_idx == NumGPRs && Size < 8) {
   3821         SDValue Const = DAG.getConstant(PtrByteSize - Size,
   3822                                         PtrOff.getValueType());
   3823         SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   3824         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   3825                                                           CallSeqStart,
   3826                                                           Flags, DAG, dl);
   3827         ArgOffset += PtrByteSize;
   3828         continue;
   3829       }
   3830       // Copy entire object into memory.  There are cases where gcc-generated
   3831       // code assumes it is there, even if it could be put entirely into
   3832       // registers.  (This is not what the doc says.)
   3833 
   3834       // FIXME: The above statement is likely due to a misunderstanding of the
   3835       // documents.  All arguments must be copied into the parameter area BY
   3836       // THE CALLEE in the event that the callee takes the address of any
   3837       // formal argument.  That has not yet been implemented.  However, it is
   3838       // reasonable to use the stack area as a staging area for the register
   3839       // load.
   3840 
   3841       // Skip this for small aggregates, as we will use the same slot for a
   3842       // right-justified copy, below.
   3843       if (Size >= 8)
   3844         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   3845                                                           CallSeqStart,
   3846                                                           Flags, DAG, dl);
   3847 
   3848       // When a register is available, pass a small aggregate right-justified.
   3849       if (Size < 8 && GPR_idx != NumGPRs) {
   3850         // The easiest way to get this right-justified in a register
   3851         // is to copy the structure into the rightmost portion of a
   3852         // local variable slot, then load the whole slot into the
   3853         // register.
   3854         // FIXME: The memcpy seems to produce pretty awful code for
   3855         // small aggregates, particularly for packed ones.
   3856         // FIXME: It would be preferable to use the slot in the
   3857         // parameter save area instead of a new local variable.
   3858         SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
   3859         SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   3860         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   3861                                                           CallSeqStart,
   3862                                                           Flags, DAG, dl);
   3863 
   3864         // Load the slot into the register.
   3865         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
   3866                                    MachinePointerInfo(),
   3867                                    false, false, false, 0);
   3868         MemOpChains.push_back(Load.getValue(1));
   3869         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3870 
   3871         // Done with this argument.
   3872         ArgOffset += PtrByteSize;
   3873         continue;
   3874       }
   3875 
   3876       // For aggregates larger than PtrByteSize, copy the pieces of the
   3877       // object that fit into registers from the parameter save area.
   3878       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   3879         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
   3880         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   3881         if (GPR_idx != NumGPRs) {
   3882           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   3883                                      MachinePointerInfo(),
   3884                                      false, false, false, 0);
   3885           MemOpChains.push_back(Load.getValue(1));
   3886           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3887           ArgOffset += PtrByteSize;
   3888         } else {
   3889           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   3890           break;
   3891         }
   3892       }
   3893       continue;
   3894     }
   3895 
   3896     switch (Arg.getValueType().getSimpleVT().SimpleTy) {
   3897     default: llvm_unreachable("Unexpected ValueType for argument!");
   3898     case MVT::i32:
   3899     case MVT::i64:
   3900       if (GPR_idx != NumGPRs) {
   3901         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   3902       } else {
   3903         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   3904                          true, isTailCall, false, MemOpChains,
   3905                          TailCallArguments, dl);
   3906       }
   3907       ArgOffset += PtrByteSize;
   3908       break;
   3909     case MVT::f32:
   3910     case MVT::f64:
   3911       if (FPR_idx != NumFPRs) {
   3912         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   3913 
   3914         if (isVarArg) {
   3915           // A single float or an aggregate containing only a single float
   3916           // must be passed right-justified in the stack doubleword, and
   3917           // in the GPR, if one is available.
   3918           SDValue StoreOff;
   3919           if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) {
   3920             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
   3921             StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   3922           } else
   3923             StoreOff = PtrOff;
   3924 
   3925           SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
   3926                                        MachinePointerInfo(), false, false, 0);
   3927           MemOpChains.push_back(Store);
   3928 
   3929           // Float varargs are always shadowed in available integer registers
   3930           if (GPR_idx != NumGPRs) {
   3931             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   3932                                        MachinePointerInfo(), false, false,
   3933                                        false, 0);
   3934             MemOpChains.push_back(Load.getValue(1));
   3935             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3936           }
   3937         } else if (GPR_idx != NumGPRs)
   3938           // If we have any FPRs remaining, we may also have GPRs remaining.
   3939           ++GPR_idx;
   3940       } else {
   3941         // Single-precision floating-point values are mapped to the
   3942         // second (rightmost) word of the stack doubleword.
   3943         if (Arg.getValueType() == MVT::f32) {
   3944           SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
   3945           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   3946         }
   3947 
   3948         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   3949                          true, isTailCall, false, MemOpChains,
   3950                          TailCallArguments, dl);
   3951       }
   3952       ArgOffset += 8;
   3953       break;
   3954     case MVT::v4f32:
   3955     case MVT::v4i32:
   3956     case MVT::v8i16:
   3957     case MVT::v16i8:
   3958       if (isVarArg) {
   3959         // These go aligned on the stack, or in the corresponding R registers
   3960         // when within range.  The Darwin PPC ABI doc claims they also go in
   3961         // V registers; in fact gcc does this only for arguments that are
   3962         // prototyped, not for those that match the ...  We do it for all
   3963         // arguments, seems to work.
   3964         while (ArgOffset % 16 !=0) {
   3965           ArgOffset += PtrByteSize;
   3966           if (GPR_idx != NumGPRs)
   3967             GPR_idx++;
   3968         }
   3969         // We could elide this store in the case where the object fits
   3970         // entirely in R registers.  Maybe later.
   3971         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   3972                             DAG.getConstant(ArgOffset, PtrVT));
   3973         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   3974                                      MachinePointerInfo(), false, false, 0);
   3975         MemOpChains.push_back(Store);
   3976         if (VR_idx != NumVRs) {
   3977           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   3978                                      MachinePointerInfo(),
   3979                                      false, false, false, 0);
   3980           MemOpChains.push_back(Load.getValue(1));
   3981           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
   3982         }
   3983         ArgOffset += 16;
   3984         for (unsigned i=0; i<16; i+=PtrByteSize) {
   3985           if (GPR_idx == NumGPRs)
   3986             break;
   3987           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   3988                                   DAG.getConstant(i, PtrVT));
   3989           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   3990                                      false, false, false, 0);
   3991           MemOpChains.push_back(Load.getValue(1));
   3992           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3993         }
   3994         break;
   3995       }
   3996 
   3997       // Non-varargs Altivec params generally go in registers, but have
   3998       // stack space allocated at the end.
   3999       if (VR_idx != NumVRs) {
   4000         // Doesn't have GPR space allocated.
   4001         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
   4002       } else {
   4003         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4004                          true, isTailCall, true, MemOpChains,
   4005                          TailCallArguments, dl);
   4006         ArgOffset += 16;
   4007       }
   4008       break;
   4009     }
   4010   }
   4011 
   4012   if (!MemOpChains.empty())
   4013     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   4014                         &MemOpChains[0], MemOpChains.size());
   4015 
   4016   // Check if this is an indirect call (MTCTR/BCTRL).
   4017   // See PrepareCall() for more information about calls through function
   4018   // pointers in the 64-bit SVR4 ABI.
   4019   if (!isTailCall &&
   4020       !dyn_cast<GlobalAddressSDNode>(Callee) &&
   4021       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
   4022       !isBLACompatibleAddress(Callee, DAG)) {
   4023     // Load r2 into a virtual register and store it to the TOC save area.
   4024     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
   4025     // TOC save area offset.
   4026     SDValue PtrOff = DAG.getIntPtrConstant(40);
   4027     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   4028     Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
   4029                          false, false, 0);
   4030     // R12 must contain the address of an indirect callee.  This does not
   4031     // mean the MTCTR instruction must use R12; it's easier to model this
   4032     // as an extra parameter, so do that.
   4033     RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
   4034   }
   4035 
   4036   // Build a sequence of copy-to-reg nodes chained together with token chain
   4037   // and flag operands which copy the outgoing args into the appropriate regs.
   4038   SDValue InFlag;
   4039   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   4040     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   4041                              RegsToPass[i].second, InFlag);
   4042     InFlag = Chain.getValue(1);
   4043   }
   4044 
   4045   if (isTailCall)
   4046     PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
   4047                     FPOp, true, TailCallArguments);
   4048 
   4049   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
   4050                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
   4051                     Ins, InVals);
   4052 }
   4053 
   4054 SDValue
   4055 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
   4056                                     CallingConv::ID CallConv, bool isVarArg,
   4057                                     bool isTailCall,
   4058                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   4059                                     const SmallVectorImpl<SDValue> &OutVals,
   4060                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   4061                                     DebugLoc dl, SelectionDAG &DAG,
   4062                                     SmallVectorImpl<SDValue> &InVals) const {
   4063 
   4064   unsigned NumOps = Outs.size();
   4065 
   4066   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4067   bool isPPC64 = PtrVT == MVT::i64;
   4068   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   4069 
   4070   MachineFunction &MF = DAG.getMachineFunction();
   4071 
   4072   // Mark this function as potentially containing a function that contains a
   4073   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   4074   // and restoring the callers stack pointer in this functions epilog. This is
   4075   // done because by tail calling the called function might overwrite the value
   4076   // in this function's (MF) stack pointer stack slot 0(SP).
   4077   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   4078       CallConv == CallingConv::Fast)
   4079     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   4080 
   4081   unsigned nAltivecParamsAtEnd = 0;
   4082 
   4083   // Count how many bytes are to be pushed on the stack, including the linkage
   4084   // area, and parameter passing area.  We start with 24/48 bytes, which is
   4085   // prereserved space for [SP][CR][LR][3 x unused].
   4086   unsigned NumBytes =
   4087     CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
   4088                                          Outs, OutVals,
   4089                                          nAltivecParamsAtEnd);
   4090 
   4091   // Calculate by how many bytes the stack has to be adjusted in case of tail
   4092   // call optimization.
   4093   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   4094 
   4095   // To protect arguments on the stack from being clobbered in a tail call,
   4096   // force all the loads to happen before doing any other lowering.
   4097   if (isTailCall)
   4098     Chain = DAG.getStackArgumentTokenFactor(Chain);
   4099 
   4100   // Adjust the stack pointer for the new arguments...
   4101   // These operations are automatically eliminated by the prolog/epilog pass
   4102   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
   4103   SDValue CallSeqStart = Chain;
   4104 
   4105   // Load the return address and frame pointer so it can be move somewhere else
   4106   // later.
   4107   SDValue LROp, FPOp;
   4108   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
   4109                                        dl);
   4110 
   4111   // Set up a copy of the stack pointer for use loading and storing any
   4112   // arguments that may not fit in the registers available for argument
   4113   // passing.
   4114   SDValue StackPtr;
   4115   if (isPPC64)
   4116     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   4117   else
   4118     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   4119 
   4120   // Figure out which arguments are going to go in registers, and which in
   4121   // memory.  Also, if this is a vararg function, floating point operations
   4122   // must be stored to our stack, and loaded into integer regs as well, if
   4123   // any integer regs are available for argument passing.
   4124   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
   4125   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   4126 
   4127   static const uint16_t GPR_32[] = {           // 32-bit registers.
   4128     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   4129     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   4130   };
   4131   static const uint16_t GPR_64[] = {           // 64-bit registers.
   4132     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   4133     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   4134   };
   4135   static const uint16_t *FPR = GetFPR();
   4136 
   4137   static const uint16_t VR[] = {
   4138     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   4139     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   4140   };
   4141   const unsigned NumGPRs = array_lengthof(GPR_32);
   4142   const unsigned NumFPRs = 13;
   4143   const unsigned NumVRs  = array_lengthof(VR);
   4144 
   4145   const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
   4146 
   4147   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   4148   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   4149 
   4150   SmallVector<SDValue, 8> MemOpChains;
   4151   for (unsigned i = 0; i != NumOps; ++i) {
   4152     SDValue Arg = OutVals[i];
   4153     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   4154 
   4155     // PtrOff will be used to store the current argument to the stack if a
   4156     // register cannot be found for it.
   4157     SDValue PtrOff;
   4158 
   4159     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
   4160 
   4161     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   4162 
   4163     // On PPC64, promote integers to 64-bit values.
   4164     if (isPPC64 && Arg.getValueType() == MVT::i32) {
   4165       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   4166       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   4167       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   4168     }
   4169 
   4170     // FIXME memcpy is used way more than necessary.  Correctness first.
   4171     // Note: "by value" is code for passing a structure by value, not
   4172     // basic types.
   4173     if (Flags.isByVal()) {
   4174       unsigned Size = Flags.getByValSize();
   4175       // Very small objects are passed right-justified.  Everything else is
   4176       // passed left-justified.
   4177       if (Size==1 || Size==2) {
   4178         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
   4179         if (GPR_idx != NumGPRs) {
   4180           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   4181                                         MachinePointerInfo(), VT,
   4182                                         false, false, 0);
   4183           MemOpChains.push_back(Load.getValue(1));
   4184           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4185 
   4186           ArgOffset += PtrByteSize;
   4187         } else {
   4188           SDValue Const = DAG.getConstant(PtrByteSize - Size,
   4189                                           PtrOff.getValueType());
   4190           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   4191           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   4192                                                             CallSeqStart,
   4193                                                             Flags, DAG, dl);
   4194           ArgOffset += PtrByteSize;
   4195         }
   4196         continue;
   4197       }
   4198       // Copy entire object into memory.  There are cases where gcc-generated
   4199       // code assumes it is there, even if it could be put entirely into
   4200       // registers.  (This is not what the doc says.)
   4201       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   4202                                                         CallSeqStart,
   4203                                                         Flags, DAG, dl);
   4204 
   4205       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
   4206       // copy the pieces of the object that fit into registers from the
   4207       // parameter save area.
   4208       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   4209         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
   4210         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   4211         if (GPR_idx != NumGPRs) {
   4212           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   4213                                      MachinePointerInfo(),
   4214                                      false, false, false, 0);
   4215           MemOpChains.push_back(Load.getValue(1));
   4216           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4217           ArgOffset += PtrByteSize;
   4218         } else {
   4219           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   4220           break;
   4221         }
   4222       }
   4223       continue;
   4224     }
   4225 
   4226     switch (Arg.getValueType().getSimpleVT().SimpleTy) {
   4227     default: llvm_unreachable("Unexpected ValueType for argument!");
   4228     case MVT::i32:
   4229     case MVT::i64:
   4230       if (GPR_idx != NumGPRs) {
   4231         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   4232       } else {
   4233         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4234                          isPPC64, isTailCall, false, MemOpChains,
   4235                          TailCallArguments, dl);
   4236       }
   4237       ArgOffset += PtrByteSize;
   4238       break;
   4239     case MVT::f32:
   4240     case MVT::f64:
   4241       if (FPR_idx != NumFPRs) {
   4242         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   4243 
   4244         if (isVarArg) {
   4245           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   4246                                        MachinePointerInfo(), false, false, 0);
   4247           MemOpChains.push_back(Store);
   4248 
   4249           // Float varargs are always shadowed in available integer registers
   4250           if (GPR_idx != NumGPRs) {
   4251             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   4252                                        MachinePointerInfo(), false, false,
   4253                                        false, 0);
   4254             MemOpChains.push_back(Load.getValue(1));
   4255             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4256           }
   4257           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
   4258             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
   4259             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   4260             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   4261                                        MachinePointerInfo(),
   4262                                        false, false, false, 0);
   4263             MemOpChains.push_back(Load.getValue(1));
   4264             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4265           }
   4266         } else {
   4267           // If we have any FPRs remaining, we may also have GPRs remaining.
   4268           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
   4269           // GPRs.
   4270           if (GPR_idx != NumGPRs)
   4271             ++GPR_idx;
   4272           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
   4273               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
   4274             ++GPR_idx;
   4275         }
   4276       } else
   4277         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4278                          isPPC64, isTailCall, false, MemOpChains,
   4279                          TailCallArguments, dl);
   4280       if (isPPC64)
   4281         ArgOffset += 8;
   4282       else
   4283         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
   4284       break;
   4285     case MVT::v4f32:
   4286     case MVT::v4i32:
   4287     case MVT::v8i16:
   4288     case MVT::v16i8:
   4289       if (isVarArg) {
   4290         // These go aligned on the stack, or in the corresponding R registers
   4291         // when within range.  The Darwin PPC ABI doc claims they also go in
   4292         // V registers; in fact gcc does this only for arguments that are
   4293         // prototyped, not for those that match the ...  We do it for all
   4294         // arguments, seems to work.
   4295         while (ArgOffset % 16 !=0) {
   4296           ArgOffset += PtrByteSize;
   4297           if (GPR_idx != NumGPRs)
   4298             GPR_idx++;
   4299         }
   4300         // We could elide this store in the case where the object fits
   4301         // entirely in R registers.  Maybe later.
   4302         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   4303                             DAG.getConstant(ArgOffset, PtrVT));
   4304         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   4305                                      MachinePointerInfo(), false, false, 0);
   4306         MemOpChains.push_back(Store);
   4307         if (VR_idx != NumVRs) {
   4308           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   4309                                      MachinePointerInfo(),
   4310                                      false, false, false, 0);
   4311           MemOpChains.push_back(Load.getValue(1));
   4312           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
   4313         }
   4314         ArgOffset += 16;
   4315         for (unsigned i=0; i<16; i+=PtrByteSize) {
   4316           if (GPR_idx == NumGPRs)
   4317             break;
   4318           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   4319                                   DAG.getConstant(i, PtrVT));
   4320           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   4321                                      false, false, false, 0);
   4322           MemOpChains.push_back(Load.getValue(1));
   4323           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4324         }
   4325         break;
   4326       }
   4327 
   4328       // Non-varargs Altivec params generally go in registers, but have
   4329       // stack space allocated at the end.
   4330       if (VR_idx != NumVRs) {
   4331         // Doesn't have GPR space allocated.
   4332         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
   4333       } else if (nAltivecParamsAtEnd==0) {
   4334         // We are emitting Altivec params in order.
   4335         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4336                          isPPC64, isTailCall, true, MemOpChains,
   4337                          TailCallArguments, dl);
   4338         ArgOffset += 16;
   4339       }
   4340       break;
   4341     }
   4342   }
   4343   // If all Altivec parameters fit in registers, as they usually do,
   4344   // they get stack space following the non-Altivec parameters.  We
   4345   // don't track this here because nobody below needs it.
   4346   // If there are more Altivec parameters than fit in registers emit
   4347   // the stores here.
   4348   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
   4349     unsigned j = 0;
   4350     // Offset is aligned; skip 1st 12 params which go in V registers.
   4351     ArgOffset = ((ArgOffset+15)/16)*16;
   4352     ArgOffset += 12*16;
   4353     for (unsigned i = 0; i != NumOps; ++i) {
   4354       SDValue Arg = OutVals[i];
   4355       EVT ArgType = Outs[i].VT;
   4356       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
   4357           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
   4358         if (++j > NumVRs) {
   4359           SDValue PtrOff;
   4360           // We are emitting Altivec params in order.
   4361           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4362                            isPPC64, isTailCall, true, MemOpChains,
   4363                            TailCallArguments, dl);
   4364           ArgOffset += 16;
   4365         }
   4366       }
   4367     }
   4368   }
   4369 
   4370   if (!MemOpChains.empty())
   4371     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   4372                         &MemOpChains[0], MemOpChains.size());
   4373 
   4374   // On Darwin, R12 must contain the address of an indirect callee.  This does
   4375   // not mean the MTCTR instruction must use R12; it's easier to model this as
   4376   // an extra parameter, so do that.
   4377   if (!isTailCall &&
   4378       !dyn_cast<GlobalAddressSDNode>(Callee) &&
   4379       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
   4380       !isBLACompatibleAddress(Callee, DAG))
   4381     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
   4382                                                    PPC::R12), Callee));
   4383 
   4384   // Build a sequence of copy-to-reg nodes chained together with token chain
   4385   // and flag operands which copy the outgoing args into the appropriate regs.
   4386   SDValue InFlag;
   4387   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   4388     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   4389                              RegsToPass[i].second, InFlag);
   4390     InFlag = Chain.getValue(1);
   4391   }
   4392 
   4393   if (isTailCall)
   4394     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
   4395                     FPOp, true, TailCallArguments);
   4396 
   4397   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
   4398                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
   4399                     Ins, InVals);
   4400 }
   4401 
   4402 bool
   4403 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   4404                                   MachineFunction &MF, bool isVarArg,
   4405                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   4406                                   LLVMContext &Context) const {
   4407   SmallVector<CCValAssign, 16> RVLocs;
   4408   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   4409                  RVLocs, Context);
   4410   return CCInfo.CheckReturn(Outs, RetCC_PPC);
   4411 }
   4412 
   4413 SDValue
   4414 PPCTargetLowering::LowerReturn(SDValue Chain,
   4415                                CallingConv::ID CallConv, bool isVarArg,
   4416                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   4417                                const SmallVectorImpl<SDValue> &OutVals,
   4418                                DebugLoc dl, SelectionDAG &DAG) const {
   4419 
   4420   SmallVector<CCValAssign, 16> RVLocs;
   4421   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   4422                  getTargetMachine(), RVLocs, *DAG.getContext());
   4423   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
   4424 
   4425   SDValue Flag;
   4426   SmallVector<SDValue, 4> RetOps(1, Chain);
   4427 
   4428   // Copy the result values into the output registers.
   4429   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   4430     CCValAssign &VA = RVLocs[i];
   4431     assert(VA.isRegLoc() && "Can only return in registers!");
   4432 
   4433     SDValue Arg = OutVals[i];
   4434 
   4435     switch (VA.getLocInfo()) {
   4436     default: llvm_unreachable("Unknown loc info!");
   4437     case CCValAssign::Full: break;
   4438     case CCValAssign::AExt:
   4439       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   4440       break;
   4441     case CCValAssign::ZExt:
   4442       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   4443       break;
   4444     case CCValAssign::SExt:
   4445       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   4446       break;
   4447     }
   4448 
   4449     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   4450     Flag = Chain.getValue(1);
   4451     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   4452   }
   4453 
   4454   RetOps[0] = Chain;  // Update chain.
   4455 
   4456   // Add the flag if we have it.
   4457   if (Flag.getNode())
   4458     RetOps.push_back(Flag);
   4459 
   4460   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
   4461                      &RetOps[0], RetOps.size());
   4462 }
   4463 
   4464 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
   4465                                    const PPCSubtarget &Subtarget) const {
   4466   // When we pop the dynamic allocation we need to restore the SP link.
   4467   DebugLoc dl = Op.getDebugLoc();
   4468 
   4469   // Get the corect type for pointers.
   4470   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4471 
   4472   // Construct the stack pointer operand.
   4473   bool isPPC64 = Subtarget.isPPC64();
   4474   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
   4475   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
   4476 
   4477   // Get the operands for the STACKRESTORE.
   4478   SDValue Chain = Op.getOperand(0);
   4479   SDValue SaveSP = Op.getOperand(1);
   4480 
   4481   // Load the old link SP.
   4482   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
   4483                                    MachinePointerInfo(),
   4484                                    false, false, false, 0);
   4485 
   4486   // Restore the stack pointer.
   4487   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
   4488 
   4489   // Store the old link SP.
   4490   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
   4491                       false, false, 0);
   4492 }
   4493 
   4494 
   4495 
   4496 SDValue
   4497 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
   4498   MachineFunction &MF = DAG.getMachineFunction();
   4499   bool isPPC64 = PPCSubTarget.isPPC64();
   4500   bool isDarwinABI = PPCSubTarget.isDarwinABI();
   4501   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4502 
   4503   // Get current frame pointer save index.  The users of this index will be
   4504   // primarily DYNALLOC instructions.
   4505   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   4506   int RASI = FI->getReturnAddrSaveIndex();
   4507 
   4508   // If the frame pointer save index hasn't been defined yet.
   4509   if (!RASI) {
   4510     // Find out what the fix offset of the frame pointer save area.
   4511     int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
   4512     // Allocate the frame index for frame pointer save area.
   4513     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
   4514     // Save the result.
   4515     FI->setReturnAddrSaveIndex(RASI);
   4516   }
   4517   return DAG.getFrameIndex(RASI, PtrVT);
   4518 }
   4519 
   4520 SDValue
   4521 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
   4522   MachineFunction &MF = DAG.getMachineFunction();
   4523   bool isPPC64 = PPCSubTarget.isPPC64();
   4524   bool isDarwinABI = PPCSubTarget.isDarwinABI();
   4525   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4526 
   4527   // Get current frame pointer save index.  The users of this index will be
   4528   // primarily DYNALLOC instructions.
   4529   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   4530   int FPSI = FI->getFramePointerSaveIndex();
   4531 
   4532   // If the frame pointer save index hasn't been defined yet.
   4533   if (!FPSI) {
   4534     // Find out what the fix offset of the frame pointer save area.
   4535     int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
   4536                                                            isDarwinABI);
   4537 
   4538     // Allocate the frame index for frame pointer save area.
   4539     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
   4540     // Save the result.
   4541     FI->setFramePointerSaveIndex(FPSI);
   4542   }
   4543   return DAG.getFrameIndex(FPSI, PtrVT);
   4544 }
   4545 
   4546 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   4547                                          SelectionDAG &DAG,
   4548                                          const PPCSubtarget &Subtarget) const {
   4549   // Get the inputs.
   4550   SDValue Chain = Op.getOperand(0);
   4551   SDValue Size  = Op.getOperand(1);
   4552   DebugLoc dl = Op.getDebugLoc();
   4553 
   4554   // Get the corect type for pointers.
   4555   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4556   // Negate the size.
   4557   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
   4558                                   DAG.getConstant(0, PtrVT), Size);
   4559   // Construct a node for the frame pointer save index.
   4560   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
   4561   // Build a DYNALLOC node.
   4562   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
   4563   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
   4564   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
   4565 }
   4566 
   4567 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
   4568 /// possible.
   4569 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   4570   // Not FP? Not a fsel.
   4571   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
   4572       !Op.getOperand(2).getValueType().isFloatingPoint())
   4573     return Op;
   4574 
   4575   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   4576 
   4577   // Cannot handle SETEQ/SETNE.
   4578   if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
   4579 
   4580   EVT ResVT = Op.getValueType();
   4581   EVT CmpVT = Op.getOperand(0).getValueType();
   4582   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   4583   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
   4584   DebugLoc dl = Op.getDebugLoc();
   4585 
   4586   // If the RHS of the comparison is a 0.0, we don't need to do the
   4587   // subtraction at all.
   4588   if (isFloatingPointZero(RHS))
   4589     switch (CC) {
   4590     default: break;       // SETUO etc aren't handled by fsel.
   4591     case ISD::SETULT:
   4592     case ISD::SETLT:
   4593       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   4594     case ISD::SETOGE:
   4595     case ISD::SETGE:
   4596       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4597         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   4598       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
   4599     case ISD::SETUGT:
   4600     case ISD::SETGT:
   4601       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   4602     case ISD::SETOLE:
   4603     case ISD::SETLE:
   4604       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4605         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   4606       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   4607                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
   4608     }
   4609 
   4610   SDValue Cmp;
   4611   switch (CC) {
   4612   default: break;       // SETUO etc aren't handled by fsel.
   4613   case ISD::SETULT:
   4614   case ISD::SETLT:
   4615     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
   4616     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4617       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   4618       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   4619   case ISD::SETOGE:
   4620   case ISD::SETGE:
   4621     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
   4622     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4623       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   4624       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   4625   case ISD::SETUGT:
   4626   case ISD::SETGT:
   4627     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
   4628     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4629       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   4630       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   4631   case ISD::SETOLE:
   4632   case ISD::SETLE:
   4633     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
   4634     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4635       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   4636       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   4637   }
   4638   return Op;
   4639 }
   4640 
   4641 // FIXME: Split this code up when LegalizeDAGTypes lands.
   4642 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
   4643                                            DebugLoc dl) const {
   4644   assert(Op.getOperand(0).getValueType().isFloatingPoint());
   4645   SDValue Src = Op.getOperand(0);
   4646   if (Src.getValueType() == MVT::f32)
   4647     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   4648 
   4649   SDValue Tmp;
   4650   switch (Op.getValueType().getSimpleVT().SimpleTy) {
   4651   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
   4652   case MVT::i32:
   4653     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
   4654                                                          PPCISD::FCTIDZ,
   4655                       dl, MVT::f64, Src);
   4656     break;
   4657   case MVT::i64:
   4658     Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
   4659     break;
   4660   }
   4661 
   4662   // Convert the FP value to an int value through memory.
   4663   SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
   4664 
   4665   // Emit a store to the stack slot.
   4666   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
   4667                                MachinePointerInfo(), false, false, 0);
   4668 
   4669   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
   4670   // add in a bias.
   4671   if (Op.getValueType() == MVT::i32)
   4672     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
   4673                         DAG.getConstant(4, FIPtr.getValueType()));
   4674   return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
   4675                      false, false, false, 0);
   4676 }
   4677 
   4678 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
   4679                                            SelectionDAG &DAG) const {
   4680   DebugLoc dl = Op.getDebugLoc();
   4681   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
   4682   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
   4683     return SDValue();
   4684 
   4685   if (Op.getOperand(0).getValueType() == MVT::i64) {
   4686     SDValue SINT = Op.getOperand(0);
   4687     // When converting to single-precision, we actually need to convert
   4688     // to double-precision first and then round to single-precision.
   4689     // To avoid double-rounding effects during that operation, we have
   4690     // to prepare the input operand.  Bits that might be truncated when
   4691     // converting to double-precision are replaced by a bit that won't
   4692     // be lost at this stage, but is below the single-precision rounding
   4693     // position.
   4694     //
   4695     // However, if -enable-unsafe-fp-math is in effect, accept double
   4696     // rounding to avoid the extra overhead.
   4697     if (Op.getValueType() == MVT::f32 &&
   4698         !DAG.getTarget().Options.UnsafeFPMath) {
   4699 
   4700       // Twiddle input to make sure the low 11 bits are zero.  (If this
   4701       // is the case, we are guaranteed the value will fit into the 53 bit
   4702       // mantissa of an IEEE double-precision value without rounding.)
   4703       // If any of those low 11 bits were not zero originally, make sure
   4704       // bit 12 (value 2048) is set instead, so that the final rounding
   4705       // to single-precision gets the correct result.
   4706       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
   4707                                   SINT, DAG.getConstant(2047, MVT::i64));
   4708       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
   4709                           Round, DAG.getConstant(2047, MVT::i64));
   4710       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
   4711       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
   4712                           Round, DAG.getConstant(-2048, MVT::i64));
   4713 
   4714       // However, we cannot use that value unconditionally: if the magnitude
   4715       // of the input value is small, the bit-twiddling we did above might
   4716       // end up visibly changing the output.  Fortunately, in that case, we
   4717       // don't need to twiddle bits since the original input will convert
   4718       // exactly to double-precision floating-point already.  Therefore,
   4719       // construct a conditional to use the original value if the top 11
   4720       // bits are all sign-bit copies, and use the rounded value computed
   4721       // above otherwise.
   4722       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
   4723                                  SINT, DAG.getConstant(53, MVT::i32));
   4724       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
   4725                          Cond, DAG.getConstant(1, MVT::i64));
   4726       Cond = DAG.getSetCC(dl, MVT::i32,
   4727                           Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
   4728 
   4729       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
   4730     }
   4731     SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
   4732     SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
   4733     if (Op.getValueType() == MVT::f32)
   4734       FP = DAG.getNode(ISD::FP_ROUND, dl,
   4735                        MVT::f32, FP, DAG.getIntPtrConstant(0));
   4736     return FP;
   4737   }
   4738 
   4739   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
   4740          "Unhandled SINT_TO_FP type in custom expander!");
   4741   // Since we only generate this in 64-bit mode, we can take advantage of
   4742   // 64-bit registers.  In particular, sign extend the input value into the
   4743   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
   4744   // then lfd it and fcfid it.
   4745   MachineFunction &MF = DAG.getMachineFunction();
   4746   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
   4747   int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
   4748   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4749   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   4750 
   4751   SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
   4752                                 Op.getOperand(0));
   4753 
   4754   // STD the extended value into the stack slot.
   4755   MachineMemOperand *MMO =
   4756     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
   4757                             MachineMemOperand::MOStore, 8, 8);
   4758   SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
   4759   SDValue Store =
   4760     DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
   4761                             Ops, 4, MVT::i64, MMO);
   4762   // Load the value as a double.
   4763   SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
   4764                            false, false, false, 0);
   4765 
   4766   // FCFID it and return it.
   4767   SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
   4768   if (Op.getValueType() == MVT::f32)
   4769     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
   4770   return FP;
   4771 }
   4772 
   4773 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   4774                                             SelectionDAG &DAG) const {
   4775   DebugLoc dl = Op.getDebugLoc();
   4776   /*
   4777    The rounding mode is in bits 30:31 of FPSR, and has the following
   4778    settings:
   4779      00 Round to nearest
   4780      01 Round to 0
   4781      10 Round to +inf
   4782      11 Round to -inf
   4783 
   4784   FLT_ROUNDS, on the other hand, expects the following:
   4785     -1 Undefined
   4786      0 Round to 0
   4787      1 Round to nearest
   4788      2 Round to +inf
   4789      3 Round to -inf
   4790 
   4791   To perform the conversion, we do:
   4792     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
   4793   */
   4794 
   4795   MachineFunction &MF = DAG.getMachineFunction();
   4796   EVT VT = Op.getValueType();
   4797   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4798   SDValue MFFSreg, InFlag;
   4799 
   4800   // Save FP Control Word to register
   4801   EVT NodeTys[] = {
   4802     MVT::f64,    // return register
   4803     MVT::Glue    // unused in this context
   4804   };
   4805   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
   4806 
   4807   // Save FP register to stack slot
   4808   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
   4809   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
   4810   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
   4811                                StackSlot, MachinePointerInfo(), false, false,0);
   4812 
   4813   // Load FP Control Word from low 32 bits of stack slot.
   4814   SDValue Four = DAG.getConstant(4, PtrVT);
   4815   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
   4816   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
   4817                             false, false, false, 0);
   4818 
   4819   // Transform as necessary
   4820   SDValue CWD1 =
   4821     DAG.getNode(ISD::AND, dl, MVT::i32,
   4822                 CWD, DAG.getConstant(3, MVT::i32));
   4823   SDValue CWD2 =
   4824     DAG.getNode(ISD::SRL, dl, MVT::i32,
   4825                 DAG.getNode(ISD::AND, dl, MVT::i32,
   4826                             DAG.getNode(ISD::XOR, dl, MVT::i32,
   4827                                         CWD, DAG.getConstant(3, MVT::i32)),
   4828                             DAG.getConstant(3, MVT::i32)),
   4829                 DAG.getConstant(1, MVT::i32));
   4830 
   4831   SDValue RetVal =
   4832     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
   4833 
   4834   return DAG.getNode((VT.getSizeInBits() < 16 ?
   4835                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
   4836 }
   4837 
   4838 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   4839   EVT VT = Op.getValueType();
   4840   unsigned BitWidth = VT.getSizeInBits();
   4841   DebugLoc dl = Op.getDebugLoc();
   4842   assert(Op.getNumOperands() == 3 &&
   4843          VT == Op.getOperand(1).getValueType() &&
   4844          "Unexpected SHL!");
   4845 
   4846   // Expand into a bunch of logical ops.  Note that these ops
   4847   // depend on the PPC behavior for oversized shift amounts.
   4848   SDValue Lo = Op.getOperand(0);
   4849   SDValue Hi = Op.getOperand(1);
   4850   SDValue Amt = Op.getOperand(2);
   4851   EVT AmtVT = Amt.getValueType();
   4852 
   4853   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   4854                              DAG.getConstant(BitWidth, AmtVT), Amt);
   4855   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
   4856   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
   4857   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
   4858   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   4859                              DAG.getConstant(-BitWidth, AmtVT));
   4860   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
   4861   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   4862   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
   4863   SDValue OutOps[] = { OutLo, OutHi };
   4864   return DAG.getMergeValues(OutOps, 2, dl);
   4865 }
   4866 
   4867 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   4868   EVT VT = Op.getValueType();
   4869   DebugLoc dl = Op.getDebugLoc();
   4870   unsigned BitWidth = VT.getSizeInBits();
   4871   assert(Op.getNumOperands() == 3 &&
   4872          VT == Op.getOperand(1).getValueType() &&
   4873          "Unexpected SRL!");
   4874 
   4875   // Expand into a bunch of logical ops.  Note that these ops
   4876   // depend on the PPC behavior for oversized shift amounts.
   4877   SDValue Lo = Op.getOperand(0);
   4878   SDValue Hi = Op.getOperand(1);
   4879   SDValue Amt = Op.getOperand(2);
   4880   EVT AmtVT = Amt.getValueType();
   4881 
   4882   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   4883                              DAG.getConstant(BitWidth, AmtVT), Amt);
   4884   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   4885   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   4886   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   4887   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   4888                              DAG.getConstant(-BitWidth, AmtVT));
   4889   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
   4890   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   4891   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
   4892   SDValue OutOps[] = { OutLo, OutHi };
   4893   return DAG.getMergeValues(OutOps, 2, dl);
   4894 }
   4895 
   4896 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
   4897   DebugLoc dl = Op.getDebugLoc();
   4898   EVT VT = Op.getValueType();
   4899   unsigned BitWidth = VT.getSizeInBits();
   4900   assert(Op.getNumOperands() == 3 &&
   4901          VT == Op.getOperand(1).getValueType() &&
   4902          "Unexpected SRA!");
   4903 
   4904   // Expand into a bunch of logical ops, followed by a select_cc.
   4905   SDValue Lo = Op.getOperand(0);
   4906   SDValue Hi = Op.getOperand(1);
   4907   SDValue Amt = Op.getOperand(2);
   4908   EVT AmtVT = Amt.getValueType();
   4909 
   4910   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   4911                              DAG.getConstant(BitWidth, AmtVT), Amt);
   4912   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   4913   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   4914   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   4915   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   4916                              DAG.getConstant(-BitWidth, AmtVT));
   4917   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
   4918   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
   4919   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
   4920                                   Tmp4, Tmp6, ISD::SETLE);
   4921   SDValue OutOps[] = { OutLo, OutHi };
   4922   return DAG.getMergeValues(OutOps, 2, dl);
   4923 }
   4924 
   4925 //===----------------------------------------------------------------------===//
   4926 // Vector related lowering.
   4927 //
   4928 
   4929 /// BuildSplatI - Build a canonical splati of Val with an element size of
   4930 /// SplatSize.  Cast the result to VT.
   4931 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
   4932                              SelectionDAG &DAG, DebugLoc dl) {
   4933   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
   4934 
   4935   static const EVT VTys[] = { // canonical VT to use for each size.
   4936     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
   4937   };
   4938 
   4939   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
   4940 
   4941   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
   4942   if (Val == -1)
   4943     SplatSize = 1;
   4944 
   4945   EVT CanonicalVT = VTys[SplatSize-1];
   4946 
   4947   // Build a canonical splat for this value.
   4948   SDValue Elt = DAG.getConstant(Val, MVT::i32);
   4949   SmallVector<SDValue, 8> Ops;
   4950   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
   4951   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
   4952                               &Ops[0], Ops.size());
   4953   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
   4954 }
   4955 
   4956 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
   4957 /// specified intrinsic ID.
   4958 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
   4959                                 SelectionDAG &DAG, DebugLoc dl,
   4960                                 EVT DestVT = MVT::Other) {
   4961   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
   4962   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   4963                      DAG.getConstant(IID, MVT::i32), LHS, RHS);
   4964 }
   4965 
   4966 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
   4967 /// specified intrinsic ID.
   4968 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
   4969                                 SDValue Op2, SelectionDAG &DAG,
   4970                                 DebugLoc dl, EVT DestVT = MVT::Other) {
   4971   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
   4972   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   4973                      DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
   4974 }
   4975 
   4976 
   4977 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
   4978 /// amount.  The result has the specified value type.
   4979 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
   4980                              EVT VT, SelectionDAG &DAG, DebugLoc dl) {
   4981   // Force LHS/RHS to be the right type.
   4982   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
   4983   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
   4984 
   4985   int Ops[16];
   4986   for (unsigned i = 0; i != 16; ++i)
   4987     Ops[i] = i + Amt;
   4988   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
   4989   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   4990 }
   4991 
   4992 // If this is a case we can't handle, return null and let the default
   4993 // expansion code take care of it.  If we CAN select this case, and if it
   4994 // selects to a single instruction, return Op.  Otherwise, if we can codegen
   4995 // this case more efficiently than a constant pool load, lower it to the
   4996 // sequence of ops that should be used.
   4997 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
   4998                                              SelectionDAG &DAG) const {
   4999   DebugLoc dl = Op.getDebugLoc();
   5000   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   5001   assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
   5002 
   5003   // Check if this is a splat of a constant value.
   5004   APInt APSplatBits, APSplatUndef;
   5005   unsigned SplatBitSize;
   5006   bool HasAnyUndefs;
   5007   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
   5008                              HasAnyUndefs, 0, true) || SplatBitSize > 32)
   5009     return SDValue();
   5010 
   5011   unsigned SplatBits = APSplatBits.getZExtValue();
   5012   unsigned SplatUndef = APSplatUndef.getZExtValue();
   5013   unsigned SplatSize = SplatBitSize / 8;
   5014 
   5015   // First, handle single instruction cases.
   5016 
   5017   // All zeros?
   5018   if (SplatBits == 0) {
   5019     // Canonicalize all zero vectors to be v4i32.
   5020     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
   5021       SDValue Z = DAG.getConstant(0, MVT::i32);
   5022       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
   5023       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
   5024     }
   5025     return Op;
   5026   }
   5027 
   5028   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
   5029   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
   5030                     (32-SplatBitSize));
   5031   if (SextVal >= -16 && SextVal <= 15)
   5032     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
   5033 
   5034 
   5035   // Two instruction sequences.
   5036 
   5037   // If this value is in the range [-32,30] and is even, use:
   5038   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
   5039   // If this value is in the range [17,31] and is odd, use:
   5040   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
   5041   // If this value is in the range [-31,-17] and is odd, use:
   5042   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
   5043   // Note the last two are three-instruction sequences.
   5044   if (SextVal >= -32 && SextVal <= 31) {
   5045     // To avoid having these optimizations undone by constant folding,
   5046     // we convert to a pseudo that will be expanded later into one of
   5047     // the above forms.
   5048     SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
   5049     EVT VT = Op.getValueType();
   5050     int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
   5051     SDValue EltSize = DAG.getConstant(Size, MVT::i32);
   5052     return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
   5053   }
   5054 
   5055   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
   5056   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
   5057   // for fneg/fabs.
   5058   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
   5059     // Make -1 and vspltisw -1:
   5060     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
   5061 
   5062     // Make the VSLW intrinsic, computing 0x8000_0000.
   5063     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
   5064                                    OnesV, DAG, dl);
   5065 
   5066     // xor by OnesV to invert it.
   5067     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
   5068     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   5069   }
   5070 
   5071   // Check to see if this is a wide variety of vsplti*, binop self cases.
   5072   static const signed char SplatCsts[] = {
   5073     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
   5074     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
   5075   };
   5076 
   5077   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
   5078     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
   5079     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
   5080     int i = SplatCsts[idx];
   5081 
   5082     // Figure out what shift amount will be used by altivec if shifted by i in
   5083     // this splat size.
   5084     unsigned TypeShiftAmt = i & (SplatBitSize-1);
   5085 
   5086     // vsplti + shl self.
   5087     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
   5088       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   5089       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   5090         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
   5091         Intrinsic::ppc_altivec_vslw
   5092       };
   5093       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   5094       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   5095     }
   5096 
   5097     // vsplti + srl self.
   5098     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   5099       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   5100       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   5101         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
   5102         Intrinsic::ppc_altivec_vsrw
   5103       };
   5104       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   5105       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   5106     }
   5107 
   5108     // vsplti + sra self.
   5109     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   5110       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   5111       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   5112         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
   5113         Intrinsic::ppc_altivec_vsraw
   5114       };
   5115       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   5116       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   5117     }
   5118 
   5119     // vsplti + rol self.
   5120     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
   5121                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
   5122       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   5123       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   5124         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
   5125         Intrinsic::ppc_altivec_vrlw
   5126       };
   5127       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   5128       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   5129     }
   5130 
   5131     // t = vsplti c, result = vsldoi t, t, 1
   5132     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
   5133       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   5134       return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
   5135     }
   5136     // t = vsplti c, result = vsldoi t, t, 2
   5137     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
   5138       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   5139       return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
   5140     }
   5141     // t = vsplti c, result = vsldoi t, t, 3
   5142     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
   5143       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   5144       return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
   5145     }
   5146   }
   5147 
   5148   return SDValue();
   5149 }
   5150 
   5151 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   5152 /// the specified operations to build the shuffle.
   5153 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   5154                                       SDValue RHS, SelectionDAG &DAG,
   5155                                       DebugLoc dl) {
   5156   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   5157   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   5158   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   5159 
   5160   enum {
   5161     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   5162     OP_VMRGHW,
   5163     OP_VMRGLW,
   5164     OP_VSPLTISW0,
   5165     OP_VSPLTISW1,
   5166     OP_VSPLTISW2,
   5167     OP_VSPLTISW3,
   5168     OP_VSLDOI4,
   5169     OP_VSLDOI8,
   5170     OP_VSLDOI12
   5171   };
   5172 
   5173   if (OpNum == OP_COPY) {
   5174     if (LHSID == (1*9+2)*9+3) return LHS;
   5175     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   5176     return RHS;
   5177   }
   5178 
   5179   SDValue OpLHS, OpRHS;
   5180   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   5181   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   5182 
   5183   int ShufIdxs[16];
   5184   switch (OpNum) {
   5185   default: llvm_unreachable("Unknown i32 permute!");
   5186   case OP_VMRGHW:
   5187     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
   5188     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
   5189     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
   5190     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
   5191     break;
   5192   case OP_VMRGLW:
   5193     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
   5194     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
   5195     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
   5196     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
   5197     break;
   5198   case OP_VSPLTISW0:
   5199     for (unsigned i = 0; i != 16; ++i)
   5200       ShufIdxs[i] = (i&3)+0;
   5201     break;
   5202   case OP_VSPLTISW1:
   5203     for (unsigned i = 0; i != 16; ++i)
   5204       ShufIdxs[i] = (i&3)+4;
   5205     break;
   5206   case OP_VSPLTISW2:
   5207     for (unsigned i = 0; i != 16; ++i)
   5208       ShufIdxs[i] = (i&3)+8;
   5209     break;
   5210   case OP_VSPLTISW3:
   5211     for (unsigned i = 0; i != 16; ++i)
   5212       ShufIdxs[i] = (i&3)+12;
   5213     break;
   5214   case OP_VSLDOI4:
   5215     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
   5216   case OP_VSLDOI8:
   5217     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
   5218   case OP_VSLDOI12:
   5219     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
   5220   }
   5221   EVT VT = OpLHS.getValueType();
   5222   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
   5223   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
   5224   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
   5225   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   5226 }
   5227 
   5228 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
   5229 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
   5230 /// return the code it can be lowered into.  Worst case, it can always be
   5231 /// lowered into a vperm.
   5232 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
   5233                                                SelectionDAG &DAG) const {
   5234   DebugLoc dl = Op.getDebugLoc();
   5235   SDValue V1 = Op.getOperand(0);
   5236   SDValue V2 = Op.getOperand(1);
   5237   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   5238   EVT VT = Op.getValueType();
   5239 
   5240   // Cases that are handled by instructions that take permute immediates
   5241   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
   5242   // selected by the instruction selector.
   5243   if (V2.getOpcode() == ISD::UNDEF) {
   5244     if (PPC::isSplatShuffleMask(SVOp, 1) ||
   5245         PPC::isSplatShuffleMask(SVOp, 2) ||
   5246         PPC::isSplatShuffleMask(SVOp, 4) ||
   5247         PPC::isVPKUWUMShuffleMask(SVOp, true) ||
   5248         PPC::isVPKUHUMShuffleMask(SVOp, true) ||
   5249         PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
   5250         PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
   5251         PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
   5252         PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
   5253         PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
   5254         PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
   5255         PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
   5256       return Op;
   5257     }
   5258   }
   5259 
   5260   // Altivec has a variety of "shuffle immediates" that take two vector inputs
   5261   // and produce a fixed permutation.  If any of these match, do not lower to
   5262   // VPERM.
   5263   if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
   5264       PPC::isVPKUHUMShuffleMask(SVOp, false) ||
   5265       PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
   5266       PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
   5267       PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
   5268       PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
   5269       PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
   5270       PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
   5271       PPC::isVMRGHShuffleMask(SVOp, 4, false))
   5272     return Op;
   5273 
   5274   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
   5275   // perfect shuffle table to emit an optimal matching sequence.
   5276   ArrayRef<int> PermMask = SVOp->getMask();
   5277 
   5278   unsigned PFIndexes[4];
   5279   bool isFourElementShuffle = true;
   5280   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
   5281     unsigned EltNo = 8;   // Start out undef.
   5282     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
   5283       if (PermMask[i*4+j] < 0)
   5284         continue;   // Undef, ignore it.
   5285 
   5286       unsigned ByteSource = PermMask[i*4+j];
   5287       if ((ByteSource & 3) != j) {
   5288         isFourElementShuffle = false;
   5289         break;
   5290       }
   5291 
   5292       if (EltNo == 8) {
   5293         EltNo = ByteSource/4;
   5294       } else if (EltNo != ByteSource/4) {
   5295         isFourElementShuffle = false;
   5296         break;
   5297       }
   5298     }
   5299     PFIndexes[i] = EltNo;
   5300   }
   5301 
   5302   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
   5303   // perfect shuffle vector to determine if it is cost effective to do this as
   5304   // discrete instructions, or whether we should use a vperm.
   5305   if (isFourElementShuffle) {
   5306     // Compute the index in the perfect shuffle table.
   5307     unsigned PFTableIndex =
   5308       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   5309 
   5310     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   5311     unsigned Cost  = (PFEntry >> 30);
   5312 
   5313     // Determining when to avoid vperm is tricky.  Many things affect the cost
   5314     // of vperm, particularly how many times the perm mask needs to be computed.
   5315     // For example, if the perm mask can be hoisted out of a loop or is already
   5316     // used (perhaps because there are multiple permutes with the same shuffle
   5317     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
   5318     // the loop requires an extra register.
   5319     //
   5320     // As a compromise, we only emit discrete instructions if the shuffle can be
   5321     // generated in 3 or fewer operations.  When we have loop information
   5322     // available, if this block is within a loop, we should avoid using vperm
   5323     // for 3-operation perms and use a constant pool load instead.
   5324     if (Cost < 3)
   5325       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   5326   }
   5327 
   5328   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
   5329   // vector that will get spilled to the constant pool.
   5330   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
   5331 
   5332   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
   5333   // that it is in input element units, not in bytes.  Convert now.
   5334   EVT EltVT = V1.getValueType().getVectorElementType();
   5335   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
   5336 
   5337   SmallVector<SDValue, 16> ResultMask;
   5338   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
   5339     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
   5340 
   5341     for (unsigned j = 0; j != BytesPerElement; ++j)
   5342       ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
   5343                                            MVT::i32));
   5344   }
   5345 
   5346   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
   5347                                     &ResultMask[0], ResultMask.size());
   5348   return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
   5349 }
   5350 
   5351 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
   5352 /// altivec comparison.  If it is, return true and fill in Opc/isDot with
   5353 /// information about the intrinsic.
   5354 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
   5355                                   bool &isDot) {
   5356   unsigned IntrinsicID =
   5357     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
   5358   CompareOpc = -1;
   5359   isDot = false;
   5360   switch (IntrinsicID) {
   5361   default: return false;
   5362     // Comparison predicates.
   5363   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
   5364   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
   5365   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
   5366   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
   5367   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
   5368   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
   5369   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
   5370   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
   5371   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
   5372   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
   5373   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
   5374   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
   5375   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
   5376 
   5377     // Normal Comparisons.
   5378   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
   5379   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
   5380   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
   5381   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
   5382   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
   5383   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
   5384   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
   5385   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
   5386   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
   5387   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
   5388   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
   5389   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
   5390   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
   5391   }
   5392   return true;
   5393 }
   5394 
   5395 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
   5396 /// lower, do it, otherwise return null.
   5397 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
   5398                                                    SelectionDAG &DAG) const {
   5399   // If this is a lowered altivec predicate compare, CompareOpc is set to the
   5400   // opcode number of the comparison.
   5401   DebugLoc dl = Op.getDebugLoc();
   5402   int CompareOpc;
   5403   bool isDot;
   5404   if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
   5405     return SDValue();    // Don't custom lower most intrinsics.
   5406 
   5407   // If this is a non-dot comparison, make the VCMP node and we are done.
   5408   if (!isDot) {
   5409     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
   5410                               Op.getOperand(1), Op.getOperand(2),
   5411                               DAG.getConstant(CompareOpc, MVT::i32));
   5412     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
   5413   }
   5414 
   5415   // Create the PPCISD altivec 'dot' comparison node.
   5416   SDValue Ops[] = {
   5417     Op.getOperand(2),  // LHS
   5418     Op.getOperand(3),  // RHS
   5419     DAG.getConstant(CompareOpc, MVT::i32)
   5420   };
   5421   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
   5422   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
   5423 
   5424   // Now that we have the comparison, emit a copy from the CR to a GPR.
   5425   // This is flagged to the above dot comparison.
   5426   SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
   5427                                 DAG.getRegister(PPC::CR6, MVT::i32),
   5428                                 CompNode.getValue(1));
   5429 
   5430   // Unpack the result based on how the target uses it.
   5431   unsigned BitNo;   // Bit # of CR6.
   5432   bool InvertBit;   // Invert result?
   5433   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
   5434   default:  // Can't happen, don't crash on invalid number though.
   5435   case 0:   // Return the value of the EQ bit of CR6.
   5436     BitNo = 0; InvertBit = false;
   5437     break;
   5438   case 1:   // Return the inverted value of the EQ bit of CR6.
   5439     BitNo = 0; InvertBit = true;
   5440     break;
   5441   case 2:   // Return the value of the LT bit of CR6.
   5442     BitNo = 2; InvertBit = false;
   5443     break;
   5444   case 3:   // Return the inverted value of the LT bit of CR6.
   5445     BitNo = 2; InvertBit = true;
   5446     break;
   5447   }
   5448 
   5449   // Shift the bit into the low position.
   5450   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
   5451                       DAG.getConstant(8-(3-BitNo), MVT::i32));
   5452   // Isolate the bit.
   5453   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
   5454                       DAG.getConstant(1, MVT::i32));
   5455 
   5456   // If we are supposed to, toggle the bit.
   5457   if (InvertBit)
   5458     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
   5459                         DAG.getConstant(1, MVT::i32));
   5460   return Flags;
   5461 }
   5462 
   5463 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
   5464                                                    SelectionDAG &DAG) const {
   5465   DebugLoc dl = Op.getDebugLoc();
   5466   // Create a stack slot that is 16-byte aligned.
   5467   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   5468   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   5469   EVT PtrVT = getPointerTy();
   5470   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   5471 
   5472   // Store the input value into Value#0 of the stack slot.
   5473   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
   5474                                Op.getOperand(0), FIdx, MachinePointerInfo(),
   5475                                false, false, 0);
   5476   // Load it out.
   5477   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
   5478                      false, false, false, 0);
   5479 }
   5480 
   5481 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
   5482   DebugLoc dl = Op.getDebugLoc();
   5483   if (Op.getValueType() == MVT::v4i32) {
   5484     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   5485 
   5486     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
   5487     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
   5488 
   5489     SDValue RHSSwap =   // = vrlw RHS, 16
   5490       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
   5491 
   5492     // Shrinkify inputs to v8i16.
   5493     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
   5494     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
   5495     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
   5496 
   5497     // Low parts multiplied together, generating 32-bit results (we ignore the
   5498     // top parts).
   5499     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
   5500                                         LHS, RHS, DAG, dl, MVT::v4i32);
   5501 
   5502     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
   5503                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
   5504     // Shift the high parts up 16 bits.
   5505     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
   5506                               Neg16, DAG, dl);
   5507     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
   5508   } else if (Op.getValueType() == MVT::v8i16) {
   5509     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   5510 
   5511     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
   5512 
   5513     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
   5514                             LHS, RHS, Zero, DAG, dl);
   5515   } else if (Op.getValueType() == MVT::v16i8) {
   5516     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   5517 
   5518     // Multiply the even 8-bit parts, producing 16-bit sums.
   5519     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
   5520                                            LHS, RHS, DAG, dl, MVT::v8i16);
   5521     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
   5522 
   5523     // Multiply the odd 8-bit parts, producing 16-bit sums.
   5524     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
   5525                                           LHS, RHS, DAG, dl, MVT::v8i16);
   5526     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
   5527 
   5528     // Merge the results together.
   5529     int Ops[16];
   5530     for (unsigned i = 0; i != 8; ++i) {
   5531       Ops[i*2  ] = 2*i+1;
   5532       Ops[i*2+1] = 2*i+1+16;
   5533     }
   5534     return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
   5535   } else {
   5536     llvm_unreachable("Unknown mul to lower!");
   5537   }
   5538 }
   5539 
   5540 /// LowerOperation - Provide custom lowering hooks for some operations.
   5541 ///
   5542 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   5543   switch (Op.getOpcode()) {
   5544   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
   5545   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
   5546   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
   5547   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
   5548   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
   5549   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
   5550   case ISD::SETCC:              return LowerSETCC(Op, DAG);
   5551   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
   5552   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
   5553   case ISD::VASTART:
   5554     return LowerVASTART(Op, DAG, PPCSubTarget);
   5555 
   5556   case ISD::VAARG:
   5557     return LowerVAARG(Op, DAG, PPCSubTarget);
   5558 
   5559   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
   5560   case ISD::DYNAMIC_STACKALLOC:
   5561     return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
   5562 
   5563   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
   5564   case ISD::FP_TO_UINT:
   5565   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
   5566                                                        Op.getDebugLoc());
   5567   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
   5568   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
   5569 
   5570   // Lower 64-bit shifts.
   5571   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
   5572   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
   5573   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
   5574 
   5575   // Vector-related lowering.
   5576   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
   5577   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
   5578   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   5579   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
   5580   case ISD::MUL:                return LowerMUL(Op, DAG);
   5581 
   5582   // Frame & Return address.
   5583   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
   5584   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
   5585   }
   5586 }
   5587 
   5588 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
   5589                                            SmallVectorImpl<SDValue>&Results,
   5590                                            SelectionDAG &DAG) const {
   5591   const TargetMachine &TM = getTargetMachine();
   5592   DebugLoc dl = N->getDebugLoc();
   5593   switch (N->getOpcode()) {
   5594   default:
   5595     llvm_unreachable("Do not know how to custom type legalize this operation!");
   5596   case ISD::VAARG: {
   5597     if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
   5598         || TM.getSubtarget<PPCSubtarget>().isPPC64())
   5599       return;
   5600 
   5601     EVT VT = N->getValueType(0);
   5602 
   5603     if (VT == MVT::i64) {
   5604       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
   5605 
   5606       Results.push_back(NewNode);
   5607       Results.push_back(NewNode.getValue(1));
   5608     }
   5609     return;
   5610   }
   5611   case ISD::FP_ROUND_INREG: {
   5612     assert(N->getValueType(0) == MVT::ppcf128);
   5613     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
   5614     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   5615                              MVT::f64, N->getOperand(0),
   5616                              DAG.getIntPtrConstant(0));
   5617     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   5618                              MVT::f64, N->getOperand(0),
   5619                              DAG.getIntPtrConstant(1));
   5620 
   5621     // This sequence changes FPSCR to do round-to-zero, adds the two halves
   5622     // of the long double, and puts FPSCR back the way it was.  We do not
   5623     // actually model FPSCR.
   5624     std::vector<EVT> NodeTys;
   5625     SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
   5626 
   5627     NodeTys.push_back(MVT::f64);   // Return register
   5628     NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
   5629     Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
   5630     MFFSreg = Result.getValue(0);
   5631     InFlag = Result.getValue(1);
   5632 
   5633     NodeTys.clear();
   5634     NodeTys.push_back(MVT::Glue);   // Returns a flag
   5635     Ops[0] = DAG.getConstant(31, MVT::i32);
   5636     Ops[1] = InFlag;
   5637     Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
   5638     InFlag = Result.getValue(0);
   5639 
   5640     NodeTys.clear();
   5641     NodeTys.push_back(MVT::Glue);   // Returns a flag
   5642     Ops[0] = DAG.getConstant(30, MVT::i32);
   5643     Ops[1] = InFlag;
   5644     Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
   5645     InFlag = Result.getValue(0);
   5646 
   5647     NodeTys.clear();
   5648     NodeTys.push_back(MVT::f64);    // result of add
   5649     NodeTys.push_back(MVT::Glue);   // Returns a flag
   5650     Ops[0] = Lo;
   5651     Ops[1] = Hi;
   5652     Ops[2] = InFlag;
   5653     Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
   5654     FPreg = Result.getValue(0);
   5655     InFlag = Result.getValue(1);
   5656 
   5657     NodeTys.clear();
   5658     NodeTys.push_back(MVT::f64);
   5659     Ops[0] = DAG.getConstant(1, MVT::i32);
   5660     Ops[1] = MFFSreg;
   5661     Ops[2] = FPreg;
   5662     Ops[3] = InFlag;
   5663     Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
   5664     FPreg = Result.getValue(0);
   5665 
   5666     // We know the low half is about to be thrown away, so just use something
   5667     // convenient.
   5668     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
   5669                                 FPreg, FPreg));
   5670     return;
   5671   }
   5672   case ISD::FP_TO_SINT:
   5673     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
   5674     return;
   5675   }
   5676 }
   5677 
   5678 
   5679 //===----------------------------------------------------------------------===//
   5680 //  Other Lowering Code
   5681 //===----------------------------------------------------------------------===//
   5682 
   5683 MachineBasicBlock *
   5684 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
   5685                                     bool is64bit, unsigned BinOpcode) const {
   5686   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   5687   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5688 
   5689   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5690   MachineFunction *F = BB->getParent();
   5691   MachineFunction::iterator It = BB;
   5692   ++It;
   5693 
   5694   unsigned dest = MI->getOperand(0).getReg();
   5695   unsigned ptrA = MI->getOperand(1).getReg();
   5696   unsigned ptrB = MI->getOperand(2).getReg();
   5697   unsigned incr = MI->getOperand(3).getReg();
   5698   DebugLoc dl = MI->getDebugLoc();
   5699 
   5700   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   5701   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   5702   F->insert(It, loopMBB);
   5703   F->insert(It, exitMBB);
   5704   exitMBB->splice(exitMBB->begin(), BB,
   5705                   llvm::next(MachineBasicBlock::iterator(MI)),
   5706                   BB->end());
   5707   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5708 
   5709   MachineRegisterInfo &RegInfo = F->getRegInfo();
   5710   unsigned TmpReg = (!BinOpcode) ? incr :
   5711     RegInfo.createVirtualRegister(
   5712        is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
   5713                  (const TargetRegisterClass *) &PPC::GPRCRegClass);
   5714 
   5715   //  thisMBB:
   5716   //   ...
   5717   //   fallthrough --> loopMBB
   5718   BB->addSuccessor(loopMBB);
   5719 
   5720   //  loopMBB:
   5721   //   l[wd]arx dest, ptr
   5722   //   add r0, dest, incr
   5723   //   st[wd]cx. r0, ptr
   5724   //   bne- loopMBB
   5725   //   fallthrough --> exitMBB
   5726   BB = loopMBB;
   5727   BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
   5728     .addReg(ptrA).addReg(ptrB);
   5729   if (BinOpcode)
   5730     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
   5731   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   5732     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
   5733   BuildMI(BB, dl, TII->get(PPC::BCC))
   5734     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   5735   BB->addSuccessor(loopMBB);
   5736   BB->addSuccessor(exitMBB);
   5737 
   5738   //  exitMBB:
   5739   //   ...
   5740   BB = exitMBB;
   5741   return BB;
   5742 }
   5743 
   5744 MachineBasicBlock *
   5745 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
   5746                                             MachineBasicBlock *BB,
   5747                                             bool is8bit,    // operation
   5748                                             unsigned BinOpcode) const {
   5749   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   5750   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5751   // In 64 bit mode we have to use 64 bits for addresses, even though the
   5752   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
   5753   // registers without caring whether they're 32 or 64, but here we're
   5754   // doing actual arithmetic on the addresses.
   5755   bool is64bit = PPCSubTarget.isPPC64();
   5756   unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
   5757 
   5758   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5759   MachineFunction *F = BB->getParent();
   5760   MachineFunction::iterator It = BB;
   5761   ++It;
   5762 
   5763   unsigned dest = MI->getOperand(0).getReg();
   5764   unsigned ptrA = MI->getOperand(1).getReg();
   5765   unsigned ptrB = MI->getOperand(2).getReg();
   5766   unsigned incr = MI->getOperand(3).getReg();
   5767   DebugLoc dl = MI->getDebugLoc();
   5768 
   5769   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   5770   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   5771   F->insert(It, loopMBB);
   5772   F->insert(It, exitMBB);
   5773   exitMBB->splice(exitMBB->begin(), BB,
   5774                   llvm::next(MachineBasicBlock::iterator(MI)),
   5775                   BB->end());
   5776   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5777 
   5778   MachineRegisterInfo &RegInfo = F->getRegInfo();
   5779   const TargetRegisterClass *RC =
   5780     is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
   5781               (const TargetRegisterClass *) &PPC::GPRCRegClass;
   5782   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   5783   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   5784   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   5785   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
   5786   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   5787   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   5788   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   5789   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   5790   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
   5791   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   5792   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   5793   unsigned Ptr1Reg;
   5794   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
   5795 
   5796   //  thisMBB:
   5797   //   ...
   5798   //   fallthrough --> loopMBB
   5799   BB->addSuccessor(loopMBB);
   5800 
   5801   // The 4-byte load must be aligned, while a char or short may be
   5802   // anywhere in the word.  Hence all this nasty bookkeeping code.
   5803   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   5804   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   5805   //   xori shift, shift1, 24 [16]
   5806   //   rlwinm ptr, ptr1, 0, 0, 29
   5807   //   slw incr2, incr, shift
   5808   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   5809   //   slw mask, mask2, shift
   5810   //  loopMBB:
   5811   //   lwarx tmpDest, ptr
   5812   //   add tmp, tmpDest, incr2
   5813   //   andc tmp2, tmpDest, mask
   5814   //   and tmp3, tmp, mask
   5815   //   or tmp4, tmp3, tmp2
   5816   //   stwcx. tmp4, ptr
   5817   //   bne- loopMBB
   5818   //   fallthrough --> exitMBB
   5819   //   srw dest, tmpDest, shift
   5820   if (ptrA != ZeroReg) {
   5821     Ptr1Reg = RegInfo.createVirtualRegister(RC);
   5822     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   5823       .addReg(ptrA).addReg(ptrB);
   5824   } else {
   5825     Ptr1Reg = ptrB;
   5826   }
   5827   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   5828       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   5829   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   5830       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   5831   if (is64bit)
   5832     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   5833       .addReg(Ptr1Reg).addImm(0).addImm(61);
   5834   else
   5835     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   5836       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   5837   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
   5838       .addReg(incr).addReg(ShiftReg);
   5839   if (is8bit)
   5840     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   5841   else {
   5842     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   5843     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
   5844   }
   5845   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   5846       .addReg(Mask2Reg).addReg(ShiftReg);
   5847 
   5848   BB = loopMBB;
   5849   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   5850     .addReg(ZeroReg).addReg(PtrReg);
   5851   if (BinOpcode)
   5852     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
   5853       .addReg(Incr2Reg).addReg(TmpDestReg);
   5854   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
   5855     .addReg(TmpDestReg).addReg(MaskReg);
   5856   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
   5857     .addReg(TmpReg).addReg(MaskReg);
   5858   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
   5859     .addReg(Tmp3Reg).addReg(Tmp2Reg);
   5860   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   5861     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
   5862   BuildMI(BB, dl, TII->get(PPC::BCC))
   5863     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   5864   BB->addSuccessor(loopMBB);
   5865   BB->addSuccessor(exitMBB);
   5866 
   5867   //  exitMBB:
   5868   //   ...
   5869   BB = exitMBB;
   5870   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
   5871     .addReg(ShiftReg);
   5872   return BB;
   5873 }
   5874 
   5875 MachineBasicBlock *
   5876 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   5877                                                MachineBasicBlock *BB) const {
   5878   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5879 
   5880   // To "insert" these instructions we actually have to insert their
   5881   // control-flow patterns.
   5882   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5883   MachineFunction::iterator It = BB;
   5884   ++It;
   5885 
   5886   MachineFunction *F = BB->getParent();
   5887 
   5888   if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
   5889                                  MI->getOpcode() == PPC::SELECT_CC_I8)) {
   5890     unsigned OpCode = MI->getOpcode() == PPC::SELECT_CC_I8 ?
   5891                                          PPC::ISEL8 : PPC::ISEL;
   5892     unsigned SelectPred = MI->getOperand(4).getImm();
   5893     DebugLoc dl = MI->getDebugLoc();
   5894 
   5895     // The SelectPred is ((BI << 5) | BO) for a BCC
   5896     unsigned BO = SelectPred & 0xF;
   5897     assert((BO == 12 || BO == 4) && "invalid predicate BO field for isel");
   5898 
   5899     unsigned TrueOpNo, FalseOpNo;
   5900     if (BO == 12) {
   5901       TrueOpNo = 2;
   5902       FalseOpNo = 3;
   5903     } else {
   5904       TrueOpNo = 3;
   5905       FalseOpNo = 2;
   5906       SelectPred = PPC::InvertPredicate((PPC::Predicate)SelectPred);
   5907     }
   5908 
   5909     BuildMI(*BB, MI, dl, TII->get(OpCode), MI->getOperand(0).getReg())
   5910       .addReg(MI->getOperand(TrueOpNo).getReg())
   5911       .addReg(MI->getOperand(FalseOpNo).getReg())
   5912       .addImm(SelectPred).addReg(MI->getOperand(1).getReg());
   5913   } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
   5914              MI->getOpcode() == PPC::SELECT_CC_I8 ||
   5915              MI->getOpcode() == PPC::SELECT_CC_F4 ||
   5916              MI->getOpcode() == PPC::SELECT_CC_F8 ||
   5917              MI->getOpcode() == PPC::SELECT_CC_VRRC) {
   5918 
   5919 
   5920     // The incoming instruction knows the destination vreg to set, the
   5921     // condition code register to branch on, the true/false values to
   5922     // select between, and a branch opcode to use.
   5923 
   5924     //  thisMBB:
   5925     //  ...
   5926     //   TrueVal = ...
   5927     //   cmpTY ccX, r1, r2
   5928     //   bCC copy1MBB
   5929     //   fallthrough --> copy0MBB
   5930     MachineBasicBlock *thisMBB = BB;
   5931     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   5932     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   5933     unsigned SelectPred = MI->getOperand(4).getImm();
   5934     DebugLoc dl = MI->getDebugLoc();
   5935     F->insert(It, copy0MBB);
   5936     F->insert(It, sinkMBB);
   5937 
   5938     // Transfer the remainder of BB and its successor edges to sinkMBB.
   5939     sinkMBB->splice(sinkMBB->begin(), BB,
   5940                     llvm::next(MachineBasicBlock::iterator(MI)),
   5941                     BB->end());
   5942     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   5943 
   5944     // Next, add the true and fallthrough blocks as its successors.
   5945     BB->addSuccessor(copy0MBB);
   5946     BB->addSuccessor(sinkMBB);
   5947 
   5948     BuildMI(BB, dl, TII->get(PPC::BCC))
   5949       .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
   5950 
   5951     //  copy0MBB:
   5952     //   %FalseValue = ...
   5953     //   # fallthrough to sinkMBB
   5954     BB = copy0MBB;
   5955 
   5956     // Update machine-CFG edges
   5957     BB->addSuccessor(sinkMBB);
   5958 
   5959     //  sinkMBB:
   5960     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   5961     //  ...
   5962     BB = sinkMBB;
   5963     BuildMI(*BB, BB->begin(), dl,
   5964             TII->get(PPC::PHI), MI->getOperand(0).getReg())
   5965       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
   5966       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   5967   }
   5968   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
   5969     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
   5970   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
   5971     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
   5972   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
   5973     BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
   5974   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
   5975     BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
   5976 
   5977   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
   5978     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
   5979   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
   5980     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
   5981   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
   5982     BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
   5983   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
   5984     BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
   5985 
   5986   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
   5987     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
   5988   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
   5989     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
   5990   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
   5991     BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
   5992   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
   5993     BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
   5994 
   5995   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
   5996     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
   5997   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
   5998     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
   5999   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
   6000     BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
   6001   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
   6002     BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
   6003 
   6004   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
   6005     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
   6006   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
   6007     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
   6008   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
   6009     BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
   6010   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
   6011     BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
   6012 
   6013   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
   6014     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
   6015   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
   6016     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
   6017   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
   6018     BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
   6019   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
   6020     BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
   6021 
   6022   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
   6023     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
   6024   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
   6025     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
   6026   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
   6027     BB = EmitAtomicBinary(MI, BB, false, 0);
   6028   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
   6029     BB = EmitAtomicBinary(MI, BB, true, 0);
   6030 
   6031   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
   6032            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
   6033     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
   6034 
   6035     unsigned dest   = MI->getOperand(0).getReg();
   6036     unsigned ptrA   = MI->getOperand(1).getReg();
   6037     unsigned ptrB   = MI->getOperand(2).getReg();
   6038     unsigned oldval = MI->getOperand(3).getReg();
   6039     unsigned newval = MI->getOperand(4).getReg();
   6040     DebugLoc dl     = MI->getDebugLoc();
   6041 
   6042     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6043     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6044     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6045     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6046     F->insert(It, loop1MBB);
   6047     F->insert(It, loop2MBB);
   6048     F->insert(It, midMBB);
   6049     F->insert(It, exitMBB);
   6050     exitMBB->splice(exitMBB->begin(), BB,
   6051                     llvm::next(MachineBasicBlock::iterator(MI)),
   6052                     BB->end());
   6053     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   6054 
   6055     //  thisMBB:
   6056     //   ...
   6057     //   fallthrough --> loopMBB
   6058     BB->addSuccessor(loop1MBB);
   6059 
   6060     // loop1MBB:
   6061     //   l[wd]arx dest, ptr
   6062     //   cmp[wd] dest, oldval
   6063     //   bne- midMBB
   6064     // loop2MBB:
   6065     //   st[wd]cx. newval, ptr
   6066     //   bne- loopMBB
   6067     //   b exitBB
   6068     // midMBB:
   6069     //   st[wd]cx. dest, ptr
   6070     // exitBB:
   6071     BB = loop1MBB;
   6072     BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
   6073       .addReg(ptrA).addReg(ptrB);
   6074     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
   6075       .addReg(oldval).addReg(dest);
   6076     BuildMI(BB, dl, TII->get(PPC::BCC))
   6077       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   6078     BB->addSuccessor(loop2MBB);
   6079     BB->addSuccessor(midMBB);
   6080 
   6081     BB = loop2MBB;
   6082     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   6083       .addReg(newval).addReg(ptrA).addReg(ptrB);
   6084     BuildMI(BB, dl, TII->get(PPC::BCC))
   6085       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   6086     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   6087     BB->addSuccessor(loop1MBB);
   6088     BB->addSuccessor(exitMBB);
   6089 
   6090     BB = midMBB;
   6091     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   6092       .addReg(dest).addReg(ptrA).addReg(ptrB);
   6093     BB->addSuccessor(exitMBB);
   6094 
   6095     //  exitMBB:
   6096     //   ...
   6097     BB = exitMBB;
   6098   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
   6099              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
   6100     // We must use 64-bit registers for addresses when targeting 64-bit,
   6101     // since we're actually doing arithmetic on them.  Other registers
   6102     // can be 32-bit.
   6103     bool is64bit = PPCSubTarget.isPPC64();
   6104     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
   6105 
   6106     unsigned dest   = MI->getOperand(0).getReg();
   6107     unsigned ptrA   = MI->getOperand(1).getReg();
   6108     unsigned ptrB   = MI->getOperand(2).getReg();
   6109     unsigned oldval = MI->getOperand(3).getReg();
   6110     unsigned newval = MI->getOperand(4).getReg();
   6111     DebugLoc dl     = MI->getDebugLoc();
   6112 
   6113     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6114     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6115     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6116     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6117     F->insert(It, loop1MBB);
   6118     F->insert(It, loop2MBB);
   6119     F->insert(It, midMBB);
   6120     F->insert(It, exitMBB);
   6121     exitMBB->splice(exitMBB->begin(), BB,
   6122                     llvm::next(MachineBasicBlock::iterator(MI)),
   6123                     BB->end());
   6124     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   6125 
   6126     MachineRegisterInfo &RegInfo = F->getRegInfo();
   6127     const TargetRegisterClass *RC =
   6128       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
   6129                 (const TargetRegisterClass *) &PPC::GPRCRegClass;
   6130     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   6131     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   6132     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   6133     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
   6134     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
   6135     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
   6136     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
   6137     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   6138     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   6139     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   6140     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   6141     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   6142     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   6143     unsigned Ptr1Reg;
   6144     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
   6145     unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
   6146     //  thisMBB:
   6147     //   ...
   6148     //   fallthrough --> loopMBB
   6149     BB->addSuccessor(loop1MBB);
   6150 
   6151     // The 4-byte load must be aligned, while a char or short may be
   6152     // anywhere in the word.  Hence all this nasty bookkeeping code.
   6153     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   6154     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   6155     //   xori shift, shift1, 24 [16]
   6156     //   rlwinm ptr, ptr1, 0, 0, 29
   6157     //   slw newval2, newval, shift
   6158     //   slw oldval2, oldval,shift
   6159     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   6160     //   slw mask, mask2, shift
   6161     //   and newval3, newval2, mask
   6162     //   and oldval3, oldval2, mask
   6163     // loop1MBB:
   6164     //   lwarx tmpDest, ptr
   6165     //   and tmp, tmpDest, mask
   6166     //   cmpw tmp, oldval3
   6167     //   bne- midMBB
   6168     // loop2MBB:
   6169     //   andc tmp2, tmpDest, mask
   6170     //   or tmp4, tmp2, newval3
   6171     //   stwcx. tmp4, ptr
   6172     //   bne- loop1MBB
   6173     //   b exitBB
   6174     // midMBB:
   6175     //   stwcx. tmpDest, ptr
   6176     // exitBB:
   6177     //   srw dest, tmpDest, shift
   6178     if (ptrA != ZeroReg) {
   6179       Ptr1Reg = RegInfo.createVirtualRegister(RC);
   6180       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   6181         .addReg(ptrA).addReg(ptrB);
   6182     } else {
   6183       Ptr1Reg = ptrB;
   6184     }
   6185     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   6186         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   6187     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   6188         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   6189     if (is64bit)
   6190       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   6191         .addReg(Ptr1Reg).addImm(0).addImm(61);
   6192     else
   6193       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   6194         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   6195     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
   6196         .addReg(newval).addReg(ShiftReg);
   6197     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
   6198         .addReg(oldval).addReg(ShiftReg);
   6199     if (is8bit)
   6200       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   6201     else {
   6202       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   6203       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
   6204         .addReg(Mask3Reg).addImm(65535);
   6205     }
   6206     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   6207         .addReg(Mask2Reg).addReg(ShiftReg);
   6208     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
   6209         .addReg(NewVal2Reg).addReg(MaskReg);
   6210     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
   6211         .addReg(OldVal2Reg).addReg(MaskReg);
   6212 
   6213     BB = loop1MBB;
   6214     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   6215         .addReg(ZeroReg).addReg(PtrReg);
   6216     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
   6217         .addReg(TmpDestReg).addReg(MaskReg);
   6218     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
   6219         .addReg(TmpReg).addReg(OldVal3Reg);
   6220     BuildMI(BB, dl, TII->get(PPC::BCC))
   6221         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   6222     BB->addSuccessor(loop2MBB);
   6223     BB->addSuccessor(midMBB);
   6224 
   6225     BB = loop2MBB;
   6226     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
   6227         .addReg(TmpDestReg).addReg(MaskReg);
   6228     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
   6229         .addReg(Tmp2Reg).addReg(NewVal3Reg);
   6230     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
   6231         .addReg(ZeroReg).addReg(PtrReg);
   6232     BuildMI(BB, dl, TII->get(PPC::BCC))
   6233       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   6234     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   6235     BB->addSuccessor(loop1MBB);
   6236     BB->addSuccessor(exitMBB);
   6237 
   6238     BB = midMBB;
   6239     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
   6240       .addReg(ZeroReg).addReg(PtrReg);
   6241     BB->addSuccessor(exitMBB);
   6242 
   6243     //  exitMBB:
   6244     //   ...
   6245     BB = exitMBB;
   6246     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
   6247       .addReg(ShiftReg);
   6248   } else {
   6249     llvm_unreachable("Unexpected instr type to insert");
   6250   }
   6251 
   6252   MI->eraseFromParent();   // The pseudo instruction is gone now.
   6253   return BB;
   6254 }
   6255 
   6256 //===----------------------------------------------------------------------===//
   6257 // Target Optimization Hooks
   6258 //===----------------------------------------------------------------------===//
   6259 
   6260 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
   6261                                              DAGCombinerInfo &DCI) const {
   6262   const TargetMachine &TM = getTargetMachine();
   6263   SelectionDAG &DAG = DCI.DAG;
   6264   DebugLoc dl = N->getDebugLoc();
   6265   switch (N->getOpcode()) {
   6266   default: break;
   6267   case PPCISD::SHL:
   6268     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   6269       if (C->isNullValue())   // 0 << V -> 0.
   6270         return N->getOperand(0);
   6271     }
   6272     break;
   6273   case PPCISD::SRL:
   6274     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   6275       if (C->isNullValue())   // 0 >>u V -> 0.
   6276         return N->getOperand(0);
   6277     }
   6278     break;
   6279   case PPCISD::SRA:
   6280     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   6281       if (C->isNullValue() ||   //  0 >>s V -> 0.
   6282           C->isAllOnesValue())    // -1 >>s V -> -1.
   6283         return N->getOperand(0);
   6284     }
   6285     break;
   6286 
   6287   case ISD::SINT_TO_FP:
   6288     if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
   6289       if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
   6290         // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
   6291         // We allow the src/dst to be either f32/f64, but the intermediate
   6292         // type must be i64.
   6293         if (N->getOperand(0).getValueType() == MVT::i64 &&
   6294             N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
   6295           SDValue Val = N->getOperand(0).getOperand(0);
   6296           if (Val.getValueType() == MVT::f32) {
   6297             Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
   6298             DCI.AddToWorklist(Val.getNode());
   6299           }
   6300 
   6301           Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
   6302           DCI.AddToWorklist(Val.getNode());
   6303           Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
   6304           DCI.AddToWorklist(Val.getNode());
   6305           if (N->getValueType(0) == MVT::f32) {
   6306             Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
   6307                               DAG.getIntPtrConstant(0));
   6308             DCI.AddToWorklist(Val.getNode());
   6309           }
   6310           return Val;
   6311         } else if (N->getOperand(0).getValueType() == MVT::i32) {
   6312           // If the intermediate type is i32, we can avoid the load/store here
   6313           // too.
   6314         }
   6315       }
   6316     }
   6317     break;
   6318   case ISD::STORE:
   6319     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
   6320     if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
   6321         !cast<StoreSDNode>(N)->isTruncatingStore() &&
   6322         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
   6323         N->getOperand(1).getValueType() == MVT::i32 &&
   6324         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
   6325       SDValue Val = N->getOperand(1).getOperand(0);
   6326       if (Val.getValueType() == MVT::f32) {
   6327         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
   6328         DCI.AddToWorklist(Val.getNode());
   6329       }
   6330       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
   6331       DCI.AddToWorklist(Val.getNode());
   6332 
   6333       Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
   6334                         N->getOperand(2), N->getOperand(3));
   6335       DCI.AddToWorklist(Val.getNode());
   6336       return Val;
   6337     }
   6338 
   6339     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
   6340     if (cast<StoreSDNode>(N)->isUnindexed() &&
   6341         N->getOperand(1).getOpcode() == ISD::BSWAP &&
   6342         N->getOperand(1).getNode()->hasOneUse() &&
   6343         (N->getOperand(1).getValueType() == MVT::i32 ||
   6344          N->getOperand(1).getValueType() == MVT::i16)) {
   6345       SDValue BSwapOp = N->getOperand(1).getOperand(0);
   6346       // Do an any-extend to 32-bits if this is a half-word input.
   6347       if (BSwapOp.getValueType() == MVT::i16)
   6348         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
   6349 
   6350       SDValue Ops[] = {
   6351         N->getOperand(0), BSwapOp, N->getOperand(2),
   6352         DAG.getValueType(N->getOperand(1).getValueType())
   6353       };
   6354       return
   6355         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
   6356                                 Ops, array_lengthof(Ops),
   6357                                 cast<StoreSDNode>(N)->getMemoryVT(),
   6358                                 cast<StoreSDNode>(N)->getMemOperand());
   6359     }
   6360     break;
   6361   case ISD::BSWAP:
   6362     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
   6363     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
   6364         N->getOperand(0).hasOneUse() &&
   6365         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
   6366       SDValue Load = N->getOperand(0);
   6367       LoadSDNode *LD = cast<LoadSDNode>(Load);
   6368       // Create the byte-swapping load.
   6369       SDValue Ops[] = {
   6370         LD->getChain(),    // Chain
   6371         LD->getBasePtr(),  // Ptr
   6372         DAG.getValueType(N->getValueType(0)) // VT
   6373       };
   6374       SDValue BSLoad =
   6375         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
   6376                                 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
   6377                                 LD->getMemoryVT(), LD->getMemOperand());
   6378 
   6379       // If this is an i16 load, insert the truncate.
   6380       SDValue ResVal = BSLoad;
   6381       if (N->getValueType(0) == MVT::i16)
   6382         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
   6383 
   6384       // First, combine the bswap away.  This makes the value produced by the
   6385       // load dead.
   6386       DCI.CombineTo(N, ResVal);
   6387 
   6388       // Next, combine the load away, we give it a bogus result value but a real
   6389       // chain result.  The result value is dead because the bswap is dead.
   6390       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
   6391 
   6392       // Return N so it doesn't get rechecked!
   6393       return SDValue(N, 0);
   6394     }
   6395 
   6396     break;
   6397   case PPCISD::VCMP: {
   6398     // If a VCMPo node already exists with exactly the same operands as this
   6399     // node, use its result instead of this node (VCMPo computes both a CR6 and
   6400     // a normal output).
   6401     //
   6402     if (!N->getOperand(0).hasOneUse() &&
   6403         !N->getOperand(1).hasOneUse() &&
   6404         !N->getOperand(2).hasOneUse()) {
   6405 
   6406       // Scan all of the users of the LHS, looking for VCMPo's that match.
   6407       SDNode *VCMPoNode = 0;
   6408 
   6409       SDNode *LHSN = N->getOperand(0).getNode();
   6410       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
   6411            UI != E; ++UI)
   6412         if (UI->getOpcode() == PPCISD::VCMPo &&
   6413             UI->getOperand(1) == N->getOperand(1) &&
   6414             UI->getOperand(2) == N->getOperand(2) &&
   6415             UI->getOperand(0) == N->getOperand(0)) {
   6416           VCMPoNode = *UI;
   6417           break;
   6418         }
   6419 
   6420       // If there is no VCMPo node, or if the flag value has a single use, don't
   6421       // transform this.
   6422       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
   6423         break;
   6424 
   6425       // Look at the (necessarily single) use of the flag value.  If it has a
   6426       // chain, this transformation is more complex.  Note that multiple things
   6427       // could use the value result, which we should ignore.
   6428       SDNode *FlagUser = 0;
   6429       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
   6430            FlagUser == 0; ++UI) {
   6431         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
   6432         SDNode *User = *UI;
   6433         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
   6434           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
   6435             FlagUser = User;
   6436             break;
   6437           }
   6438         }
   6439       }
   6440 
   6441       // If the user is a MFCR instruction, we know this is safe.  Otherwise we
   6442       // give up for right now.
   6443       if (FlagUser->getOpcode() == PPCISD::MFCR)
   6444         return SDValue(VCMPoNode, 0);
   6445     }
   6446     break;
   6447   }
   6448   case ISD::BR_CC: {
   6449     // If this is a branch on an altivec predicate comparison, lower this so
   6450     // that we don't have to do a MFCR: instead, branch directly on CR6.  This
   6451     // lowering is done pre-legalize, because the legalizer lowers the predicate
   6452     // compare down to code that is difficult to reassemble.
   6453     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
   6454     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
   6455     int CompareOpc;
   6456     bool isDot;
   6457 
   6458     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   6459         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
   6460         getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
   6461       assert(isDot && "Can't compare against a vector result!");
   6462 
   6463       // If this is a comparison against something other than 0/1, then we know
   6464       // that the condition is never/always true.
   6465       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
   6466       if (Val != 0 && Val != 1) {
   6467         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
   6468           return N->getOperand(0);
   6469         // Always !=, turn it into an unconditional branch.
   6470         return DAG.getNode(ISD::BR, dl, MVT::Other,
   6471                            N->getOperand(0), N->getOperand(4));
   6472       }
   6473 
   6474       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
   6475 
   6476       // Create the PPCISD altivec 'dot' comparison node.
   6477       SDValue Ops[] = {
   6478         LHS.getOperand(2),  // LHS of compare
   6479         LHS.getOperand(3),  // RHS of compare
   6480         DAG.getConstant(CompareOpc, MVT::i32)
   6481       };
   6482       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
   6483       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
   6484 
   6485       // Unpack the result based on how the target uses it.
   6486       PPC::Predicate CompOpc;
   6487       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
   6488       default:  // Can't happen, don't crash on invalid number though.
   6489       case 0:   // Branch on the value of the EQ bit of CR6.
   6490         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
   6491         break;
   6492       case 1:   // Branch on the inverted value of the EQ bit of CR6.
   6493         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
   6494         break;
   6495       case 2:   // Branch on the value of the LT bit of CR6.
   6496         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
   6497         break;
   6498       case 3:   // Branch on the inverted value of the LT bit of CR6.
   6499         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
   6500         break;
   6501       }
   6502 
   6503       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
   6504                          DAG.getConstant(CompOpc, MVT::i32),
   6505                          DAG.getRegister(PPC::CR6, MVT::i32),
   6506                          N->getOperand(4), CompNode.getValue(1));
   6507     }
   6508     break;
   6509   }
   6510   }
   6511 
   6512   return SDValue();
   6513 }
   6514 
   6515 //===----------------------------------------------------------------------===//
   6516 // Inline Assembly Support
   6517 //===----------------------------------------------------------------------===//
   6518 
   6519 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   6520                                                        APInt &KnownZero,
   6521                                                        APInt &KnownOne,
   6522                                                        const SelectionDAG &DAG,
   6523                                                        unsigned Depth) const {
   6524   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
   6525   switch (Op.getOpcode()) {
   6526   default: break;
   6527   case PPCISD::LBRX: {
   6528     // lhbrx is known to have the top bits cleared out.
   6529     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
   6530       KnownZero = 0xFFFF0000;
   6531     break;
   6532   }
   6533   case ISD::INTRINSIC_WO_CHAIN: {
   6534     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
   6535     default: break;
   6536     case Intrinsic::ppc_altivec_vcmpbfp_p:
   6537     case Intrinsic::ppc_altivec_vcmpeqfp_p:
   6538     case Intrinsic::ppc_altivec_vcmpequb_p:
   6539     case Intrinsic::ppc_altivec_vcmpequh_p:
   6540     case Intrinsic::ppc_altivec_vcmpequw_p:
   6541     case Intrinsic::ppc_altivec_vcmpgefp_p:
   6542     case Intrinsic::ppc_altivec_vcmpgtfp_p:
   6543     case Intrinsic::ppc_altivec_vcmpgtsb_p:
   6544     case Intrinsic::ppc_altivec_vcmpgtsh_p:
   6545     case Intrinsic::ppc_altivec_vcmpgtsw_p:
   6546     case Intrinsic::ppc_altivec_vcmpgtub_p:
   6547     case Intrinsic::ppc_altivec_vcmpgtuh_p:
   6548     case Intrinsic::ppc_altivec_vcmpgtuw_p:
   6549       KnownZero = ~1U;  // All bits but the low one are known to be zero.
   6550       break;
   6551     }
   6552   }
   6553   }
   6554 }
   6555 
   6556 
   6557 /// getConstraintType - Given a constraint, return the type of
   6558 /// constraint it is for this target.
   6559 PPCTargetLowering::ConstraintType
   6560 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
   6561   if (Constraint.size() == 1) {
   6562     switch (Constraint[0]) {
   6563     default: break;
   6564     case 'b':
   6565     case 'r':
   6566     case 'f':
   6567     case 'v':
   6568     case 'y':
   6569       return C_RegisterClass;
   6570     case 'Z':
   6571       // FIXME: While Z does indicate a memory constraint, it specifically
   6572       // indicates an r+r address (used in conjunction with the 'y' modifier
   6573       // in the replacement string). Currently, we're forcing the base
   6574       // register to be r0 in the asm printer (which is interpreted as zero)
   6575       // and forming the complete address in the second register. This is
   6576       // suboptimal.
   6577       return C_Memory;
   6578     }
   6579   }
   6580   return TargetLowering::getConstraintType(Constraint);
   6581 }
   6582 
   6583 /// Examine constraint type and operand type and determine a weight value.
   6584 /// This object must already have been set up with the operand type
   6585 /// and the current alternative constraint selected.
   6586 TargetLowering::ConstraintWeight
   6587 PPCTargetLowering::getSingleConstraintMatchWeight(
   6588     AsmOperandInfo &info, const char *constraint) const {
   6589   ConstraintWeight weight = CW_Invalid;
   6590   Value *CallOperandVal = info.CallOperandVal;
   6591     // If we don't have a value, we can't do a match,
   6592     // but allow it at the lowest weight.
   6593   if (CallOperandVal == NULL)
   6594     return CW_Default;
   6595   Type *type = CallOperandVal->getType();
   6596   // Look at the constraint type.
   6597   switch (*constraint) {
   6598   default:
   6599     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   6600     break;
   6601   case 'b':
   6602     if (type->isIntegerTy())
   6603       weight = CW_Register;
   6604     break;
   6605   case 'f':
   6606     if (type->isFloatTy())
   6607       weight = CW_Register;
   6608     break;
   6609   case 'd':
   6610     if (type->isDoubleTy())
   6611       weight = CW_Register;
   6612     break;
   6613   case 'v':
   6614     if (type->isVectorTy())
   6615       weight = CW_Register;
   6616     break;
   6617   case 'y':
   6618     weight = CW_Register;
   6619     break;
   6620   case 'Z':
   6621     weight = CW_Memory;
   6622     break;
   6623   }
   6624   return weight;
   6625 }
   6626 
   6627 std::pair<unsigned, const TargetRegisterClass*>
   6628 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   6629                                                 EVT VT) const {
   6630   if (Constraint.size() == 1) {
   6631     // GCC RS6000 Constraint Letters
   6632     switch (Constraint[0]) {
   6633     case 'b':   // R1-R31
   6634     case 'r':   // R0-R31
   6635       if (VT == MVT::i64 && PPCSubTarget.isPPC64())
   6636         return std::make_pair(0U, &PPC::G8RCRegClass);
   6637       return std::make_pair(0U, &PPC::GPRCRegClass);
   6638     case 'f':
   6639       if (VT == MVT::f32 || VT == MVT::i32)
   6640         return std::make_pair(0U, &PPC::F4RCRegClass);
   6641       if (VT == MVT::f64 || VT == MVT::i64)
   6642         return std::make_pair(0U, &PPC::F8RCRegClass);
   6643       break;
   6644     case 'v':
   6645       return std::make_pair(0U, &PPC::VRRCRegClass);
   6646     case 'y':   // crrc
   6647       return std::make_pair(0U, &PPC::CRRCRegClass);
   6648     }
   6649   }
   6650 
   6651   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   6652 }
   6653 
   6654 
   6655 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   6656 /// vector.  If it is invalid, don't add anything to Ops.
   6657 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   6658                                                      std::string &Constraint,
   6659                                                      std::vector<SDValue>&Ops,
   6660                                                      SelectionDAG &DAG) const {
   6661   SDValue Result(0,0);
   6662 
   6663   // Only support length 1 constraints.
   6664   if (Constraint.length() > 1) return;
   6665 
   6666   char Letter = Constraint[0];
   6667   switch (Letter) {
   6668   default: break;
   6669   case 'I':
   6670   case 'J':
   6671   case 'K':
   6672   case 'L':
   6673   case 'M':
   6674   case 'N':
   6675   case 'O':
   6676   case 'P': {
   6677     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
   6678     if (!CST) return; // Must be an immediate to match.
   6679     unsigned Value = CST->getZExtValue();
   6680     switch (Letter) {
   6681     default: llvm_unreachable("Unknown constraint letter!");
   6682     case 'I':  // "I" is a signed 16-bit constant.
   6683       if ((short)Value == (int)Value)
   6684         Result = DAG.getTargetConstant(Value, Op.getValueType());
   6685       break;
   6686     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
   6687     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
   6688       if ((short)Value == 0)
   6689         Result = DAG.getTargetConstant(Value, Op.getValueType());
   6690       break;
   6691     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
   6692       if ((Value >> 16) == 0)
   6693         Result = DAG.getTargetConstant(Value, Op.getValueType());
   6694       break;
   6695     case 'M':  // "M" is a constant that is greater than 31.
   6696       if (Value > 31)
   6697         Result = DAG.getTargetConstant(Value, Op.getValueType());
   6698       break;
   6699     case 'N':  // "N" is a positive constant that is an exact power of two.
   6700       if ((int)Value > 0 && isPowerOf2_32(Value))
   6701         Result = DAG.getTargetConstant(Value, Op.getValueType());
   6702       break;
   6703     case 'O':  // "O" is the constant zero.
   6704       if (Value == 0)
   6705         Result = DAG.getTargetConstant(Value, Op.getValueType());
   6706       break;
   6707     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
   6708       if ((short)-Value == (int)-Value)
   6709         Result = DAG.getTargetConstant(Value, Op.getValueType());
   6710       break;
   6711     }
   6712     break;
   6713   }
   6714   }
   6715 
   6716   if (Result.getNode()) {
   6717     Ops.push_back(Result);
   6718     return;
   6719   }
   6720 
   6721   // Handle standard constraint letters.
   6722   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   6723 }
   6724 
   6725 // isLegalAddressingMode - Return true if the addressing mode represented
   6726 // by AM is legal for this target, for a load/store of the specified type.
   6727 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
   6728                                               Type *Ty) const {
   6729   // FIXME: PPC does not allow r+i addressing modes for vectors!
   6730 
   6731   // PPC allows a sign-extended 16-bit immediate field.
   6732   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   6733     return false;
   6734 
   6735   // No global is ever allowed as a base.
   6736   if (AM.BaseGV)
   6737     return false;
   6738 
   6739   // PPC only support r+r,
   6740   switch (AM.Scale) {
   6741   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   6742     break;
   6743   case 1:
   6744     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   6745       return false;
   6746     // Otherwise we have r+r or r+i.
   6747     break;
   6748   case 2:
   6749     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   6750       return false;
   6751     // Allow 2*r as r+r.
   6752     break;
   6753   default:
   6754     // No other scales are supported.
   6755     return false;
   6756   }
   6757 
   6758   return true;
   6759 }
   6760 
   6761 /// isLegalAddressImmediate - Return true if the integer value can be used
   6762 /// as the offset of the target addressing mode for load / store of the
   6763 /// given type.
   6764 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
   6765   // PPC allows a sign-extended 16-bit immediate field.
   6766   return (V > -(1 << 16) && V < (1 << 16)-1);
   6767 }
   6768 
   6769 bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const {
   6770   return false;
   6771 }
   6772 
   6773 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
   6774                                            SelectionDAG &DAG) const {
   6775   MachineFunction &MF = DAG.getMachineFunction();
   6776   MachineFrameInfo *MFI = MF.getFrameInfo();
   6777   MFI->setReturnAddressIsTaken(true);
   6778 
   6779   DebugLoc dl = Op.getDebugLoc();
   6780   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   6781 
   6782   // Make sure the function does not optimize away the store of the RA to
   6783   // the stack.
   6784   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   6785   FuncInfo->setLRStoreRequired();
   6786   bool isPPC64 = PPCSubTarget.isPPC64();
   6787   bool isDarwinABI = PPCSubTarget.isDarwinABI();
   6788 
   6789   if (Depth > 0) {
   6790     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   6791     SDValue Offset =
   6792 
   6793       DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
   6794                       isPPC64? MVT::i64 : MVT::i32);
   6795     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   6796                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
   6797                                    FrameAddr, Offset),
   6798                        MachinePointerInfo(), false, false, false, 0);
   6799   }
   6800 
   6801   // Just load the return address off the stack.
   6802   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
   6803   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   6804                      RetAddrFI, MachinePointerInfo(), false, false, false, 0);
   6805 }
   6806 
   6807 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
   6808                                           SelectionDAG &DAG) const {
   6809   DebugLoc dl = Op.getDebugLoc();
   6810   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   6811 
   6812   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   6813   bool isPPC64 = PtrVT == MVT::i64;
   6814 
   6815   MachineFunction &MF = DAG.getMachineFunction();
   6816   MachineFrameInfo *MFI = MF.getFrameInfo();
   6817   MFI->setFrameAddressIsTaken(true);
   6818   bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) ||
   6819                MFI->hasVarSizedObjects()) &&
   6820                   MFI->getStackSize() &&
   6821                   !MF.getFunction()->getAttributes().
   6822                     hasAttribute(AttributeSet::FunctionIndex, Attribute::Naked);
   6823   unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
   6824                                 (is31 ? PPC::R31 : PPC::R1);
   6825   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
   6826                                          PtrVT);
   6827   while (Depth--)
   6828     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
   6829                             FrameAddr, MachinePointerInfo(), false, false,
   6830                             false, 0);
   6831   return FrameAddr;
   6832 }
   6833 
   6834 bool
   6835 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   6836   // The PowerPC target isn't yet aware of offsets.
   6837   return false;
   6838 }
   6839 
   6840 /// getOptimalMemOpType - Returns the target specific optimal type for load
   6841 /// and store operations as a result of memset, memcpy, and memmove
   6842 /// lowering. If DstAlign is zero that means it's safe to destination
   6843 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
   6844 /// means there isn't a need to check it against alignment requirement,
   6845 /// probably because the source does not need to be loaded. If 'IsMemset' is
   6846 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
   6847 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
   6848 /// source is constant so it does not need to be loaded.
   6849 /// It returns EVT::Other if the type should be determined using generic
   6850 /// target-independent logic.
   6851 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
   6852                                            unsigned DstAlign, unsigned SrcAlign,
   6853                                            bool IsMemset, bool ZeroMemset,
   6854                                            bool MemcpyStrSrc,
   6855                                            MachineFunction &MF) const {
   6856   if (this->PPCSubTarget.isPPC64()) {
   6857     return MVT::i64;
   6858   } else {
   6859     return MVT::i32;
   6860   }
   6861 }
   6862 
   6863 bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
   6864                                                       bool *Fast) const {
   6865   if (DisablePPCUnaligned)
   6866     return false;
   6867 
   6868   // PowerPC supports unaligned memory access for simple non-vector types.
   6869   // Although accessing unaligned addresses is not as efficient as accessing
   6870   // aligned addresses, it is generally more efficient than manual expansion,
   6871   // and generally only traps for software emulation when crossing page
   6872   // boundaries.
   6873 
   6874   if (!VT.isSimple())
   6875     return false;
   6876 
   6877   if (VT.getSimpleVT().isVector())
   6878     return false;
   6879 
   6880   if (VT == MVT::ppcf128)
   6881     return false;
   6882 
   6883   if (Fast)
   6884     *Fast = true;
   6885 
   6886   return true;
   6887 }
   6888 
   6889 /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
   6890 /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
   6891 /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
   6892 /// is expanded to mul + add.
   6893 bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const {
   6894   if (!VT.isSimple())
   6895     return false;
   6896 
   6897   switch (VT.getSimpleVT().SimpleTy) {
   6898   case MVT::f32:
   6899   case MVT::f64:
   6900   case MVT::v4f32:
   6901     return true;
   6902   default:
   6903     break;
   6904   }
   6905 
   6906   return false;
   6907 }
   6908 
   6909 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
   6910   if (DisableILPPref)
   6911     return TargetLowering::getSchedulingPreference(N);
   6912 
   6913   return Sched::ILP;
   6914 }
   6915 
   6916