Home | History | Annotate | Download | only in CodeGen
      1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // MachineScheduler schedules machine instructions after phi elimination. It
     11 // preserves LiveIntervals so it can be invoked before register allocation.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "misched"
     16 
     17 #include "llvm/CodeGen/MachineScheduler.h"
     18 #include "llvm/ADT/OwningPtr.h"
     19 #include "llvm/ADT/PriorityQueue.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     22 #include "llvm/CodeGen/MachineDominators.h"
     23 #include "llvm/CodeGen/MachineLoopInfo.h"
     24 #include "llvm/CodeGen/Passes.h"
     25 #include "llvm/CodeGen/RegisterClassInfo.h"
     26 #include "llvm/CodeGen/ScheduleDFS.h"
     27 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/GraphWriter.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include <queue>
     34 
     35 using namespace llvm;
     36 
     37 namespace llvm {
     38 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
     39                            cl::desc("Force top-down list scheduling"));
     40 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
     41                             cl::desc("Force bottom-up list scheduling"));
     42 }
     43 
     44 #ifndef NDEBUG
     45 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
     46   cl::desc("Pop up a window to show MISched dags after they are processed"));
     47 
     48 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
     49   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
     50 #else
     51 static bool ViewMISchedDAGs = false;
     52 #endif // NDEBUG
     53 
     54 // Experimental heuristics
     55 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
     56   cl::desc("Enable load clustering."), cl::init(true));
     57 
     58 // Experimental heuristics
     59 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
     60   cl::desc("Enable scheduling for macro fusion."), cl::init(true));
     61 
     62 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
     63   cl::desc("Verify machine instrs before and after machine scheduling"));
     64 
     65 // DAG subtrees must have at least this many nodes.
     66 static const unsigned MinSubtreeSize = 8;
     67 
     68 //===----------------------------------------------------------------------===//
     69 // Machine Instruction Scheduling Pass and Registry
     70 //===----------------------------------------------------------------------===//
     71 
     72 MachineSchedContext::MachineSchedContext():
     73     MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
     74   RegClassInfo = new RegisterClassInfo();
     75 }
     76 
     77 MachineSchedContext::~MachineSchedContext() {
     78   delete RegClassInfo;
     79 }
     80 
     81 namespace {
     82 /// MachineScheduler runs after coalescing and before register allocation.
     83 class MachineScheduler : public MachineSchedContext,
     84                          public MachineFunctionPass {
     85 public:
     86   MachineScheduler();
     87 
     88   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
     89 
     90   virtual void releaseMemory() {}
     91 
     92   virtual bool runOnMachineFunction(MachineFunction&);
     93 
     94   virtual void print(raw_ostream &O, const Module* = 0) const;
     95 
     96   static char ID; // Class identification, replacement for typeinfo
     97 };
     98 } // namespace
     99 
    100 char MachineScheduler::ID = 0;
    101 
    102 char &llvm::MachineSchedulerID = MachineScheduler::ID;
    103 
    104 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
    105                       "Machine Instruction Scheduler", false, false)
    106 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    107 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    108 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    109 INITIALIZE_PASS_END(MachineScheduler, "misched",
    110                     "Machine Instruction Scheduler", false, false)
    111 
    112 MachineScheduler::MachineScheduler()
    113 : MachineFunctionPass(ID) {
    114   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
    115 }
    116 
    117 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
    118   AU.setPreservesCFG();
    119   AU.addRequiredID(MachineDominatorsID);
    120   AU.addRequired<MachineLoopInfo>();
    121   AU.addRequired<AliasAnalysis>();
    122   AU.addRequired<TargetPassConfig>();
    123   AU.addRequired<SlotIndexes>();
    124   AU.addPreserved<SlotIndexes>();
    125   AU.addRequired<LiveIntervals>();
    126   AU.addPreserved<LiveIntervals>();
    127   MachineFunctionPass::getAnalysisUsage(AU);
    128 }
    129 
    130 MachinePassRegistry MachineSchedRegistry::Registry;
    131 
    132 /// A dummy default scheduler factory indicates whether the scheduler
    133 /// is overridden on the command line.
    134 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
    135   return 0;
    136 }
    137 
    138 /// MachineSchedOpt allows command line selection of the scheduler.
    139 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
    140                RegisterPassParser<MachineSchedRegistry> >
    141 MachineSchedOpt("misched",
    142                 cl::init(&useDefaultMachineSched), cl::Hidden,
    143                 cl::desc("Machine instruction scheduler to use"));
    144 
    145 static MachineSchedRegistry
    146 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
    147                      useDefaultMachineSched);
    148 
    149 /// Forward declare the standard machine scheduler. This will be used as the
    150 /// default scheduler if the target does not set a default.
    151 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
    152 
    153 
    154 /// Decrement this iterator until reaching the top or a non-debug instr.
    155 static MachineBasicBlock::iterator
    156 priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
    157   assert(I != Beg && "reached the top of the region, cannot decrement");
    158   while (--I != Beg) {
    159     if (!I->isDebugValue())
    160       break;
    161   }
    162   return I;
    163 }
    164 
    165 /// If this iterator is a debug value, increment until reaching the End or a
    166 /// non-debug instruction.
    167 static MachineBasicBlock::iterator
    168 nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
    169   for(; I != End; ++I) {
    170     if (!I->isDebugValue())
    171       break;
    172   }
    173   return I;
    174 }
    175 
    176 /// Top-level MachineScheduler pass driver.
    177 ///
    178 /// Visit blocks in function order. Divide each block into scheduling regions
    179 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
    180 /// consistent with the DAG builder, which traverses the interior of the
    181 /// scheduling regions bottom-up.
    182 ///
    183 /// This design avoids exposing scheduling boundaries to the DAG builder,
    184 /// simplifying the DAG builder's support for "special" target instructions.
    185 /// At the same time the design allows target schedulers to operate across
    186 /// scheduling boundaries, for example to bundle the boudary instructions
    187 /// without reordering them. This creates complexity, because the target
    188 /// scheduler must update the RegionBegin and RegionEnd positions cached by
    189 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
    190 /// design would be to split blocks at scheduling boundaries, but LLVM has a
    191 /// general bias against block splitting purely for implementation simplicity.
    192 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
    193   DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
    194 
    195   // Initialize the context of the pass.
    196   MF = &mf;
    197   MLI = &getAnalysis<MachineLoopInfo>();
    198   MDT = &getAnalysis<MachineDominatorTree>();
    199   PassConfig = &getAnalysis<TargetPassConfig>();
    200   AA = &getAnalysis<AliasAnalysis>();
    201 
    202   LIS = &getAnalysis<LiveIntervals>();
    203   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
    204 
    205   if (VerifyScheduling) {
    206     DEBUG(LIS->print(dbgs()));
    207     MF->verify(this, "Before machine scheduling.");
    208   }
    209   RegClassInfo->runOnMachineFunction(*MF);
    210 
    211   // Select the scheduler, or set the default.
    212   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
    213   if (Ctor == useDefaultMachineSched) {
    214     // Get the default scheduler set by the target.
    215     Ctor = MachineSchedRegistry::getDefault();
    216     if (!Ctor) {
    217       Ctor = createConvergingSched;
    218       MachineSchedRegistry::setDefault(Ctor);
    219     }
    220   }
    221   // Instantiate the selected scheduler.
    222   OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
    223 
    224   // Visit all machine basic blocks.
    225   //
    226   // TODO: Visit blocks in global postorder or postorder within the bottom-up
    227   // loop tree. Then we can optionally compute global RegPressure.
    228   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
    229        MBB != MBBEnd; ++MBB) {
    230 
    231     Scheduler->startBlock(MBB);
    232 
    233     // Break the block into scheduling regions [I, RegionEnd), and schedule each
    234     // region as soon as it is discovered. RegionEnd points the scheduling
    235     // boundary at the bottom of the region. The DAG does not include RegionEnd,
    236     // but the region does (i.e. the next RegionEnd is above the previous
    237     // RegionBegin). If the current block has no terminator then RegionEnd ==
    238     // MBB->end() for the bottom region.
    239     //
    240     // The Scheduler may insert instructions during either schedule() or
    241     // exitRegion(), even for empty regions. So the local iterators 'I' and
    242     // 'RegionEnd' are invalid across these calls.
    243     unsigned RemainingInstrs = MBB->size();
    244     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
    245         RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
    246 
    247       // Avoid decrementing RegionEnd for blocks with no terminator.
    248       if (RegionEnd != MBB->end()
    249           || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
    250         --RegionEnd;
    251         // Count the boundary instruction.
    252         --RemainingInstrs;
    253       }
    254 
    255       // The next region starts above the previous region. Look backward in the
    256       // instruction stream until we find the nearest boundary.
    257       MachineBasicBlock::iterator I = RegionEnd;
    258       for(;I != MBB->begin(); --I, --RemainingInstrs) {
    259         if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
    260           break;
    261       }
    262       // Notify the scheduler of the region, even if we may skip scheduling
    263       // it. Perhaps it still needs to be bundled.
    264       Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs);
    265 
    266       // Skip empty scheduling regions (0 or 1 schedulable instructions).
    267       if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
    268         // Close the current region. Bundle the terminator if needed.
    269         // This invalidates 'RegionEnd' and 'I'.
    270         Scheduler->exitRegion();
    271         continue;
    272       }
    273       DEBUG(dbgs() << "********** MI Scheduling **********\n");
    274       DEBUG(dbgs() << MF->getName()
    275             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
    276             << "\n  From: " << *I << "    To: ";
    277             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
    278             else dbgs() << "End";
    279             dbgs() << " Remaining: " << RemainingInstrs << "\n");
    280 
    281       // Schedule a region: possibly reorder instructions.
    282       // This invalidates 'RegionEnd' and 'I'.
    283       Scheduler->schedule();
    284 
    285       // Close the current region.
    286       Scheduler->exitRegion();
    287 
    288       // Scheduling has invalidated the current iterator 'I'. Ask the
    289       // scheduler for the top of it's scheduled region.
    290       RegionEnd = Scheduler->begin();
    291     }
    292     assert(RemainingInstrs == 0 && "Instruction count mismatch!");
    293     Scheduler->finishBlock();
    294   }
    295   Scheduler->finalizeSchedule();
    296   DEBUG(LIS->print(dbgs()));
    297   if (VerifyScheduling)
    298     MF->verify(this, "After machine scheduling.");
    299   return true;
    300 }
    301 
    302 void MachineScheduler::print(raw_ostream &O, const Module* m) const {
    303   // unimplemented
    304 }
    305 
    306 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    307 void ReadyQueue::dump() {
    308   dbgs() << Name << ": ";
    309   for (unsigned i = 0, e = Queue.size(); i < e; ++i)
    310     dbgs() << Queue[i]->NodeNum << " ";
    311   dbgs() << "\n";
    312 }
    313 #endif
    314 
    315 //===----------------------------------------------------------------------===//
    316 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
    317 // preservation.
    318 //===----------------------------------------------------------------------===//
    319 
    320 ScheduleDAGMI::~ScheduleDAGMI() {
    321   delete DFSResult;
    322   DeleteContainerPointers(Mutations);
    323   delete SchedImpl;
    324 }
    325 
    326 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
    327   if (SuccSU != &ExitSU) {
    328     // Do not use WillCreateCycle, it assumes SD scheduling.
    329     // If Pred is reachable from Succ, then the edge creates a cycle.
    330     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
    331       return false;
    332     Topo.AddPred(SuccSU, PredDep.getSUnit());
    333   }
    334   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
    335   // Return true regardless of whether a new edge needed to be inserted.
    336   return true;
    337 }
    338 
    339 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
    340 /// NumPredsLeft reaches zero, release the successor node.
    341 ///
    342 /// FIXME: Adjust SuccSU height based on MinLatency.
    343 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
    344   SUnit *SuccSU = SuccEdge->getSUnit();
    345 
    346   if (SuccEdge->isWeak()) {
    347     --SuccSU->WeakPredsLeft;
    348     if (SuccEdge->isCluster())
    349       NextClusterSucc = SuccSU;
    350     return;
    351   }
    352 #ifndef NDEBUG
    353   if (SuccSU->NumPredsLeft == 0) {
    354     dbgs() << "*** Scheduling failed! ***\n";
    355     SuccSU->dump(this);
    356     dbgs() << " has been released too many times!\n";
    357     llvm_unreachable(0);
    358   }
    359 #endif
    360   --SuccSU->NumPredsLeft;
    361   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    362     SchedImpl->releaseTopNode(SuccSU);
    363 }
    364 
    365 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
    366 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
    367   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    368        I != E; ++I) {
    369     releaseSucc(SU, &*I);
    370   }
    371 }
    372 
    373 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
    374 /// NumSuccsLeft reaches zero, release the predecessor node.
    375 ///
    376 /// FIXME: Adjust PredSU height based on MinLatency.
    377 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
    378   SUnit *PredSU = PredEdge->getSUnit();
    379 
    380   if (PredEdge->isWeak()) {
    381     --PredSU->WeakSuccsLeft;
    382     if (PredEdge->isCluster())
    383       NextClusterPred = PredSU;
    384     return;
    385   }
    386 #ifndef NDEBUG
    387   if (PredSU->NumSuccsLeft == 0) {
    388     dbgs() << "*** Scheduling failed! ***\n";
    389     PredSU->dump(this);
    390     dbgs() << " has been released too many times!\n";
    391     llvm_unreachable(0);
    392   }
    393 #endif
    394   --PredSU->NumSuccsLeft;
    395   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
    396     SchedImpl->releaseBottomNode(PredSU);
    397 }
    398 
    399 /// releasePredecessors - Call releasePred on each of SU's predecessors.
    400 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
    401   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    402        I != E; ++I) {
    403     releasePred(SU, &*I);
    404   }
    405 }
    406 
    407 void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
    408                                     MachineBasicBlock::iterator InsertPos) {
    409   // Advance RegionBegin if the first instruction moves down.
    410   if (&*RegionBegin == MI)
    411     ++RegionBegin;
    412 
    413   // Update the instruction stream.
    414   BB->splice(InsertPos, BB, MI);
    415 
    416   // Update LiveIntervals
    417   LIS->handleMove(MI, /*UpdateFlags=*/true);
    418 
    419   // Recede RegionBegin if an instruction moves above the first.
    420   if (RegionBegin == InsertPos)
    421     RegionBegin = MI;
    422 }
    423 
    424 bool ScheduleDAGMI::checkSchedLimit() {
    425 #ifndef NDEBUG
    426   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
    427     CurrentTop = CurrentBottom;
    428     return false;
    429   }
    430   ++NumInstrsScheduled;
    431 #endif
    432   return true;
    433 }
    434 
    435 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
    436 /// crossing a scheduling boundary. [begin, end) includes all instructions in
    437 /// the region, including the boundary itself and single-instruction regions
    438 /// that don't get scheduled.
    439 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
    440                                 MachineBasicBlock::iterator begin,
    441                                 MachineBasicBlock::iterator end,
    442                                 unsigned endcount)
    443 {
    444   ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
    445 
    446   // For convenience remember the end of the liveness region.
    447   LiveRegionEnd =
    448     (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
    449 }
    450 
    451 // Setup the register pressure trackers for the top scheduled top and bottom
    452 // scheduled regions.
    453 void ScheduleDAGMI::initRegPressure() {
    454   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
    455   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
    456 
    457   // Close the RPTracker to finalize live ins.
    458   RPTracker.closeRegion();
    459 
    460   DEBUG(RPTracker.getPressure().dump(TRI));
    461 
    462   // Initialize the live ins and live outs.
    463   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
    464   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
    465 
    466   // Close one end of the tracker so we can call
    467   // getMaxUpward/DownwardPressureDelta before advancing across any
    468   // instructions. This converts currently live regs into live ins/outs.
    469   TopRPTracker.closeTop();
    470   BotRPTracker.closeBottom();
    471 
    472   // Account for liveness generated by the region boundary.
    473   if (LiveRegionEnd != RegionEnd)
    474     BotRPTracker.recede();
    475 
    476   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
    477 
    478   // Cache the list of excess pressure sets in this region. This will also track
    479   // the max pressure in the scheduled code for these sets.
    480   RegionCriticalPSets.clear();
    481   const std::vector<unsigned> &RegionPressure =
    482     RPTracker.getPressure().MaxSetPressure;
    483   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
    484     unsigned Limit = TRI->getRegPressureSetLimit(i);
    485     DEBUG(dbgs() << TRI->getRegPressureSetName(i)
    486           << "Limit " << Limit
    487           << " Actual " << RegionPressure[i] << "\n");
    488     if (RegionPressure[i] > Limit)
    489       RegionCriticalPSets.push_back(PressureElement(i, 0));
    490   }
    491   DEBUG(dbgs() << "Excess PSets: ";
    492         for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
    493           dbgs() << TRI->getRegPressureSetName(
    494             RegionCriticalPSets[i].PSetID) << " ";
    495         dbgs() << "\n");
    496 }
    497 
    498 // FIXME: When the pressure tracker deals in pressure differences then we won't
    499 // iterate over all RegionCriticalPSets[i].
    500 void ScheduleDAGMI::
    501 updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) {
    502   for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
    503     unsigned ID = RegionCriticalPSets[i].PSetID;
    504     int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
    505     if ((int)NewMaxPressure[ID] > MaxUnits)
    506       MaxUnits = NewMaxPressure[ID];
    507   }
    508 }
    509 
    510 /// schedule - Called back from MachineScheduler::runOnMachineFunction
    511 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
    512 /// only includes instructions that have DAG nodes, not scheduling boundaries.
    513 ///
    514 /// This is a skeletal driver, with all the functionality pushed into helpers,
    515 /// so that it can be easilly extended by experimental schedulers. Generally,
    516 /// implementing MachineSchedStrategy should be sufficient to implement a new
    517 /// scheduling algorithm. However, if a scheduler further subclasses
    518 /// ScheduleDAGMI then it will want to override this virtual method in order to
    519 /// update any specialized state.
    520 void ScheduleDAGMI::schedule() {
    521   buildDAGWithRegPressure();
    522 
    523   Topo.InitDAGTopologicalSorting();
    524 
    525   postprocessDAG();
    526 
    527   SmallVector<SUnit*, 8> TopRoots, BotRoots;
    528   findRootsAndBiasEdges(TopRoots, BotRoots);
    529 
    530   // Initialize the strategy before modifying the DAG.
    531   // This may initialize a DFSResult to be used for queue priority.
    532   SchedImpl->initialize(this);
    533 
    534   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    535           SUnits[su].dumpAll(this));
    536   if (ViewMISchedDAGs) viewGraph();
    537 
    538   // Initialize ready queues now that the DAG and priority data are finalized.
    539   initQueues(TopRoots, BotRoots);
    540 
    541   bool IsTopNode = false;
    542   while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
    543     assert(!SU->isScheduled && "Node already scheduled");
    544     if (!checkSchedLimit())
    545       break;
    546 
    547     scheduleMI(SU, IsTopNode);
    548 
    549     updateQueues(SU, IsTopNode);
    550   }
    551   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
    552 
    553   placeDebugValues();
    554 
    555   DEBUG({
    556       unsigned BBNum = begin()->getParent()->getNumber();
    557       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
    558       dumpSchedule();
    559       dbgs() << '\n';
    560     });
    561 }
    562 
    563 /// Build the DAG and setup three register pressure trackers.
    564 void ScheduleDAGMI::buildDAGWithRegPressure() {
    565   // Initialize the register pressure tracker used by buildSchedGraph.
    566   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
    567 
    568   // Account for liveness generate by the region boundary.
    569   if (LiveRegionEnd != RegionEnd)
    570     RPTracker.recede();
    571 
    572   // Build the DAG, and compute current register pressure.
    573   buildSchedGraph(AA, &RPTracker);
    574 
    575   // Initialize top/bottom trackers after computing region pressure.
    576   initRegPressure();
    577 }
    578 
    579 /// Apply each ScheduleDAGMutation step in order.
    580 void ScheduleDAGMI::postprocessDAG() {
    581   for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
    582     Mutations[i]->apply(this);
    583   }
    584 }
    585 
    586 void ScheduleDAGMI::computeDFSResult() {
    587   if (!DFSResult)
    588     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
    589   DFSResult->clear();
    590   ScheduledTrees.clear();
    591   DFSResult->resize(SUnits.size());
    592   DFSResult->compute(SUnits);
    593   ScheduledTrees.resize(DFSResult->getNumSubtrees());
    594 }
    595 
    596 void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
    597                                           SmallVectorImpl<SUnit*> &BotRoots) {
    598   for (std::vector<SUnit>::iterator
    599          I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
    600     SUnit *SU = &(*I);
    601     assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
    602 
    603     // Order predecessors so DFSResult follows the critical path.
    604     SU->biasCriticalPath();
    605 
    606     // A SUnit is ready to top schedule if it has no predecessors.
    607     if (!I->NumPredsLeft)
    608       TopRoots.push_back(SU);
    609     // A SUnit is ready to bottom schedule if it has no successors.
    610     if (!I->NumSuccsLeft)
    611       BotRoots.push_back(SU);
    612   }
    613   ExitSU.biasCriticalPath();
    614 }
    615 
    616 /// Identify DAG roots and setup scheduler queues.
    617 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
    618                                ArrayRef<SUnit*> BotRoots) {
    619   NextClusterSucc = NULL;
    620   NextClusterPred = NULL;
    621 
    622   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
    623   //
    624   // Nodes with unreleased weak edges can still be roots.
    625   // Release top roots in forward order.
    626   for (SmallVectorImpl<SUnit*>::const_iterator
    627          I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
    628     SchedImpl->releaseTopNode(*I);
    629   }
    630   // Release bottom roots in reverse order so the higher priority nodes appear
    631   // first. This is more natural and slightly more efficient.
    632   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
    633          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
    634     SchedImpl->releaseBottomNode(*I);
    635   }
    636 
    637   releaseSuccessors(&EntrySU);
    638   releasePredecessors(&ExitSU);
    639 
    640   SchedImpl->registerRoots();
    641 
    642   // Advance past initial DebugValues.
    643   assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
    644   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
    645   TopRPTracker.setPos(CurrentTop);
    646 
    647   CurrentBottom = RegionEnd;
    648 }
    649 
    650 /// Move an instruction and update register pressure.
    651 void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
    652   // Move the instruction to its new location in the instruction stream.
    653   MachineInstr *MI = SU->getInstr();
    654 
    655   if (IsTopNode) {
    656     assert(SU->isTopReady() && "node still has unscheduled dependencies");
    657     if (&*CurrentTop == MI)
    658       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
    659     else {
    660       moveInstruction(MI, CurrentTop);
    661       TopRPTracker.setPos(MI);
    662     }
    663 
    664     // Update top scheduled pressure.
    665     TopRPTracker.advance();
    666     assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
    667     updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
    668   }
    669   else {
    670     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
    671     MachineBasicBlock::iterator priorII =
    672       priorNonDebug(CurrentBottom, CurrentTop);
    673     if (&*priorII == MI)
    674       CurrentBottom = priorII;
    675     else {
    676       if (&*CurrentTop == MI) {
    677         CurrentTop = nextIfDebug(++CurrentTop, priorII);
    678         TopRPTracker.setPos(CurrentTop);
    679       }
    680       moveInstruction(MI, CurrentBottom);
    681       CurrentBottom = MI;
    682     }
    683     // Update bottom scheduled pressure.
    684     BotRPTracker.recede();
    685     assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
    686     updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
    687   }
    688 }
    689 
    690 /// Update scheduler queues after scheduling an instruction.
    691 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
    692   // Release dependent instructions for scheduling.
    693   if (IsTopNode)
    694     releaseSuccessors(SU);
    695   else
    696     releasePredecessors(SU);
    697 
    698   SU->isScheduled = true;
    699 
    700   if (DFSResult) {
    701     unsigned SubtreeID = DFSResult->getSubtreeID(SU);
    702     if (!ScheduledTrees.test(SubtreeID)) {
    703       ScheduledTrees.set(SubtreeID);
    704       DFSResult->scheduleTree(SubtreeID);
    705       SchedImpl->scheduleTree(SubtreeID);
    706     }
    707   }
    708 
    709   // Notify the scheduling strategy after updating the DAG.
    710   SchedImpl->schedNode(SU, IsTopNode);
    711 }
    712 
    713 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
    714 void ScheduleDAGMI::placeDebugValues() {
    715   // If first instruction was a DBG_VALUE then put it back.
    716   if (FirstDbgValue) {
    717     BB->splice(RegionBegin, BB, FirstDbgValue);
    718     RegionBegin = FirstDbgValue;
    719   }
    720 
    721   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
    722          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    723     std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
    724     MachineInstr *DbgValue = P.first;
    725     MachineBasicBlock::iterator OrigPrevMI = P.second;
    726     if (&*RegionBegin == DbgValue)
    727       ++RegionBegin;
    728     BB->splice(++OrigPrevMI, BB, DbgValue);
    729     if (OrigPrevMI == llvm::prior(RegionEnd))
    730       RegionEnd = DbgValue;
    731   }
    732   DbgValues.clear();
    733   FirstDbgValue = NULL;
    734 }
    735 
    736 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    737 void ScheduleDAGMI::dumpSchedule() const {
    738   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
    739     if (SUnit *SU = getSUnit(&(*MI)))
    740       SU->dump(this);
    741     else
    742       dbgs() << "Missing SUnit\n";
    743   }
    744 }
    745 #endif
    746 
    747 //===----------------------------------------------------------------------===//
    748 // LoadClusterMutation - DAG post-processing to cluster loads.
    749 //===----------------------------------------------------------------------===//
    750 
    751 namespace {
    752 /// \brief Post-process the DAG to create cluster edges between neighboring
    753 /// loads.
    754 class LoadClusterMutation : public ScheduleDAGMutation {
    755   struct LoadInfo {
    756     SUnit *SU;
    757     unsigned BaseReg;
    758     unsigned Offset;
    759     LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
    760       : SU(su), BaseReg(reg), Offset(ofs) {}
    761   };
    762   static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS,
    763                            const LoadClusterMutation::LoadInfo &RHS);
    764 
    765   const TargetInstrInfo *TII;
    766   const TargetRegisterInfo *TRI;
    767 public:
    768   LoadClusterMutation(const TargetInstrInfo *tii,
    769                       const TargetRegisterInfo *tri)
    770     : TII(tii), TRI(tri) {}
    771 
    772   virtual void apply(ScheduleDAGMI *DAG);
    773 protected:
    774   void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
    775 };
    776 } // anonymous
    777 
    778 bool LoadClusterMutation::LoadInfoLess(
    779   const LoadClusterMutation::LoadInfo &LHS,
    780   const LoadClusterMutation::LoadInfo &RHS) {
    781   if (LHS.BaseReg != RHS.BaseReg)
    782     return LHS.BaseReg < RHS.BaseReg;
    783   return LHS.Offset < RHS.Offset;
    784 }
    785 
    786 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
    787                                                   ScheduleDAGMI *DAG) {
    788   SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
    789   for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
    790     SUnit *SU = Loads[Idx];
    791     unsigned BaseReg;
    792     unsigned Offset;
    793     if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
    794       LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
    795   }
    796   if (LoadRecords.size() < 2)
    797     return;
    798   std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess);
    799   unsigned ClusterLength = 1;
    800   for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
    801     if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
    802       ClusterLength = 1;
    803       continue;
    804     }
    805 
    806     SUnit *SUa = LoadRecords[Idx].SU;
    807     SUnit *SUb = LoadRecords[Idx+1].SU;
    808     if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
    809         && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
    810 
    811       DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
    812             << SUb->NodeNum << ")\n");
    813       // Copy successor edges from SUa to SUb. Interleaving computation
    814       // dependent on SUa can prevent load combining due to register reuse.
    815       // Predecessor edges do not need to be copied from SUb to SUa since nearby
    816       // loads should have effectively the same inputs.
    817       for (SUnit::const_succ_iterator
    818              SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
    819         if (SI->getSUnit() == SUb)
    820           continue;
    821         DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
    822         DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
    823       }
    824       ++ClusterLength;
    825     }
    826     else
    827       ClusterLength = 1;
    828   }
    829 }
    830 
    831 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
    832 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
    833   // Map DAG NodeNum to store chain ID.
    834   DenseMap<unsigned, unsigned> StoreChainIDs;
    835   // Map each store chain to a set of dependent loads.
    836   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
    837   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
    838     SUnit *SU = &DAG->SUnits[Idx];
    839     if (!SU->getInstr()->mayLoad())
    840       continue;
    841     unsigned ChainPredID = DAG->SUnits.size();
    842     for (SUnit::const_pred_iterator
    843            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
    844       if (PI->isCtrl()) {
    845         ChainPredID = PI->getSUnit()->NodeNum;
    846         break;
    847       }
    848     }
    849     // Check if this chain-like pred has been seen
    850     // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
    851     unsigned NumChains = StoreChainDependents.size();
    852     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
    853       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
    854     if (Result.second)
    855       StoreChainDependents.resize(NumChains + 1);
    856     StoreChainDependents[Result.first->second].push_back(SU);
    857   }
    858   // Iterate over the store chains.
    859   for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
    860     clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
    861 }
    862 
    863 //===----------------------------------------------------------------------===//
    864 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
    865 //===----------------------------------------------------------------------===//
    866 
    867 namespace {
    868 /// \brief Post-process the DAG to create cluster edges between instructions
    869 /// that may be fused by the processor into a single operation.
    870 class MacroFusion : public ScheduleDAGMutation {
    871   const TargetInstrInfo *TII;
    872 public:
    873   MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
    874 
    875   virtual void apply(ScheduleDAGMI *DAG);
    876 };
    877 } // anonymous
    878 
    879 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
    880 /// fused operations.
    881 void MacroFusion::apply(ScheduleDAGMI *DAG) {
    882   // For now, assume targets can only fuse with the branch.
    883   MachineInstr *Branch = DAG->ExitSU.getInstr();
    884   if (!Branch)
    885     return;
    886 
    887   for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
    888     SUnit *SU = &DAG->SUnits[--Idx];
    889     if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
    890       continue;
    891 
    892     // Create a single weak edge from SU to ExitSU. The only effect is to cause
    893     // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
    894     // need to copy predecessor edges from ExitSU to SU, since top-down
    895     // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
    896     // of SU, we could create an artificial edge from the deepest root, but it
    897     // hasn't been needed yet.
    898     bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
    899     (void)Success;
    900     assert(Success && "No DAG nodes should be reachable from ExitSU");
    901 
    902     DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
    903     break;
    904   }
    905 }
    906 
    907 //===----------------------------------------------------------------------===//
    908 // ConvergingScheduler - Implementation of the standard MachineSchedStrategy.
    909 //===----------------------------------------------------------------------===//
    910 
    911 namespace {
    912 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
    913 /// the schedule.
    914 class ConvergingScheduler : public MachineSchedStrategy {
    915 public:
    916   /// Represent the type of SchedCandidate found within a single queue.
    917   /// pickNodeBidirectional depends on these listed by decreasing priority.
    918   enum CandReason {
    919     NoCand, SingleExcess, SingleCritical, Cluster,
    920     ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
    921     TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse,
    922     NodeOrder};
    923 
    924 #ifndef NDEBUG
    925   static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
    926 #endif
    927 
    928   /// Policy for scheduling the next instruction in the candidate's zone.
    929   struct CandPolicy {
    930     bool ReduceLatency;
    931     unsigned ReduceResIdx;
    932     unsigned DemandResIdx;
    933 
    934     CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
    935   };
    936 
    937   /// Status of an instruction's critical resource consumption.
    938   struct SchedResourceDelta {
    939     // Count critical resources in the scheduled region required by SU.
    940     unsigned CritResources;
    941 
    942     // Count critical resources from another region consumed by SU.
    943     unsigned DemandedResources;
    944 
    945     SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
    946 
    947     bool operator==(const SchedResourceDelta &RHS) const {
    948       return CritResources == RHS.CritResources
    949         && DemandedResources == RHS.DemandedResources;
    950     }
    951     bool operator!=(const SchedResourceDelta &RHS) const {
    952       return !operator==(RHS);
    953     }
    954   };
    955 
    956   /// Store the state used by ConvergingScheduler heuristics, required for the
    957   /// lifetime of one invocation of pickNode().
    958   struct SchedCandidate {
    959     CandPolicy Policy;
    960 
    961     // The best SUnit candidate.
    962     SUnit *SU;
    963 
    964     // The reason for this candidate.
    965     CandReason Reason;
    966 
    967     // Register pressure values for the best candidate.
    968     RegPressureDelta RPDelta;
    969 
    970     // Critical resource consumption of the best candidate.
    971     SchedResourceDelta ResDelta;
    972 
    973     SchedCandidate(const CandPolicy &policy)
    974     : Policy(policy), SU(NULL), Reason(NoCand) {}
    975 
    976     bool isValid() const { return SU; }
    977 
    978     // Copy the status of another candidate without changing policy.
    979     void setBest(SchedCandidate &Best) {
    980       assert(Best.Reason != NoCand && "uninitialized Sched candidate");
    981       SU = Best.SU;
    982       Reason = Best.Reason;
    983       RPDelta = Best.RPDelta;
    984       ResDelta = Best.ResDelta;
    985     }
    986 
    987     void initResourceDelta(const ScheduleDAGMI *DAG,
    988                            const TargetSchedModel *SchedModel);
    989   };
    990 
    991   /// Summarize the unscheduled region.
    992   struct SchedRemainder {
    993     // Critical path through the DAG in expected latency.
    994     unsigned CriticalPath;
    995 
    996     // Unscheduled resources
    997     SmallVector<unsigned, 16> RemainingCounts;
    998     // Critical resource for the unscheduled zone.
    999     unsigned CritResIdx;
   1000     // Number of micro-ops left to schedule.
   1001     unsigned RemainingMicroOps;
   1002 
   1003     void reset() {
   1004       CriticalPath = 0;
   1005       RemainingCounts.clear();
   1006       CritResIdx = 0;
   1007       RemainingMicroOps = 0;
   1008     }
   1009 
   1010     SchedRemainder() { reset(); }
   1011 
   1012     void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
   1013 
   1014     unsigned getMaxRemainingCount(const TargetSchedModel *SchedModel) const {
   1015       if (!SchedModel->hasInstrSchedModel())
   1016         return 0;
   1017 
   1018       return std::max(
   1019         RemainingMicroOps * SchedModel->getMicroOpFactor(),
   1020         RemainingCounts[CritResIdx]);
   1021     }
   1022   };
   1023 
   1024   /// Each Scheduling boundary is associated with ready queues. It tracks the
   1025   /// current cycle in the direction of movement, and maintains the state
   1026   /// of "hazards" and other interlocks at the current cycle.
   1027   struct SchedBoundary {
   1028     ScheduleDAGMI *DAG;
   1029     const TargetSchedModel *SchedModel;
   1030     SchedRemainder *Rem;
   1031 
   1032     ReadyQueue Available;
   1033     ReadyQueue Pending;
   1034     bool CheckPending;
   1035 
   1036     // For heuristics, keep a list of the nodes that immediately depend on the
   1037     // most recently scheduled node.
   1038     SmallPtrSet<const SUnit*, 8> NextSUs;
   1039 
   1040     ScheduleHazardRecognizer *HazardRec;
   1041 
   1042     unsigned CurrCycle;
   1043     unsigned IssueCount;
   1044 
   1045     /// MinReadyCycle - Cycle of the soonest available instruction.
   1046     unsigned MinReadyCycle;
   1047 
   1048     // The expected latency of the critical path in this scheduled zone.
   1049     unsigned ExpectedLatency;
   1050 
   1051     // Resources used in the scheduled zone beyond this boundary.
   1052     SmallVector<unsigned, 16> ResourceCounts;
   1053 
   1054     // Cache the critical resources ID in this scheduled zone.
   1055     unsigned CritResIdx;
   1056 
   1057     // Is the scheduled region resource limited vs. latency limited.
   1058     bool IsResourceLimited;
   1059 
   1060     unsigned ExpectedCount;
   1061 
   1062 #ifndef NDEBUG
   1063     // Remember the greatest min operand latency.
   1064     unsigned MaxMinLatency;
   1065 #endif
   1066 
   1067     void reset() {
   1068       // A new HazardRec is created for each DAG and owned by SchedBoundary.
   1069       delete HazardRec;
   1070 
   1071       Available.clear();
   1072       Pending.clear();
   1073       CheckPending = false;
   1074       NextSUs.clear();
   1075       HazardRec = 0;
   1076       CurrCycle = 0;
   1077       IssueCount = 0;
   1078       MinReadyCycle = UINT_MAX;
   1079       ExpectedLatency = 0;
   1080       ResourceCounts.resize(1);
   1081       assert(!ResourceCounts[0] && "nonzero count for bad resource");
   1082       CritResIdx = 0;
   1083       IsResourceLimited = false;
   1084       ExpectedCount = 0;
   1085 #ifndef NDEBUG
   1086       MaxMinLatency = 0;
   1087 #endif
   1088       // Reserve a zero-count for invalid CritResIdx.
   1089       ResourceCounts.resize(1);
   1090     }
   1091 
   1092     /// Pending queues extend the ready queues with the same ID and the
   1093     /// PendingFlag set.
   1094     SchedBoundary(unsigned ID, const Twine &Name):
   1095       DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
   1096       Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
   1097       HazardRec(0) {
   1098       reset();
   1099     }
   1100 
   1101     ~SchedBoundary() { delete HazardRec; }
   1102 
   1103     void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
   1104               SchedRemainder *rem);
   1105 
   1106     bool isTop() const {
   1107       return Available.getID() == ConvergingScheduler::TopQID;
   1108     }
   1109 
   1110     unsigned getUnscheduledLatency(SUnit *SU) const {
   1111       if (isTop())
   1112         return SU->getHeight();
   1113       return SU->getDepth() + SU->Latency;
   1114     }
   1115 
   1116     unsigned getCriticalCount() const {
   1117       return ResourceCounts[CritResIdx];
   1118     }
   1119 
   1120     bool checkHazard(SUnit *SU);
   1121 
   1122     void setLatencyPolicy(CandPolicy &Policy);
   1123 
   1124     void releaseNode(SUnit *SU, unsigned ReadyCycle);
   1125 
   1126     void bumpCycle();
   1127 
   1128     void countResource(unsigned PIdx, unsigned Cycles);
   1129 
   1130     void bumpNode(SUnit *SU);
   1131 
   1132     void releasePending();
   1133 
   1134     void removeReady(SUnit *SU);
   1135 
   1136     SUnit *pickOnlyChoice();
   1137   };
   1138 
   1139 private:
   1140   ScheduleDAGMI *DAG;
   1141   const TargetSchedModel *SchedModel;
   1142   const TargetRegisterInfo *TRI;
   1143 
   1144   // State of the top and bottom scheduled instruction boundaries.
   1145   SchedRemainder Rem;
   1146   SchedBoundary Top;
   1147   SchedBoundary Bot;
   1148 
   1149 public:
   1150   /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
   1151   enum {
   1152     TopQID = 1,
   1153     BotQID = 2,
   1154     LogMaxQID = 2
   1155   };
   1156 
   1157   ConvergingScheduler():
   1158     DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
   1159 
   1160   virtual void initialize(ScheduleDAGMI *dag);
   1161 
   1162   virtual SUnit *pickNode(bool &IsTopNode);
   1163 
   1164   virtual void schedNode(SUnit *SU, bool IsTopNode);
   1165 
   1166   virtual void releaseTopNode(SUnit *SU);
   1167 
   1168   virtual void releaseBottomNode(SUnit *SU);
   1169 
   1170   virtual void registerRoots();
   1171 
   1172 protected:
   1173   void balanceZones(
   1174     ConvergingScheduler::SchedBoundary &CriticalZone,
   1175     ConvergingScheduler::SchedCandidate &CriticalCand,
   1176     ConvergingScheduler::SchedBoundary &OppositeZone,
   1177     ConvergingScheduler::SchedCandidate &OppositeCand);
   1178 
   1179   void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand,
   1180                            ConvergingScheduler::SchedCandidate &BotCand);
   1181 
   1182   void tryCandidate(SchedCandidate &Cand,
   1183                     SchedCandidate &TryCand,
   1184                     SchedBoundary &Zone,
   1185                     const RegPressureTracker &RPTracker,
   1186                     RegPressureTracker &TempTracker);
   1187 
   1188   SUnit *pickNodeBidirectional(bool &IsTopNode);
   1189 
   1190   void pickNodeFromQueue(SchedBoundary &Zone,
   1191                          const RegPressureTracker &RPTracker,
   1192                          SchedCandidate &Candidate);
   1193 
   1194 #ifndef NDEBUG
   1195   void traceCandidate(const SchedCandidate &Cand, const SchedBoundary &Zone);
   1196 #endif
   1197 };
   1198 } // namespace
   1199 
   1200 void ConvergingScheduler::SchedRemainder::
   1201 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
   1202   reset();
   1203   if (!SchedModel->hasInstrSchedModel())
   1204     return;
   1205   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
   1206   for (std::vector<SUnit>::iterator
   1207          I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
   1208     const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
   1209     RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC);
   1210     for (TargetSchedModel::ProcResIter
   1211            PI = SchedModel->getWriteProcResBegin(SC),
   1212            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   1213       unsigned PIdx = PI->ProcResourceIdx;
   1214       unsigned Factor = SchedModel->getResourceFactor(PIdx);
   1215       RemainingCounts[PIdx] += (Factor * PI->Cycles);
   1216     }
   1217   }
   1218   for (unsigned PIdx = 0, PEnd = SchedModel->getNumProcResourceKinds();
   1219        PIdx != PEnd; ++PIdx) {
   1220     if ((int)(RemainingCounts[PIdx] - RemainingCounts[CritResIdx])
   1221         >= (int)SchedModel->getLatencyFactor()) {
   1222       CritResIdx = PIdx;
   1223     }
   1224   }
   1225 }
   1226 
   1227 void ConvergingScheduler::SchedBoundary::
   1228 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
   1229   reset();
   1230   DAG = dag;
   1231   SchedModel = smodel;
   1232   Rem = rem;
   1233   if (SchedModel->hasInstrSchedModel())
   1234     ResourceCounts.resize(SchedModel->getNumProcResourceKinds());
   1235 }
   1236 
   1237 void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
   1238   DAG = dag;
   1239   SchedModel = DAG->getSchedModel();
   1240   TRI = DAG->TRI;
   1241 
   1242   Rem.init(DAG, SchedModel);
   1243   Top.init(DAG, SchedModel, &Rem);
   1244   Bot.init(DAG, SchedModel, &Rem);
   1245 
   1246   DAG->computeDFSResult();
   1247 
   1248   // Initialize resource counts.
   1249 
   1250   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
   1251   // are disabled, then these HazardRecs will be disabled.
   1252   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
   1253   const TargetMachine &TM = DAG->MF.getTarget();
   1254   Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
   1255   Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
   1256 
   1257   assert((!ForceTopDown || !ForceBottomUp) &&
   1258          "-misched-topdown incompatible with -misched-bottomup");
   1259 }
   1260 
   1261 void ConvergingScheduler::releaseTopNode(SUnit *SU) {
   1262   if (SU->isScheduled)
   1263     return;
   1264 
   1265   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1266        I != E; ++I) {
   1267     unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
   1268     unsigned MinLatency = I->getMinLatency();
   1269 #ifndef NDEBUG
   1270     Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
   1271 #endif
   1272     if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
   1273       SU->TopReadyCycle = PredReadyCycle + MinLatency;
   1274   }
   1275   Top.releaseNode(SU, SU->TopReadyCycle);
   1276 }
   1277 
   1278 void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
   1279   if (SU->isScheduled)
   1280     return;
   1281 
   1282   assert(SU->getInstr() && "Scheduled SUnit must have instr");
   1283 
   1284   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   1285        I != E; ++I) {
   1286     if (I->isWeak())
   1287       continue;
   1288     unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
   1289     unsigned MinLatency = I->getMinLatency();
   1290 #ifndef NDEBUG
   1291     Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
   1292 #endif
   1293     if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
   1294       SU->BotReadyCycle = SuccReadyCycle + MinLatency;
   1295   }
   1296   Bot.releaseNode(SU, SU->BotReadyCycle);
   1297 }
   1298 
   1299 void ConvergingScheduler::registerRoots() {
   1300   Rem.CriticalPath = DAG->ExitSU.getDepth();
   1301   // Some roots may not feed into ExitSU. Check all of them in case.
   1302   for (std::vector<SUnit*>::const_iterator
   1303          I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
   1304     if ((*I)->getDepth() > Rem.CriticalPath)
   1305       Rem.CriticalPath = (*I)->getDepth();
   1306   }
   1307   DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
   1308 }
   1309 
   1310 /// Does this SU have a hazard within the current instruction group.
   1311 ///
   1312 /// The scheduler supports two modes of hazard recognition. The first is the
   1313 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
   1314 /// supports highly complicated in-order reservation tables
   1315 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
   1316 ///
   1317 /// The second is a streamlined mechanism that checks for hazards based on
   1318 /// simple counters that the scheduler itself maintains. It explicitly checks
   1319 /// for instruction dispatch limitations, including the number of micro-ops that
   1320 /// can dispatch per cycle.
   1321 ///
   1322 /// TODO: Also check whether the SU must start a new group.
   1323 bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
   1324   if (HazardRec->isEnabled())
   1325     return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
   1326 
   1327   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
   1328   if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) {
   1329     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
   1330           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
   1331     return true;
   1332   }
   1333   return false;
   1334 }
   1335 
   1336 /// Compute the remaining latency to determine whether ILP should be increased.
   1337 void ConvergingScheduler::SchedBoundary::setLatencyPolicy(CandPolicy &Policy) {
   1338   // FIXME: compile time. In all, we visit four queues here one we should only
   1339   // need to visit the one that was last popped if we cache the result.
   1340   unsigned RemLatency = 0;
   1341   for (ReadyQueue::iterator I = Available.begin(), E = Available.end();
   1342        I != E; ++I) {
   1343     unsigned L = getUnscheduledLatency(*I);
   1344     if (L > RemLatency)
   1345       RemLatency = L;
   1346   }
   1347   for (ReadyQueue::iterator I = Pending.begin(), E = Pending.end();
   1348        I != E; ++I) {
   1349     unsigned L = getUnscheduledLatency(*I);
   1350     if (L > RemLatency)
   1351       RemLatency = L;
   1352   }
   1353   unsigned CriticalPathLimit = Rem->CriticalPath + SchedModel->getILPWindow();
   1354   if (RemLatency + ExpectedLatency >= CriticalPathLimit
   1355       && RemLatency > Rem->getMaxRemainingCount(SchedModel)) {
   1356     Policy.ReduceLatency = true;
   1357     DEBUG(dbgs() << "Increase ILP: " << Available.getName() << '\n');
   1358   }
   1359 }
   1360 
   1361 void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
   1362                                                      unsigned ReadyCycle) {
   1363 
   1364   if (ReadyCycle < MinReadyCycle)
   1365     MinReadyCycle = ReadyCycle;
   1366 
   1367   // Check for interlocks first. For the purpose of other heuristics, an
   1368   // instruction that cannot issue appears as if it's not in the ReadyQueue.
   1369   if (ReadyCycle > CurrCycle || checkHazard(SU))
   1370     Pending.push(SU);
   1371   else
   1372     Available.push(SU);
   1373 
   1374   // Record this node as an immediate dependent of the scheduled node.
   1375   NextSUs.insert(SU);
   1376 }
   1377 
   1378 /// Move the boundary of scheduled code by one cycle.
   1379 void ConvergingScheduler::SchedBoundary::bumpCycle() {
   1380   unsigned Width = SchedModel->getIssueWidth();
   1381   IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
   1382 
   1383   unsigned NextCycle = CurrCycle + 1;
   1384   assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
   1385   if (MinReadyCycle > NextCycle) {
   1386     IssueCount = 0;
   1387     NextCycle = MinReadyCycle;
   1388   }
   1389 
   1390   if (!HazardRec->isEnabled()) {
   1391     // Bypass HazardRec virtual calls.
   1392     CurrCycle = NextCycle;
   1393   }
   1394   else {
   1395     // Bypass getHazardType calls in case of long latency.
   1396     for (; CurrCycle != NextCycle; ++CurrCycle) {
   1397       if (isTop())
   1398         HazardRec->AdvanceCycle();
   1399       else
   1400         HazardRec->RecedeCycle();
   1401     }
   1402   }
   1403   CheckPending = true;
   1404   IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
   1405 
   1406   DEBUG(dbgs() << "  *** " << Available.getName() << " cycle "
   1407         << CurrCycle << '\n');
   1408 }
   1409 
   1410 /// Add the given processor resource to this scheduled zone.
   1411 void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx,
   1412                                                        unsigned Cycles) {
   1413   unsigned Factor = SchedModel->getResourceFactor(PIdx);
   1414   DEBUG(dbgs() << "  " << SchedModel->getProcResource(PIdx)->Name
   1415         << " +(" << Cycles << "x" << Factor
   1416         << ") / " << SchedModel->getLatencyFactor() << '\n');
   1417 
   1418   unsigned Count = Factor * Cycles;
   1419   ResourceCounts[PIdx] += Count;
   1420   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
   1421   Rem->RemainingCounts[PIdx] -= Count;
   1422 
   1423   // Check if this resource exceeds the current critical resource by a full
   1424   // cycle. If so, it becomes the critical resource.
   1425   if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx])
   1426       >= (int)SchedModel->getLatencyFactor()) {
   1427     CritResIdx = PIdx;
   1428     DEBUG(dbgs() << "  *** Critical resource "
   1429           << SchedModel->getProcResource(PIdx)->Name << " x"
   1430           << ResourceCounts[PIdx] << '\n');
   1431   }
   1432 }
   1433 
   1434 /// Move the boundary of scheduled code by one SUnit.
   1435 void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
   1436   // Update the reservation table.
   1437   if (HazardRec->isEnabled()) {
   1438     if (!isTop() && SU->isCall) {
   1439       // Calls are scheduled with their preceding instructions. For bottom-up
   1440       // scheduling, clear the pipeline state before emitting.
   1441       HazardRec->Reset();
   1442     }
   1443     HazardRec->EmitInstruction(SU);
   1444   }
   1445   // Update resource counts and critical resource.
   1446   if (SchedModel->hasInstrSchedModel()) {
   1447     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
   1448     Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC);
   1449     for (TargetSchedModel::ProcResIter
   1450            PI = SchedModel->getWriteProcResBegin(SC),
   1451            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   1452       countResource(PI->ProcResourceIdx, PI->Cycles);
   1453     }
   1454   }
   1455   if (isTop()) {
   1456     if (SU->getDepth() > ExpectedLatency)
   1457       ExpectedLatency = SU->getDepth();
   1458   }
   1459   else {
   1460     if (SU->getHeight() > ExpectedLatency)
   1461       ExpectedLatency = SU->getHeight();
   1462   }
   1463 
   1464   IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
   1465 
   1466   // Check the instruction group dispatch limit.
   1467   // TODO: Check if this SU must end a dispatch group.
   1468   IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
   1469 
   1470   // checkHazard prevents scheduling multiple instructions per cycle that exceed
   1471   // issue width. However, we commonly reach the maximum. In this case
   1472   // opportunistically bump the cycle to avoid uselessly checking everything in
   1473   // the readyQ. Furthermore, a single instruction may produce more than one
   1474   // cycle's worth of micro-ops.
   1475   if (IssueCount >= SchedModel->getIssueWidth()) {
   1476     DEBUG(dbgs() << "  *** Max instrs at cycle " << CurrCycle << '\n');
   1477     bumpCycle();
   1478   }
   1479 }
   1480 
   1481 /// Release pending ready nodes in to the available queue. This makes them
   1482 /// visible to heuristics.
   1483 void ConvergingScheduler::SchedBoundary::releasePending() {
   1484   // If the available queue is empty, it is safe to reset MinReadyCycle.
   1485   if (Available.empty())
   1486     MinReadyCycle = UINT_MAX;
   1487 
   1488   // Check to see if any of the pending instructions are ready to issue.  If
   1489   // so, add them to the available queue.
   1490   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
   1491     SUnit *SU = *(Pending.begin()+i);
   1492     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
   1493 
   1494     if (ReadyCycle < MinReadyCycle)
   1495       MinReadyCycle = ReadyCycle;
   1496 
   1497     if (ReadyCycle > CurrCycle)
   1498       continue;
   1499 
   1500     if (checkHazard(SU))
   1501       continue;
   1502 
   1503     Available.push(SU);
   1504     Pending.remove(Pending.begin()+i);
   1505     --i; --e;
   1506   }
   1507   DEBUG(if (!Pending.empty()) Pending.dump());
   1508   CheckPending = false;
   1509 }
   1510 
   1511 /// Remove SU from the ready set for this boundary.
   1512 void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
   1513   if (Available.isInQueue(SU))
   1514     Available.remove(Available.find(SU));
   1515   else {
   1516     assert(Pending.isInQueue(SU) && "bad ready count");
   1517     Pending.remove(Pending.find(SU));
   1518   }
   1519 }
   1520 
   1521 /// If this queue only has one ready candidate, return it. As a side effect,
   1522 /// defer any nodes that now hit a hazard, and advance the cycle until at least
   1523 /// one node is ready. If multiple instructions are ready, return NULL.
   1524 SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
   1525   if (CheckPending)
   1526     releasePending();
   1527 
   1528   if (IssueCount > 0) {
   1529     // Defer any ready instrs that now have a hazard.
   1530     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
   1531       if (checkHazard(*I)) {
   1532         Pending.push(*I);
   1533         I = Available.remove(I);
   1534         continue;
   1535       }
   1536       ++I;
   1537     }
   1538   }
   1539   for (unsigned i = 0; Available.empty(); ++i) {
   1540     assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
   1541            "permanent hazard"); (void)i;
   1542     bumpCycle();
   1543     releasePending();
   1544   }
   1545   if (Available.size() == 1)
   1546     return *Available.begin();
   1547   return NULL;
   1548 }
   1549 
   1550 /// Record the candidate policy for opposite zones with different critical
   1551 /// resources.
   1552 ///
   1553 /// If the CriticalZone is latency limited, don't force a policy for the
   1554 /// candidates here. Instead, setLatencyPolicy sets ReduceLatency if needed.
   1555 void ConvergingScheduler::balanceZones(
   1556   ConvergingScheduler::SchedBoundary &CriticalZone,
   1557   ConvergingScheduler::SchedCandidate &CriticalCand,
   1558   ConvergingScheduler::SchedBoundary &OppositeZone,
   1559   ConvergingScheduler::SchedCandidate &OppositeCand) {
   1560 
   1561   if (!CriticalZone.IsResourceLimited)
   1562     return;
   1563   assert(SchedModel->hasInstrSchedModel() && "required schedmodel");
   1564 
   1565   SchedRemainder *Rem = CriticalZone.Rem;
   1566 
   1567   // If the critical zone is overconsuming a resource relative to the
   1568   // remainder, try to reduce it.
   1569   unsigned RemainingCritCount =
   1570     Rem->RemainingCounts[CriticalZone.CritResIdx];
   1571   if ((int)(Rem->getMaxRemainingCount(SchedModel) - RemainingCritCount)
   1572       > (int)SchedModel->getLatencyFactor()) {
   1573     CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx;
   1574     DEBUG(dbgs() << "Balance " << CriticalZone.Available.getName() << " reduce "
   1575           << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name
   1576           << '\n');
   1577   }
   1578   // If the other zone is underconsuming a resource relative to the full zone,
   1579   // try to increase it.
   1580   unsigned OppositeCount =
   1581     OppositeZone.ResourceCounts[CriticalZone.CritResIdx];
   1582   if ((int)(OppositeZone.ExpectedCount - OppositeCount)
   1583       > (int)SchedModel->getLatencyFactor()) {
   1584     OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx;
   1585     DEBUG(dbgs() << "Balance " << OppositeZone.Available.getName() << " demand "
   1586           << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name
   1587           << '\n');
   1588   }
   1589 }
   1590 
   1591 /// Determine if the scheduled zones exceed resource limits or critical path and
   1592 /// set each candidate's ReduceHeight policy accordingly.
   1593 void ConvergingScheduler::checkResourceLimits(
   1594   ConvergingScheduler::SchedCandidate &TopCand,
   1595   ConvergingScheduler::SchedCandidate &BotCand) {
   1596 
   1597   // Set ReduceLatency to true if needed.
   1598   Bot.setLatencyPolicy(BotCand.Policy);
   1599   Top.setLatencyPolicy(TopCand.Policy);
   1600 
   1601   // Handle resource-limited regions.
   1602   if (Top.IsResourceLimited && Bot.IsResourceLimited
   1603       && Top.CritResIdx == Bot.CritResIdx) {
   1604     // If the scheduled critical resource in both zones is no longer the
   1605     // critical remaining resource, attempt to reduce resource height both ways.
   1606     if (Top.CritResIdx != Rem.CritResIdx) {
   1607       TopCand.Policy.ReduceResIdx = Top.CritResIdx;
   1608       BotCand.Policy.ReduceResIdx = Bot.CritResIdx;
   1609       DEBUG(dbgs() << "Reduce scheduled "
   1610             << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n');
   1611     }
   1612     return;
   1613   }
   1614   // Handle latency-limited regions.
   1615   if (!Top.IsResourceLimited && !Bot.IsResourceLimited) {
   1616     // If the total scheduled expected latency exceeds the region's critical
   1617     // path then reduce latency both ways.
   1618     //
   1619     // Just because a zone is not resource limited does not mean it is latency
   1620     // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle
   1621     // to exceed expected latency.
   1622     if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath)
   1623         && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) {
   1624       TopCand.Policy.ReduceLatency = true;
   1625       BotCand.Policy.ReduceLatency = true;
   1626       DEBUG(dbgs() << "Reduce scheduled latency " << Top.ExpectedLatency
   1627             << " + " << Bot.ExpectedLatency << '\n');
   1628     }
   1629     return;
   1630   }
   1631   // The critical resource is different in each zone, so request balancing.
   1632 
   1633   // Compute the cost of each zone.
   1634   Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle);
   1635   Top.ExpectedCount = std::max(
   1636     Top.getCriticalCount(),
   1637     Top.ExpectedCount * SchedModel->getLatencyFactor());
   1638   Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle);
   1639   Bot.ExpectedCount = std::max(
   1640     Bot.getCriticalCount(),
   1641     Bot.ExpectedCount * SchedModel->getLatencyFactor());
   1642 
   1643   balanceZones(Top, TopCand, Bot, BotCand);
   1644   balanceZones(Bot, BotCand, Top, TopCand);
   1645 }
   1646 
   1647 void ConvergingScheduler::SchedCandidate::
   1648 initResourceDelta(const ScheduleDAGMI *DAG,
   1649                   const TargetSchedModel *SchedModel) {
   1650   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
   1651     return;
   1652 
   1653   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
   1654   for (TargetSchedModel::ProcResIter
   1655          PI = SchedModel->getWriteProcResBegin(SC),
   1656          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   1657     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
   1658       ResDelta.CritResources += PI->Cycles;
   1659     if (PI->ProcResourceIdx == Policy.DemandResIdx)
   1660       ResDelta.DemandedResources += PI->Cycles;
   1661   }
   1662 }
   1663 
   1664 /// Return true if this heuristic determines order.
   1665 static bool tryLess(unsigned TryVal, unsigned CandVal,
   1666                     ConvergingScheduler::SchedCandidate &TryCand,
   1667                     ConvergingScheduler::SchedCandidate &Cand,
   1668                     ConvergingScheduler::CandReason Reason) {
   1669   if (TryVal < CandVal) {
   1670     TryCand.Reason = Reason;
   1671     return true;
   1672   }
   1673   if (TryVal > CandVal) {
   1674     if (Cand.Reason > Reason)
   1675       Cand.Reason = Reason;
   1676     return true;
   1677   }
   1678   return false;
   1679 }
   1680 
   1681 static bool tryGreater(unsigned TryVal, unsigned CandVal,
   1682                        ConvergingScheduler::SchedCandidate &TryCand,
   1683                        ConvergingScheduler::SchedCandidate &Cand,
   1684                        ConvergingScheduler::CandReason Reason) {
   1685   if (TryVal > CandVal) {
   1686     TryCand.Reason = Reason;
   1687     return true;
   1688   }
   1689   if (TryVal < CandVal) {
   1690     if (Cand.Reason > Reason)
   1691       Cand.Reason = Reason;
   1692     return true;
   1693   }
   1694   return false;
   1695 }
   1696 
   1697 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
   1698   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
   1699 }
   1700 
   1701 /// Apply a set of heursitics to a new candidate. Heuristics are currently
   1702 /// hierarchical. This may be more efficient than a graduated cost model because
   1703 /// we don't need to evaluate all aspects of the model for each node in the
   1704 /// queue. But it's really done to make the heuristics easier to debug and
   1705 /// statistically analyze.
   1706 ///
   1707 /// \param Cand provides the policy and current best candidate.
   1708 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
   1709 /// \param Zone describes the scheduled zone that we are extending.
   1710 /// \param RPTracker describes reg pressure within the scheduled zone.
   1711 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
   1712 void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
   1713                                        SchedCandidate &TryCand,
   1714                                        SchedBoundary &Zone,
   1715                                        const RegPressureTracker &RPTracker,
   1716                                        RegPressureTracker &TempTracker) {
   1717 
   1718   // Always initialize TryCand's RPDelta.
   1719   TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta,
   1720                                   DAG->getRegionCriticalPSets(),
   1721                                   DAG->getRegPressure().MaxSetPressure);
   1722 
   1723   // Initialize the candidate if needed.
   1724   if (!Cand.isValid()) {
   1725     TryCand.Reason = NodeOrder;
   1726     return;
   1727   }
   1728   // Avoid exceeding the target's limit.
   1729   if (tryLess(TryCand.RPDelta.Excess.UnitIncrease,
   1730               Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess))
   1731     return;
   1732   if (Cand.Reason == SingleExcess)
   1733     Cand.Reason = MultiPressure;
   1734 
   1735   // Avoid increasing the max critical pressure in the scheduled region.
   1736   if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease,
   1737               Cand.RPDelta.CriticalMax.UnitIncrease,
   1738               TryCand, Cand, SingleCritical))
   1739     return;
   1740   if (Cand.Reason == SingleCritical)
   1741     Cand.Reason = MultiPressure;
   1742 
   1743   // Keep clustered nodes together to encourage downstream peephole
   1744   // optimizations which may reduce resource requirements.
   1745   //
   1746   // This is a best effort to set things up for a post-RA pass. Optimizations
   1747   // like generating loads of multiple registers should ideally be done within
   1748   // the scheduler pass by combining the loads during DAG postprocessing.
   1749   const SUnit *NextClusterSU =
   1750     Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
   1751   if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
   1752                  TryCand, Cand, Cluster))
   1753     return;
   1754   // Currently, weak edges are for clustering, so we hard-code that reason.
   1755   // However, deferring the current TryCand will not change Cand's reason.
   1756   CandReason OrigReason = Cand.Reason;
   1757   if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
   1758               getWeakLeft(Cand.SU, Zone.isTop()),
   1759               TryCand, Cand, Cluster)) {
   1760     Cand.Reason = OrigReason;
   1761     return;
   1762   }
   1763   // Avoid critical resource consumption and balance the schedule.
   1764   TryCand.initResourceDelta(DAG, SchedModel);
   1765   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
   1766               TryCand, Cand, ResourceReduce))
   1767     return;
   1768   if (tryGreater(TryCand.ResDelta.DemandedResources,
   1769                  Cand.ResDelta.DemandedResources,
   1770                  TryCand, Cand, ResourceDemand))
   1771     return;
   1772 
   1773   // Avoid serializing long latency dependence chains.
   1774   if (Cand.Policy.ReduceLatency) {
   1775     if (Zone.isTop()) {
   1776       if (Cand.SU->getDepth() * SchedModel->getLatencyFactor()
   1777           > Zone.ExpectedCount) {
   1778         if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
   1779                     TryCand, Cand, TopDepthReduce))
   1780           return;
   1781       }
   1782       if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
   1783                      TryCand, Cand, TopPathReduce))
   1784         return;
   1785     }
   1786     else {
   1787       if (Cand.SU->getHeight() * SchedModel->getLatencyFactor()
   1788           > Zone.ExpectedCount) {
   1789         if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
   1790                     TryCand, Cand, BotHeightReduce))
   1791           return;
   1792       }
   1793       if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
   1794                      TryCand, Cand, BotPathReduce))
   1795         return;
   1796     }
   1797   }
   1798 
   1799   // Avoid increasing the max pressure of the entire region.
   1800   if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease,
   1801               Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax))
   1802     return;
   1803   if (Cand.Reason == SingleMax)
   1804     Cand.Reason = MultiPressure;
   1805 
   1806   // Prefer immediate defs/users of the last scheduled instruction. This is a
   1807   // nice pressure avoidance strategy that also conserves the processor's
   1808   // register renaming resources and keeps the machine code readable.
   1809   if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU),
   1810                  TryCand, Cand, NextDefUse))
   1811     return;
   1812 
   1813   // Fall through to original instruction order.
   1814   if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
   1815       || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
   1816     TryCand.Reason = NodeOrder;
   1817   }
   1818 }
   1819 
   1820 /// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is
   1821 /// more desirable than RHS from scheduling standpoint.
   1822 static bool compareRPDelta(const RegPressureDelta &LHS,
   1823                            const RegPressureDelta &RHS) {
   1824   // Compare each component of pressure in decreasing order of importance
   1825   // without checking if any are valid. Invalid PressureElements are assumed to
   1826   // have UnitIncrease==0, so are neutral.
   1827 
   1828   // Avoid increasing the max critical pressure in the scheduled region.
   1829   if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) {
   1830     DEBUG(dbgs() << "RP excess top - bot: "
   1831           << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n');
   1832     return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease;
   1833   }
   1834   // Avoid increasing the max critical pressure in the scheduled region.
   1835   if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) {
   1836     DEBUG(dbgs() << "RP critical top - bot: "
   1837           << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease)
   1838           << '\n');
   1839     return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease;
   1840   }
   1841   // Avoid increasing the max pressure of the entire region.
   1842   if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) {
   1843     DEBUG(dbgs() << "RP current top - bot: "
   1844           << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease)
   1845           << '\n');
   1846     return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease;
   1847   }
   1848   return false;
   1849 }
   1850 
   1851 #ifndef NDEBUG
   1852 const char *ConvergingScheduler::getReasonStr(
   1853   ConvergingScheduler::CandReason Reason) {
   1854   switch (Reason) {
   1855   case NoCand:         return "NOCAND    ";
   1856   case SingleExcess:   return "REG-EXCESS";
   1857   case SingleCritical: return "REG-CRIT  ";
   1858   case Cluster:        return "CLUSTER   ";
   1859   case SingleMax:      return "REG-MAX   ";
   1860   case MultiPressure:  return "REG-MULTI ";
   1861   case ResourceReduce: return "RES-REDUCE";
   1862   case ResourceDemand: return "RES-DEMAND";
   1863   case TopDepthReduce: return "TOP-DEPTH ";
   1864   case TopPathReduce:  return "TOP-PATH  ";
   1865   case BotHeightReduce:return "BOT-HEIGHT";
   1866   case BotPathReduce:  return "BOT-PATH  ";
   1867   case NextDefUse:     return "DEF-USE   ";
   1868   case NodeOrder:      return "ORDER     ";
   1869   };
   1870   llvm_unreachable("Unknown reason!");
   1871 }
   1872 
   1873 void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand,
   1874                                          const SchedBoundary &Zone) {
   1875   const char *Label = getReasonStr(Cand.Reason);
   1876   PressureElement P;
   1877   unsigned ResIdx = 0;
   1878   unsigned Latency = 0;
   1879   switch (Cand.Reason) {
   1880   default:
   1881     break;
   1882   case SingleExcess:
   1883     P = Cand.RPDelta.Excess;
   1884     break;
   1885   case SingleCritical:
   1886     P = Cand.RPDelta.CriticalMax;
   1887     break;
   1888   case SingleMax:
   1889     P = Cand.RPDelta.CurrentMax;
   1890     break;
   1891   case ResourceReduce:
   1892     ResIdx = Cand.Policy.ReduceResIdx;
   1893     break;
   1894   case ResourceDemand:
   1895     ResIdx = Cand.Policy.DemandResIdx;
   1896     break;
   1897   case TopDepthReduce:
   1898     Latency = Cand.SU->getDepth();
   1899     break;
   1900   case TopPathReduce:
   1901     Latency = Cand.SU->getHeight();
   1902     break;
   1903   case BotHeightReduce:
   1904     Latency = Cand.SU->getHeight();
   1905     break;
   1906   case BotPathReduce:
   1907     Latency = Cand.SU->getDepth();
   1908     break;
   1909   }
   1910   dbgs() << Label << " " << Zone.Available.getName() << " ";
   1911   if (P.isValid())
   1912     dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease
   1913            << " ";
   1914   else
   1915     dbgs() << "     ";
   1916   if (ResIdx)
   1917     dbgs() << SchedModel->getProcResource(ResIdx)->Name << " ";
   1918   else
   1919     dbgs() << "        ";
   1920   if (Latency)
   1921     dbgs() << Latency << " cycles ";
   1922   else
   1923     dbgs() << "         ";
   1924   Cand.SU->dump(DAG);
   1925 }
   1926 #endif
   1927 
   1928 /// Pick the best candidate from the top queue.
   1929 ///
   1930 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
   1931 /// DAG building. To adjust for the current scheduling location we need to
   1932 /// maintain the number of vreg uses remaining to be top-scheduled.
   1933 void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
   1934                                             const RegPressureTracker &RPTracker,
   1935                                             SchedCandidate &Cand) {
   1936   ReadyQueue &Q = Zone.Available;
   1937 
   1938   DEBUG(Q.dump());
   1939 
   1940   // getMaxPressureDelta temporarily modifies the tracker.
   1941   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
   1942 
   1943   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
   1944 
   1945     SchedCandidate TryCand(Cand.Policy);
   1946     TryCand.SU = *I;
   1947     tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
   1948     if (TryCand.Reason != NoCand) {
   1949       // Initialize resource delta if needed in case future heuristics query it.
   1950       if (TryCand.ResDelta == SchedResourceDelta())
   1951         TryCand.initResourceDelta(DAG, SchedModel);
   1952       Cand.setBest(TryCand);
   1953       DEBUG(traceCandidate(Cand, Zone));
   1954     }
   1955   }
   1956 }
   1957 
   1958 static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
   1959                       bool IsTop) {
   1960   DEBUG(dbgs() << "Pick " << (IsTop ? "top" : "bot")
   1961         << " SU(" << Cand.SU->NodeNum << ") "
   1962         << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
   1963 }
   1964 
   1965 /// Pick the best candidate node from either the top or bottom queue.
   1966 SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
   1967   // Schedule as far as possible in the direction of no choice. This is most
   1968   // efficient, but also provides the best heuristics for CriticalPSets.
   1969   if (SUnit *SU = Bot.pickOnlyChoice()) {
   1970     IsTopNode = false;
   1971     return SU;
   1972   }
   1973   if (SUnit *SU = Top.pickOnlyChoice()) {
   1974     IsTopNode = true;
   1975     return SU;
   1976   }
   1977   CandPolicy NoPolicy;
   1978   SchedCandidate BotCand(NoPolicy);
   1979   SchedCandidate TopCand(NoPolicy);
   1980   checkResourceLimits(TopCand, BotCand);
   1981 
   1982   // Prefer bottom scheduling when heuristics are silent.
   1983   pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
   1984   assert(BotCand.Reason != NoCand && "failed to find the first candidate");
   1985 
   1986   // If either Q has a single candidate that provides the least increase in
   1987   // Excess pressure, we can immediately schedule from that Q.
   1988   //
   1989   // RegionCriticalPSets summarizes the pressure within the scheduled region and
   1990   // affects picking from either Q. If scheduling in one direction must
   1991   // increase pressure for one of the excess PSets, then schedule in that
   1992   // direction first to provide more freedom in the other direction.
   1993   if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) {
   1994     IsTopNode = false;
   1995     tracePick(BotCand, IsTopNode);
   1996     return BotCand.SU;
   1997   }
   1998   // Check if the top Q has a better candidate.
   1999   pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
   2000   assert(TopCand.Reason != NoCand && "failed to find the first candidate");
   2001 
   2002   // If either Q has a single candidate that minimizes pressure above the
   2003   // original region's pressure pick it.
   2004   if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) {
   2005     if (TopCand.Reason < BotCand.Reason) {
   2006       IsTopNode = true;
   2007       tracePick(TopCand, IsTopNode);
   2008       return TopCand.SU;
   2009     }
   2010     IsTopNode = false;
   2011     tracePick(BotCand, IsTopNode);
   2012     return BotCand.SU;
   2013   }
   2014   // Check for a salient pressure difference and pick the best from either side.
   2015   if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) {
   2016     IsTopNode = true;
   2017     tracePick(TopCand, IsTopNode);
   2018     return TopCand.SU;
   2019   }
   2020   // Otherwise prefer the bottom candidate, in node order if all else failed.
   2021   if (TopCand.Reason < BotCand.Reason) {
   2022     IsTopNode = true;
   2023     tracePick(TopCand, IsTopNode);
   2024     return TopCand.SU;
   2025   }
   2026   IsTopNode = false;
   2027   tracePick(BotCand, IsTopNode);
   2028   return BotCand.SU;
   2029 }
   2030 
   2031 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
   2032 SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
   2033   if (DAG->top() == DAG->bottom()) {
   2034     assert(Top.Available.empty() && Top.Pending.empty() &&
   2035            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
   2036     return NULL;
   2037   }
   2038   SUnit *SU;
   2039   do {
   2040     if (ForceTopDown) {
   2041       SU = Top.pickOnlyChoice();
   2042       if (!SU) {
   2043         CandPolicy NoPolicy;
   2044         SchedCandidate TopCand(NoPolicy);
   2045         pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
   2046         assert(TopCand.Reason != NoCand && "failed to find the first candidate");
   2047         SU = TopCand.SU;
   2048       }
   2049       IsTopNode = true;
   2050     }
   2051     else if (ForceBottomUp) {
   2052       SU = Bot.pickOnlyChoice();
   2053       if (!SU) {
   2054         CandPolicy NoPolicy;
   2055         SchedCandidate BotCand(NoPolicy);
   2056         pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
   2057         assert(BotCand.Reason != NoCand && "failed to find the first candidate");
   2058         SU = BotCand.SU;
   2059       }
   2060       IsTopNode = false;
   2061     }
   2062     else {
   2063       SU = pickNodeBidirectional(IsTopNode);
   2064     }
   2065   } while (SU->isScheduled);
   2066 
   2067   if (SU->isTopReady())
   2068     Top.removeReady(SU);
   2069   if (SU->isBottomReady())
   2070     Bot.removeReady(SU);
   2071 
   2072   DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
   2073         << " Scheduling Instruction in cycle "
   2074         << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
   2075         SU->dump(DAG));
   2076   return SU;
   2077 }
   2078 
   2079 /// Update the scheduler's state after scheduling a node. This is the same node
   2080 /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
   2081 /// it's state based on the current cycle before MachineSchedStrategy does.
   2082 void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
   2083   if (IsTopNode) {
   2084     SU->TopReadyCycle = Top.CurrCycle;
   2085     Top.bumpNode(SU);
   2086   }
   2087   else {
   2088     SU->BotReadyCycle = Bot.CurrCycle;
   2089     Bot.bumpNode(SU);
   2090   }
   2091 }
   2092 
   2093 /// Create the standard converging machine scheduler. This will be used as the
   2094 /// default scheduler if the target does not set a default.
   2095 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
   2096   assert((!ForceTopDown || !ForceBottomUp) &&
   2097          "-misched-topdown incompatible with -misched-bottomup");
   2098   ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler());
   2099   // Register DAG post-processors.
   2100   if (EnableLoadCluster)
   2101     DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
   2102   if (EnableMacroFusion)
   2103     DAG->addMutation(new MacroFusion(DAG->TII));
   2104   return DAG;
   2105 }
   2106 static MachineSchedRegistry
   2107 ConvergingSchedRegistry("converge", "Standard converging scheduler.",
   2108                         createConvergingSched);
   2109 
   2110 //===----------------------------------------------------------------------===//
   2111 // ILP Scheduler. Currently for experimental analysis of heuristics.
   2112 //===----------------------------------------------------------------------===//
   2113 
   2114 namespace {
   2115 /// \brief Order nodes by the ILP metric.
   2116 struct ILPOrder {
   2117   const SchedDFSResult *DFSResult;
   2118   const BitVector *ScheduledTrees;
   2119   bool MaximizeILP;
   2120 
   2121   ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}
   2122 
   2123   /// \brief Apply a less-than relation on node priority.
   2124   ///
   2125   /// (Return true if A comes after B in the Q.)
   2126   bool operator()(const SUnit *A, const SUnit *B) const {
   2127     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
   2128     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
   2129     if (SchedTreeA != SchedTreeB) {
   2130       // Unscheduled trees have lower priority.
   2131       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
   2132         return ScheduledTrees->test(SchedTreeB);
   2133 
   2134       // Trees with shallower connections have have lower priority.
   2135       if (DFSResult->getSubtreeLevel(SchedTreeA)
   2136           != DFSResult->getSubtreeLevel(SchedTreeB)) {
   2137         return DFSResult->getSubtreeLevel(SchedTreeA)
   2138           < DFSResult->getSubtreeLevel(SchedTreeB);
   2139       }
   2140     }
   2141     if (MaximizeILP)
   2142       return DFSResult->getILP(A) < DFSResult->getILP(B);
   2143     else
   2144       return DFSResult->getILP(A) > DFSResult->getILP(B);
   2145   }
   2146 };
   2147 
   2148 /// \brief Schedule based on the ILP metric.
   2149 class ILPScheduler : public MachineSchedStrategy {
   2150   /// In case all subtrees are eventually connected to a common root through
   2151   /// data dependence (e.g. reduction), place an upper limit on their size.
   2152   ///
   2153   /// FIXME: A subtree limit is generally good, but in the situation commented
   2154   /// above, where multiple similar subtrees feed a common root, we should
   2155   /// only split at a point where the resulting subtrees will be balanced.
   2156   /// (a motivating test case must be found).
   2157   static const unsigned SubtreeLimit = 16;
   2158 
   2159   ScheduleDAGMI *DAG;
   2160   ILPOrder Cmp;
   2161 
   2162   std::vector<SUnit*> ReadyQ;
   2163 public:
   2164   ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}
   2165 
   2166   virtual void initialize(ScheduleDAGMI *dag) {
   2167     DAG = dag;
   2168     DAG->computeDFSResult();
   2169     Cmp.DFSResult = DAG->getDFSResult();
   2170     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
   2171     ReadyQ.clear();
   2172   }
   2173 
   2174   virtual void registerRoots() {
   2175     // Restore the heap in ReadyQ with the updated DFS results.
   2176     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   2177   }
   2178 
   2179   /// Implement MachineSchedStrategy interface.
   2180   /// -----------------------------------------
   2181 
   2182   /// Callback to select the highest priority node from the ready Q.
   2183   virtual SUnit *pickNode(bool &IsTopNode) {
   2184     if (ReadyQ.empty()) return NULL;
   2185     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   2186     SUnit *SU = ReadyQ.back();
   2187     ReadyQ.pop_back();
   2188     IsTopNode = false;
   2189     DEBUG(dbgs() << "*** Scheduling " << "SU(" << SU->NodeNum << "): "
   2190           << *SU->getInstr()
   2191           << " ILP: " << DAG->getDFSResult()->getILP(SU)
   2192           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
   2193           << DAG->getDFSResult()->getSubtreeLevel(
   2194             DAG->getDFSResult()->getSubtreeID(SU)) << '\n');
   2195     return SU;
   2196   }
   2197 
   2198   /// \brief Scheduler callback to notify that a new subtree is scheduled.
   2199   virtual void scheduleTree(unsigned SubtreeID) {
   2200     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   2201   }
   2202 
   2203   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
   2204   /// DFSResults, and resort the priority Q.
   2205   virtual void schedNode(SUnit *SU, bool IsTopNode) {
   2206     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
   2207   }
   2208 
   2209   virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }
   2210 
   2211   virtual void releaseBottomNode(SUnit *SU) {
   2212     ReadyQ.push_back(SU);
   2213     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   2214   }
   2215 };
   2216 } // namespace
   2217 
   2218 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
   2219   return new ScheduleDAGMI(C, new ILPScheduler(true));
   2220 }
   2221 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
   2222   return new ScheduleDAGMI(C, new ILPScheduler(false));
   2223 }
   2224 static MachineSchedRegistry ILPMaxRegistry(
   2225   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
   2226 static MachineSchedRegistry ILPMinRegistry(
   2227   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
   2228 
   2229 //===----------------------------------------------------------------------===//
   2230 // Machine Instruction Shuffler for Correctness Testing
   2231 //===----------------------------------------------------------------------===//
   2232 
   2233 #ifndef NDEBUG
   2234 namespace {
   2235 /// Apply a less-than relation on the node order, which corresponds to the
   2236 /// instruction order prior to scheduling. IsReverse implements greater-than.
   2237 template<bool IsReverse>
   2238 struct SUnitOrder {
   2239   bool operator()(SUnit *A, SUnit *B) const {
   2240     if (IsReverse)
   2241       return A->NodeNum > B->NodeNum;
   2242     else
   2243       return A->NodeNum < B->NodeNum;
   2244   }
   2245 };
   2246 
   2247 /// Reorder instructions as much as possible.
   2248 class InstructionShuffler : public MachineSchedStrategy {
   2249   bool IsAlternating;
   2250   bool IsTopDown;
   2251 
   2252   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
   2253   // gives nodes with a higher number higher priority causing the latest
   2254   // instructions to be scheduled first.
   2255   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
   2256     TopQ;
   2257   // When scheduling bottom-up, use greater-than as the queue priority.
   2258   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
   2259     BottomQ;
   2260 public:
   2261   InstructionShuffler(bool alternate, bool topdown)
   2262     : IsAlternating(alternate), IsTopDown(topdown) {}
   2263 
   2264   virtual void initialize(ScheduleDAGMI *) {
   2265     TopQ.clear();
   2266     BottomQ.clear();
   2267   }
   2268 
   2269   /// Implement MachineSchedStrategy interface.
   2270   /// -----------------------------------------
   2271 
   2272   virtual SUnit *pickNode(bool &IsTopNode) {
   2273     SUnit *SU;
   2274     if (IsTopDown) {
   2275       do {
   2276         if (TopQ.empty()) return NULL;
   2277         SU = TopQ.top();
   2278         TopQ.pop();
   2279       } while (SU->isScheduled);
   2280       IsTopNode = true;
   2281     }
   2282     else {
   2283       do {
   2284         if (BottomQ.empty()) return NULL;
   2285         SU = BottomQ.top();
   2286         BottomQ.pop();
   2287       } while (SU->isScheduled);
   2288       IsTopNode = false;
   2289     }
   2290     if (IsAlternating)
   2291       IsTopDown = !IsTopDown;
   2292     return SU;
   2293   }
   2294 
   2295   virtual void schedNode(SUnit *SU, bool IsTopNode) {}
   2296 
   2297   virtual void releaseTopNode(SUnit *SU) {
   2298     TopQ.push(SU);
   2299   }
   2300   virtual void releaseBottomNode(SUnit *SU) {
   2301     BottomQ.push(SU);
   2302   }
   2303 };
   2304 } // namespace
   2305 
   2306 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
   2307   bool Alternate = !ForceTopDown && !ForceBottomUp;
   2308   bool TopDown = !ForceBottomUp;
   2309   assert((TopDown || !ForceTopDown) &&
   2310          "-misched-topdown incompatible with -misched-bottomup");
   2311   return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
   2312 }
   2313 static MachineSchedRegistry ShufflerRegistry(
   2314   "shuffle", "Shuffle machine instructions alternating directions",
   2315   createInstructionShuffler);
   2316 #endif // !NDEBUG
   2317 
   2318 //===----------------------------------------------------------------------===//
   2319 // GraphWriter support for ScheduleDAGMI.
   2320 //===----------------------------------------------------------------------===//
   2321 
   2322 #ifndef NDEBUG
   2323 namespace llvm {
   2324 
   2325 template<> struct GraphTraits<
   2326   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
   2327 
   2328 template<>
   2329 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
   2330 
   2331   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
   2332 
   2333   static std::string getGraphName(const ScheduleDAG *G) {
   2334     return G->MF.getName();
   2335   }
   2336 
   2337   static bool renderGraphFromBottomUp() {
   2338     return true;
   2339   }
   2340 
   2341   static bool isNodeHidden(const SUnit *Node) {
   2342     return (Node->NumPreds > 10 || Node->NumSuccs > 10);
   2343   }
   2344 
   2345   static bool hasNodeAddressLabel(const SUnit *Node,
   2346                                   const ScheduleDAG *Graph) {
   2347     return false;
   2348   }
   2349 
   2350   /// If you want to override the dot attributes printed for a particular
   2351   /// edge, override this method.
   2352   static std::string getEdgeAttributes(const SUnit *Node,
   2353                                        SUnitIterator EI,
   2354                                        const ScheduleDAG *Graph) {
   2355     if (EI.isArtificialDep())
   2356       return "color=cyan,style=dashed";
   2357     if (EI.isCtrlDep())
   2358       return "color=blue,style=dashed";
   2359     return "";
   2360   }
   2361 
   2362   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
   2363     std::string Str;
   2364     raw_string_ostream SS(Str);
   2365     SS << "SU(" << SU->NodeNum << ')';
   2366     return SS.str();
   2367   }
   2368   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
   2369     return G->getGraphNodeLabel(SU);
   2370   }
   2371 
   2372   static std::string getNodeAttributes(const SUnit *N,
   2373                                        const ScheduleDAG *Graph) {
   2374     std::string Str("shape=Mrecord");
   2375     const SchedDFSResult *DFS =
   2376       static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult();
   2377     if (DFS) {
   2378       Str += ",style=filled,fillcolor=\"#";
   2379       Str += DOT::getColorString(DFS->getSubtreeID(N));
   2380       Str += '"';
   2381     }
   2382     return Str;
   2383   }
   2384 };
   2385 } // namespace llvm
   2386 #endif // NDEBUG
   2387 
   2388 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
   2389 /// rendered using 'dot'.
   2390 ///
   2391 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
   2392 #ifndef NDEBUG
   2393   ViewGraph(this, Name, false, Title);
   2394 #else
   2395   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
   2396          << "systems with Graphviz or gv!\n";
   2397 #endif  // NDEBUG
   2398 }
   2399 
   2400 /// Out-of-line implementation with no arguments is handy for gdb.
   2401 void ScheduleDAGMI::viewGraph() {
   2402   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
   2403 }
   2404