Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SelectionDAG::Legalize method.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/SelectionDAG.h"
     15 #include "llvm/ADT/SmallPtrSet.h"
     16 #include "llvm/ADT/SmallVector.h"
     17 #include "llvm/ADT/Triple.h"
     18 #include "llvm/CodeGen/Analysis.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     21 #include "llvm/DebugInfo.h"
     22 #include "llvm/IR/CallingConv.h"
     23 #include "llvm/IR/Constants.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/DerivedTypes.h"
     26 #include "llvm/IR/Function.h"
     27 #include "llvm/IR/LLVMContext.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/MathExtras.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include "llvm/Target/TargetFrameLowering.h"
     33 #include "llvm/Target/TargetLowering.h"
     34 #include "llvm/Target/TargetMachine.h"
     35 using namespace llvm;
     36 
     37 //===----------------------------------------------------------------------===//
     38 /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
     39 /// hacks on it until the target machine can handle it.  This involves
     40 /// eliminating value sizes the machine cannot handle (promoting small sizes to
     41 /// large sizes or splitting up large values into small values) as well as
     42 /// eliminating operations the machine cannot handle.
     43 ///
     44 /// This code also does a small amount of optimization and recognition of idioms
     45 /// as part of its processing.  For example, if a target does not support a
     46 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
     47 /// will attempt merge setcc and brc instructions into brcc's.
     48 ///
     49 namespace {
     50 class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
     51   const TargetMachine &TM;
     52   const TargetLowering &TLI;
     53   SelectionDAG &DAG;
     54 
     55   /// LegalizePosition - The iterator for walking through the node list.
     56   SelectionDAG::allnodes_iterator LegalizePosition;
     57 
     58   /// LegalizedNodes - The set of nodes which have already been legalized.
     59   SmallPtrSet<SDNode *, 16> LegalizedNodes;
     60 
     61   // Libcall insertion helpers.
     62 
     63 public:
     64   explicit SelectionDAGLegalize(SelectionDAG &DAG);
     65 
     66   void LegalizeDAG();
     67 
     68 private:
     69   /// LegalizeOp - Legalizes the given operation.
     70   void LegalizeOp(SDNode *Node);
     71 
     72   SDValue OptimizeFloatStore(StoreSDNode *ST);
     73 
     74   void LegalizeLoadOps(SDNode *Node);
     75   void LegalizeStoreOps(SDNode *Node);
     76 
     77   /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
     78   /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
     79   /// is necessary to spill the vector being inserted into to memory, perform
     80   /// the insert there, and then read the result back.
     81   SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
     82                                          SDValue Idx, DebugLoc dl);
     83   SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
     84                                   SDValue Idx, DebugLoc dl);
     85 
     86   /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
     87   /// performs the same shuffe in terms of order or result bytes, but on a type
     88   /// whose vector element type is narrower than the original shuffle type.
     89   /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
     90   SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
     91                                      SDValue N1, SDValue N2,
     92                                      ArrayRef<int> Mask) const;
     93 
     94   void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
     95                              DebugLoc dl);
     96 
     97   SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
     98   SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
     99                         unsigned NumOps, bool isSigned, DebugLoc dl);
    100 
    101   std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
    102                                                  SDNode *Node, bool isSigned);
    103   SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
    104                           RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
    105                           RTLIB::Libcall Call_F128,
    106                           RTLIB::Libcall Call_PPCF128);
    107   SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
    108                            RTLIB::Libcall Call_I8,
    109                            RTLIB::Libcall Call_I16,
    110                            RTLIB::Libcall Call_I32,
    111                            RTLIB::Libcall Call_I64,
    112                            RTLIB::Libcall Call_I128);
    113   void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
    114   void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
    115 
    116   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
    117   SDValue ExpandBUILD_VECTOR(SDNode *Node);
    118   SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
    119   void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
    120                                 SmallVectorImpl<SDValue> &Results);
    121   SDValue ExpandFCOPYSIGN(SDNode *Node);
    122   SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
    123                                DebugLoc dl);
    124   SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
    125                                 DebugLoc dl);
    126   SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
    127                                 DebugLoc dl);
    128 
    129   SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
    130   SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
    131 
    132   SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
    133   SDValue ExpandInsertToVectorThroughStack(SDValue Op);
    134   SDValue ExpandVectorBuildThroughStack(SDNode* Node);
    135 
    136   SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
    137 
    138   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
    139 
    140   void ExpandNode(SDNode *Node);
    141   void PromoteNode(SDNode *Node);
    142 
    143   void ForgetNode(SDNode *N) {
    144     LegalizedNodes.erase(N);
    145     if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
    146       ++LegalizePosition;
    147   }
    148 
    149 public:
    150   // DAGUpdateListener implementation.
    151   virtual void NodeDeleted(SDNode *N, SDNode *E) {
    152     ForgetNode(N);
    153   }
    154   virtual void NodeUpdated(SDNode *N) {}
    155 
    156   // Node replacement helpers
    157   void ReplacedNode(SDNode *N) {
    158     if (N->use_empty()) {
    159       DAG.RemoveDeadNode(N);
    160     } else {
    161       ForgetNode(N);
    162     }
    163   }
    164   void ReplaceNode(SDNode *Old, SDNode *New) {
    165     DAG.ReplaceAllUsesWith(Old, New);
    166     ReplacedNode(Old);
    167   }
    168   void ReplaceNode(SDValue Old, SDValue New) {
    169     DAG.ReplaceAllUsesWith(Old, New);
    170     ReplacedNode(Old.getNode());
    171   }
    172   void ReplaceNode(SDNode *Old, const SDValue *New) {
    173     DAG.ReplaceAllUsesWith(Old, New);
    174     ReplacedNode(Old);
    175   }
    176 };
    177 }
    178 
    179 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
    180 /// performs the same shuffe in terms of order or result bytes, but on a type
    181 /// whose vector element type is narrower than the original shuffle type.
    182 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
    183 SDValue
    184 SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
    185                                                  SDValue N1, SDValue N2,
    186                                                  ArrayRef<int> Mask) const {
    187   unsigned NumMaskElts = VT.getVectorNumElements();
    188   unsigned NumDestElts = NVT.getVectorNumElements();
    189   unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
    190 
    191   assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
    192 
    193   if (NumEltsGrowth == 1)
    194     return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
    195 
    196   SmallVector<int, 8> NewMask;
    197   for (unsigned i = 0; i != NumMaskElts; ++i) {
    198     int Idx = Mask[i];
    199     for (unsigned j = 0; j != NumEltsGrowth; ++j) {
    200       if (Idx < 0)
    201         NewMask.push_back(-1);
    202       else
    203         NewMask.push_back(Idx * NumEltsGrowth + j);
    204     }
    205   }
    206   assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
    207   assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
    208   return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
    209 }
    210 
    211 SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
    212   : SelectionDAG::DAGUpdateListener(dag),
    213     TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
    214     DAG(dag) {
    215 }
    216 
    217 void SelectionDAGLegalize::LegalizeDAG() {
    218   DAG.AssignTopologicalOrder();
    219 
    220   // Visit all the nodes. We start in topological order, so that we see
    221   // nodes with their original operands intact. Legalization can produce
    222   // new nodes which may themselves need to be legalized. Iterate until all
    223   // nodes have been legalized.
    224   for (;;) {
    225     bool AnyLegalized = false;
    226     for (LegalizePosition = DAG.allnodes_end();
    227          LegalizePosition != DAG.allnodes_begin(); ) {
    228       --LegalizePosition;
    229 
    230       SDNode *N = LegalizePosition;
    231       if (LegalizedNodes.insert(N)) {
    232         AnyLegalized = true;
    233         LegalizeOp(N);
    234       }
    235     }
    236     if (!AnyLegalized)
    237       break;
    238 
    239   }
    240 
    241   // Remove dead nodes now.
    242   DAG.RemoveDeadNodes();
    243 }
    244 
    245 /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
    246 /// a load from the constant pool.
    247 SDValue
    248 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
    249   bool Extend = false;
    250   DebugLoc dl = CFP->getDebugLoc();
    251 
    252   // If a FP immediate is precise when represented as a float and if the
    253   // target can do an extending load from float to double, we put it into
    254   // the constant pool as a float, even if it's is statically typed as a
    255   // double.  This shrinks FP constants and canonicalizes them for targets where
    256   // an FP extending load is the same cost as a normal load (such as on the x87
    257   // fp stack or PPC FP unit).
    258   EVT VT = CFP->getValueType(0);
    259   ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
    260   if (!UseCP) {
    261     assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
    262     return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
    263                            (VT == MVT::f64) ? MVT::i64 : MVT::i32);
    264   }
    265 
    266   EVT OrigVT = VT;
    267   EVT SVT = VT;
    268   while (SVT != MVT::f32) {
    269     SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
    270     if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
    271         // Only do this if the target has a native EXTLOAD instruction from
    272         // smaller type.
    273         TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
    274         TLI.ShouldShrinkFPConstant(OrigVT)) {
    275       Type *SType = SVT.getTypeForEVT(*DAG.getContext());
    276       LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
    277       VT = SVT;
    278       Extend = true;
    279     }
    280   }
    281 
    282   SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
    283   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
    284   if (Extend) {
    285     SDValue Result =
    286       DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
    287                      DAG.getEntryNode(),
    288                      CPIdx, MachinePointerInfo::getConstantPool(),
    289                      VT, false, false, Alignment);
    290     return Result;
    291   }
    292   SDValue Result =
    293     DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
    294                 MachinePointerInfo::getConstantPool(), false, false, false,
    295                 Alignment);
    296   return Result;
    297 }
    298 
    299 /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
    300 static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
    301                                  const TargetLowering &TLI,
    302                                  SelectionDAGLegalize *DAGLegalize) {
    303   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
    304          "unaligned indexed stores not implemented!");
    305   SDValue Chain = ST->getChain();
    306   SDValue Ptr = ST->getBasePtr();
    307   SDValue Val = ST->getValue();
    308   EVT VT = Val.getValueType();
    309   int Alignment = ST->getAlignment();
    310   DebugLoc dl = ST->getDebugLoc();
    311   if (ST->getMemoryVT().isFloatingPoint() ||
    312       ST->getMemoryVT().isVector()) {
    313     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
    314     if (TLI.isTypeLegal(intVT)) {
    315       // Expand to a bitconvert of the value to the integer type of the
    316       // same size, then a (misaligned) int store.
    317       // FIXME: Does not handle truncating floating point stores!
    318       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
    319       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
    320                            ST->isVolatile(), ST->isNonTemporal(), Alignment);
    321       DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
    322       return;
    323     }
    324     // Do a (aligned) store to a stack slot, then copy from the stack slot
    325     // to the final destination using (unaligned) integer loads and stores.
    326     EVT StoredVT = ST->getMemoryVT();
    327     MVT RegVT =
    328       TLI.getRegisterType(*DAG.getContext(),
    329                           EVT::getIntegerVT(*DAG.getContext(),
    330                                             StoredVT.getSizeInBits()));
    331     unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
    332     unsigned RegBytes = RegVT.getSizeInBits() / 8;
    333     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
    334 
    335     // Make sure the stack slot is also aligned for the register type.
    336     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
    337 
    338     // Perform the original store, only redirected to the stack slot.
    339     SDValue Store = DAG.getTruncStore(Chain, dl,
    340                                       Val, StackPtr, MachinePointerInfo(),
    341                                       StoredVT, false, false, 0);
    342     SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
    343     SmallVector<SDValue, 8> Stores;
    344     unsigned Offset = 0;
    345 
    346     // Do all but one copies using the full register width.
    347     for (unsigned i = 1; i < NumRegs; i++) {
    348       // Load one integer register's worth from the stack slot.
    349       SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
    350                                  MachinePointerInfo(),
    351                                  false, false, false, 0);
    352       // Store it to the final location.  Remember the store.
    353       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
    354                                   ST->getPointerInfo().getWithOffset(Offset),
    355                                     ST->isVolatile(), ST->isNonTemporal(),
    356                                     MinAlign(ST->getAlignment(), Offset)));
    357       // Increment the pointers.
    358       Offset += RegBytes;
    359       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
    360                              Increment);
    361       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
    362     }
    363 
    364     // The last store may be partial.  Do a truncating store.  On big-endian
    365     // machines this requires an extending load from the stack slot to ensure
    366     // that the bits are in the right place.
    367     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
    368                                   8 * (StoredBytes - Offset));
    369 
    370     // Load from the stack slot.
    371     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
    372                                   MachinePointerInfo(),
    373                                   MemVT, false, false, 0);
    374 
    375     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
    376                                        ST->getPointerInfo()
    377                                          .getWithOffset(Offset),
    378                                        MemVT, ST->isVolatile(),
    379                                        ST->isNonTemporal(),
    380                                        MinAlign(ST->getAlignment(), Offset)));
    381     // The order of the stores doesn't matter - say it with a TokenFactor.
    382     SDValue Result =
    383       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
    384                   Stores.size());
    385     DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
    386     return;
    387   }
    388   assert(ST->getMemoryVT().isInteger() &&
    389          !ST->getMemoryVT().isVector() &&
    390          "Unaligned store of unknown type.");
    391   // Get the half-size VT
    392   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
    393   int NumBits = NewStoredVT.getSizeInBits();
    394   int IncrementSize = NumBits / 8;
    395 
    396   // Divide the stored value in two parts.
    397   SDValue ShiftAmount = DAG.getConstant(NumBits,
    398                                       TLI.getShiftAmountTy(Val.getValueType()));
    399   SDValue Lo = Val;
    400   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
    401 
    402   // Store the two parts
    403   SDValue Store1, Store2;
    404   Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
    405                              ST->getPointerInfo(), NewStoredVT,
    406                              ST->isVolatile(), ST->isNonTemporal(), Alignment);
    407   Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
    408                     DAG.getConstant(IncrementSize, TLI.getPointerTy()));
    409   Alignment = MinAlign(Alignment, IncrementSize);
    410   Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
    411                              ST->getPointerInfo().getWithOffset(IncrementSize),
    412                              NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
    413                              Alignment);
    414 
    415   SDValue Result =
    416     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
    417   DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
    418 }
    419 
    420 /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
    421 static void
    422 ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
    423                     const TargetLowering &TLI,
    424                     SDValue &ValResult, SDValue &ChainResult) {
    425   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
    426          "unaligned indexed loads not implemented!");
    427   SDValue Chain = LD->getChain();
    428   SDValue Ptr = LD->getBasePtr();
    429   EVT VT = LD->getValueType(0);
    430   EVT LoadedVT = LD->getMemoryVT();
    431   DebugLoc dl = LD->getDebugLoc();
    432   if (VT.isFloatingPoint() || VT.isVector()) {
    433     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
    434     if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
    435       // Expand to a (misaligned) integer load of the same size,
    436       // then bitconvert to floating point or vector.
    437       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
    438                                     LD->isVolatile(),
    439                                     LD->isNonTemporal(),
    440                                     LD->isInvariant(), LD->getAlignment());
    441       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
    442       if (LoadedVT != VT)
    443         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
    444                              ISD::ANY_EXTEND, dl, VT, Result);
    445 
    446       ValResult = Result;
    447       ChainResult = Chain;
    448       return;
    449     }
    450 
    451     // Copy the value to a (aligned) stack slot using (unaligned) integer
    452     // loads and stores, then do a (aligned) load from the stack slot.
    453     MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
    454     unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
    455     unsigned RegBytes = RegVT.getSizeInBits() / 8;
    456     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
    457 
    458     // Make sure the stack slot is also aligned for the register type.
    459     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
    460 
    461     SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
    462     SmallVector<SDValue, 8> Stores;
    463     SDValue StackPtr = StackBase;
    464     unsigned Offset = 0;
    465 
    466     // Do all but one copies using the full register width.
    467     for (unsigned i = 1; i < NumRegs; i++) {
    468       // Load one integer register's worth from the original location.
    469       SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
    470                                  LD->getPointerInfo().getWithOffset(Offset),
    471                                  LD->isVolatile(), LD->isNonTemporal(),
    472                                  LD->isInvariant(),
    473                                  MinAlign(LD->getAlignment(), Offset));
    474       // Follow the load with a store to the stack slot.  Remember the store.
    475       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
    476                                     MachinePointerInfo(), false, false, 0));
    477       // Increment the pointers.
    478       Offset += RegBytes;
    479       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
    480       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
    481                              Increment);
    482     }
    483 
    484     // The last copy may be partial.  Do an extending load.
    485     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
    486                                   8 * (LoadedBytes - Offset));
    487     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
    488                                   LD->getPointerInfo().getWithOffset(Offset),
    489                                   MemVT, LD->isVolatile(),
    490                                   LD->isNonTemporal(),
    491                                   MinAlign(LD->getAlignment(), Offset));
    492     // Follow the load with a store to the stack slot.  Remember the store.
    493     // On big-endian machines this requires a truncating store to ensure
    494     // that the bits end up in the right place.
    495     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
    496                                        MachinePointerInfo(), MemVT,
    497                                        false, false, 0));
    498 
    499     // The order of the stores doesn't matter - say it with a TokenFactor.
    500     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
    501                              Stores.size());
    502 
    503     // Finally, perform the original load only redirected to the stack slot.
    504     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
    505                           MachinePointerInfo(), LoadedVT, false, false, 0);
    506 
    507     // Callers expect a MERGE_VALUES node.
    508     ValResult = Load;
    509     ChainResult = TF;
    510     return;
    511   }
    512   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
    513          "Unaligned load of unsupported type.");
    514 
    515   // Compute the new VT that is half the size of the old one.  This is an
    516   // integer MVT.
    517   unsigned NumBits = LoadedVT.getSizeInBits();
    518   EVT NewLoadedVT;
    519   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
    520   NumBits >>= 1;
    521 
    522   unsigned Alignment = LD->getAlignment();
    523   unsigned IncrementSize = NumBits / 8;
    524   ISD::LoadExtType HiExtType = LD->getExtensionType();
    525 
    526   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
    527   if (HiExtType == ISD::NON_EXTLOAD)
    528     HiExtType = ISD::ZEXTLOAD;
    529 
    530   // Load the value in two parts
    531   SDValue Lo, Hi;
    532   if (TLI.isLittleEndian()) {
    533     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
    534                         NewLoadedVT, LD->isVolatile(),
    535                         LD->isNonTemporal(), Alignment);
    536     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
    537                       DAG.getConstant(IncrementSize, TLI.getPointerTy()));
    538     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
    539                         LD->getPointerInfo().getWithOffset(IncrementSize),
    540                         NewLoadedVT, LD->isVolatile(),
    541                         LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
    542   } else {
    543     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
    544                         NewLoadedVT, LD->isVolatile(),
    545                         LD->isNonTemporal(), Alignment);
    546     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
    547                       DAG.getConstant(IncrementSize, TLI.getPointerTy()));
    548     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
    549                         LD->getPointerInfo().getWithOffset(IncrementSize),
    550                         NewLoadedVT, LD->isVolatile(),
    551                         LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
    552   }
    553 
    554   // aggregate the two parts
    555   SDValue ShiftAmount = DAG.getConstant(NumBits,
    556                                        TLI.getShiftAmountTy(Hi.getValueType()));
    557   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
    558   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
    559 
    560   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
    561                              Hi.getValue(1));
    562 
    563   ValResult = Result;
    564   ChainResult = TF;
    565 }
    566 
    567 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
    568 /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
    569 /// is necessary to spill the vector being inserted into to memory, perform
    570 /// the insert there, and then read the result back.
    571 SDValue SelectionDAGLegalize::
    572 PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
    573                                DebugLoc dl) {
    574   SDValue Tmp1 = Vec;
    575   SDValue Tmp2 = Val;
    576   SDValue Tmp3 = Idx;
    577 
    578   // If the target doesn't support this, we have to spill the input vector
    579   // to a temporary stack slot, update the element, then reload it.  This is
    580   // badness.  We could also load the value into a vector register (either
    581   // with a "move to register" or "extload into register" instruction, then
    582   // permute it into place, if the idx is a constant and if the idx is
    583   // supported by the target.
    584   EVT VT    = Tmp1.getValueType();
    585   EVT EltVT = VT.getVectorElementType();
    586   EVT IdxVT = Tmp3.getValueType();
    587   EVT PtrVT = TLI.getPointerTy();
    588   SDValue StackPtr = DAG.CreateStackTemporary(VT);
    589 
    590   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
    591 
    592   // Store the vector.
    593   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
    594                             MachinePointerInfo::getFixedStack(SPFI),
    595                             false, false, 0);
    596 
    597   // Truncate or zero extend offset to target pointer type.
    598   unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
    599   Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
    600   // Add the offset to the index.
    601   unsigned EltSize = EltVT.getSizeInBits()/8;
    602   Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
    603   SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
    604   // Store the scalar value.
    605   Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
    606                          false, false, 0);
    607   // Load the updated vector.
    608   return DAG.getLoad(VT, dl, Ch, StackPtr,
    609                      MachinePointerInfo::getFixedStack(SPFI), false, false,
    610                      false, 0);
    611 }
    612 
    613 
    614 SDValue SelectionDAGLegalize::
    615 ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
    616   if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
    617     // SCALAR_TO_VECTOR requires that the type of the value being inserted
    618     // match the element type of the vector being created, except for
    619     // integers in which case the inserted value can be over width.
    620     EVT EltVT = Vec.getValueType().getVectorElementType();
    621     if (Val.getValueType() == EltVT ||
    622         (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
    623       SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
    624                                   Vec.getValueType(), Val);
    625 
    626       unsigned NumElts = Vec.getValueType().getVectorNumElements();
    627       // We generate a shuffle of InVec and ScVec, so the shuffle mask
    628       // should be 0,1,2,3,4,5... with the appropriate element replaced with
    629       // elt 0 of the RHS.
    630       SmallVector<int, 8> ShufOps;
    631       for (unsigned i = 0; i != NumElts; ++i)
    632         ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
    633 
    634       return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
    635                                   &ShufOps[0]);
    636     }
    637   }
    638   return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
    639 }
    640 
    641 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
    642   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
    643   // FIXME: We shouldn't do this for TargetConstantFP's.
    644   // FIXME: move this to the DAG Combiner!  Note that we can't regress due
    645   // to phase ordering between legalized code and the dag combiner.  This
    646   // probably means that we need to integrate dag combiner and legalizer
    647   // together.
    648   // We generally can't do this one for long doubles.
    649   SDValue Chain = ST->getChain();
    650   SDValue Ptr = ST->getBasePtr();
    651   unsigned Alignment = ST->getAlignment();
    652   bool isVolatile = ST->isVolatile();
    653   bool isNonTemporal = ST->isNonTemporal();
    654   DebugLoc dl = ST->getDebugLoc();
    655   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
    656     if (CFP->getValueType(0) == MVT::f32 &&
    657         TLI.isTypeLegal(MVT::i32)) {
    658       SDValue Con = DAG.getConstant(CFP->getValueAPF().
    659                                       bitcastToAPInt().zextOrTrunc(32),
    660                               MVT::i32);
    661       return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
    662                           isVolatile, isNonTemporal, Alignment);
    663     }
    664 
    665     if (CFP->getValueType(0) == MVT::f64) {
    666       // If this target supports 64-bit registers, do a single 64-bit store.
    667       if (TLI.isTypeLegal(MVT::i64)) {
    668         SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
    669                                   zextOrTrunc(64), MVT::i64);
    670         return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
    671                             isVolatile, isNonTemporal, Alignment);
    672       }
    673 
    674       if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
    675         // Otherwise, if the target supports 32-bit registers, use 2 32-bit
    676         // stores.  If the target supports neither 32- nor 64-bits, this
    677         // xform is certainly not worth it.
    678         const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
    679         SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
    680         SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
    681         if (TLI.isBigEndian()) std::swap(Lo, Hi);
    682 
    683         Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
    684                           isNonTemporal, Alignment);
    685         Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
    686                             DAG.getIntPtrConstant(4));
    687         Hi = DAG.getStore(Chain, dl, Hi, Ptr,
    688                           ST->getPointerInfo().getWithOffset(4),
    689                           isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
    690 
    691         return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
    692       }
    693     }
    694   }
    695   return SDValue(0, 0);
    696 }
    697 
    698 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
    699     StoreSDNode *ST = cast<StoreSDNode>(Node);
    700     SDValue Chain = ST->getChain();
    701     SDValue Ptr = ST->getBasePtr();
    702     DebugLoc dl = Node->getDebugLoc();
    703 
    704     unsigned Alignment = ST->getAlignment();
    705     bool isVolatile = ST->isVolatile();
    706     bool isNonTemporal = ST->isNonTemporal();
    707 
    708     if (!ST->isTruncatingStore()) {
    709       if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
    710         ReplaceNode(ST, OptStore);
    711         return;
    712       }
    713 
    714       {
    715         SDValue Value = ST->getValue();
    716         MVT VT = Value.getSimpleValueType();
    717         switch (TLI.getOperationAction(ISD::STORE, VT)) {
    718         default: llvm_unreachable("This action is not supported yet!");
    719         case TargetLowering::Legal:
    720           // If this is an unaligned store and the target doesn't support it,
    721           // expand it.
    722           if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
    723             Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
    724             unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
    725             if (ST->getAlignment() < ABIAlignment)
    726               ExpandUnalignedStore(cast<StoreSDNode>(Node),
    727                                    DAG, TLI, this);
    728           }
    729           break;
    730         case TargetLowering::Custom: {
    731           SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
    732           if (Res.getNode())
    733             ReplaceNode(SDValue(Node, 0), Res);
    734           return;
    735         }
    736         case TargetLowering::Promote: {
    737           MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
    738           assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
    739                  "Can only promote stores to same size type");
    740           Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
    741           SDValue Result =
    742             DAG.getStore(Chain, dl, Value, Ptr,
    743                          ST->getPointerInfo(), isVolatile,
    744                          isNonTemporal, Alignment);
    745           ReplaceNode(SDValue(Node, 0), Result);
    746           break;
    747         }
    748         }
    749         return;
    750       }
    751     } else {
    752       SDValue Value = ST->getValue();
    753 
    754       EVT StVT = ST->getMemoryVT();
    755       unsigned StWidth = StVT.getSizeInBits();
    756 
    757       if (StWidth != StVT.getStoreSizeInBits()) {
    758         // Promote to a byte-sized store with upper bits zero if not
    759         // storing an integral number of bytes.  For example, promote
    760         // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
    761         EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
    762                                     StVT.getStoreSizeInBits());
    763         Value = DAG.getZeroExtendInReg(Value, dl, StVT);
    764         SDValue Result =
    765           DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
    766                             NVT, isVolatile, isNonTemporal, Alignment);
    767         ReplaceNode(SDValue(Node, 0), Result);
    768       } else if (StWidth & (StWidth - 1)) {
    769         // If not storing a power-of-2 number of bits, expand as two stores.
    770         assert(!StVT.isVector() && "Unsupported truncstore!");
    771         unsigned RoundWidth = 1 << Log2_32(StWidth);
    772         assert(RoundWidth < StWidth);
    773         unsigned ExtraWidth = StWidth - RoundWidth;
    774         assert(ExtraWidth < RoundWidth);
    775         assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
    776                "Store size not an integral number of bytes!");
    777         EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
    778         EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
    779         SDValue Lo, Hi;
    780         unsigned IncrementSize;
    781 
    782         if (TLI.isLittleEndian()) {
    783           // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
    784           // Store the bottom RoundWidth bits.
    785           Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
    786                                  RoundVT,
    787                                  isVolatile, isNonTemporal, Alignment);
    788 
    789           // Store the remaining ExtraWidth bits.
    790           IncrementSize = RoundWidth / 8;
    791           Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
    792                              DAG.getIntPtrConstant(IncrementSize));
    793           Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
    794                            DAG.getConstant(RoundWidth,
    795                                     TLI.getShiftAmountTy(Value.getValueType())));
    796           Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
    797                              ST->getPointerInfo().getWithOffset(IncrementSize),
    798                                  ExtraVT, isVolatile, isNonTemporal,
    799                                  MinAlign(Alignment, IncrementSize));
    800         } else {
    801           // Big endian - avoid unaligned stores.
    802           // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
    803           // Store the top RoundWidth bits.
    804           Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
    805                            DAG.getConstant(ExtraWidth,
    806                                     TLI.getShiftAmountTy(Value.getValueType())));
    807           Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
    808                                  RoundVT, isVolatile, isNonTemporal, Alignment);
    809 
    810           // Store the remaining ExtraWidth bits.
    811           IncrementSize = RoundWidth / 8;
    812           Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
    813                              DAG.getIntPtrConstant(IncrementSize));
    814           Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
    815                               ST->getPointerInfo().getWithOffset(IncrementSize),
    816                                  ExtraVT, isVolatile, isNonTemporal,
    817                                  MinAlign(Alignment, IncrementSize));
    818         }
    819 
    820         // The order of the stores doesn't matter.
    821         SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
    822         ReplaceNode(SDValue(Node, 0), Result);
    823       } else {
    824         switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(),
    825                                         StVT.getSimpleVT())) {
    826         default: llvm_unreachable("This action is not supported yet!");
    827         case TargetLowering::Legal:
    828           // If this is an unaligned store and the target doesn't support it,
    829           // expand it.
    830           if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
    831             Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
    832             unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
    833             if (ST->getAlignment() < ABIAlignment)
    834               ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
    835           }
    836           break;
    837         case TargetLowering::Custom: {
    838           SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
    839           if (Res.getNode())
    840             ReplaceNode(SDValue(Node, 0), Res);
    841           return;
    842         }
    843         case TargetLowering::Expand:
    844           assert(!StVT.isVector() &&
    845                  "Vector Stores are handled in LegalizeVectorOps");
    846 
    847           // TRUNCSTORE:i16 i32 -> STORE i16
    848           assert(TLI.isTypeLegal(StVT) &&
    849                  "Do not know how to expand this store!");
    850           Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
    851           SDValue Result =
    852             DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
    853                          isVolatile, isNonTemporal, Alignment);
    854           ReplaceNode(SDValue(Node, 0), Result);
    855           break;
    856         }
    857       }
    858     }
    859 }
    860 
    861 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
    862   LoadSDNode *LD = cast<LoadSDNode>(Node);
    863   SDValue Chain = LD->getChain();  // The chain.
    864   SDValue Ptr = LD->getBasePtr();  // The base pointer.
    865   SDValue Value;                   // The value returned by the load op.
    866   DebugLoc dl = Node->getDebugLoc();
    867 
    868   ISD::LoadExtType ExtType = LD->getExtensionType();
    869   if (ExtType == ISD::NON_EXTLOAD) {
    870     MVT VT = Node->getSimpleValueType(0);
    871     SDValue RVal = SDValue(Node, 0);
    872     SDValue RChain = SDValue(Node, 1);
    873 
    874     switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
    875     default: llvm_unreachable("This action is not supported yet!");
    876     case TargetLowering::Legal:
    877       // If this is an unaligned load and the target doesn't support it,
    878       // expand it.
    879       if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
    880         Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
    881         unsigned ABIAlignment =
    882           TLI.getDataLayout()->getABITypeAlignment(Ty);
    883         if (LD->getAlignment() < ABIAlignment){
    884           ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
    885         }
    886       }
    887       break;
    888     case TargetLowering::Custom: {
    889       SDValue Res = TLI.LowerOperation(RVal, DAG);
    890       if (Res.getNode()) {
    891         RVal = Res;
    892         RChain = Res.getValue(1);
    893       }
    894       break;
    895     }
    896     case TargetLowering::Promote: {
    897       MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
    898       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
    899              "Can only promote loads to same size type");
    900 
    901       SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(),
    902                          LD->isVolatile(), LD->isNonTemporal(),
    903                          LD->isInvariant(), LD->getAlignment());
    904       RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
    905       RChain = Res.getValue(1);
    906       break;
    907     }
    908     }
    909     if (RChain.getNode() != Node) {
    910       assert(RVal.getNode() != Node && "Load must be completely replaced");
    911       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
    912       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
    913       ReplacedNode(Node);
    914     }
    915     return;
    916   }
    917 
    918   EVT SrcVT = LD->getMemoryVT();
    919   unsigned SrcWidth = SrcVT.getSizeInBits();
    920   unsigned Alignment = LD->getAlignment();
    921   bool isVolatile = LD->isVolatile();
    922   bool isNonTemporal = LD->isNonTemporal();
    923 
    924   if (SrcWidth != SrcVT.getStoreSizeInBits() &&
    925       // Some targets pretend to have an i1 loading operation, and actually
    926       // load an i8.  This trick is correct for ZEXTLOAD because the top 7
    927       // bits are guaranteed to be zero; it helps the optimizers understand
    928       // that these bits are zero.  It is also useful for EXTLOAD, since it
    929       // tells the optimizers that those bits are undefined.  It would be
    930       // nice to have an effective generic way of getting these benefits...
    931       // Until such a way is found, don't insist on promoting i1 here.
    932       (SrcVT != MVT::i1 ||
    933        TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
    934     // Promote to a byte-sized load if not loading an integral number of
    935     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
    936     unsigned NewWidth = SrcVT.getStoreSizeInBits();
    937     EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
    938     SDValue Ch;
    939 
    940     // The extra bits are guaranteed to be zero, since we stored them that
    941     // way.  A zext load from NVT thus automatically gives zext from SrcVT.
    942 
    943     ISD::LoadExtType NewExtType =
    944       ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
    945 
    946     SDValue Result =
    947       DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
    948                      Chain, Ptr, LD->getPointerInfo(),
    949                      NVT, isVolatile, isNonTemporal, Alignment);
    950 
    951     Ch = Result.getValue(1); // The chain.
    952 
    953     if (ExtType == ISD::SEXTLOAD)
    954       // Having the top bits zero doesn't help when sign extending.
    955       Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
    956                            Result.getValueType(),
    957                            Result, DAG.getValueType(SrcVT));
    958     else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
    959       // All the top bits are guaranteed to be zero - inform the optimizers.
    960       Result = DAG.getNode(ISD::AssertZext, dl,
    961                            Result.getValueType(), Result,
    962                            DAG.getValueType(SrcVT));
    963 
    964     Value = Result;
    965     Chain = Ch;
    966   } else if (SrcWidth & (SrcWidth - 1)) {
    967     // If not loading a power-of-2 number of bits, expand as two loads.
    968     assert(!SrcVT.isVector() && "Unsupported extload!");
    969     unsigned RoundWidth = 1 << Log2_32(SrcWidth);
    970     assert(RoundWidth < SrcWidth);
    971     unsigned ExtraWidth = SrcWidth - RoundWidth;
    972     assert(ExtraWidth < RoundWidth);
    973     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
    974            "Load size not an integral number of bytes!");
    975     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
    976     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
    977     SDValue Lo, Hi, Ch;
    978     unsigned IncrementSize;
    979 
    980     if (TLI.isLittleEndian()) {
    981       // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
    982       // Load the bottom RoundWidth bits.
    983       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
    984                           Chain, Ptr,
    985                           LD->getPointerInfo(), RoundVT, isVolatile,
    986                           isNonTemporal, Alignment);
    987 
    988       // Load the remaining ExtraWidth bits.
    989       IncrementSize = RoundWidth / 8;
    990       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
    991                          DAG.getIntPtrConstant(IncrementSize));
    992       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
    993                           LD->getPointerInfo().getWithOffset(IncrementSize),
    994                           ExtraVT, isVolatile, isNonTemporal,
    995                           MinAlign(Alignment, IncrementSize));
    996 
    997       // Build a factor node to remember that this load is independent of
    998       // the other one.
    999       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
   1000                        Hi.getValue(1));
   1001 
   1002       // Move the top bits to the right place.
   1003       Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
   1004                        DAG.getConstant(RoundWidth,
   1005                                        TLI.getShiftAmountTy(Hi.getValueType())));
   1006 
   1007       // Join the hi and lo parts.
   1008       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
   1009     } else {
   1010       // Big endian - avoid unaligned loads.
   1011       // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
   1012       // Load the top RoundWidth bits.
   1013       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
   1014                           LD->getPointerInfo(), RoundVT, isVolatile,
   1015                           isNonTemporal, Alignment);
   1016 
   1017       // Load the remaining ExtraWidth bits.
   1018       IncrementSize = RoundWidth / 8;
   1019       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
   1020                          DAG.getIntPtrConstant(IncrementSize));
   1021       Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
   1022                           dl, Node->getValueType(0), Chain, Ptr,
   1023                           LD->getPointerInfo().getWithOffset(IncrementSize),
   1024                           ExtraVT, isVolatile, isNonTemporal,
   1025                           MinAlign(Alignment, IncrementSize));
   1026 
   1027       // Build a factor node to remember that this load is independent of
   1028       // the other one.
   1029       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
   1030                        Hi.getValue(1));
   1031 
   1032       // Move the top bits to the right place.
   1033       Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
   1034                        DAG.getConstant(ExtraWidth,
   1035                                        TLI.getShiftAmountTy(Hi.getValueType())));
   1036 
   1037       // Join the hi and lo parts.
   1038       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
   1039     }
   1040 
   1041     Chain = Ch;
   1042   } else {
   1043     bool isCustom = false;
   1044     switch (TLI.getLoadExtAction(ExtType, SrcVT.getSimpleVT())) {
   1045     default: llvm_unreachable("This action is not supported yet!");
   1046     case TargetLowering::Custom:
   1047              isCustom = true;
   1048              // FALLTHROUGH
   1049     case TargetLowering::Legal: {
   1050              Value = SDValue(Node, 0);
   1051              Chain = SDValue(Node, 1);
   1052 
   1053              if (isCustom) {
   1054                SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
   1055                if (Res.getNode()) {
   1056                  Value = Res;
   1057                  Chain = Res.getValue(1);
   1058                }
   1059              } else {
   1060                // If this is an unaligned load and the target doesn't support it,
   1061                // expand it.
   1062                if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
   1063                  Type *Ty =
   1064                    LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
   1065                  unsigned ABIAlignment =
   1066                    TLI.getDataLayout()->getABITypeAlignment(Ty);
   1067                  if (LD->getAlignment() < ABIAlignment){
   1068                    ExpandUnalignedLoad(cast<LoadSDNode>(Node),
   1069                                        DAG, TLI, Value, Chain);
   1070                  }
   1071                }
   1072              }
   1073              break;
   1074     }
   1075     case TargetLowering::Expand:
   1076              if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
   1077                SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr,
   1078                                           LD->getPointerInfo(),
   1079                                           LD->isVolatile(), LD->isNonTemporal(),
   1080                                           LD->isInvariant(), LD->getAlignment());
   1081                unsigned ExtendOp;
   1082                switch (ExtType) {
   1083                case ISD::EXTLOAD:
   1084                  ExtendOp = (SrcVT.isFloatingPoint() ?
   1085                              ISD::FP_EXTEND : ISD::ANY_EXTEND);
   1086                  break;
   1087                case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
   1088                case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
   1089                default: llvm_unreachable("Unexpected extend load type!");
   1090                }
   1091                Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
   1092                Chain = Load.getValue(1);
   1093                break;
   1094              }
   1095 
   1096              assert(!SrcVT.isVector() &&
   1097                     "Vector Loads are handled in LegalizeVectorOps");
   1098 
   1099              // FIXME: This does not work for vectors on most targets.  Sign- and
   1100              // zero-extend operations are currently folded into extending loads,
   1101              // whether they are legal or not, and then we end up here without any
   1102              // support for legalizing them.
   1103              assert(ExtType != ISD::EXTLOAD &&
   1104                     "EXTLOAD should always be supported!");
   1105              // Turn the unsupported load into an EXTLOAD followed by an explicit
   1106              // zero/sign extend inreg.
   1107              SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
   1108                                              Chain, Ptr, LD->getPointerInfo(), SrcVT,
   1109                                              LD->isVolatile(), LD->isNonTemporal(),
   1110                                              LD->getAlignment());
   1111              SDValue ValRes;
   1112              if (ExtType == ISD::SEXTLOAD)
   1113                ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
   1114                                     Result.getValueType(),
   1115                                     Result, DAG.getValueType(SrcVT));
   1116              else
   1117                ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
   1118              Value = ValRes;
   1119              Chain = Result.getValue(1);
   1120              break;
   1121     }
   1122   }
   1123 
   1124   // Since loads produce two values, make sure to remember that we legalized
   1125   // both of them.
   1126   if (Chain.getNode() != Node) {
   1127     assert(Value.getNode() != Node && "Load must be completely replaced");
   1128     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
   1129     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
   1130     ReplacedNode(Node);
   1131   }
   1132 }
   1133 
   1134 /// LegalizeOp - Return a legal replacement for the given operation, with
   1135 /// all legal operands.
   1136 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
   1137   if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
   1138     return;
   1139 
   1140   for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
   1141     assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
   1142              TargetLowering::TypeLegal &&
   1143            "Unexpected illegal type!");
   1144 
   1145   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
   1146     assert((TLI.getTypeAction(*DAG.getContext(),
   1147                               Node->getOperand(i).getValueType()) ==
   1148               TargetLowering::TypeLegal ||
   1149             Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
   1150            "Unexpected illegal type!");
   1151 
   1152   // Figure out the correct action; the way to query this varies by opcode
   1153   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
   1154   bool SimpleFinishLegalizing = true;
   1155   switch (Node->getOpcode()) {
   1156   case ISD::INTRINSIC_W_CHAIN:
   1157   case ISD::INTRINSIC_WO_CHAIN:
   1158   case ISD::INTRINSIC_VOID:
   1159   case ISD::STACKSAVE:
   1160     Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
   1161     break;
   1162   case ISD::VAARG:
   1163     Action = TLI.getOperationAction(Node->getOpcode(),
   1164                                     Node->getValueType(0));
   1165     if (Action != TargetLowering::Promote)
   1166       Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
   1167     break;
   1168   case ISD::SINT_TO_FP:
   1169   case ISD::UINT_TO_FP:
   1170   case ISD::EXTRACT_VECTOR_ELT:
   1171     Action = TLI.getOperationAction(Node->getOpcode(),
   1172                                     Node->getOperand(0).getValueType());
   1173     break;
   1174   case ISD::FP_ROUND_INREG:
   1175   case ISD::SIGN_EXTEND_INREG: {
   1176     EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
   1177     Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
   1178     break;
   1179   }
   1180   case ISD::ATOMIC_STORE: {
   1181     Action = TLI.getOperationAction(Node->getOpcode(),
   1182                                     Node->getOperand(2).getValueType());
   1183     break;
   1184   }
   1185   case ISD::SELECT_CC:
   1186   case ISD::SETCC:
   1187   case ISD::BR_CC: {
   1188     unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
   1189                          Node->getOpcode() == ISD::SETCC ? 2 : 1;
   1190     unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
   1191     MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
   1192     ISD::CondCode CCCode =
   1193         cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
   1194     Action = TLI.getCondCodeAction(CCCode, OpVT);
   1195     if (Action == TargetLowering::Legal) {
   1196       if (Node->getOpcode() == ISD::SELECT_CC)
   1197         Action = TLI.getOperationAction(Node->getOpcode(),
   1198                                         Node->getValueType(0));
   1199       else
   1200         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
   1201     }
   1202     break;
   1203   }
   1204   case ISD::LOAD:
   1205   case ISD::STORE:
   1206     // FIXME: Model these properly.  LOAD and STORE are complicated, and
   1207     // STORE expects the unlegalized operand in some cases.
   1208     SimpleFinishLegalizing = false;
   1209     break;
   1210   case ISD::CALLSEQ_START:
   1211   case ISD::CALLSEQ_END:
   1212     // FIXME: This shouldn't be necessary.  These nodes have special properties
   1213     // dealing with the recursive nature of legalization.  Removing this
   1214     // special case should be done as part of making LegalizeDAG non-recursive.
   1215     SimpleFinishLegalizing = false;
   1216     break;
   1217   case ISD::EXTRACT_ELEMENT:
   1218   case ISD::FLT_ROUNDS_:
   1219   case ISD::SADDO:
   1220   case ISD::SSUBO:
   1221   case ISD::UADDO:
   1222   case ISD::USUBO:
   1223   case ISD::SMULO:
   1224   case ISD::UMULO:
   1225   case ISD::FPOWI:
   1226   case ISD::MERGE_VALUES:
   1227   case ISD::EH_RETURN:
   1228   case ISD::FRAME_TO_ARGS_OFFSET:
   1229   case ISD::EH_SJLJ_SETJMP:
   1230   case ISD::EH_SJLJ_LONGJMP:
   1231     // These operations lie about being legal: when they claim to be legal,
   1232     // they should actually be expanded.
   1233     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
   1234     if (Action == TargetLowering::Legal)
   1235       Action = TargetLowering::Expand;
   1236     break;
   1237   case ISD::INIT_TRAMPOLINE:
   1238   case ISD::ADJUST_TRAMPOLINE:
   1239   case ISD::FRAMEADDR:
   1240   case ISD::RETURNADDR:
   1241     // These operations lie about being legal: when they claim to be legal,
   1242     // they should actually be custom-lowered.
   1243     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
   1244     if (Action == TargetLowering::Legal)
   1245       Action = TargetLowering::Custom;
   1246     break;
   1247   case ISD::DEBUGTRAP:
   1248     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
   1249     if (Action == TargetLowering::Expand) {
   1250       // replace ISD::DEBUGTRAP with ISD::TRAP
   1251       SDValue NewVal;
   1252       NewVal = DAG.getNode(ISD::TRAP, Node->getDebugLoc(), Node->getVTList(),
   1253                            Node->getOperand(0));
   1254       ReplaceNode(Node, NewVal.getNode());
   1255       LegalizeOp(NewVal.getNode());
   1256       return;
   1257     }
   1258     break;
   1259 
   1260   default:
   1261     if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
   1262       Action = TargetLowering::Legal;
   1263     } else {
   1264       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
   1265     }
   1266     break;
   1267   }
   1268 
   1269   if (SimpleFinishLegalizing) {
   1270     SDNode *NewNode = Node;
   1271     switch (Node->getOpcode()) {
   1272     default: break;
   1273     case ISD::SHL:
   1274     case ISD::SRL:
   1275     case ISD::SRA:
   1276     case ISD::ROTL:
   1277     case ISD::ROTR:
   1278       // Legalizing shifts/rotates requires adjusting the shift amount
   1279       // to the appropriate width.
   1280       if (!Node->getOperand(1).getValueType().isVector()) {
   1281         SDValue SAO =
   1282           DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
   1283                                     Node->getOperand(1));
   1284         HandleSDNode Handle(SAO);
   1285         LegalizeOp(SAO.getNode());
   1286         NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
   1287                                          Handle.getValue());
   1288       }
   1289       break;
   1290     case ISD::SRL_PARTS:
   1291     case ISD::SRA_PARTS:
   1292     case ISD::SHL_PARTS:
   1293       // Legalizing shifts/rotates requires adjusting the shift amount
   1294       // to the appropriate width.
   1295       if (!Node->getOperand(2).getValueType().isVector()) {
   1296         SDValue SAO =
   1297           DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
   1298                                     Node->getOperand(2));
   1299         HandleSDNode Handle(SAO);
   1300         LegalizeOp(SAO.getNode());
   1301         NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
   1302                                          Node->getOperand(1),
   1303                                          Handle.getValue());
   1304       }
   1305       break;
   1306     }
   1307 
   1308     if (NewNode != Node) {
   1309       DAG.ReplaceAllUsesWith(Node, NewNode);
   1310       for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
   1311         DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
   1312       ReplacedNode(Node);
   1313       Node = NewNode;
   1314     }
   1315     switch (Action) {
   1316     case TargetLowering::Legal:
   1317       return;
   1318     case TargetLowering::Custom: {
   1319       // FIXME: The handling for custom lowering with multiple results is
   1320       // a complete mess.
   1321       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
   1322       if (Res.getNode()) {
   1323         SmallVector<SDValue, 8> ResultVals;
   1324         for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
   1325           if (e == 1)
   1326             ResultVals.push_back(Res);
   1327           else
   1328             ResultVals.push_back(Res.getValue(i));
   1329         }
   1330         if (Res.getNode() != Node || Res.getResNo() != 0) {
   1331           DAG.ReplaceAllUsesWith(Node, ResultVals.data());
   1332           for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
   1333             DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
   1334           ReplacedNode(Node);
   1335         }
   1336         return;
   1337       }
   1338     }
   1339       // FALL THROUGH
   1340     case TargetLowering::Expand:
   1341       ExpandNode(Node);
   1342       return;
   1343     case TargetLowering::Promote:
   1344       PromoteNode(Node);
   1345       return;
   1346     }
   1347   }
   1348 
   1349   switch (Node->getOpcode()) {
   1350   default:
   1351 #ifndef NDEBUG
   1352     dbgs() << "NODE: ";
   1353     Node->dump( &DAG);
   1354     dbgs() << "\n";
   1355 #endif
   1356     llvm_unreachable("Do not know how to legalize this operator!");
   1357 
   1358   case ISD::CALLSEQ_START:
   1359   case ISD::CALLSEQ_END:
   1360     break;
   1361   case ISD::LOAD: {
   1362     return LegalizeLoadOps(Node);
   1363   }
   1364   case ISD::STORE: {
   1365     return LegalizeStoreOps(Node);
   1366   }
   1367   }
   1368 }
   1369 
   1370 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
   1371   SDValue Vec = Op.getOperand(0);
   1372   SDValue Idx = Op.getOperand(1);
   1373   DebugLoc dl = Op.getDebugLoc();
   1374   // Store the value to a temporary stack slot, then LOAD the returned part.
   1375   SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
   1376   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
   1377                             MachinePointerInfo(), false, false, 0);
   1378 
   1379   // Add the offset to the index.
   1380   unsigned EltSize =
   1381       Vec.getValueType().getVectorElementType().getSizeInBits()/8;
   1382   Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
   1383                     DAG.getConstant(EltSize, Idx.getValueType()));
   1384 
   1385   if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
   1386     Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
   1387   else
   1388     Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
   1389 
   1390   StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
   1391 
   1392   if (Op.getValueType().isVector())
   1393     return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
   1394                        false, false, false, 0);
   1395   return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
   1396                         MachinePointerInfo(),
   1397                         Vec.getValueType().getVectorElementType(),
   1398                         false, false, 0);
   1399 }
   1400 
   1401 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
   1402   assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
   1403 
   1404   SDValue Vec  = Op.getOperand(0);
   1405   SDValue Part = Op.getOperand(1);
   1406   SDValue Idx  = Op.getOperand(2);
   1407   DebugLoc dl  = Op.getDebugLoc();
   1408 
   1409   // Store the value to a temporary stack slot, then LOAD the returned part.
   1410 
   1411   SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
   1412   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
   1413   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
   1414 
   1415   // First store the whole vector.
   1416   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
   1417                             false, false, 0);
   1418 
   1419   // Then store the inserted part.
   1420 
   1421   // Add the offset to the index.
   1422   unsigned EltSize =
   1423       Vec.getValueType().getVectorElementType().getSizeInBits()/8;
   1424 
   1425   Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
   1426                     DAG.getConstant(EltSize, Idx.getValueType()));
   1427 
   1428   if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
   1429     Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
   1430   else
   1431     Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
   1432 
   1433   SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
   1434                                     StackPtr);
   1435 
   1436   // Store the subvector.
   1437   Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
   1438                     MachinePointerInfo(), false, false, 0);
   1439 
   1440   // Finally, load the updated vector.
   1441   return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
   1442                      false, false, false, 0);
   1443 }
   1444 
   1445 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
   1446   // We can't handle this case efficiently.  Allocate a sufficiently
   1447   // aligned object on the stack, store each element into it, then load
   1448   // the result as a vector.
   1449   // Create the stack frame object.
   1450   EVT VT = Node->getValueType(0);
   1451   EVT EltVT = VT.getVectorElementType();
   1452   DebugLoc dl = Node->getDebugLoc();
   1453   SDValue FIPtr = DAG.CreateStackTemporary(VT);
   1454   int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
   1455   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
   1456 
   1457   // Emit a store of each element to the stack slot.
   1458   SmallVector<SDValue, 8> Stores;
   1459   unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
   1460   // Store (in the right endianness) the elements to memory.
   1461   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
   1462     // Ignore undef elements.
   1463     if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
   1464 
   1465     unsigned Offset = TypeByteSize*i;
   1466 
   1467     SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
   1468     Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
   1469 
   1470     // If the destination vector element type is narrower than the source
   1471     // element type, only store the bits necessary.
   1472     if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
   1473       Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
   1474                                          Node->getOperand(i), Idx,
   1475                                          PtrInfo.getWithOffset(Offset),
   1476                                          EltVT, false, false, 0));
   1477     } else
   1478       Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
   1479                                     Node->getOperand(i), Idx,
   1480                                     PtrInfo.getWithOffset(Offset),
   1481                                     false, false, 0));
   1482   }
   1483 
   1484   SDValue StoreChain;
   1485   if (!Stores.empty())    // Not all undef elements?
   1486     StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   1487                              &Stores[0], Stores.size());
   1488   else
   1489     StoreChain = DAG.getEntryNode();
   1490 
   1491   // Result is a load from the stack slot.
   1492   return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
   1493                      false, false, false, 0);
   1494 }
   1495 
   1496 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
   1497   DebugLoc dl = Node->getDebugLoc();
   1498   SDValue Tmp1 = Node->getOperand(0);
   1499   SDValue Tmp2 = Node->getOperand(1);
   1500 
   1501   // Get the sign bit of the RHS.  First obtain a value that has the same
   1502   // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
   1503   SDValue SignBit;
   1504   EVT FloatVT = Tmp2.getValueType();
   1505   EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
   1506   if (TLI.isTypeLegal(IVT)) {
   1507     // Convert to an integer with the same sign bit.
   1508     SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
   1509   } else {
   1510     // Store the float to memory, then load the sign part out as an integer.
   1511     MVT LoadTy = TLI.getPointerTy();
   1512     // First create a temporary that is aligned for both the load and store.
   1513     SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
   1514     // Then store the float to it.
   1515     SDValue Ch =
   1516       DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
   1517                    false, false, 0);
   1518     if (TLI.isBigEndian()) {
   1519       assert(FloatVT.isByteSized() && "Unsupported floating point type!");
   1520       // Load out a legal integer with the same sign bit as the float.
   1521       SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
   1522                             false, false, false, 0);
   1523     } else { // Little endian
   1524       SDValue LoadPtr = StackPtr;
   1525       // The float may be wider than the integer we are going to load.  Advance
   1526       // the pointer so that the loaded integer will contain the sign bit.
   1527       unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
   1528       unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
   1529       LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
   1530                             LoadPtr, DAG.getIntPtrConstant(ByteOffset));
   1531       // Load a legal integer containing the sign bit.
   1532       SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
   1533                             false, false, false, 0);
   1534       // Move the sign bit to the top bit of the loaded integer.
   1535       unsigned BitShift = LoadTy.getSizeInBits() -
   1536         (FloatVT.getSizeInBits() - 8 * ByteOffset);
   1537       assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
   1538       if (BitShift)
   1539         SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
   1540                               DAG.getConstant(BitShift,
   1541                                  TLI.getShiftAmountTy(SignBit.getValueType())));
   1542     }
   1543   }
   1544   // Now get the sign bit proper, by seeing whether the value is negative.
   1545   SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
   1546                          SignBit, DAG.getConstant(0, SignBit.getValueType()),
   1547                          ISD::SETLT);
   1548   // Get the absolute value of the result.
   1549   SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
   1550   // Select between the nabs and abs value based on the sign bit of
   1551   // the input.
   1552   return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
   1553                      DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
   1554                      AbsVal);
   1555 }
   1556 
   1557 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
   1558                                            SmallVectorImpl<SDValue> &Results) {
   1559   unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
   1560   assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
   1561           " not tell us which reg is the stack pointer!");
   1562   DebugLoc dl = Node->getDebugLoc();
   1563   EVT VT = Node->getValueType(0);
   1564   SDValue Tmp1 = SDValue(Node, 0);
   1565   SDValue Tmp2 = SDValue(Node, 1);
   1566   SDValue Tmp3 = Node->getOperand(2);
   1567   SDValue Chain = Tmp1.getOperand(0);
   1568 
   1569   // Chain the dynamic stack allocation so that it doesn't modify the stack
   1570   // pointer when other instructions are using the stack.
   1571   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
   1572 
   1573   SDValue Size  = Tmp2.getOperand(1);
   1574   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
   1575   Chain = SP.getValue(1);
   1576   unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
   1577   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
   1578   if (Align > StackAlign)
   1579     SP = DAG.getNode(ISD::AND, dl, VT, SP,
   1580                       DAG.getConstant(-(uint64_t)Align, VT));
   1581   Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
   1582   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
   1583 
   1584   Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
   1585                             DAG.getIntPtrConstant(0, true), SDValue());
   1586 
   1587   Results.push_back(Tmp1);
   1588   Results.push_back(Tmp2);
   1589 }
   1590 
   1591 /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
   1592 /// condition code CC on the current target. This routine expands SETCC with
   1593 /// illegal condition code into AND / OR of multiple SETCC values.
   1594 void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
   1595                                                  SDValue &LHS, SDValue &RHS,
   1596                                                  SDValue &CC,
   1597                                                  DebugLoc dl) {
   1598   MVT OpVT = LHS.getSimpleValueType();
   1599   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
   1600   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
   1601   default: llvm_unreachable("Unknown condition code action!");
   1602   case TargetLowering::Legal:
   1603     // Nothing to do.
   1604     break;
   1605   case TargetLowering::Expand: {
   1606     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
   1607     ISD::CondCode InvCC = ISD::SETCC_INVALID;
   1608     unsigned Opc = 0;
   1609     switch (CCCode) {
   1610     default: llvm_unreachable("Don't know how to expand this condition!");
   1611     case ISD::SETO:
   1612         assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT)
   1613             == TargetLowering::Legal
   1614             && "If SETO is expanded, SETOEQ must be legal!");
   1615         CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
   1616     case ISD::SETUO:
   1617         assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT)
   1618             == TargetLowering::Legal
   1619             && "If SETUO is expanded, SETUNE must be legal!");
   1620         CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
   1621     case ISD::SETOEQ:
   1622     case ISD::SETOGT:
   1623     case ISD::SETOGE:
   1624     case ISD::SETOLT:
   1625     case ISD::SETOLE:
   1626     case ISD::SETONE:
   1627     case ISD::SETUEQ:
   1628     case ISD::SETUNE:
   1629     case ISD::SETUGT:
   1630     case ISD::SETUGE:
   1631     case ISD::SETULT:
   1632     case ISD::SETULE:
   1633         // If we are floating point, assign and break, otherwise fall through.
   1634         if (!OpVT.isInteger()) {
   1635           // We can use the 4th bit to tell if we are the unordered
   1636           // or ordered version of the opcode.
   1637           CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
   1638           Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
   1639           CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
   1640           break;
   1641         }
   1642         // Fallthrough if we are unsigned integer.
   1643     case ISD::SETLE:
   1644     case ISD::SETGT:
   1645     case ISD::SETGE:
   1646     case ISD::SETLT:
   1647     case ISD::SETNE:
   1648     case ISD::SETEQ:
   1649       InvCC = ISD::getSetCCSwappedOperands(CCCode);
   1650       if (TLI.getCondCodeAction(InvCC, OpVT) == TargetLowering::Expand) {
   1651         // We only support using the inverted operation and not a
   1652         // different manner of supporting expanding these cases.
   1653         llvm_unreachable("Don't know how to expand this condition!");
   1654       }
   1655       LHS = DAG.getSetCC(dl, VT, RHS, LHS, InvCC);
   1656       RHS = SDValue();
   1657       CC = SDValue();
   1658       return;
   1659     }
   1660 
   1661     SDValue SetCC1, SetCC2;
   1662     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
   1663       // If we aren't the ordered or unorder operation,
   1664       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
   1665       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
   1666       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
   1667     } else {
   1668       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
   1669       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
   1670       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
   1671     }
   1672     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
   1673     RHS = SDValue();
   1674     CC  = SDValue();
   1675     break;
   1676   }
   1677   }
   1678 }
   1679 
   1680 /// EmitStackConvert - Emit a store/load combination to the stack.  This stores
   1681 /// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
   1682 /// a load from the stack slot to DestVT, extending it if needed.
   1683 /// The resultant code need not be legal.
   1684 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
   1685                                                EVT SlotVT,
   1686                                                EVT DestVT,
   1687                                                DebugLoc dl) {
   1688   // Create the stack frame object.
   1689   unsigned SrcAlign =
   1690     TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType().
   1691                                               getTypeForEVT(*DAG.getContext()));
   1692   SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
   1693 
   1694   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
   1695   int SPFI = StackPtrFI->getIndex();
   1696   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
   1697 
   1698   unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
   1699   unsigned SlotSize = SlotVT.getSizeInBits();
   1700   unsigned DestSize = DestVT.getSizeInBits();
   1701   Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
   1702   unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType);
   1703 
   1704   // Emit a store to the stack slot.  Use a truncstore if the input value is
   1705   // later than DestVT.
   1706   SDValue Store;
   1707 
   1708   if (SrcSize > SlotSize)
   1709     Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
   1710                               PtrInfo, SlotVT, false, false, SrcAlign);
   1711   else {
   1712     assert(SrcSize == SlotSize && "Invalid store");
   1713     Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
   1714                          PtrInfo, false, false, SrcAlign);
   1715   }
   1716 
   1717   // Result is a load from the stack slot.
   1718   if (SlotSize == DestSize)
   1719     return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
   1720                        false, false, false, DestAlign);
   1721 
   1722   assert(SlotSize < DestSize && "Unknown extension!");
   1723   return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
   1724                         PtrInfo, SlotVT, false, false, DestAlign);
   1725 }
   1726 
   1727 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
   1728   DebugLoc dl = Node->getDebugLoc();
   1729   // Create a vector sized/aligned stack slot, store the value to element #0,
   1730   // then load the whole vector back out.
   1731   SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
   1732 
   1733   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
   1734   int SPFI = StackPtrFI->getIndex();
   1735 
   1736   SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
   1737                                  StackPtr,
   1738                                  MachinePointerInfo::getFixedStack(SPFI),
   1739                                  Node->getValueType(0).getVectorElementType(),
   1740                                  false, false, 0);
   1741   return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
   1742                      MachinePointerInfo::getFixedStack(SPFI),
   1743                      false, false, false, 0);
   1744 }
   1745 
   1746 
   1747 /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
   1748 /// support the operation, but do support the resultant vector type.
   1749 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
   1750   unsigned NumElems = Node->getNumOperands();
   1751   SDValue Value1, Value2;
   1752   DebugLoc dl = Node->getDebugLoc();
   1753   EVT VT = Node->getValueType(0);
   1754   EVT OpVT = Node->getOperand(0).getValueType();
   1755   EVT EltVT = VT.getVectorElementType();
   1756 
   1757   // If the only non-undef value is the low element, turn this into a
   1758   // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
   1759   bool isOnlyLowElement = true;
   1760   bool MoreThanTwoValues = false;
   1761   bool isConstant = true;
   1762   for (unsigned i = 0; i < NumElems; ++i) {
   1763     SDValue V = Node->getOperand(i);
   1764     if (V.getOpcode() == ISD::UNDEF)
   1765       continue;
   1766     if (i > 0)
   1767       isOnlyLowElement = false;
   1768     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
   1769       isConstant = false;
   1770 
   1771     if (!Value1.getNode()) {
   1772       Value1 = V;
   1773     } else if (!Value2.getNode()) {
   1774       if (V != Value1)
   1775         Value2 = V;
   1776     } else if (V != Value1 && V != Value2) {
   1777       MoreThanTwoValues = true;
   1778     }
   1779   }
   1780 
   1781   if (!Value1.getNode())
   1782     return DAG.getUNDEF(VT);
   1783 
   1784   if (isOnlyLowElement)
   1785     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
   1786 
   1787   // If all elements are constants, create a load from the constant pool.
   1788   if (isConstant) {
   1789     SmallVector<Constant*, 16> CV;
   1790     for (unsigned i = 0, e = NumElems; i != e; ++i) {
   1791       if (ConstantFPSDNode *V =
   1792           dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
   1793         CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
   1794       } else if (ConstantSDNode *V =
   1795                  dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
   1796         if (OpVT==EltVT)
   1797           CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
   1798         else {
   1799           // If OpVT and EltVT don't match, EltVT is not legal and the
   1800           // element values have been promoted/truncated earlier.  Undo this;
   1801           // we don't want a v16i8 to become a v16i32 for example.
   1802           const ConstantInt *CI = V->getConstantIntValue();
   1803           CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
   1804                                         CI->getZExtValue()));
   1805         }
   1806       } else {
   1807         assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
   1808         Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
   1809         CV.push_back(UndefValue::get(OpNTy));
   1810       }
   1811     }
   1812     Constant *CP = ConstantVector::get(CV);
   1813     SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
   1814     unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
   1815     return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   1816                        MachinePointerInfo::getConstantPool(),
   1817                        false, false, false, Alignment);
   1818   }
   1819 
   1820   if (!MoreThanTwoValues) {
   1821     SmallVector<int, 8> ShuffleVec(NumElems, -1);
   1822     for (unsigned i = 0; i < NumElems; ++i) {
   1823       SDValue V = Node->getOperand(i);
   1824       if (V.getOpcode() == ISD::UNDEF)
   1825         continue;
   1826       ShuffleVec[i] = V == Value1 ? 0 : NumElems;
   1827     }
   1828     if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
   1829       // Get the splatted value into the low element of a vector register.
   1830       SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
   1831       SDValue Vec2;
   1832       if (Value2.getNode())
   1833         Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
   1834       else
   1835         Vec2 = DAG.getUNDEF(VT);
   1836 
   1837       // Return shuffle(LowValVec, undef, <0,0,0,0>)
   1838       return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
   1839     }
   1840   }
   1841 
   1842   // Otherwise, we can't handle this case efficiently.
   1843   return ExpandVectorBuildThroughStack(Node);
   1844 }
   1845 
   1846 // ExpandLibCall - Expand a node into a call to a libcall.  If the result value
   1847 // does not fit into a register, return the lo part and set the hi part to the
   1848 // by-reg argument.  If it does fit into a single register, return the result
   1849 // and leave the Hi part unset.
   1850 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
   1851                                             bool isSigned) {
   1852   TargetLowering::ArgListTy Args;
   1853   TargetLowering::ArgListEntry Entry;
   1854   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
   1855     EVT ArgVT = Node->getOperand(i).getValueType();
   1856     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   1857     Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
   1858     Entry.isSExt = isSigned;
   1859     Entry.isZExt = !isSigned;
   1860     Args.push_back(Entry);
   1861   }
   1862   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   1863                                          TLI.getPointerTy());
   1864 
   1865   Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
   1866 
   1867   // By default, the input chain to this libcall is the entry node of the
   1868   // function. If the libcall is going to be emitted as a tail call then
   1869   // TLI.isUsedByReturnOnly will change it to the right chain if the return
   1870   // node which is being folded has a non-entry input chain.
   1871   SDValue InChain = DAG.getEntryNode();
   1872 
   1873   // isTailCall may be true since the callee does not reference caller stack
   1874   // frame. Check if it's in the right position.
   1875   SDValue TCChain = InChain;
   1876   bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain);
   1877   if (isTailCall)
   1878     InChain = TCChain;
   1879 
   1880   TargetLowering::
   1881   CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
   1882                     0, TLI.getLibcallCallingConv(LC), isTailCall,
   1883                     /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
   1884                     Callee, Args, DAG, Node->getDebugLoc());
   1885   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
   1886 
   1887 
   1888   if (!CallInfo.second.getNode())
   1889     // It's a tailcall, return the chain (which is the DAG root).
   1890     return DAG.getRoot();
   1891 
   1892   return CallInfo.first;
   1893 }
   1894 
   1895 /// ExpandLibCall - Generate a libcall taking the given operands as arguments
   1896 /// and returning a result of type RetVT.
   1897 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
   1898                                             const SDValue *Ops, unsigned NumOps,
   1899                                             bool isSigned, DebugLoc dl) {
   1900   TargetLowering::ArgListTy Args;
   1901   Args.reserve(NumOps);
   1902 
   1903   TargetLowering::ArgListEntry Entry;
   1904   for (unsigned i = 0; i != NumOps; ++i) {
   1905     Entry.Node = Ops[i];
   1906     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
   1907     Entry.isSExt = isSigned;
   1908     Entry.isZExt = !isSigned;
   1909     Args.push_back(Entry);
   1910   }
   1911   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   1912                                          TLI.getPointerTy());
   1913 
   1914   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
   1915   TargetLowering::
   1916   CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
   1917                        false, 0, TLI.getLibcallCallingConv(LC),
   1918                        /*isTailCall=*/false,
   1919                   /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
   1920                   Callee, Args, DAG, dl);
   1921   std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
   1922 
   1923   return CallInfo.first;
   1924 }
   1925 
   1926 // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
   1927 // ExpandLibCall except that the first operand is the in-chain.
   1928 std::pair<SDValue, SDValue>
   1929 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
   1930                                          SDNode *Node,
   1931                                          bool isSigned) {
   1932   SDValue InChain = Node->getOperand(0);
   1933 
   1934   TargetLowering::ArgListTy Args;
   1935   TargetLowering::ArgListEntry Entry;
   1936   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
   1937     EVT ArgVT = Node->getOperand(i).getValueType();
   1938     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   1939     Entry.Node = Node->getOperand(i);
   1940     Entry.Ty = ArgTy;
   1941     Entry.isSExt = isSigned;
   1942     Entry.isZExt = !isSigned;
   1943     Args.push_back(Entry);
   1944   }
   1945   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   1946                                          TLI.getPointerTy());
   1947 
   1948   Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
   1949   TargetLowering::
   1950   CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
   1951                     0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
   1952                     /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
   1953                     Callee, Args, DAG, Node->getDebugLoc());
   1954   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
   1955 
   1956   return CallInfo;
   1957 }
   1958 
   1959 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
   1960                                               RTLIB::Libcall Call_F32,
   1961                                               RTLIB::Libcall Call_F64,
   1962                                               RTLIB::Libcall Call_F80,
   1963                                               RTLIB::Libcall Call_F128,
   1964                                               RTLIB::Libcall Call_PPCF128) {
   1965   RTLIB::Libcall LC;
   1966   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
   1967   default: llvm_unreachable("Unexpected request for libcall!");
   1968   case MVT::f32: LC = Call_F32; break;
   1969   case MVT::f64: LC = Call_F64; break;
   1970   case MVT::f80: LC = Call_F80; break;
   1971   case MVT::f128: LC = Call_F128; break;
   1972   case MVT::ppcf128: LC = Call_PPCF128; break;
   1973   }
   1974   return ExpandLibCall(LC, Node, false);
   1975 }
   1976 
   1977 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
   1978                                                RTLIB::Libcall Call_I8,
   1979                                                RTLIB::Libcall Call_I16,
   1980                                                RTLIB::Libcall Call_I32,
   1981                                                RTLIB::Libcall Call_I64,
   1982                                                RTLIB::Libcall Call_I128) {
   1983   RTLIB::Libcall LC;
   1984   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
   1985   default: llvm_unreachable("Unexpected request for libcall!");
   1986   case MVT::i8:   LC = Call_I8; break;
   1987   case MVT::i16:  LC = Call_I16; break;
   1988   case MVT::i32:  LC = Call_I32; break;
   1989   case MVT::i64:  LC = Call_I64; break;
   1990   case MVT::i128: LC = Call_I128; break;
   1991   }
   1992   return ExpandLibCall(LC, Node, isSigned);
   1993 }
   1994 
   1995 /// isDivRemLibcallAvailable - Return true if divmod libcall is available.
   1996 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
   1997                                      const TargetLowering &TLI) {
   1998   RTLIB::Libcall LC;
   1999   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
   2000   default: llvm_unreachable("Unexpected request for libcall!");
   2001   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
   2002   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
   2003   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
   2004   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
   2005   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
   2006   }
   2007 
   2008   return TLI.getLibcallName(LC) != 0;
   2009 }
   2010 
   2011 /// useDivRem - Only issue divrem libcall if both quotient and remainder are
   2012 /// needed.
   2013 static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
   2014   // The other use might have been replaced with a divrem already.
   2015   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
   2016   unsigned OtherOpcode = 0;
   2017   if (isSigned)
   2018     OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
   2019   else
   2020     OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
   2021 
   2022   SDValue Op0 = Node->getOperand(0);
   2023   SDValue Op1 = Node->getOperand(1);
   2024   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
   2025          UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
   2026     SDNode *User = *UI;
   2027     if (User == Node)
   2028       continue;
   2029     if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) &&
   2030         User->getOperand(0) == Op0 &&
   2031         User->getOperand(1) == Op1)
   2032       return true;
   2033   }
   2034   return false;
   2035 }
   2036 
   2037 /// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
   2038 /// pairs.
   2039 void
   2040 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
   2041                                           SmallVectorImpl<SDValue> &Results) {
   2042   unsigned Opcode = Node->getOpcode();
   2043   bool isSigned = Opcode == ISD::SDIVREM;
   2044 
   2045   RTLIB::Libcall LC;
   2046   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
   2047   default: llvm_unreachable("Unexpected request for libcall!");
   2048   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
   2049   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
   2050   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
   2051   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
   2052   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
   2053   }
   2054 
   2055   // The input chain to this libcall is the entry node of the function.
   2056   // Legalizing the call will automatically add the previous call to the
   2057   // dependence.
   2058   SDValue InChain = DAG.getEntryNode();
   2059 
   2060   EVT RetVT = Node->getValueType(0);
   2061   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
   2062 
   2063   TargetLowering::ArgListTy Args;
   2064   TargetLowering::ArgListEntry Entry;
   2065   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
   2066     EVT ArgVT = Node->getOperand(i).getValueType();
   2067     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   2068     Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
   2069     Entry.isSExt = isSigned;
   2070     Entry.isZExt = !isSigned;
   2071     Args.push_back(Entry);
   2072   }
   2073 
   2074   // Also pass the return address of the remainder.
   2075   SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
   2076   Entry.Node = FIPtr;
   2077   Entry.Ty = RetTy->getPointerTo();
   2078   Entry.isSExt = isSigned;
   2079   Entry.isZExt = !isSigned;
   2080   Args.push_back(Entry);
   2081 
   2082   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   2083                                          TLI.getPointerTy());
   2084 
   2085   DebugLoc dl = Node->getDebugLoc();
   2086   TargetLowering::
   2087   CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
   2088                     0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
   2089                     /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
   2090                     Callee, Args, DAG, dl);
   2091   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
   2092 
   2093   // Remainder is loaded back from the stack frame.
   2094   SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
   2095                             MachinePointerInfo(), false, false, false, 0);
   2096   Results.push_back(CallInfo.first);
   2097   Results.push_back(Rem);
   2098 }
   2099 
   2100 /// isSinCosLibcallAvailable - Return true if sincos libcall is available.
   2101 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
   2102   RTLIB::Libcall LC;
   2103   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
   2104   default: llvm_unreachable("Unexpected request for libcall!");
   2105   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
   2106   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
   2107   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
   2108   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
   2109   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
   2110   }
   2111   return TLI.getLibcallName(LC) != 0;
   2112 }
   2113 
   2114 /// canCombineSinCosLibcall - Return true if sincos libcall is available and
   2115 /// can be used to combine sin and cos.
   2116 static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI,
   2117                                     const TargetMachine &TM) {
   2118   if (!isSinCosLibcallAvailable(Node, TLI))
   2119     return false;
   2120   // GNU sin/cos functions set errno while sincos does not. Therefore
   2121   // combining sin and cos is only safe if unsafe-fpmath is enabled.
   2122   bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU;
   2123   if (isGNU && !TM.Options.UnsafeFPMath)
   2124     return false;
   2125   return true;
   2126 }
   2127 
   2128 /// useSinCos - Only issue sincos libcall if both sin and cos are
   2129 /// needed.
   2130 static bool useSinCos(SDNode *Node) {
   2131   unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
   2132     ? ISD::FCOS : ISD::FSIN;
   2133 
   2134   SDValue Op0 = Node->getOperand(0);
   2135   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
   2136        UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
   2137     SDNode *User = *UI;
   2138     if (User == Node)
   2139       continue;
   2140     // The other user might have been turned into sincos already.
   2141     if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
   2142       return true;
   2143   }
   2144   return false;
   2145 }
   2146 
   2147 /// ExpandSinCosLibCall - Issue libcalls to sincos to compute sin / cos
   2148 /// pairs.
   2149 void
   2150 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
   2151                                           SmallVectorImpl<SDValue> &Results) {
   2152   RTLIB::Libcall LC;
   2153   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
   2154   default: llvm_unreachable("Unexpected request for libcall!");
   2155   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
   2156   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
   2157   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
   2158   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
   2159   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
   2160   }
   2161 
   2162   // The input chain to this libcall is the entry node of the function.
   2163   // Legalizing the call will automatically add the previous call to the
   2164   // dependence.
   2165   SDValue InChain = DAG.getEntryNode();
   2166 
   2167   EVT RetVT = Node->getValueType(0);
   2168   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
   2169 
   2170   TargetLowering::ArgListTy Args;
   2171   TargetLowering::ArgListEntry Entry;
   2172 
   2173   // Pass the argument.
   2174   Entry.Node = Node->getOperand(0);
   2175   Entry.Ty = RetTy;
   2176   Entry.isSExt = false;
   2177   Entry.isZExt = false;
   2178   Args.push_back(Entry);
   2179 
   2180   // Pass the return address of sin.
   2181   SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
   2182   Entry.Node = SinPtr;
   2183   Entry.Ty = RetTy->getPointerTo();
   2184   Entry.isSExt = false;
   2185   Entry.isZExt = false;
   2186   Args.push_back(Entry);
   2187 
   2188   // Also pass the return address of the cos.
   2189   SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
   2190   Entry.Node = CosPtr;
   2191   Entry.Ty = RetTy->getPointerTo();
   2192   Entry.isSExt = false;
   2193   Entry.isZExt = false;
   2194   Args.push_back(Entry);
   2195 
   2196   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   2197                                          TLI.getPointerTy());
   2198 
   2199   DebugLoc dl = Node->getDebugLoc();
   2200   TargetLowering::
   2201   CallLoweringInfo CLI(InChain, Type::getVoidTy(*DAG.getContext()),
   2202                        false, false, false, false,
   2203                        0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
   2204                        /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
   2205                        Callee, Args, DAG, dl);
   2206   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
   2207 
   2208   Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr,
   2209                                 MachinePointerInfo(), false, false, false, 0));
   2210   Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr,
   2211                                 MachinePointerInfo(), false, false, false, 0));
   2212 }
   2213 
   2214 /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
   2215 /// INT_TO_FP operation of the specified operand when the target requests that
   2216 /// we expand it.  At this point, we know that the result and operand types are
   2217 /// legal for the target.
   2218 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
   2219                                                    SDValue Op0,
   2220                                                    EVT DestVT,
   2221                                                    DebugLoc dl) {
   2222   if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
   2223     // simple 32-bit [signed|unsigned] integer to float/double expansion
   2224 
   2225     // Get the stack frame index of a 8 byte buffer.
   2226     SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
   2227 
   2228     // word offset constant for Hi/Lo address computation
   2229     SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
   2230     // set up Hi and Lo (into buffer) address based on endian
   2231     SDValue Hi = StackSlot;
   2232     SDValue Lo = DAG.getNode(ISD::ADD, dl,
   2233                              TLI.getPointerTy(), StackSlot, WordOff);
   2234     if (TLI.isLittleEndian())
   2235       std::swap(Hi, Lo);
   2236 
   2237     // if signed map to unsigned space
   2238     SDValue Op0Mapped;
   2239     if (isSigned) {
   2240       // constant used to invert sign bit (signed to unsigned mapping)
   2241       SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
   2242       Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
   2243     } else {
   2244       Op0Mapped = Op0;
   2245     }
   2246     // store the lo of the constructed double - based on integer input
   2247     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
   2248                                   Op0Mapped, Lo, MachinePointerInfo(),
   2249                                   false, false, 0);
   2250     // initial hi portion of constructed double
   2251     SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
   2252     // store the hi of the constructed double - biased exponent
   2253     SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
   2254                                   MachinePointerInfo(),
   2255                                   false, false, 0);
   2256     // load the constructed double
   2257     SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
   2258                                MachinePointerInfo(), false, false, false, 0);
   2259     // FP constant to bias correct the final result
   2260     SDValue Bias = DAG.getConstantFP(isSigned ?
   2261                                      BitsToDouble(0x4330000080000000ULL) :
   2262                                      BitsToDouble(0x4330000000000000ULL),
   2263                                      MVT::f64);
   2264     // subtract the bias
   2265     SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
   2266     // final result
   2267     SDValue Result;
   2268     // handle final rounding
   2269     if (DestVT == MVT::f64) {
   2270       // do nothing
   2271       Result = Sub;
   2272     } else if (DestVT.bitsLT(MVT::f64)) {
   2273       Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
   2274                            DAG.getIntPtrConstant(0));
   2275     } else if (DestVT.bitsGT(MVT::f64)) {
   2276       Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
   2277     }
   2278     return Result;
   2279   }
   2280   assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
   2281   // Code below here assumes !isSigned without checking again.
   2282 
   2283   // Implementation of unsigned i64 to f64 following the algorithm in
   2284   // __floatundidf in compiler_rt. This implementation has the advantage
   2285   // of performing rounding correctly, both in the default rounding mode
   2286   // and in all alternate rounding modes.
   2287   // TODO: Generalize this for use with other types.
   2288   if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
   2289     SDValue TwoP52 =
   2290       DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
   2291     SDValue TwoP84PlusTwoP52 =
   2292       DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
   2293     SDValue TwoP84 =
   2294       DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
   2295 
   2296     SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
   2297     SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
   2298                              DAG.getConstant(32, MVT::i64));
   2299     SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
   2300     SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
   2301     SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
   2302     SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
   2303     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
   2304                                 TwoP84PlusTwoP52);
   2305     return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
   2306   }
   2307 
   2308   // Implementation of unsigned i64 to f32.
   2309   // TODO: Generalize this for use with other types.
   2310   if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
   2311     // For unsigned conversions, convert them to signed conversions using the
   2312     // algorithm from the x86_64 __floatundidf in compiler_rt.
   2313     if (!isSigned) {
   2314       SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
   2315 
   2316       SDValue ShiftConst =
   2317           DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
   2318       SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
   2319       SDValue AndConst = DAG.getConstant(1, MVT::i64);
   2320       SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
   2321       SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
   2322 
   2323       SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
   2324       SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
   2325 
   2326       // TODO: This really should be implemented using a branch rather than a
   2327       // select.  We happen to get lucky and machinesink does the right
   2328       // thing most of the time.  This would be a good candidate for a
   2329       //pseudo-op, or, even better, for whole-function isel.
   2330       SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
   2331         Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
   2332       return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
   2333     }
   2334 
   2335     // Otherwise, implement the fully general conversion.
   2336 
   2337     SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
   2338          DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
   2339     SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
   2340          DAG.getConstant(UINT64_C(0x800), MVT::i64));
   2341     SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
   2342          DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
   2343     SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
   2344                    And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
   2345     SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
   2346     SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
   2347                    Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
   2348                    ISD::SETUGE);
   2349     SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
   2350     EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
   2351 
   2352     SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
   2353                              DAG.getConstant(32, SHVT));
   2354     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
   2355     SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
   2356     SDValue TwoP32 =
   2357       DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
   2358     SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
   2359     SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
   2360     SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
   2361     SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
   2362     return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
   2363                        DAG.getIntPtrConstant(0));
   2364   }
   2365 
   2366   SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
   2367 
   2368   SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
   2369                                  Op0, DAG.getConstant(0, Op0.getValueType()),
   2370                                  ISD::SETLT);
   2371   SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
   2372   SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
   2373                                     SignSet, Four, Zero);
   2374 
   2375   // If the sign bit of the integer is set, the large number will be treated
   2376   // as a negative number.  To counteract this, the dynamic code adds an
   2377   // offset depending on the data type.
   2378   uint64_t FF;
   2379   switch (Op0.getValueType().getSimpleVT().SimpleTy) {
   2380   default: llvm_unreachable("Unsupported integer type!");
   2381   case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
   2382   case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
   2383   case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
   2384   case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
   2385   }
   2386   if (TLI.isLittleEndian()) FF <<= 32;
   2387   Constant *FudgeFactor = ConstantInt::get(
   2388                                        Type::getInt64Ty(*DAG.getContext()), FF);
   2389 
   2390   SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
   2391   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
   2392   CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
   2393   Alignment = std::min(Alignment, 4u);
   2394   SDValue FudgeInReg;
   2395   if (DestVT == MVT::f32)
   2396     FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
   2397                              MachinePointerInfo::getConstantPool(),
   2398                              false, false, false, Alignment);
   2399   else {
   2400     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
   2401                                   DAG.getEntryNode(), CPIdx,
   2402                                   MachinePointerInfo::getConstantPool(),
   2403                                   MVT::f32, false, false, Alignment);
   2404     HandleSDNode Handle(Load);
   2405     LegalizeOp(Load.getNode());
   2406     FudgeInReg = Handle.getValue();
   2407   }
   2408 
   2409   return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
   2410 }
   2411 
   2412 /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
   2413 /// *INT_TO_FP operation of the specified operand when the target requests that
   2414 /// we promote it.  At this point, we know that the result and operand types are
   2415 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
   2416 /// operation that takes a larger input.
   2417 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
   2418                                                     EVT DestVT,
   2419                                                     bool isSigned,
   2420                                                     DebugLoc dl) {
   2421   // First step, figure out the appropriate *INT_TO_FP operation to use.
   2422   EVT NewInTy = LegalOp.getValueType();
   2423 
   2424   unsigned OpToUse = 0;
   2425 
   2426   // Scan for the appropriate larger type to use.
   2427   while (1) {
   2428     NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
   2429     assert(NewInTy.isInteger() && "Ran out of possibilities!");
   2430 
   2431     // If the target supports SINT_TO_FP of this type, use it.
   2432     if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
   2433       OpToUse = ISD::SINT_TO_FP;
   2434       break;
   2435     }
   2436     if (isSigned) continue;
   2437 
   2438     // If the target supports UINT_TO_FP of this type, use it.
   2439     if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
   2440       OpToUse = ISD::UINT_TO_FP;
   2441       break;
   2442     }
   2443 
   2444     // Otherwise, try a larger type.
   2445   }
   2446 
   2447   // Okay, we found the operation and type to use.  Zero extend our input to the
   2448   // desired type then run the operation on it.
   2449   return DAG.getNode(OpToUse, dl, DestVT,
   2450                      DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
   2451                                  dl, NewInTy, LegalOp));
   2452 }
   2453 
   2454 /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
   2455 /// FP_TO_*INT operation of the specified operand when the target requests that
   2456 /// we promote it.  At this point, we know that the result and operand types are
   2457 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
   2458 /// operation that returns a larger result.
   2459 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
   2460                                                     EVT DestVT,
   2461                                                     bool isSigned,
   2462                                                     DebugLoc dl) {
   2463   // First step, figure out the appropriate FP_TO*INT operation to use.
   2464   EVT NewOutTy = DestVT;
   2465 
   2466   unsigned OpToUse = 0;
   2467 
   2468   // Scan for the appropriate larger type to use.
   2469   while (1) {
   2470     NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
   2471     assert(NewOutTy.isInteger() && "Ran out of possibilities!");
   2472 
   2473     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
   2474       OpToUse = ISD::FP_TO_SINT;
   2475       break;
   2476     }
   2477 
   2478     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
   2479       OpToUse = ISD::FP_TO_UINT;
   2480       break;
   2481     }
   2482 
   2483     // Otherwise, try a larger type.
   2484   }
   2485 
   2486 
   2487   // Okay, we found the operation and type to use.
   2488   SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
   2489 
   2490   // Truncate the result of the extended FP_TO_*INT operation to the desired
   2491   // size.
   2492   return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
   2493 }
   2494 
   2495 /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
   2496 ///
   2497 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
   2498   EVT VT = Op.getValueType();
   2499   EVT SHVT = TLI.getShiftAmountTy(VT);
   2500   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
   2501   switch (VT.getSimpleVT().SimpleTy) {
   2502   default: llvm_unreachable("Unhandled Expand type in BSWAP!");
   2503   case MVT::i16:
   2504     Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
   2505     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
   2506     return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   2507   case MVT::i32:
   2508     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
   2509     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
   2510     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
   2511     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
   2512     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
   2513     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
   2514     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
   2515     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
   2516     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
   2517   case MVT::i64:
   2518     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
   2519     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
   2520     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
   2521     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
   2522     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
   2523     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
   2524     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
   2525     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
   2526     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
   2527     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
   2528     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
   2529     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
   2530     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
   2531     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
   2532     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
   2533     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
   2534     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
   2535     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
   2536     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
   2537     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
   2538     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
   2539   }
   2540 }
   2541 
   2542 /// ExpandBitCount - Expand the specified bitcount instruction into operations.
   2543 ///
   2544 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
   2545                                              DebugLoc dl) {
   2546   switch (Opc) {
   2547   default: llvm_unreachable("Cannot expand this yet!");
   2548   case ISD::CTPOP: {
   2549     EVT VT = Op.getValueType();
   2550     EVT ShVT = TLI.getShiftAmountTy(VT);
   2551     unsigned Len = VT.getSizeInBits();
   2552 
   2553     assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
   2554            "CTPOP not implemented for this type.");
   2555 
   2556     // This is the "best" algorithm from
   2557     // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
   2558 
   2559     SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), VT);
   2560     SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), VT);
   2561     SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), VT);
   2562     SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), VT);
   2563 
   2564     // v = v - ((v >> 1) & 0x55555555...)
   2565     Op = DAG.getNode(ISD::SUB, dl, VT, Op,
   2566                      DAG.getNode(ISD::AND, dl, VT,
   2567                                  DAG.getNode(ISD::SRL, dl, VT, Op,
   2568                                              DAG.getConstant(1, ShVT)),
   2569                                  Mask55));
   2570     // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
   2571     Op = DAG.getNode(ISD::ADD, dl, VT,
   2572                      DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
   2573                      DAG.getNode(ISD::AND, dl, VT,
   2574                                  DAG.getNode(ISD::SRL, dl, VT, Op,
   2575                                              DAG.getConstant(2, ShVT)),
   2576                                  Mask33));
   2577     // v = (v + (v >> 4)) & 0x0F0F0F0F...
   2578     Op = DAG.getNode(ISD::AND, dl, VT,
   2579                      DAG.getNode(ISD::ADD, dl, VT, Op,
   2580                                  DAG.getNode(ISD::SRL, dl, VT, Op,
   2581                                              DAG.getConstant(4, ShVT))),
   2582                      Mask0F);
   2583     // v = (v * 0x01010101...) >> (Len - 8)
   2584     Op = DAG.getNode(ISD::SRL, dl, VT,
   2585                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
   2586                      DAG.getConstant(Len - 8, ShVT));
   2587 
   2588     return Op;
   2589   }
   2590   case ISD::CTLZ_ZERO_UNDEF:
   2591     // This trivially expands to CTLZ.
   2592     return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
   2593   case ISD::CTLZ: {
   2594     // for now, we do this:
   2595     // x = x | (x >> 1);
   2596     // x = x | (x >> 2);
   2597     // ...
   2598     // x = x | (x >>16);
   2599     // x = x | (x >>32); // for 64-bit input
   2600     // return popcount(~x);
   2601     //
   2602     // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
   2603     EVT VT = Op.getValueType();
   2604     EVT ShVT = TLI.getShiftAmountTy(VT);
   2605     unsigned len = VT.getSizeInBits();
   2606     for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
   2607       SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
   2608       Op = DAG.getNode(ISD::OR, dl, VT, Op,
   2609                        DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
   2610     }
   2611     Op = DAG.getNOT(dl, Op, VT);
   2612     return DAG.getNode(ISD::CTPOP, dl, VT, Op);
   2613   }
   2614   case ISD::CTTZ_ZERO_UNDEF:
   2615     // This trivially expands to CTTZ.
   2616     return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
   2617   case ISD::CTTZ: {
   2618     // for now, we use: { return popcount(~x & (x - 1)); }
   2619     // unless the target has ctlz but not ctpop, in which case we use:
   2620     // { return 32 - nlz(~x & (x-1)); }
   2621     // see also http://www.hackersdelight.org/HDcode/ntz.cc
   2622     EVT VT = Op.getValueType();
   2623     SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
   2624                                DAG.getNOT(dl, Op, VT),
   2625                                DAG.getNode(ISD::SUB, dl, VT, Op,
   2626                                            DAG.getConstant(1, VT)));
   2627     // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
   2628     if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
   2629         TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
   2630       return DAG.getNode(ISD::SUB, dl, VT,
   2631                          DAG.getConstant(VT.getSizeInBits(), VT),
   2632                          DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
   2633     return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
   2634   }
   2635   }
   2636 }
   2637 
   2638 std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
   2639   unsigned Opc = Node->getOpcode();
   2640   MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
   2641   RTLIB::Libcall LC;
   2642 
   2643   switch (Opc) {
   2644   default:
   2645     llvm_unreachable("Unhandled atomic intrinsic Expand!");
   2646   case ISD::ATOMIC_SWAP:
   2647     switch (VT.SimpleTy) {
   2648     default: llvm_unreachable("Unexpected value type for atomic!");
   2649     case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
   2650     case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
   2651     case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
   2652     case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
   2653     }
   2654     break;
   2655   case ISD::ATOMIC_CMP_SWAP:
   2656     switch (VT.SimpleTy) {
   2657     default: llvm_unreachable("Unexpected value type for atomic!");
   2658     case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
   2659     case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
   2660     case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
   2661     case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
   2662     }
   2663     break;
   2664   case ISD::ATOMIC_LOAD_ADD:
   2665     switch (VT.SimpleTy) {
   2666     default: llvm_unreachable("Unexpected value type for atomic!");
   2667     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
   2668     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
   2669     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
   2670     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
   2671     }
   2672     break;
   2673   case ISD::ATOMIC_LOAD_SUB:
   2674     switch (VT.SimpleTy) {
   2675     default: llvm_unreachable("Unexpected value type for atomic!");
   2676     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
   2677     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
   2678     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
   2679     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
   2680     }
   2681     break;
   2682   case ISD::ATOMIC_LOAD_AND:
   2683     switch (VT.SimpleTy) {
   2684     default: llvm_unreachable("Unexpected value type for atomic!");
   2685     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
   2686     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
   2687     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
   2688     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
   2689     }
   2690     break;
   2691   case ISD::ATOMIC_LOAD_OR:
   2692     switch (VT.SimpleTy) {
   2693     default: llvm_unreachable("Unexpected value type for atomic!");
   2694     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
   2695     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
   2696     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
   2697     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
   2698     }
   2699     break;
   2700   case ISD::ATOMIC_LOAD_XOR:
   2701     switch (VT.SimpleTy) {
   2702     default: llvm_unreachable("Unexpected value type for atomic!");
   2703     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
   2704     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
   2705     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
   2706     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
   2707     }
   2708     break;
   2709   case ISD::ATOMIC_LOAD_NAND:
   2710     switch (VT.SimpleTy) {
   2711     default: llvm_unreachable("Unexpected value type for atomic!");
   2712     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
   2713     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
   2714     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
   2715     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
   2716     }
   2717     break;
   2718   }
   2719 
   2720   return ExpandChainLibCall(LC, Node, false);
   2721 }
   2722 
   2723 void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
   2724   SmallVector<SDValue, 8> Results;
   2725   DebugLoc dl = Node->getDebugLoc();
   2726   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
   2727   switch (Node->getOpcode()) {
   2728   case ISD::CTPOP:
   2729   case ISD::CTLZ:
   2730   case ISD::CTLZ_ZERO_UNDEF:
   2731   case ISD::CTTZ:
   2732   case ISD::CTTZ_ZERO_UNDEF:
   2733     Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
   2734     Results.push_back(Tmp1);
   2735     break;
   2736   case ISD::BSWAP:
   2737     Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
   2738     break;
   2739   case ISD::FRAMEADDR:
   2740   case ISD::RETURNADDR:
   2741   case ISD::FRAME_TO_ARGS_OFFSET:
   2742     Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
   2743     break;
   2744   case ISD::FLT_ROUNDS_:
   2745     Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
   2746     break;
   2747   case ISD::EH_RETURN:
   2748   case ISD::EH_LABEL:
   2749   case ISD::PREFETCH:
   2750   case ISD::VAEND:
   2751   case ISD::EH_SJLJ_LONGJMP:
   2752     // If the target didn't expand these, there's nothing to do, so just
   2753     // preserve the chain and be done.
   2754     Results.push_back(Node->getOperand(0));
   2755     break;
   2756   case ISD::EH_SJLJ_SETJMP:
   2757     // If the target didn't expand this, just return 'zero' and preserve the
   2758     // chain.
   2759     Results.push_back(DAG.getConstant(0, MVT::i32));
   2760     Results.push_back(Node->getOperand(0));
   2761     break;
   2762   case ISD::ATOMIC_FENCE:
   2763   case ISD::MEMBARRIER: {
   2764     // If the target didn't lower this, lower it to '__sync_synchronize()' call
   2765     // FIXME: handle "fence singlethread" more efficiently.
   2766     TargetLowering::ArgListTy Args;
   2767     TargetLowering::
   2768     CallLoweringInfo CLI(Node->getOperand(0),
   2769                          Type::getVoidTy(*DAG.getContext()),
   2770                       false, false, false, false, 0, CallingConv::C,
   2771                       /*isTailCall=*/false,
   2772                       /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
   2773                       DAG.getExternalSymbol("__sync_synchronize",
   2774                                             TLI.getPointerTy()),
   2775                       Args, DAG, dl);
   2776     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
   2777 
   2778     Results.push_back(CallResult.second);
   2779     break;
   2780   }
   2781   case ISD::ATOMIC_LOAD: {
   2782     // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
   2783     SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
   2784     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
   2785                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
   2786                                  Node->getOperand(0),
   2787                                  Node->getOperand(1), Zero, Zero,
   2788                                  cast<AtomicSDNode>(Node)->getMemOperand(),
   2789                                  cast<AtomicSDNode>(Node)->getOrdering(),
   2790                                  cast<AtomicSDNode>(Node)->getSynchScope());
   2791     Results.push_back(Swap.getValue(0));
   2792     Results.push_back(Swap.getValue(1));
   2793     break;
   2794   }
   2795   case ISD::ATOMIC_STORE: {
   2796     // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
   2797     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
   2798                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
   2799                                  Node->getOperand(0),
   2800                                  Node->getOperand(1), Node->getOperand(2),
   2801                                  cast<AtomicSDNode>(Node)->getMemOperand(),
   2802                                  cast<AtomicSDNode>(Node)->getOrdering(),
   2803                                  cast<AtomicSDNode>(Node)->getSynchScope());
   2804     Results.push_back(Swap.getValue(1));
   2805     break;
   2806   }
   2807   // By default, atomic intrinsics are marked Legal and lowered. Targets
   2808   // which don't support them directly, however, may want libcalls, in which
   2809   // case they mark them Expand, and we get here.
   2810   case ISD::ATOMIC_SWAP:
   2811   case ISD::ATOMIC_LOAD_ADD:
   2812   case ISD::ATOMIC_LOAD_SUB:
   2813   case ISD::ATOMIC_LOAD_AND:
   2814   case ISD::ATOMIC_LOAD_OR:
   2815   case ISD::ATOMIC_LOAD_XOR:
   2816   case ISD::ATOMIC_LOAD_NAND:
   2817   case ISD::ATOMIC_LOAD_MIN:
   2818   case ISD::ATOMIC_LOAD_MAX:
   2819   case ISD::ATOMIC_LOAD_UMIN:
   2820   case ISD::ATOMIC_LOAD_UMAX:
   2821   case ISD::ATOMIC_CMP_SWAP: {
   2822     std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
   2823     Results.push_back(Tmp.first);
   2824     Results.push_back(Tmp.second);
   2825     break;
   2826   }
   2827   case ISD::DYNAMIC_STACKALLOC:
   2828     ExpandDYNAMIC_STACKALLOC(Node, Results);
   2829     break;
   2830   case ISD::MERGE_VALUES:
   2831     for (unsigned i = 0; i < Node->getNumValues(); i++)
   2832       Results.push_back(Node->getOperand(i));
   2833     break;
   2834   case ISD::UNDEF: {
   2835     EVT VT = Node->getValueType(0);
   2836     if (VT.isInteger())
   2837       Results.push_back(DAG.getConstant(0, VT));
   2838     else {
   2839       assert(VT.isFloatingPoint() && "Unknown value type!");
   2840       Results.push_back(DAG.getConstantFP(0, VT));
   2841     }
   2842     break;
   2843   }
   2844   case ISD::TRAP: {
   2845     // If this operation is not supported, lower it to 'abort()' call
   2846     TargetLowering::ArgListTy Args;
   2847     TargetLowering::
   2848     CallLoweringInfo CLI(Node->getOperand(0),
   2849                          Type::getVoidTy(*DAG.getContext()),
   2850                       false, false, false, false, 0, CallingConv::C,
   2851                       /*isTailCall=*/false,
   2852                       /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
   2853                       DAG.getExternalSymbol("abort", TLI.getPointerTy()),
   2854                       Args, DAG, dl);
   2855     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
   2856 
   2857     Results.push_back(CallResult.second);
   2858     break;
   2859   }
   2860   case ISD::FP_ROUND:
   2861   case ISD::BITCAST:
   2862     Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
   2863                             Node->getValueType(0), dl);
   2864     Results.push_back(Tmp1);
   2865     break;
   2866   case ISD::FP_EXTEND:
   2867     Tmp1 = EmitStackConvert(Node->getOperand(0),
   2868                             Node->getOperand(0).getValueType(),
   2869                             Node->getValueType(0), dl);
   2870     Results.push_back(Tmp1);
   2871     break;
   2872   case ISD::SIGN_EXTEND_INREG: {
   2873     // NOTE: we could fall back on load/store here too for targets without
   2874     // SAR.  However, it is doubtful that any exist.
   2875     EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
   2876     EVT VT = Node->getValueType(0);
   2877     EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
   2878     if (VT.isVector())
   2879       ShiftAmountTy = VT;
   2880     unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
   2881                         ExtraVT.getScalarType().getSizeInBits();
   2882     SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
   2883     Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
   2884                        Node->getOperand(0), ShiftCst);
   2885     Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
   2886     Results.push_back(Tmp1);
   2887     break;
   2888   }
   2889   case ISD::FP_ROUND_INREG: {
   2890     // The only way we can lower this is to turn it into a TRUNCSTORE,
   2891     // EXTLOAD pair, targeting a temporary location (a stack slot).
   2892 
   2893     // NOTE: there is a choice here between constantly creating new stack
   2894     // slots and always reusing the same one.  We currently always create
   2895     // new ones, as reuse may inhibit scheduling.
   2896     EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
   2897     Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
   2898                             Node->getValueType(0), dl);
   2899     Results.push_back(Tmp1);
   2900     break;
   2901   }
   2902   case ISD::SINT_TO_FP:
   2903   case ISD::UINT_TO_FP:
   2904     Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
   2905                                 Node->getOperand(0), Node->getValueType(0), dl);
   2906     Results.push_back(Tmp1);
   2907     break;
   2908   case ISD::FP_TO_UINT: {
   2909     SDValue True, False;
   2910     EVT VT =  Node->getOperand(0).getValueType();
   2911     EVT NVT = Node->getValueType(0);
   2912     APFloat apf(DAG.EVTToAPFloatSemantics(VT),
   2913                 APInt::getNullValue(VT.getSizeInBits()));
   2914     APInt x = APInt::getSignBit(NVT.getSizeInBits());
   2915     (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
   2916     Tmp1 = DAG.getConstantFP(apf, VT);
   2917     Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
   2918                         Node->getOperand(0),
   2919                         Tmp1, ISD::SETLT);
   2920     True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
   2921     False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
   2922                         DAG.getNode(ISD::FSUB, dl, VT,
   2923                                     Node->getOperand(0), Tmp1));
   2924     False = DAG.getNode(ISD::XOR, dl, NVT, False,
   2925                         DAG.getConstant(x, NVT));
   2926     Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
   2927     Results.push_back(Tmp1);
   2928     break;
   2929   }
   2930   case ISD::VAARG: {
   2931     const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
   2932     EVT VT = Node->getValueType(0);
   2933     Tmp1 = Node->getOperand(0);
   2934     Tmp2 = Node->getOperand(1);
   2935     unsigned Align = Node->getConstantOperandVal(3);
   2936 
   2937     SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
   2938                                      MachinePointerInfo(V),
   2939                                      false, false, false, 0);
   2940     SDValue VAList = VAListLoad;
   2941 
   2942     if (Align > TLI.getMinStackArgumentAlignment()) {
   2943       assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
   2944 
   2945       VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
   2946                            DAG.getConstant(Align - 1,
   2947                                            TLI.getPointerTy()));
   2948 
   2949       VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
   2950                            DAG.getConstant(-(int64_t)Align,
   2951                                            TLI.getPointerTy()));
   2952     }
   2953 
   2954     // Increment the pointer, VAList, to the next vaarg
   2955     Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
   2956                        DAG.getConstant(TLI.getDataLayout()->
   2957                           getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
   2958                                        TLI.getPointerTy()));
   2959     // Store the incremented VAList to the legalized pointer
   2960     Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
   2961                         MachinePointerInfo(V), false, false, 0);
   2962     // Load the actual argument out of the pointer VAList
   2963     Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
   2964                                   false, false, false, 0));
   2965     Results.push_back(Results[0].getValue(1));
   2966     break;
   2967   }
   2968   case ISD::VACOPY: {
   2969     // This defaults to loading a pointer from the input and storing it to the
   2970     // output, returning the chain.
   2971     const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
   2972     const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
   2973     Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
   2974                        Node->getOperand(2), MachinePointerInfo(VS),
   2975                        false, false, false, 0);
   2976     Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
   2977                         MachinePointerInfo(VD), false, false, 0);
   2978     Results.push_back(Tmp1);
   2979     break;
   2980   }
   2981   case ISD::EXTRACT_VECTOR_ELT:
   2982     if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
   2983       // This must be an access of the only element.  Return it.
   2984       Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
   2985                          Node->getOperand(0));
   2986     else
   2987       Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
   2988     Results.push_back(Tmp1);
   2989     break;
   2990   case ISD::EXTRACT_SUBVECTOR:
   2991     Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
   2992     break;
   2993   case ISD::INSERT_SUBVECTOR:
   2994     Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
   2995     break;
   2996   case ISD::CONCAT_VECTORS: {
   2997     Results.push_back(ExpandVectorBuildThroughStack(Node));
   2998     break;
   2999   }
   3000   case ISD::SCALAR_TO_VECTOR:
   3001     Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
   3002     break;
   3003   case ISD::INSERT_VECTOR_ELT:
   3004     Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
   3005                                               Node->getOperand(1),
   3006                                               Node->getOperand(2), dl));
   3007     break;
   3008   case ISD::VECTOR_SHUFFLE: {
   3009     SmallVector<int, 32> NewMask;
   3010     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
   3011 
   3012     EVT VT = Node->getValueType(0);
   3013     EVT EltVT = VT.getVectorElementType();
   3014     SDValue Op0 = Node->getOperand(0);
   3015     SDValue Op1 = Node->getOperand(1);
   3016     if (!TLI.isTypeLegal(EltVT)) {
   3017 
   3018       EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
   3019 
   3020       // BUILD_VECTOR operands are allowed to be wider than the element type.
   3021       // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it
   3022       if (NewEltVT.bitsLT(EltVT)) {
   3023 
   3024         // Convert shuffle node.
   3025         // If original node was v4i64 and the new EltVT is i32,
   3026         // cast operands to v8i32 and re-build the mask.
   3027 
   3028         // Calculate new VT, the size of the new VT should be equal to original.
   3029         EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT,
   3030                                       VT.getSizeInBits()/NewEltVT.getSizeInBits());
   3031         assert(NewVT.bitsEq(VT));
   3032 
   3033         // cast operands to new VT
   3034         Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
   3035         Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
   3036 
   3037         // Convert the shuffle mask
   3038         unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements();
   3039 
   3040         // EltVT gets smaller
   3041         assert(factor > 0);
   3042 
   3043         for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
   3044           if (Mask[i] < 0) {
   3045             for (unsigned fi = 0; fi < factor; ++fi)
   3046               NewMask.push_back(Mask[i]);
   3047           }
   3048           else {
   3049             for (unsigned fi = 0; fi < factor; ++fi)
   3050               NewMask.push_back(Mask[i]*factor+fi);
   3051           }
   3052         }
   3053         Mask = NewMask;
   3054         VT = NewVT;
   3055       }
   3056       EltVT = NewEltVT;
   3057     }
   3058     unsigned NumElems = VT.getVectorNumElements();
   3059     SmallVector<SDValue, 16> Ops;
   3060     for (unsigned i = 0; i != NumElems; ++i) {
   3061       if (Mask[i] < 0) {
   3062         Ops.push_back(DAG.getUNDEF(EltVT));
   3063         continue;
   3064       }
   3065       unsigned Idx = Mask[i];
   3066       if (Idx < NumElems)
   3067         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
   3068                                   Op0,
   3069                                   DAG.getIntPtrConstant(Idx)));
   3070       else
   3071         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
   3072                                   Op1,
   3073                                   DAG.getIntPtrConstant(Idx - NumElems)));
   3074     }
   3075 
   3076     Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
   3077     // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
   3078     Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
   3079     Results.push_back(Tmp1);
   3080     break;
   3081   }
   3082   case ISD::EXTRACT_ELEMENT: {
   3083     EVT OpTy = Node->getOperand(0).getValueType();
   3084     if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
   3085       // 1 -> Hi
   3086       Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
   3087                          DAG.getConstant(OpTy.getSizeInBits()/2,
   3088                     TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
   3089       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
   3090     } else {
   3091       // 0 -> Lo
   3092       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
   3093                          Node->getOperand(0));
   3094     }
   3095     Results.push_back(Tmp1);
   3096     break;
   3097   }
   3098   case ISD::STACKSAVE:
   3099     // Expand to CopyFromReg if the target set
   3100     // StackPointerRegisterToSaveRestore.
   3101     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
   3102       Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
   3103                                            Node->getValueType(0)));
   3104       Results.push_back(Results[0].getValue(1));
   3105     } else {
   3106       Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
   3107       Results.push_back(Node->getOperand(0));
   3108     }
   3109     break;
   3110   case ISD::STACKRESTORE:
   3111     // Expand to CopyToReg if the target set
   3112     // StackPointerRegisterToSaveRestore.
   3113     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
   3114       Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
   3115                                          Node->getOperand(1)));
   3116     } else {
   3117       Results.push_back(Node->getOperand(0));
   3118     }
   3119     break;
   3120   case ISD::FCOPYSIGN:
   3121     Results.push_back(ExpandFCOPYSIGN(Node));
   3122     break;
   3123   case ISD::FNEG:
   3124     // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
   3125     Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
   3126     Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
   3127                        Node->getOperand(0));
   3128     Results.push_back(Tmp1);
   3129     break;
   3130   case ISD::FABS: {
   3131     // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
   3132     EVT VT = Node->getValueType(0);
   3133     Tmp1 = Node->getOperand(0);
   3134     Tmp2 = DAG.getConstantFP(0.0, VT);
   3135     Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
   3136                         Tmp1, Tmp2, ISD::SETUGT);
   3137     Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
   3138     Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
   3139     Results.push_back(Tmp1);
   3140     break;
   3141   }
   3142   case ISD::FSQRT:
   3143     Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
   3144                                       RTLIB::SQRT_F80, RTLIB::SQRT_F128,
   3145                                       RTLIB::SQRT_PPCF128));
   3146     break;
   3147   case ISD::FSIN:
   3148   case ISD::FCOS: {
   3149     EVT VT = Node->getValueType(0);
   3150     bool isSIN = Node->getOpcode() == ISD::FSIN;
   3151     // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
   3152     // fcos which share the same operand and both are used.
   3153     if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
   3154          canCombineSinCosLibcall(Node, TLI, TM))
   3155         && useSinCos(Node)) {
   3156       SDVTList VTs = DAG.getVTList(VT, VT);
   3157       Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
   3158       if (!isSIN)
   3159         Tmp1 = Tmp1.getValue(1);
   3160       Results.push_back(Tmp1);
   3161     } else if (isSIN) {
   3162       Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
   3163                                         RTLIB::SIN_F80, RTLIB::SIN_F128,
   3164                                         RTLIB::SIN_PPCF128));
   3165     } else {
   3166       Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
   3167                                         RTLIB::COS_F80, RTLIB::COS_F128,
   3168                                         RTLIB::COS_PPCF128));
   3169     }
   3170     break;
   3171   }
   3172   case ISD::FSINCOS:
   3173     // Expand into sincos libcall.
   3174     ExpandSinCosLibCall(Node, Results);
   3175     break;
   3176   case ISD::FLOG:
   3177     Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
   3178                                       RTLIB::LOG_F80, RTLIB::LOG_F128,
   3179                                       RTLIB::LOG_PPCF128));
   3180     break;
   3181   case ISD::FLOG2:
   3182     Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
   3183                                       RTLIB::LOG2_F80, RTLIB::LOG2_F128,
   3184                                       RTLIB::LOG2_PPCF128));
   3185     break;
   3186   case ISD::FLOG10:
   3187     Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
   3188                                       RTLIB::LOG10_F80, RTLIB::LOG10_F128,
   3189                                       RTLIB::LOG10_PPCF128));
   3190     break;
   3191   case ISD::FEXP:
   3192     Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
   3193                                       RTLIB::EXP_F80, RTLIB::EXP_F128,
   3194                                       RTLIB::EXP_PPCF128));
   3195     break;
   3196   case ISD::FEXP2:
   3197     Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
   3198                                       RTLIB::EXP2_F80, RTLIB::EXP2_F128,
   3199                                       RTLIB::EXP2_PPCF128));
   3200     break;
   3201   case ISD::FTRUNC:
   3202     Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
   3203                                       RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
   3204                                       RTLIB::TRUNC_PPCF128));
   3205     break;
   3206   case ISD::FFLOOR:
   3207     Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
   3208                                       RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
   3209                                       RTLIB::FLOOR_PPCF128));
   3210     break;
   3211   case ISD::FCEIL:
   3212     Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
   3213                                       RTLIB::CEIL_F80, RTLIB::CEIL_F128,
   3214                                       RTLIB::CEIL_PPCF128));
   3215     break;
   3216   case ISD::FRINT:
   3217     Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
   3218                                       RTLIB::RINT_F80, RTLIB::RINT_F128,
   3219                                       RTLIB::RINT_PPCF128));
   3220     break;
   3221   case ISD::FNEARBYINT:
   3222     Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
   3223                                       RTLIB::NEARBYINT_F64,
   3224                                       RTLIB::NEARBYINT_F80,
   3225                                       RTLIB::NEARBYINT_F128,
   3226                                       RTLIB::NEARBYINT_PPCF128));
   3227     break;
   3228   case ISD::FPOWI:
   3229     Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
   3230                                       RTLIB::POWI_F80, RTLIB::POWI_F128,
   3231                                       RTLIB::POWI_PPCF128));
   3232     break;
   3233   case ISD::FPOW:
   3234     Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
   3235                                       RTLIB::POW_F80, RTLIB::POW_F128,
   3236                                       RTLIB::POW_PPCF128));
   3237     break;
   3238   case ISD::FDIV:
   3239     Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
   3240                                       RTLIB::DIV_F80, RTLIB::DIV_F128,
   3241                                       RTLIB::DIV_PPCF128));
   3242     break;
   3243   case ISD::FREM:
   3244     Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
   3245                                       RTLIB::REM_F80, RTLIB::REM_F128,
   3246                                       RTLIB::REM_PPCF128));
   3247     break;
   3248   case ISD::FMA:
   3249     Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
   3250                                       RTLIB::FMA_F80, RTLIB::FMA_F128,
   3251                                       RTLIB::FMA_PPCF128));
   3252     break;
   3253   case ISD::FP16_TO_FP32:
   3254     Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
   3255     break;
   3256   case ISD::FP32_TO_FP16:
   3257     Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
   3258     break;
   3259   case ISD::ConstantFP: {
   3260     ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
   3261     // Check to see if this FP immediate is already legal.
   3262     // If this is a legal constant, turn it into a TargetConstantFP node.
   3263     if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
   3264       Results.push_back(ExpandConstantFP(CFP, true));
   3265     break;
   3266   }
   3267   case ISD::EHSELECTION: {
   3268     unsigned Reg = TLI.getExceptionSelectorRegister();
   3269     assert(Reg && "Can't expand to unknown register!");
   3270     Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
   3271                                          Node->getValueType(0)));
   3272     Results.push_back(Results[0].getValue(1));
   3273     break;
   3274   }
   3275   case ISD::EXCEPTIONADDR: {
   3276     unsigned Reg = TLI.getExceptionPointerRegister();
   3277     assert(Reg && "Can't expand to unknown register!");
   3278     Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
   3279                                          Node->getValueType(0)));
   3280     Results.push_back(Results[0].getValue(1));
   3281     break;
   3282   }
   3283   case ISD::FSUB: {
   3284     EVT VT = Node->getValueType(0);
   3285     assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
   3286            TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
   3287            "Don't know how to expand this FP subtraction!");
   3288     Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
   3289     Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
   3290     Results.push_back(Tmp1);
   3291     break;
   3292   }
   3293   case ISD::SUB: {
   3294     EVT VT = Node->getValueType(0);
   3295     assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
   3296            TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
   3297            "Don't know how to expand this subtraction!");
   3298     Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
   3299                DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
   3300     Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT));
   3301     Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
   3302     break;
   3303   }
   3304   case ISD::UREM:
   3305   case ISD::SREM: {
   3306     EVT VT = Node->getValueType(0);
   3307     bool isSigned = Node->getOpcode() == ISD::SREM;
   3308     unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
   3309     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
   3310     Tmp2 = Node->getOperand(0);
   3311     Tmp3 = Node->getOperand(1);
   3312     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
   3313         (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
   3314          // If div is legal, it's better to do the normal expansion
   3315          !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) &&
   3316          useDivRem(Node, isSigned, false))) {
   3317       SDVTList VTs = DAG.getVTList(VT, VT);
   3318       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
   3319     } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
   3320       // X % Y -> X-X/Y*Y
   3321       Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
   3322       Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
   3323       Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
   3324     } else if (isSigned)
   3325       Tmp1 = ExpandIntLibCall(Node, true,
   3326                               RTLIB::SREM_I8,
   3327                               RTLIB::SREM_I16, RTLIB::SREM_I32,
   3328                               RTLIB::SREM_I64, RTLIB::SREM_I128);
   3329     else
   3330       Tmp1 = ExpandIntLibCall(Node, false,
   3331                               RTLIB::UREM_I8,
   3332                               RTLIB::UREM_I16, RTLIB::UREM_I32,
   3333                               RTLIB::UREM_I64, RTLIB::UREM_I128);
   3334     Results.push_back(Tmp1);
   3335     break;
   3336   }
   3337   case ISD::UDIV:
   3338   case ISD::SDIV: {
   3339     bool isSigned = Node->getOpcode() == ISD::SDIV;
   3340     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
   3341     EVT VT = Node->getValueType(0);
   3342     SDVTList VTs = DAG.getVTList(VT, VT);
   3343     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
   3344         (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
   3345          useDivRem(Node, isSigned, true)))
   3346       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
   3347                          Node->getOperand(1));
   3348     else if (isSigned)
   3349       Tmp1 = ExpandIntLibCall(Node, true,
   3350                               RTLIB::SDIV_I8,
   3351                               RTLIB::SDIV_I16, RTLIB::SDIV_I32,
   3352                               RTLIB::SDIV_I64, RTLIB::SDIV_I128);
   3353     else
   3354       Tmp1 = ExpandIntLibCall(Node, false,
   3355                               RTLIB::UDIV_I8,
   3356                               RTLIB::UDIV_I16, RTLIB::UDIV_I32,
   3357                               RTLIB::UDIV_I64, RTLIB::UDIV_I128);
   3358     Results.push_back(Tmp1);
   3359     break;
   3360   }
   3361   case ISD::MULHU:
   3362   case ISD::MULHS: {
   3363     unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
   3364                                                               ISD::SMUL_LOHI;
   3365     EVT VT = Node->getValueType(0);
   3366     SDVTList VTs = DAG.getVTList(VT, VT);
   3367     assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
   3368            "If this wasn't legal, it shouldn't have been created!");
   3369     Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
   3370                        Node->getOperand(1));
   3371     Results.push_back(Tmp1.getValue(1));
   3372     break;
   3373   }
   3374   case ISD::SDIVREM:
   3375   case ISD::UDIVREM:
   3376     // Expand into divrem libcall
   3377     ExpandDivRemLibCall(Node, Results);
   3378     break;
   3379   case ISD::MUL: {
   3380     EVT VT = Node->getValueType(0);
   3381     SDVTList VTs = DAG.getVTList(VT, VT);
   3382     // See if multiply or divide can be lowered using two-result operations.
   3383     // We just need the low half of the multiply; try both the signed
   3384     // and unsigned forms. If the target supports both SMUL_LOHI and
   3385     // UMUL_LOHI, form a preference by checking which forms of plain
   3386     // MULH it supports.
   3387     bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
   3388     bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
   3389     bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
   3390     bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
   3391     unsigned OpToUse = 0;
   3392     if (HasSMUL_LOHI && !HasMULHS) {
   3393       OpToUse = ISD::SMUL_LOHI;
   3394     } else if (HasUMUL_LOHI && !HasMULHU) {
   3395       OpToUse = ISD::UMUL_LOHI;
   3396     } else if (HasSMUL_LOHI) {
   3397       OpToUse = ISD::SMUL_LOHI;
   3398     } else if (HasUMUL_LOHI) {
   3399       OpToUse = ISD::UMUL_LOHI;
   3400     }
   3401     if (OpToUse) {
   3402       Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
   3403                                     Node->getOperand(1)));
   3404       break;
   3405     }
   3406     Tmp1 = ExpandIntLibCall(Node, false,
   3407                             RTLIB::MUL_I8,
   3408                             RTLIB::MUL_I16, RTLIB::MUL_I32,
   3409                             RTLIB::MUL_I64, RTLIB::MUL_I128);
   3410     Results.push_back(Tmp1);
   3411     break;
   3412   }
   3413   case ISD::SADDO:
   3414   case ISD::SSUBO: {
   3415     SDValue LHS = Node->getOperand(0);
   3416     SDValue RHS = Node->getOperand(1);
   3417     SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
   3418                               ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
   3419                               LHS, RHS);
   3420     Results.push_back(Sum);
   3421     EVT OType = Node->getValueType(1);
   3422 
   3423     SDValue Zero = DAG.getConstant(0, LHS.getValueType());
   3424 
   3425     //   LHSSign -> LHS >= 0
   3426     //   RHSSign -> RHS >= 0
   3427     //   SumSign -> Sum >= 0
   3428     //
   3429     //   Add:
   3430     //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
   3431     //   Sub:
   3432     //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
   3433     //
   3434     SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
   3435     SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
   3436     SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
   3437                                       Node->getOpcode() == ISD::SADDO ?
   3438                                       ISD::SETEQ : ISD::SETNE);
   3439 
   3440     SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
   3441     SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
   3442 
   3443     SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
   3444     Results.push_back(Cmp);
   3445     break;
   3446   }
   3447   case ISD::UADDO:
   3448   case ISD::USUBO: {
   3449     SDValue LHS = Node->getOperand(0);
   3450     SDValue RHS = Node->getOperand(1);
   3451     SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
   3452                               ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
   3453                               LHS, RHS);
   3454     Results.push_back(Sum);
   3455     Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
   3456                                    Node->getOpcode () == ISD::UADDO ?
   3457                                    ISD::SETULT : ISD::SETUGT));
   3458     break;
   3459   }
   3460   case ISD::UMULO:
   3461   case ISD::SMULO: {
   3462     EVT VT = Node->getValueType(0);
   3463     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
   3464     SDValue LHS = Node->getOperand(0);
   3465     SDValue RHS = Node->getOperand(1);
   3466     SDValue BottomHalf;
   3467     SDValue TopHalf;
   3468     static const unsigned Ops[2][3] =
   3469         { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
   3470           { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
   3471     bool isSigned = Node->getOpcode() == ISD::SMULO;
   3472     if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
   3473       BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
   3474       TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
   3475     } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
   3476       BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
   3477                                RHS);
   3478       TopHalf = BottomHalf.getValue(1);
   3479     } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
   3480                                                  VT.getSizeInBits() * 2))) {
   3481       LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
   3482       RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
   3483       Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
   3484       BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
   3485                                DAG.getIntPtrConstant(0));
   3486       TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
   3487                             DAG.getIntPtrConstant(1));
   3488     } else {
   3489       // We can fall back to a libcall with an illegal type for the MUL if we
   3490       // have a libcall big enough.
   3491       // Also, we can fall back to a division in some cases, but that's a big
   3492       // performance hit in the general case.
   3493       RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
   3494       if (WideVT == MVT::i16)
   3495         LC = RTLIB::MUL_I16;
   3496       else if (WideVT == MVT::i32)
   3497         LC = RTLIB::MUL_I32;
   3498       else if (WideVT == MVT::i64)
   3499         LC = RTLIB::MUL_I64;
   3500       else if (WideVT == MVT::i128)
   3501         LC = RTLIB::MUL_I128;
   3502       assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
   3503 
   3504       // The high part is obtained by SRA'ing all but one of the bits of low
   3505       // part.
   3506       unsigned LoSize = VT.getSizeInBits();
   3507       SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
   3508                                 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
   3509       SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
   3510                                 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
   3511 
   3512       // Here we're passing the 2 arguments explicitly as 4 arguments that are
   3513       // pre-lowered to the correct types. This all depends upon WideVT not
   3514       // being a legal type for the architecture and thus has to be split to
   3515       // two arguments.
   3516       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
   3517       SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
   3518       BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
   3519                                DAG.getIntPtrConstant(0));
   3520       TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
   3521                             DAG.getIntPtrConstant(1));
   3522       // Ret is a node with an illegal type. Because such things are not
   3523       // generally permitted during this phase of legalization, delete the
   3524       // node. The above EXTRACT_ELEMENT nodes should have been folded.
   3525       DAG.DeleteNode(Ret.getNode());
   3526     }
   3527 
   3528     if (isSigned) {
   3529       Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
   3530                              TLI.getShiftAmountTy(BottomHalf.getValueType()));
   3531       Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
   3532       TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
   3533                              ISD::SETNE);
   3534     } else {
   3535       TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
   3536                              DAG.getConstant(0, VT), ISD::SETNE);
   3537     }
   3538     Results.push_back(BottomHalf);
   3539     Results.push_back(TopHalf);
   3540     break;
   3541   }
   3542   case ISD::BUILD_PAIR: {
   3543     EVT PairTy = Node->getValueType(0);
   3544     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
   3545     Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
   3546     Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
   3547                        DAG.getConstant(PairTy.getSizeInBits()/2,
   3548                                        TLI.getShiftAmountTy(PairTy)));
   3549     Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
   3550     break;
   3551   }
   3552   case ISD::SELECT:
   3553     Tmp1 = Node->getOperand(0);
   3554     Tmp2 = Node->getOperand(1);
   3555     Tmp3 = Node->getOperand(2);
   3556     if (Tmp1.getOpcode() == ISD::SETCC) {
   3557       Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
   3558                              Tmp2, Tmp3,
   3559                              cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
   3560     } else {
   3561       Tmp1 = DAG.getSelectCC(dl, Tmp1,
   3562                              DAG.getConstant(0, Tmp1.getValueType()),
   3563                              Tmp2, Tmp3, ISD::SETNE);
   3564     }
   3565     Results.push_back(Tmp1);
   3566     break;
   3567   case ISD::BR_JT: {
   3568     SDValue Chain = Node->getOperand(0);
   3569     SDValue Table = Node->getOperand(1);
   3570     SDValue Index = Node->getOperand(2);
   3571 
   3572     EVT PTy = TLI.getPointerTy();
   3573 
   3574     const DataLayout &TD = *TLI.getDataLayout();
   3575     unsigned EntrySize =
   3576       DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
   3577 
   3578     Index = DAG.getNode(ISD::MUL, dl, PTy,
   3579                         Index, DAG.getConstant(EntrySize, PTy));
   3580     SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
   3581 
   3582     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
   3583     SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
   3584                                 MachinePointerInfo::getJumpTable(), MemVT,
   3585                                 false, false, 0);
   3586     Addr = LD;
   3587     if (TM.getRelocationModel() == Reloc::PIC_) {
   3588       // For PIC, the sequence is:
   3589       // BRIND(load(Jumptable + index) + RelocBase)
   3590       // RelocBase can be JumpTable, GOT or some sort of global base.
   3591       Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
   3592                           TLI.getPICJumpTableRelocBase(Table, DAG));
   3593     }
   3594     Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
   3595     Results.push_back(Tmp1);
   3596     break;
   3597   }
   3598   case ISD::BRCOND:
   3599     // Expand brcond's setcc into its constituent parts and create a BR_CC
   3600     // Node.
   3601     Tmp1 = Node->getOperand(0);
   3602     Tmp2 = Node->getOperand(1);
   3603     if (Tmp2.getOpcode() == ISD::SETCC) {
   3604       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
   3605                          Tmp1, Tmp2.getOperand(2),
   3606                          Tmp2.getOperand(0), Tmp2.getOperand(1),
   3607                          Node->getOperand(2));
   3608     } else {
   3609       // We test only the i1 bit.  Skip the AND if UNDEF.
   3610       Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
   3611         DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
   3612                     DAG.getConstant(1, Tmp2.getValueType()));
   3613       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
   3614                          DAG.getCondCode(ISD::SETNE), Tmp3,
   3615                          DAG.getConstant(0, Tmp3.getValueType()),
   3616                          Node->getOperand(2));
   3617     }
   3618     Results.push_back(Tmp1);
   3619     break;
   3620   case ISD::SETCC: {
   3621     Tmp1 = Node->getOperand(0);
   3622     Tmp2 = Node->getOperand(1);
   3623     Tmp3 = Node->getOperand(2);
   3624     LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
   3625 
   3626     // If we expanded the SETCC into an AND/OR, return the new node
   3627     if (Tmp2.getNode() == 0) {
   3628       Results.push_back(Tmp1);
   3629       break;
   3630     }
   3631 
   3632     // Otherwise, SETCC for the given comparison type must be completely
   3633     // illegal; expand it into a SELECT_CC.
   3634     EVT VT = Node->getValueType(0);
   3635     int TrueValue;
   3636     switch (TLI.getBooleanContents(VT.isVector())) {
   3637     case TargetLowering::ZeroOrOneBooleanContent:
   3638     case TargetLowering::UndefinedBooleanContent:
   3639       TrueValue = 1;
   3640       break;
   3641     case TargetLowering::ZeroOrNegativeOneBooleanContent:
   3642       TrueValue = -1;
   3643       break;
   3644     }
   3645     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
   3646                        DAG.getConstant(TrueValue, VT), DAG.getConstant(0, VT),
   3647                        Tmp3);
   3648     Results.push_back(Tmp1);
   3649     break;
   3650   }
   3651   case ISD::SELECT_CC: {
   3652     Tmp1 = Node->getOperand(0);   // LHS
   3653     Tmp2 = Node->getOperand(1);   // RHS
   3654     Tmp3 = Node->getOperand(2);   // True
   3655     Tmp4 = Node->getOperand(3);   // False
   3656     SDValue CC = Node->getOperand(4);
   3657 
   3658     LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
   3659                           Tmp1, Tmp2, CC, dl);
   3660 
   3661     assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
   3662     Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
   3663     CC = DAG.getCondCode(ISD::SETNE);
   3664     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
   3665                        Tmp3, Tmp4, CC);
   3666     Results.push_back(Tmp1);
   3667     break;
   3668   }
   3669   case ISD::BR_CC: {
   3670     Tmp1 = Node->getOperand(0);              // Chain
   3671     Tmp2 = Node->getOperand(2);              // LHS
   3672     Tmp3 = Node->getOperand(3);              // RHS
   3673     Tmp4 = Node->getOperand(1);              // CC
   3674 
   3675     LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
   3676                           Tmp2, Tmp3, Tmp4, dl);
   3677 
   3678     assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
   3679     Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
   3680     Tmp4 = DAG.getCondCode(ISD::SETNE);
   3681     Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
   3682                        Tmp3, Node->getOperand(4));
   3683     Results.push_back(Tmp1);
   3684     break;
   3685   }
   3686   case ISD::BUILD_VECTOR:
   3687     Results.push_back(ExpandBUILD_VECTOR(Node));
   3688     break;
   3689   case ISD::SRA:
   3690   case ISD::SRL:
   3691   case ISD::SHL: {
   3692     // Scalarize vector SRA/SRL/SHL.
   3693     EVT VT = Node->getValueType(0);
   3694     assert(VT.isVector() && "Unable to legalize non-vector shift");
   3695     assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
   3696     unsigned NumElem = VT.getVectorNumElements();
   3697 
   3698     SmallVector<SDValue, 8> Scalars;
   3699     for (unsigned Idx = 0; Idx < NumElem; Idx++) {
   3700       SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
   3701                                VT.getScalarType(),
   3702                                Node->getOperand(0), DAG.getIntPtrConstant(Idx));
   3703       SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
   3704                                VT.getScalarType(),
   3705                                Node->getOperand(1), DAG.getIntPtrConstant(Idx));
   3706       Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
   3707                                     VT.getScalarType(), Ex, Sh));
   3708     }
   3709     SDValue Result =
   3710       DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
   3711                   &Scalars[0], Scalars.size());
   3712     ReplaceNode(SDValue(Node, 0), Result);
   3713     break;
   3714   }
   3715   case ISD::GLOBAL_OFFSET_TABLE:
   3716   case ISD::GlobalAddress:
   3717   case ISD::GlobalTLSAddress:
   3718   case ISD::ExternalSymbol:
   3719   case ISD::ConstantPool:
   3720   case ISD::JumpTable:
   3721   case ISD::INTRINSIC_W_CHAIN:
   3722   case ISD::INTRINSIC_WO_CHAIN:
   3723   case ISD::INTRINSIC_VOID:
   3724     // FIXME: Custom lowering for these operations shouldn't return null!
   3725     break;
   3726   }
   3727 
   3728   // Replace the original node with the legalized result.
   3729   if (!Results.empty())
   3730     ReplaceNode(Node, Results.data());
   3731 }
   3732 
   3733 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
   3734   SmallVector<SDValue, 8> Results;
   3735   MVT OVT = Node->getSimpleValueType(0);
   3736   if (Node->getOpcode() == ISD::UINT_TO_FP ||
   3737       Node->getOpcode() == ISD::SINT_TO_FP ||
   3738       Node->getOpcode() == ISD::SETCC) {
   3739     OVT = Node->getOperand(0).getSimpleValueType();
   3740   }
   3741   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
   3742   DebugLoc dl = Node->getDebugLoc();
   3743   SDValue Tmp1, Tmp2, Tmp3;
   3744   switch (Node->getOpcode()) {
   3745   case ISD::CTTZ:
   3746   case ISD::CTTZ_ZERO_UNDEF:
   3747   case ISD::CTLZ:
   3748   case ISD::CTLZ_ZERO_UNDEF:
   3749   case ISD::CTPOP:
   3750     // Zero extend the argument.
   3751     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
   3752     // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
   3753     // already the correct result.
   3754     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
   3755     if (Node->getOpcode() == ISD::CTTZ) {
   3756       // FIXME: This should set a bit in the zero extended value instead.
   3757       Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
   3758                           Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
   3759                           ISD::SETEQ);
   3760       Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
   3761                           DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
   3762     } else if (Node->getOpcode() == ISD::CTLZ ||
   3763                Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
   3764       // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
   3765       Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
   3766                           DAG.getConstant(NVT.getSizeInBits() -
   3767                                           OVT.getSizeInBits(), NVT));
   3768     }
   3769     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
   3770     break;
   3771   case ISD::BSWAP: {
   3772     unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
   3773     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
   3774     Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
   3775     Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
   3776                           DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
   3777     Results.push_back(Tmp1);
   3778     break;
   3779   }
   3780   case ISD::FP_TO_UINT:
   3781   case ISD::FP_TO_SINT:
   3782     Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
   3783                                  Node->getOpcode() == ISD::FP_TO_SINT, dl);
   3784     Results.push_back(Tmp1);
   3785     break;
   3786   case ISD::UINT_TO_FP:
   3787   case ISD::SINT_TO_FP:
   3788     Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
   3789                                  Node->getOpcode() == ISD::SINT_TO_FP, dl);
   3790     Results.push_back(Tmp1);
   3791     break;
   3792   case ISD::VAARG: {
   3793     SDValue Chain = Node->getOperand(0); // Get the chain.
   3794     SDValue Ptr = Node->getOperand(1); // Get the pointer.
   3795 
   3796     unsigned TruncOp;
   3797     if (OVT.isVector()) {
   3798       TruncOp = ISD::BITCAST;
   3799     } else {
   3800       assert(OVT.isInteger()
   3801         && "VAARG promotion is supported only for vectors or integer types");
   3802       TruncOp = ISD::TRUNCATE;
   3803     }
   3804 
   3805     // Perform the larger operation, then convert back
   3806     Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
   3807              Node->getConstantOperandVal(3));
   3808     Chain = Tmp1.getValue(1);
   3809 
   3810     Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
   3811 
   3812     // Modified the chain result - switch anything that used the old chain to
   3813     // use the new one.
   3814     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
   3815     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
   3816     ReplacedNode(Node);
   3817     break;
   3818   }
   3819   case ISD::AND:
   3820   case ISD::OR:
   3821   case ISD::XOR: {
   3822     unsigned ExtOp, TruncOp;
   3823     if (OVT.isVector()) {
   3824       ExtOp   = ISD::BITCAST;
   3825       TruncOp = ISD::BITCAST;
   3826     } else {
   3827       assert(OVT.isInteger() && "Cannot promote logic operation");
   3828       ExtOp   = ISD::ANY_EXTEND;
   3829       TruncOp = ISD::TRUNCATE;
   3830     }
   3831     // Promote each of the values to the new type.
   3832     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
   3833     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
   3834     // Perform the larger operation, then convert back
   3835     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
   3836     Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
   3837     break;
   3838   }
   3839   case ISD::SELECT: {
   3840     unsigned ExtOp, TruncOp;
   3841     if (Node->getValueType(0).isVector()) {
   3842       ExtOp   = ISD::BITCAST;
   3843       TruncOp = ISD::BITCAST;
   3844     } else if (Node->getValueType(0).isInteger()) {
   3845       ExtOp   = ISD::ANY_EXTEND;
   3846       TruncOp = ISD::TRUNCATE;
   3847     } else {
   3848       ExtOp   = ISD::FP_EXTEND;
   3849       TruncOp = ISD::FP_ROUND;
   3850     }
   3851     Tmp1 = Node->getOperand(0);
   3852     // Promote each of the values to the new type.
   3853     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
   3854     Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
   3855     // Perform the larger operation, then round down.
   3856     Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
   3857     if (TruncOp != ISD::FP_ROUND)
   3858       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
   3859     else
   3860       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
   3861                          DAG.getIntPtrConstant(0));
   3862     Results.push_back(Tmp1);
   3863     break;
   3864   }
   3865   case ISD::VECTOR_SHUFFLE: {
   3866     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
   3867 
   3868     // Cast the two input vectors.
   3869     Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
   3870     Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
   3871 
   3872     // Convert the shuffle mask to the right # elements.
   3873     Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
   3874     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
   3875     Results.push_back(Tmp1);
   3876     break;
   3877   }
   3878   case ISD::SETCC: {
   3879     unsigned ExtOp = ISD::FP_EXTEND;
   3880     if (NVT.isInteger()) {
   3881       ISD::CondCode CCCode =
   3882         cast<CondCodeSDNode>(Node->getOperand(2))->get();
   3883       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   3884     }
   3885     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
   3886     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
   3887     Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
   3888                                   Tmp1, Tmp2, Node->getOperand(2)));
   3889     break;
   3890   }
   3891   case ISD::FDIV:
   3892   case ISD::FREM:
   3893   case ISD::FPOW: {
   3894     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
   3895     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
   3896     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
   3897     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
   3898                                   Tmp3, DAG.getIntPtrConstant(0)));
   3899     break;
   3900   }
   3901   case ISD::FLOG2:
   3902   case ISD::FEXP2:
   3903   case ISD::FLOG:
   3904   case ISD::FEXP: {
   3905     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
   3906     Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
   3907     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
   3908                                   Tmp2, DAG.getIntPtrConstant(0)));
   3909     break;
   3910   }
   3911   }
   3912 
   3913   // Replace the original node with the legalized result.
   3914   if (!Results.empty())
   3915     ReplaceNode(Node, Results.data());
   3916 }
   3917 
   3918 // SelectionDAG::Legalize - This is the entry point for the file.
   3919 //
   3920 void SelectionDAG::Legalize() {
   3921   /// run - This is the main entry point to this class.
   3922   ///
   3923   SelectionDAGLegalize(*this).LegalizeDAG();
   3924 }
   3925