Home | History | Annotate | Download | only in Mips
      1 //===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that Mips uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 #define DEBUG_TYPE "mips-lower"
     15 #include "MipsISelLowering.h"
     16 #include "InstPrinter/MipsInstPrinter.h"
     17 #include "MCTargetDesc/MipsBaseInfo.h"
     18 #include "MipsMachineFunction.h"
     19 #include "MipsSubtarget.h"
     20 #include "MipsTargetMachine.h"
     21 #include "MipsTargetObjectFile.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/CodeGen/CallingConvLower.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineInstrBuilder.h"
     27 #include "llvm/CodeGen/MachineRegisterInfo.h"
     28 #include "llvm/CodeGen/SelectionDAGISel.h"
     29 #include "llvm/CodeGen/ValueTypes.h"
     30 #include "llvm/IR/CallingConv.h"
     31 #include "llvm/IR/DerivedTypes.h"
     32 #include "llvm/IR/GlobalVariable.h"
     33 #include "llvm/IR/Intrinsics.h"
     34 #include "llvm/Support/CommandLine.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 
     39 using namespace llvm;
     40 
     41 STATISTIC(NumTailCalls, "Number of tail calls");
     42 
     43 static cl::opt<bool>
     44 LargeGOT("mxgot", cl::Hidden,
     45          cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
     46 
     47 static const uint16_t O32IntRegs[4] = {
     48   Mips::A0, Mips::A1, Mips::A2, Mips::A3
     49 };
     50 
     51 static const uint16_t Mips64IntRegs[8] = {
     52   Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
     53   Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
     54 };
     55 
     56 static const uint16_t Mips64DPRegs[8] = {
     57   Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
     58   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
     59 };
     60 
     61 // If I is a shifted mask, set the size (Size) and the first bit of the
     62 // mask (Pos), and return true.
     63 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
     64 static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
     65   if (!isShiftedMask_64(I))
     66      return false;
     67 
     68   Size = CountPopulation_64(I);
     69   Pos = CountTrailingZeros_64(I);
     70   return true;
     71 }
     72 
     73 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
     74   MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
     75   return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
     76 }
     77 
     78 static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
     79   EVT Ty = Op.getValueType();
     80 
     81   if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
     82     return DAG.getTargetGlobalAddress(N->getGlobal(), Op.getDebugLoc(), Ty, 0,
     83                                       Flag);
     84   if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
     85     return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
     86   if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
     87     return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
     88   if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
     89     return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
     90   if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
     91     return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
     92                                      N->getOffset(), Flag);
     93 
     94   llvm_unreachable("Unexpected node type.");
     95   return SDValue();
     96 }
     97 
     98 static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
     99   DebugLoc DL = Op.getDebugLoc();
    100   EVT Ty = Op.getValueType();
    101   SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
    102   SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
    103   return DAG.getNode(ISD::ADD, DL, Ty,
    104                      DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
    105                      DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
    106 }
    107 
    108 SDValue MipsTargetLowering::getAddrLocal(SDValue Op, SelectionDAG &DAG,
    109                                          bool HasMips64) const {
    110   DebugLoc DL = Op.getDebugLoc();
    111   EVT Ty = Op.getValueType();
    112   unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
    113   SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
    114                             getTargetNode(Op, DAG, GOTFlag));
    115   SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
    116                              MachinePointerInfo::getGOT(), false, false, false,
    117                              0);
    118   unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
    119   SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
    120   return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
    121 }
    122 
    123 SDValue MipsTargetLowering::getAddrGlobal(SDValue Op, SelectionDAG &DAG,
    124                                           unsigned Flag) const {
    125   DebugLoc DL = Op.getDebugLoc();
    126   EVT Ty = Op.getValueType();
    127   SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
    128                             getTargetNode(Op, DAG, Flag));
    129   return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
    130                      MachinePointerInfo::getGOT(), false, false, false, 0);
    131 }
    132 
    133 SDValue MipsTargetLowering::getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
    134                                                   unsigned HiFlag,
    135                                                   unsigned LoFlag) const {
    136   DebugLoc DL = Op.getDebugLoc();
    137   EVT Ty = Op.getValueType();
    138   SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
    139   Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
    140   SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
    141                                 getTargetNode(Op, DAG, LoFlag));
    142   return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
    143                      MachinePointerInfo::getGOT(), false, false, false, 0);
    144 }
    145 
    146 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
    147   switch (Opcode) {
    148   case MipsISD::JmpLink:           return "MipsISD::JmpLink";
    149   case MipsISD::TailCall:          return "MipsISD::TailCall";
    150   case MipsISD::Hi:                return "MipsISD::Hi";
    151   case MipsISD::Lo:                return "MipsISD::Lo";
    152   case MipsISD::GPRel:             return "MipsISD::GPRel";
    153   case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
    154   case MipsISD::Ret:               return "MipsISD::Ret";
    155   case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
    156   case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
    157   case MipsISD::FPCmp:             return "MipsISD::FPCmp";
    158   case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
    159   case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
    160   case MipsISD::FPRound:           return "MipsISD::FPRound";
    161   case MipsISD::MAdd:              return "MipsISD::MAdd";
    162   case MipsISD::MAddu:             return "MipsISD::MAddu";
    163   case MipsISD::MSub:              return "MipsISD::MSub";
    164   case MipsISD::MSubu:             return "MipsISD::MSubu";
    165   case MipsISD::DivRem:            return "MipsISD::DivRem";
    166   case MipsISD::DivRemU:           return "MipsISD::DivRemU";
    167   case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
    168   case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
    169   case MipsISD::Wrapper:           return "MipsISD::Wrapper";
    170   case MipsISD::Sync:              return "MipsISD::Sync";
    171   case MipsISD::Ext:               return "MipsISD::Ext";
    172   case MipsISD::Ins:               return "MipsISD::Ins";
    173   case MipsISD::LWL:               return "MipsISD::LWL";
    174   case MipsISD::LWR:               return "MipsISD::LWR";
    175   case MipsISD::SWL:               return "MipsISD::SWL";
    176   case MipsISD::SWR:               return "MipsISD::SWR";
    177   case MipsISD::LDL:               return "MipsISD::LDL";
    178   case MipsISD::LDR:               return "MipsISD::LDR";
    179   case MipsISD::SDL:               return "MipsISD::SDL";
    180   case MipsISD::SDR:               return "MipsISD::SDR";
    181   case MipsISD::EXTP:              return "MipsISD::EXTP";
    182   case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
    183   case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
    184   case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
    185   case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
    186   case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
    187   case MipsISD::SHILO:             return "MipsISD::SHILO";
    188   case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
    189   case MipsISD::MULT:              return "MipsISD::MULT";
    190   case MipsISD::MULTU:             return "MipsISD::MULTU";
    191   case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
    192   case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
    193   case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
    194   case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
    195   default:                         return NULL;
    196   }
    197 }
    198 
    199 MipsTargetLowering::
    200 MipsTargetLowering(MipsTargetMachine &TM)
    201   : TargetLowering(TM, new MipsTargetObjectFile()),
    202     Subtarget(&TM.getSubtarget<MipsSubtarget>()),
    203     HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
    204     IsO32(Subtarget->isABI_O32()) {
    205   // Mips does not have i1 type, so use i32 for
    206   // setcc operations results (slt, sgt, ...).
    207   setBooleanContents(ZeroOrOneBooleanContent);
    208   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
    209 
    210   // Load extented operations for i1 types must be promoted
    211   setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
    212   setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
    213   setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
    214 
    215   // MIPS doesn't have extending float->double load/store
    216   setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
    217   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    218 
    219   // Used by legalize types to correctly generate the setcc result.
    220   // Without this, every float setcc comes with a AND/OR with the result,
    221   // we don't want this, since the fpcmp result goes to a flag register,
    222   // which is used implicitly by brcond and select operations.
    223   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
    224 
    225   // Mips Custom Operations
    226   setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
    227   setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
    228   setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
    229   setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
    230   setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
    231   setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
    232   setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
    233   setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
    234   setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
    235   setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
    236   setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
    237   setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
    238   setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
    239   setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
    240   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
    241   setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
    242   setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
    243 
    244   if (!TM.Options.NoNaNsFPMath) {
    245     setOperationAction(ISD::FABS,             MVT::f32,   Custom);
    246     setOperationAction(ISD::FABS,             MVT::f64,   Custom);
    247   }
    248 
    249   if (HasMips64) {
    250     setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
    251     setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
    252     setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
    253     setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
    254     setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
    255     setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
    256     setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
    257     setOperationAction(ISD::STORE,              MVT::i64,   Custom);
    258   }
    259 
    260   if (!HasMips64) {
    261     setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
    262     setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
    263     setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
    264   }
    265 
    266   setOperationAction(ISD::ADD,                MVT::i32,   Custom);
    267   if (HasMips64)
    268     setOperationAction(ISD::ADD,                MVT::i64,   Custom);
    269 
    270   setOperationAction(ISD::SDIV, MVT::i32, Expand);
    271   setOperationAction(ISD::SREM, MVT::i32, Expand);
    272   setOperationAction(ISD::UDIV, MVT::i32, Expand);
    273   setOperationAction(ISD::UREM, MVT::i32, Expand);
    274   setOperationAction(ISD::SDIV, MVT::i64, Expand);
    275   setOperationAction(ISD::SREM, MVT::i64, Expand);
    276   setOperationAction(ISD::UDIV, MVT::i64, Expand);
    277   setOperationAction(ISD::UREM, MVT::i64, Expand);
    278 
    279   // Operations not directly supported by Mips.
    280   setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
    281   setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
    282   setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
    283   setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
    284   setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
    285   setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
    286   setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
    287   setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
    288   setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
    289   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
    290   setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
    291   setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
    292   setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
    293   setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
    294   setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
    295   setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
    296   setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
    297   setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
    298   setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
    299   setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
    300   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
    301   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
    302 
    303   if (!Subtarget->hasMips32r2())
    304     setOperationAction(ISD::ROTR, MVT::i32,   Expand);
    305 
    306   if (!Subtarget->hasMips64r2())
    307     setOperationAction(ISD::ROTR, MVT::i64,   Expand);
    308 
    309   setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
    310   setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
    311   setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
    312   setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
    313   setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
    314   setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
    315   setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
    316   setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
    317   setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
    318   setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
    319   setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
    320   setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
    321   setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
    322   setOperationAction(ISD::FMA,               MVT::f32,   Expand);
    323   setOperationAction(ISD::FMA,               MVT::f64,   Expand);
    324   setOperationAction(ISD::FREM,              MVT::f32,   Expand);
    325   setOperationAction(ISD::FREM,              MVT::f64,   Expand);
    326 
    327   if (!TM.Options.NoNaNsFPMath) {
    328     setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
    329     setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
    330   }
    331 
    332   setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
    333   setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
    334   setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
    335   setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
    336 
    337   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
    338 
    339   setOperationAction(ISD::VAARG,             MVT::Other, Expand);
    340   setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
    341   setOperationAction(ISD::VAEND,             MVT::Other, Expand);
    342 
    343   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
    344   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
    345 
    346   // Use the default for now
    347   setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
    348   setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
    349 
    350   setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
    351   setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
    352   setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
    353   setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
    354 
    355   setInsertFencesForAtomic(true);
    356 
    357   if (!Subtarget->hasSEInReg()) {
    358     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
    359     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
    360   }
    361 
    362   if (!Subtarget->hasBitCount()) {
    363     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
    364     setOperationAction(ISD::CTLZ, MVT::i64, Expand);
    365   }
    366 
    367   if (!Subtarget->hasSwap()) {
    368     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
    369     setOperationAction(ISD::BSWAP, MVT::i64, Expand);
    370   }
    371 
    372   if (HasMips64) {
    373     setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
    374     setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
    375     setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
    376     setTruncStoreAction(MVT::i64, MVT::i32, Custom);
    377   }
    378 
    379   setTargetDAGCombine(ISD::ADDE);
    380   setTargetDAGCombine(ISD::SUBE);
    381   setTargetDAGCombine(ISD::SDIVREM);
    382   setTargetDAGCombine(ISD::UDIVREM);
    383   setTargetDAGCombine(ISD::SELECT);
    384   setTargetDAGCombine(ISD::AND);
    385   setTargetDAGCombine(ISD::OR);
    386   setTargetDAGCombine(ISD::ADD);
    387 
    388   setMinFunctionAlignment(HasMips64 ? 3 : 2);
    389 
    390   setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
    391 
    392   setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
    393   setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
    394 
    395   MaxStoresPerMemcpy = 16;
    396 }
    397 
    398 const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
    399   if (TM.getSubtargetImpl()->inMips16Mode())
    400     return llvm::createMips16TargetLowering(TM);
    401 
    402   return llvm::createMipsSETargetLowering(TM);
    403 }
    404 
    405 EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
    406   if (!VT.isVector())
    407     return MVT::i32;
    408   return VT.changeVectorElementTypeToInteger();
    409 }
    410 
    411 // selectMADD -
    412 // Transforms a subgraph in CurDAG if the following pattern is found:
    413 //  (addc multLo, Lo0), (adde multHi, Hi0),
    414 // where,
    415 //  multHi/Lo: product of multiplication
    416 //  Lo0: initial value of Lo register
    417 //  Hi0: initial value of Hi register
    418 // Return true if pattern matching was successful.
    419 static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
    420   // ADDENode's second operand must be a flag output of an ADDC node in order
    421   // for the matching to be successful.
    422   SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
    423 
    424   if (ADDCNode->getOpcode() != ISD::ADDC)
    425     return false;
    426 
    427   SDValue MultHi = ADDENode->getOperand(0);
    428   SDValue MultLo = ADDCNode->getOperand(0);
    429   SDNode *MultNode = MultHi.getNode();
    430   unsigned MultOpc = MultHi.getOpcode();
    431 
    432   // MultHi and MultLo must be generated by the same node,
    433   if (MultLo.getNode() != MultNode)
    434     return false;
    435 
    436   // and it must be a multiplication.
    437   if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
    438     return false;
    439 
    440   // MultLo amd MultHi must be the first and second output of MultNode
    441   // respectively.
    442   if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
    443     return false;
    444 
    445   // Transform this to a MADD only if ADDENode and ADDCNode are the only users
    446   // of the values of MultNode, in which case MultNode will be removed in later
    447   // phases.
    448   // If there exist users other than ADDENode or ADDCNode, this function returns
    449   // here, which will result in MultNode being mapped to a single MULT
    450   // instruction node rather than a pair of MULT and MADD instructions being
    451   // produced.
    452   if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
    453     return false;
    454 
    455   SDValue Chain = CurDAG->getEntryNode();
    456   DebugLoc DL = ADDENode->getDebugLoc();
    457 
    458   // create MipsMAdd(u) node
    459   MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
    460 
    461   SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Glue,
    462                                  MultNode->getOperand(0),// Factor 0
    463                                  MultNode->getOperand(1),// Factor 1
    464                                  ADDCNode->getOperand(1),// Lo0
    465                                  ADDENode->getOperand(1));// Hi0
    466 
    467   // create CopyFromReg nodes
    468   SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, DL, Mips::LO, MVT::i32,
    469                                               MAdd);
    470   SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), DL,
    471                                               Mips::HI, MVT::i32,
    472                                               CopyFromLo.getValue(2));
    473 
    474   // replace uses of adde and addc here
    475   if (!SDValue(ADDCNode, 0).use_empty())
    476     CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
    477 
    478   if (!SDValue(ADDENode, 0).use_empty())
    479     CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
    480 
    481   return true;
    482 }
    483 
    484 // selectMSUB -
    485 // Transforms a subgraph in CurDAG if the following pattern is found:
    486 //  (addc Lo0, multLo), (sube Hi0, multHi),
    487 // where,
    488 //  multHi/Lo: product of multiplication
    489 //  Lo0: initial value of Lo register
    490 //  Hi0: initial value of Hi register
    491 // Return true if pattern matching was successful.
    492 static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
    493   // SUBENode's second operand must be a flag output of an SUBC node in order
    494   // for the matching to be successful.
    495   SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
    496 
    497   if (SUBCNode->getOpcode() != ISD::SUBC)
    498     return false;
    499 
    500   SDValue MultHi = SUBENode->getOperand(1);
    501   SDValue MultLo = SUBCNode->getOperand(1);
    502   SDNode *MultNode = MultHi.getNode();
    503   unsigned MultOpc = MultHi.getOpcode();
    504 
    505   // MultHi and MultLo must be generated by the same node,
    506   if (MultLo.getNode() != MultNode)
    507     return false;
    508 
    509   // and it must be a multiplication.
    510   if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
    511     return false;
    512 
    513   // MultLo amd MultHi must be the first and second output of MultNode
    514   // respectively.
    515   if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
    516     return false;
    517 
    518   // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
    519   // of the values of MultNode, in which case MultNode will be removed in later
    520   // phases.
    521   // If there exist users other than SUBENode or SUBCNode, this function returns
    522   // here, which will result in MultNode being mapped to a single MULT
    523   // instruction node rather than a pair of MULT and MSUB instructions being
    524   // produced.
    525   if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
    526     return false;
    527 
    528   SDValue Chain = CurDAG->getEntryNode();
    529   DebugLoc DL = SUBENode->getDebugLoc();
    530 
    531   // create MipsSub(u) node
    532   MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
    533 
    534   SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
    535                                  MultNode->getOperand(0),// Factor 0
    536                                  MultNode->getOperand(1),// Factor 1
    537                                  SUBCNode->getOperand(0),// Lo0
    538                                  SUBENode->getOperand(0));// Hi0
    539 
    540   // create CopyFromReg nodes
    541   SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, DL, Mips::LO, MVT::i32,
    542                                               MSub);
    543   SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), DL,
    544                                               Mips::HI, MVT::i32,
    545                                               CopyFromLo.getValue(2));
    546 
    547   // replace uses of sube and subc here
    548   if (!SDValue(SUBCNode, 0).use_empty())
    549     CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
    550 
    551   if (!SDValue(SUBENode, 0).use_empty())
    552     CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
    553 
    554   return true;
    555 }
    556 
    557 static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
    558                                   TargetLowering::DAGCombinerInfo &DCI,
    559                                   const MipsSubtarget *Subtarget) {
    560   if (DCI.isBeforeLegalize())
    561     return SDValue();
    562 
    563   if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
    564       selectMADD(N, &DAG))
    565     return SDValue(N, 0);
    566 
    567   return SDValue();
    568 }
    569 
    570 static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
    571                                   TargetLowering::DAGCombinerInfo &DCI,
    572                                   const MipsSubtarget *Subtarget) {
    573   if (DCI.isBeforeLegalize())
    574     return SDValue();
    575 
    576   if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
    577       selectMSUB(N, &DAG))
    578     return SDValue(N, 0);
    579 
    580   return SDValue();
    581 }
    582 
    583 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
    584                                     TargetLowering::DAGCombinerInfo &DCI,
    585                                     const MipsSubtarget *Subtarget) {
    586   if (DCI.isBeforeLegalizeOps())
    587     return SDValue();
    588 
    589   EVT Ty = N->getValueType(0);
    590   unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
    591   unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
    592   unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
    593                                                   MipsISD::DivRemU;
    594   DebugLoc DL = N->getDebugLoc();
    595 
    596   SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
    597                                N->getOperand(0), N->getOperand(1));
    598   SDValue InChain = DAG.getEntryNode();
    599   SDValue InGlue = DivRem;
    600 
    601   // insert MFLO
    602   if (N->hasAnyUseOfValue(0)) {
    603     SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
    604                                             InGlue);
    605     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
    606     InChain = CopyFromLo.getValue(1);
    607     InGlue = CopyFromLo.getValue(2);
    608   }
    609 
    610   // insert MFHI
    611   if (N->hasAnyUseOfValue(1)) {
    612     SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
    613                                             HI, Ty, InGlue);
    614     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
    615   }
    616 
    617   return SDValue();
    618 }
    619 
    620 static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
    621   switch (CC) {
    622   default: llvm_unreachable("Unknown fp condition code!");
    623   case ISD::SETEQ:
    624   case ISD::SETOEQ: return Mips::FCOND_OEQ;
    625   case ISD::SETUNE: return Mips::FCOND_UNE;
    626   case ISD::SETLT:
    627   case ISD::SETOLT: return Mips::FCOND_OLT;
    628   case ISD::SETGT:
    629   case ISD::SETOGT: return Mips::FCOND_OGT;
    630   case ISD::SETLE:
    631   case ISD::SETOLE: return Mips::FCOND_OLE;
    632   case ISD::SETGE:
    633   case ISD::SETOGE: return Mips::FCOND_OGE;
    634   case ISD::SETULT: return Mips::FCOND_ULT;
    635   case ISD::SETULE: return Mips::FCOND_ULE;
    636   case ISD::SETUGT: return Mips::FCOND_UGT;
    637   case ISD::SETUGE: return Mips::FCOND_UGE;
    638   case ISD::SETUO:  return Mips::FCOND_UN;
    639   case ISD::SETO:   return Mips::FCOND_OR;
    640   case ISD::SETNE:
    641   case ISD::SETONE: return Mips::FCOND_ONE;
    642   case ISD::SETUEQ: return Mips::FCOND_UEQ;
    643   }
    644 }
    645 
    646 
    647 // Returns true if condition code has to be inverted.
    648 static bool invertFPCondCode(Mips::CondCode CC) {
    649   if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
    650     return false;
    651 
    652   assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
    653          "Illegal Condition Code");
    654 
    655   return true;
    656 }
    657 
    658 // Creates and returns an FPCmp node from a setcc node.
    659 // Returns Op if setcc is not a floating point comparison.
    660 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
    661   // must be a SETCC node
    662   if (Op.getOpcode() != ISD::SETCC)
    663     return Op;
    664 
    665   SDValue LHS = Op.getOperand(0);
    666 
    667   if (!LHS.getValueType().isFloatingPoint())
    668     return Op;
    669 
    670   SDValue RHS = Op.getOperand(1);
    671   DebugLoc DL = Op.getDebugLoc();
    672 
    673   // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
    674   // node if necessary.
    675   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
    676 
    677   return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
    678                      DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
    679 }
    680 
    681 // Creates and returns a CMovFPT/F node.
    682 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
    683                             SDValue False, DebugLoc DL) {
    684   bool invert = invertFPCondCode((Mips::CondCode)
    685                                  cast<ConstantSDNode>(Cond.getOperand(2))
    686                                  ->getSExtValue());
    687 
    688   return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
    689                      True.getValueType(), True, False, Cond);
    690 }
    691 
    692 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
    693                                     TargetLowering::DAGCombinerInfo &DCI,
    694                                     const MipsSubtarget *Subtarget) {
    695   if (DCI.isBeforeLegalizeOps())
    696     return SDValue();
    697 
    698   SDValue SetCC = N->getOperand(0);
    699 
    700   if ((SetCC.getOpcode() != ISD::SETCC) ||
    701       !SetCC.getOperand(0).getValueType().isInteger())
    702     return SDValue();
    703 
    704   SDValue False = N->getOperand(2);
    705   EVT FalseTy = False.getValueType();
    706 
    707   if (!FalseTy.isInteger())
    708     return SDValue();
    709 
    710   ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
    711 
    712   if (!CN || CN->getZExtValue())
    713     return SDValue();
    714 
    715   const DebugLoc DL = N->getDebugLoc();
    716   ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
    717   SDValue True = N->getOperand(1);
    718 
    719   SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
    720                        SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
    721 
    722   return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
    723 }
    724 
    725 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
    726                                  TargetLowering::DAGCombinerInfo &DCI,
    727                                  const MipsSubtarget *Subtarget) {
    728   // Pattern match EXT.
    729   //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
    730   //  => ext $dst, $src, size, pos
    731   if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
    732     return SDValue();
    733 
    734   SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
    735   unsigned ShiftRightOpc = ShiftRight.getOpcode();
    736 
    737   // Op's first operand must be a shift right.
    738   if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
    739     return SDValue();
    740 
    741   // The second operand of the shift must be an immediate.
    742   ConstantSDNode *CN;
    743   if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
    744     return SDValue();
    745 
    746   uint64_t Pos = CN->getZExtValue();
    747   uint64_t SMPos, SMSize;
    748 
    749   // Op's second operand must be a shifted mask.
    750   if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
    751       !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
    752     return SDValue();
    753 
    754   // Return if the shifted mask does not start at bit 0 or the sum of its size
    755   // and Pos exceeds the word's size.
    756   EVT ValTy = N->getValueType(0);
    757   if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
    758     return SDValue();
    759 
    760   return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
    761                      ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
    762                      DAG.getConstant(SMSize, MVT::i32));
    763 }
    764 
    765 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
    766                                 TargetLowering::DAGCombinerInfo &DCI,
    767                                 const MipsSubtarget *Subtarget) {
    768   // Pattern match INS.
    769   //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
    770   //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
    771   //  => ins $dst, $src, size, pos, $src1
    772   if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
    773     return SDValue();
    774 
    775   SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
    776   uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
    777   ConstantSDNode *CN;
    778 
    779   // See if Op's first operand matches (and $src1 , mask0).
    780   if (And0.getOpcode() != ISD::AND)
    781     return SDValue();
    782 
    783   if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
    784       !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
    785     return SDValue();
    786 
    787   // See if Op's second operand matches (and (shl $src, pos), mask1).
    788   if (And1.getOpcode() != ISD::AND)
    789     return SDValue();
    790 
    791   if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
    792       !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
    793     return SDValue();
    794 
    795   // The shift masks must have the same position and size.
    796   if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
    797     return SDValue();
    798 
    799   SDValue Shl = And1.getOperand(0);
    800   if (Shl.getOpcode() != ISD::SHL)
    801     return SDValue();
    802 
    803   if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
    804     return SDValue();
    805 
    806   unsigned Shamt = CN->getZExtValue();
    807 
    808   // Return if the shift amount and the first bit position of mask are not the
    809   // same.
    810   EVT ValTy = N->getValueType(0);
    811   if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
    812     return SDValue();
    813 
    814   return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
    815                      DAG.getConstant(SMPos0, MVT::i32),
    816                      DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
    817 }
    818 
    819 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
    820                                  TargetLowering::DAGCombinerInfo &DCI,
    821                                  const MipsSubtarget *Subtarget) {
    822   // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
    823 
    824   if (DCI.isBeforeLegalizeOps())
    825     return SDValue();
    826 
    827   SDValue Add = N->getOperand(1);
    828 
    829   if (Add.getOpcode() != ISD::ADD)
    830     return SDValue();
    831 
    832   SDValue Lo = Add.getOperand(1);
    833 
    834   if ((Lo.getOpcode() != MipsISD::Lo) ||
    835       (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
    836     return SDValue();
    837 
    838   EVT ValTy = N->getValueType(0);
    839   DebugLoc DL = N->getDebugLoc();
    840 
    841   SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
    842                              Add.getOperand(0));
    843   return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
    844 }
    845 
    846 SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
    847   const {
    848   SelectionDAG &DAG = DCI.DAG;
    849   unsigned Opc = N->getOpcode();
    850 
    851   switch (Opc) {
    852   default: break;
    853   case ISD::ADDE:
    854     return performADDECombine(N, DAG, DCI, Subtarget);
    855   case ISD::SUBE:
    856     return performSUBECombine(N, DAG, DCI, Subtarget);
    857   case ISD::SDIVREM:
    858   case ISD::UDIVREM:
    859     return performDivRemCombine(N, DAG, DCI, Subtarget);
    860   case ISD::SELECT:
    861     return performSELECTCombine(N, DAG, DCI, Subtarget);
    862   case ISD::AND:
    863     return performANDCombine(N, DAG, DCI, Subtarget);
    864   case ISD::OR:
    865     return performORCombine(N, DAG, DCI, Subtarget);
    866   case ISD::ADD:
    867     return performADDCombine(N, DAG, DCI, Subtarget);
    868   }
    869 
    870   return SDValue();
    871 }
    872 
    873 void
    874 MipsTargetLowering::LowerOperationWrapper(SDNode *N,
    875                                           SmallVectorImpl<SDValue> &Results,
    876                                           SelectionDAG &DAG) const {
    877   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
    878 
    879   for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
    880     Results.push_back(Res.getValue(I));
    881 }
    882 
    883 void
    884 MipsTargetLowering::ReplaceNodeResults(SDNode *N,
    885                                        SmallVectorImpl<SDValue> &Results,
    886                                        SelectionDAG &DAG) const {
    887   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
    888 
    889   for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
    890     Results.push_back(Res.getValue(I));
    891 }
    892 
    893 SDValue MipsTargetLowering::
    894 LowerOperation(SDValue Op, SelectionDAG &DAG) const
    895 {
    896   switch (Op.getOpcode())
    897   {
    898     case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
    899     case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
    900     case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
    901     case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
    902     case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
    903     case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
    904     case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
    905     case ISD::SELECT:             return lowerSELECT(Op, DAG);
    906     case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
    907     case ISD::SETCC:              return lowerSETCC(Op, DAG);
    908     case ISD::VASTART:            return lowerVASTART(Op, DAG);
    909     case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
    910     case ISD::FABS:               return lowerFABS(Op, DAG);
    911     case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
    912     case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
    913     case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
    914     case ISD::MEMBARRIER:         return lowerMEMBARRIER(Op, DAG);
    915     case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
    916     case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
    917     case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
    918     case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
    919     case ISD::LOAD:               return lowerLOAD(Op, DAG);
    920     case ISD::STORE:              return lowerSTORE(Op, DAG);
    921     case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
    922     case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
    923     case ISD::ADD:                return lowerADD(Op, DAG);
    924   }
    925   return SDValue();
    926 }
    927 
    928 //===----------------------------------------------------------------------===//
    929 //  Lower helper functions
    930 //===----------------------------------------------------------------------===//
    931 
    932 // addLiveIn - This helper function adds the specified physical register to the
    933 // MachineFunction as a live in value.  It also creates a corresponding
    934 // virtual register for it.
    935 static unsigned
    936 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
    937 {
    938   unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
    939   MF.getRegInfo().addLiveIn(PReg, VReg);
    940   return VReg;
    941 }
    942 
    943 // Get fp branch code (not opcode) from condition code.
    944 static Mips::FPBranchCode getFPBranchCodeFromCond(Mips::CondCode CC) {
    945   if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
    946     return Mips::BRANCH_T;
    947 
    948   assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
    949          "Invalid CondCode.");
    950 
    951   return Mips::BRANCH_F;
    952 }
    953 
    954 MachineBasicBlock *
    955 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
    956                                                 MachineBasicBlock *BB) const {
    957   switch (MI->getOpcode()) {
    958   default:
    959     llvm_unreachable("Unexpected instr type to insert");
    960   case Mips::ATOMIC_LOAD_ADD_I8:
    961   case Mips::ATOMIC_LOAD_ADD_I8_P8:
    962     return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
    963   case Mips::ATOMIC_LOAD_ADD_I16:
    964   case Mips::ATOMIC_LOAD_ADD_I16_P8:
    965     return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
    966   case Mips::ATOMIC_LOAD_ADD_I32:
    967   case Mips::ATOMIC_LOAD_ADD_I32_P8:
    968     return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
    969   case Mips::ATOMIC_LOAD_ADD_I64:
    970   case Mips::ATOMIC_LOAD_ADD_I64_P8:
    971     return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
    972 
    973   case Mips::ATOMIC_LOAD_AND_I8:
    974   case Mips::ATOMIC_LOAD_AND_I8_P8:
    975     return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
    976   case Mips::ATOMIC_LOAD_AND_I16:
    977   case Mips::ATOMIC_LOAD_AND_I16_P8:
    978     return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
    979   case Mips::ATOMIC_LOAD_AND_I32:
    980   case Mips::ATOMIC_LOAD_AND_I32_P8:
    981     return emitAtomicBinary(MI, BB, 4, Mips::AND);
    982   case Mips::ATOMIC_LOAD_AND_I64:
    983   case Mips::ATOMIC_LOAD_AND_I64_P8:
    984     return emitAtomicBinary(MI, BB, 8, Mips::AND64);
    985 
    986   case Mips::ATOMIC_LOAD_OR_I8:
    987   case Mips::ATOMIC_LOAD_OR_I8_P8:
    988     return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
    989   case Mips::ATOMIC_LOAD_OR_I16:
    990   case Mips::ATOMIC_LOAD_OR_I16_P8:
    991     return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
    992   case Mips::ATOMIC_LOAD_OR_I32:
    993   case Mips::ATOMIC_LOAD_OR_I32_P8:
    994     return emitAtomicBinary(MI, BB, 4, Mips::OR);
    995   case Mips::ATOMIC_LOAD_OR_I64:
    996   case Mips::ATOMIC_LOAD_OR_I64_P8:
    997     return emitAtomicBinary(MI, BB, 8, Mips::OR64);
    998 
    999   case Mips::ATOMIC_LOAD_XOR_I8:
   1000   case Mips::ATOMIC_LOAD_XOR_I8_P8:
   1001     return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
   1002   case Mips::ATOMIC_LOAD_XOR_I16:
   1003   case Mips::ATOMIC_LOAD_XOR_I16_P8:
   1004     return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
   1005   case Mips::ATOMIC_LOAD_XOR_I32:
   1006   case Mips::ATOMIC_LOAD_XOR_I32_P8:
   1007     return emitAtomicBinary(MI, BB, 4, Mips::XOR);
   1008   case Mips::ATOMIC_LOAD_XOR_I64:
   1009   case Mips::ATOMIC_LOAD_XOR_I64_P8:
   1010     return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
   1011 
   1012   case Mips::ATOMIC_LOAD_NAND_I8:
   1013   case Mips::ATOMIC_LOAD_NAND_I8_P8:
   1014     return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
   1015   case Mips::ATOMIC_LOAD_NAND_I16:
   1016   case Mips::ATOMIC_LOAD_NAND_I16_P8:
   1017     return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
   1018   case Mips::ATOMIC_LOAD_NAND_I32:
   1019   case Mips::ATOMIC_LOAD_NAND_I32_P8:
   1020     return emitAtomicBinary(MI, BB, 4, 0, true);
   1021   case Mips::ATOMIC_LOAD_NAND_I64:
   1022   case Mips::ATOMIC_LOAD_NAND_I64_P8:
   1023     return emitAtomicBinary(MI, BB, 8, 0, true);
   1024 
   1025   case Mips::ATOMIC_LOAD_SUB_I8:
   1026   case Mips::ATOMIC_LOAD_SUB_I8_P8:
   1027     return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
   1028   case Mips::ATOMIC_LOAD_SUB_I16:
   1029   case Mips::ATOMIC_LOAD_SUB_I16_P8:
   1030     return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
   1031   case Mips::ATOMIC_LOAD_SUB_I32:
   1032   case Mips::ATOMIC_LOAD_SUB_I32_P8:
   1033     return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
   1034   case Mips::ATOMIC_LOAD_SUB_I64:
   1035   case Mips::ATOMIC_LOAD_SUB_I64_P8:
   1036     return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
   1037 
   1038   case Mips::ATOMIC_SWAP_I8:
   1039   case Mips::ATOMIC_SWAP_I8_P8:
   1040     return emitAtomicBinaryPartword(MI, BB, 1, 0);
   1041   case Mips::ATOMIC_SWAP_I16:
   1042   case Mips::ATOMIC_SWAP_I16_P8:
   1043     return emitAtomicBinaryPartword(MI, BB, 2, 0);
   1044   case Mips::ATOMIC_SWAP_I32:
   1045   case Mips::ATOMIC_SWAP_I32_P8:
   1046     return emitAtomicBinary(MI, BB, 4, 0);
   1047   case Mips::ATOMIC_SWAP_I64:
   1048   case Mips::ATOMIC_SWAP_I64_P8:
   1049     return emitAtomicBinary(MI, BB, 8, 0);
   1050 
   1051   case Mips::ATOMIC_CMP_SWAP_I8:
   1052   case Mips::ATOMIC_CMP_SWAP_I8_P8:
   1053     return emitAtomicCmpSwapPartword(MI, BB, 1);
   1054   case Mips::ATOMIC_CMP_SWAP_I16:
   1055   case Mips::ATOMIC_CMP_SWAP_I16_P8:
   1056     return emitAtomicCmpSwapPartword(MI, BB, 2);
   1057   case Mips::ATOMIC_CMP_SWAP_I32:
   1058   case Mips::ATOMIC_CMP_SWAP_I32_P8:
   1059     return emitAtomicCmpSwap(MI, BB, 4);
   1060   case Mips::ATOMIC_CMP_SWAP_I64:
   1061   case Mips::ATOMIC_CMP_SWAP_I64_P8:
   1062     return emitAtomicCmpSwap(MI, BB, 8);
   1063   }
   1064 }
   1065 
   1066 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
   1067 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
   1068 MachineBasicBlock *
   1069 MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
   1070                                      unsigned Size, unsigned BinOpcode,
   1071                                      bool Nand) const {
   1072   assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
   1073 
   1074   MachineFunction *MF = BB->getParent();
   1075   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   1076   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
   1077   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   1078   DebugLoc DL = MI->getDebugLoc();
   1079   unsigned LL, SC, AND, NOR, ZERO, BEQ;
   1080 
   1081   if (Size == 4) {
   1082     LL = IsN64 ? Mips::LL_P8 : Mips::LL;
   1083     SC = IsN64 ? Mips::SC_P8 : Mips::SC;
   1084     AND = Mips::AND;
   1085     NOR = Mips::NOR;
   1086     ZERO = Mips::ZERO;
   1087     BEQ = Mips::BEQ;
   1088   }
   1089   else {
   1090     LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
   1091     SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
   1092     AND = Mips::AND64;
   1093     NOR = Mips::NOR64;
   1094     ZERO = Mips::ZERO_64;
   1095     BEQ = Mips::BEQ64;
   1096   }
   1097 
   1098   unsigned OldVal = MI->getOperand(0).getReg();
   1099   unsigned Ptr = MI->getOperand(1).getReg();
   1100   unsigned Incr = MI->getOperand(2).getReg();
   1101 
   1102   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
   1103   unsigned AndRes = RegInfo.createVirtualRegister(RC);
   1104   unsigned Success = RegInfo.createVirtualRegister(RC);
   1105 
   1106   // insert new blocks after the current block
   1107   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1108   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1109   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1110   MachineFunction::iterator It = BB;
   1111   ++It;
   1112   MF->insert(It, loopMBB);
   1113   MF->insert(It, exitMBB);
   1114 
   1115   // Transfer the remainder of BB and its successor edges to exitMBB.
   1116   exitMBB->splice(exitMBB->begin(), BB,
   1117                   llvm::next(MachineBasicBlock::iterator(MI)),
   1118                   BB->end());
   1119   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   1120 
   1121   //  thisMBB:
   1122   //    ...
   1123   //    fallthrough --> loopMBB
   1124   BB->addSuccessor(loopMBB);
   1125   loopMBB->addSuccessor(loopMBB);
   1126   loopMBB->addSuccessor(exitMBB);
   1127 
   1128   //  loopMBB:
   1129   //    ll oldval, 0(ptr)
   1130   //    <binop> storeval, oldval, incr
   1131   //    sc success, storeval, 0(ptr)
   1132   //    beq success, $0, loopMBB
   1133   BB = loopMBB;
   1134   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
   1135   if (Nand) {
   1136     //  and andres, oldval, incr
   1137     //  nor storeval, $0, andres
   1138     BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
   1139     BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
   1140   } else if (BinOpcode) {
   1141     //  <binop> storeval, oldval, incr
   1142     BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
   1143   } else {
   1144     StoreVal = Incr;
   1145   }
   1146   BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
   1147   BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
   1148 
   1149   MI->eraseFromParent();   // The instruction is gone now.
   1150 
   1151   return exitMBB;
   1152 }
   1153 
   1154 MachineBasicBlock *
   1155 MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
   1156                                              MachineBasicBlock *BB,
   1157                                              unsigned Size, unsigned BinOpcode,
   1158                                              bool Nand) const {
   1159   assert((Size == 1 || Size == 2) &&
   1160       "Unsupported size for EmitAtomicBinaryPartial.");
   1161 
   1162   MachineFunction *MF = BB->getParent();
   1163   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   1164   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
   1165   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   1166   DebugLoc DL = MI->getDebugLoc();
   1167   unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
   1168   unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
   1169 
   1170   unsigned Dest = MI->getOperand(0).getReg();
   1171   unsigned Ptr = MI->getOperand(1).getReg();
   1172   unsigned Incr = MI->getOperand(2).getReg();
   1173 
   1174   unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
   1175   unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
   1176   unsigned Mask = RegInfo.createVirtualRegister(RC);
   1177   unsigned Mask2 = RegInfo.createVirtualRegister(RC);
   1178   unsigned NewVal = RegInfo.createVirtualRegister(RC);
   1179   unsigned OldVal = RegInfo.createVirtualRegister(RC);
   1180   unsigned Incr2 = RegInfo.createVirtualRegister(RC);
   1181   unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
   1182   unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
   1183   unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
   1184   unsigned AndRes = RegInfo.createVirtualRegister(RC);
   1185   unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
   1186   unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
   1187   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
   1188   unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
   1189   unsigned SrlRes = RegInfo.createVirtualRegister(RC);
   1190   unsigned SllRes = RegInfo.createVirtualRegister(RC);
   1191   unsigned Success = RegInfo.createVirtualRegister(RC);
   1192 
   1193   // insert new blocks after the current block
   1194   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1195   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1196   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1197   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1198   MachineFunction::iterator It = BB;
   1199   ++It;
   1200   MF->insert(It, loopMBB);
   1201   MF->insert(It, sinkMBB);
   1202   MF->insert(It, exitMBB);
   1203 
   1204   // Transfer the remainder of BB and its successor edges to exitMBB.
   1205   exitMBB->splice(exitMBB->begin(), BB,
   1206                   llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
   1207   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   1208 
   1209   BB->addSuccessor(loopMBB);
   1210   loopMBB->addSuccessor(loopMBB);
   1211   loopMBB->addSuccessor(sinkMBB);
   1212   sinkMBB->addSuccessor(exitMBB);
   1213 
   1214   //  thisMBB:
   1215   //    addiu   masklsb2,$0,-4                # 0xfffffffc
   1216   //    and     alignedaddr,ptr,masklsb2
   1217   //    andi    ptrlsb2,ptr,3
   1218   //    sll     shiftamt,ptrlsb2,3
   1219   //    ori     maskupper,$0,255               # 0xff
   1220   //    sll     mask,maskupper,shiftamt
   1221   //    nor     mask2,$0,mask
   1222   //    sll     incr2,incr,shiftamt
   1223 
   1224   int64_t MaskImm = (Size == 1) ? 255 : 65535;
   1225   BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
   1226     .addReg(Mips::ZERO).addImm(-4);
   1227   BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
   1228     .addReg(Ptr).addReg(MaskLSB2);
   1229   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
   1230   BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
   1231   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
   1232     .addReg(Mips::ZERO).addImm(MaskImm);
   1233   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
   1234     .addReg(ShiftAmt).addReg(MaskUpper);
   1235   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
   1236   BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
   1237 
   1238   // atomic.load.binop
   1239   // loopMBB:
   1240   //   ll      oldval,0(alignedaddr)
   1241   //   binop   binopres,oldval,incr2
   1242   //   and     newval,binopres,mask
   1243   //   and     maskedoldval0,oldval,mask2
   1244   //   or      storeval,maskedoldval0,newval
   1245   //   sc      success,storeval,0(alignedaddr)
   1246   //   beq     success,$0,loopMBB
   1247 
   1248   // atomic.swap
   1249   // loopMBB:
   1250   //   ll      oldval,0(alignedaddr)
   1251   //   and     newval,incr2,mask
   1252   //   and     maskedoldval0,oldval,mask2
   1253   //   or      storeval,maskedoldval0,newval
   1254   //   sc      success,storeval,0(alignedaddr)
   1255   //   beq     success,$0,loopMBB
   1256 
   1257   BB = loopMBB;
   1258   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
   1259   if (Nand) {
   1260     //  and andres, oldval, incr2
   1261     //  nor binopres, $0, andres
   1262     //  and newval, binopres, mask
   1263     BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
   1264     BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
   1265       .addReg(Mips::ZERO).addReg(AndRes);
   1266     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
   1267   } else if (BinOpcode) {
   1268     //  <binop> binopres, oldval, incr2
   1269     //  and newval, binopres, mask
   1270     BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
   1271     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
   1272   } else {// atomic.swap
   1273     //  and newval, incr2, mask
   1274     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
   1275   }
   1276 
   1277   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
   1278     .addReg(OldVal).addReg(Mask2);
   1279   BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
   1280     .addReg(MaskedOldVal0).addReg(NewVal);
   1281   BuildMI(BB, DL, TII->get(SC), Success)
   1282     .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
   1283   BuildMI(BB, DL, TII->get(Mips::BEQ))
   1284     .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
   1285 
   1286   //  sinkMBB:
   1287   //    and     maskedoldval1,oldval,mask
   1288   //    srl     srlres,maskedoldval1,shiftamt
   1289   //    sll     sllres,srlres,24
   1290   //    sra     dest,sllres,24
   1291   BB = sinkMBB;
   1292   int64_t ShiftImm = (Size == 1) ? 24 : 16;
   1293 
   1294   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
   1295     .addReg(OldVal).addReg(Mask);
   1296   BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
   1297       .addReg(ShiftAmt).addReg(MaskedOldVal1);
   1298   BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
   1299       .addReg(SrlRes).addImm(ShiftImm);
   1300   BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
   1301       .addReg(SllRes).addImm(ShiftImm);
   1302 
   1303   MI->eraseFromParent();   // The instruction is gone now.
   1304 
   1305   return exitMBB;
   1306 }
   1307 
   1308 MachineBasicBlock *
   1309 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
   1310                                       MachineBasicBlock *BB,
   1311                                       unsigned Size) const {
   1312   assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
   1313 
   1314   MachineFunction *MF = BB->getParent();
   1315   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   1316   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
   1317   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   1318   DebugLoc DL = MI->getDebugLoc();
   1319   unsigned LL, SC, ZERO, BNE, BEQ;
   1320 
   1321   if (Size == 4) {
   1322     LL = IsN64 ? Mips::LL_P8 : Mips::LL;
   1323     SC = IsN64 ? Mips::SC_P8 : Mips::SC;
   1324     ZERO = Mips::ZERO;
   1325     BNE = Mips::BNE;
   1326     BEQ = Mips::BEQ;
   1327   }
   1328   else {
   1329     LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
   1330     SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
   1331     ZERO = Mips::ZERO_64;
   1332     BNE = Mips::BNE64;
   1333     BEQ = Mips::BEQ64;
   1334   }
   1335 
   1336   unsigned Dest    = MI->getOperand(0).getReg();
   1337   unsigned Ptr     = MI->getOperand(1).getReg();
   1338   unsigned OldVal  = MI->getOperand(2).getReg();
   1339   unsigned NewVal  = MI->getOperand(3).getReg();
   1340 
   1341   unsigned Success = RegInfo.createVirtualRegister(RC);
   1342 
   1343   // insert new blocks after the current block
   1344   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1345   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1346   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1347   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1348   MachineFunction::iterator It = BB;
   1349   ++It;
   1350   MF->insert(It, loop1MBB);
   1351   MF->insert(It, loop2MBB);
   1352   MF->insert(It, exitMBB);
   1353 
   1354   // Transfer the remainder of BB and its successor edges to exitMBB.
   1355   exitMBB->splice(exitMBB->begin(), BB,
   1356                   llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
   1357   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   1358 
   1359   //  thisMBB:
   1360   //    ...
   1361   //    fallthrough --> loop1MBB
   1362   BB->addSuccessor(loop1MBB);
   1363   loop1MBB->addSuccessor(exitMBB);
   1364   loop1MBB->addSuccessor(loop2MBB);
   1365   loop2MBB->addSuccessor(loop1MBB);
   1366   loop2MBB->addSuccessor(exitMBB);
   1367 
   1368   // loop1MBB:
   1369   //   ll dest, 0(ptr)
   1370   //   bne dest, oldval, exitMBB
   1371   BB = loop1MBB;
   1372   BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
   1373   BuildMI(BB, DL, TII->get(BNE))
   1374     .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
   1375 
   1376   // loop2MBB:
   1377   //   sc success, newval, 0(ptr)
   1378   //   beq success, $0, loop1MBB
   1379   BB = loop2MBB;
   1380   BuildMI(BB, DL, TII->get(SC), Success)
   1381     .addReg(NewVal).addReg(Ptr).addImm(0);
   1382   BuildMI(BB, DL, TII->get(BEQ))
   1383     .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
   1384 
   1385   MI->eraseFromParent();   // The instruction is gone now.
   1386 
   1387   return exitMBB;
   1388 }
   1389 
   1390 MachineBasicBlock *
   1391 MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
   1392                                               MachineBasicBlock *BB,
   1393                                               unsigned Size) const {
   1394   assert((Size == 1 || Size == 2) &&
   1395       "Unsupported size for EmitAtomicCmpSwapPartial.");
   1396 
   1397   MachineFunction *MF = BB->getParent();
   1398   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   1399   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
   1400   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   1401   DebugLoc DL = MI->getDebugLoc();
   1402   unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
   1403   unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
   1404 
   1405   unsigned Dest    = MI->getOperand(0).getReg();
   1406   unsigned Ptr     = MI->getOperand(1).getReg();
   1407   unsigned CmpVal  = MI->getOperand(2).getReg();
   1408   unsigned NewVal  = MI->getOperand(3).getReg();
   1409 
   1410   unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
   1411   unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
   1412   unsigned Mask = RegInfo.createVirtualRegister(RC);
   1413   unsigned Mask2 = RegInfo.createVirtualRegister(RC);
   1414   unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
   1415   unsigned OldVal = RegInfo.createVirtualRegister(RC);
   1416   unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
   1417   unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
   1418   unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
   1419   unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
   1420   unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
   1421   unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
   1422   unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
   1423   unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
   1424   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
   1425   unsigned SrlRes = RegInfo.createVirtualRegister(RC);
   1426   unsigned SllRes = RegInfo.createVirtualRegister(RC);
   1427   unsigned Success = RegInfo.createVirtualRegister(RC);
   1428 
   1429   // insert new blocks after the current block
   1430   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1431   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1432   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1433   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1434   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1435   MachineFunction::iterator It = BB;
   1436   ++It;
   1437   MF->insert(It, loop1MBB);
   1438   MF->insert(It, loop2MBB);
   1439   MF->insert(It, sinkMBB);
   1440   MF->insert(It, exitMBB);
   1441 
   1442   // Transfer the remainder of BB and its successor edges to exitMBB.
   1443   exitMBB->splice(exitMBB->begin(), BB,
   1444                   llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
   1445   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   1446 
   1447   BB->addSuccessor(loop1MBB);
   1448   loop1MBB->addSuccessor(sinkMBB);
   1449   loop1MBB->addSuccessor(loop2MBB);
   1450   loop2MBB->addSuccessor(loop1MBB);
   1451   loop2MBB->addSuccessor(sinkMBB);
   1452   sinkMBB->addSuccessor(exitMBB);
   1453 
   1454   // FIXME: computation of newval2 can be moved to loop2MBB.
   1455   //  thisMBB:
   1456   //    addiu   masklsb2,$0,-4                # 0xfffffffc
   1457   //    and     alignedaddr,ptr,masklsb2
   1458   //    andi    ptrlsb2,ptr,3
   1459   //    sll     shiftamt,ptrlsb2,3
   1460   //    ori     maskupper,$0,255               # 0xff
   1461   //    sll     mask,maskupper,shiftamt
   1462   //    nor     mask2,$0,mask
   1463   //    andi    maskedcmpval,cmpval,255
   1464   //    sll     shiftedcmpval,maskedcmpval,shiftamt
   1465   //    andi    maskednewval,newval,255
   1466   //    sll     shiftednewval,maskednewval,shiftamt
   1467   int64_t MaskImm = (Size == 1) ? 255 : 65535;
   1468   BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
   1469     .addReg(Mips::ZERO).addImm(-4);
   1470   BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
   1471     .addReg(Ptr).addReg(MaskLSB2);
   1472   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
   1473   BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
   1474   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
   1475     .addReg(Mips::ZERO).addImm(MaskImm);
   1476   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
   1477     .addReg(ShiftAmt).addReg(MaskUpper);
   1478   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
   1479   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
   1480     .addReg(CmpVal).addImm(MaskImm);
   1481   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
   1482     .addReg(ShiftAmt).addReg(MaskedCmpVal);
   1483   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
   1484     .addReg(NewVal).addImm(MaskImm);
   1485   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
   1486     .addReg(ShiftAmt).addReg(MaskedNewVal);
   1487 
   1488   //  loop1MBB:
   1489   //    ll      oldval,0(alginedaddr)
   1490   //    and     maskedoldval0,oldval,mask
   1491   //    bne     maskedoldval0,shiftedcmpval,sinkMBB
   1492   BB = loop1MBB;
   1493   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
   1494   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
   1495     .addReg(OldVal).addReg(Mask);
   1496   BuildMI(BB, DL, TII->get(Mips::BNE))
   1497     .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
   1498 
   1499   //  loop2MBB:
   1500   //    and     maskedoldval1,oldval,mask2
   1501   //    or      storeval,maskedoldval1,shiftednewval
   1502   //    sc      success,storeval,0(alignedaddr)
   1503   //    beq     success,$0,loop1MBB
   1504   BB = loop2MBB;
   1505   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
   1506     .addReg(OldVal).addReg(Mask2);
   1507   BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
   1508     .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
   1509   BuildMI(BB, DL, TII->get(SC), Success)
   1510       .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
   1511   BuildMI(BB, DL, TII->get(Mips::BEQ))
   1512       .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
   1513 
   1514   //  sinkMBB:
   1515   //    srl     srlres,maskedoldval0,shiftamt
   1516   //    sll     sllres,srlres,24
   1517   //    sra     dest,sllres,24
   1518   BB = sinkMBB;
   1519   int64_t ShiftImm = (Size == 1) ? 24 : 16;
   1520 
   1521   BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
   1522       .addReg(ShiftAmt).addReg(MaskedOldVal0);
   1523   BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
   1524       .addReg(SrlRes).addImm(ShiftImm);
   1525   BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
   1526       .addReg(SllRes).addImm(ShiftImm);
   1527 
   1528   MI->eraseFromParent();   // The instruction is gone now.
   1529 
   1530   return exitMBB;
   1531 }
   1532 
   1533 //===----------------------------------------------------------------------===//
   1534 //  Misc Lower Operation implementation
   1535 //===----------------------------------------------------------------------===//
   1536 SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
   1537   SDValue Chain = Op.getOperand(0);
   1538   SDValue Table = Op.getOperand(1);
   1539   SDValue Index = Op.getOperand(2);
   1540   DebugLoc DL = Op.getDebugLoc();
   1541   EVT PTy = getPointerTy();
   1542   unsigned EntrySize =
   1543     DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
   1544 
   1545   Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
   1546                       DAG.getConstant(EntrySize, PTy));
   1547   SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
   1548 
   1549   EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
   1550   Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
   1551                         MachinePointerInfo::getJumpTable(), MemVT, false, false,
   1552                         0);
   1553   Chain = Addr.getValue(1);
   1554 
   1555   if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
   1556     // For PIC, the sequence is:
   1557     // BRIND(load(Jumptable + index) + RelocBase)
   1558     // RelocBase can be JumpTable, GOT or some sort of global base.
   1559     Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
   1560                        getPICJumpTableRelocBase(Table, DAG));
   1561   }
   1562 
   1563   return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
   1564 }
   1565 
   1566 SDValue MipsTargetLowering::
   1567 lowerBRCOND(SDValue Op, SelectionDAG &DAG) const
   1568 {
   1569   // The first operand is the chain, the second is the condition, the third is
   1570   // the block to branch to if the condition is true.
   1571   SDValue Chain = Op.getOperand(0);
   1572   SDValue Dest = Op.getOperand(2);
   1573   DebugLoc DL = Op.getDebugLoc();
   1574 
   1575   SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
   1576 
   1577   // Return if flag is not set by a floating point comparison.
   1578   if (CondRes.getOpcode() != MipsISD::FPCmp)
   1579     return Op;
   1580 
   1581   SDValue CCNode  = CondRes.getOperand(2);
   1582   Mips::CondCode CC =
   1583     (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
   1584   SDValue BrCode = DAG.getConstant(getFPBranchCodeFromCond(CC), MVT::i32);
   1585 
   1586   return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
   1587                      Dest, CondRes);
   1588 }
   1589 
   1590 SDValue MipsTargetLowering::
   1591 lowerSELECT(SDValue Op, SelectionDAG &DAG) const
   1592 {
   1593   SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
   1594 
   1595   // Return if flag is not set by a floating point comparison.
   1596   if (Cond.getOpcode() != MipsISD::FPCmp)
   1597     return Op;
   1598 
   1599   return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
   1600                       Op.getDebugLoc());
   1601 }
   1602 
   1603 SDValue MipsTargetLowering::
   1604 lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
   1605 {
   1606   DebugLoc DL = Op.getDebugLoc();
   1607   EVT Ty = Op.getOperand(0).getValueType();
   1608   SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
   1609                              Op.getOperand(0), Op.getOperand(1),
   1610                              Op.getOperand(4));
   1611 
   1612   return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
   1613                      Op.getOperand(3));
   1614 }
   1615 
   1616 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   1617   SDValue Cond = createFPCmp(DAG, Op);
   1618 
   1619   assert(Cond.getOpcode() == MipsISD::FPCmp &&
   1620          "Floating point operand expected.");
   1621 
   1622   SDValue True  = DAG.getConstant(1, MVT::i32);
   1623   SDValue False = DAG.getConstant(0, MVT::i32);
   1624 
   1625   return createCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
   1626 }
   1627 
   1628 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
   1629                                                SelectionDAG &DAG) const {
   1630   // FIXME there isn't actually debug info here
   1631   DebugLoc DL = Op.getDebugLoc();
   1632   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   1633 
   1634   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
   1635     const MipsTargetObjectFile &TLOF =
   1636       (const MipsTargetObjectFile&)getObjFileLowering();
   1637 
   1638     // %gp_rel relocation
   1639     if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
   1640       SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
   1641                                               MipsII::MO_GPREL);
   1642       SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
   1643                                       DAG.getVTList(MVT::i32), &GA, 1);
   1644       SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
   1645       return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
   1646     }
   1647 
   1648     // %hi/%lo relocation
   1649     return getAddrNonPIC(Op, DAG);
   1650   }
   1651 
   1652   if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
   1653     return getAddrLocal(Op, DAG, HasMips64);
   1654 
   1655   if (LargeGOT)
   1656     return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
   1657                                  MipsII::MO_GOT_LO16);
   1658 
   1659   return getAddrGlobal(Op, DAG,
   1660                        HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
   1661 }
   1662 
   1663 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
   1664                                               SelectionDAG &DAG) const {
   1665   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
   1666     return getAddrNonPIC(Op, DAG);
   1667 
   1668   return getAddrLocal(Op, DAG, HasMips64);
   1669 }
   1670 
   1671 SDValue MipsTargetLowering::
   1672 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
   1673 {
   1674   // If the relocation model is PIC, use the General Dynamic TLS Model or
   1675   // Local Dynamic TLS model, otherwise use the Initial Exec or
   1676   // Local Exec TLS Model.
   1677 
   1678   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   1679   DebugLoc DL = GA->getDebugLoc();
   1680   const GlobalValue *GV = GA->getGlobal();
   1681   EVT PtrVT = getPointerTy();
   1682 
   1683   TLSModel::Model model = getTargetMachine().getTLSModel(GV);
   1684 
   1685   if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
   1686     // General Dynamic and Local Dynamic TLS Model.
   1687     unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
   1688                                                       : MipsII::MO_TLSGD;
   1689 
   1690     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
   1691     SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
   1692                                    getGlobalReg(DAG, PtrVT), TGA);
   1693     unsigned PtrSize = PtrVT.getSizeInBits();
   1694     IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
   1695 
   1696     SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
   1697 
   1698     ArgListTy Args;
   1699     ArgListEntry Entry;
   1700     Entry.Node = Argument;
   1701     Entry.Ty = PtrTy;
   1702     Args.push_back(Entry);
   1703 
   1704     TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
   1705                   false, false, false, false, 0, CallingConv::C,
   1706                   /*IsTailCall=*/false, /*doesNotRet=*/false,
   1707                   /*isReturnValueUsed=*/true,
   1708                   TlsGetAddr, Args, DAG, DL);
   1709     std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   1710 
   1711     SDValue Ret = CallResult.first;
   1712 
   1713     if (model != TLSModel::LocalDynamic)
   1714       return Ret;
   1715 
   1716     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   1717                                                MipsII::MO_DTPREL_HI);
   1718     SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
   1719     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   1720                                                MipsII::MO_DTPREL_LO);
   1721     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
   1722     SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
   1723     return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
   1724   }
   1725 
   1726   SDValue Offset;
   1727   if (model == TLSModel::InitialExec) {
   1728     // Initial Exec TLS Model
   1729     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   1730                                              MipsII::MO_GOTTPREL);
   1731     TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
   1732                       TGA);
   1733     Offset = DAG.getLoad(PtrVT, DL,
   1734                          DAG.getEntryNode(), TGA, MachinePointerInfo(),
   1735                          false, false, false, 0);
   1736   } else {
   1737     // Local Exec TLS Model
   1738     assert(model == TLSModel::LocalExec);
   1739     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   1740                                                MipsII::MO_TPREL_HI);
   1741     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   1742                                                MipsII::MO_TPREL_LO);
   1743     SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
   1744     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
   1745     Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
   1746   }
   1747 
   1748   SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
   1749   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
   1750 }
   1751 
   1752 SDValue MipsTargetLowering::
   1753 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
   1754 {
   1755   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
   1756     return getAddrNonPIC(Op, DAG);
   1757 
   1758   return getAddrLocal(Op, DAG, HasMips64);
   1759 }
   1760 
   1761 SDValue MipsTargetLowering::
   1762 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
   1763 {
   1764   // gp_rel relocation
   1765   // FIXME: we should reference the constant pool using small data sections,
   1766   // but the asm printer currently doesn't support this feature without
   1767   // hacking it. This feature should come soon so we can uncomment the
   1768   // stuff below.
   1769   //if (IsInSmallSection(C->getType())) {
   1770   //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
   1771   //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
   1772   //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
   1773 
   1774   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
   1775     return getAddrNonPIC(Op, DAG);
   1776 
   1777   return getAddrLocal(Op, DAG, HasMips64);
   1778 }
   1779 
   1780 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
   1781   MachineFunction &MF = DAG.getMachineFunction();
   1782   MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
   1783 
   1784   DebugLoc DL = Op.getDebugLoc();
   1785   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   1786                                  getPointerTy());
   1787 
   1788   // vastart just stores the address of the VarArgsFrameIndex slot into the
   1789   // memory location argument.
   1790   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1791   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
   1792                       MachinePointerInfo(SV), false, false, 0);
   1793 }
   1794 
   1795 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
   1796   EVT TyX = Op.getOperand(0).getValueType();
   1797   EVT TyY = Op.getOperand(1).getValueType();
   1798   SDValue Const1 = DAG.getConstant(1, MVT::i32);
   1799   SDValue Const31 = DAG.getConstant(31, MVT::i32);
   1800   DebugLoc DL = Op.getDebugLoc();
   1801   SDValue Res;
   1802 
   1803   // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
   1804   // to i32.
   1805   SDValue X = (TyX == MVT::f32) ?
   1806     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
   1807     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
   1808                 Const1);
   1809   SDValue Y = (TyY == MVT::f32) ?
   1810     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
   1811     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
   1812                 Const1);
   1813 
   1814   if (HasR2) {
   1815     // ext  E, Y, 31, 1  ; extract bit31 of Y
   1816     // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
   1817     SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
   1818     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
   1819   } else {
   1820     // sll SllX, X, 1
   1821     // srl SrlX, SllX, 1
   1822     // srl SrlY, Y, 31
   1823     // sll SllY, SrlX, 31
   1824     // or  Or, SrlX, SllY
   1825     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
   1826     SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
   1827     SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
   1828     SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
   1829     Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
   1830   }
   1831 
   1832   if (TyX == MVT::f32)
   1833     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
   1834 
   1835   SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   1836                              Op.getOperand(0), DAG.getConstant(0, MVT::i32));
   1837   return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
   1838 }
   1839 
   1840 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
   1841   unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
   1842   unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
   1843   EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
   1844   SDValue Const1 = DAG.getConstant(1, MVT::i32);
   1845   DebugLoc DL = Op.getDebugLoc();
   1846 
   1847   // Bitcast to integer nodes.
   1848   SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
   1849   SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
   1850 
   1851   if (HasR2) {
   1852     // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
   1853     // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
   1854     SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
   1855                             DAG.getConstant(WidthY - 1, MVT::i32), Const1);
   1856 
   1857     if (WidthX > WidthY)
   1858       E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
   1859     else if (WidthY > WidthX)
   1860       E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
   1861 
   1862     SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
   1863                             DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
   1864     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
   1865   }
   1866 
   1867   // (d)sll SllX, X, 1
   1868   // (d)srl SrlX, SllX, 1
   1869   // (d)srl SrlY, Y, width(Y)-1
   1870   // (d)sll SllY, SrlX, width(Y)-1
   1871   // or     Or, SrlX, SllY
   1872   SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
   1873   SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
   1874   SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
   1875                              DAG.getConstant(WidthY - 1, MVT::i32));
   1876 
   1877   if (WidthX > WidthY)
   1878     SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
   1879   else if (WidthY > WidthX)
   1880     SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
   1881 
   1882   SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
   1883                              DAG.getConstant(WidthX - 1, MVT::i32));
   1884   SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
   1885   return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
   1886 }
   1887 
   1888 SDValue
   1889 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   1890   if (Subtarget->hasMips64())
   1891     return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
   1892 
   1893   return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
   1894 }
   1895 
   1896 static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
   1897   SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
   1898   DebugLoc DL = Op.getDebugLoc();
   1899 
   1900   // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
   1901   // to i32.
   1902   SDValue X = (Op.getValueType() == MVT::f32) ?
   1903     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
   1904     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
   1905                 Const1);
   1906 
   1907   // Clear MSB.
   1908   if (HasR2)
   1909     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
   1910                       DAG.getRegister(Mips::ZERO, MVT::i32),
   1911                       DAG.getConstant(31, MVT::i32), Const1, X);
   1912   else {
   1913     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
   1914     Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
   1915   }
   1916 
   1917   if (Op.getValueType() == MVT::f32)
   1918     return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
   1919 
   1920   SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   1921                              Op.getOperand(0), DAG.getConstant(0, MVT::i32));
   1922   return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
   1923 }
   1924 
   1925 static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
   1926   SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
   1927   DebugLoc DL = Op.getDebugLoc();
   1928 
   1929   // Bitcast to integer node.
   1930   SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
   1931 
   1932   // Clear MSB.
   1933   if (HasR2)
   1934     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
   1935                       DAG.getRegister(Mips::ZERO_64, MVT::i64),
   1936                       DAG.getConstant(63, MVT::i32), Const1, X);
   1937   else {
   1938     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
   1939     Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
   1940   }
   1941 
   1942   return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
   1943 }
   1944 
   1945 SDValue
   1946 MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
   1947   if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
   1948     return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
   1949 
   1950   return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
   1951 }
   1952 
   1953 SDValue MipsTargetLowering::
   1954 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   1955   // check the depth
   1956   assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
   1957          "Frame address can only be determined for current frame.");
   1958 
   1959   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   1960   MFI->setFrameAddressIsTaken(true);
   1961   EVT VT = Op.getValueType();
   1962   DebugLoc DL = Op.getDebugLoc();
   1963   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
   1964                                          IsN64 ? Mips::FP_64 : Mips::FP, VT);
   1965   return FrameAddr;
   1966 }
   1967 
   1968 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
   1969                                             SelectionDAG &DAG) const {
   1970   // check the depth
   1971   assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
   1972          "Return address can be determined only for current frame.");
   1973 
   1974   MachineFunction &MF = DAG.getMachineFunction();
   1975   MachineFrameInfo *MFI = MF.getFrameInfo();
   1976   MVT VT = Op.getSimpleValueType();
   1977   unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
   1978   MFI->setReturnAddressIsTaken(true);
   1979 
   1980   // Return RA, which contains the return address. Mark it an implicit live-in.
   1981   unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
   1982   return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
   1983 }
   1984 
   1985 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
   1986 // generated from __builtin_eh_return (offset, handler)
   1987 // The effect of this is to adjust the stack pointer by "offset"
   1988 // and then branch to "handler".
   1989 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
   1990                                                                      const {
   1991   MachineFunction &MF = DAG.getMachineFunction();
   1992   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
   1993 
   1994   MipsFI->setCallsEhReturn();
   1995   SDValue Chain     = Op.getOperand(0);
   1996   SDValue Offset    = Op.getOperand(1);
   1997   SDValue Handler   = Op.getOperand(2);
   1998   DebugLoc DL       = Op.getDebugLoc();
   1999   EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
   2000 
   2001   // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
   2002   // EH_RETURN nodes, so that instructions are emitted back-to-back.
   2003   unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
   2004   unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
   2005   Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
   2006   Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
   2007   return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
   2008                      DAG.getRegister(OffsetReg, Ty),
   2009                      DAG.getRegister(AddrReg, getPointerTy()),
   2010                      Chain.getValue(1));
   2011 }
   2012 
   2013 // TODO: set SType according to the desired memory barrier behavior.
   2014 SDValue
   2015 MipsTargetLowering::lowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
   2016   unsigned SType = 0;
   2017   DebugLoc DL = Op.getDebugLoc();
   2018   return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
   2019                      DAG.getConstant(SType, MVT::i32));
   2020 }
   2021 
   2022 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
   2023                                               SelectionDAG &DAG) const {
   2024   // FIXME: Need pseudo-fence for 'singlethread' fences
   2025   // FIXME: Set SType for weaker fences where supported/appropriate.
   2026   unsigned SType = 0;
   2027   DebugLoc DL = Op.getDebugLoc();
   2028   return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
   2029                      DAG.getConstant(SType, MVT::i32));
   2030 }
   2031 
   2032 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
   2033                                                 SelectionDAG &DAG) const {
   2034   DebugLoc DL = Op.getDebugLoc();
   2035   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
   2036   SDValue Shamt = Op.getOperand(2);
   2037 
   2038   // if shamt < 32:
   2039   //  lo = (shl lo, shamt)
   2040   //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
   2041   // else:
   2042   //  lo = 0
   2043   //  hi = (shl lo, shamt[4:0])
   2044   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
   2045                             DAG.getConstant(-1, MVT::i32));
   2046   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
   2047                                       DAG.getConstant(1, MVT::i32));
   2048   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
   2049                                      Not);
   2050   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
   2051   SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
   2052   SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
   2053   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
   2054                              DAG.getConstant(0x20, MVT::i32));
   2055   Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
   2056                    DAG.getConstant(0, MVT::i32), ShiftLeftLo);
   2057   Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
   2058 
   2059   SDValue Ops[2] = {Lo, Hi};
   2060   return DAG.getMergeValues(Ops, 2, DL);
   2061 }
   2062 
   2063 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
   2064                                                  bool IsSRA) const {
   2065   DebugLoc DL = Op.getDebugLoc();
   2066   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
   2067   SDValue Shamt = Op.getOperand(2);
   2068 
   2069   // if shamt < 32:
   2070   //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
   2071   //  if isSRA:
   2072   //    hi = (sra hi, shamt)
   2073   //  else:
   2074   //    hi = (srl hi, shamt)
   2075   // else:
   2076   //  if isSRA:
   2077   //   lo = (sra hi, shamt[4:0])
   2078   //   hi = (sra hi, 31)
   2079   //  else:
   2080   //   lo = (srl hi, shamt[4:0])
   2081   //   hi = 0
   2082   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
   2083                             DAG.getConstant(-1, MVT::i32));
   2084   SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
   2085                                      DAG.getConstant(1, MVT::i32));
   2086   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
   2087   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
   2088   SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
   2089   SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
   2090                                      Hi, Shamt);
   2091   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
   2092                              DAG.getConstant(0x20, MVT::i32));
   2093   SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
   2094                                 DAG.getConstant(31, MVT::i32));
   2095   Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
   2096   Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
   2097                    IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
   2098                    ShiftRightHi);
   2099 
   2100   SDValue Ops[2] = {Lo, Hi};
   2101   return DAG.getMergeValues(Ops, 2, DL);
   2102 }
   2103 
   2104 static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
   2105                             SDValue Chain, SDValue Src, unsigned Offset) {
   2106   SDValue Ptr = LD->getBasePtr();
   2107   EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
   2108   EVT BasePtrVT = Ptr.getValueType();
   2109   DebugLoc DL = LD->getDebugLoc();
   2110   SDVTList VTList = DAG.getVTList(VT, MVT::Other);
   2111 
   2112   if (Offset)
   2113     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
   2114                       DAG.getConstant(Offset, BasePtrVT));
   2115 
   2116   SDValue Ops[] = { Chain, Ptr, Src };
   2117   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
   2118                                  LD->getMemOperand());
   2119 }
   2120 
   2121 // Expand an unaligned 32 or 64-bit integer load node.
   2122 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
   2123   LoadSDNode *LD = cast<LoadSDNode>(Op);
   2124   EVT MemVT = LD->getMemoryVT();
   2125 
   2126   // Return if load is aligned or if MemVT is neither i32 nor i64.
   2127   if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
   2128       ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
   2129     return SDValue();
   2130 
   2131   bool IsLittle = Subtarget->isLittle();
   2132   EVT VT = Op.getValueType();
   2133   ISD::LoadExtType ExtType = LD->getExtensionType();
   2134   SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
   2135 
   2136   assert((VT == MVT::i32) || (VT == MVT::i64));
   2137 
   2138   // Expand
   2139   //  (set dst, (i64 (load baseptr)))
   2140   // to
   2141   //  (set tmp, (ldl (add baseptr, 7), undef))
   2142   //  (set dst, (ldr baseptr, tmp))
   2143   if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
   2144     SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
   2145                                IsLittle ? 7 : 0);
   2146     return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
   2147                         IsLittle ? 0 : 7);
   2148   }
   2149 
   2150   SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
   2151                              IsLittle ? 3 : 0);
   2152   SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
   2153                              IsLittle ? 0 : 3);
   2154 
   2155   // Expand
   2156   //  (set dst, (i32 (load baseptr))) or
   2157   //  (set dst, (i64 (sextload baseptr))) or
   2158   //  (set dst, (i64 (extload baseptr)))
   2159   // to
   2160   //  (set tmp, (lwl (add baseptr, 3), undef))
   2161   //  (set dst, (lwr baseptr, tmp))
   2162   if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
   2163       (ExtType == ISD::EXTLOAD))
   2164     return LWR;
   2165 
   2166   assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
   2167 
   2168   // Expand
   2169   //  (set dst, (i64 (zextload baseptr)))
   2170   // to
   2171   //  (set tmp0, (lwl (add baseptr, 3), undef))
   2172   //  (set tmp1, (lwr baseptr, tmp0))
   2173   //  (set tmp2, (shl tmp1, 32))
   2174   //  (set dst, (srl tmp2, 32))
   2175   DebugLoc DL = LD->getDebugLoc();
   2176   SDValue Const32 = DAG.getConstant(32, MVT::i32);
   2177   SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
   2178   SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
   2179   SDValue Ops[] = { SRL, LWR.getValue(1) };
   2180   return DAG.getMergeValues(Ops, 2, DL);
   2181 }
   2182 
   2183 static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
   2184                              SDValue Chain, unsigned Offset) {
   2185   SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
   2186   EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
   2187   DebugLoc DL = SD->getDebugLoc();
   2188   SDVTList VTList = DAG.getVTList(MVT::Other);
   2189 
   2190   if (Offset)
   2191     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
   2192                       DAG.getConstant(Offset, BasePtrVT));
   2193 
   2194   SDValue Ops[] = { Chain, Value, Ptr };
   2195   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
   2196                                  SD->getMemOperand());
   2197 }
   2198 
   2199 // Expand an unaligned 32 or 64-bit integer store node.
   2200 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
   2201   StoreSDNode *SD = cast<StoreSDNode>(Op);
   2202   EVT MemVT = SD->getMemoryVT();
   2203 
   2204   // Return if store is aligned or if MemVT is neither i32 nor i64.
   2205   if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
   2206       ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
   2207     return SDValue();
   2208 
   2209   bool IsLittle = Subtarget->isLittle();
   2210   SDValue Value = SD->getValue(), Chain = SD->getChain();
   2211   EVT VT = Value.getValueType();
   2212 
   2213   // Expand
   2214   //  (store val, baseptr) or
   2215   //  (truncstore val, baseptr)
   2216   // to
   2217   //  (swl val, (add baseptr, 3))
   2218   //  (swr val, baseptr)
   2219   if ((VT == MVT::i32) || SD->isTruncatingStore()) {
   2220     SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
   2221                                 IsLittle ? 3 : 0);
   2222     return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
   2223   }
   2224 
   2225   assert(VT == MVT::i64);
   2226 
   2227   // Expand
   2228   //  (store val, baseptr)
   2229   // to
   2230   //  (sdl val, (add baseptr, 7))
   2231   //  (sdr val, baseptr)
   2232   SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
   2233   return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
   2234 }
   2235 
   2236 // This function expands mips intrinsic nodes which have 64-bit input operands
   2237 // or output values.
   2238 //
   2239 // out64 = intrinsic-node in64
   2240 // =>
   2241 // lo = copy (extract-element (in64, 0))
   2242 // hi = copy (extract-element (in64, 1))
   2243 // mips-specific-node
   2244 // v0 = copy lo
   2245 // v1 = copy hi
   2246 // out64 = merge-values (v0, v1)
   2247 //
   2248 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG,
   2249                             unsigned Opc, bool HasI64In, bool HasI64Out) {
   2250   DebugLoc DL = Op.getDebugLoc();
   2251   bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
   2252   SDValue Chain = HasChainIn ? Op->getOperand(0) : DAG.getEntryNode();
   2253   SmallVector<SDValue, 3> Ops;
   2254 
   2255   if (HasI64In) {
   2256     SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
   2257                                Op->getOperand(1 + HasChainIn),
   2258                                DAG.getConstant(0, MVT::i32));
   2259     SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
   2260                                Op->getOperand(1 + HasChainIn),
   2261                                DAG.getConstant(1, MVT::i32));
   2262 
   2263     Chain = DAG.getCopyToReg(Chain, DL, Mips::LO, InLo, SDValue());
   2264     Chain = DAG.getCopyToReg(Chain, DL, Mips::HI, InHi, Chain.getValue(1));
   2265 
   2266     Ops.push_back(Chain);
   2267     Ops.append(Op->op_begin() + HasChainIn + 2, Op->op_end());
   2268     Ops.push_back(Chain.getValue(1));
   2269   } else {
   2270     Ops.push_back(Chain);
   2271     Ops.append(Op->op_begin() + HasChainIn + 1, Op->op_end());
   2272   }
   2273 
   2274   if (!HasI64Out)
   2275     return DAG.getNode(Opc, DL, Op->value_begin(), Op->getNumValues(),
   2276                        Ops.begin(), Ops.size());
   2277 
   2278   SDValue Intr = DAG.getNode(Opc, DL, DAG.getVTList(MVT::Other, MVT::Glue),
   2279                              Ops.begin(), Ops.size());
   2280   SDValue OutLo = DAG.getCopyFromReg(Intr.getValue(0), DL, Mips::LO, MVT::i32,
   2281                                      Intr.getValue(1));
   2282   SDValue OutHi = DAG.getCopyFromReg(OutLo.getValue(1), DL, Mips::HI, MVT::i32,
   2283                                      OutLo.getValue(2));
   2284   SDValue Out = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, OutLo, OutHi);
   2285 
   2286   if (!HasChainIn)
   2287     return Out;
   2288 
   2289   SDValue Vals[] = { Out, OutHi.getValue(1) };
   2290   return DAG.getMergeValues(Vals, 2, DL);
   2291 }
   2292 
   2293 SDValue MipsTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
   2294                                                     SelectionDAG &DAG) const {
   2295   switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
   2296   default:
   2297     return SDValue();
   2298   case Intrinsic::mips_shilo:
   2299     return lowerDSPIntr(Op, DAG, MipsISD::SHILO, true, true);
   2300   case Intrinsic::mips_dpau_h_qbl:
   2301     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL, true, true);
   2302   case Intrinsic::mips_dpau_h_qbr:
   2303     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR, true, true);
   2304   case Intrinsic::mips_dpsu_h_qbl:
   2305     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL, true, true);
   2306   case Intrinsic::mips_dpsu_h_qbr:
   2307     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR, true, true);
   2308   case Intrinsic::mips_dpa_w_ph:
   2309     return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH, true, true);
   2310   case Intrinsic::mips_dps_w_ph:
   2311     return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH, true, true);
   2312   case Intrinsic::mips_dpax_w_ph:
   2313     return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH, true, true);
   2314   case Intrinsic::mips_dpsx_w_ph:
   2315     return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH, true, true);
   2316   case Intrinsic::mips_mulsa_w_ph:
   2317     return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH, true, true);
   2318   case Intrinsic::mips_mult:
   2319     return lowerDSPIntr(Op, DAG, MipsISD::MULT, false, true);
   2320   case Intrinsic::mips_multu:
   2321     return lowerDSPIntr(Op, DAG, MipsISD::MULTU, false, true);
   2322   case Intrinsic::mips_madd:
   2323     return lowerDSPIntr(Op, DAG, MipsISD::MADD_DSP, true, true);
   2324   case Intrinsic::mips_maddu:
   2325     return lowerDSPIntr(Op, DAG, MipsISD::MADDU_DSP, true, true);
   2326   case Intrinsic::mips_msub:
   2327     return lowerDSPIntr(Op, DAG, MipsISD::MSUB_DSP, true, true);
   2328   case Intrinsic::mips_msubu:
   2329     return lowerDSPIntr(Op, DAG, MipsISD::MSUBU_DSP, true, true);
   2330   }
   2331 }
   2332 
   2333 SDValue MipsTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
   2334                                                    SelectionDAG &DAG) const {
   2335   switch (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue()) {
   2336   default:
   2337     return SDValue();
   2338   case Intrinsic::mips_extp:
   2339     return lowerDSPIntr(Op, DAG, MipsISD::EXTP, true, false);
   2340   case Intrinsic::mips_extpdp:
   2341     return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP, true, false);
   2342   case Intrinsic::mips_extr_w:
   2343     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W, true, false);
   2344   case Intrinsic::mips_extr_r_w:
   2345     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W, true, false);
   2346   case Intrinsic::mips_extr_rs_w:
   2347     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W, true, false);
   2348   case Intrinsic::mips_extr_s_h:
   2349     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H, true, false);
   2350   case Intrinsic::mips_mthlip:
   2351     return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP, true, true);
   2352   case Intrinsic::mips_mulsaq_s_w_ph:
   2353     return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH, true, true);
   2354   case Intrinsic::mips_maq_s_w_phl:
   2355     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL, true, true);
   2356   case Intrinsic::mips_maq_s_w_phr:
   2357     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR, true, true);
   2358   case Intrinsic::mips_maq_sa_w_phl:
   2359     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL, true, true);
   2360   case Intrinsic::mips_maq_sa_w_phr:
   2361     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR, true, true);
   2362   case Intrinsic::mips_dpaq_s_w_ph:
   2363     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH, true, true);
   2364   case Intrinsic::mips_dpsq_s_w_ph:
   2365     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH, true, true);
   2366   case Intrinsic::mips_dpaq_sa_l_w:
   2367     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W, true, true);
   2368   case Intrinsic::mips_dpsq_sa_l_w:
   2369     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W, true, true);
   2370   case Intrinsic::mips_dpaqx_s_w_ph:
   2371     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH, true, true);
   2372   case Intrinsic::mips_dpaqx_sa_w_ph:
   2373     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH, true, true);
   2374   case Intrinsic::mips_dpsqx_s_w_ph:
   2375     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH, true, true);
   2376   case Intrinsic::mips_dpsqx_sa_w_ph:
   2377     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH, true, true);
   2378   }
   2379 }
   2380 
   2381 SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
   2382   if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
   2383       || cast<ConstantSDNode>
   2384         (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
   2385       || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
   2386     return SDValue();
   2387 
   2388   // The pattern
   2389   //   (add (frameaddr 0), (frame_to_args_offset))
   2390   // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
   2391   //   (add FrameObject, 0)
   2392   // where FrameObject is a fixed StackObject with offset 0 which points to
   2393   // the old stack pointer.
   2394   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   2395   EVT ValTy = Op->getValueType(0);
   2396   int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
   2397   SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
   2398   return DAG.getNode(ISD::ADD, Op->getDebugLoc(), ValTy, InArgsAddr,
   2399                      DAG.getConstant(0, ValTy));
   2400 }
   2401 
   2402 //===----------------------------------------------------------------------===//
   2403 //                      Calling Convention Implementation
   2404 //===----------------------------------------------------------------------===//
   2405 
   2406 //===----------------------------------------------------------------------===//
   2407 // TODO: Implement a generic logic using tblgen that can support this.
   2408 // Mips O32 ABI rules:
   2409 // ---
   2410 // i32 - Passed in A0, A1, A2, A3 and stack
   2411 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
   2412 //       an argument. Otherwise, passed in A1, A2, A3 and stack.
   2413 // f64 - Only passed in two aliased f32 registers if no int reg has been used
   2414 //       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
   2415 //       not used, it must be shadowed. If only A3 is avaiable, shadow it and
   2416 //       go to stack.
   2417 //
   2418 //  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
   2419 //===----------------------------------------------------------------------===//
   2420 
   2421 static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
   2422                        MVT LocVT, CCValAssign::LocInfo LocInfo,
   2423                        ISD::ArgFlagsTy ArgFlags, CCState &State) {
   2424 
   2425   static const unsigned IntRegsSize=4, FloatRegsSize=2;
   2426 
   2427   static const uint16_t IntRegs[] = {
   2428       Mips::A0, Mips::A1, Mips::A2, Mips::A3
   2429   };
   2430   static const uint16_t F32Regs[] = {
   2431       Mips::F12, Mips::F14
   2432   };
   2433   static const uint16_t F64Regs[] = {
   2434       Mips::D6, Mips::D7
   2435   };
   2436 
   2437   // Do not process byval args here.
   2438   if (ArgFlags.isByVal())
   2439     return true;
   2440 
   2441   // Promote i8 and i16
   2442   if (LocVT == MVT::i8 || LocVT == MVT::i16) {
   2443     LocVT = MVT::i32;
   2444     if (ArgFlags.isSExt())
   2445       LocInfo = CCValAssign::SExt;
   2446     else if (ArgFlags.isZExt())
   2447       LocInfo = CCValAssign::ZExt;
   2448     else
   2449       LocInfo = CCValAssign::AExt;
   2450   }
   2451 
   2452   unsigned Reg;
   2453 
   2454   // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
   2455   // is true: function is vararg, argument is 3rd or higher, there is previous
   2456   // argument which is not f32 or f64.
   2457   bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
   2458       || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
   2459   unsigned OrigAlign = ArgFlags.getOrigAlign();
   2460   bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
   2461 
   2462   if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
   2463     Reg = State.AllocateReg(IntRegs, IntRegsSize);
   2464     // If this is the first part of an i64 arg,
   2465     // the allocated register must be either A0 or A2.
   2466     if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
   2467       Reg = State.AllocateReg(IntRegs, IntRegsSize);
   2468     LocVT = MVT::i32;
   2469   } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
   2470     // Allocate int register and shadow next int register. If first
   2471     // available register is Mips::A1 or Mips::A3, shadow it too.
   2472     Reg = State.AllocateReg(IntRegs, IntRegsSize);
   2473     if (Reg == Mips::A1 || Reg == Mips::A3)
   2474       Reg = State.AllocateReg(IntRegs, IntRegsSize);
   2475     State.AllocateReg(IntRegs, IntRegsSize);
   2476     LocVT = MVT::i32;
   2477   } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
   2478     // we are guaranteed to find an available float register
   2479     if (ValVT == MVT::f32) {
   2480       Reg = State.AllocateReg(F32Regs, FloatRegsSize);
   2481       // Shadow int register
   2482       State.AllocateReg(IntRegs, IntRegsSize);
   2483     } else {
   2484       Reg = State.AllocateReg(F64Regs, FloatRegsSize);
   2485       // Shadow int registers
   2486       unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
   2487       if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
   2488         State.AllocateReg(IntRegs, IntRegsSize);
   2489       State.AllocateReg(IntRegs, IntRegsSize);
   2490     }
   2491   } else
   2492     llvm_unreachable("Cannot handle this ValVT.");
   2493 
   2494   if (!Reg) {
   2495     unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
   2496                                           OrigAlign);
   2497     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
   2498   } else
   2499     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
   2500 
   2501   return false;
   2502 }
   2503 
   2504 #include "MipsGenCallingConv.inc"
   2505 
   2506 //===----------------------------------------------------------------------===//
   2507 //                  Call Calling Convention Implementation
   2508 //===----------------------------------------------------------------------===//
   2509 
   2510 static const unsigned O32IntRegsSize = 4;
   2511 
   2512 // Return next O32 integer argument register.
   2513 static unsigned getNextIntArgReg(unsigned Reg) {
   2514   assert((Reg == Mips::A0) || (Reg == Mips::A2));
   2515   return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
   2516 }
   2517 
   2518 SDValue
   2519 MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
   2520                                    SDValue Chain, SDValue Arg, DebugLoc DL,
   2521                                    bool IsTailCall, SelectionDAG &DAG) const {
   2522   if (!IsTailCall) {
   2523     SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
   2524                                  DAG.getIntPtrConstant(Offset));
   2525     return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
   2526                         false, 0);
   2527   }
   2528 
   2529   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   2530   int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
   2531   SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2532   return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
   2533                       /*isVolatile=*/ true, false, 0);
   2534 }
   2535 
   2536 void MipsTargetLowering::
   2537 getOpndList(SmallVectorImpl<SDValue> &Ops,
   2538             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
   2539             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
   2540             CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
   2541   // Insert node "GP copy globalreg" before call to function.
   2542   //
   2543   // R_MIPS_CALL* operators (emitted when non-internal functions are called
   2544   // in PIC mode) allow symbols to be resolved via lazy binding.
   2545   // The lazy binding stub requires GP to point to the GOT.
   2546   if (IsPICCall && !InternalLinkage) {
   2547     unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
   2548     EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
   2549     RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
   2550   }
   2551 
   2552   // Build a sequence of copy-to-reg nodes chained together with token
   2553   // chain and flag operands which copy the outgoing args into registers.
   2554   // The InFlag in necessary since all emitted instructions must be
   2555   // stuck together.
   2556   SDValue InFlag;
   2557 
   2558   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   2559     Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
   2560                                  RegsToPass[i].second, InFlag);
   2561     InFlag = Chain.getValue(1);
   2562   }
   2563 
   2564   // Add argument registers to the end of the list so that they are
   2565   // known live into the call.
   2566   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   2567     Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
   2568                                       RegsToPass[i].second.getValueType()));
   2569 
   2570   // Add a register mask operand representing the call-preserved registers.
   2571   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   2572   const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
   2573   assert(Mask && "Missing call preserved mask for calling convention");
   2574   Ops.push_back(CLI.DAG.getRegisterMask(Mask));
   2575 
   2576   if (InFlag.getNode())
   2577     Ops.push_back(InFlag);
   2578 }
   2579 
   2580 /// LowerCall - functions arguments are copied from virtual regs to
   2581 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
   2582 SDValue
   2583 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   2584                               SmallVectorImpl<SDValue> &InVals) const {
   2585   SelectionDAG &DAG                     = CLI.DAG;
   2586   DebugLoc &DL                          = CLI.DL;
   2587   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
   2588   SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
   2589   SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
   2590   SDValue Chain                         = CLI.Chain;
   2591   SDValue Callee                        = CLI.Callee;
   2592   bool &IsTailCall                      = CLI.IsTailCall;
   2593   CallingConv::ID CallConv              = CLI.CallConv;
   2594   bool IsVarArg                         = CLI.IsVarArg;
   2595 
   2596   MachineFunction &MF = DAG.getMachineFunction();
   2597   MachineFrameInfo *MFI = MF.getFrameInfo();
   2598   const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
   2599   bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
   2600 
   2601   // Analyze operands of the call, assigning locations to each operand.
   2602   SmallVector<CCValAssign, 16> ArgLocs;
   2603   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
   2604                  getTargetMachine(), ArgLocs, *DAG.getContext());
   2605   MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
   2606 
   2607   MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
   2608                                  getTargetMachine().Options.UseSoftFloat,
   2609                                  Callee.getNode(), CLI.Args);
   2610 
   2611   // Get a count of how many bytes are to be pushed on the stack.
   2612   unsigned NextStackOffset = CCInfo.getNextStackOffset();
   2613 
   2614   // Check if it's really possible to do a tail call.
   2615   if (IsTailCall)
   2616     IsTailCall =
   2617       isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
   2618                                         *MF.getInfo<MipsFunctionInfo>());
   2619 
   2620   if (IsTailCall)
   2621     ++NumTailCalls;
   2622 
   2623   // Chain is the output chain of the last Load/Store or CopyToReg node.
   2624   // ByValChain is the output chain of the last Memcpy node created for copying
   2625   // byval arguments to the stack.
   2626   unsigned StackAlignment = TFL->getStackAlignment();
   2627   NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
   2628   SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
   2629 
   2630   if (!IsTailCall)
   2631     Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
   2632 
   2633   SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
   2634                                         IsN64 ? Mips::SP_64 : Mips::SP,
   2635                                         getPointerTy());
   2636 
   2637   // With EABI is it possible to have 16 args on registers.
   2638   std::deque< std::pair<unsigned, SDValue> > RegsToPass;
   2639   SmallVector<SDValue, 8> MemOpChains;
   2640   MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
   2641 
   2642   // Walk the register/memloc assignments, inserting copies/loads.
   2643   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2644     SDValue Arg = OutVals[i];
   2645     CCValAssign &VA = ArgLocs[i];
   2646     MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
   2647     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2648 
   2649     // ByVal Arg.
   2650     if (Flags.isByVal()) {
   2651       assert(Flags.getByValSize() &&
   2652              "ByVal args of size 0 should have been ignored by front-end.");
   2653       assert(ByValArg != MipsCCInfo.byval_end());
   2654       assert(!IsTailCall &&
   2655              "Do not tail-call optimize if there is a byval argument.");
   2656       passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
   2657                    MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
   2658       ++ByValArg;
   2659       continue;
   2660     }
   2661 
   2662     // Promote the value if needed.
   2663     switch (VA.getLocInfo()) {
   2664     default: llvm_unreachable("Unknown loc info!");
   2665     case CCValAssign::Full:
   2666       if (VA.isRegLoc()) {
   2667         if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
   2668             (ValVT == MVT::f64 && LocVT == MVT::i64) ||
   2669             (ValVT == MVT::i64 && LocVT == MVT::f64))
   2670           Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
   2671         else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
   2672           SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   2673                                    Arg, DAG.getConstant(0, MVT::i32));
   2674           SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   2675                                    Arg, DAG.getConstant(1, MVT::i32));
   2676           if (!Subtarget->isLittle())
   2677             std::swap(Lo, Hi);
   2678           unsigned LocRegLo = VA.getLocReg();
   2679           unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
   2680           RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
   2681           RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
   2682           continue;
   2683         }
   2684       }
   2685       break;
   2686     case CCValAssign::SExt:
   2687       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
   2688       break;
   2689     case CCValAssign::ZExt:
   2690       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
   2691       break;
   2692     case CCValAssign::AExt:
   2693       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
   2694       break;
   2695     }
   2696 
   2697     // Arguments that can be passed on register must be kept at
   2698     // RegsToPass vector
   2699     if (VA.isRegLoc()) {
   2700       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   2701       continue;
   2702     }
   2703 
   2704     // Register can't get to this point...
   2705     assert(VA.isMemLoc());
   2706 
   2707     // emit ISD::STORE whichs stores the
   2708     // parameter value to a stack Location
   2709     MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
   2710                                          Chain, Arg, DL, IsTailCall, DAG));
   2711   }
   2712 
   2713   // Transform all store nodes into one single node because all store
   2714   // nodes are independent of each other.
   2715   if (!MemOpChains.empty())
   2716     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
   2717                         &MemOpChains[0], MemOpChains.size());
   2718 
   2719   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
   2720   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
   2721   // node so that legalize doesn't hack it.
   2722   bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
   2723   bool GlobalOrExternal = false, InternalLinkage = false;
   2724   SDValue CalleeLo;
   2725 
   2726   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   2727     if (IsPICCall) {
   2728       InternalLinkage = G->getGlobal()->hasInternalLinkage();
   2729 
   2730       if (InternalLinkage)
   2731         Callee = getAddrLocal(Callee, DAG, HasMips64);
   2732       else if (LargeGOT)
   2733         Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
   2734                                        MipsII::MO_CALL_LO16);
   2735       else
   2736         Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
   2737     } else
   2738       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
   2739                                           MipsII::MO_NO_FLAG);
   2740     GlobalOrExternal = true;
   2741   }
   2742   else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   2743     if (!IsN64 && !IsPIC) // !N64 && static
   2744       Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
   2745                                             MipsII::MO_NO_FLAG);
   2746     else if (LargeGOT)
   2747       Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
   2748                                      MipsII::MO_CALL_LO16);
   2749     else // N64 || PIC
   2750       Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
   2751 
   2752     GlobalOrExternal = true;
   2753   }
   2754 
   2755   SmallVector<SDValue, 8> Ops(1, Chain);
   2756   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   2757 
   2758   getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
   2759               CLI, Callee, Chain);
   2760 
   2761   if (IsTailCall)
   2762     return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
   2763 
   2764   Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
   2765   SDValue InFlag = Chain.getValue(1);
   2766 
   2767   // Create the CALLSEQ_END node.
   2768   Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
   2769                              DAG.getIntPtrConstant(0, true), InFlag);
   2770   InFlag = Chain.getValue(1);
   2771 
   2772   // Handle result values, copying them out of physregs into vregs that we
   2773   // return.
   2774   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
   2775                          Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
   2776 }
   2777 
   2778 /// LowerCallResult - Lower the result values of a call into the
   2779 /// appropriate copies out of appropriate physical registers.
   2780 SDValue
   2781 MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   2782                                     CallingConv::ID CallConv, bool IsVarArg,
   2783                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   2784                                     DebugLoc DL, SelectionDAG &DAG,
   2785                                     SmallVectorImpl<SDValue> &InVals,
   2786                                     const SDNode *CallNode,
   2787                                     const Type *RetTy) const {
   2788   // Assign locations to each value returned by this call.
   2789   SmallVector<CCValAssign, 16> RVLocs;
   2790   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
   2791                  getTargetMachine(), RVLocs, *DAG.getContext());
   2792   MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
   2793 
   2794   MipsCCInfo.analyzeCallResult(Ins, getTargetMachine().Options.UseSoftFloat,
   2795                                CallNode, RetTy);
   2796 
   2797   // Copy all of the result registers out of their specified physreg.
   2798   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   2799     SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
   2800                                      RVLocs[i].getLocVT(), InFlag);
   2801     Chain = Val.getValue(1);
   2802     InFlag = Val.getValue(2);
   2803 
   2804     if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
   2805       Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
   2806 
   2807     InVals.push_back(Val);
   2808   }
   2809 
   2810   return Chain;
   2811 }
   2812 
   2813 //===----------------------------------------------------------------------===//
   2814 //             Formal Arguments Calling Convention Implementation
   2815 //===----------------------------------------------------------------------===//
   2816 /// LowerFormalArguments - transform physical registers into virtual registers
   2817 /// and generate load operations for arguments places on the stack.
   2818 SDValue
   2819 MipsTargetLowering::LowerFormalArguments(SDValue Chain,
   2820                                          CallingConv::ID CallConv,
   2821                                          bool IsVarArg,
   2822                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   2823                                          DebugLoc DL, SelectionDAG &DAG,
   2824                                          SmallVectorImpl<SDValue> &InVals)
   2825                                           const {
   2826   MachineFunction &MF = DAG.getMachineFunction();
   2827   MachineFrameInfo *MFI = MF.getFrameInfo();
   2828   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
   2829 
   2830   MipsFI->setVarArgsFrameIndex(0);
   2831 
   2832   // Used with vargs to acumulate store chains.
   2833   std::vector<SDValue> OutChains;
   2834 
   2835   // Assign locations to all of the incoming arguments.
   2836   SmallVector<CCValAssign, 16> ArgLocs;
   2837   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
   2838                  getTargetMachine(), ArgLocs, *DAG.getContext());
   2839   MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
   2840   Function::const_arg_iterator FuncArg =
   2841     DAG.getMachineFunction().getFunction()->arg_begin();
   2842   bool UseSoftFloat = getTargetMachine().Options.UseSoftFloat;
   2843 
   2844   MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
   2845   MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
   2846                            MipsCCInfo.hasByValArg());
   2847 
   2848   unsigned CurArgIdx = 0;
   2849   MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
   2850 
   2851   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2852     CCValAssign &VA = ArgLocs[i];
   2853     std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
   2854     CurArgIdx = Ins[i].OrigArgIndex;
   2855     EVT ValVT = VA.getValVT();
   2856     ISD::ArgFlagsTy Flags = Ins[i].Flags;
   2857     bool IsRegLoc = VA.isRegLoc();
   2858 
   2859     if (Flags.isByVal()) {
   2860       assert(Flags.getByValSize() &&
   2861              "ByVal args of size 0 should have been ignored by front-end.");
   2862       assert(ByValArg != MipsCCInfo.byval_end());
   2863       copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
   2864                     MipsCCInfo, *ByValArg);
   2865       ++ByValArg;
   2866       continue;
   2867     }
   2868 
   2869     // Arguments stored on registers
   2870     if (IsRegLoc) {
   2871       EVT RegVT = VA.getLocVT();
   2872       unsigned ArgReg = VA.getLocReg();
   2873       const TargetRegisterClass *RC;
   2874 
   2875       if (RegVT == MVT::i32)
   2876         RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
   2877                                         &Mips::CPURegsRegClass;
   2878       else if (RegVT == MVT::i64)
   2879         RC = &Mips::CPU64RegsRegClass;
   2880       else if (RegVT == MVT::f32)
   2881         RC = &Mips::FGR32RegClass;
   2882       else if (RegVT == MVT::f64)
   2883         RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
   2884       else
   2885         llvm_unreachable("RegVT not supported by FormalArguments Lowering");
   2886 
   2887       // Transform the arguments stored on
   2888       // physical registers into virtual ones
   2889       unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
   2890       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
   2891 
   2892       // If this is an 8 or 16-bit value, it has been passed promoted
   2893       // to 32 bits.  Insert an assert[sz]ext to capture this, then
   2894       // truncate to the right size.
   2895       if (VA.getLocInfo() != CCValAssign::Full) {
   2896         unsigned Opcode = 0;
   2897         if (VA.getLocInfo() == CCValAssign::SExt)
   2898           Opcode = ISD::AssertSext;
   2899         else if (VA.getLocInfo() == CCValAssign::ZExt)
   2900           Opcode = ISD::AssertZext;
   2901         if (Opcode)
   2902           ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
   2903                                  DAG.getValueType(ValVT));
   2904         ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
   2905       }
   2906 
   2907       // Handle floating point arguments passed in integer registers and
   2908       // long double arguments passed in floating point registers.
   2909       if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
   2910           (RegVT == MVT::i64 && ValVT == MVT::f64) ||
   2911           (RegVT == MVT::f64 && ValVT == MVT::i64))
   2912         ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
   2913       else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
   2914         unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
   2915                                   getNextIntArgReg(ArgReg), RC);
   2916         SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
   2917         if (!Subtarget->isLittle())
   2918           std::swap(ArgValue, ArgValue2);
   2919         ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
   2920                                ArgValue, ArgValue2);
   2921       }
   2922 
   2923       InVals.push_back(ArgValue);
   2924     } else { // VA.isRegLoc()
   2925 
   2926       // sanity check
   2927       assert(VA.isMemLoc());
   2928 
   2929       // The stack pointer offset is relative to the caller stack frame.
   2930       int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
   2931                                       VA.getLocMemOffset(), true);
   2932 
   2933       // Create load nodes to retrieve arguments from the stack
   2934       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2935       InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
   2936                                    MachinePointerInfo::getFixedStack(FI),
   2937                                    false, false, false, 0));
   2938     }
   2939   }
   2940 
   2941   // The mips ABIs for returning structs by value requires that we copy
   2942   // the sret argument into $v0 for the return. Save the argument into
   2943   // a virtual register so that we can access it from the return points.
   2944   if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
   2945     unsigned Reg = MipsFI->getSRetReturnReg();
   2946     if (!Reg) {
   2947       Reg = MF.getRegInfo().
   2948         createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
   2949       MipsFI->setSRetReturnReg(Reg);
   2950     }
   2951     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
   2952     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
   2953   }
   2954 
   2955   if (IsVarArg)
   2956     writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
   2957 
   2958   // All stores are grouped in one node to allow the matching between
   2959   // the size of Ins and InVals. This only happens when on varg functions
   2960   if (!OutChains.empty()) {
   2961     OutChains.push_back(Chain);
   2962     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
   2963                         &OutChains[0], OutChains.size());
   2964   }
   2965 
   2966   return Chain;
   2967 }
   2968 
   2969 //===----------------------------------------------------------------------===//
   2970 //               Return Value Calling Convention Implementation
   2971 //===----------------------------------------------------------------------===//
   2972 
   2973 bool
   2974 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   2975                                    MachineFunction &MF, bool IsVarArg,
   2976                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
   2977                                    LLVMContext &Context) const {
   2978   SmallVector<CCValAssign, 16> RVLocs;
   2979   CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
   2980                  RVLocs, Context);
   2981   return CCInfo.CheckReturn(Outs, RetCC_Mips);
   2982 }
   2983 
   2984 SDValue
   2985 MipsTargetLowering::LowerReturn(SDValue Chain,
   2986                                 CallingConv::ID CallConv, bool IsVarArg,
   2987                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
   2988                                 const SmallVectorImpl<SDValue> &OutVals,
   2989                                 DebugLoc DL, SelectionDAG &DAG) const {
   2990   // CCValAssign - represent the assignment of
   2991   // the return value to a location
   2992   SmallVector<CCValAssign, 16> RVLocs;
   2993   MachineFunction &MF = DAG.getMachineFunction();
   2994 
   2995   // CCState - Info about the registers and stack slot.
   2996   CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
   2997                  *DAG.getContext());
   2998   MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
   2999 
   3000   // Analyze return values.
   3001   MipsCCInfo.analyzeReturn(Outs, getTargetMachine().Options.UseSoftFloat,
   3002                            MF.getFunction()->getReturnType());
   3003 
   3004   SDValue Flag;
   3005   SmallVector<SDValue, 4> RetOps(1, Chain);
   3006 
   3007   // Copy the result values into the output registers.
   3008   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   3009     SDValue Val = OutVals[i];
   3010     CCValAssign &VA = RVLocs[i];
   3011     assert(VA.isRegLoc() && "Can only return in registers!");
   3012 
   3013     if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
   3014       Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
   3015 
   3016     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
   3017 
   3018     // Guarantee that all emitted copies are stuck together with flags.
   3019     Flag = Chain.getValue(1);
   3020     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   3021   }
   3022 
   3023   // The mips ABIs for returning structs by value requires that we copy
   3024   // the sret argument into $v0 for the return. We saved the argument into
   3025   // a virtual register in the entry block, so now we copy the value out
   3026   // and into $v0.
   3027   if (MF.getFunction()->hasStructRetAttr()) {
   3028     MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
   3029     unsigned Reg = MipsFI->getSRetReturnReg();
   3030 
   3031     if (!Reg)
   3032       llvm_unreachable("sret virtual register not created in the entry block");
   3033     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
   3034     unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
   3035 
   3036     Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
   3037     Flag = Chain.getValue(1);
   3038     RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
   3039   }
   3040 
   3041   RetOps[0] = Chain;  // Update chain.
   3042 
   3043   // Add the flag if we have it.
   3044   if (Flag.getNode())
   3045     RetOps.push_back(Flag);
   3046 
   3047   // Return on Mips is always a "jr $ra"
   3048   return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
   3049 }
   3050 
   3051 //===----------------------------------------------------------------------===//
   3052 //                           Mips Inline Assembly Support
   3053 //===----------------------------------------------------------------------===//
   3054 
   3055 /// getConstraintType - Given a constraint letter, return the type of
   3056 /// constraint it is for this target.
   3057 MipsTargetLowering::ConstraintType MipsTargetLowering::
   3058 getConstraintType(const std::string &Constraint) const
   3059 {
   3060   // Mips specific constrainy
   3061   // GCC config/mips/constraints.md
   3062   //
   3063   // 'd' : An address register. Equivalent to r
   3064   //       unless generating MIPS16 code.
   3065   // 'y' : Equivalent to r; retained for
   3066   //       backwards compatibility.
   3067   // 'c' : A register suitable for use in an indirect
   3068   //       jump. This will always be $25 for -mabicalls.
   3069   // 'l' : The lo register. 1 word storage.
   3070   // 'x' : The hilo register pair. Double word storage.
   3071   if (Constraint.size() == 1) {
   3072     switch (Constraint[0]) {
   3073       default : break;
   3074       case 'd':
   3075       case 'y':
   3076       case 'f':
   3077       case 'c':
   3078       case 'l':
   3079       case 'x':
   3080         return C_RegisterClass;
   3081       case 'R':
   3082         return C_Memory;
   3083     }
   3084   }
   3085   return TargetLowering::getConstraintType(Constraint);
   3086 }
   3087 
   3088 /// Examine constraint type and operand type and determine a weight value.
   3089 /// This object must already have been set up with the operand type
   3090 /// and the current alternative constraint selected.
   3091 TargetLowering::ConstraintWeight
   3092 MipsTargetLowering::getSingleConstraintMatchWeight(
   3093     AsmOperandInfo &info, const char *constraint) const {
   3094   ConstraintWeight weight = CW_Invalid;
   3095   Value *CallOperandVal = info.CallOperandVal;
   3096     // If we don't have a value, we can't do a match,
   3097     // but allow it at the lowest weight.
   3098   if (CallOperandVal == NULL)
   3099     return CW_Default;
   3100   Type *type = CallOperandVal->getType();
   3101   // Look at the constraint type.
   3102   switch (*constraint) {
   3103   default:
   3104     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   3105     break;
   3106   case 'd':
   3107   case 'y':
   3108     if (type->isIntegerTy())
   3109       weight = CW_Register;
   3110     break;
   3111   case 'f':
   3112     if (type->isFloatTy())
   3113       weight = CW_Register;
   3114     break;
   3115   case 'c': // $25 for indirect jumps
   3116   case 'l': // lo register
   3117   case 'x': // hilo register pair
   3118       if (type->isIntegerTy())
   3119       weight = CW_SpecificReg;
   3120       break;
   3121   case 'I': // signed 16 bit immediate
   3122   case 'J': // integer zero
   3123   case 'K': // unsigned 16 bit immediate
   3124   case 'L': // signed 32 bit immediate where lower 16 bits are 0
   3125   case 'N': // immediate in the range of -65535 to -1 (inclusive)
   3126   case 'O': // signed 15 bit immediate (+- 16383)
   3127   case 'P': // immediate in the range of 65535 to 1 (inclusive)
   3128     if (isa<ConstantInt>(CallOperandVal))
   3129       weight = CW_Constant;
   3130     break;
   3131   case 'R':
   3132     weight = CW_Memory;
   3133     break;
   3134   }
   3135   return weight;
   3136 }
   3137 
   3138 /// Given a register class constraint, like 'r', if this corresponds directly
   3139 /// to an LLVM register class, return a register of 0 and the register class
   3140 /// pointer.
   3141 std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
   3142 getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
   3143 {
   3144   if (Constraint.size() == 1) {
   3145     switch (Constraint[0]) {
   3146     case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
   3147     case 'y': // Same as 'r'. Exists for compatibility.
   3148     case 'r':
   3149       if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
   3150         if (Subtarget->inMips16Mode())
   3151           return std::make_pair(0U, &Mips::CPU16RegsRegClass);
   3152         return std::make_pair(0U, &Mips::CPURegsRegClass);
   3153       }
   3154       if (VT == MVT::i64 && !HasMips64)
   3155         return std::make_pair(0U, &Mips::CPURegsRegClass);
   3156       if (VT == MVT::i64 && HasMips64)
   3157         return std::make_pair(0U, &Mips::CPU64RegsRegClass);
   3158       // This will generate an error message
   3159       return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
   3160     case 'f':
   3161       if (VT == MVT::f32)
   3162         return std::make_pair(0U, &Mips::FGR32RegClass);
   3163       if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
   3164         if (Subtarget->isFP64bit())
   3165           return std::make_pair(0U, &Mips::FGR64RegClass);
   3166         return std::make_pair(0U, &Mips::AFGR64RegClass);
   3167       }
   3168       break;
   3169     case 'c': // register suitable for indirect jump
   3170       if (VT == MVT::i32)
   3171         return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
   3172       assert(VT == MVT::i64 && "Unexpected type.");
   3173       return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
   3174     case 'l': // register suitable for indirect jump
   3175       if (VT == MVT::i32)
   3176         return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
   3177       return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
   3178     case 'x': // register suitable for indirect jump
   3179       // Fixme: Not triggering the use of both hi and low
   3180       // This will generate an error message
   3181       return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
   3182     }
   3183   }
   3184   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   3185 }
   3186 
   3187 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   3188 /// vector.  If it is invalid, don't add anything to Ops.
   3189 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   3190                                                      std::string &Constraint,
   3191                                                      std::vector<SDValue>&Ops,
   3192                                                      SelectionDAG &DAG) const {
   3193   SDValue Result(0, 0);
   3194 
   3195   // Only support length 1 constraints for now.
   3196   if (Constraint.length() > 1) return;
   3197 
   3198   char ConstraintLetter = Constraint[0];
   3199   switch (ConstraintLetter) {
   3200   default: break; // This will fall through to the generic implementation
   3201   case 'I': // Signed 16 bit constant
   3202     // If this fails, the parent routine will give an error
   3203     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3204       EVT Type = Op.getValueType();
   3205       int64_t Val = C->getSExtValue();
   3206       if (isInt<16>(Val)) {
   3207         Result = DAG.getTargetConstant(Val, Type);
   3208         break;
   3209       }
   3210     }
   3211     return;
   3212   case 'J': // integer zero
   3213     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3214       EVT Type = Op.getValueType();
   3215       int64_t Val = C->getZExtValue();
   3216       if (Val == 0) {
   3217         Result = DAG.getTargetConstant(0, Type);
   3218         break;
   3219       }
   3220     }
   3221     return;
   3222   case 'K': // unsigned 16 bit immediate
   3223     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3224       EVT Type = Op.getValueType();
   3225       uint64_t Val = (uint64_t)C->getZExtValue();
   3226       if (isUInt<16>(Val)) {
   3227         Result = DAG.getTargetConstant(Val, Type);
   3228         break;
   3229       }
   3230     }
   3231     return;
   3232   case 'L': // signed 32 bit immediate where lower 16 bits are 0
   3233     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3234       EVT Type = Op.getValueType();
   3235       int64_t Val = C->getSExtValue();
   3236       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
   3237         Result = DAG.getTargetConstant(Val, Type);
   3238         break;
   3239       }
   3240     }
   3241     return;
   3242   case 'N': // immediate in the range of -65535 to -1 (inclusive)
   3243     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3244       EVT Type = Op.getValueType();
   3245       int64_t Val = C->getSExtValue();
   3246       if ((Val >= -65535) && (Val <= -1)) {
   3247         Result = DAG.getTargetConstant(Val, Type);
   3248         break;
   3249       }
   3250     }
   3251     return;
   3252   case 'O': // signed 15 bit immediate
   3253     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3254       EVT Type = Op.getValueType();
   3255       int64_t Val = C->getSExtValue();
   3256       if ((isInt<15>(Val))) {
   3257         Result = DAG.getTargetConstant(Val, Type);
   3258         break;
   3259       }
   3260     }
   3261     return;
   3262   case 'P': // immediate in the range of 1 to 65535 (inclusive)
   3263     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3264       EVT Type = Op.getValueType();
   3265       int64_t Val = C->getSExtValue();
   3266       if ((Val <= 65535) && (Val >= 1)) {
   3267         Result = DAG.getTargetConstant(Val, Type);
   3268         break;
   3269       }
   3270     }
   3271     return;
   3272   }
   3273 
   3274   if (Result.getNode()) {
   3275     Ops.push_back(Result);
   3276     return;
   3277   }
   3278 
   3279   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   3280 }
   3281 
   3282 bool
   3283 MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
   3284   // No global is ever allowed as a base.
   3285   if (AM.BaseGV)
   3286     return false;
   3287 
   3288   switch (AM.Scale) {
   3289   case 0: // "r+i" or just "i", depending on HasBaseReg.
   3290     break;
   3291   case 1:
   3292     if (!AM.HasBaseReg) // allow "r+i".
   3293       break;
   3294     return false; // disallow "r+r" or "r+r+i".
   3295   default:
   3296     return false;
   3297   }
   3298 
   3299   return true;
   3300 }
   3301 
   3302 bool
   3303 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   3304   // The Mips target isn't yet aware of offsets.
   3305   return false;
   3306 }
   3307 
   3308 EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
   3309                                             unsigned SrcAlign,
   3310                                             bool IsMemset, bool ZeroMemset,
   3311                                             bool MemcpyStrSrc,
   3312                                             MachineFunction &MF) const {
   3313   if (Subtarget->hasMips64())
   3314     return MVT::i64;
   3315 
   3316   return MVT::i32;
   3317 }
   3318 
   3319 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   3320   if (VT != MVT::f32 && VT != MVT::f64)
   3321     return false;
   3322   if (Imm.isNegZero())
   3323     return false;
   3324   return Imm.isZero();
   3325 }
   3326 
   3327 unsigned MipsTargetLowering::getJumpTableEncoding() const {
   3328   if (IsN64)
   3329     return MachineJumpTableInfo::EK_GPRel64BlockAddress;
   3330 
   3331   return TargetLowering::getJumpTableEncoding();
   3332 }
   3333 
   3334 /// This function returns true if CallSym is a long double emulation routine.
   3335 static bool isF128SoftLibCall(const char *CallSym) {
   3336   const char *const LibCalls[] =
   3337     {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
   3338      "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
   3339      "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
   3340      "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
   3341      "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
   3342      "__trunctfdf2", "__trunctfsf2", "__unordtf2",
   3343      "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
   3344      "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
   3345      "truncl"};
   3346 
   3347   const char * const *End = LibCalls + array_lengthof(LibCalls);
   3348 
   3349   // Check that LibCalls is sorted alphabetically.
   3350   MipsTargetLowering::LTStr Comp;
   3351 
   3352 #ifndef NDEBUG
   3353   for (const char * const *I = LibCalls; I < End - 1; ++I)
   3354     assert(Comp(*I, *(I + 1)));
   3355 #endif
   3356 
   3357   return std::binary_search(LibCalls, End, CallSym, Comp);
   3358 }
   3359 
   3360 /// This function returns true if Ty is fp128 or i128 which was originally a
   3361 /// fp128.
   3362 static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
   3363   if (Ty->isFP128Ty())
   3364     return true;
   3365 
   3366   const ExternalSymbolSDNode *ES =
   3367     dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
   3368 
   3369   // If the Ty is i128 and the function being called is a long double emulation
   3370   // routine, then the original type is f128.
   3371   return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
   3372 }
   3373 
   3374 MipsTargetLowering::MipsCC::MipsCC(CallingConv::ID CC, bool IsO32_,
   3375                                    CCState &Info)
   3376   : CCInfo(Info), CallConv(CC), IsO32(IsO32_) {
   3377   // Pre-allocate reserved argument area.
   3378   CCInfo.AllocateStack(reservedArgArea(), 1);
   3379 }
   3380 
   3381 void MipsTargetLowering::MipsCC::
   3382 analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
   3383                     bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
   3384                     std::vector<ArgListEntry> &FuncArgs) {
   3385   assert((CallConv != CallingConv::Fast || !IsVarArg) &&
   3386          "CallingConv::Fast shouldn't be used for vararg functions.");
   3387 
   3388   unsigned NumOpnds = Args.size();
   3389   llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
   3390 
   3391   for (unsigned I = 0; I != NumOpnds; ++I) {
   3392     MVT ArgVT = Args[I].VT;
   3393     ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
   3394     bool R;
   3395 
   3396     if (ArgFlags.isByVal()) {
   3397       handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
   3398       continue;
   3399     }
   3400 
   3401     if (IsVarArg && !Args[I].IsFixed)
   3402       R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
   3403     else {
   3404       MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
   3405                            IsSoftFloat);
   3406       R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
   3407     }
   3408 
   3409     if (R) {
   3410 #ifndef NDEBUG
   3411       dbgs() << "Call operand #" << I << " has unhandled type "
   3412              << EVT(ArgVT).getEVTString();
   3413 #endif
   3414       llvm_unreachable(0);
   3415     }
   3416   }
   3417 }
   3418 
   3419 void MipsTargetLowering::MipsCC::
   3420 analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
   3421                        bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
   3422   unsigned NumArgs = Args.size();
   3423   llvm::CCAssignFn *FixedFn = fixedArgFn();
   3424   unsigned CurArgIdx = 0;
   3425 
   3426   for (unsigned I = 0; I != NumArgs; ++I) {
   3427     MVT ArgVT = Args[I].VT;
   3428     ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
   3429     std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
   3430     CurArgIdx = Args[I].OrigArgIndex;
   3431 
   3432     if (ArgFlags.isByVal()) {
   3433       handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
   3434       continue;
   3435     }
   3436 
   3437     MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
   3438 
   3439     if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
   3440       continue;
   3441 
   3442 #ifndef NDEBUG
   3443     dbgs() << "Formal Arg #" << I << " has unhandled type "
   3444            << EVT(ArgVT).getEVTString();
   3445 #endif
   3446     llvm_unreachable(0);
   3447   }
   3448 }
   3449 
   3450 template<typename Ty>
   3451 void MipsTargetLowering::MipsCC::
   3452 analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
   3453               const SDNode *CallNode, const Type *RetTy) const {
   3454   CCAssignFn *Fn;
   3455 
   3456   if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
   3457     Fn = RetCC_F128Soft;
   3458   else
   3459     Fn = RetCC_Mips;
   3460 
   3461   for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
   3462     MVT VT = RetVals[I].VT;
   3463     ISD::ArgFlagsTy Flags = RetVals[I].Flags;
   3464     MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
   3465 
   3466     if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
   3467 #ifndef NDEBUG
   3468       dbgs() << "Call result #" << I << " has unhandled type "
   3469              << EVT(VT).getEVTString() << '\n';
   3470 #endif
   3471       llvm_unreachable(0);
   3472     }
   3473   }
   3474 }
   3475 
   3476 void MipsTargetLowering::MipsCC::
   3477 analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
   3478                   const SDNode *CallNode, const Type *RetTy) const {
   3479   analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
   3480 }
   3481 
   3482 void MipsTargetLowering::MipsCC::
   3483 analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
   3484               const Type *RetTy) const {
   3485   analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
   3486 }
   3487 
   3488 void
   3489 MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
   3490                                            MVT LocVT,
   3491                                            CCValAssign::LocInfo LocInfo,
   3492                                            ISD::ArgFlagsTy ArgFlags) {
   3493   assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
   3494 
   3495   struct ByValArgInfo ByVal;
   3496   unsigned RegSize = regSize();
   3497   unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
   3498   unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
   3499                             RegSize * 2);
   3500 
   3501   if (useRegsForByval())
   3502     allocateRegs(ByVal, ByValSize, Align);
   3503 
   3504   // Allocate space on caller's stack.
   3505   ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
   3506                                        Align);
   3507   CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
   3508                                     LocInfo));
   3509   ByValArgs.push_back(ByVal);
   3510 }
   3511 
   3512 unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
   3513   return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
   3514 }
   3515 
   3516 unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
   3517   return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
   3518 }
   3519 
   3520 const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
   3521   return IsO32 ? O32IntRegs : Mips64IntRegs;
   3522 }
   3523 
   3524 llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
   3525   if (CallConv == CallingConv::Fast)
   3526     return CC_Mips_FastCC;
   3527 
   3528   return IsO32 ? CC_MipsO32 : CC_MipsN;
   3529 }
   3530 
   3531 llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
   3532   return IsO32 ? CC_MipsO32 : CC_MipsN_VarArg;
   3533 }
   3534 
   3535 const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
   3536   return IsO32 ? O32IntRegs : Mips64DPRegs;
   3537 }
   3538 
   3539 void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
   3540                                               unsigned ByValSize,
   3541                                               unsigned Align) {
   3542   unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
   3543   const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
   3544   assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
   3545          "Byval argument's size and alignment should be a multiple of"
   3546          "RegSize.");
   3547 
   3548   ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
   3549 
   3550   // If Align > RegSize, the first arg register must be even.
   3551   if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
   3552     CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
   3553     ++ByVal.FirstIdx;
   3554   }
   3555 
   3556   // Mark the registers allocated.
   3557   for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
   3558        ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
   3559     CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
   3560 }
   3561 
   3562 MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
   3563                                          const SDNode *CallNode,
   3564                                          bool IsSoftFloat) const {
   3565   if (IsSoftFloat || IsO32)
   3566     return VT;
   3567 
   3568   // Check if the original type was fp128.
   3569   if (originalTypeIsF128(OrigTy, CallNode)) {
   3570     assert(VT == MVT::i64);
   3571     return MVT::f64;
   3572   }
   3573 
   3574   return VT;
   3575 }
   3576 
   3577 void MipsTargetLowering::
   3578 copyByValRegs(SDValue Chain, DebugLoc DL, std::vector<SDValue> &OutChains,
   3579               SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
   3580               SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
   3581               const MipsCC &CC, const ByValArgInfo &ByVal) const {
   3582   MachineFunction &MF = DAG.getMachineFunction();
   3583   MachineFrameInfo *MFI = MF.getFrameInfo();
   3584   unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
   3585   unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
   3586   int FrameObjOffset;
   3587 
   3588   if (RegAreaSize)
   3589     FrameObjOffset = (int)CC.reservedArgArea() -
   3590       (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
   3591   else
   3592     FrameObjOffset = ByVal.Address;
   3593 
   3594   // Create frame object.
   3595   EVT PtrTy = getPointerTy();
   3596   int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
   3597   SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
   3598   InVals.push_back(FIN);
   3599 
   3600   if (!ByVal.NumRegs)
   3601     return;
   3602 
   3603   // Copy arg registers.
   3604   MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
   3605   const TargetRegisterClass *RC = getRegClassFor(RegTy);
   3606 
   3607   for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
   3608     unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
   3609     unsigned VReg = addLiveIn(MF, ArgReg, RC);
   3610     unsigned Offset = I * CC.regSize();
   3611     SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
   3612                                    DAG.getConstant(Offset, PtrTy));
   3613     SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
   3614                                  StorePtr, MachinePointerInfo(FuncArg, Offset),
   3615                                  false, false, 0);
   3616     OutChains.push_back(Store);
   3617   }
   3618 }
   3619 
   3620 // Copy byVal arg to registers and stack.
   3621 void MipsTargetLowering::
   3622 passByValArg(SDValue Chain, DebugLoc DL,
   3623              std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
   3624              SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
   3625              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
   3626              const MipsCC &CC, const ByValArgInfo &ByVal,
   3627              const ISD::ArgFlagsTy &Flags, bool isLittle) const {
   3628   unsigned ByValSize = Flags.getByValSize();
   3629   unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
   3630   unsigned RegSize = CC.regSize();
   3631   unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
   3632   EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
   3633 
   3634   if (ByVal.NumRegs) {
   3635     const uint16_t *ArgRegs = CC.intArgRegs();
   3636     bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
   3637     unsigned I = 0;
   3638 
   3639     // Copy words to registers.
   3640     for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
   3641       SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
   3642                                     DAG.getConstant(Offset, PtrTy));
   3643       SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
   3644                                     MachinePointerInfo(), false, false, false,
   3645                                     Alignment);
   3646       MemOpChains.push_back(LoadVal.getValue(1));
   3647       unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
   3648       RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
   3649     }
   3650 
   3651     // Return if the struct has been fully copied.
   3652     if (ByValSize == Offset)
   3653       return;
   3654 
   3655     // Copy the remainder of the byval argument with sub-word loads and shifts.
   3656     if (LeftoverBytes) {
   3657       assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
   3658              "Size of the remainder should be smaller than RegSize.");
   3659       SDValue Val;
   3660 
   3661       for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
   3662            Offset < ByValSize; LoadSize /= 2) {
   3663         unsigned RemSize = ByValSize - Offset;
   3664 
   3665         if (RemSize < LoadSize)
   3666           continue;
   3667 
   3668         // Load subword.
   3669         SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
   3670                                       DAG.getConstant(Offset, PtrTy));
   3671         SDValue LoadVal =
   3672           DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
   3673                          MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
   3674                          false, false, Alignment);
   3675         MemOpChains.push_back(LoadVal.getValue(1));
   3676 
   3677         // Shift the loaded value.
   3678         unsigned Shamt;
   3679 
   3680         if (isLittle)
   3681           Shamt = TotalSizeLoaded;
   3682         else
   3683           Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
   3684 
   3685         SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
   3686                                     DAG.getConstant(Shamt, MVT::i32));
   3687 
   3688         if (Val.getNode())
   3689           Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
   3690         else
   3691           Val = Shift;
   3692 
   3693         Offset += LoadSize;
   3694         TotalSizeLoaded += LoadSize;
   3695         Alignment = std::min(Alignment, LoadSize);
   3696       }
   3697 
   3698       unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
   3699       RegsToPass.push_back(std::make_pair(ArgReg, Val));
   3700       return;
   3701     }
   3702   }
   3703 
   3704   // Copy remainder of byval arg to it with memcpy.
   3705   unsigned MemCpySize = ByValSize - Offset;
   3706   SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
   3707                             DAG.getConstant(Offset, PtrTy));
   3708   SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
   3709                             DAG.getIntPtrConstant(ByVal.Address));
   3710   Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
   3711                         DAG.getConstant(MemCpySize, PtrTy), Alignment,
   3712                         /*isVolatile=*/false, /*AlwaysInline=*/false,
   3713                         MachinePointerInfo(0), MachinePointerInfo(0));
   3714   MemOpChains.push_back(Chain);
   3715 }
   3716 
   3717 void
   3718 MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
   3719                                     const MipsCC &CC, SDValue Chain,
   3720                                     DebugLoc DL, SelectionDAG &DAG) const {
   3721   unsigned NumRegs = CC.numIntArgRegs();
   3722   const uint16_t *ArgRegs = CC.intArgRegs();
   3723   const CCState &CCInfo = CC.getCCInfo();
   3724   unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
   3725   unsigned RegSize = CC.regSize();
   3726   MVT RegTy = MVT::getIntegerVT(RegSize * 8);
   3727   const TargetRegisterClass *RC = getRegClassFor(RegTy);
   3728   MachineFunction &MF = DAG.getMachineFunction();
   3729   MachineFrameInfo *MFI = MF.getFrameInfo();
   3730   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
   3731 
   3732   // Offset of the first variable argument from stack pointer.
   3733   int VaArgOffset;
   3734 
   3735   if (NumRegs == Idx)
   3736     VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
   3737   else
   3738     VaArgOffset =
   3739       (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
   3740 
   3741   // Record the frame index of the first variable argument
   3742   // which is a value necessary to VASTART.
   3743   int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
   3744   MipsFI->setVarArgsFrameIndex(FI);
   3745 
   3746   // Copy the integer registers that have not been used for argument passing
   3747   // to the argument register save area. For O32, the save area is allocated
   3748   // in the caller's stack frame, while for N32/64, it is allocated in the
   3749   // callee's stack frame.
   3750   for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
   3751     unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
   3752     SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
   3753     FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
   3754     SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
   3755     SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
   3756                                  MachinePointerInfo(), false, false, 0);
   3757     cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
   3758     OutChains.push_back(Store);
   3759   }
   3760 }
   3761